Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/profile.c
  4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  5 *  with configurable resolution, support for restricting the cpus on
  6 *  which profiling is done, and switching between cpu time and
  7 *  schedule() calls via kernel command line parameters passed at boot.
  8 *
  9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 10 *	Red Hat, July 2004
 11 *  Consolidation of architecture support code for profiling,
 12 *	Nadia Yvette Chambers, Oracle, July 2004
 13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 14 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 15 *	Oracle, 2004
 16 */
 17
 18#include <linux/export.h>
 19#include <linux/profile.h>
 20#include <linux/memblock.h>
 21#include <linux/notifier.h>
 22#include <linux/mm.h>
 23#include <linux/cpumask.h>
 24#include <linux/cpu.h>
 25#include <linux/highmem.h>
 26#include <linux/mutex.h>
 27#include <linux/slab.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched/stat.h>
 30
 31#include <asm/sections.h>
 32#include <asm/irq_regs.h>
 33#include <asm/ptrace.h>
 34
 35struct profile_hit {
 36	u32 pc, hits;
 37};
 38#define PROFILE_GRPSHIFT	3
 39#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 40#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 41#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 42
 43static atomic_t *prof_buffer;
 44static unsigned long prof_len;
 45static unsigned short int prof_shift;
 46
 47int prof_on __read_mostly;
 48EXPORT_SYMBOL_GPL(prof_on);
 49
 50static cpumask_var_t prof_cpu_mask;
 51#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 52static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 53static DEFINE_PER_CPU(int, cpu_profile_flip);
 54static DEFINE_MUTEX(profile_flip_mutex);
 55#endif /* CONFIG_SMP */
 56
 57int profile_setup(char *str)
 58{
 59	static const char schedstr[] = "schedule";
 60	static const char sleepstr[] = "sleep";
 61	static const char kvmstr[] = "kvm";
 62	const char *select = NULL;
 63	int par;
 64
 65	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 66#ifdef CONFIG_SCHEDSTATS
 67		force_schedstat_enabled();
 68		prof_on = SLEEP_PROFILING;
 69		select = sleepstr;
 
 
 
 
 
 70#else
 71		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 72#endif /* CONFIG_SCHEDSTATS */
 73	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 74		prof_on = SCHED_PROFILING;
 75		select = schedstr;
 
 
 
 
 
 76	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 77		prof_on = KVM_PROFILING;
 78		select = kvmstr;
 
 
 
 
 
