Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Kernel thread helper functions.
   3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
   4 *   Copyright (C) 2009 Red Hat, Inc.
   5 *
   6 * Creation is done via kthreadd, so that we get a clean environment
   7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   8 * etc.).
   9 */
  10#include <uapi/linux/sched/types.h>
  11#include <linux/mm.h>
  12#include <linux/mmu_context.h>
  13#include <linux/sched.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task.h>
  16#include <linux/kthread.h>
  17#include <linux/completion.h>
  18#include <linux/err.h>
  19#include <linux/cgroup.h>
  20#include <linux/cpuset.h>
  21#include <linux/unistd.h>
  22#include <linux/file.h>
  23#include <linux/export.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/freezer.h>
  27#include <linux/ptrace.h>
  28#include <linux/uaccess.h>
  29#include <linux/numa.h>
  30#include <linux/sched/isolation.h>
  31#include <trace/events/sched.h>
  32
  33
  34static DEFINE_SPINLOCK(kthread_create_lock);
  35static LIST_HEAD(kthread_create_list);
  36struct task_struct *kthreadd_task;
  37
  38struct kthread_create_info
  39{
  40	/* Information passed to kthread() from kthreadd. */
  41	char *full_name;
  42	int (*threadfn)(void *data);
  43	void *data;
  44	int node;
  45
  46	/* Result passed back to kthread_create() from kthreadd. */
  47	struct task_struct *result;
  48	struct completion *done;
  49
  50	struct list_head list;
  51};
  52
  53struct kthread {
  54	unsigned long flags;
  55	unsigned int cpu;
  56	int result;
  57	int (*threadfn)(void *);
  58	void *data;
 
  59	struct completion parked;
  60	struct completion exited;
  61#ifdef CONFIG_BLK_CGROUP
  62	struct cgroup_subsys_state *blkcg_css;
  63#endif
  64	/* To store the full name if task comm is truncated. */
  65	char *full_name;
  66};
  67
  68enum KTHREAD_BITS {
  69	KTHREAD_IS_PER_CPU = 0,
  70	KTHREAD_SHOULD_STOP,
  71	KTHREAD_SHOULD_PARK,
  72};
  73
  74static inline struct kthread *to_kthread(struct task_struct *k)
  75{
  76	WARN_ON(!(k->flags & PF_KTHREAD));
  77	return k->worker_private;
  78}
  79
  80/*
  81 * Variant of to_kthread() that doesn't assume @p is a kthread.
  82 *
  83 * Per construction; when:
  84 *
  85 *   (p->flags & PF_KTHREAD) && p->worker_private
  86 *
  87 * the task is both a kthread and struct kthread is persistent. However
  88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
  89 * begin_new_exec()).
  90 */
  91static inline struct kthread *__to_kthread(struct task_struct *p)
  92{
  93	void *kthread = p->worker_private;
  94	if (kthread && !(p->flags & PF_KTHREAD))
  95		kthread = NULL;
  96	return kthread;
  97}
  98
  99void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
 100{
 101	struct kthread *kthread = to_kthread(tsk);
 102
 103	if (!kthread || !kthread->full_name) {
 104		__get_task_comm(buf, buf_size, tsk);
 105		return;
 106	}
 107
 108	strscpy_pad(buf, kthread->full_name, buf_size);
 109}
 110
 111bool set_kthread_struct(struct task_struct *p)
 112{
 113	struct kthread *kthread;
 114
 115	if (WARN_ON_ONCE(to_kthread(p)))
 116		return false;
 117
 118	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
 119	if (!kthread)
 120		return false;
 121
 122	init_completion(&kthread->exited);
 123	init_completion(&kthread->parked);
 124	p->vfork_done = &kthread->exited;
 125
 126	p->worker_private = kthread;
 127	return true;
 128}
 129
 130void free_kthread_struct(struct task_struct *k)
 131{
 132	struct kthread *kthread;
 133
 134	/*
 135	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
 
 136	 */
 137	kthread = to_kthread(k);
 138	if (!kthread)
 139		return;
 140
 141#ifdef CONFIG_BLK_CGROUP
 142	WARN_ON_ONCE(kthread->blkcg_css);
 143#endif
 144	k->worker_private = NULL;
 145	kfree(kthread->full_name);
 146	kfree(kthread);
 147}
 148
 149/**
 150 * kthread_should_stop - should this kthread return now?
 151 *
 152 * When someone calls kthread_stop() on your kthread, it will be woken
 153 * and this will return true.  You should then return, and your return
 154 * value will be passed through to kthread_stop().
 155 */
 156bool kthread_should_stop(void)
 157{
 158	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 159}
 160EXPORT_SYMBOL(kthread_should_stop);
 161
 162static bool __kthread_should_park(struct task_struct *k)
 163{
 164	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
 165}
 
 166
 167/**
 168 * kthread_should_park - should this kthread park now?
 169 *
 170 * When someone calls kthread_park() on your kthread, it will be woken
 171 * and this will return true.  You should then do the necessary
 172 * cleanup and call kthread_parkme()
 173 *
 174 * Similar to kthread_should_stop(), but this keeps the thread alive
 175 * and in a park position. kthread_unpark() "restarts" the thread and
 176 * calls the thread function again.
 177 */
 178bool kthread_should_park(void)
 179{
 180	return __kthread_should_park(current);
 181}
 182EXPORT_SYMBOL_GPL(kthread_should_park);
 183
 184bool kthread_should_stop_or_park(void)
 185{
 186	struct kthread *kthread = __to_kthread(current);
 187
 188	if (!kthread)
 189		return false;
 190
 191	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
 192}
 193
 194/**
 195 * kthread_freezable_should_stop - should this freezable kthread return now?
 196 * @was_frozen: optional out parameter, indicates whether %current was frozen
 197 *
 198 * kthread_should_stop() for freezable kthreads, which will enter
 199 * refrigerator if necessary.  This function is safe from kthread_stop() /
 200 * freezer deadlock and freezable kthreads should use this function instead
 201 * of calling try_to_freeze() directly.
 202 */
 203bool kthread_freezable_should_stop(bool *was_frozen)
 204{
 205	bool frozen = false;
 206
 207	might_sleep();
 208
 209	if (unlikely(freezing(current)))
 210		frozen = __refrigerator(true);
 211
 212	if (was_frozen)
 213		*was_frozen = frozen;
 214
 215	return kthread_should_stop();
 216}
 217EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 218
 219/**
 220 * kthread_func - return the function specified on kthread creation
 221 * @task: kthread task in question
 222 *
 223 * Returns NULL if the task is not a kthread.
 224 */
 225void *kthread_func(struct task_struct *task)
 226{
 227	struct kthread *kthread = __to_kthread(task);
 228	if (kthread)
 229		return kthread->threadfn;
 230	return NULL;
 231}
 232EXPORT_SYMBOL_GPL(kthread_func);
 233
 234/**
 235 * kthread_data - return data value specified on kthread creation
 236 * @task: kthread task in question
 237 *
 238 * Return the data value specified when kthread @task was created.
 239 * The caller is responsible for ensuring the validity of @task when
 240 * calling this function.
 241 */
 242void *kthread_data(struct task_struct *task)
 243{
 244	return to_kthread(task)->data;
 245}
 246EXPORT_SYMBOL_GPL(kthread_data);
 247
 248/**
 249 * kthread_probe_data - speculative version of kthread_data()
 250 * @task: possible kthread task in question
 251 *
 252 * @task could be a kthread task.  Return the data value specified when it
 253 * was created if accessible.  If @task isn't a kthread task or its data is
 254 * inaccessible for any reason, %NULL is returned.  This function requires
 255 * that @task itself is safe to dereference.
 256 */
 257void *kthread_probe_data(struct task_struct *task)
 258{
 259	struct kthread *kthread = __to_kthread(task);
 260	void *data = NULL;
 261
 262	if (kthread)
 263		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
 264	return data;
 265}
 266
 267static void __kthread_parkme(struct kthread *self)
 268{
 269	for (;;) {
 270		/*
 271		 * TASK_PARKED is a special state; we must serialize against
 272		 * possible pending wakeups to avoid store-store collisions on
 273		 * task->state.
 274		 *
 275		 * Such a collision might possibly result in the task state
 276		 * changin from TASK_PARKED and us failing the
 277		 * wait_task_inactive() in kthread_park().
 278		 */
 279		set_special_state(TASK_PARKED);
 280		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
 281			break;
 282
 283		/*
 284		 * Thread is going to call schedule(), do not preempt it,
 285		 * or the caller of kthread_park() may spend more time in
 286		 * wait_task_inactive().
 287		 */
 288		preempt_disable();
 289		complete(&self->parked);
 290		schedule_preempt_disabled();
 291		preempt_enable();
 292	}
 293	__set_current_state(TASK_RUNNING);
 294}
 295
 296void kthread_parkme(void)
 297{
 298	__kthread_parkme(to_kthread(current));
 299}
 300EXPORT_SYMBOL_GPL(kthread_parkme);
 301
 302/**
 303 * kthread_exit - Cause the current kthread return @result to kthread_stop().
 304 * @result: The integer value to return to kthread_stop().
 305 *
 306 * While kthread_exit can be called directly, it exists so that
 307 * functions which do some additional work in non-modular code such as
 308 * module_put_and_kthread_exit can be implemented.
 309 *
 310 * Does not return.
 311 */
 312void __noreturn kthread_exit(long result)
 313{
 314	struct kthread *kthread = to_kthread(current);
 315	kthread->result = result;
 316	do_exit(0);
 317}
 318
 319/**
 320 * kthread_complete_and_exit - Exit the current kthread.
 321 * @comp: Completion to complete
 322 * @code: The integer value to return to kthread_stop().
 323 *
 324 * If present, complete @comp and then return code to kthread_stop().
 325 *
 326 * A kernel thread whose module may be removed after the completion of
 327 * @comp can use this function to exit safely.
 328 *
 329 * Does not return.
 330 */
 331void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
 332{
 333	if (comp)
 334		complete(comp);
 335
 336	kthread_exit(code);
 337}
 338EXPORT_SYMBOL(kthread_complete_and_exit);
 339
 340static int kthread(void *_create)
 341{
 342	static const struct sched_param param = { .sched_priority = 0 };
 343	/* Copy data: it's on kthread's stack */
 344	struct kthread_create_info *create = _create;
 345	int (*threadfn)(void *data) = create->threadfn;
 346	void *data = create->data;
 347	struct completion *done;
 348	struct kthread *self;
 349	int ret;
 350
 
 351	self = to_kthread(current);
 352
 353	/* Release the structure when caller killed by a fatal signal. */
 354	done = xchg(&create->done, NULL);
 355	if (!done) {
 356		kfree(create->full_name);
 357		kfree(create);
 358		kthread_exit(-EINTR);
 
 
 
 
 
