Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/crypto/hooks.c
4 *
5 * Encryption hooks for higher-level filesystem operations.
6 */
7
8#include "fscrypt_private.h"
9
10/**
11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
12 * @inode: the inode being opened
13 * @filp: the struct file being set up
14 *
15 * Currently, an encrypted regular file can only be opened if its encryption key
16 * is available; access to the raw encrypted contents is not supported.
17 * Therefore, we first set up the inode's encryption key (if not already done)
18 * and return an error if it's unavailable.
19 *
20 * We also verify that if the parent directory (from the path via which the file
21 * is being opened) is encrypted, then the inode being opened uses the same
22 * encryption policy. This is needed as part of the enforcement that all files
23 * in an encrypted directory tree use the same encryption policy, as a
24 * protection against certain types of offline attacks. Note that this check is
25 * needed even when opening an *unencrypted* file, since it's forbidden to have
26 * an unencrypted file in an encrypted directory.
27 *
28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29 */
30int fscrypt_file_open(struct inode *inode, struct file *filp)
31{
32 int err;
33 struct dentry *dir;
34
35 err = fscrypt_require_key(inode);
36 if (err)
37 return err;
38
39 dir = dget_parent(file_dentry(filp));
40 if (IS_ENCRYPTED(d_inode(dir)) &&
41 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42 fscrypt_warn(inode,
43 "Inconsistent encryption context (parent directory: %lu)",
44 d_inode(dir)->i_ino);
45 err = -EPERM;
46 }
47 dput(dir);
48 return err;
49}
50EXPORT_SYMBOL_GPL(fscrypt_file_open);
51
52int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53 struct dentry *dentry)
54{
55 if (fscrypt_is_nokey_name(dentry))
56 return -ENOKEY;
57 /*
58 * We don't need to separately check that the directory inode's key is
59 * available, as it's implied by the dentry not being a no-key name.
60 */
61
62 if (!fscrypt_has_permitted_context(dir, inode))
63 return -EXDEV;
64
65 return 0;
66}
67EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
68
69int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
70 struct inode *new_dir, struct dentry *new_dentry,
71 unsigned int flags)
72{
73 if (fscrypt_is_nokey_name(old_dentry) ||
74 fscrypt_is_nokey_name(new_dentry))
75 return -ENOKEY;
76 /*
77 * We don't need to separately check that the directory inodes' keys are
78 * available, as it's implied by the dentries not being no-key names.
79 */
80
81 if (old_dir != new_dir) {
82 if (IS_ENCRYPTED(new_dir) &&
83 !fscrypt_has_permitted_context(new_dir,
84 d_inode(old_dentry)))
85 return -EXDEV;
86
87 if ((flags & RENAME_EXCHANGE) &&
88 IS_ENCRYPTED(old_dir) &&
89 !fscrypt_has_permitted_context(old_dir,
90 d_inode(new_dentry)))
91 return -EXDEV;
92 }
93 return 0;
94}
95EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
96
97int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
98 struct fscrypt_name *fname)
99{
100 int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
101
102 if (err && err != -ENOENT)
103 return err;
104
105 if (fname->is_nokey_name) {
106 spin_lock(&dentry->d_lock);
107 dentry->d_flags |= DCACHE_NOKEY_NAME;
108 spin_unlock(&dentry->d_lock);
109 }
110 return err;
111}
112EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
113
114/**
115 * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
116 * @dir: the encrypted directory being searched
117 * @dentry: the dentry being looked up in @dir
118 *
119 * This function should be used by the ->lookup and ->atomic_open methods of
120 * filesystems that handle filename encryption and no-key name encoding
121 * themselves and thus can't use fscrypt_prepare_lookup(). Like
122 * fscrypt_prepare_lookup(), this will try to set up the directory's encryption
123 * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
124 * However, this function doesn't set up a struct fscrypt_name for the filename.
125 *
126 * Return: 0 on success; -errno on error. Note that the encryption key being
127 * unavailable is not considered an error. It is also not an error if
128 * the encryption policy is unsupported by this kernel; that is treated
129 * like the key being unavailable, so that files can still be deleted.
