Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38#include "raid-stripe-tree.h"
39
40#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
41 BTRFS_BLOCK_GROUP_RAID10 | \
42 BTRFS_BLOCK_GROUP_RAID56_MASK)
43
44struct btrfs_io_geometry {
45 u32 stripe_index;
46 u32 stripe_nr;
47 int mirror_num;
48 int num_stripes;
49 u64 stripe_offset;
50 u64 raid56_full_stripe_start;
51 int max_errors;
52 enum btrfs_map_op op;
53};
54
55const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
56 [BTRFS_RAID_RAID10] = {
57 .sub_stripes = 2,
58 .dev_stripes = 1,
59 .devs_max = 0, /* 0 == as many as possible */
60 .devs_min = 2,
61 .tolerated_failures = 1,
62 .devs_increment = 2,
63 .ncopies = 2,
64 .nparity = 0,
65 .raid_name = "raid10",
66 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
67 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
68 },
69 [BTRFS_RAID_RAID1] = {
70 .sub_stripes = 1,
71 .dev_stripes = 1,
72 .devs_max = 2,
73 .devs_min = 2,
74 .tolerated_failures = 1,
75 .devs_increment = 2,
76 .ncopies = 2,
77 .nparity = 0,
78 .raid_name = "raid1",
79 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
80 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
81 },
82 [BTRFS_RAID_RAID1C3] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 3,
86 .devs_min = 3,
87 .tolerated_failures = 2,
88 .devs_increment = 3,
89 .ncopies = 3,
90 .nparity = 0,
91 .raid_name = "raid1c3",
92 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
93 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
94 },
95 [BTRFS_RAID_RAID1C4] = {
96 .sub_stripes = 1,
97 .dev_stripes = 1,
98 .devs_max = 4,
99 .devs_min = 4,
100 .tolerated_failures = 3,
101 .devs_increment = 4,
102 .ncopies = 4,
103 .nparity = 0,
104 .raid_name = "raid1c4",
105 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
106 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
107 },
108 [BTRFS_RAID_DUP] = {
109 .sub_stripes = 1,
110 .dev_stripes = 2,
111 .devs_max = 1,
112 .devs_min = 1,
113 .tolerated_failures = 0,
114 .devs_increment = 1,
115 .ncopies = 2,
116 .nparity = 0,
117 .raid_name = "dup",
118 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
119 .mindev_error = 0,
120 },
121 [BTRFS_RAID_RAID0] = {
122 .sub_stripes = 1,
123 .dev_stripes = 1,
124 .devs_max = 0,
125 .devs_min = 1,
126 .tolerated_failures = 0,
127 .devs_increment = 1,
128 .ncopies = 1,
129 .nparity = 0,
130 .raid_name = "raid0",
131 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
132 .mindev_error = 0,
133 },
134 [BTRFS_RAID_SINGLE] = {
135 .sub_stripes = 1,
136 .dev_stripes = 1,
137 .devs_max = 1,
138 .devs_min = 1,
139 .tolerated_failures = 0,
140 .devs_increment = 1,
141 .ncopies = 1,
142 .nparity = 0,
143 .raid_name = "single",
144 .bg_flag = 0,
145 .mindev_error = 0,
146 },
147 [BTRFS_RAID_RAID5] = {
148 .sub_stripes = 1,
149 .dev_stripes = 1,
150 .devs_max = 0,
151 .devs_min = 2,
152 .tolerated_failures = 1,
153 .devs_increment = 1,
154 .ncopies = 1,
155 .nparity = 1,
156 .raid_name = "raid5",
157 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
158 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
159 },
160 [BTRFS_RAID_RAID6] = {
161 .sub_stripes = 1,
162 .dev_stripes = 1,
163 .devs_max = 0,
164 .devs_min = 3,
165 .tolerated_failures = 2,
166 .devs_increment = 1,
167 .ncopies = 1,
168 .nparity = 2,
169 .raid_name = "raid6",
170 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
171 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
172 },
173};
174
175/*
176 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
177 * can be used as index to access btrfs_raid_array[].
178 */
179enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
180{
181 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
182
183 if (!profile)
184 return BTRFS_RAID_SINGLE;
185
186 return BTRFS_BG_FLAG_TO_INDEX(profile);
187}
188
189const char *btrfs_bg_type_to_raid_name(u64 flags)
190{
191 const int index = btrfs_bg_flags_to_raid_index(flags);
192
193 if (index >= BTRFS_NR_RAID_TYPES)
194 return NULL;
195
196 return btrfs_raid_array[index].raid_name;
197}
198
199int btrfs_nr_parity_stripes(u64 type)
200{
201 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
202
203 return btrfs_raid_array[index].nparity;
204}
205
206/*
207 * Fill @buf with textual description of @bg_flags, no more than @size_buf
208 * bytes including terminating null byte.
209 */
210void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
211{
212 int i;
213 int ret;
214 char *bp = buf;
215 u64 flags = bg_flags;
216 u32 size_bp = size_buf;
217
218 if (!flags) {
219 strcpy(bp, "NONE");
220 return;
221 }
222
223#define DESCRIBE_FLAG(flag, desc) \
224 do { \
225 if (flags & (flag)) { \
226 ret = snprintf(bp, size_bp, "%s|", (desc)); \
227 if (ret < 0 || ret >= size_bp) \
228 goto out_overflow; \
229 size_bp -= ret; \
230 bp += ret; \
231 flags &= ~(flag); \
232 } \
233 } while (0)
234
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
236 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
237 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
238
239 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
241 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
242 btrfs_raid_array[i].raid_name);
243#undef DESCRIBE_FLAG
244
245 if (flags) {
246 ret = snprintf(bp, size_bp, "0x%llx|", flags);
247 size_bp -= ret;
248 }
249
250 if (size_bp < size_buf)
251 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
252
253 /*
254 * The text is trimmed, it's up to the caller to provide sufficiently
255 * large buffer
256 */
257out_overflow:;
258}
259
260static int init_first_rw_device(struct btrfs_trans_handle *trans);
261static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
262static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
263
264/*
265 * Device locking
266 * ==============
267 *
268 * There are several mutexes that protect manipulation of devices and low-level
269 * structures like chunks but not block groups, extents or files
270 *
271 * uuid_mutex (global lock)
272 * ------------------------
273 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
274 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
275 * device) or requested by the device= mount option
276 *
277 * the mutex can be very coarse and can cover long-running operations
278 *
279 * protects: updates to fs_devices counters like missing devices, rw devices,
280 * seeding, structure cloning, opening/closing devices at mount/umount time
281 *
282 * global::fs_devs - add, remove, updates to the global list
283 *
284 * does not protect: manipulation of the fs_devices::devices list in general
285 * but in mount context it could be used to exclude list modifications by eg.
286 * scan ioctl
287 *
288 * btrfs_device::name - renames (write side), read is RCU
289 *
290 * fs_devices::device_list_mutex (per-fs, with RCU)
291 * ------------------------------------------------
292 * protects updates to fs_devices::devices, ie. adding and deleting
293 *
294 * simple list traversal with read-only actions can be done with RCU protection
295 *
296 * may be used to exclude some operations from running concurrently without any
297 * modifications to the list (see write_all_supers)
298 *
299 * Is not required at mount and close times, because our device list is
300 * protected by the uuid_mutex at that point.
301 *
302 * balance_mutex
303 * -------------
304 * protects balance structures (status, state) and context accessed from
305 * several places (internally, ioctl)
306 *
307 * chunk_mutex
308 * -----------
309 * protects chunks, adding or removing during allocation, trim or when a new
310 * device is added/removed. Additionally it also protects post_commit_list of
311 * individual devices, since they can be added to the transaction's
312 * post_commit_list only with chunk_mutex held.
313 *
314 * cleaner_mutex
315 * -------------
316 * a big lock that is held by the cleaner thread and prevents running subvolume
317 * cleaning together with relocation or delayed iputs
318 *
319 *
320 * Lock nesting
321 * ============
322 *
323 * uuid_mutex
324 * device_list_mutex
325 * chunk_mutex
326 * balance_mutex
327 *
328 *
329 * Exclusive operations
330 * ====================
331 *
332 * Maintains the exclusivity of the following operations that apply to the
333 * whole filesystem and cannot run in parallel.
334 *
335 * - Balance (*)
336 * - Device add
337 * - Device remove
338 * - Device replace (*)
339 * - Resize
340 *
341 * The device operations (as above) can be in one of the following states:
342 *
343 * - Running state
344 * - Paused state
345 * - Completed state
346 *
347 * Only device operations marked with (*) can go into the Paused state for the
348 * following reasons:
349 *
350 * - ioctl (only Balance can be Paused through ioctl)
351 * - filesystem remounted as read-only
352 * - filesystem unmounted and mounted as read-only
353 * - system power-cycle and filesystem mounted as read-only
354 * - filesystem or device errors leading to forced read-only
355 *
356 * The status of exclusive operation is set and cleared atomically.
357 * During the course of Paused state, fs_info::exclusive_operation remains set.
358 * A device operation in Paused or Running state can be canceled or resumed
359 * either by ioctl (Balance only) or when remounted as read-write.
360 * The exclusive status is cleared when the device operation is canceled or
361 * completed.
362 */
363
364DEFINE_MUTEX(uuid_mutex);
365static LIST_HEAD(fs_uuids);
366struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
367{
368 return &fs_uuids;
369}
370
371/*
372 * Allocate new btrfs_fs_devices structure identified by a fsid.
373 *
374 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
375 * fs_devices::metadata_fsid
376 *
377 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
378 * The returned struct is not linked onto any lists and can be destroyed with
379 * kfree() right away.