 
 359	}
 360
 361	self->full_name = create->full_name;
 362	self->threadfn = threadfn;
 363	self->data = data;
 364
 365	/*
 366	 * The new thread inherited kthreadd's priority and CPU mask. Reset
 367	 * back to default in case they have been changed.
 368	 */
 369	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
 370	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
 371
 372	/* OK, tell user we're spawned, wait for stop or wakeup */
 373	__set_current_state(TASK_UNINTERRUPTIBLE);
 374	create->result = current;
 375	/*
 376	 * Thread is going to call schedule(), do not preempt it,
 377	 * or the creator may spend more time in wait_task_inactive().
 378	 */
 379	preempt_disable();
 380	complete(done);
 381	schedule_preempt_disabled();
 382	preempt_enable();
 383
 384	ret = -EINTR;
 385	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 386		cgroup_kthread_ready();
 387		__kthread_parkme(self);
 388		ret = threadfn(data);
 389	}
 390	kthread_exit(ret);
 391}
 392
 393/* called from kernel_clone() to get node information for about to be created task */
 394int tsk_fork_get_node(struct task_struct *tsk)
 395{
 396#ifdef CONFIG_NUMA
 397	if (tsk == kthreadd_task)
 398		return tsk->pref_node_fork;
 399#endif
 400	return NUMA_NO_NODE;
 401}
 402
 403static void create_kthread(struct kthread_create_info *create)
 404{
 405	int pid;
 406
 407#ifdef CONFIG_NUMA
 408	current->pref_node_fork = create->node;
 409#endif
 410	/* We want our own signal handler (we take no signals by default). */
 411	pid = kernel_thread(kthread, create, create->full_name,
 412			    CLONE_FS | CLONE_FILES | SIGCHLD);
 413	if (pid < 0) {
 414		/* Release the structure when caller killed by a fatal signal. */
 415		struct completion *done = xchg(&create->done, NULL);
 416
 417		kfree(create->full_name);
 418		if (!done) {
 419			kfree(create);
 420			return;
 421		}
 422		create->result = ERR_PTR(pid);
 423		complete(done);
 424	}
 425}
 426
 427static __printf(4, 0)
 428struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 429						    void *data, int node,
 430						    const char namefmt[],
 431						    va_list args)
 432{
 433	DECLARE_COMPLETION_ONSTACK(done);
 434	struct task_struct *task;
 435	struct kthread_create_info *create = kmalloc(sizeof(*create),
 436						     GFP_KERNEL);
 437
 438	if (!create)
 439		return ERR_PTR(-ENOMEM);
 440	create->threadfn = threadfn;
 441	create->data = data;
 442	create->node = node;
 443	create->done = &done;
 444	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
 445	if (!create->full_name) {
 446		task = ERR_PTR(-ENOMEM);
 447		goto free_create;
 448	}
 449
 450	spin_lock(&kthread_create_lock);
 451	list_add_tail(&create->list, &kthread_create_list);
 452	spin_unlock(&kthread_create_lock);
 453
 454	wake_up_process(kthreadd_task);
 455	/*
 456	 * Wait for completion in killable state, for I might be chosen by
 457	 * the OOM killer while kthreadd is trying to allocate memory for
 458	 * new kernel thread.
 459	 */
 460	if (unlikely(wait_for_completion_killable(&done))) {
 461		/*
 462		 * If I was killed by a fatal signal before kthreadd (or new
 463		 * kernel thread) calls complete(), leave the cleanup of this
 464		 * structure to that thread.
 465		 */
 466		if (xchg(&create->done, NULL))
 467			return ERR_PTR(-EINTR);
 468		/*
 469		 * kthreadd (or new kernel thread) will call complete()
 470		 * shortly.
 471		 */
 472		wait_for_completion(&done);
 473	}
 474	task = create->result;
 475free_create:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476	kfree(create);
 477	return task;
 478}
 479
 480/**
 481 * kthread_create_on_node - create a kthread.
 482 * @threadfn: the function to run until signal_pending(current).
 483 * @data: data ptr for @threadfn.
 484 * @node: task and thread structures for the thread are allocated on this node
 485 * @namefmt: printf-style name for the thread.
 486 *
 487 * Description: This helper function creates and names a kernel
 488 * thread.  The thread will be stopped: use wake_up_process() to start
 489 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 490 * is affine to all CPUs.
 491 *
 492 * If thread is going to be bound on a particular cpu, give its node
 493 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 494 * When woken, the thread will run @threadfn() with @data as its
 495 * argument. @threadfn() can either return directly if it is a
 496 * standalone thread for which no one will call kthread_stop(), or
 497 * return when 'kthread_should_stop()' is true (which means
 498 * kthread_stop() has been called).  The return value should be zero
 499 * or a negative error number; it will be passed to kthread_stop().
 500 *
 501 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 502 */
 503struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 504					   void *data, int node,
 505					   const char namefmt[],
 506					   ...)
 507{
 508	struct task_struct *task;
 509	va_list args;
 510
 511	va_start(args, namefmt);
 512	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 513	va_end(args);
 514
 515	return task;
 516}
 517EXPORT_SYMBOL(kthread_create_on_node);
 518
 519static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
 520{
 521	unsigned long flags;
 522
 523	if (!wait_task_inactive(p, state)) {
 524		WARN_ON(1);
 525		return;
 526	}
 527
 528	/* It's safe because the task is inactive. */
 529	raw_spin_lock_irqsave(&p->pi_lock, flags);
 530	do_set_cpus_allowed(p, mask);
 531	p->flags |= PF_NO_SETAFFINITY;
 532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 533}
 534
 535static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
 536{
 537	__kthread_bind_mask(p, cpumask_of(cpu), state);
 538}
 539
 540void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 541{
 542	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 543}
 544
 545/**
 546 * kthread_bind - bind a just-created kthread to a cpu.
 547 * @p: thread created by kthread_create().
 548 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 549 *
 550 * Description: This function is equivalent to set_cpus_allowed(),
 551 * except that @cpu doesn't need to be online, and the thread must be
 552 * stopped (i.e., just returned from kthread_create()).
 553 */
 554void kthread_bind(struct task_struct *p, unsigned int cpu)
 555{
 556	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 557}
 558EXPORT_SYMBOL(kthread_bind);
 559
 560/**
 561 * kthread_create_on_cpu - Create a cpu bound kthread
 562 * @threadfn: the function to run until signal_pending(current).
 563 * @data: data ptr for @threadfn.
 564 * @cpu: The cpu on which the thread should be bound,
 565 * @namefmt: printf-style name for the thread. Format is restricted
 566 *	     to "name.*%u". Code fills in cpu number.
 567 *
 568 * Description: This helper function creates and names a kernel thread
 569 */
 570struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 571					  void *data, unsigned int cpu,
 572					  const char *namefmt)
 573{
 574	struct task_struct *p;
 575
 576	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 577				   cpu);
 578	if (IS_ERR(p))
 579		return p;
 580	kthread_bind(p, cpu);
 581	/* CPU hotplug need to bind once again when unparking the thread. */
 582	to_kthread(p)->cpu = cpu;
 583	return p;
 584}
 585EXPORT_SYMBOL(kthread_create_on_cpu);
 586
 587void kthread_set_per_cpu(struct task_struct *k, int cpu)
 588{
 589	struct kthread *kthread = to_kthread(k);
 590	if (!kthread)
 591		return;
 592
 593	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
 594
 595	if (cpu < 0) {
 596		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 597		return;
 598	}
 599
 600	kthread->cpu = cpu;
 601	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 602}
 603
 604bool kthread_is_per_cpu(struct task_struct *p)
 605{
 606	struct kthread *kthread = __to_kthread(p);
 607	if (!kthread)
 608		return false;
 609
 610	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 611}
 612
 613/**
 614 * kthread_unpark - unpark a thread created by kthread_create().
 615 * @k:		thread created by kthread_create().
 616 *
 617 * Sets kthread_should_park() for @k to return false, wakes it, and
 618 * waits for it to return. If the thread is marked percpu then its
 619 * bound to the cpu again.
 620 */
 621void kthread_unpark(struct task_struct *k)
 622{
 623	struct kthread *kthread = to_kthread(k);
 624
 625	/*
 626	 * Newly created kthread was parked when the CPU was offline.
 627	 * The binding was lost and we need to set it again.
 628	 */
 629	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 630		__kthread_bind(k, kthread->cpu, TASK_PARKED);
 631
 632	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 633	/*
 634	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
 635	 */
 636	wake_up_state(k, TASK_PARKED);
 637}
 638EXPORT_SYMBOL_GPL(kthread_unpark);
 639
 640/**
 641 * kthread_park - park a thread created by kthread_create().
 642 * @k: thread created by kthread_create().
 643 *
 644 * Sets kthread_should_park() for @k to return true, wakes it, and
 645 * waits for it to return. This can also be called after kthread_create()
 646 * instead of calling wake_up_process(): the thread will park without
 647 * calling threadfn().
 648 *
 649 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 650 * If called by the kthread itself just the park bit is set.
 651 */
 652int kthread_park(struct task_struct *k)
 653{
 654	struct kthread *kthread = to_kthread(k);
 655
 656	if (WARN_ON(k->flags & PF_EXITING))
 657		return -ENOSYS;
 658
 659	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
 660		return -EBUSY;
 661
 662	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 663	if (k != current) {
 664		wake_up_process(k);
 665		/*
 666		 * Wait for __kthread_parkme() to complete(), this means we
 667		 * _will_ have TASK_PARKED and are about to call schedule().
 668		 */
 669		wait_for_completion(&kthread->parked);
 670		/*
 671		 * Now wait for that schedule() to complete and the task to
 672		 * get scheduled out.
 673		 */
 674		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
 675	}
 676
 677	return 0;
 678}
 679EXPORT_SYMBOL_GPL(kthread_park);
 680
 681/**
 682 * kthread_stop - stop a thread created by kthread_create().
 683 * @k: thread created by kthread_create().
 684 *
 685 * Sets kthread_should_stop() for @k to return true, wakes it, and
 686 * waits for it to exit. This can also be called after kthread_create()
 687 * instead of calling wake_up_process(): the thread will exit without
 688 * calling threadfn().
 689 *
 690 * If threadfn() may call kthread_exit() itself, the caller must ensure
 691 * task_struct can't go away.
 692 *
 693 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 694 * was never called.
 695 */
 696int kthread_stop(struct task_struct *k)
 697{
 698	struct kthread *kthread;
 699	int ret;
 700
 701	trace_sched_kthread_stop(k);
 702
 703	get_task_struct(k);
 704	kthread = to_kthread(k);
 705	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 706	kthread_unpark(k);
 707	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
 708	wake_up_process(k);
 709	wait_for_completion(&kthread->exited);
 710	ret = kthread->result;
 711	put_task_struct(k);
 712
 713	trace_sched_kthread_stop_ret(ret);
 714	return ret;
 715}
 716EXPORT_SYMBOL(kthread_stop);
 717
 718/**
 719 * kthread_stop_put - stop a thread and put its task struct
 720 * @k: thread created by kthread_create().
 721 *
 722 * Stops a thread created by kthread_create() and put its task_struct.
 723 * Only use when holding an extra task struct reference obtained by
 724 * calling get_task_struct().
 725 */
 726int kthread_stop_put(struct task_struct *k)
 727{
 728	int ret;
 729
 730	ret = kthread_stop(k);
 731	put_task_struct(k);
 732	return ret;
 733}
 734EXPORT_SYMBOL(kthread_stop_put);
 735
 736int kthreadd(void *unused)
 737{
 738	struct task_struct *tsk = current;
 739
 740	/* Setup a clean context for our children to inherit. */
 741	set_task_comm(tsk, "kthreadd");
 742	ignore_signals(tsk);
 743	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
 744	set_mems_allowed(node_states[N_MEMORY]);
 745
 746	current->flags |= PF_NOFREEZE;
 747	cgroup_init_kthreadd();
 748
 749	for (;;) {
 750		set_current_state(TASK_INTERRUPTIBLE);
 751		if (list_empty(&kthread_create_list))
 752			schedule();
 753		__set_current_state(TASK_RUNNING);
 754
 755		spin_lock(&kthread_create_lock);
 756		while (!list_empty(&kthread_create_list)) {
 757			struct kthread_create_info *create;
 758
 759			create = list_entry(kthread_create_list.next,
 760					    struct kthread_create_info, list);
 761			list_del_init(&create->list);
 762			spin_unlock(&kthread_create_lock);
 763
 764			create_kthread(create);
 765
 766			spin_lock(&kthread_create_lock);
 767		}
 768		spin_unlock(&kthread_create_lock);
 769	}
 770
 771	return 0;
 772}
 773
 774void __kthread_init_worker(struct kthread_worker *worker,
 775				const char *name,
 776				struct lock_class_key *key)
 777{
 778	memset(worker, 0, sizeof(struct kthread_worker));
 779	raw_spin_lock_init(&worker->lock);
 780	lockdep_set_class_and_name(&worker->lock, key, name);
 781	INIT_LIST_HEAD(&worker->work_list);
 782	INIT_LIST_HEAD(&worker->delayed_work_list);
 783}
 784EXPORT_SYMBOL_GPL(__kthread_init_worker);
 785
 786/**
 787 * kthread_worker_fn - kthread function to process kthread_worker
 788 * @worker_ptr: pointer to initialized kthread_worker
 789 *
 790 * This function implements the main cycle of kthread worker. It processes
 791 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 792 * is empty.
 793 *
 794 * The works are not allowed to keep any locks, disable preemption or interrupts
 795 * when they finish. There is defined a safe point for freezing when one work
 796 * finishes and before a new one is started.
 797 *
 798 * Also the works must not be handled by more than one worker at the same time,
 799 * see also kthread_queue_work().
 800 */
 801int kthread_worker_fn(void *worker_ptr)
 802{
 803	struct kthread_worker *worker = worker_ptr;
 804	struct kthread_work *work;
 805
 806	/*
 807	 * FIXME: Update the check and remove the assignment when all kthread
 808	 * worker users are created using kthread_create_worker*() functions.
 809	 */
 810	WARN_ON(worker->task && worker->task != current);
 811	worker->task = current;
 812
 813	if (worker->flags & KTW_FREEZABLE)
 814		set_freezable();
 815
 816repeat:
 817	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
 818
 819	if (kthread_should_stop()) {
 820		__set_current_state(TASK_RUNNING);
 821		raw_spin_lock_irq(&worker->lock);
 822		worker->task = NULL;
 823		raw_spin_unlock_irq(&worker->lock);
 824		return 0;
 825	}
 826
 827	work = NULL;
 828	raw_spin_lock_irq(&worker->lock);
 829	if (!list_empty(&worker->work_list)) {
 830		work = list_first_entry(&worker->work_list,
 831					struct kthread_work, node);
 832		list_del_init(&work->node);
 833	}
 834	worker->current_work = work;
 835	raw_spin_unlock_irq(&worker->lock);
 836
 837	if (work) {
 838		kthread_work_func_t func = work->func;
 839		__set_current_state(TASK_RUNNING);
 840		trace_sched_kthread_work_execute_start(work);
 841		work->func(work);
 842		/*
 843		 * Avoid dereferencing work after this point.  The trace
 844		 * event only cares about the address.
 845		 */
 846		trace_sched_kthread_work_execute_end(work, func);
 847	} else if (!freezing(current))
 848		schedule();
 849
 850	try_to_freeze();
 851	cond_resched();
 852	goto repeat;
 853}
 854EXPORT_SYMBOL_GPL(kthread_worker_fn);
 855
 856static __printf(3, 0) struct kthread_worker *
 857__kthread_create_worker(int cpu, unsigned int flags,
 858			const char namefmt[], va_list args)
 859{
 860	struct kthread_worker *worker;
 861	struct task_struct *task;
 862	int node = NUMA_NO_NODE;
 863
 864	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 865	if (!worker)
 866		return ERR_PTR(-ENOMEM);
 867
 868	kthread_init_worker(worker);
 869
 870	if (cpu >= 0)
 871		node = cpu_to_node(cpu);
 872
 873	task = __kthread_create_on_node(kthread_worker_fn, worker,
 874						node, namefmt, args);
 875	if (IS_ERR(task))
 876		goto fail_task;
 877
 878	if (cpu >= 0)
 879		kthread_bind(task, cpu);
 880
 881	worker->flags = flags;
 882	worker->task = task;
 883	wake_up_process(task);
 884	return worker;
 885
 886fail_task:
 887	kfree(worker);
 888	return ERR_CAST(task);
 889}
 890
 891/**
 892 * kthread_create_worker - create a kthread worker
 893 * @flags: flags modifying the default behavior of the worker
 894 * @namefmt: printf-style name for the kthread worker (task).
 895 *
 896 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 897 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 898 * when the caller was killed by a fatal signal.
 899 */
 900struct kthread_worker *
 901kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 902{
 903	struct kthread_worker *worker;
 904	va_list args;
 905
 906	va_start(args, namefmt);
 907	worker = __kthread_create_worker(-1, flags, namefmt, args);
 908	va_end(args);
 909
 910	return worker;
 911}
 912EXPORT_SYMBOL(kthread_create_worker);
 913
 914/**
 915 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 916 *	to a given CPU and the associated NUMA node.
 917 * @cpu: CPU number
 918 * @flags: flags modifying the default behavior of the worker
 919 * @namefmt: printf-style name for the kthread worker (task).
 920 *
 921 * Use a valid CPU number if you want to bind the kthread worker
 922 * to the given CPU and the associated NUMA node.
 923 *
 924 * A good practice is to add the cpu number also into the worker name.
 925 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 926 *
 927 * CPU hotplug:
 928 * The kthread worker API is simple and generic. It just provides a way
 929 * to create, use, and destroy workers.
 930 *
 931 * It is up to the API user how to handle CPU hotplug. They have to decide
 932 * how to handle pending work items, prevent queuing new ones, and
 933 * restore the functionality when the CPU goes off and on. There are a
 934 * few catches:
 935 *
 936 *    - CPU affinity gets lost when it is scheduled on an offline CPU.
 937 *
 938 *    - The worker might not exist when the CPU was off when the user
 939 *      created the workers.
 940 *
 941 * Good practice is to implement two CPU hotplug callbacks and to
 942 * destroy/create the worker when the CPU goes down/up.
 943 *
 944 * Return:
 945 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 946 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 947 * when the caller was killed by a fatal signal.
 948 */
 949struct kthread_worker *
 950kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 951			     const char namefmt[], ...)
 952{
 953	struct kthread_worker *worker;
 954	va_list args;
 955
 956	va_start(args, namefmt);
 957	worker = __kthread_create_worker(cpu, flags, namefmt, args);
 958	va_end(args);
 959
 960	return worker;
 961}
 962EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 963
 964/*
 965 * Returns true when the work could not be queued at the moment.
 966 * It happens when it is already pending in a worker list
 967 * or when it is being cancelled.
 968 */
 969static inline bool queuing_blocked(struct kthread_worker *worker,
 970				   struct kthread_work *work)
 971{
 972	lockdep_assert_held(&worker->lock);
 973
 974	return !list_empty(&work->node) || work->canceling;
 975}
 976
 977static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 978					     struct kthread_work *work)
 979{
 980	lockdep_assert_held(&worker->lock);
 981	WARN_ON_ONCE(!list_empty(&work->node));
 982	/* Do not use a work with >1 worker, see kthread_queue_work() */
 983	WARN_ON_ONCE(work->worker && work->worker != worker);
 984}
 985
 986/* insert @work before @pos in @worker */
 987static void kthread_insert_work(struct kthread_worker *worker,
 988				struct kthread_work *work,
 989				struct list_head *pos)
 990{
 991	kthread_insert_work_sanity_check(worker, work);
 992
 993	trace_sched_kthread_work_queue_work(worker, work);
 994
 995	list_add_tail(&work->node, pos);
 996	work->worker = worker;
 997	if (!worker->current_work && likely(worker->task))
 998		wake_up_process(worker->task);
 999}
1000
1001/**
1002 * kthread_queue_work - queue a kthread_work
1003 * @worker: target kthread_worker
1004 * @work: kthread_work to queue
1005 *
1006 * Queue @work to work processor @task for async execution.  @task
1007 * must have been created with kthread_worker_create().  Returns %true
1008 * if @work was successfully queued, %false if it was already pending.
1009 *
1010 * Reinitialize the work if it needs to be used by another worker.
1011 * For example, when the worker was stopped and started again.
1012 */
1013bool kthread_queue_work(struct kthread_worker *worker,
1014			struct kthread_work *work)
1015{
1016	bool ret = false;
1017	unsigned long flags;
1018
1019	raw_spin_lock_irqsave(&worker->lock, flags);
1020	if (!queuing_blocked(worker, work)) {
1021		kthread_insert_work(worker, work, &worker->work_list);
1022		ret = true;
1023	}
1024	raw_spin_unlock_irqrestore(&worker->lock, flags);
1025	return ret;
1026}
1027EXPORT_SYMBOL_GPL(kthread_queue_work);
1028
1029/**
1030 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1031 *	delayed work when the timer expires.
1032 * @t: pointer to the expired timer
1033 *
1034 * The format of the function is defined by struct timer_list.
1035 * It should have been called from irqsafe timer with irq already off.
1036 */
1037void kthread_delayed_work_timer_fn(struct timer_list *t)
1038{
1039	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1040	struct kthread_work *work = &dwork->work;
1041	struct kthread_worker *worker = work->worker;
1042	unsigned long flags;
1043
1044	/*
1045	 * This might happen when a pending work is reinitialized.
1046	 * It means that it is used a wrong way.
1047	 */
1048	if (WARN_ON_ONCE(!worker))
1049		return;
1050
1051	raw_spin_lock_irqsave(&worker->lock, flags);
1052	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1053	WARN_ON_ONCE(work->worker != worker);
1054
1055	/* Move the work from worker->delayed_work_list. */
1056	WARN_ON_ONCE(list_empty(&work->node));
1057	list_del_init(&work->node);
1058	if (!work->canceling)
1059		kthread_insert_work(worker, work, &worker->work_list);
1060
1061	raw_spin_unlock_irqrestore(&worker->lock, flags);
1062}
1063EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1064
1065static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1066					 struct kthread_delayed_work *dwork,
1067					 unsigned long delay)
1068{
1069	struct timer_list *timer = &dwork->timer;
1070	struct kthread_work *work = &dwork->work;
1071
1072	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
 