130 */
131int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry)
132{
133 int err = fscrypt_get_encryption_info(dir, true);
134
135 if (!err && !fscrypt_has_encryption_key(dir)) {
136 spin_lock(&dentry->d_lock);
137 dentry->d_flags |= DCACHE_NOKEY_NAME;
138 spin_unlock(&dentry->d_lock);
139 }
140 return err;
141}
142EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial);
143
144int __fscrypt_prepare_readdir(struct inode *dir)
145{
146 return fscrypt_get_encryption_info(dir, true);
147}
148EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
149
150int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
151{
152 if (attr->ia_valid & ATTR_SIZE)
153 return fscrypt_require_key(d_inode(dentry));
154 return 0;
155}
156EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
157
158/**
159 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
160 * @inode: the inode on which flags are being changed
161 * @oldflags: the old flags
162 * @flags: the new flags
163 *
164 * The caller should be holding i_rwsem for write.
165 *
166 * Return: 0 on success; -errno if the flags change isn't allowed or if
167 * another error occurs.
168 */
169int fscrypt_prepare_setflags(struct inode *inode,
170 unsigned int oldflags, unsigned int flags)
171{
172 struct fscrypt_inode_info *ci;
173 struct fscrypt_master_key *mk;
174 int err;
175
176 /*
177 * When the CASEFOLD flag is set on an encrypted directory, we must
178 * derive the secret key needed for the dirhash. This is only possible
179 * if the directory uses a v2 encryption policy.
180 */
181 if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
182 err = fscrypt_require_key(inode);
183 if (err)
184 return err;
185 ci = inode->i_crypt_info;
186 if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
187 return -EINVAL;
188 mk = ci->ci_master_key;
189 down_read(&mk->mk_sem);
190 if (mk->mk_present)
191 err = fscrypt_derive_dirhash_key(ci, mk);
192 else
193 err = -ENOKEY;
194 up_read(&mk->mk_sem);
195 return err;
196 }
197 return 0;
198}
199
200/**
201 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
202 * @dir: directory in which the symlink is being created
203 * @target: plaintext symlink target
204 * @len: length of @target excluding null terminator
205 * @max_len: space the filesystem has available to store the symlink target
206 * @disk_link: (out) the on-disk symlink target being prepared
207 *
208 * This function computes the size the symlink target will require on-disk,
209 * stores it in @disk_link->len, and validates it against @max_len. An
210 * encrypted symlink may be longer than the original.
211 *
212 * Additionally, @disk_link->name is set to @target if the symlink will be
213 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted
214 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
215 * on-disk target later. (The reason for the two-step process is that some
216 * filesystems need to know the size of the symlink target before creating the
217 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
218 *
219 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
220 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
221 * occurred while setting up the encryption key.
222 */
223int fscrypt_prepare_symlink(struct inode *dir, const char *target,
224 unsigned int len, unsigned int max_len,
225 struct fscrypt_str *disk_link)
226{
227 const union fscrypt_policy *policy;
228
229 /*
230 * To calculate the size of the encrypted symlink target we need to know
231 * the amount of NUL padding, which is determined by the flags set in
232 * the encryption policy which will be inherited from the directory.
233 */
234 policy = fscrypt_policy_to_inherit(dir);
235 if (policy == NULL) {
236 /* Not encrypted */
237 disk_link->name = (unsigned char *)target;
238 disk_link->len = len + 1;
239 if (disk_link->len > max_len)
240 return -ENAMETOOLONG;
241 return 0;
242 }
243 if (IS_ERR(policy))
244 return PTR_ERR(policy);
245
246 /*
247 * Calculate the size of the encrypted symlink and verify it won't
248 * exceed max_len. Note that for historical reasons, encrypted symlink
249 * targets are prefixed with the ciphertext length, despite this
250 * actually being redundant with i_size. This decreases by 2 bytes the
251 * longest symlink target we can accept.
252 *
253 * We could recover 1 byte by not counting a null terminator, but
254 * counting it (even though it is meaningless for ciphertext) is simpler
255 * for now since filesystems will assume it is there and subtract it.