 79	} else if (get_option(&str, &par)) {
 80		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 81		prof_on = CPU_PROFILING;
 82		pr_info("kernel profiling enabled (shift: %u)\n",
 83			prof_shift);
 84	}
 85
 86	if (select) {
 87		if (str[strlen(select)] == ',')
 88			str += strlen(select) + 1;
 89		if (get_option(&str, &par))
 90			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 91		pr_info("kernel %s profiling enabled (shift: %u)\n",
 92			select, prof_shift);
 93	}
 94
 95	return 1;
 96}
 97__setup("profile=", profile_setup);
 98
 99
100int __ref profile_init(void)
101{
102	int buffer_bytes;
103	if (!prof_on)
104		return 0;
105
106	/* only text is profiled */
107	prof_len = (_etext - _stext) >> prof_shift;
108
109	if (!prof_len) {
110		pr_warn("profiling shift: %u too large\n", prof_shift);
111		prof_on = 0;
112		return -EINVAL;
113	}
114
115	buffer_bytes = prof_len*sizeof(atomic_t);
116
117	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
118		return -ENOMEM;
119
120	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
121
122	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
123	if (prof_buffer)
124		return 0;
125
126	prof_buffer = alloc_pages_exact(buffer_bytes,
127					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
128	if (prof_buffer)
129		return 0;
130
131	prof_buffer = vzalloc(buffer_bytes);
132	if (prof_buffer)
133		return 0;
134
135	free_cpumask_var(prof_cpu_mask);
136	return -ENOMEM;
137}
138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
140/*
141 * Each cpu has a pair of open-addressed hashtables for pending
142 * profile hits. read_profile() IPI's all cpus to request them
143 * to flip buffers and flushes their contents to prof_buffer itself.
144 * Flip requests are serialized by the profile_flip_mutex. The sole
145 * use of having a second hashtable is for avoiding cacheline
146 * contention that would otherwise happen during flushes of pending
147 * profile hits required for the accuracy of reported profile hits
148 * and so resurrect the interrupt livelock issue.
149 *
150 * The open-addressed hashtables are indexed by profile buffer slot
151 * and hold the number of pending hits to that profile buffer slot on
152 * a cpu in an entry. When the hashtable overflows, all pending hits
153 * are accounted to their corresponding profile buffer slots with
154 * atomic_add() and the hashtable emptied. As numerous pending hits
155 * may be accounted to a profile buffer slot in a hashtable entry,
156 * this amortizes a number of atomic profile buffer increments likely
157 * to be far larger than the number of entries in the hashtable,
158 * particularly given that the number of distinct profile buffer
159 * positions to which hits are accounted during short intervals (e.g.
160 * several seconds) is usually very small. Exclusion from buffer
161 * flipping is provided by interrupt disablement (note that for
162 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
163 * process context).
164 * The hash function is meant to be lightweight as opposed to strong,
165 * and was vaguely inspired by ppc64 firmware-supported inverted
166 * pagetable hash functions, but uses a full hashtable full of finite
167 * collision chains, not just pairs of them.
168 *
169 * -- nyc
170 */
171static void __profile_flip_buffers(void *unused)
172{
173	int cpu = smp_processor_id();
174
175	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
176}
177
178static void profile_flip_buffers(void)
179{
180	int i, j, cpu;
181
182	mutex_lock(&profile_flip_mutex);
183	j = per_cpu(cpu_profile_flip, get_cpu());
184	put_cpu();
185	on_each_cpu(__profile_flip_buffers, NULL, 1);
186	for_each_online_cpu(cpu) {
187		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
188		for (i = 0; i < NR_PROFILE_HIT; ++i) {
189			if (!hits[i].hits) {
190				if (hits[i].pc)
191					hits[i].pc = 0;
192				continue;
193			}
194			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
195			hits[i].hits = hits[i].pc = 0;
196		}
197	}
198	mutex_unlock(&profile_flip_mutex);
199}
200
201static void profile_discard_flip_buffers(void)
202{
203	int i, cpu;
204
205	mutex_lock(&profile_flip_mutex);
206	i = per_cpu(cpu_profile_flip, get_cpu());
207	put_cpu();
208	on_each_cpu(__profile_flip_buffers, NULL, 1);
209	for_each_online_cpu(cpu) {
210		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
211		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
212	}
213	mutex_unlock(&profile_flip_mutex);
214}
215
216static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
217{
218	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
219	int i, j, cpu;
220	struct profile_hit *hits;
221
222	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
223	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
224	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
225	cpu = get_cpu();
226	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
227	if (!hits) {
228		put_cpu();
229		return;
230	}
231	/*
232	 * We buffer the global profiler buffer into a per-CPU
233	 * queue and thus reduce the number of global (and possibly
234	 * NUMA-alien) accesses. The write-queue is self-coalescing:
235	 */
236	local_irq_save(flags);
237	do {
238		for (j = 0; j < PROFILE_GRPSZ; ++j) {
239			if (hits[i + j].pc == pc) {
240				hits[i + j].hits += nr_hits;