1073
1074	/*
1075	 * If @delay is 0, queue @dwork->work immediately.  This is for
1076	 * both optimization and correctness.  The earliest @timer can
1077	 * expire is on the closest next tick and delayed_work users depend
1078	 * on that there's no such delay when @delay is 0.
1079	 */
1080	if (!delay) {
1081		kthread_insert_work(worker, work, &worker->work_list);
1082		return;
1083	}
1084
1085	/* Be paranoid and try to detect possible races already now. */
1086	kthread_insert_work_sanity_check(worker, work);
1087
1088	list_add(&work->node, &worker->delayed_work_list);
1089	work->worker = worker;
1090	timer->expires = jiffies + delay;
1091	add_timer(timer);
1092}
1093
1094/**
1095 * kthread_queue_delayed_work - queue the associated kthread work
1096 *	after a delay.
1097 * @worker: target kthread_worker
1098 * @dwork: kthread_delayed_work to queue
1099 * @delay: number of jiffies to wait before queuing
1100 *
1101 * If the work has not been pending it starts a timer that will queue
1102 * the work after the given @delay. If @delay is zero, it queues the
1103 * work immediately.
1104 *
1105 * Return: %false if the @work has already been pending. It means that
1106 * either the timer was running or the work was queued. It returns %true
1107 * otherwise.
1108 */
1109bool kthread_queue_delayed_work(struct kthread_worker *worker,
1110				struct kthread_delayed_work *dwork,
1111				unsigned long delay)
1112{
1113	struct kthread_work *work = &dwork->work;
1114	unsigned long flags;
1115	bool ret = false;
1116
1117	raw_spin_lock_irqsave(&worker->lock, flags);
1118
1119	if (!queuing_blocked(worker, work)) {
1120		__kthread_queue_delayed_work(worker, dwork, delay);
1121		ret = true;
1122	}
1123
1124	raw_spin_unlock_irqrestore(&worker->lock, flags);
1125	return ret;
1126}
1127EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1128
1129struct kthread_flush_work {
1130	struct kthread_work	work;
1131	struct completion	done;
1132};
1133
1134static void kthread_flush_work_fn(struct kthread_work *work)
1135{
1136	struct kthread_flush_work *fwork =
1137		container_of(work, struct kthread_flush_work, work);
1138	complete(&fwork->done);
1139}
1140
1141/**
1142 * kthread_flush_work - flush a kthread_work
1143 * @work: work to flush
1144 *
1145 * If @work is queued or executing, wait for it to finish execution.
1146 */
1147void kthread_flush_work(struct kthread_work *work)
1148{
1149	struct kthread_flush_work fwork = {
1150		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1151		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1152	};
1153	struct kthread_worker *worker;
1154	bool noop = false;
1155
1156	worker = work->worker;
1157	if (!worker)
1158		return;
1159
1160	raw_spin_lock_irq(&worker->lock);
1161	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1162	WARN_ON_ONCE(work->worker != worker);
1163
1164	if (!list_empty(&work->node))
1165		kthread_insert_work(worker, &fwork.work, work->node.next);
1166	else if (worker->current_work == work)
1167		kthread_insert_work(worker, &fwork.work,
1168				    worker->work_list.next);
1169	else
1170		noop = true;
1171
1172	raw_spin_unlock_irq(&worker->lock);
1173
1174	if (!noop)
1175		wait_for_completion(&fwork.done);
1176}
1177EXPORT_SYMBOL_GPL(kthread_flush_work);
1178
1179/*
1180 * Make sure that the timer is neither set nor running and could
1181 * not manipulate the work list_head any longer.
1182 *
1183 * The function is called under worker->lock. The lock is temporary
1184 * released but the timer can't be set again in the meantime.
1185 */
1186static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1187					      unsigned long *flags)
1188{
1189	struct kthread_delayed_work *dwork =
1190		container_of(work, struct kthread_delayed_work, work);
1191	struct kthread_worker *worker = work->worker;
1192
1193	/*
1194	 * del_timer_sync() must be called to make sure that the timer
1195	 * callback is not running. The lock must be temporary released
1196	 * to avoid a deadlock with the callback. In the meantime,
1197	 * any queuing is blocked by setting the canceling counter.
1198	 */
1199	work->canceling++;
1200	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1201	del_timer_sync(&dwork->timer);
1202	raw_spin_lock_irqsave(&worker->lock, *flags);
1203	work->canceling--;
1204}
1205
1206/*
1207 * This function removes the work from the worker queue.
1208 *
1209 * It is called under worker->lock. The caller must make sure that
1210 * the timer used by delayed work is not running, e.g. by calling
1211 * kthread_cancel_delayed_work_timer().
1212 *
1213 * The work might still be in use when this function finishes. See the
1214 * current_work proceed by the worker.
1215 *
1216 * Return: %true if @work was pending and successfully canceled,
1217 *	%false if @work was not pending
1218 */
1219static bool __kthread_cancel_work(struct kthread_work *work)
1220{
1221	/*
1222	 * Try to remove the work from a worker list. It might either
1223	 * be from worker->work_list or from worker->delayed_work_list.
1224	 */
1225	if (!list_empty(&work->node)) {
1226		list_del_init(&work->node);
1227		return true;
1228	}
1229
1230	return false;
1231}
1232
1233/**
1234 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1235 * @worker: kthread worker to use
1236 * @dwork: kthread delayed work to queue
1237 * @delay: number of jiffies to wait before queuing
1238 *
1239 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1240 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1241 * @work is guaranteed to be queued immediately.
1242 *
1243 * Return: %false if @dwork was idle and queued, %true otherwise.
1244 *
1245 * A special case is when the work is being canceled in parallel.
1246 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1247 * or yet another kthread_mod_delayed_work() call. We let the other command
1248 * win and return %true here. The return value can be used for reference
1249 * counting and the number of queued works stays the same. Anyway, the caller
1250 * is supposed to synchronize these operations a reasonable way.
1251 *
1252 * This function is safe to call from any context including IRQ handler.
1253 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1254 * for details.
1255 */
1256bool kthread_mod_delayed_work(struct kthread_worker *worker,
1257			      struct kthread_delayed_work *dwork,
1258			      unsigned long delay)
1259{
1260	struct kthread_work *work = &dwork->work;
1261	unsigned long flags;
1262	int ret;
1263
1264	raw_spin_lock_irqsave(&worker->lock, flags);
1265
1266	/* Do not bother with canceling when never queued. */
1267	if (!work->worker) {
1268		ret = false;
1269		goto fast_queue;
1270	}
1271
1272	/* Work must not be used with >1 worker, see kthread_queue_work() */
1273	WARN_ON_ONCE(work->worker != worker);
1274
1275	/*
1276	 * Temporary cancel the work but do not fight with another command
1277	 * that is canceling the work as well.
1278	 *
1279	 * It is a bit tricky because of possible races with another
1280	 * mod_delayed_work() and cancel_delayed_work() callers.
1281	 *
1282	 * The timer must be canceled first because worker->lock is released
1283	 * when doing so. But the work can be removed from the queue (list)
1284	 * only when it can be queued again so that the return value can
1285	 * be used for reference counting.
1286	 */
1287	kthread_cancel_delayed_work_timer(work, &flags);
1288	if (work->canceling) {
1289		/* The number of works in the queue does not change. */
1290		ret = true;
1291		goto out;
1292	}
1293	ret = __kthread_cancel_work(work);
1294
1295fast_queue:
1296	__kthread_queue_delayed_work(worker, dwork, delay);
1297out:
1298	raw_spin_unlock_irqrestore(&worker->lock, flags);
1299	return ret;
1300}
1301EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1302
1303static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1304{
1305	struct kthread_worker *worker = work->worker;
1306	unsigned long flags;
1307	int ret = false;
1308
1309	if (!worker)
1310		goto out;
1311
1312	raw_spin_lock_irqsave(&worker->lock, flags);
1313	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1314	WARN_ON_ONCE(work->worker != worker);
1315
1316	if (is_dwork)
1317		kthread_cancel_delayed_work_timer(work, &flags);
1318
1319	ret = __kthread_cancel_work(work);
1320
1321	if (worker->current_work != work)
1322		goto out_fast;
1323
1324	/*
1325	 * The work is in progress and we need to wait with the lock released.
1326	 * In the meantime, block any queuing by setting the canceling counter.
1327	 */
1328	work->canceling++;
1329	raw_spin_unlock_irqrestore(&worker->lock, flags);
1330	kthread_flush_work(work);
1331	raw_spin_lock_irqsave(&worker->lock, flags);
1332	work->canceling--;
1333
1334out_fast:
1335	raw_spin_unlock_irqrestore(&worker->lock, flags);
1336out:
1337	return ret;
1338}
1339
1340/**
1341 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1342 * @work: the kthread work to cancel
1343 *
1344 * Cancel @work and wait for its execution to finish.  This function
1345 * can be used even if the work re-queues itself. On return from this
1346 * function, @work is guaranteed to be not pending or executing on any CPU.
1347 *
1348 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1349 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1350 *
1351 * The caller must ensure that the worker on which @work was last
1352 * queued can't be destroyed before this function returns.
1353 *
1354 * Return: %true if @work was pending, %false otherwise.
1355 */
1356bool kthread_cancel_work_sync(struct kthread_work *work)
1357{
1358	return __kthread_cancel_work_sync(work, false);
1359}
1360EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1361
1362/**
1363 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1364 *	wait for it to finish.
1365 * @dwork: the kthread delayed work to cancel
1366 *
1367 * This is kthread_cancel_work_sync() for delayed works.
1368 *
1369 * Return: %true if @dwork was pending, %false otherwise.
1370 */
1371bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1372{
1373	return __kthread_cancel_work_sync(&dwork->work, true);
1374}
1375EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1376
1377/**
1378 * kthread_flush_worker - flush all current works on a kthread_worker
1379 * @worker: worker to flush
1380 *
1381 * Wait until all currently executing or pending works on @worker are
1382 * finished.
1383 */
1384void kthread_flush_worker(struct kthread_worker *worker)
1385{
1386	struct kthread_flush_work fwork = {
1387		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1388		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1389	};
1390
1391	kthread_queue_work(worker, &fwork.work);
1392	wait_for_completion(&fwork.done);
1393}
1394EXPORT_SYMBOL_GPL(kthread_flush_worker);
1395
1396/**
1397 * kthread_destroy_worker - destroy a kthread worker
1398 * @worker: worker to be destroyed
1399 *
1400 * Flush and destroy @worker.  The simple flush is enough because the kthread
1401 * worker API is used only in trivial scenarios.  There are no multi-step state
1402 * machines needed.
1403 *
1404 * Note that this function is not responsible for handling delayed work, so
1405 * caller should be responsible for queuing or canceling all delayed work items
1406 * before invoke this function.
1407 */
1408void kthread_destroy_worker(struct kthread_worker *worker)
1409{
1410	struct task_struct *task;
1411
1412	task = worker->task;
1413	if (WARN_ON(!task))
1414		return;
1415
1416	kthread_flush_worker(worker);
1417	kthread_stop(task);
1418	WARN_ON(!list_empty(&worker->delayed_work_list));
1419	WARN_ON(!list_empty(&worker->work_list));
1420	kfree(worker);
1421}
1422EXPORT_SYMBOL(kthread_destroy_worker);
1423
1424/**
1425 * kthread_use_mm - make the calling kthread operate on an address space
1426 * @mm: address space to operate on
1427 */
1428void kthread_use_mm(struct mm_struct *mm)
1429{
1430	struct mm_struct *active_mm;
1431	struct task_struct *tsk = current;
1432
1433	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1434	WARN_ON_ONCE(tsk->mm);
1435
1436	/*
1437	 * It is possible for mm to be the same as tsk->active_mm, but
1438	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1439	 * because these references are not equivalent.
1440	 */
1441	mmgrab(mm);
1442
1443	task_lock(tsk);
1444	/* Hold off tlb flush IPIs while switching mm's */
1445	local_irq_disable();
1446	active_mm = tsk->active_mm;
1447	tsk->active_mm = mm;
 