380 */
381static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
382{
383 struct btrfs_fs_devices *fs_devs;
384
385 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
386 if (!fs_devs)
387 return ERR_PTR(-ENOMEM);
388
389 mutex_init(&fs_devs->device_list_mutex);
390
391 INIT_LIST_HEAD(&fs_devs->devices);
392 INIT_LIST_HEAD(&fs_devs->alloc_list);
393 INIT_LIST_HEAD(&fs_devs->fs_list);
394 INIT_LIST_HEAD(&fs_devs->seed_list);
395
396 if (fsid) {
397 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 }
400
401 return fs_devs;
402}
403
404static void btrfs_free_device(struct btrfs_device *device)
405{
406 WARN_ON(!list_empty(&device->post_commit_list));
407 rcu_string_free(device->name);
408 extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
410 kfree(device);
411}
412
413static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414{
415 struct btrfs_device *device;
416
417 WARN_ON(fs_devices->opened);
418 while (!list_empty(&fs_devices->devices)) {
419 device = list_entry(fs_devices->devices.next,
420 struct btrfs_device, dev_list);
421 list_del(&device->dev_list);
422 btrfs_free_device(device);
423 }
424 kfree(fs_devices);
425}
426
427void __exit btrfs_cleanup_fs_uuids(void)
428{
429 struct btrfs_fs_devices *fs_devices;
430
431 while (!list_empty(&fs_uuids)) {
432 fs_devices = list_entry(fs_uuids.next,
433 struct btrfs_fs_devices, fs_list);
434 list_del(&fs_devices->fs_list);
435 free_fs_devices(fs_devices);
436 }
437}
438
439static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
440 const u8 *fsid, const u8 *metadata_fsid)
441{
442 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
443 return false;
444
445 if (!metadata_fsid)
446 return true;
447
448 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
449 return false;
450
451 return true;
452}
453
454static noinline struct btrfs_fs_devices *find_fsid(
455 const u8 *fsid, const u8 *metadata_fsid)
456{
457 struct btrfs_fs_devices *fs_devices;
458
459 ASSERT(fsid);
460
461 /* Handle non-split brain cases */
462 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
463 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
464 return fs_devices;
465 }
466 return NULL;
467}
468
469static int
470btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
471 int flush, struct bdev_handle **bdev_handle,
472 struct btrfs_super_block **disk_super)
473{
474 struct block_device *bdev;
475 int ret;
476
477 *bdev_handle = bdev_open_by_path(device_path, flags, holder, NULL);
478
479 if (IS_ERR(*bdev_handle)) {
480 ret = PTR_ERR(*bdev_handle);
481 goto error;
482 }
483 bdev = (*bdev_handle)->bdev;
484
485 if (flush)
486 sync_blockdev(bdev);
487 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
488 if (ret) {
489 bdev_release(*bdev_handle);
490 goto error;
491 }
492 invalidate_bdev(bdev);
493 *disk_super = btrfs_read_dev_super(bdev);
494 if (IS_ERR(*disk_super)) {
495 ret = PTR_ERR(*disk_super);
496 bdev_release(*bdev_handle);
497 goto error;
498 }
499
500 return 0;
501
502error:
503 *bdev_handle = NULL;
504 return ret;
505}
506
507/*
508 * Search and remove all stale devices (which are not mounted). When both
509 * inputs are NULL, it will search and release all stale devices.
510 *
511 * @devt: Optional. When provided will it release all unmounted devices
512 * matching this devt only.
513 * @skip_device: Optional. Will skip this device when searching for the stale
514 * devices.
515 *
516 * Return: 0 for success or if @devt is 0.
517 * -EBUSY if @devt is a mounted device.
518 * -ENOENT if @devt does not match any device in the list.
519 */
520static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
521{
522 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
523 struct btrfs_device *device, *tmp_device;
524 int ret;
525 bool freed = false;
526
527 lockdep_assert_held(&uuid_mutex);
528
529 /* Return good status if there is no instance of devt. */
530 ret = 0;
531 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
532
533 mutex_lock(&fs_devices->device_list_mutex);
534 list_for_each_entry_safe(device, tmp_device,
535 &fs_devices->devices, dev_list) {
536 if (skip_device && skip_device == device)
537 continue;
538 if (devt && devt != device->devt)
539 continue;
540 if (fs_devices->opened) {
541 if (devt)
542 ret = -EBUSY;
543 break;
544 }
545
546 /* delete the stale device */
547 fs_devices->num_devices--;
548 list_del(&device->dev_list);
549 btrfs_free_device(device);
550
551 freed = true;
552 }
553 mutex_unlock(&fs_devices->device_list_mutex);
554
555 if (fs_devices->num_devices == 0) {
556 btrfs_sysfs_remove_fsid(fs_devices);
557 list_del(&fs_devices->fs_list);
558 free_fs_devices(fs_devices);
559 }
560 }
561
562 /* If there is at least one freed device return 0. */
563 if (freed)
564 return 0;
565
566 return ret;
567}
568
569static struct btrfs_fs_devices *find_fsid_by_device(
570 struct btrfs_super_block *disk_super,
571 dev_t devt, bool *same_fsid_diff_dev)
572{
573 struct btrfs_fs_devices *fsid_fs_devices;
574 struct btrfs_fs_devices *devt_fs_devices;
575 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
576 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
577 bool found_by_devt = false;
578
579 /* Find the fs_device by the usual method, if found use it. */
580 fsid_fs_devices = find_fsid(disk_super->fsid,
581 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
582
583 /* The temp_fsid feature is supported only with single device filesystem. */
584 if (btrfs_super_num_devices(disk_super) != 1)
585 return fsid_fs_devices;
586
587 /*
588 * A seed device is an integral component of the sprout device, which
589 * functions as a multi-device filesystem. So, temp-fsid feature is
590 * not supported.
591 */
592 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
593 return fsid_fs_devices;
594
595 /* Try to find a fs_devices by matching devt. */
596 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
597 struct btrfs_device *device;
598
599 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
600 if (device->devt == devt) {
601 found_by_devt = true;
602 break;
603 }
604 }
605 if (found_by_devt)
606 break;
607 }
608
609 if (found_by_devt) {
610 /* Existing device. */
611 if (fsid_fs_devices == NULL) {
612 if (devt_fs_devices->opened == 0) {
613 /* Stale device. */
614 return NULL;
615 } else {
616 /* temp_fsid is mounting a subvol. */
617 return devt_fs_devices;
618 }
619 } else {
620 /* Regular or temp_fsid device mounting a subvol. */
621 return devt_fs_devices;
622 }
623 } else {
624 /* New device. */
625 if (fsid_fs_devices == NULL) {
626 return NULL;
627 } else {
628 /* sb::fsid is already used create a new temp_fsid. */
629 *same_fsid_diff_dev = true;
630 return NULL;
631 }
632 }
633
634 /* Not reached. */
635}
636
637/*
638 * This is only used on mount, and we are protected from competing things
639 * messing with our fs_devices by the uuid_mutex, thus we do not need the
640 * fs_devices->device_list_mutex here.
641 */
642static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
643 struct btrfs_device *device, blk_mode_t flags,
644 void *holder)
645{
646 struct bdev_handle *bdev_handle;
647 struct btrfs_super_block *disk_super;
648 u64 devid;
649 int ret;
650
651 if (device->bdev)
652 return -EINVAL;
653 if (!device->name)
654 return -EINVAL;
655
656 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
657 &bdev_handle, &disk_super);
658 if (ret)
659 return ret;
660
661 devid = btrfs_stack_device_id(&disk_super->dev_item);
662 if (devid != device->devid)
663 goto error_free_page;
664
665 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
666 goto error_free_page;
667
668 device->generation = btrfs_super_generation(disk_super);
669
670 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
671 if (btrfs_super_incompat_flags(disk_super) &
672 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
673 pr_err(
674 "BTRFS: Invalid seeding and uuid-changed device detected\n");
675 goto error_free_page;
676 }
677
678 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
679 fs_devices->seeding = true;
680 } else {
681 if (bdev_read_only(bdev_handle->bdev))
682 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 else
684 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 }
686
687 if (!bdev_nonrot(bdev_handle->bdev))
688 fs_devices->rotating = true;
689
690 if (bdev_max_discard_sectors(bdev_handle->bdev))
691 fs_devices->discardable = true;
692
693 device->bdev_handle = bdev_handle;
694 device->bdev = bdev_handle->bdev;
695 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
696
697 fs_devices->open_devices++;
698 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
699 device->devid != BTRFS_DEV_REPLACE_DEVID) {
700 fs_devices->rw_devices++;
701 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
702 }
703 btrfs_release_disk_super(disk_super);
704
705 return 0;
706
707error_free_page:
708 btrfs_release_disk_super(disk_super);
709 bdev_release(bdev_handle);
710
711 return -EINVAL;
712}
713
714u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
715{
716 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
717 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
718
719 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
720}
721
722/*
723 * Add new device to list of registered devices
724 *
725 * Returns:
726 * device pointer which was just added or updated when successful
727 * error pointer when failed
728 */
729static noinline struct btrfs_device *device_list_add(const char *path,
730 struct btrfs_super_block *disk_super,
731 bool *new_device_added)
732{
733 struct btrfs_device *device;
734 struct btrfs_fs_devices *fs_devices = NULL;
735 struct rcu_string *name;
736 u64 found_transid = btrfs_super_generation(disk_super);
737 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
738 dev_t path_devt;
739 int error;
740 bool same_fsid_diff_dev = false;
741 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
742 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
743
744 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
745 btrfs_err(NULL,
746"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
747 path);
748 return ERR_PTR(-EAGAIN);
749 }
750
751 error = lookup_bdev(path, &path_devt);
752 if (error) {
753 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
754 path, error);
755 return ERR_PTR(error);
756 }
757
758 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
759
760 if (!fs_devices) {
761 fs_devices = alloc_fs_devices(disk_super->fsid);
762 if (IS_ERR(fs_devices))
763 return ERR_CAST(fs_devices);
764
765 if (has_metadata_uuid)
766 memcpy(fs_devices->metadata_uuid,
767 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
768
769 if (same_fsid_diff_dev) {
770 generate_random_uuid(fs_devices->fsid);
771 fs_devices->temp_fsid = true;
772 pr_info("BTRFS: device %s using temp-fsid %pU\n",
773 path, fs_devices->fsid);
774 }
775
776 mutex_lock(&fs_devices->device_list_mutex);
777 list_add(&fs_devices->fs_list, &fs_uuids);
778
779 device = NULL;
780 } else {
781 struct btrfs_dev_lookup_args args = {
782 .devid = devid,
783 .uuid = disk_super->dev_item.uuid,
784 };
785
786 mutex_lock(&fs_devices->device_list_mutex);
787 device = btrfs_find_device(fs_devices, &args);
788
789 if (found_transid > fs_devices->latest_generation) {
790 memcpy(fs_devices->fsid, disk_super->fsid,
791 BTRFS_FSID_SIZE);
792 memcpy(fs_devices->metadata_uuid,
793 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
794 }
795 }
796
797 if (!device) {
798 unsigned int nofs_flag;
799
800 if (fs_devices->opened) {
801 btrfs_err(NULL,
802"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
803 path, fs_devices->fsid, current->comm,
804 task_pid_nr(current));
805 mutex_unlock(&fs_devices->device_list_mutex);
806 return ERR_PTR(-EBUSY);
807 }
808
809 nofs_flag = memalloc_nofs_save();
810 device = btrfs_alloc_device(NULL, &devid,
811 disk_super->dev_item.uuid, path);
812 memalloc_nofs_restore(nofs_flag);
813 if (IS_ERR(device)) {
814 mutex_unlock(&fs_devices->device_list_mutex);
815 /* we can safely leave the fs_devices entry around */
816 return device;
817 }
818
819 device->devt = path_devt;
820
821 list_add_rcu(&device->dev_list, &fs_devices->devices);
822 fs_devices->num_devices++;
823
824 device->fs_devices = fs_devices;
825 *new_device_added = true;
826
827 if (disk_super->label[0])
828 pr_info(
829 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
830 disk_super->label, devid, found_transid, path,
831 current->comm, task_pid_nr(current));
832 else
833 pr_info(
834 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
835 disk_super->fsid, devid, found_transid, path,
836 current->comm, task_pid_nr(current));
837
838 } else if (!device->name || strcmp(device->name->str, path)) {
839 /*
840 * When FS is already mounted.