256 */
257 if (!__fscrypt_fname_encrypted_size(policy, len,
258 max_len - sizeof(struct fscrypt_symlink_data) - 1,
259 &disk_link->len))
260 return -ENAMETOOLONG;
261 disk_link->len += sizeof(struct fscrypt_symlink_data) + 1;
262
263 disk_link->name = NULL;
264 return 0;
265}
266EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
267
268int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
269 unsigned int len, struct fscrypt_str *disk_link)
270{
271 int err;
272 struct qstr iname = QSTR_INIT(target, len);
273 struct fscrypt_symlink_data *sd;
274 unsigned int ciphertext_len;
275
276 /*
277 * fscrypt_prepare_new_inode() should have already set up the new
278 * symlink inode's encryption key. We don't wait until now to do it,
279 * since we may be in a filesystem transaction now.
280 */
281 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
282 return -ENOKEY;
283
284 if (disk_link->name) {
285 /* filesystem-provided buffer */
286 sd = (struct fscrypt_symlink_data *)disk_link->name;
287 } else {
288 sd = kmalloc(disk_link->len, GFP_NOFS);
289 if (!sd)
290 return -ENOMEM;
291 }
292 ciphertext_len = disk_link->len - sizeof(*sd) - 1;
293 sd->len = cpu_to_le16(ciphertext_len);
294
295 err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
296 ciphertext_len);
297 if (err)
298 goto err_free_sd;
299
300 /*
301 * Null-terminating the ciphertext doesn't make sense, but we still
302 * count the null terminator in the length, so we might as well
303 * initialize it just in case the filesystem writes it out.
304 */
305 sd->encrypted_path[ciphertext_len] = '\0';
306
307 /* Cache the plaintext symlink target for later use by get_link() */
308 err = -ENOMEM;
309 inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
310 if (!inode->i_link)
311 goto err_free_sd;
312
313 if (!disk_link->name)
314 disk_link->name = (unsigned char *)sd;
315 return 0;
316
317err_free_sd:
318 if (!disk_link->name)
319 kfree(sd);
320 return err;
321}
322EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
323
324/**
325 * fscrypt_get_symlink() - get the target of an encrypted symlink
326 * @inode: the symlink inode
327 * @caddr: the on-disk contents of the symlink
328 * @max_size: size of @caddr buffer
329 * @done: if successful, will be set up to free the returned target if needed
330 *
331 * If the symlink's encryption key is available, we decrypt its target.
332 * Otherwise, we encode its target for presentation.
333 *
334 * This may sleep, so the filesystem must have dropped out of RCU mode already.
335 *
336 * Return: the presentable symlink target or an ERR_PTR()
337 */
338const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
339 unsigned int max_size,
340 struct delayed_call *done)
341{
342 const struct fscrypt_symlink_data *sd;
343 struct fscrypt_str cstr, pstr;
344 bool has_key;
345 int err;
346
347 /* This is for encrypted symlinks only */
348 if (WARN_ON_ONCE(!IS_ENCRYPTED(inode)))
349 return ERR_PTR(-EINVAL);
350
351 /* If the decrypted target is already cached, just return it. */
352 pstr.name = READ_ONCE(inode->i_link);
353 if (pstr.name)
354 return pstr.name;
355
356 /*
357 * Try to set up the symlink's encryption key, but we can continue
358 * regardless of whether the key is available or not.
359 */
360 err = fscrypt_get_encryption_info(inode, false);
361 if (err)
362 return ERR_PTR(err);
363 has_key = fscrypt_has_encryption_key(inode);
364
365 /*
366 * For historical reasons, encrypted symlink targets are prefixed with
367 * the ciphertext length, even though this is redundant with i_size.