241				goto out;
242			} else if (!hits[i + j].hits) {
243				hits[i + j].pc = pc;
244				hits[i + j].hits = nr_hits;
245				goto out;
246			}
247		}
248		i = (i + secondary) & (NR_PROFILE_HIT - 1);
249	} while (i != primary);
250
251	/*
252	 * Add the current hit(s) and flush the write-queue out
253	 * to the global buffer:
254	 */
255	atomic_add(nr_hits, &prof_buffer[pc]);
256	for (i = 0; i < NR_PROFILE_HIT; ++i) {
257		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
258		hits[i].pc = hits[i].hits = 0;
259	}
260out:
261	local_irq_restore(flags);
262	put_cpu();
263}
264
265static int profile_dead_cpu(unsigned int cpu)
266{
267	struct page *page;
268	int i;
269
270	if (cpumask_available(prof_cpu_mask))
271		cpumask_clear_cpu(cpu, prof_cpu_mask);
272
273	for (i = 0; i < 2; i++) {
274		if (per_cpu(cpu_profile_hits, cpu)[i]) {
275			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
276			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
277			__free_page(page);
278		}
279	}
280	return 0;
281}
282
283static int profile_prepare_cpu(unsigned int cpu)
284{
285	int i, node = cpu_to_mem(cpu);
286	struct page *page;
287
288	per_cpu(cpu_profile_flip, cpu) = 0;
289
290	for (i = 0; i < 2; i++) {
291		if (per_cpu(cpu_profile_hits, cpu)[i])
292			continue;
293
294		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
295		if (!page) {
296			profile_dead_cpu(cpu);
297			return -ENOMEM;
298		}
299		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
300
301	}
302	return 0;
303}
304
305static int profile_online_cpu(unsigned int cpu)
306{
307	if (cpumask_available(prof_cpu_mask))
308		cpumask_set_cpu(cpu, prof_cpu_mask);
309
310	return 0;
311}
312
313#else /* !CONFIG_SMP */
314#define profile_flip_buffers()		do { } while (0)
315#define profile_discard_flip_buffers()	do { } while (0)
316
317static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
318{
319	unsigned long pc;
320	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
321	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
322}
323#endif /* !CONFIG_SMP */
324
325void profile_hits(int type, void *__pc, unsigned int nr_hits)
326{
327	if (prof_on != type || !prof_buffer)
328		return;
329	do_profile_hits(type, __pc, nr_hits);
330}
331EXPORT_SYMBOL_GPL(profile_hits);
332
333void profile_tick(int type)
334{
335	struct pt_regs *regs = get_irq_regs();
336
337	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
338	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
339		profile_hit(type, (void *)profile_pc(regs));
340}
341
342#ifdef CONFIG_PROC_FS
343#include <linux/proc_fs.h>
344#include <linux/seq_file.h>
345#include <linux/uaccess.h>
346
347static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
348{
349	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
350	return 0;
351}
352
353static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
354{
355	return single_open(file, prof_cpu_mask_proc_show, NULL);
356}
357
358static ssize_t prof_cpu_mask_proc_write(struct file *file,
359	const char __user *buffer, size_t count, loff_t *pos)
360{
361	cpumask_var_t new_value;
362	int err;
363
364	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
365		return -ENOMEM;
366
367	err = cpumask_parse_user(buffer, count, new_value);
368	if (!err) {
369		cpumask_copy(prof_cpu_mask, new_value);
370		err = count;
371	}
372	free_cpumask_var(new_value);
373	return err;
374}
375
376static const struct proc_ops prof_cpu_mask_proc_ops = {
377	.proc_open	= prof_cpu_mask_proc_open,
378	.proc_read	= seq_read,
379	.proc_lseek	= seq_lseek,
380	.proc_release	= single_release,
381	.proc_write	= prof_cpu_mask_proc_write,
382};
383
384void create_prof_cpu_mask(void)
385{
386	/* create /proc/irq/prof_cpu_mask */
387	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
388}
389
390/*
391 * This function accesses profiling information. The returned data is
392 * binary: the sampling step and the actual contents of the profile
393 * buffer. Use of the program readprofile is recommended in order to
394 * get meaningful info out of these data.
395 */
396static ssize_t
397read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
398{
399	unsigned long p = *ppos;
400	ssize_t read;
401	char *pnt;
402	unsigned long sample_step = 1UL << prof_shift;
403
404	profile_flip_buffers();
405	if (p >= (prof_len+1)*sizeof(unsigned int))
406		return 0;
407	if (count > (prof_len+1)*sizeof(unsigned int) - p)
408		count = (prof_len+1)*sizeof(unsigned int) - p;
409	read = 0;
410
411	while (p < sizeof(unsigned int) && count > 0) {
412		if (put_user(*((char *)(&sample_step)+p), buf))
413			return -EFAULT;
414		buf++; p++; count--; read++;
415	}
416	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
417	if (copy_to_user(buf, (void *)pnt, count))
418		return -EFAULT;
419	read += count;
420	*ppos += read;
421	return read;
422}
423
424/* default is to not implement this call */
425int __weak setup_profiling_timer(unsigned mult)
426{
427	return -EINVAL;
428}
429
430/*
431 * Writing to /proc/profile resets the counters
432 *
433 * Writing a 'profiling multiplier' value into it also re-sets the profiling
434 * interrupt frequency, on architectures that support this.
435 */
436static ssize_t write_profile(struct file *file, const char __user *buf,
437			     size_t count, loff_t *ppos)
438{
439#ifdef CONFIG_SMP
 