 
 
1448	tsk->mm = mm;
1449	membarrier_update_current_mm(mm);
1450	switch_mm_irqs_off(active_mm, mm, tsk);
1451	local_irq_enable();
1452	task_unlock(tsk);
1453#ifdef finish_arch_post_lock_switch
1454	finish_arch_post_lock_switch();
1455#endif
1456
1457	/*
1458	 * When a kthread starts operating on an address space, the loop
1459	 * in membarrier_{private,global}_expedited() may not observe
1460	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1461	 * memory barrier after storing to tsk->mm, before accessing
1462	 * user-space memory. A full memory barrier for membarrier
1463	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1464	 * mmdrop_lazy_tlb().
1465	 */
1466	mmdrop_lazy_tlb(active_mm);
 
 
 
 
 
1467}
1468EXPORT_SYMBOL_GPL(kthread_use_mm);
1469
1470/**
1471 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1472 * @mm: address space to operate on
1473 */
1474void kthread_unuse_mm(struct mm_struct *mm)
1475{
1476	struct task_struct *tsk = current;
1477
1478	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1479	WARN_ON_ONCE(!tsk->mm);
1480
 
 
1481	task_lock(tsk);
1482	/*
1483	 * When a kthread stops operating on an address space, the loop
1484	 * in membarrier_{private,global}_expedited() may not observe
1485	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1486	 * memory barrier after accessing user-space memory, before
1487	 * clearing tsk->mm.
1488	 */
1489	smp_mb__after_spinlock();
 
1490	local_irq_disable();
1491	tsk->mm = NULL;
1492	membarrier_update_current_mm(NULL);
1493	mmgrab_lazy_tlb(mm);
1494	/* active_mm is still 'mm' */
1495	enter_lazy_tlb(mm, tsk);
1496	local_irq_enable();
1497	task_unlock(tsk);
1498
1499	mmdrop(mm);
1500}
1501EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1502
1503#ifdef CONFIG_BLK_CGROUP
1504/**
1505 * kthread_associate_blkcg - associate blkcg to current kthread
1506 * @css: the cgroup info
1507 *
1508 * Current thread must be a kthread. The thread is running jobs on behalf of
1509 * other threads. In some cases, we expect the jobs attach cgroup info of
1510 * original threads instead of that of current thread. This function stores
1511 * original thread's cgroup info in current kthread context for later
1512 * retrieval.
1513 */
1514void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1515{
1516	struct kthread *kthread;
1517
1518	if (!(current->flags & PF_KTHREAD))
1519		return;
1520	kthread = to_kthread(current);
1521	if (!kthread)
1522		return;
1523
1524	if (kthread->blkcg_css) {
1525		css_put(kthread->blkcg_css);
1526		kthread->blkcg_css = NULL;
1527	}
1528	if (css) {
1529		css_get(css);
1530		kthread->blkcg_css = css;
1531	}
1532}
1533EXPORT_SYMBOL(kthread_associate_blkcg);
1534
1535/**
1536 * kthread_blkcg - get associated blkcg css of current kthread
1537 *
1538 * Current thread must be a kthread.
1539 */
1540struct cgroup_subsys_state *kthread_blkcg(void)
1541{
1542	struct kthread *kthread;
1543
1544	if (current->flags & PF_KTHREAD) {
1545		kthread = to_kthread(current);
1546		if (kthread)
1547			return kthread->blkcg_css;
1548	}
1549	return NULL;
1550}
 