368 */
369
370 if (max_size < sizeof(*sd) + 1)
371 return ERR_PTR(-EUCLEAN);
372 sd = caddr;
373 cstr.name = (unsigned char *)sd->encrypted_path;
374 cstr.len = le16_to_cpu(sd->len);
375
376 if (cstr.len == 0)
377 return ERR_PTR(-EUCLEAN);
378
379 if (cstr.len + sizeof(*sd) > max_size)
380 return ERR_PTR(-EUCLEAN);
381
382 err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
383 if (err)
384 return ERR_PTR(err);
385
386 err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
387 if (err)
388 goto err_kfree;
389
390 err = -EUCLEAN;
391 if (pstr.name[0] == '\0')
392 goto err_kfree;
393
394 pstr.name[pstr.len] = '\0';
395
396 /*
397 * Cache decrypted symlink targets in i_link for later use. Don't cache
398 * symlink targets encoded without the key, since those become outdated
399 * once the key is added. This pairs with the READ_ONCE() above and in
400 * the VFS path lookup code.
401 */
402 if (!has_key ||
403 cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
404 set_delayed_call(done, kfree_link, pstr.name);
405
406 return pstr.name;
407
408err_kfree:
409 kfree(pstr.name);
410 return ERR_PTR(err);
411}
412EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
413
414/**
415 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
416 * @path: the path for the encrypted symlink being queried
417 * @stat: the struct being filled with the symlink's attributes
418 *
419 * Override st_size of encrypted symlinks to be the length of the decrypted
420 * symlink target (or the no-key encoded symlink target, if the key is
421 * unavailable) rather than the length of the encrypted symlink target. This is
422 * necessary for st_size to match the symlink target that userspace actually
423 * sees. POSIX requires this, and some userspace programs depend on it.
424 *
425 * This requires reading the symlink target from disk if needed, setting up the
426 * inode's encryption key if possible, and then decrypting or encoding the
427 * symlink target. This makes lstat() more heavyweight than is normally the
428 * case. However, decrypted symlink targets will be cached in ->i_link, so
429 * usually the symlink won't have to be read and decrypted again later if/when
430 * it is actually followed, readlink() is called, or lstat() is called again.
431 *
432 * Return: 0 on success, -errno on failure
433 */
434int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
435{
436 struct dentry *dentry = path->dentry;
437 struct inode *inode = d_inode(dentry);
438 const char *link;
439 DEFINE_DELAYED_CALL(done);
440
441 /*
442 * To get the symlink target that userspace will see (whether it's the
443 * decrypted target or the no-key encoded target), we can just get it in
444 * the same way the VFS does during path resolution and readlink().
445 */
446 link = READ_ONCE(inode->i_link);
447 if (!link) {
448 link = inode->i_op->get_link(dentry, inode, &done);
449 if (IS_ERR(link))
450 return PTR_ERR(link);
451 }
452 stat->size = strlen(link);
453 do_delayed_call(&done);
454 return 0;
455}
456EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/crypto/hooks.c
4 *
5 * Encryption hooks for higher-level filesystem operations.
6 */
7
8#include <linux/key.h>
9
10#include "fscrypt_private.h"
11
12/**
13 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
14 * @inode: the inode being opened
15 * @filp: the struct file being set up
16 *
17 * Currently, an encrypted regular file can only be opened if its encryption key
18 * is available; access to the raw encrypted contents is not supported.
19 * Therefore, we first set up the inode's encryption key (if not already done)
20 * and return an error if it's unavailable.
21 *
22 * We also verify that if the parent directory (from the path via which the file
23 * is being opened) is encrypted, then the inode being opened uses the same
24 * encryption policy. This is needed as part of the enforcement that all files
25 * in an encrypted directory tree use the same encryption policy, as a
26 * protection against certain types of offline attacks. Note that this check is
27 * needed even when opening an *unencrypted* file, since it's forbidden to have
28 * an unencrypted file in an encrypted directory.
29 *
30 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31 */
32int fscrypt_file_open(struct inode *inode, struct file *filp)
33{
34 int err;
35 struct dentry *dir;
36
37 err = fscrypt_require_key(inode);
38 if (err)
39 return err;
40
41 dir = dget_parent(file_dentry(filp));
42 if (IS_ENCRYPTED(d_inode(dir)) &&
43 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
44 fscrypt_warn(inode,
45 "Inconsistent encryption context (parent directory: %lu)",
46 d_inode(dir)->i_ino);
47 err = -EPERM;
48 }
49 dput(dir);
50 return err;
51}
52EXPORT_SYMBOL_GPL(fscrypt_file_open);
53
54int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
55 struct dentry *dentry)
56{
57 if (fscrypt_is_nokey_name(dentry))
58 return -ENOKEY;
59 /*
60 * We don't need to separately check that the directory inode's key is
61 * available, as it's implied by the dentry not being a no-key name.