841 * 1. If you are here and if the device->name is NULL that
842 * means this device was missing at time of FS mount.
843 * 2. If you are here and if the device->name is different
844 * from 'path' that means either
845 * a. The same device disappeared and reappeared with
846 * different name. or
847 * b. The missing-disk-which-was-replaced, has
848 * reappeared now.
849 *
850 * We must allow 1 and 2a above. But 2b would be a spurious
851 * and unintentional.
852 *
853 * Further in case of 1 and 2a above, the disk at 'path'
854 * would have missed some transaction when it was away and
855 * in case of 2a the stale bdev has to be updated as well.
856 * 2b must not be allowed at all time.
857 */
858
859 /*
860 * For now, we do allow update to btrfs_fs_device through the
861 * btrfs dev scan cli after FS has been mounted. We're still
862 * tracking a problem where systems fail mount by subvolume id
863 * when we reject replacement on a mounted FS.
864 */
865 if (!fs_devices->opened && found_transid < device->generation) {
866 /*
867 * That is if the FS is _not_ mounted and if you
868 * are here, that means there is more than one
869 * disk with same uuid and devid.We keep the one
870 * with larger generation number or the last-in if
871 * generation are equal.
872 */
873 mutex_unlock(&fs_devices->device_list_mutex);
874 btrfs_err(NULL,
875"device %s already registered with a higher generation, found %llu expect %llu",
876 path, found_transid, device->generation);
877 return ERR_PTR(-EEXIST);
878 }
879
880 /*
881 * We are going to replace the device path for a given devid,
882 * make sure it's the same device if the device is mounted
883 *
884 * NOTE: the device->fs_info may not be reliable here so pass
885 * in a NULL to message helpers instead. This avoids a possible
886 * use-after-free when the fs_info and fs_info->sb are already
887 * torn down.
888 */
889 if (device->bdev) {
890 if (device->devt != path_devt) {
891 mutex_unlock(&fs_devices->device_list_mutex);
892 btrfs_warn_in_rcu(NULL,
893 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
894 path, devid, found_transid,
895 current->comm,
896 task_pid_nr(current));
897 return ERR_PTR(-EEXIST);
898 }
899 btrfs_info_in_rcu(NULL,
900 "devid %llu device path %s changed to %s scanned by %s (%d)",
901 devid, btrfs_dev_name(device),
902 path, current->comm,
903 task_pid_nr(current));
904 }
905
906 name = rcu_string_strdup(path, GFP_NOFS);
907 if (!name) {
908 mutex_unlock(&fs_devices->device_list_mutex);
909 return ERR_PTR(-ENOMEM);
910 }
911 rcu_string_free(device->name);
912 rcu_assign_pointer(device->name, name);
913 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
914 fs_devices->missing_devices--;
915 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
916 }
917 device->devt = path_devt;
918 }
919
920 /*
921 * Unmount does not free the btrfs_device struct but would zero
922 * generation along with most of the other members. So just update
923 * it back. We need it to pick the disk with largest generation
924 * (as above).
925 */
926 if (!fs_devices->opened) {
927 device->generation = found_transid;
928 fs_devices->latest_generation = max_t(u64, found_transid,
929 fs_devices->latest_generation);
930 }
931
932 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
933
934 mutex_unlock(&fs_devices->device_list_mutex);
935 return device;
936}
937
938static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
939{
940 struct btrfs_fs_devices *fs_devices;
941 struct btrfs_device *device;
942 struct btrfs_device *orig_dev;
943 int ret = 0;
944
945 lockdep_assert_held(&uuid_mutex);
946
947 fs_devices = alloc_fs_devices(orig->fsid);
948 if (IS_ERR(fs_devices))
949 return fs_devices;
950
951 fs_devices->total_devices = orig->total_devices;
952
953 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
954 const char *dev_path = NULL;
955
956 /*
957 * This is ok to do without RCU read locked because we hold the
958 * uuid mutex so nothing we touch in here is going to disappear.
959 */
960 if (orig_dev->name)
961 dev_path = orig_dev->name->str;
962
963 device = btrfs_alloc_device(NULL, &orig_dev->devid,
964 orig_dev->uuid, dev_path);
965 if (IS_ERR(device)) {
966 ret = PTR_ERR(device);
967 goto error;
968 }
969
970 if (orig_dev->zone_info) {
971 struct btrfs_zoned_device_info *zone_info;
972
973 zone_info = btrfs_clone_dev_zone_info(orig_dev);
974 if (!zone_info) {
975 btrfs_free_device(device);
976 ret = -ENOMEM;
977 goto error;
978 }
979 device->zone_info = zone_info;
980 }
981
982 list_add(&device->dev_list, &fs_devices->devices);
983 device->fs_devices = fs_devices;
984 fs_devices->num_devices++;
985 }
986 return fs_devices;
987error:
988 free_fs_devices(fs_devices);
989 return ERR_PTR(ret);
990}
991
992static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
993 struct btrfs_device **latest_dev)
994{
995 struct btrfs_device *device, *next;
996
997 /* This is the initialized path, it is safe to release the devices. */
998 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
999 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1000 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1001 &device->dev_state) &&
1002 !test_bit(BTRFS_DEV_STATE_MISSING,
1003 &device->dev_state) &&
1004 (!*latest_dev ||
1005 device->generation > (*latest_dev)->generation)) {
1006 *latest_dev = device;
1007 }
1008 continue;
1009 }
1010
1011 /*
1012 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1013 * in btrfs_init_dev_replace() so just continue.
1014 */
1015 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1016 continue;
1017
1018 if (device->bdev_handle) {
1019 bdev_release(device->bdev_handle);
1020 device->bdev = NULL;
1021 device->bdev_handle = NULL;
1022 fs_devices->open_devices--;
1023 }
1024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1025 list_del_init(&device->dev_alloc_list);
1026 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1027 fs_devices->rw_devices--;
1028 }
1029 list_del_init(&device->dev_list);
1030 fs_devices->num_devices--;
1031 btrfs_free_device(device);
1032 }
1033
1034}
1035
1036/*
1037 * After we have read the system tree and know devids belonging to this
1038 * filesystem, remove the device which does not belong there.
1039 */
1040void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1041{
1042 struct btrfs_device *latest_dev = NULL;
1043 struct btrfs_fs_devices *seed_dev;
1044
1045 mutex_lock(&uuid_mutex);
1046 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1047
1048 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1049 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1050
1051 fs_devices->latest_dev = latest_dev;
1052
1053 mutex_unlock(&uuid_mutex);
1054}
1055
1056static void btrfs_close_bdev(struct btrfs_device *device)
1057{
1058 if (!device->bdev)
1059 return;
1060
1061 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1062 sync_blockdev(device->bdev);
1063 invalidate_bdev(device->bdev);
1064 }
1065
1066 bdev_release(device->bdev_handle);
1067}
1068
1069static void btrfs_close_one_device(struct btrfs_device *device)
1070{
1071 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1072
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1074 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1075 list_del_init(&device->dev_alloc_list);
1076 fs_devices->rw_devices--;
1077 }
1078
1079 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1080 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1081
1082 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1083 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1084 fs_devices->missing_devices--;
1085 }
1086
1087 btrfs_close_bdev(device);
1088 if (device->bdev) {
1089 fs_devices->open_devices--;
1090 device->bdev = NULL;
1091 }
1092 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1093 btrfs_destroy_dev_zone_info(device);
1094
1095 device->fs_info = NULL;
1096 atomic_set(&device->dev_stats_ccnt, 0);
1097 extent_io_tree_release(&device->alloc_state);
1098
1099 /*
1100 * Reset the flush error record. We might have a transient flush error
1101 * in this mount, and if so we aborted the current transaction and set
1102 * the fs to an error state, guaranteeing no super blocks can be further
1103 * committed. However that error might be transient and if we unmount the
1104 * filesystem and mount it again, we should allow the mount to succeed
1105 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1106 * filesystem again we still get flush errors, then we will again abort
1107 * any transaction and set the error state, guaranteeing no commits of
1108 * unsafe super blocks.
1109 */
1110 device->last_flush_error = 0;
1111
1112 /* Verify the device is back in a pristine state */
1113 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1114 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1115 WARN_ON(!list_empty(&device->dev_alloc_list));
1116 WARN_ON(!list_empty(&device->post_commit_list));
1117}
1118
1119static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1120{
1121 struct btrfs_device *device, *tmp;
1122
1123 lockdep_assert_held(&uuid_mutex);
1124
1125 if (--fs_devices->opened > 0)
1126 return;
1127
1128 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1129 btrfs_close_one_device(device);
1130
1131 WARN_ON(fs_devices->open_devices);
1132 WARN_ON(fs_devices->rw_devices);
1133 fs_devices->opened = 0;
1134 fs_devices->seeding = false;
1135 fs_devices->fs_info = NULL;
1136}
1137
1138void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1139{
1140 LIST_HEAD(list);
1141 struct btrfs_fs_devices *tmp;
1142
1143 mutex_lock(&uuid_mutex);
1144 close_fs_devices(fs_devices);
1145 if (!fs_devices->opened) {
1146 list_splice_init(&fs_devices->seed_list, &list);
1147
1148 /*
1149 * If the struct btrfs_fs_devices is not assembled with any
1150 * other device, it can be re-initialized during the next mount
1151 * without the needing device-scan step. Therefore, it can be
1152 * fully freed.