1551#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Kernel thread helper functions.
   3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
   4 *   Copyright (C) 2009 Red Hat, Inc.
   5 *
   6 * Creation is done via kthreadd, so that we get a clean environment
   7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   8 * etc.).
   9 */
  10#include <uapi/linux/sched/types.h>
  11#include <linux/mm.h>
  12#include <linux/mmu_context.h>
  13#include <linux/sched.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task.h>
  16#include <linux/kthread.h>
  17#include <linux/completion.h>
  18#include <linux/err.h>
  19#include <linux/cgroup.h>
  20#include <linux/cpuset.h>
  21#include <linux/unistd.h>
  22#include <linux/file.h>
  23#include <linux/export.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/freezer.h>
  27#include <linux/ptrace.h>
  28#include <linux/uaccess.h>
  29#include <linux/numa.h>
  30#include <linux/sched/isolation.h>
  31#include <trace/events/sched.h>
  32
  33
  34static DEFINE_SPINLOCK(kthread_create_lock);
  35static LIST_HEAD(kthread_create_list);
  36struct task_struct *kthreadd_task;
  37
  38struct kthread_create_info
  39{
  40	/* Information passed to kthread() from kthreadd. */
 
  41	int (*threadfn)(void *data);
  42	void *data;
  43	int node;
  44
  45	/* Result passed back to kthread_create() from kthreadd. */
  46	struct task_struct *result;
  47	struct completion *done;
  48
  49	struct list_head list;
  50};
  51
  52struct kthread {
  53	unsigned long flags;
  54	unsigned int cpu;
 
  55	int (*threadfn)(void *);
  56	void *data;
  57	mm_segment_t oldfs;
  58	struct completion parked;
  59	struct completion exited;
  60#ifdef CONFIG_BLK_CGROUP
  61	struct cgroup_subsys_state *blkcg_css;
  62#endif
 
 
  63};
  64
  65enum KTHREAD_BITS {
  66	KTHREAD_IS_PER_CPU = 0,
  67	KTHREAD_SHOULD_STOP,
  68	KTHREAD_SHOULD_PARK,
  69};
  70
  71static inline struct kthread *to_kthread(struct task_struct *k)
  72{
  73	WARN_ON(!(k->flags & PF_KTHREAD));
  74	return (__force void *)k->set_child_tid;
  75}
  76
  77/*
  78 * Variant of to_kthread() that doesn't assume @p is a kthread.
  79 *
  80 * Per construction; when:
  81 *
  82 *   (p->flags & PF_KTHREAD) && p->set_child_tid
  83 *
  84 * the task is both a kthread and struct kthread is persistent. However
  85 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
  86 * begin_new_exec()).
  87 */
  88static inline struct kthread *__to_kthread(struct task_struct *p)
  89{
  90	void *kthread = (__force void *)p->set_child_tid;
  91	if (kthread && !(p->flags & PF_KTHREAD))
  92		kthread = NULL;
  93	return kthread;
  94}
  95
  96void set_kthread_struct(struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
  97{
  98	struct kthread *kthread;
  99
 100	if (__to_kthread(p))
 101		return;
 102
 103	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
 104	/*
 105	 * We abuse ->set_child_tid to avoid the new member and because it
 106	 * can't be wrongly copied by copy_process(). We also rely on fact
 107	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
 108	 */
 109	p->set_child_tid = (__force void __user *)kthread;
 
 
 
 110}
 111
 112void free_kthread_struct(struct task_struct *k)
 113{
 114	struct kthread *kthread;
 115
 116	/*
 117	 * Can be NULL if this kthread was created by kernel_thread()
 118	 * or if kmalloc() in kthread() failed.
 119	 */
 120	kthread = to_kthread(k);
 
 
 
 121#ifdef CONFIG_BLK_CGROUP
 122	WARN_ON_ONCE(kthread && kthread->blkcg_css);
 123#endif
 
 
 124	kfree(kthread);
 125}
 126
 127/**
 128 * kthread_should_stop - should this kthread return now?
 129 *
 130 * When someone calls kthread_stop() on your kthread, it will be woken
 131 * and this will return true.  You should then return, and your return
 132 * value will be passed through to kthread_stop().
 133 */
 134bool kthread_should_stop(void)
 135{
 136	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 137}
 138EXPORT_SYMBOL(kthread_should_stop);
 139
 140bool __kthread_should_park(struct task_struct *k)
 141{
 142	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
 143}
 144EXPORT_SYMBOL_GPL(__kthread_should_park);
 145
 146/**
 147 * kthread_should_park - should this kthread park now?
 148 *
 149 * When someone calls kthread_park() on your kthread, it will be woken
 150 * and this will return true.  You should then do the necessary
 151 * cleanup and call kthread_parkme()
 152 *
 153 * Similar to kthread_should_stop(), but this keeps the thread alive
 154 * and in a park position. kthread_unpark() "restarts" the thread and
 155 * calls the thread function again.
 156 */
 157bool kthread_should_park(void)
 158{
 159	return __kthread_should_park(current);
 160}
 161EXPORT_SYMBOL_GPL(kthread_should_park);
 162
 
 
 
 
 
 
 
 
 
 
 163/**
 164 * kthread_freezable_should_stop - should this freezable kthread return now?
 165 * @was_frozen: optional out parameter, indicates whether %current was frozen
 166 *
 167 * kthread_should_stop() for freezable kthreads, which will enter
 168 * refrigerator if necessary.  This function is safe from kthread_stop() /
 169 * freezer deadlock and freezable kthreads should use this function instead
 170 * of calling try_to_freeze() directly.
 171 */
 172bool kthread_freezable_should_stop(bool *was_frozen)
 173{
 174	bool frozen = false;
 175
 176	might_sleep();
 177
 178	if (unlikely(freezing(current)))
 179		frozen = __refrigerator(true);
 180
 181	if (was_frozen)
 182		*was_frozen = frozen;
 183
 184	return kthread_should_stop();
 185}
 186EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 187
 188/**
 189 * kthread_func - return the function specified on kthread creation
 190 * @task: kthread task in question
 191 *
 192 * Returns NULL if the task is not a kthread.
 193 */
 194void *kthread_func(struct task_struct *task)
 195{
 196	struct kthread *kthread = __to_kthread(task);
 197	if (kthread)
 198		return kthread->threadfn;
 199	return NULL;
 200}
 201EXPORT_SYMBOL_GPL(kthread_func);
 202
 203/**
 204 * kthread_data - return data value specified on kthread creation
 205 * @task: kthread task in question
 206 *
 207 * Return the data value specified when kthread @task was created.
 208 * The caller is responsible for ensuring the validity of @task when
 209 * calling this function.
 210 */
 211void *kthread_data(struct task_struct *task)
 212{
 213	return to_kthread(task)->data;
 214}
 215EXPORT_SYMBOL_GPL(kthread_data);
 216
 217/**
 218 * kthread_probe_data - speculative version of kthread_data()
 219 * @task: possible kthread task in question
 220 *
 221 * @task could be a kthread task.  Return the data value specified when it
 222 * was created if accessible.  If @task isn't a kthread task or its data is
 223 * inaccessible for any reason, %NULL is returned.  This function requires
 224 * that @task itself is safe to dereference.
 225 */
 226void *kthread_probe_data(struct task_struct *task)
 227{
 228	struct kthread *kthread = __to_kthread(task);
 229	void *data = NULL;
 230
 231	if (kthread)
 232		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
 233	return data;
 234}
 235
 236static void __kthread_parkme(struct kthread *self)
 237{
 238	for (;;) {
 239		/*
 240		 * TASK_PARKED is a special state; we must serialize against
 241		 * possible pending wakeups to avoid store-store collisions on
 242		 * task->state.
 243		 *
 244		 * Such a collision might possibly result in the task state
 245		 * changin from TASK_PARKED and us failing the
 246		 * wait_task_inactive() in kthread_park().
 247		 */
 248		set_special_state(TASK_PARKED);
 249		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
 250			break;
 251
 252		/*
 253		 * Thread is going to call schedule(), do not preempt it,
 254		 * or the caller of kthread_park() may spend more time in
 255		 * wait_task_inactive().
 256		 */
 257		preempt_disable();
 258		complete(&self->parked);
 259		schedule_preempt_disabled();
 260		preempt_enable();
 261	}
 262	__set_current_state(TASK_RUNNING);
 263}
 264
 265void kthread_parkme(void)
 266{
 267	__kthread_parkme(to_kthread(current));
 268}
 269EXPORT_SYMBOL_GPL(kthread_parkme);
 270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271static int kthread(void *_create)
 272{
 
 273	/* Copy data: it's on kthread's stack */
 274	struct kthread_create_info *create = _create;
 275	int (*threadfn)(void *data) = create->threadfn;
 276	void *data = create->data;
 277	struct completion *done;
 278	struct kthread *self;
 279	int ret;
 280
 281	set_kthread_struct(current);
 282	self = to_kthread(current);
 283
 284	/* If user was SIGKILLed, I release the structure. */
 285	done = xchg(&create->done, NULL);
 286	if (!done) {
 
 287		kfree(create);
 288		do_exit(-EINTR);
 289	}
 290
 291	if (!self) {
 292		create->result = ERR_PTR(-ENOMEM);
 293		complete(done);
 294		do_exit(-ENOMEM);
 295	}
 296
 
 297	self->threadfn = threadfn;
 298	self->data = data;
 299	init_completion(&self->exited);
 300	init_completion(&self->parked);
 301	current->vfork_done = &self->exited;
 
 
 
 
 302
 303	/* OK, tell user we're spawned, wait for stop or wakeup */
 304	__set_current_state(TASK_UNINTERRUPTIBLE);
 305	create->result = current;
 306	/*
 307	 * Thread is going to call schedule(), do not preempt it,
 308	 * or the creator may spend more time in wait_task_inactive().
 309	 */
 310	preempt_disable();
 311	complete(done);
 312	schedule_preempt_disabled();
 313	preempt_enable();
 314
 315	ret = -EINTR;
 316	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 317		cgroup_kthread_ready();
 318		__kthread_parkme(self);
 319		ret = threadfn(data);
 320	}
 321	do_exit(ret);
 322}
 323
 324/* called from kernel_clone() to get node information for about to be created task */
 325int tsk_fork_get_node(struct task_struct *tsk)
 326{
 327#ifdef CONFIG_NUMA
 328	if (tsk == kthreadd_task)
 329		return tsk->pref_node_fork;
 330#endif
 331	return NUMA_NO_NODE;
 332}
 333
 334static void create_kthread(struct kthread_create_info *create)
 335{
 336	int pid;
 337
 338#ifdef CONFIG_NUMA
 339	current->pref_node_fork = create->node;
 340#endif
 341	/* We want our own signal handler (we take no signals by default). */
 342	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
 
 343	if (pid < 0) {
 344		/* If user was SIGKILLed, I release the structure. */
 345		struct completion *done = xchg(&create->done, NULL);
 346
 