62 */
63
64 if (!fscrypt_has_permitted_context(dir, inode))
65 return -EXDEV;
66
67 return 0;
68}
69EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
70
71int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
72 struct inode *new_dir, struct dentry *new_dentry,
73 unsigned int flags)
74{
75 if (fscrypt_is_nokey_name(old_dentry) ||
76 fscrypt_is_nokey_name(new_dentry))
77 return -ENOKEY;
78 /*
79 * We don't need to separately check that the directory inodes' keys are
80 * available, as it's implied by the dentries not being no-key names.
81 */
82
83 if (old_dir != new_dir) {
84 if (IS_ENCRYPTED(new_dir) &&
85 !fscrypt_has_permitted_context(new_dir,
86 d_inode(old_dentry)))
87 return -EXDEV;
88
89 if ((flags & RENAME_EXCHANGE) &&
90 IS_ENCRYPTED(old_dir) &&
91 !fscrypt_has_permitted_context(old_dir,
92 d_inode(new_dentry)))
93 return -EXDEV;
94 }
95 return 0;
96}
97EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
98
99int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
100 struct fscrypt_name *fname)
101{
102 int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
103
104 if (err && err != -ENOENT)
105 return err;
106
107 if (fname->is_nokey_name) {
108 spin_lock(&dentry->d_lock);
109 dentry->d_flags |= DCACHE_NOKEY_NAME;
110 spin_unlock(&dentry->d_lock);
111 }
112 return err;
113}
114EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
115
116int __fscrypt_prepare_readdir(struct inode *dir)
117{
118 return fscrypt_get_encryption_info(dir, true);
119}
120EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
121
122int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
123{
124 if (attr->ia_valid & ATTR_SIZE)
125 return fscrypt_require_key(d_inode(dentry));
126 return 0;
127}
128EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
129
130/**
131 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
132 * @inode: the inode on which flags are being changed
133 * @oldflags: the old flags
134 * @flags: the new flags
135 *
136 * The caller should be holding i_rwsem for write.
137 *
138 * Return: 0 on success; -errno if the flags change isn't allowed or if
139 * another error occurs.
140 */
141int fscrypt_prepare_setflags(struct inode *inode,
142 unsigned int oldflags, unsigned int flags)
143{
144 struct fscrypt_info *ci;
145 struct key *key;
146 struct fscrypt_master_key *mk;
147 int err;
148
149 /*
150 * When the CASEFOLD flag is set on an encrypted directory, we must
151 * derive the secret key needed for the dirhash. This is only possible
152 * if the directory uses a v2 encryption policy.
153 */
154 if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
155 err = fscrypt_require_key(inode);
156 if (err)
157 return err;
158 ci = inode->i_crypt_info;
159 if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
160 return -EINVAL;
161 key = ci->ci_master_key;
162 mk = key->payload.data[0];
163 down_read(&key->sem);
164 if (is_master_key_secret_present(&mk->mk_secret))
165 err = fscrypt_derive_dirhash_key(ci, mk);
166 else
167 err = -ENOKEY;
168 up_read(&key->sem);
169 return err;
170 }
171 return 0;
172}
173
174/**
175 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
176 * @dir: directory in which the symlink is being created
177 * @target: plaintext symlink target
178 * @len: length of @target excluding null terminator
179 * @max_len: space the filesystem has available to store the symlink target
180 * @disk_link: (out) the on-disk symlink target being prepared
181 *
182 * This function computes the size the symlink target will require on-disk,
183 * stores it in @disk_link->len, and validates it against @max_len. An
184 * encrypted symlink may be longer than the original.