 
440	if (count == sizeof(int)) {
441		unsigned int multiplier;
442
443		if (copy_from_user(&multiplier, buf, sizeof(int)))
444			return -EFAULT;
445
446		if (setup_profiling_timer(multiplier))
447			return -EINVAL;
448	}
449#endif
450	profile_discard_flip_buffers();
451	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
452	return count;
453}
454
455static const struct proc_ops profile_proc_ops = {
456	.proc_read	= read_profile,
457	.proc_write	= write_profile,
458	.proc_lseek	= default_llseek,
459};
460
461int __ref create_proc_profile(void)
462{
463	struct proc_dir_entry *entry;
464#ifdef CONFIG_SMP
465	enum cpuhp_state online_state;
466#endif
467
468	int err = 0;
469
470	if (!prof_on)
471		return 0;
472#ifdef CONFIG_SMP
473	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
474				profile_prepare_cpu, profile_dead_cpu);
475	if (err)
476		return err;
477
478	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
479				profile_online_cpu, NULL);
480	if (err < 0)
481		goto err_state_prep;
482	online_state = err;
483	err = 0;
484#endif
485	entry = proc_create("profile", S_IWUSR | S_IRUGO,
486			    NULL, &profile_proc_ops);
487	if (!entry)
488		goto err_state_onl;
489	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
490
491	return err;
492err_state_onl:
493#ifdef CONFIG_SMP
494	cpuhp_remove_state(online_state);
495err_state_prep:
496	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
497#endif
498	return err;
499}
500subsys_initcall(create_proc_profile);
501#endif /* CONFIG_PROC_FS */
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/kernel/profile.c
  4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
  5 *  with configurable resolution, support for restricting the cpus on
  6 *  which profiling is done, and switching between cpu time and
  7 *  schedule() calls via kernel command line parameters passed at boot.
  8 *
  9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 10 *	Red Hat, July 2004
 11 *  Consolidation of architecture support code for profiling,
 12 *	Nadia Yvette Chambers, Oracle, July 2004
 13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 14 *	to resolve timer interrupt livelocks, Nadia Yvette Chambers,
 15 *	Oracle, 2004
 16 */
 17
 18#include <linux/export.h>
 19#include <linux/profile.h>
 20#include <linux/memblock.h>
 21#include <linux/notifier.h>
 22#include <linux/mm.h>
 23#include <linux/cpumask.h>
 24#include <linux/cpu.h>
 25#include <linux/highmem.h>
 26#include <linux/mutex.h>
 27#include <linux/slab.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched/stat.h>
 30
 31#include <asm/sections.h>
 32#include <asm/irq_regs.h>
 33#include <asm/ptrace.h>
 34
 35struct profile_hit {
 36	u32 pc, hits;
 37};
 38#define PROFILE_GRPSHIFT	3
 39#define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
 40#define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
 41#define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
 42
 43static atomic_t *prof_buffer;
 44static unsigned long prof_len;
 45static unsigned short int prof_shift;
 46
 47int prof_on __read_mostly;
 48EXPORT_SYMBOL_GPL(prof_on);
 49
 50static cpumask_var_t prof_cpu_mask;
 51#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 52static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
 53static DEFINE_PER_CPU(int, cpu_profile_flip);
 54static DEFINE_MUTEX(profile_flip_mutex);
 55#endif /* CONFIG_SMP */
 56
 57int profile_setup(char *str)
 58{
 59	static const char schedstr[] = "schedule";
 60	static const char sleepstr[] = "sleep";
 61	static const char kvmstr[] = "kvm";
 