1153 */
1154 if (fs_devices->num_devices == 1) {
1155 list_del(&fs_devices->fs_list);
1156 free_fs_devices(fs_devices);
1157 }
1158 }
1159
1160
1161 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1162 close_fs_devices(fs_devices);
1163 list_del(&fs_devices->seed_list);
1164 free_fs_devices(fs_devices);
1165 }
1166 mutex_unlock(&uuid_mutex);
1167}
1168
1169static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1170 blk_mode_t flags, void *holder)
1171{
1172 struct btrfs_device *device;
1173 struct btrfs_device *latest_dev = NULL;
1174 struct btrfs_device *tmp_device;
1175
1176 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1177 dev_list) {
1178 int ret;
1179
1180 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1181 if (ret == 0 &&
1182 (!latest_dev || device->generation > latest_dev->generation)) {
1183 latest_dev = device;
1184 } else if (ret == -ENODATA) {
1185 fs_devices->num_devices--;
1186 list_del(&device->dev_list);
1187 btrfs_free_device(device);
1188 }
1189 }
1190 if (fs_devices->open_devices == 0)
1191 return -EINVAL;
1192
1193 fs_devices->opened = 1;
1194 fs_devices->latest_dev = latest_dev;
1195 fs_devices->total_rw_bytes = 0;
1196 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1197 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1198
1199 return 0;
1200}
1201
1202static int devid_cmp(void *priv, const struct list_head *a,
1203 const struct list_head *b)
1204{
1205 const struct btrfs_device *dev1, *dev2;
1206
1207 dev1 = list_entry(a, struct btrfs_device, dev_list);
1208 dev2 = list_entry(b, struct btrfs_device, dev_list);
1209
1210 if (dev1->devid < dev2->devid)
1211 return -1;
1212 else if (dev1->devid > dev2->devid)
1213 return 1;
1214 return 0;
1215}
1216
1217int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1218 blk_mode_t flags, void *holder)
1219{
1220 int ret;
1221
1222 lockdep_assert_held(&uuid_mutex);
1223 /*
1224 * The device_list_mutex cannot be taken here in case opening the
1225 * underlying device takes further locks like open_mutex.
1226 *
1227 * We also don't need the lock here as this is called during mount and
1228 * exclusion is provided by uuid_mutex
1229 */
1230
1231 if (fs_devices->opened) {
1232 fs_devices->opened++;
1233 ret = 0;
1234 } else {
1235 list_sort(NULL, &fs_devices->devices, devid_cmp);
1236 ret = open_fs_devices(fs_devices, flags, holder);
1237 }
1238
1239 return ret;
1240}
1241
1242void btrfs_release_disk_super(struct btrfs_super_block *super)
1243{
1244 struct page *page = virt_to_page(super);
1245
1246 put_page(page);
1247}
1248
1249static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1250 u64 bytenr, u64 bytenr_orig)
1251{
1252 struct btrfs_super_block *disk_super;
1253 struct page *page;
1254 void *p;
1255 pgoff_t index;
1256
1257 /* make sure our super fits in the device */
1258 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1259 return ERR_PTR(-EINVAL);
1260
1261 /* make sure our super fits in the page */
1262 if (sizeof(*disk_super) > PAGE_SIZE)
1263 return ERR_PTR(-EINVAL);
1264
1265 /* make sure our super doesn't straddle pages on disk */
1266 index = bytenr >> PAGE_SHIFT;
1267 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1268 return ERR_PTR(-EINVAL);
1269
1270 /* pull in the page with our super */
1271 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1272
1273 if (IS_ERR(page))
1274 return ERR_CAST(page);
1275
1276 p = page_address(page);
1277
1278 /* align our pointer to the offset of the super block */
1279 disk_super = p + offset_in_page(bytenr);
1280
1281 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1282 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1283 btrfs_release_disk_super(p);
1284 return ERR_PTR(-EINVAL);
1285 }
1286
1287 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1288 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1289
1290 return disk_super;
1291}
1292
1293int btrfs_forget_devices(dev_t devt)
1294{
1295 int ret;
1296
1297 mutex_lock(&uuid_mutex);
1298 ret = btrfs_free_stale_devices(devt, NULL);
1299 mutex_unlock(&uuid_mutex);
1300
1301 return ret;
1302}
1303
1304/*
1305 * Look for a btrfs signature on a device. This may be called out of the mount path
1306 * and we are not allowed to call set_blocksize during the scan. The superblock
1307 * is read via pagecache.
1308 *
1309 * With @mount_arg_dev it's a scan during mount time that will always register
1310 * the device or return an error. Multi-device and seeding devices are registered
1311 * in both cases.
1312 */
1313struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1314 bool mount_arg_dev)
1315{
1316 struct btrfs_super_block *disk_super;
1317 bool new_device_added = false;
1318 struct btrfs_device *device = NULL;
1319 struct bdev_handle *bdev_handle;
1320 u64 bytenr, bytenr_orig;
1321 int ret;
1322
1323 lockdep_assert_held(&uuid_mutex);
1324
1325 /*
1326 * we would like to check all the supers, but that would make
1327 * a btrfs mount succeed after a mkfs from a different FS.
1328 * So, we need to add a special mount option to scan for
1329 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330 */
1331
1332 /*
1333 * Avoid an exclusive open here, as the systemd-udev may initiate the
1334 * device scan which may race with the user's mount or mkfs command,
1335 * resulting in failure.
1336 * Since the device scan is solely for reading purposes, there is no
1337 * need for an exclusive open. Additionally, the devices are read again
1338 * during the mount process. It is ok to get some inconsistent
1339 * values temporarily, as the device paths of the fsid are the only
1340 * required information for assembling the volume.
1341 */
1342 bdev_handle = bdev_open_by_path(path, flags, NULL, NULL);
1343 if (IS_ERR(bdev_handle))
1344 return ERR_CAST(bdev_handle);
1345
1346 bytenr_orig = btrfs_sb_offset(0);
1347 ret = btrfs_sb_log_location_bdev(bdev_handle->bdev, 0, READ, &bytenr);
1348 if (ret) {
1349 device = ERR_PTR(ret);
1350 goto error_bdev_put;
1351 }
1352
1353 disk_super = btrfs_read_disk_super(bdev_handle->bdev, bytenr,
1354 bytenr_orig);
1355 if (IS_ERR(disk_super)) {
1356 device = ERR_CAST(disk_super);
1357 goto error_bdev_put;
1358 }
1359
1360 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1361 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1362 dev_t devt;
1363
1364 ret = lookup_bdev(path, &devt);
1365 if (ret)
1366 btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1367 path, ret);
1368 else
1369 btrfs_free_stale_devices(devt, NULL);
1370
1371 pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1372 device = NULL;
1373 goto free_disk_super;
1374 }
1375
1376 device = device_list_add(path, disk_super, &new_device_added);
1377 if (!IS_ERR(device) && new_device_added)
1378 btrfs_free_stale_devices(device->devt, device);
1379
1380free_disk_super:
1381 btrfs_release_disk_super(disk_super);
1382
1383error_bdev_put:
1384 bdev_release(bdev_handle);
1385
1386 return device;
1387}
1388
1389/*
1390 * Try to find a chunk that intersects [start, start + len] range and when one
1391 * such is found, record the end of it in *start
1392 */
1393static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1394 u64 len)
1395{
1396 u64 physical_start, physical_end;
1397
1398 lockdep_assert_held(&device->fs_info->chunk_mutex);
1399
1400 if (find_first_extent_bit(&device->alloc_state, *start,
1401 &physical_start, &physical_end,
1402 CHUNK_ALLOCATED, NULL)) {
1403
1404 if (in_range(physical_start, *start, len) ||
1405 in_range(*start, physical_start,
1406 physical_end - physical_start)) {
1407 *start = physical_end + 1;
1408 return true;
1409 }
1410 }
1411 return false;
1412}
1413
1414static u64 dev_extent_search_start(struct btrfs_device *device)
1415{
1416 switch (device->fs_devices->chunk_alloc_policy) {
1417 case BTRFS_CHUNK_ALLOC_REGULAR:
1418 return BTRFS_DEVICE_RANGE_RESERVED;
1419 case BTRFS_CHUNK_ALLOC_ZONED:
1420 /*
1421 * We don't care about the starting region like regular
1422 * allocator, because we anyway use/reserve the first two zones
1423 * for superblock logging.
1424 */
1425 return 0;
1426 default:
1427 BUG();
1428 }
1429}
1430
1431static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1432 u64 *hole_start, u64 *hole_size,
1433 u64 num_bytes)
1434{
1435 u64 zone_size = device->zone_info->zone_size;
1436 u64 pos;
1437 int ret;
1438 bool changed = false;
1439
1440 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1441
1442 while (*hole_size > 0) {
1443 pos = btrfs_find_allocatable_zones(device, *hole_start,
1444 *hole_start + *hole_size,
1445 num_bytes);
1446 if (pos != *hole_start) {
1447 *hole_size = *hole_start + *hole_size - pos;
1448 *hole_start = pos;
1449 changed = true;
1450 if (*hole_size < num_bytes)
1451 break;
1452 }
1453
1454 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1455
1456 /* Range is ensured to be empty */
1457 if (!ret)
1458 return changed;
1459
1460 /* Given hole range was invalid (outside of device) */
1461 if (ret == -ERANGE) {
1462 *hole_start += *hole_size;
1463 *hole_size = 0;
1464 return true;
1465 }
1466
1467 *hole_start += zone_size;
1468 *hole_size -= zone_size;
1469 changed = true;
1470 }
1471
1472 return changed;
1473}
1474
1475/*
1476 * Check if specified hole is suitable for allocation.
1477 *
1478 * @device: the device which we have the hole
1479 * @hole_start: starting position of the hole
1480 * @hole_size: the size of the hole
1481 * @num_bytes: the size of the free space that we need
1482 *
1483 * This function may modify @hole_start and @hole_size to reflect the suitable
1484 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1485 */
1486static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1487 u64 *hole_size, u64 num_bytes)
1488{
1489 bool changed = false;
1490 u64 hole_end = *hole_start + *hole_size;
1491
1492 for (;;) {
1493 /*
1494 * Check before we set max_hole_start, otherwise we could end up
1495 * sending back this offset anyway.
1496 */
1497 if (contains_pending_extent(device, hole_start, *hole_size)) {
1498 if (hole_end >= *hole_start)
1499 *hole_size = hole_end - *hole_start;
1500 else
1501 *hole_size = 0;
1502 changed = true;
1503 }
1504
1505 switch (device->fs_devices->chunk_alloc_policy) {
1506 case BTRFS_CHUNK_ALLOC_REGULAR:
1507 /* No extra check */
1508 break;
1509 case BTRFS_CHUNK_ALLOC_ZONED:
1510 if (dev_extent_hole_check_zoned(device, hole_start,
1511 hole_size, num_bytes)) {
1512 changed = true;
1513 /*
1514 * The changed hole can contain pending extent.
1515 * Loop again to check that.
1516 */
1517 continue;
1518 }
1519 break;
1520 default:
1521 BUG();
1522 }
1523
1524 break;
1525 }
1526
1527 return changed;
1528}
1529
1530/*
1531 * Find free space in the specified device.