 347		if (!done) {
 348			kfree(create);
 349			return;
 350		}
 351		create->result = ERR_PTR(pid);
 352		complete(done);
 353	}
 354}
 355
 356static __printf(4, 0)
 357struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 358						    void *data, int node,
 359						    const char namefmt[],
 360						    va_list args)
 361{
 362	DECLARE_COMPLETION_ONSTACK(done);
 363	struct task_struct *task;
 364	struct kthread_create_info *create = kmalloc(sizeof(*create),
 365						     GFP_KERNEL);
 366
 367	if (!create)
 368		return ERR_PTR(-ENOMEM);
 369	create->threadfn = threadfn;
 370	create->data = data;
 371	create->node = node;
 372	create->done = &done;
 
 
 
 
 
 373
 374	spin_lock(&kthread_create_lock);
 375	list_add_tail(&create->list, &kthread_create_list);
 376	spin_unlock(&kthread_create_lock);
 377
 378	wake_up_process(kthreadd_task);
 379	/*
 380	 * Wait for completion in killable state, for I might be chosen by
 381	 * the OOM killer while kthreadd is trying to allocate memory for
 382	 * new kernel thread.
 383	 */
 384	if (unlikely(wait_for_completion_killable(&done))) {
 385		/*
 386		 * If I was SIGKILLed before kthreadd (or new kernel thread)
 387		 * calls complete(), leave the cleanup of this structure to
 388		 * that thread.
 389		 */
 390		if (xchg(&create->done, NULL))
 391			return ERR_PTR(-EINTR);
 392		/*
 393		 * kthreadd (or new kernel thread) will call complete()
 394		 * shortly.
 395		 */
 396		wait_for_completion(&done);
 397	}
 398	task = create->result;
 399	if (!IS_ERR(task)) {
 400		static const struct sched_param param = { .sched_priority = 0 };
 401		char name[TASK_COMM_LEN];
 402
 403		/*
 404		 * task is already visible to other tasks, so updating
 405		 * COMM must be protected.
 406		 */
 407		vsnprintf(name, sizeof(name), namefmt, args);
 408		set_task_comm(task, name);
 409		/*
 410		 * root may have changed our (kthreadd's) priority or CPU mask.
 411		 * The kernel thread should not inherit these properties.
 412		 */
 413		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
 414		set_cpus_allowed_ptr(task,
 415				     housekeeping_cpumask(HK_FLAG_KTHREAD));
 416	}
 417	kfree(create);
 418	return task;
 419}
 420
 421/**
 422 * kthread_create_on_node - create a kthread.
 423 * @threadfn: the function to run until signal_pending(current).
 424 * @data: data ptr for @threadfn.
 425 * @node: task and thread structures for the thread are allocated on this node
 426 * @namefmt: printf-style name for the thread.
 427 *
 428 * Description: This helper function creates and names a kernel
 429 * thread.  The thread will be stopped: use wake_up_process() to start
 430 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 431 * is affine to all CPUs.
 432 *
 433 * If thread is going to be bound on a particular cpu, give its node
 434 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 435 * When woken, the thread will run @threadfn() with @data as its
 436 * argument. @threadfn() can either call do_exit() directly if it is a
 437 * standalone thread for which no one will call kthread_stop(), or
 438 * return when 'kthread_should_stop()' is true (which means
 439 * kthread_stop() has been called).  The return value should be zero
 440 * or a negative error number; it will be passed to kthread_stop().
 441 *
 442 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 443 */
 444struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 445					   void *data, int node,
 446					   const char namefmt[],
 447					   ...)
 448{
 449	struct task_struct *task;
 450	va_list args;
 451
 452	va_start(args, namefmt);
 453	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 454	va_end(args);
 455
 456	return task;
 457}
 458EXPORT_SYMBOL(kthread_create_on_node);
 459
 460static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
 461{
 462	unsigned long flags;
 463
 464	if (!wait_task_inactive(p, state)) {
 465		WARN_ON(1);
 466		return;
 467	}
 468
 469	/* It's safe because the task is inactive. */
 470	raw_spin_lock_irqsave(&p->pi_lock, flags);
 471	do_set_cpus_allowed(p, mask);
 472	p->flags |= PF_NO_SETAFFINITY;
 473	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 474}
 475
 476static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
 477{
 478	__kthread_bind_mask(p, cpumask_of(cpu), state);
 479}
 480
 481void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 482{
 483	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 484}
 485
 486/**
 487 * kthread_bind - bind a just-created kthread to a cpu.
 488 * @p: thread created by kthread_create().
 489 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 490 *
 491 * Description: This function is equivalent to set_cpus_allowed(),
 492 * except that @cpu doesn't need to be online, and the thread must be
 493 * stopped (i.e., just returned from kthread_create()).
 494 */
 495void kthread_bind(struct task_struct *p, unsigned int cpu)
 496{
 497	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 498}
 499EXPORT_SYMBOL(kthread_bind);
 500
 501/**
 502 * kthread_create_on_cpu - Create a cpu bound kthread
 503 * @threadfn: the function to run until signal_pending(current).
 504 * @data: data ptr for @threadfn.
 505 * @cpu: The cpu on which the thread should be bound,
 506 * @namefmt: printf-style name for the thread. Format is restricted
 507 *	     to "name.*%u". Code fills in cpu number.
 508 *
 509 * Description: This helper function creates and names a kernel thread
 510 */
 511struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 512					  void *data, unsigned int cpu,
 513					  const char *namefmt)
 514{
 515	struct task_struct *p;
 516
 517	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 518				   cpu);
 519	if (IS_ERR(p))
 520		return p;
 521	kthread_bind(p, cpu);
 522	/* CPU hotplug need to bind once again when unparking the thread. */
 523	to_kthread(p)->cpu = cpu;
 524	return p;
 525}
 
 526
 527void kthread_set_per_cpu(struct task_struct *k, int cpu)
 528{
 529	struct kthread *kthread = to_kthread(k);
 530	if (!kthread)
 531		return;
 532
 533	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
 534
 535	if (cpu < 0) {
 536		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 537		return;
 538	}
 539
 540	kthread->cpu = cpu;
 541	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 542}
 543
 544bool kthread_is_per_cpu(struct task_struct *p)
 545{
 546	struct kthread *kthread = __to_kthread(p);
 547	if (!kthread)
 548		return false;
 549
 550	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 551}
 552
 553/**
 554 * kthread_unpark - unpark a thread created by kthread_create().
 555 * @k:		thread created by kthread_create().
 556 *
 557 * Sets kthread_should_park() for @k to return false, wakes it, and
 558 * waits for it to return. If the thread is marked percpu then its
 559 * bound to the cpu again.
 560 */
 561void kthread_unpark(struct task_struct *k)
 562{
 563	struct kthread *kthread = to_kthread(k);
 564
 565	/*
 566	 * Newly created kthread was parked when the CPU was offline.
 567	 * The binding was lost and we need to set it again.
 568	 */
 569	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 570		__kthread_bind(k, kthread->cpu, TASK_PARKED);
 571
 572	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 573	/*
 574	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
 575	 */
 576	wake_up_state(k, TASK_PARKED);
 577}
 578EXPORT_SYMBOL_GPL(kthread_unpark);
 579
 580/**
 581 * kthread_park - park a thread created by kthread_create().
 582 * @k: thread created by kthread_create().
 583 *
 584 * Sets kthread_should_park() for @k to return true, wakes it, and
 585 * waits for it to return. This can also be called after kthread_create()
 586 * instead of calling wake_up_process(): the thread will park without
 587 * calling threadfn().
 588 *
 589 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 590 * If called by the kthread itself just the park bit is set.
 591 */
 592int kthread_park(struct task_struct *k)
 593{
 594	struct kthread *kthread = to_kthread(k);
 595
 596	if (WARN_ON(k->flags & PF_EXITING))
 597		return -ENOSYS;
 598
 599	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
 600		return -EBUSY;
 601
 602	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 603	if (k != current) {
 604		wake_up_process(k);
 605		/*
 606		 * Wait for __kthread_parkme() to complete(), this means we
 607		 * _will_ have TASK_PARKED and are about to call schedule().
 608		 */
 609		wait_for_completion(&kthread->parked);
 610		/*
 611		 * Now wait for that schedule() to complete and the task to
 612		 * get scheduled out.
 613		 */
 614		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
 615	}
 616
 617	return 0;
 618}
 619EXPORT_SYMBOL_GPL(kthread_park);
 620
 621/**
 622 * kthread_stop - stop a thread created by kthread_create().
 623 * @k: thread created by kthread_create().
 624 *
 625 * Sets kthread_should_stop() for @k to return true, wakes it, and
 626 * waits for it to exit. This can also be called after kthread_create()
 627 * instead of calling wake_up_process(): the thread will exit without
 628 * calling threadfn().
 629 *
 630 * If threadfn() may call do_exit() itself, the caller must ensure
 631 * task_struct can't go away.
 632 *
 633 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 634 * was never called.
 635 */
 636int kthread_stop(struct task_struct *k)
 637{
 638	struct kthread *kthread;
 639	int ret;
 640
 641	trace_sched_kthread_stop(k);
 642
 643	get_task_struct(k);
 644	kthread = to_kthread(k);
 645	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 646	kthread_unpark(k);
 