 62	int par;
 63
 64	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
 65#ifdef CONFIG_SCHEDSTATS
 66		force_schedstat_enabled();
 67		prof_on = SLEEP_PROFILING;
 68		if (str[strlen(sleepstr)] == ',')
 69			str += strlen(sleepstr) + 1;
 70		if (get_option(&str, &par))
 71			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 72		pr_info("kernel sleep profiling enabled (shift: %u)\n",
 73			prof_shift);
 74#else
 75		pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
 76#endif /* CONFIG_SCHEDSTATS */
 77	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
 78		prof_on = SCHED_PROFILING;
 79		if (str[strlen(schedstr)] == ',')
 80			str += strlen(schedstr) + 1;
 81		if (get_option(&str, &par))
 82			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 83		pr_info("kernel schedule profiling enabled (shift: %u)\n",
 84			prof_shift);
 85	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
 86		prof_on = KVM_PROFILING;
 87		if (str[strlen(kvmstr)] == ',')
 88			str += strlen(kvmstr) + 1;
 89		if (get_option(&str, &par))
 90			prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 91		pr_info("kernel KVM profiling enabled (shift: %u)\n",
 92			prof_shift);
 93	} else if (get_option(&str, &par)) {
 94		prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
 95		prof_on = CPU_PROFILING;
 96		pr_info("kernel profiling enabled (shift: %u)\n",
 97			prof_shift);
 98	}
 