1532 *
1533 * @device: the device which we search the free space in
1534 * @num_bytes: the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start: store the start of the free space.
1537 * @len: the size of the free space. that we find, or the size
1538 * of the max free space if we don't find suitable free space
1539 *
1540 * This does a pretty simple search, the expectation is that it is called very
1541 * infrequently and that a given device has a small number of extents.
1542 *
1543 * @start is used to store the start of the free space if we find. But if we
1544 * don't find suitable free space, it will be used to store the start position
1545 * of the max free space.
1546 *
1547 * @len is used to store the size of the free space that we find.
1548 * But if we don't find suitable free space, it is used to store the size of
1549 * the max free space.
1550 *
1551 * NOTE: This function will search *commit* root of device tree, and does extra
1552 * check to ensure dev extents are not double allocated.
1553 * This makes the function safe to allocate dev extents but may not report
1554 * correct usable device space, as device extent freed in current transaction
1555 * is not reported as available.
1556 */
1557static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1558 u64 *start, u64 *len)
1559{
1560 struct btrfs_fs_info *fs_info = device->fs_info;
1561 struct btrfs_root *root = fs_info->dev_root;
1562 struct btrfs_key key;
1563 struct btrfs_dev_extent *dev_extent;
1564 struct btrfs_path *path;
1565 u64 search_start;
1566 u64 hole_size;
1567 u64 max_hole_start;
1568 u64 max_hole_size = 0;
1569 u64 extent_end;
1570 u64 search_end = device->total_bytes;
1571 int ret;
1572 int slot;
1573 struct extent_buffer *l;
1574
1575 search_start = dev_extent_search_start(device);
1576 max_hole_start = search_start;
1577
1578 WARN_ON(device->zone_info &&
1579 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1580
1581 path = btrfs_alloc_path();
1582 if (!path) {
1583 ret = -ENOMEM;
1584 goto out;
1585 }
1586again:
1587 if (search_start >= search_end ||
1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589 ret = -ENOSPC;
1590 goto out;
1591 }
1592
1593 path->reada = READA_FORWARD;
1594 path->search_commit_root = 1;
1595 path->skip_locking = 1;
1596
1597 key.objectid = device->devid;
1598 key.offset = search_start;
1599 key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601 ret = btrfs_search_backwards(root, &key, path);
1602 if (ret < 0)
1603 goto out;
1604
1605 while (search_start < search_end) {
1606 l = path->nodes[0];
1607 slot = path->slots[0];
1608 if (slot >= btrfs_header_nritems(l)) {
1609 ret = btrfs_next_leaf(root, path);
1610 if (ret == 0)
1611 continue;
1612 if (ret < 0)
1613 goto out;
1614
1615 break;
1616 }
1617 btrfs_item_key_to_cpu(l, &key, slot);
1618
1619 if (key.objectid < device->devid)
1620 goto next;
1621
1622 if (key.objectid > device->devid)
1623 break;
1624
1625 if (key.type != BTRFS_DEV_EXTENT_KEY)
1626 goto next;
1627
1628 if (key.offset > search_end)
1629 break;
1630
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
1633 dev_extent_hole_check(device, &search_start, &hole_size,
1634 num_bytes);
1635
1636 if (hole_size > max_hole_size) {
1637 max_hole_start = search_start;
1638 max_hole_size = hole_size;
1639 }
1640
1641 /*
1642 * If this free space is greater than which we need,
1643 * it must be the max free space that we have found
1644 * until now, so max_hole_start must point to the start
1645 * of this free space and the length of this free space
1646 * is stored in max_hole_size. Thus, we return
1647 * max_hole_start and max_hole_size and go back to the
1648 * caller.
1649 */
1650 if (hole_size >= num_bytes) {
1651 ret = 0;
1652 goto out;
1653 }
1654 }
1655
1656 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1657 extent_end = key.offset + btrfs_dev_extent_length(l,
1658 dev_extent);
1659 if (extent_end > search_start)
1660 search_start = extent_end;
1661next:
1662 path->slots[0]++;
1663 cond_resched();
1664 }
1665
1666 /*
1667 * At this point, search_start should be the end of
1668 * allocated dev extents, and when shrinking the device,
1669 * search_end may be smaller than search_start.
1670 */
1671 if (search_end > search_start) {
1672 hole_size = search_end - search_start;
1673 if (dev_extent_hole_check(device, &search_start, &hole_size,
1674 num_bytes)) {
1675 btrfs_release_path(path);
1676 goto again;
1677 }
1678
1679 if (hole_size > max_hole_size) {
1680 max_hole_start = search_start;
1681 max_hole_size = hole_size;
1682 }
1683 }
1684
1685 /* See above. */
1686 if (max_hole_size < num_bytes)
1687 ret = -ENOSPC;
1688 else
1689 ret = 0;
1690
1691 ASSERT(max_hole_start + max_hole_size <= search_end);
1692out:
1693 btrfs_free_path(path);
1694 *start = max_hole_start;
1695 if (len)
1696 *len = max_hole_size;
1697 return ret;
1698}
1699
1700static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1701 struct btrfs_device *device,
1702 u64 start, u64 *dev_extent_len)
1703{
1704 struct btrfs_fs_info *fs_info = device->fs_info;
1705 struct btrfs_root *root = fs_info->dev_root;
1706 int ret;
1707 struct btrfs_path *path;
1708 struct btrfs_key key;
1709 struct btrfs_key found_key;
1710 struct extent_buffer *leaf = NULL;
1711 struct btrfs_dev_extent *extent = NULL;
1712
1713 path = btrfs_alloc_path();
1714 if (!path)
1715 return -ENOMEM;
1716
1717 key.objectid = device->devid;
1718 key.offset = start;
1719 key.type = BTRFS_DEV_EXTENT_KEY;
1720again:
1721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1722 if (ret > 0) {
1723 ret = btrfs_previous_item(root, path, key.objectid,
1724 BTRFS_DEV_EXTENT_KEY);
1725 if (ret)
1726 goto out;
1727 leaf = path->nodes[0];
1728 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1729 extent = btrfs_item_ptr(leaf, path->slots[0],
1730 struct btrfs_dev_extent);
1731 BUG_ON(found_key.offset > start || found_key.offset +
1732 btrfs_dev_extent_length(leaf, extent) < start);
1733 key = found_key;
1734 btrfs_release_path(path);
1735 goto again;
1736 } else if (ret == 0) {
1737 leaf = path->nodes[0];
1738 extent = btrfs_item_ptr(leaf, path->slots[0],
1739 struct btrfs_dev_extent);
1740 } else {
1741 goto out;
1742 }
1743
1744 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1745
1746 ret = btrfs_del_item(trans, root, path);
1747 if (ret == 0)
1748 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1749out:
1750 btrfs_free_path(path);
1751 return ret;
1752}
1753
1754static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1755{
1756 struct rb_node *n;
1757 u64 ret = 0;
1758
1759 read_lock(&fs_info->mapping_tree_lock);
1760 n = rb_last(&fs_info->mapping_tree.rb_root);
1761 if (n) {
1762 struct btrfs_chunk_map *map;
1763
1764 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1765 ret = map->start + map->chunk_len;
1766 }
1767 read_unlock(&fs_info->mapping_tree_lock);
1768
1769 return ret;
1770}
1771
1772static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1773 u64 *devid_ret)
1774{
1775 int ret;
1776 struct btrfs_key key;
1777 struct btrfs_key found_key;
1778 struct btrfs_path *path;
1779
1780 path = btrfs_alloc_path();
1781 if (!path)
1782 return -ENOMEM;
1783
1784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1785 key.type = BTRFS_DEV_ITEM_KEY;
1786 key.offset = (u64)-1;
1787
1788 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1789 if (ret < 0)
1790 goto error;
1791
1792 if (ret == 0) {
1793 /* Corruption */
1794 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1795 ret = -EUCLEAN;
1796 goto error;
1797 }
1798
1799 ret = btrfs_previous_item(fs_info->chunk_root, path,
1800 BTRFS_DEV_ITEMS_OBJECTID,
1801 BTRFS_DEV_ITEM_KEY);
1802 if (ret) {
1803 *devid_ret = 1;
1804 } else {
1805 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1806 path->slots[0]);
1807 *devid_ret = found_key.offset + 1;
1808 }
1809 ret = 0;
1810error:
1811 btrfs_free_path(path);
1812 return ret;
1813}
1814
1815/*
1816 * the device information is stored in the chunk root
1817 * the btrfs_device struct should be fully filled in
1818 */
1819static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_device *device)
1821{
1822 int ret;
1823 struct btrfs_path *path;
1824 struct btrfs_dev_item *dev_item;
1825 struct extent_buffer *leaf;
1826 struct btrfs_key key;
1827 unsigned long ptr;
1828
1829 path = btrfs_alloc_path();
1830 if (!path)
1831 return -ENOMEM;
1832
1833 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1834 key.type = BTRFS_DEV_ITEM_KEY;
1835 key.offset = device->devid;
1836
1837 btrfs_reserve_chunk_metadata(trans, true);
1838 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1839 &key, sizeof(*dev_item));
1840 btrfs_trans_release_chunk_metadata(trans);
1841 if (ret)
1842 goto out;
1843
1844 leaf = path->nodes[0];
1845 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1846
1847 btrfs_set_device_id(leaf, dev_item, device->devid);
1848 btrfs_set_device_generation(leaf, dev_item, 0);
1849 btrfs_set_device_type(leaf, dev_item, device->type);
1850 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1851 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1852 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1853 btrfs_set_device_total_bytes(leaf, dev_item,
1854 btrfs_device_get_disk_total_bytes(device));
1855 btrfs_set_device_bytes_used(leaf, dev_item,
1856 btrfs_device_get_bytes_used(device));
1857 btrfs_set_device_group(leaf, dev_item, 0);
1858 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1859 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1860 btrfs_set_device_start_offset(leaf, dev_item, 0);
1861
1862 ptr = btrfs_device_uuid(dev_item);
1863 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1864 ptr = btrfs_device_fsid(dev_item);
1865 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1866 ptr, BTRFS_FSID_SIZE);
1867 btrfs_mark_buffer_dirty(trans, leaf);
1868
1869 ret = 0;
1870out:
1871 btrfs_free_path(path);
1872 return ret;
1873}
1874
1875/*
1876 * Function to update ctime/mtime for a given device path.
1877 * Mainly used for ctime/mtime based probe like libblkid.
1878 *
1879 * We don't care about errors here, this is just to be kind to userspace.