 647	wake_up_process(k);
 648	wait_for_completion(&kthread->exited);
 649	ret = k->exit_code;
 650	put_task_struct(k);
 651
 652	trace_sched_kthread_stop_ret(ret);
 653	return ret;
 654}
 655EXPORT_SYMBOL(kthread_stop);
 656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657int kthreadd(void *unused)
 658{
 659	struct task_struct *tsk = current;
 660
 661	/* Setup a clean context for our children to inherit. */
 662	set_task_comm(tsk, "kthreadd");
 663	ignore_signals(tsk);
 664	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
 665	set_mems_allowed(node_states[N_MEMORY]);
 666
 667	current->flags |= PF_NOFREEZE;
 668	cgroup_init_kthreadd();
 669
 670	for (;;) {
 671		set_current_state(TASK_INTERRUPTIBLE);
 672		if (list_empty(&kthread_create_list))
 673			schedule();
 674		__set_current_state(TASK_RUNNING);
 675
 676		spin_lock(&kthread_create_lock);
 677		while (!list_empty(&kthread_create_list)) {
 678			struct kthread_create_info *create;
 679
 680			create = list_entry(kthread_create_list.next,
 681					    struct kthread_create_info, list);
 682			list_del_init(&create->list);
 683			spin_unlock(&kthread_create_lock);
 684
 685			create_kthread(create);
 686
 687			spin_lock(&kthread_create_lock);
 688		}
 689		spin_unlock(&kthread_create_lock);
 690	}
 691
 692	return 0;
 693}
 694
 695void __kthread_init_worker(struct kthread_worker *worker,
 696				const char *name,
 697				struct lock_class_key *key)
 698{
 699	memset(worker, 0, sizeof(struct kthread_worker));
 700	raw_spin_lock_init(&worker->lock);
 701	lockdep_set_class_and_name(&worker->lock, key, name);
 702	INIT_LIST_HEAD(&worker->work_list);
 703	INIT_LIST_HEAD(&worker->delayed_work_list);
 704}
 705EXPORT_SYMBOL_GPL(__kthread_init_worker);
 706
 707/**
 708 * kthread_worker_fn - kthread function to process kthread_worker
 709 * @worker_ptr: pointer to initialized kthread_worker
 710 *
 711 * This function implements the main cycle of kthread worker. It processes
 712 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 713 * is empty.
 714 *
 715 * The works are not allowed to keep any locks, disable preemption or interrupts
 716 * when they finish. There is defined a safe point for freezing when one work
 717 * finishes and before a new one is started.
 718 *
 719 * Also the works must not be handled by more than one worker at the same time,
 720 * see also kthread_queue_work().
 721 */
 722int kthread_worker_fn(void *worker_ptr)
 723{
 724	struct kthread_worker *worker = worker_ptr;
 725	struct kthread_work *work;
 726
 727	/*
 728	 * FIXME: Update the check and remove the assignment when all kthread
 729	 * worker users are created using kthread_create_worker*() functions.
 730	 */
 731	WARN_ON(worker->task && worker->task != current);
 732	worker->task = current;
 733
 734	if (worker->flags & KTW_FREEZABLE)
 735		set_freezable();
 736
 737repeat:
 738	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
 739
 740	if (kthread_should_stop()) {
 741		__set_current_state(TASK_RUNNING);
 742		raw_spin_lock_irq(&worker->lock);
 743		worker->task = NULL;
 744		raw_spin_unlock_irq(&worker->lock);
 745		return 0;
 746	}
 747
 748	work = NULL;
 749	raw_spin_lock_irq(&worker->lock);
 750	if (!list_empty(&worker->work_list)) {
 751		work = list_first_entry(&worker->work_list,
 752					struct kthread_work, node);
 753		list_del_init(&work->node);
 754	}
 755	worker->current_work = work;
 756	raw_spin_unlock_irq(&worker->lock);
 757
 758	if (work) {
 759		kthread_work_func_t func = work->func;
 760		__set_current_state(TASK_RUNNING);
 761		trace_sched_kthread_work_execute_start(work);
 762		work->func(work);
 763		/*
 764		 * Avoid dereferencing work after this point.  The trace
 765		 * event only cares about the address.
 766		 */
 767		trace_sched_kthread_work_execute_end(work, func);
 768	} else if (!freezing(current))
 769		schedule();
 770
 771	try_to_freeze();
 772	cond_resched();
 773	goto repeat;
 774}
 775EXPORT_SYMBOL_GPL(kthread_worker_fn);
 776
 777static __printf(3, 0) struct kthread_worker *
 778__kthread_create_worker(int cpu, unsigned int flags,
 779			const char namefmt[], va_list args)
 780{
 781	struct kthread_worker *worker;
 782	struct task_struct *task;
 783	int node = NUMA_NO_NODE;
 784
 785	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 786	if (!worker)
 787		return ERR_PTR(-ENOMEM);
 788
 789	kthread_init_worker(worker);
 790
 791	if (cpu >= 0)
 792		node = cpu_to_node(cpu);
 793
 794	task = __kthread_create_on_node(kthread_worker_fn, worker,
 795						node, namefmt, args);
 796	if (IS_ERR(task))
 797		goto fail_task;
 798
 799	if (cpu >= 0)
 800		kthread_bind(task, cpu);
 801
 802	worker->flags = flags;
 803	worker->task = task;
 804	wake_up_process(task);
 805	return worker;
 806
 807fail_task:
 808	kfree(worker);
 809	return ERR_CAST(task);
 810}
 811
 812/**
 813 * kthread_create_worker - create a kthread worker
 814 * @flags: flags modifying the default behavior of the worker
 815 * @namefmt: printf-style name for the kthread worker (task).
 816 *
 817 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 818 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 819 * when the worker was SIGKILLed.
 820 */
 821struct kthread_worker *
 822kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 823{
 824	struct kthread_worker *worker;
 825	va_list args;
 826
 827	va_start(args, namefmt);
 828	worker = __kthread_create_worker(-1, flags, namefmt, args);
 829	va_end(args);
 830
 831	return worker;
 832}
 833EXPORT_SYMBOL(kthread_create_worker);
 834
 835/**
 836 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 837 *	to a given CPU and the associated NUMA node.
 838 * @cpu: CPU number
 839 * @flags: flags modifying the default behavior of the worker
 840 * @namefmt: printf-style name for the kthread worker (task).
 841 *
 842 * Use a valid CPU number if you want to bind the kthread worker
 843 * to the given CPU and the associated NUMA node.
 844 *
 845 * A good practice is to add the cpu number also into the worker name.
 846 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 847 *
 848 * CPU hotplug:
 849 * The kthread worker API is simple and generic. It just provides a way
 850 * to create, use, and destroy workers.
 851 *
 852 * It is up to the API user how to handle CPU hotplug. They have to decide
 853 * how to handle pending work items, prevent queuing new ones, and
 854 * restore the functionality when the CPU goes off and on. There are a
 855 * few catches:
 856 *
 857 *    - CPU affinity gets lost when it is scheduled on an offline CPU.
 858 *
 859 *    - The worker might not exist when the CPU was off when the user
 860 *      created the workers.
 861 *
 862 * Good practice is to implement two CPU hotplug callbacks and to
 863 * destroy/create the worker when the CPU goes down/up.
 864 *
 865 * Return:
 866 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 867 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 868 * when the worker was SIGKILLed.
 869 */
 870struct kthread_worker *
 871kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 872			     const char namefmt[], ...)
 873{
 874	struct kthread_worker *worker;
 875	va_list args;
 876
 877	va_start(args, namefmt);
 878	worker = __kthread_create_worker(cpu, flags, namefmt, args);
 879	va_end(args);
 880
 881	return worker;
 882}
 883EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 884
 885/*
 886 * Returns true when the work could not be queued at the moment.
 887 * It happens when it is already pending in a worker list
 888 * or when it is being cancelled.
 889 */
 890static inline bool queuing_blocked(struct kthread_worker *worker,
 891				   struct kthread_work *work)
 892{
 893	lockdep_assert_held(&worker->lock);
 894
 895	return !list_empty(&work->node) || work->canceling;
 896}
 897
 898static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 899					     struct kthread_work *work)
 900{
 901	lockdep_assert_held(&worker->lock);
 902	WARN_ON_ONCE(!list_empty(&work->node));
 903	/* Do not use a work with >1 worker, see kthread_queue_work() */
 904	WARN_ON_ONCE(work->worker && work->worker != worker);
 905}
 906
 907/* insert @work before @pos in @worker */
 908static void kthread_insert_work(struct kthread_worker *worker,
 909				struct kthread_work *work,
 910				struct list_head *pos)
 911{
 912	kthread_insert_work_sanity_check(worker, work);
 913
 914	trace_sched_kthread_work_queue_work(worker, work);
 915
 916	list_add_tail(&work->node, pos);
 917	work->worker = worker;
 918	if (!worker->current_work && likely(worker->task))
 919		wake_up_process(worker->task);
 920}
 921
 922/**
 923 * kthread_queue_work - queue a kthread_work
 924 * @worker: target kthread_worker
 925 * @work: kthread_work to queue
 926 *
 927 * Queue @work to work processor @task for async execution.  @task
 928 * must have been created with kthread_worker_create().  Returns %true
 929 * if @work was successfully queued, %false if it was already pending.
 930 *
 931 * Reinitialize the work if it needs to be used by another worker.
 932 * For example, when the worker was stopped and started again.
 933 */
 934bool kthread_queue_work(struct kthread_worker *worker,
 935			struct kthread_work *work)
 936{
 937	bool ret = false;
 938	unsigned long flags;
 939
 940	raw_spin_lock_irqsave(&worker->lock, flags);
 941	if (!queuing_blocked(worker, work)) {
 942		kthread_insert_work(worker, work, &worker->work_list);
 943		ret = true;
 944	}
 945	raw_spin_unlock_irqrestore(&worker->lock, flags);
 946	return ret;
 947}
 948EXPORT_SYMBOL_GPL(kthread_queue_work);
 949
 950/**
 951 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
 952 *	delayed work when the timer expires.
 953 * @t: pointer to the expired timer
 954 *
 955 * The format of the function is defined by struct timer_list.
 956 * It should have been called from irqsafe timer with irq already off.
 957 */
 958void kthread_delayed_work_timer_fn(struct timer_list *t)
 959{
 960	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
 961	struct kthread_work *work = &dwork->work;
 962	struct kthread_worker *worker = work->worker;
 963	unsigned long flags;
 964
 965	/*
 966	 * This might happen when a pending work is reinitialized.
 967	 * It means that it is used a wrong way.
 968	 */
 969	if (WARN_ON_ONCE(!worker))
 970		return;
 971
 972	raw_spin_lock_irqsave(&worker->lock, flags);
 973	/* Work must not be used with >1 worker, see kthread_queue_work(). */
 974	WARN_ON_ONCE(work->worker != worker);
 975
 976	/* Move the work from worker->delayed_work_list. */
 977	WARN_ON_ONCE(list_empty(&work->node));
 978	list_del_init(&work->node);
 979	if (!work->canceling)
 980		kthread_insert_work(worker, work, &worker->work_list);
 981
 982	raw_spin_unlock_irqrestore(&worker->lock, flags);
 983}
 984EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
 985
 986static void __kthread_queue_delayed_work(struct kthread_worker *worker,
 987					 struct kthread_delayed_work *dwork,
 988					 unsigned long delay)
 989{
 990	struct timer_list *timer = &dwork->timer;
 991	struct kthread_work *work = &dwork->work;
 992
 993	WARN_ON_FUNCTION_MISMATCH(timer->function,
 994				  kthread_delayed_work_timer_fn);
 995
 996	/*
 997	 * If @delay is 0, queue @dwork->work immediately.  This is for
 998	 * both optimization and correctness.  The earliest @timer can
 999	 * expire is on the closest next tick and delayed_work users depend
1000	 * on that there's no such delay when @delay is 0.
1001	 */
1002	if (!delay) {
1003		kthread_insert_work(worker, work, &worker->work_list);
1004		return;
1005	}
1006
1007	/* Be paranoid and try to detect possible races already now. */
1008	kthread_insert_work_sanity_check(worker, work);
1009
1010	list_add(&work->node, &worker->delayed_work_list);
1011	work->worker = worker;
1012	timer->expires = jiffies + delay;
1013	add_timer(timer);
1014}
1015
1016/**
1017 * kthread_queue_delayed_work - queue the associated kthread work
1018 *	after a delay.
1019 * @worker: target kthread_worker
1020 * @dwork: kthread_delayed_work to queue
1021 * @delay: number of jiffies to wait before queuing
1022 *
1023 * If the work has not been pending it starts a timer that will queue
1024 * the work after the given @delay. If @delay is zero, it queues the
1025 * work immediately.
1026 *
1027 * Return: %false if the @work has already been pending. It means that
1028 * either the timer was running or the work was queued. It returns %true
1029 * otherwise.
1030 */
1031bool kthread_queue_delayed_work(struct kthread_worker *worker,
1032				struct kthread_delayed_work *dwork,
1033				unsigned long delay)
1034{
1035	struct kthread_work *work = &dwork->work;
1036	unsigned long flags;
1037	bool ret = false;
1038
1039	raw_spin_lock_irqsave(&worker->lock, flags);
1040
1041	if (!queuing_blocked(worker, work)) {
1042		__kthread_queue_delayed_work(worker, dwork, delay);
1043		ret = true;
1044	}
1045
1046	raw_spin_unlock_irqrestore(&worker->lock, flags);
1047	return ret;
1048}
1049EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1050
1051struct kthread_flush_work {
1052	struct kthread_work	work;
1053	struct completion	done;
1054};
1055
1056static void kthread_flush_work_fn(struct kthread_work *work)
1057{
1058	struct kthread_flush_work *fwork =
1059		container_of(work, struct kthread_flush_work, work);
1060	complete(&fwork->done);
1061}
1062
1063/**
1064 * kthread_flush_work - flush a kthread_work
1065 * @work: work to flush
1066 *
1067 * If @work is queued or executing, wait for it to finish execution.
1068 */
1069void kthread_flush_work(struct kthread_work *work)
1070{
1071	struct kthread_flush_work fwork = {
1072		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1073		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1074	};
1075	struct kthread_worker *worker;
1076	bool noop = false;
1077
1078	worker = work->worker;
1079	if (!worker)
1080		return;
1081
1082	raw_spin_lock_irq(&worker->lock);
1083	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1084	WARN_ON_ONCE(work->worker != worker);
1085
1086	if (!list_empty(&work->node))
1087		kthread_insert_work(worker, &fwork.work, work->node.next);
1088	else if (worker->current_work == work)
1089		kthread_insert_work(worker, &fwork.work,
1090				    worker->work_list.next);
1091	else
1092		noop = true;
1093
1094	raw_spin_unlock_irq(&worker->lock);
1095
1096	if (!noop)
1097		wait_for_completion(&fwork.done);
1098}
1099EXPORT_SYMBOL_GPL(kthread_flush_work);
1100
1101/*
1102 * Make sure that the timer is neither set nor running and could
1103 * not manipulate the work list_head any longer.
1104 *
1105 * The function is called under worker->lock. The lock is temporary
1106 * released but the timer can't be set again in the meantime.
1107 */
1108static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1109					      unsigned long *flags)
1110{
1111	struct kthread_delayed_work *dwork =
1112		container_of(work, struct kthread_delayed_work, work);
1113	struct kthread_worker *worker = work->worker;
1114
1115	/*
1116	 * del_timer_sync() must be called to make sure that the timer
1117	 * callback is not running. The lock must be temporary released
1118	 * to avoid a deadlock with the callback. In the meantime,
1119	 * any queuing is blocked by setting the canceling counter.
1120	 */
1121	work->canceling++;
1122	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1123	del_timer_sync(&dwork->timer);
1124	raw_spin_lock_irqsave(&worker->lock, *flags);
1125	work->canceling--;
1126}
1127
1128/*
1129 * This function removes the work from the worker queue.
1130 *
1131 * It is called under worker->lock. The caller must make sure that
1132 * the timer used by delayed work is not running, e.g. by calling
1133 * kthread_cancel_delayed_work_timer().
1134 *
1135 * The work might still be in use when this function finishes. See the
1136 * current_work proceed by the worker.
1137 *
1138 * Return: %true if @work was pending and successfully canceled,
1139 *	%false if @work was not pending
1140 */
1141static bool __kthread_cancel_work(struct kthread_work *work)
1142{
1143	/*
1144	 * Try to remove the work from a worker list. It might either
1145	 * be from worker->work_list or from worker->delayed_work_list.
1146	 */
1147	if (!list_empty(&work->node)) {
1148		list_del_init(&work->node);
1149		return true;
1150	}
1151
1152	return false;
1153}
1154
1155/**
1156 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1157 * @worker: kthread worker to use
1158 * @dwork: kthread delayed work to queue
1159 * @delay: number of jiffies to wait before queuing
1160 *
1161 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1162 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1163 * @work is guaranteed to be queued immediately.
1164 *
1165 * Return: %false if @dwork was idle and queued, %true otherwise.
1166 *
1167 * A special case is when the work is being canceled in parallel.
1168 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1169 * or yet another kthread_mod_delayed_work() call. We let the other command
1170 * win and return %true here. The return value can be used for reference
1171 * counting and the number of queued works stays the same. Anyway, the caller
1172 * is supposed to synchronize these operations a reasonable way.
1173 *
1174 * This function is safe to call from any context including IRQ handler.
1175 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1176 * for details.
1177 */
1178bool kthread_mod_delayed_work(struct kthread_worker *worker,
1179			      struct kthread_delayed_work *dwork,
1180			      unsigned long delay)
1181{
1182	struct kthread_work *work = &dwork->work;
1183	unsigned long flags;
1184	int ret;
1185
1186	raw_spin_lock_irqsave(&worker->lock, flags);
1187
1188	/* Do not bother with canceling when never queued. */
1189	if (!work->worker) {
1190		ret = false;
1191		goto fast_queue;
1192	}
1193
1194	/* Work must not be used with >1 worker, see kthread_queue_work() */
1195	WARN_ON_ONCE(work->worker != worker);
1196
1197	/*
1198	 * Temporary cancel the work but do not fight with another command
1199	 * that is canceling the work as well.
1200	 *
1201	 * It is a bit tricky because of possible races with another
1202	 * mod_delayed_work() and cancel_delayed_work() callers.
1203	 *
1204	 * The timer must be canceled first because worker->lock is released
1205	 * when doing so. But the work can be removed from the queue (list)
1206	 * only when it can be queued again so that the return value can
1207	 * be used for reference counting.
1208	 */
1209	kthread_cancel_delayed_work_timer(work, &flags);
1210	if (work->canceling) {
1211		/* The number of works in the queue does not change. */
1212		ret = true;
1213		goto out;
1214	}
1215	ret = __kthread_cancel_work(work);
1216
1217fast_queue:
1218	__kthread_queue_delayed_work(worker, dwork, delay);
1219out:
1220	raw_spin_unlock_irqrestore(&worker->lock, flags);
1221	return ret;
1222}
1223EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1224
1225static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1226{
1227	struct kthread_worker *worker = work->worker;
1228	unsigned long flags;
1229	int ret = false;
1230
1231	if (!worker)
1232		goto out;
1233
1234	raw_spin_lock_irqsave(&worker->lock, flags);
1235	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1236	WARN_ON_ONCE(work->worker != worker);
1237
1238	if (is_dwork)
1239		kthread_cancel_delayed_work_timer(work, &flags);
1240
1241	ret = __kthread_cancel_work(work);
1242
1243	if (worker->current_work != work)
1244		goto out_fast;
1245
1246	/*
1247	 * The work is in progress and we need to wait with the lock released.
1248	 * In the meantime, block any queuing by setting the canceling counter.
1249	 */
1250	work->canceling++;
1251	raw_spin_unlock_irqrestore(&worker->lock, flags);
1252	kthread_flush_work(work);
1253	raw_spin_lock_irqsave(&worker->lock, flags);
1254	work->canceling--;
1255
1256out_fast:
1257	raw_spin_unlock_irqrestore(&worker->lock, flags);
1258out:
1259	return ret;
1260}
1261
1262/**
1263 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1264 * @work: the kthread work to cancel
1265 *
1266 * Cancel @work and wait for its execution to finish.  This function
1267 * can be used even if the work re-queues itself. On return from this
1268 * function, @work is guaranteed to be not pending or executing on any CPU.
1269 *
1270 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1271 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1272 *
1273 * The caller must ensure that the worker on which @work was last
1274 * queued can't be destroyed before this function returns.
1275 *
1276 * Return: %true if @work was pending, %false otherwise.
1277 */
1278bool kthread_cancel_work_sync(struct kthread_work *work)
1279{
1280	return __kthread_cancel_work_sync(work, false);
1281}
1282EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1283
1284/**
1285 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1286 *	wait for it to finish.
1287 * @dwork: the kthread delayed work to cancel
1288 *
1289 * This is kthread_cancel_work_sync() for delayed works.
1290 *
1291 * Return: %true if @dwork was pending, %false otherwise.
1292 */
1293bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1294{
1295	return __kthread_cancel_work_sync(&dwork->work, true);
1296}
1297EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1298
1299/**
1300 * kthread_flush_worker - flush all current works on a kthread_worker
1301 * @worker: worker to flush
1302 *
1303 * Wait until all currently executing or pending works on @worker are
1304 * finished.
1305 */
1306void kthread_flush_worker(struct kthread_worker *worker)
1307{
1308	struct kthread_flush_work fwork = {
1309		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1310		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1311	};
1312
1313	kthread_queue_work(worker, &fwork.work);
1314	wait_for_completion(&fwork.done);
1315}
1316EXPORT_SYMBOL_GPL(kthread_flush_worker);
1317
1318/**
1319 * kthread_destroy_worker - destroy a kthread worker
1320 * @worker: worker to be destroyed
1321 *
1322 * Flush and destroy @worker.  The simple flush is enough because the kthread
1323 * worker API is used only in trivial scenarios.  There are no multi-step state
1324 * machines needed.
 