 
 
 
 
 
 
 
 
 
 99	return 1;
100}
101__setup("profile=", profile_setup);
102
103
104int __ref profile_init(void)
105{
106	int buffer_bytes;
107	if (!prof_on)
108		return 0;
109
110	/* only text is profiled */
111	prof_len = (_etext - _stext) >> prof_shift;
 
 
 
 
 
 
 
112	buffer_bytes = prof_len*sizeof(atomic_t);
113
114	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
115		return -ENOMEM;
116
117	cpumask_copy(prof_cpu_mask, cpu_possible_mask);
118
119	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
120	if (prof_buffer)
121		return 0;
122
123	prof_buffer = alloc_pages_exact(buffer_bytes,
124					GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
125	if (prof_buffer)
126		return 0;
127
128	prof_buffer = vzalloc(buffer_bytes);
129	if (prof_buffer)
130		return 0;
131
132	free_cpumask_var(prof_cpu_mask);
133	return -ENOMEM;
134}
135
136/* Profile event notifications */
137
138static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
139static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
140static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
141
142void profile_task_exit(struct task_struct *task)
143{
144	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
145}
146
147int profile_handoff_task(struct task_struct *task)
148{
149	int ret;
150	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
151	return (ret == NOTIFY_OK) ? 1 : 0;
152}
153
154void profile_munmap(unsigned long addr)
155{
156	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
157}
158
159int task_handoff_register(struct notifier_block *n)
160{
161	return atomic_notifier_chain_register(&task_free_notifier, n);
162}
163EXPORT_SYMBOL_GPL(task_handoff_register);
164
165int task_handoff_unregister(struct notifier_block *n)
166{
167	return atomic_notifier_chain_unregister(&task_free_notifier, n);
168}
169EXPORT_SYMBOL_GPL(task_handoff_unregister);
170
171int profile_event_register(enum profile_type type, struct notifier_block *n)
172{
173	int err = -EINVAL;
174
175	switch (type) {
176	case PROFILE_TASK_EXIT:
177		err = blocking_notifier_chain_register(
178				&task_exit_notifier, n);
179		break;
180	case PROFILE_MUNMAP:
181		err = blocking_notifier_chain_register(
182				&munmap_notifier, n);
183		break;
184	}
185
186	return err;
187}
188EXPORT_SYMBOL_GPL(profile_event_register);
189
190int profile_event_unregister(enum profile_type type, struct notifier_block *n)
191{
192	int err = -EINVAL;
193
194	switch (type) {
195	case PROFILE_TASK_EXIT:
196		err = blocking_notifier_chain_unregister(
197				&task_exit_notifier, n);
198		break;
199	case PROFILE_MUNMAP:
200		err = blocking_notifier_chain_unregister(
201				&munmap_notifier, n);
202		break;
203	}
204
205	return err;
206}
207EXPORT_SYMBOL_GPL(profile_event_unregister);
208
209#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
210/*
211 * Each cpu has a pair of open-addressed hashtables for pending
212 * profile hits. read_profile() IPI's all cpus to request them
213 * to flip buffers and flushes their contents to prof_buffer itself.
214 * Flip requests are serialized by the profile_flip_mutex. The sole
215 * use of having a second hashtable is for avoiding cacheline
216 * contention that would otherwise happen during flushes of pending
217 * profile hits required for the accuracy of reported profile hits
218 * and so resurrect the interrupt livelock issue.
219 *
220 * The open-addressed hashtables are indexed by profile buffer slot
221 * and hold the number of pending hits to that profile buffer slot on
222 * a cpu in an entry. When the hashtable overflows, all pending hits
223 * are accounted to their corresponding profile buffer slots with
224 * atomic_add() and the hashtable emptied. As numerous pending hits
225 * may be accounted to a profile buffer slot in a hashtable entry,
226 * this amortizes a number of atomic profile buffer increments likely
227 * to be far larger than the number of entries in the hashtable,
228 * particularly given that the number of distinct profile buffer
229 * positions to which hits are accounted during short intervals (e.g.
230 * several seconds) is usually very small. Exclusion from buffer
231 * flipping is provided by interrupt disablement (note that for
232 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
233 * process context).
234 * The hash function is meant to be lightweight as opposed to strong,
235 * and was vaguely inspired by ppc64 firmware-supported inverted
236 * pagetable hash functions, but uses a full hashtable full of finite
237 * collision chains, not just pairs of them.
238 *
239 * -- nyc
240 */
241static void __profile_flip_buffers(void *unused)
242{
243	int cpu = smp_processor_id();
244
245	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
246}
247
248static void profile_flip_buffers(void)
249{
250	int i, j, cpu;
251
252	mutex_lock(&profile_flip_mutex);
253	j = per_cpu(cpu_profile_flip, get_cpu());
254	put_cpu();
255	on_each_cpu(__profile_flip_buffers, NULL, 1);
256	for_each_online_cpu(cpu) {
257		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
258		for (i = 0; i < NR_PROFILE_HIT; ++i) {
259			if (!hits[i].hits) {
260				if (hits[i].pc)
261					hits[i].pc = 0;
262				continue;
263			}
264			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
265			hits[i].hits = hits[i].pc = 0;
266		}
267	}
268	mutex_unlock(&profile_flip_mutex);
269}
270
271static void profile_discard_flip_buffers(void)
272{
273	int i, cpu;
274
275	mutex_lock(&profile_flip_mutex);
276	i = per_cpu(cpu_profile_flip, get_cpu());
277	put_cpu();
278	on_each_cpu(__profile_flip_buffers, NULL, 1);
279	for_each_online_cpu(cpu) {
280		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
281		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