1880 */
1881static void update_dev_time(const char *device_path)
1882{
1883 struct path path;
1884 int ret;
1885
1886 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1887 if (ret)
1888 return;
1889
1890 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1891 path_put(&path);
1892}
1893
1894static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1895 struct btrfs_device *device)
1896{
1897 struct btrfs_root *root = device->fs_info->chunk_root;
1898 int ret;
1899 struct btrfs_path *path;
1900 struct btrfs_key key;
1901
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = device->devid;
1909
1910 btrfs_reserve_chunk_metadata(trans, false);
1911 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1912 btrfs_trans_release_chunk_metadata(trans);
1913 if (ret) {
1914 if (ret > 0)
1915 ret = -ENOENT;
1916 goto out;
1917 }
1918
1919 ret = btrfs_del_item(trans, root, path);
1920out:
1921 btrfs_free_path(path);
1922 return ret;
1923}
1924
1925/*
1926 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1927 * filesystem. It's up to the caller to adjust that number regarding eg. device
1928 * replace.
1929 */
1930static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1931 u64 num_devices)
1932{
1933 u64 all_avail;
1934 unsigned seq;
1935 int i;
1936
1937 do {
1938 seq = read_seqbegin(&fs_info->profiles_lock);
1939
1940 all_avail = fs_info->avail_data_alloc_bits |
1941 fs_info->avail_system_alloc_bits |
1942 fs_info->avail_metadata_alloc_bits;
1943 } while (read_seqretry(&fs_info->profiles_lock, seq));
1944
1945 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1946 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1947 continue;
1948
1949 if (num_devices < btrfs_raid_array[i].devs_min)
1950 return btrfs_raid_array[i].mindev_error;
1951 }
1952
1953 return 0;
1954}
1955
1956static struct btrfs_device * btrfs_find_next_active_device(
1957 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1958{
1959 struct btrfs_device *next_device;
1960
1961 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1962 if (next_device != device &&
1963 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1964 && next_device->bdev)
1965 return next_device;
1966 }
1967
1968 return NULL;
1969}
1970
1971/*
1972 * Helper function to check if the given device is part of s_bdev / latest_dev
1973 * and replace it with the provided or the next active device, in the context
1974 * where this function called, there should be always be another device (or
1975 * this_dev) which is active.
1976 */
1977void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1978 struct btrfs_device *next_device)
1979{
1980 struct btrfs_fs_info *fs_info = device->fs_info;
1981
1982 if (!next_device)
1983 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1984 device);
1985 ASSERT(next_device);
1986
1987 if (fs_info->sb->s_bdev &&
1988 (fs_info->sb->s_bdev == device->bdev))
1989 fs_info->sb->s_bdev = next_device->bdev;
1990
1991 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1992 fs_info->fs_devices->latest_dev = next_device;
1993}
1994
1995/*
1996 * Return btrfs_fs_devices::num_devices excluding the device that's being
1997 * currently replaced.
1998 */
1999static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2000{
2001 u64 num_devices = fs_info->fs_devices->num_devices;
2002
2003 down_read(&fs_info->dev_replace.rwsem);
2004 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2005 ASSERT(num_devices > 1);
2006 num_devices--;
2007 }
2008 up_read(&fs_info->dev_replace.rwsem);
2009
2010 return num_devices;
2011}
2012
2013static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2014 struct block_device *bdev, int copy_num)
2015{
2016 struct btrfs_super_block *disk_super;
2017 const size_t len = sizeof(disk_super->magic);
2018 const u64 bytenr = btrfs_sb_offset(copy_num);
2019 int ret;
2020
2021 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2022 if (IS_ERR(disk_super))
2023 return;
2024
2025 memset(&disk_super->magic, 0, len);
2026 folio_mark_dirty(virt_to_folio(disk_super));
2027 btrfs_release_disk_super(disk_super);
2028
2029 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2030 if (ret)
2031 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2032 copy_num, ret);
2033}
2034
2035void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2036 struct block_device *bdev,
2037 const char *device_path)
2038{
2039 int copy_num;
2040
2041 if (!bdev)
2042 return;
2043
2044 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2045 if (bdev_is_zoned(bdev))
2046 btrfs_reset_sb_log_zones(bdev, copy_num);
2047 else
2048 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2049 }
2050
2051 /* Notify udev that device has changed */
2052 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2053
2054 /* Update ctime/mtime for device path for libblkid */
2055 update_dev_time(device_path);
2056}
2057
2058int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2059 struct btrfs_dev_lookup_args *args,
2060 struct bdev_handle **bdev_handle)
2061{
2062 struct btrfs_trans_handle *trans;
2063 struct btrfs_device *device;
2064 struct btrfs_fs_devices *cur_devices;
2065 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2066 u64 num_devices;
2067 int ret = 0;
2068
2069 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2070 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2071 return -EINVAL;
2072 }
2073
2074 /*
2075 * The device list in fs_devices is accessed without locks (neither
2076 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2077 * filesystem and another device rm cannot run.
2078 */
2079 num_devices = btrfs_num_devices(fs_info);
2080
2081 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2082 if (ret)
2083 return ret;
2084
2085 device = btrfs_find_device(fs_info->fs_devices, args);
2086 if (!device) {
2087 if (args->missing)
2088 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2089 else
2090 ret = -ENOENT;
2091 return ret;
2092 }
2093
2094 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2095 btrfs_warn_in_rcu(fs_info,
2096 "cannot remove device %s (devid %llu) due to active swapfile",
2097 btrfs_dev_name(device), device->devid);
2098 return -ETXTBSY;
2099 }
2100
2101 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2102 return BTRFS_ERROR_DEV_TGT_REPLACE;
2103
2104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2105 fs_info->fs_devices->rw_devices == 1)
2106 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2107
2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2109 mutex_lock(&fs_info->chunk_mutex);
2110 list_del_init(&device->dev_alloc_list);
2111 device->fs_devices->rw_devices--;
2112 mutex_unlock(&fs_info->chunk_mutex);
2113 }
2114
2115 ret = btrfs_shrink_device(device, 0);
2116 if (ret)
2117 goto error_undo;
2118
2119 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2120 if (IS_ERR(trans)) {
2121 ret = PTR_ERR(trans);
2122 goto error_undo;
2123 }
2124
2125 ret = btrfs_rm_dev_item(trans, device);
2126 if (ret) {
2127 /* Any error in dev item removal is critical */
2128 btrfs_crit(fs_info,
2129 "failed to remove device item for devid %llu: %d",
2130 device->devid, ret);
2131 btrfs_abort_transaction(trans, ret);
2132 btrfs_end_transaction(trans);
2133 return ret;
2134 }
2135
2136 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2137 btrfs_scrub_cancel_dev(device);
2138
2139 /*
2140 * the device list mutex makes sure that we don't change
2141 * the device list while someone else is writing out all
2142 * the device supers. Whoever is writing all supers, should
2143 * lock the device list mutex before getting the number of
2144 * devices in the super block (super_copy). Conversely,
2145 * whoever updates the number of devices in the super block
2146 * (super_copy) should hold the device list mutex.
2147 */
2148
2149 /*
2150 * In normal cases the cur_devices == fs_devices. But in case
2151 * of deleting a seed device, the cur_devices should point to
2152 * its own fs_devices listed under the fs_devices->seed_list.
2153 */
2154 cur_devices = device->fs_devices;
2155 mutex_lock(&fs_devices->device_list_mutex);
2156 list_del_rcu(&device->dev_list);
2157
2158 cur_devices->num_devices--;
2159 cur_devices->total_devices--;
2160 /* Update total_devices of the parent fs_devices if it's seed */
2161 if (cur_devices != fs_devices)
2162 fs_devices->total_devices--;
2163
2164 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2165 cur_devices->missing_devices--;
2166
2167 btrfs_assign_next_active_device(device, NULL);
2168
2169 if (device->bdev_handle) {
2170 cur_devices->open_devices--;
2171 /* remove sysfs entry */
2172 btrfs_sysfs_remove_device(device);
2173 }
2174
2175 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2176 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2177 mutex_unlock(&fs_devices->device_list_mutex);
2178
2179 /*
2180 * At this point, the device is zero sized and detached from the
2181 * devices list. All that's left is to zero out the old supers and
2182 * free the device.
2183 *
2184 * We cannot call btrfs_close_bdev() here because we're holding the sb
2185 * write lock, and bdev_release() will pull in the ->open_mutex on
2186 * the block device and it's dependencies. Instead just flush the
2187 * device and let the caller do the final bdev_release.
2188 */
2189 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2190 btrfs_scratch_superblocks(fs_info, device->bdev,
2191 device->name->str);
2192 if (device->bdev) {
2193 sync_blockdev(device->bdev);
2194 invalidate_bdev(device->bdev);
2195 }
2196 }
2197
2198 *bdev_handle = device->bdev_handle;
2199 synchronize_rcu();
2200 btrfs_free_device(device);
2201
2202 /*
2203 * This can happen if cur_devices is the private seed devices list. We
2204 * cannot call close_fs_devices() here because it expects the uuid_mutex
2205 * to be held, but in fact we don't need that for the private
2206 * seed_devices, we can simply decrement cur_devices->opened and then
2207 * remove it from our list and free the fs_devices.
2208 */
2209 if (cur_devices->num_devices == 0) {
2210 list_del_init(&cur_devices->seed_list);
2211 ASSERT(cur_devices->opened == 1);
2212 cur_devices->opened--;
2213 free_fs_devices(cur_devices);
2214 }
2215
2216 ret = btrfs_commit_transaction(trans);
2217
2218 return ret;
2219
2220error_undo:
2221 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2222 mutex_lock(&fs_info->chunk_mutex);
2223 list_add(&device->dev_alloc_list,
2224 &fs_devices->alloc_list);
2225 device->fs_devices->rw_devices++;
2226 mutex_unlock(&fs_info->chunk_mutex);
2227 }
2228 return ret;
2229}
2230
2231void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2232{
2233 struct btrfs_fs_devices *fs_devices;
2234
2235 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2236
2237 /*
2238 * in case of fs with no seed, srcdev->fs_devices will point
2239 * to fs_devices of fs_info. However when the dev being replaced is
2240 * a seed dev it will point to the seed's local fs_devices. In short
2241 * srcdev will have its correct fs_devices in both the cases.