 
 
 
1325 */
1326void kthread_destroy_worker(struct kthread_worker *worker)
1327{
1328	struct task_struct *task;
1329
1330	task = worker->task;
1331	if (WARN_ON(!task))
1332		return;
1333
1334	kthread_flush_worker(worker);
1335	kthread_stop(task);
 
1336	WARN_ON(!list_empty(&worker->work_list));
1337	kfree(worker);
1338}
1339EXPORT_SYMBOL(kthread_destroy_worker);
1340
1341/**
1342 * kthread_use_mm - make the calling kthread operate on an address space
1343 * @mm: address space to operate on
1344 */
1345void kthread_use_mm(struct mm_struct *mm)
1346{
1347	struct mm_struct *active_mm;
1348	struct task_struct *tsk = current;
1349
1350	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1351	WARN_ON_ONCE(tsk->mm);
1352
 
 
 
 
 
 
 
1353	task_lock(tsk);
1354	/* Hold off tlb flush IPIs while switching mm's */
1355	local_irq_disable();
1356	active_mm = tsk->active_mm;
1357	if (active_mm != mm) {
1358		mmgrab(mm);
1359		tsk->active_mm = mm;
1360	}
1361	tsk->mm = mm;
1362	membarrier_update_current_mm(mm);
1363	switch_mm_irqs_off(active_mm, mm, tsk);
1364	local_irq_enable();
1365	task_unlock(tsk);
1366#ifdef finish_arch_post_lock_switch
1367	finish_arch_post_lock_switch();
1368#endif
1369
1370	/*
1371	 * When a kthread starts operating on an address space, the loop
1372	 * in membarrier_{private,global}_expedited() may not observe
1373	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1374	 * memory barrier after storing to tsk->mm, before accessing
1375	 * user-space memory. A full memory barrier for membarrier
1376	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1377	 * mmdrop(), or explicitly with smp_mb().
1378	 */
1379	if (active_mm != mm)
1380		mmdrop(active_mm);
1381	else
1382		smp_mb();
1383
1384	to_kthread(tsk)->oldfs = force_uaccess_begin();
1385}
1386EXPORT_SYMBOL_GPL(kthread_use_mm);
1387
1388/**
1389 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1390 * @mm: address space to operate on
1391 */
1392void kthread_unuse_mm(struct mm_struct *mm)
1393{
1394	struct task_struct *tsk = current;
1395
1396	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1397	WARN_ON_ONCE(!tsk->mm);
1398
1399	force_uaccess_end(to_kthread(tsk)->oldfs);
1400
1401	task_lock(tsk);
1402	/*
1403	 * When a kthread stops operating on an address space, the loop
1404	 * in membarrier_{private,global}_expedited() may not observe
1405	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1406	 * memory barrier after accessing user-space memory, before
1407	 * clearing tsk->mm.
1408	 */
1409	smp_mb__after_spinlock();
1410	sync_mm_rss(mm);
1411	local_irq_disable();
1412	tsk->mm = NULL;
1413	membarrier_update_current_mm(NULL);
 
1414	/* active_mm is still 'mm' */
1415	enter_lazy_tlb(mm, tsk);
1416	local_irq_enable();
1417	task_unlock(tsk);
 
 
1418}
1419EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1420
1421#ifdef CONFIG_BLK_CGROUP
1422/**
1423 * kthread_associate_blkcg - associate blkcg to current kthread
1424 * @css: the cgroup info
1425 *
1426 * Current thread must be a kthread. The thread is running jobs on behalf of
1427 * other threads. In some cases, we expect the jobs attach cgroup info of
1428 * original threads instead of that of current thread. This function stores
1429 * original thread's cgroup info in current kthread context for later
1430 * retrieval.
1431 */
1432void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1433{
1434	struct kthread *kthread;
1435
1436	if (!(current->flags & PF_KTHREAD))
1437		return;
1438	kthread = to_kthread(current);
1439	if (!kthread)
1440		return;
1441
1442	if (kthread->blkcg_css) {
1443		css_put(kthread->blkcg_css);
1444		kthread->blkcg_css = NULL;
1445	}
1446	if (css) {
1447		css_get(css);
1448		kthread->blkcg_css = css;
1449	}
1450}
1451EXPORT_SYMBOL(kthread_associate_blkcg);
1452
1453/**
1454 * kthread_blkcg - get associated blkcg css of current kthread
1455 *
1456 * Current thread must be a kthread.
1457 */
1458struct cgroup_subsys_state *kthread_blkcg(void)
1459{
1460	struct kthread *kthread;
1461
1462	if (current->flags & PF_KTHREAD) {
1463		kthread = to_kthread(current);
1464		if (kthread)
1465			return kthread->blkcg_css;
1466	}
1467	return NULL;
1468}
1469EXPORT_SYMBOL(kthread_blkcg);
1470#endif