282	}
283	mutex_unlock(&profile_flip_mutex);
284}
285
286static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
287{
288	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
289	int i, j, cpu;
290	struct profile_hit *hits;
291
292	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
293	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
294	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
295	cpu = get_cpu();
296	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
297	if (!hits) {
298		put_cpu();
299		return;
300	}
301	/*
302	 * We buffer the global profiler buffer into a per-CPU
303	 * queue and thus reduce the number of global (and possibly
304	 * NUMA-alien) accesses. The write-queue is self-coalescing:
305	 */
306	local_irq_save(flags);
307	do {
308		for (j = 0; j < PROFILE_GRPSZ; ++j) {
309			if (hits[i + j].pc == pc) {
310				hits[i + j].hits += nr_hits;
311				goto out;
312			} else if (!hits[i + j].hits) {
313				hits[i + j].pc = pc;
314				hits[i + j].hits = nr_hits;
315				goto out;
316			}
317		}
318		i = (i + secondary) & (NR_PROFILE_HIT - 1);
319	} while (i != primary);
320
321	/*
322	 * Add the current hit(s) and flush the write-queue out
323	 * to the global buffer:
324	 */
325	atomic_add(nr_hits, &prof_buffer[pc]);
326	for (i = 0; i < NR_PROFILE_HIT; ++i) {
327		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
328		hits[i].pc = hits[i].hits = 0;
329	}
330out:
331	local_irq_restore(flags);
332	put_cpu();
333}
334
335static int profile_dead_cpu(unsigned int cpu)
336{
337	struct page *page;
338	int i;
339
340	if (cpumask_available(prof_cpu_mask))
341		cpumask_clear_cpu(cpu, prof_cpu_mask);
342
343	for (i = 0; i < 2; i++) {
344		if (per_cpu(cpu_profile_hits, cpu)[i]) {
345			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
346			per_cpu(cpu_profile_hits, cpu)[i] = NULL;
347			__free_page(page);
348		}
349	}
350	return 0;
351}
352
353static int profile_prepare_cpu(unsigned int cpu)
354{
355	int i, node = cpu_to_mem(cpu);
356	struct page *page;
357
358	per_cpu(cpu_profile_flip, cpu) = 0;
359
360	for (i = 0; i < 2; i++) {
361		if (per_cpu(cpu_profile_hits, cpu)[i])
362			continue;
363
364		page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
365		if (!page) {
366			profile_dead_cpu(cpu);
367			return -ENOMEM;
368		}
369		per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
370
371	}
372	return 0;
373}
374
375static int profile_online_cpu(unsigned int cpu)
376{
377	if (cpumask_available(prof_cpu_mask))
378		cpumask_set_cpu(cpu, prof_cpu_mask);
379
380	return 0;
381}
382
383#else /* !CONFIG_SMP */
384#define profile_flip_buffers()		do { } while (0)
385#define profile_discard_flip_buffers()	do { } while (0)
386
387static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
388{
389	unsigned long pc;
390	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
391	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
392}
393#endif /* !CONFIG_SMP */
394
395void profile_hits(int type, void *__pc, unsigned int nr_hits)
396{
397	if (prof_on != type || !prof_buffer)
398		return;
399	do_profile_hits(type, __pc, nr_hits);
400}
401EXPORT_SYMBOL_GPL(profile_hits);
402
403void profile_tick(int type)
404{
405	struct pt_regs *regs = get_irq_regs();
406
407	if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
408	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
409		profile_hit(type, (void *)profile_pc(regs));
410}
411
412#ifdef CONFIG_PROC_FS
413#include <linux/proc_fs.h>
414#include <linux/seq_file.h>
415#include <linux/uaccess.h>
416
417static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
418{
419	seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
420	return 0;
421}
422
423static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
424{
425	return single_open(file, prof_cpu_mask_proc_show, NULL);
426}
427
428static ssize_t prof_cpu_mask_proc_write(struct file *file,
429	const char __user *buffer, size_t count, loff_t *pos)
430{
431	cpumask_var_t new_value;
432	int err;
433
434	if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
435		return -ENOMEM;
436
437	err = cpumask_parse_user(buffer, count, new_value);
438	if (!err) {
439		cpumask_copy(prof_cpu_mask, new_value);
440		err = count;
441	}
442	free_cpumask_var(new_value);
443	return err;
444}
445
446static const struct proc_ops prof_cpu_mask_proc_ops = {
447	.proc_open	= prof_cpu_mask_proc_open,
448	.proc_read	= seq_read,
449	.proc_lseek	= seq_lseek,
450	.proc_release	= single_release,
451	.proc_write	= prof_cpu_mask_proc_write,
452};
453
454void create_prof_cpu_mask(void)
455{
456	/* create /proc/irq/prof_cpu_mask */
457	proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
458}
459
460/*
461 * This function accesses profiling information. The returned data is
462 * binary: the sampling step and the actual contents of the profile
463 * buffer. Use of the program readprofile is recommended in order to
464 * get meaningful info out of these data.
465 */
466static ssize_t
467read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
468{
469	unsigned long p = *ppos;
470	ssize_t read;
471	char *pnt;
472	unsigned long sample_step = 1UL << prof_shift;
473
474	profile_flip_buffers();
475	if (p >= (prof_len+1)*sizeof(unsigned int))
476		return 0;
477	if (count > (prof_len+1)*sizeof(unsigned int) - p)
478		count = (prof_len+1)*sizeof(unsigned int) - p;
479	read = 0;
480
481	while (p < sizeof(unsigned int) && count > 0) {
482		if (put_user(*((char *)(&sample_step)+p), buf))
483			return -EFAULT;
484		buf++; p++; count--; read++;
485	}
486	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
487	if (copy_to_user(buf, (void *)pnt, count))
488		return -EFAULT;
489	read += count;
490	*ppos += read;
491	return read;
492}
493
 