2242 */
2243 fs_devices = srcdev->fs_devices;
2244
2245 list_del_rcu(&srcdev->dev_list);
2246 list_del(&srcdev->dev_alloc_list);
2247 fs_devices->num_devices--;
2248 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2249 fs_devices->missing_devices--;
2250
2251 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2252 fs_devices->rw_devices--;
2253
2254 if (srcdev->bdev)
2255 fs_devices->open_devices--;
2256}
2257
2258void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2259{
2260 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2261
2262 mutex_lock(&uuid_mutex);
2263
2264 btrfs_close_bdev(srcdev);
2265 synchronize_rcu();
2266 btrfs_free_device(srcdev);
2267
2268 /* if this is no devs we rather delete the fs_devices */
2269 if (!fs_devices->num_devices) {
2270 /*
2271 * On a mounted FS, num_devices can't be zero unless it's a
2272 * seed. In case of a seed device being replaced, the replace
2273 * target added to the sprout FS, so there will be no more
2274 * device left under the seed FS.
2275 */
2276 ASSERT(fs_devices->seeding);
2277
2278 list_del_init(&fs_devices->seed_list);
2279 close_fs_devices(fs_devices);
2280 free_fs_devices(fs_devices);
2281 }
2282 mutex_unlock(&uuid_mutex);
2283}
2284
2285void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2286{
2287 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2288
2289 mutex_lock(&fs_devices->device_list_mutex);
2290
2291 btrfs_sysfs_remove_device(tgtdev);
2292
2293 if (tgtdev->bdev)
2294 fs_devices->open_devices--;
2295
2296 fs_devices->num_devices--;
2297
2298 btrfs_assign_next_active_device(tgtdev, NULL);
2299
2300 list_del_rcu(&tgtdev->dev_list);
2301
2302 mutex_unlock(&fs_devices->device_list_mutex);
2303
2304 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2305 tgtdev->name->str);
2306
2307 btrfs_close_bdev(tgtdev);
2308 synchronize_rcu();
2309 btrfs_free_device(tgtdev);
2310}
2311
2312/*
2313 * Populate args from device at path.
2314 *
2315 * @fs_info: the filesystem
2316 * @args: the args to populate
2317 * @path: the path to the device
2318 *
2319 * This will read the super block of the device at @path and populate @args with
2320 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2321 * lookup a device to operate on, but need to do it before we take any locks.
2322 * This properly handles the special case of "missing" that a user may pass in,
2323 * and does some basic sanity checks. The caller must make sure that @path is
2324 * properly NUL terminated before calling in, and must call
2325 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2326 * uuid buffers.
2327 *
2328 * Return: 0 for success, -errno for failure
2329 */
2330int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2331 struct btrfs_dev_lookup_args *args,
2332 const char *path)
2333{
2334 struct btrfs_super_block *disk_super;
2335 struct bdev_handle *bdev_handle;
2336 int ret;
2337
2338 if (!path || !path[0])
2339 return -EINVAL;
2340 if (!strcmp(path, "missing")) {
2341 args->missing = true;
2342 return 0;
2343 }
2344
2345 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2346 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2347 if (!args->uuid || !args->fsid) {
2348 btrfs_put_dev_args_from_path(args);
2349 return -ENOMEM;
2350 }
2351
2352 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2353 &bdev_handle, &disk_super);
2354 if (ret) {
2355 btrfs_put_dev_args_from_path(args);
2356 return ret;
2357 }
2358
2359 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2362 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2363 else
2364 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2365 btrfs_release_disk_super(disk_super);
2366 bdev_release(bdev_handle);
2367 return 0;
2368}
2369
2370/*
2371 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2372 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2373 * that don't need to be freed.
2374 */
2375void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2376{
2377 kfree(args->uuid);
2378 kfree(args->fsid);
2379 args->uuid = NULL;
2380 args->fsid = NULL;
2381}
2382
2383struct btrfs_device *btrfs_find_device_by_devspec(
2384 struct btrfs_fs_info *fs_info, u64 devid,
2385 const char *device_path)
2386{
2387 BTRFS_DEV_LOOKUP_ARGS(args);
2388 struct btrfs_device *device;
2389 int ret;
2390
2391 if (devid) {
2392 args.devid = devid;
2393 device = btrfs_find_device(fs_info->fs_devices, &args);
2394 if (!device)
2395 return ERR_PTR(-ENOENT);
2396 return device;
2397 }
2398
2399 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2400 if (ret)
2401 return ERR_PTR(ret);
2402 device = btrfs_find_device(fs_info->fs_devices, &args);
2403 btrfs_put_dev_args_from_path(&args);
2404 if (!device)
2405 return ERR_PTR(-ENOENT);
2406 return device;
2407}
2408
2409static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2410{
2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 struct btrfs_fs_devices *old_devices;
2413 struct btrfs_fs_devices *seed_devices;
2414
2415 lockdep_assert_held(&uuid_mutex);
2416 if (!fs_devices->seeding)
2417 return ERR_PTR(-EINVAL);
2418
2419 /*
2420 * Private copy of the seed devices, anchored at
2421 * fs_info->fs_devices->seed_list
2422 */
2423 seed_devices = alloc_fs_devices(NULL);
2424 if (IS_ERR(seed_devices))
2425 return seed_devices;
2426
2427 /*
2428 * It's necessary to retain a copy of the original seed fs_devices in
2429 * fs_uuids so that filesystems which have been seeded can successfully
2430 * reference the seed device from open_seed_devices. This also supports
2431 * multiple fs seed.
2432 */
2433 old_devices = clone_fs_devices(fs_devices);
2434 if (IS_ERR(old_devices)) {
2435 kfree(seed_devices);
2436 return old_devices;
2437 }
2438
2439 list_add(&old_devices->fs_list, &fs_uuids);
2440
2441 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2442 seed_devices->opened = 1;
2443 INIT_LIST_HEAD(&seed_devices->devices);
2444 INIT_LIST_HEAD(&seed_devices->alloc_list);
2445 mutex_init(&seed_devices->device_list_mutex);
2446
2447 return seed_devices;
2448}
2449
2450/*
2451 * Splice seed devices into the sprout fs_devices.
2452 * Generate a new fsid for the sprouted read-write filesystem.
2453 */
2454static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2455 struct btrfs_fs_devices *seed_devices)
2456{
2457 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2458 struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 struct btrfs_device *device;
2460 u64 super_flags;
2461
2462 /*
2463 * We are updating the fsid, the thread leading to device_list_add()
2464 * could race, so uuid_mutex is needed.
2465 */
2466 lockdep_assert_held(&uuid_mutex);
2467
2468 /*
2469 * The threads listed below may traverse dev_list but can do that without
2470 * device_list_mutex:
2471 * - All device ops and balance - as we are in btrfs_exclop_start.
2472 * - Various dev_list readers - are using RCU.
2473 * - btrfs_ioctl_fitrim() - is using RCU.
2474 *
2475 * For-read threads as below are using device_list_mutex:
2476 * - Readonly scrub btrfs_scrub_dev()
2477 * - Readonly scrub btrfs_scrub_progress()
2478 * - btrfs_get_dev_stats()
2479 */
2480 lockdep_assert_held(&fs_devices->device_list_mutex);
2481
2482 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483 synchronize_rcu);
2484 list_for_each_entry(device, &seed_devices->devices, dev_list)
2485 device->fs_devices = seed_devices;
2486
2487 fs_devices->seeding = false;
2488 fs_devices->num_devices = 0;
2489 fs_devices->open_devices = 0;
2490 fs_devices->missing_devices = 0;
2491 fs_devices->rotating = false;
2492 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2493
2494 generate_random_uuid(fs_devices->fsid);
2495 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2496 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2497
2498 super_flags = btrfs_super_flags(disk_super) &
2499 ~BTRFS_SUPER_FLAG_SEEDING;
2500 btrfs_set_super_flags(disk_super, super_flags);
2501}
2502
2503/*
2504 * Store the expected generation for seed devices in device items.