185 *
186 * Additionally, @disk_link->name is set to @target if the symlink will be
187 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted
188 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
189 * on-disk target later. (The reason for the two-step process is that some
190 * filesystems need to know the size of the symlink target before creating the
191 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
192 *
193 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
194 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
195 * occurred while setting up the encryption key.
196 */
197int fscrypt_prepare_symlink(struct inode *dir, const char *target,
198 unsigned int len, unsigned int max_len,
199 struct fscrypt_str *disk_link)
200{
201 const union fscrypt_policy *policy;
202
203 /*
204 * To calculate the size of the encrypted symlink target we need to know
205 * the amount of NUL padding, which is determined by the flags set in
206 * the encryption policy which will be inherited from the directory.
207 */
208 policy = fscrypt_policy_to_inherit(dir);
209 if (policy == NULL) {
210 /* Not encrypted */
211 disk_link->name = (unsigned char *)target;
212 disk_link->len = len + 1;
213 if (disk_link->len > max_len)
214 return -ENAMETOOLONG;
215 return 0;
216 }
217 if (IS_ERR(policy))
218 return PTR_ERR(policy);
219
220 /*
221 * Calculate the size of the encrypted symlink and verify it won't
222 * exceed max_len. Note that for historical reasons, encrypted symlink
223 * targets are prefixed with the ciphertext length, despite this
224 * actually being redundant with i_size. This decreases by 2 bytes the
225 * longest symlink target we can accept.
226 *
227 * We could recover 1 byte by not counting a null terminator, but
228 * counting it (even though it is meaningless for ciphertext) is simpler
229 * for now since filesystems will assume it is there and subtract it.
230 */
231 if (!fscrypt_fname_encrypted_size(policy, len,
232 max_len - sizeof(struct fscrypt_symlink_data),
233 &disk_link->len))
234 return -ENAMETOOLONG;
235 disk_link->len += sizeof(struct fscrypt_symlink_data);
236
237 disk_link->name = NULL;
238 return 0;
239}
240EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
241
242int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
243 unsigned int len, struct fscrypt_str *disk_link)
244{
245 int err;
246 struct qstr iname = QSTR_INIT(target, len);
247 struct fscrypt_symlink_data *sd;
248 unsigned int ciphertext_len;
249
250 /*
251 * fscrypt_prepare_new_inode() should have already set up the new
252 * symlink inode's encryption key. We don't wait until now to do it,
253 * since we may be in a filesystem transaction now.
254 */
255 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
256 return -ENOKEY;
257
258 if (disk_link->name) {
259 /* filesystem-provided buffer */
260 sd = (struct fscrypt_symlink_data *)disk_link->name;
261 } else {
262 sd = kmalloc(disk_link->len, GFP_NOFS);
263 if (!sd)
264 return -ENOMEM;
265 }
266 ciphertext_len = disk_link->len - sizeof(*sd);
267 sd->len = cpu_to_le16(ciphertext_len);
268
269 err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
270 ciphertext_len);
271 if (err)
272 goto err_free_sd;
273
274 /*
275 * Null-terminating the ciphertext doesn't make sense, but we still
276 * count the null terminator in the length, so we might as well
277 * initialize it just in case the filesystem writes it out.
278 */
279 sd->encrypted_path[ciphertext_len] = '\0';
280
281 /* Cache the plaintext symlink target for later use by get_link() */
282 err = -ENOMEM;
283 inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
284 if (!inode->i_link)
285 goto err_free_sd;
286
287 if (!disk_link->name)
288 disk_link->name = (unsigned char *)sd;
289 return 0;
290
291err_free_sd:
292 if (!disk_link->name)
293 kfree(sd);
294 return err;
295}
296EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
297
298/**
299 * fscrypt_get_symlink() - get the target of an encrypted symlink
300 * @inode: the symlink inode
301 * @caddr: the on-disk contents of the symlink
302 * @max_size: size of @caddr buffer
303 * @done: if successful, will be set up to free the returned target if needed
304 *
305 * If the symlink's encryption key is available, we decrypt its target.
306 * Otherwise, we encode its target for presentation.
307 *
308 * This may sleep, so the filesystem must have dropped out of RCU mode already.