 
 
 
 
 
494/*
495 * Writing to /proc/profile resets the counters
496 *
497 * Writing a 'profiling multiplier' value into it also re-sets the profiling
498 * interrupt frequency, on architectures that support this.
499 */
500static ssize_t write_profile(struct file *file, const char __user *buf,
501			     size_t count, loff_t *ppos)
502{
503#ifdef CONFIG_SMP
504	extern int setup_profiling_timer(unsigned int multiplier);
505
506	if (count == sizeof(int)) {
507		unsigned int multiplier;
508
509		if (copy_from_user(&multiplier, buf, sizeof(int)))
510			return -EFAULT;
511
512		if (setup_profiling_timer(multiplier))
513			return -EINVAL;
514	}
515#endif
516	profile_discard_flip_buffers();
517	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
518	return count;
519}
520
521static const struct proc_ops profile_proc_ops = {
522	.proc_read	= read_profile,
523	.proc_write	= write_profile,
524	.proc_lseek	= default_llseek,
525};
526
527int __ref create_proc_profile(void)
528{
529	struct proc_dir_entry *entry;
530#ifdef CONFIG_SMP
531	enum cpuhp_state online_state;
532#endif
533
534	int err = 0;
535
536	if (!prof_on)
537		return 0;
538#ifdef CONFIG_SMP
539	err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
540				profile_prepare_cpu, profile_dead_cpu);
541	if (err)
542		return err;
543
544	err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
545				profile_online_cpu, NULL);
546	if (err < 0)
547		goto err_state_prep;
548	online_state = err;
549	err = 0;
550#endif
551	entry = proc_create("profile", S_IWUSR | S_IRUGO,
552			    NULL, &profile_proc_ops);
553	if (!entry)
554		goto err_state_onl;
555	proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
556
557	return err;
558err_state_onl:
559#ifdef CONFIG_SMP
560	cpuhp_remove_state(online_state);
561err_state_prep:
562	cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
563#endif
564	return err;
565}
566subsys_initcall(create_proc_profile);
567#endif /* CONFIG_PROC_FS */