309 *
310 * Return: the presentable symlink target or an ERR_PTR()
311 */
312const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
313 unsigned int max_size,
314 struct delayed_call *done)
315{
316 const struct fscrypt_symlink_data *sd;
317 struct fscrypt_str cstr, pstr;
318 bool has_key;
319 int err;
320
321 /* This is for encrypted symlinks only */
322 if (WARN_ON(!IS_ENCRYPTED(inode)))
323 return ERR_PTR(-EINVAL);
324
325 /* If the decrypted target is already cached, just return it. */
326 pstr.name = READ_ONCE(inode->i_link);
327 if (pstr.name)
328 return pstr.name;
329
330 /*
331 * Try to set up the symlink's encryption key, but we can continue
332 * regardless of whether the key is available or not.
333 */
334 err = fscrypt_get_encryption_info(inode, false);
335 if (err)
336 return ERR_PTR(err);
337 has_key = fscrypt_has_encryption_key(inode);
338
339 /*
340 * For historical reasons, encrypted symlink targets are prefixed with
341 * the ciphertext length, even though this is redundant with i_size.
342 */
343
344 if (max_size < sizeof(*sd))
345 return ERR_PTR(-EUCLEAN);
346 sd = caddr;
347 cstr.name = (unsigned char *)sd->encrypted_path;
348 cstr.len = le16_to_cpu(sd->len);
349
350 if (cstr.len == 0)
351 return ERR_PTR(-EUCLEAN);
352
353 if (cstr.len + sizeof(*sd) - 1 > max_size)
354 return ERR_PTR(-EUCLEAN);
355
356 err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
357 if (err)
358 return ERR_PTR(err);
359
360 err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
361 if (err)
362 goto err_kfree;
363
364 err = -EUCLEAN;
365 if (pstr.name[0] == '\0')
366 goto err_kfree;
367
368 pstr.name[pstr.len] = '\0';
369
370 /*
371 * Cache decrypted symlink targets in i_link for later use. Don't cache
372 * symlink targets encoded without the key, since those become outdated
373 * once the key is added. This pairs with the READ_ONCE() above and in
374 * the VFS path lookup code.
375 */
376 if (!has_key ||
377 cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
378 set_delayed_call(done, kfree_link, pstr.name);
379
380 return pstr.name;
381
382err_kfree:
383 kfree(pstr.name);
384 return ERR_PTR(err);
385}
386EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
387
388/**
389 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
390 * @path: the path for the encrypted symlink being queried
391 * @stat: the struct being filled with the symlink's attributes
392 *
393 * Override st_size of encrypted symlinks to be the length of the decrypted
394 * symlink target (or the no-key encoded symlink target, if the key is
395 * unavailable) rather than the length of the encrypted symlink target. This is
396 * necessary for st_size to match the symlink target that userspace actually
397 * sees. POSIX requires this, and some userspace programs depend on it.
398 *
399 * This requires reading the symlink target from disk if needed, setting up the
400 * inode's encryption key if possible, and then decrypting or encoding the
401 * symlink target. This makes lstat() more heavyweight than is normally the
402 * case. However, decrypted symlink targets will be cached in ->i_link, so
403 * usually the symlink won't have to be read and decrypted again later if/when
404 * it is actually followed, readlink() is called, or lstat() is called again.
405 *
406 * Return: 0 on success, -errno on failure
407 */
408int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
409{
410 struct dentry *dentry = path->dentry;
411 struct inode *inode = d_inode(dentry);
412 const char *link;
413 DEFINE_DELAYED_CALL(done);
414
415 /*
416 * To get the symlink target that userspace will see (whether it's the
417 * decrypted target or the no-key encoded target), we can just get it in
418 * the same way the VFS does during path resolution and readlink().
419 */
420 link = READ_ONCE(inode->i_link);
421 if (!link) {
422 link = inode->i_op->get_link(dentry, inode, &done);
423 if (IS_ERR(link))
424 return PTR_ERR(link);
425 }
426 stat->size = strlen(link);
427 do_delayed_call(&done);
428 return 0;
429}
430EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);