2505 */
2506static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2507{
2508 BTRFS_DEV_LOOKUP_ARGS(args);
2509 struct btrfs_fs_info *fs_info = trans->fs_info;
2510 struct btrfs_root *root = fs_info->chunk_root;
2511 struct btrfs_path *path;
2512 struct extent_buffer *leaf;
2513 struct btrfs_dev_item *dev_item;
2514 struct btrfs_device *device;
2515 struct btrfs_key key;
2516 u8 fs_uuid[BTRFS_FSID_SIZE];
2517 u8 dev_uuid[BTRFS_UUID_SIZE];
2518 int ret;
2519
2520 path = btrfs_alloc_path();
2521 if (!path)
2522 return -ENOMEM;
2523
2524 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2525 key.offset = 0;
2526 key.type = BTRFS_DEV_ITEM_KEY;
2527
2528 while (1) {
2529 btrfs_reserve_chunk_metadata(trans, false);
2530 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2531 btrfs_trans_release_chunk_metadata(trans);
2532 if (ret < 0)
2533 goto error;
2534
2535 leaf = path->nodes[0];
2536next_slot:
2537 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2538 ret = btrfs_next_leaf(root, path);
2539 if (ret > 0)
2540 break;
2541 if (ret < 0)
2542 goto error;
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2545 btrfs_release_path(path);
2546 continue;
2547 }
2548
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2551 key.type != BTRFS_DEV_ITEM_KEY)
2552 break;
2553
2554 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2555 struct btrfs_dev_item);
2556 args.devid = btrfs_device_id(leaf, dev_item);
2557 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2558 BTRFS_UUID_SIZE);
2559 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2560 BTRFS_FSID_SIZE);
2561 args.uuid = dev_uuid;
2562 args.fsid = fs_uuid;
2563 device = btrfs_find_device(fs_info->fs_devices, &args);
2564 BUG_ON(!device); /* Logic error */
2565
2566 if (device->fs_devices->seeding) {
2567 btrfs_set_device_generation(leaf, dev_item,
2568 device->generation);
2569 btrfs_mark_buffer_dirty(trans, leaf);
2570 }
2571
2572 path->slots[0]++;
2573 goto next_slot;
2574 }
2575 ret = 0;
2576error:
2577 btrfs_free_path(path);
2578 return ret;
2579}
2580
2581int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2582{
2583 struct btrfs_root *root = fs_info->dev_root;
2584 struct btrfs_trans_handle *trans;
2585 struct btrfs_device *device;
2586 struct bdev_handle *bdev_handle;
2587 struct super_block *sb = fs_info->sb;
2588 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2589 struct btrfs_fs_devices *seed_devices = NULL;
2590 u64 orig_super_total_bytes;
2591 u64 orig_super_num_devices;
2592 int ret = 0;
2593 bool seeding_dev = false;
2594 bool locked = false;
2595
2596 if (sb_rdonly(sb) && !fs_devices->seeding)
2597 return -EROFS;
2598
2599 bdev_handle = bdev_open_by_path(device_path, BLK_OPEN_WRITE,
2600 fs_info->bdev_holder, NULL);
2601 if (IS_ERR(bdev_handle))
2602 return PTR_ERR(bdev_handle);
2603
2604 if (!btrfs_check_device_zone_type(fs_info, bdev_handle->bdev)) {
2605 ret = -EINVAL;
2606 goto error;
2607 }
2608
2609 if (fs_devices->seeding) {
2610 seeding_dev = true;
2611 down_write(&sb->s_umount);
2612 mutex_lock(&uuid_mutex);
2613 locked = true;
2614 }
2615
2616 sync_blockdev(bdev_handle->bdev);
2617
2618 rcu_read_lock();
2619 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2620 if (device->bdev == bdev_handle->bdev) {
2621 ret = -EEXIST;
2622 rcu_read_unlock();
2623 goto error;
2624 }
2625 }
2626 rcu_read_unlock();
2627
2628 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2629 if (IS_ERR(device)) {
2630 /* we can safely leave the fs_devices entry around */
2631 ret = PTR_ERR(device);
2632 goto error;
2633 }
2634
2635 device->fs_info = fs_info;
2636 device->bdev_handle = bdev_handle;
2637 device->bdev = bdev_handle->bdev;
2638 ret = lookup_bdev(device_path, &device->devt);
2639 if (ret)
2640 goto error_free_device;
2641
2642 ret = btrfs_get_dev_zone_info(device, false);
2643 if (ret)
2644 goto error_free_device;
2645
2646 trans = btrfs_start_transaction(root, 0);
2647 if (IS_ERR(trans)) {
2648 ret = PTR_ERR(trans);
2649 goto error_free_zone;
2650 }
2651
2652 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2653 device->generation = trans->transid;
2654 device->io_width = fs_info->sectorsize;
2655 device->io_align = fs_info->sectorsize;
2656 device->sector_size = fs_info->sectorsize;
2657 device->total_bytes =
2658 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2659 device->disk_total_bytes = device->total_bytes;
2660 device->commit_total_bytes = device->total_bytes;
2661 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2662 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2663 device->dev_stats_valid = 1;
2664 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2665
2666 if (seeding_dev) {
2667 btrfs_clear_sb_rdonly(sb);
2668
2669 /* GFP_KERNEL allocation must not be under device_list_mutex */
2670 seed_devices = btrfs_init_sprout(fs_info);
2671 if (IS_ERR(seed_devices)) {
2672 ret = PTR_ERR(seed_devices);
2673 btrfs_abort_transaction(trans, ret);
2674 goto error_trans;
2675 }
2676 }
2677
2678 mutex_lock(&fs_devices->device_list_mutex);
2679 if (seeding_dev) {
2680 btrfs_setup_sprout(fs_info, seed_devices);
2681 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2682 device);
2683 }
2684
2685 device->fs_devices = fs_devices;
2686
2687 mutex_lock(&fs_info->chunk_mutex);
2688 list_add_rcu(&device->dev_list, &fs_devices->devices);
2689 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2690 fs_devices->num_devices++;
2691 fs_devices->open_devices++;
2692 fs_devices->rw_devices++;
2693 fs_devices->total_devices++;
2694 fs_devices->total_rw_bytes += device->total_bytes;
2695
2696 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2697
2698 if (!bdev_nonrot(device->bdev))
2699 fs_devices->rotating = true;
2700
2701 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2702 btrfs_set_super_total_bytes(fs_info->super_copy,
2703 round_down(orig_super_total_bytes + device->total_bytes,
2704 fs_info->sectorsize));
2705
2706 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2707 btrfs_set_super_num_devices(fs_info->super_copy,
2708 orig_super_num_devices + 1);
2709
2710 /*
2711 * we've got more storage, clear any full flags on the space
2712 * infos
2713 */
2714 btrfs_clear_space_info_full(fs_info);
2715
2716 mutex_unlock(&fs_info->chunk_mutex);
2717
2718 /* Add sysfs device entry */
2719 btrfs_sysfs_add_device(device);
2720
2721 mutex_unlock(&fs_devices->device_list_mutex);
2722
2723 if (seeding_dev) {
2724 mutex_lock(&fs_info->chunk_mutex);
2725 ret = init_first_rw_device(trans);
2726 mutex_unlock(&fs_info->chunk_mutex);
2727 if (ret) {
2728 btrfs_abort_transaction(trans, ret);
2729 goto error_sysfs;
2730 }
2731 }
2732
2733 ret = btrfs_add_dev_item(trans, device);
2734 if (ret) {
2735 btrfs_abort_transaction(trans, ret);
2736 goto error_sysfs;
2737 }
2738
2739 if (seeding_dev) {
2740 ret = btrfs_finish_sprout(trans);
2741 if (ret) {
2742 btrfs_abort_transaction(trans, ret);
2743 goto error_sysfs;
2744 }
2745
2746 /*
2747 * fs_devices now represents the newly sprouted filesystem and
2748 * its fsid has been changed by btrfs_sprout_splice().
2749 */
2750 btrfs_sysfs_update_sprout_fsid(fs_devices);
2751 }
2752
2753 ret = btrfs_commit_transaction(trans);
2754
2755 if (seeding_dev) {
2756 mutex_unlock(&uuid_mutex);
2757 up_write(&sb->s_umount);
2758 locked = false;
2759
2760 if (ret) /* transaction commit */
2761 return ret;
2762
2763 ret = btrfs_relocate_sys_chunks(fs_info);
2764 if (ret < 0)
2765 btrfs_handle_fs_error(fs_info, ret,
2766 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2767 trans = btrfs_attach_transaction(root);
2768 if (IS_ERR(trans)) {
2769 if (PTR_ERR(trans) == -ENOENT)
2770 return 0;
2771 ret = PTR_ERR(trans);
2772 trans = NULL;
2773 goto error_sysfs;
2774 }
2775 ret = btrfs_commit_transaction(trans);
2776 }
2777
2778 /*
2779 * Now that we have written a new super block to this device, check all
2780 * other fs_devices list if device_path alienates any other scanned
2781 * device.
2782 * We can ignore the return value as it typically returns -EINVAL and
2783 * only succeeds if the device was an alien.
2784 */
2785 btrfs_forget_devices(device->devt);
2786
2787 /* Update ctime/mtime for blkid or udev */
2788 update_dev_time(device_path);
2789
2790 return ret;
2791
2792error_sysfs:
2793 btrfs_sysfs_remove_device(device);
2794 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2795 mutex_lock(&fs_info->chunk_mutex);
2796 list_del_rcu(&device->dev_list);
2797 list_del(&device->dev_alloc_list);
2798 fs_info->fs_devices->num_devices--;
2799 fs_info->fs_devices->open_devices--;
2800 fs_info->fs_devices->rw_devices--;
2801 fs_info->fs_devices->total_devices--;
2802 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2803 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2804 btrfs_set_super_total_bytes(fs_info->super_copy,
2805 orig_super_total_bytes);
2806 btrfs_set_super_num_devices(fs_info->super_copy,
2807 orig_super_num_devices);
2808 mutex_unlock(&fs_info->chunk_mutex);
2809 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2810error_trans:
2811 if (seeding_dev)
2812 btrfs_set_sb_rdonly(sb);
2813 if (trans)
2814 btrfs_end_transaction(trans);
2815error_free_zone:
2816 btrfs_destroy_dev_zone_info(device);
2817error_free_device:
2818 btrfs_free_device(device);
2819error:
2820 bdev_release(bdev_handle);
2821 if (locked) {
2822 mutex_unlock(&uuid_mutex);
2823 up_write(&sb->s_umount);
2824 }
2825 return ret;
2826}
2827
2828static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2829 struct btrfs_device *device)
2830{
2831 int ret;
2832 struct btrfs_path *path;
2833 struct btrfs_root *root = device->fs_info->chunk_root;
2834 struct btrfs_dev_item *dev_item;
2835 struct extent_buffer *leaf;
2836 struct btrfs_key key;
2837
2838 path = btrfs_alloc_path();
2839 if (!path)
2840 return -ENOMEM;
2841
2842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2843 key.type = BTRFS_DEV_ITEM_KEY;
2844 key.offset = device->devid;
2845
2846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2847 if (ret < 0)
2848 goto out;
2849
2850 if (ret > 0) {
2851 ret = -ENOENT;
2852 goto out;
2853 }
2854
2855 leaf = path->nodes[0];
2856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2857
2858 btrfs_set_device_id(leaf, dev_item, device->devid);
2859 btrfs_set_device_type(leaf, dev_item, device->type);
2860 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2861 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2863 btrfs_set_device_total_bytes(leaf, dev_item,
2864 btrfs_device_get_disk_total_bytes(device));
2865 btrfs_set_device_bytes_used(leaf, dev_item,
2866 btrfs_device_get_bytes_used(device));
2867 btrfs_mark_buffer_dirty(trans, leaf);
2868
2869out:
2870 btrfs_free_path(path);
2871 return ret;
2872}
2873
2874int btrfs_grow_device(struct btrfs_trans_handle *trans,
2875 struct btrfs_device *device, u64 new_size)
2876{
2877 struct btrfs_fs_info *fs_info = device->fs_info;
2878 struct btrfs_super_block *super_copy = fs_info->super_copy;
2879 u64 old_total;
2880 u64 diff;
2881 int ret;
2882
2883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2884 return -EACCES;
2885
2886 new_size = round_down(new_size, fs_info->sectorsize);
2887
2888 mutex_lock(&fs_info->chunk_mutex);
2889 old_total = btrfs_super_total_bytes(super_copy);
2890 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2891
2892 if (new_size <= device->total_bytes ||
2893 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2894 mutex_unlock(&fs_info->chunk_mutex);
2895 return -EINVAL;
2896 }
2897
2898 btrfs_set_super_total_bytes(super_copy,
2899 round_down(old_total + diff, fs_info->sectorsize));
2900 device->fs_devices->total_rw_bytes += diff;
2901 atomic64_add(diff, &fs_info->free_chunk_space);
2902
2903 btrfs_device_set_total_bytes(device, new_size);
2904 btrfs_device_set_disk_total_bytes(device, new_size);
2905 btrfs_clear_space_info_full(device->fs_info);
2906 if (list_empty(&device->post_commit_list))
2907 list_add_tail(&device->post_commit_list,
2908 &trans->transaction->dev_update_list);
2909 mutex_unlock(&fs_info->chunk_mutex);
2910
2911 btrfs_reserve_chunk_metadata(trans, false);
2912 ret = btrfs_update_device(trans, device);
2913 btrfs_trans_release_chunk_metadata(trans);
2914
2915 return ret;
2916}
2917
2918static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2919{
2920 struct btrfs_fs_info *fs_info = trans->fs_info;
2921 struct btrfs_root *root = fs_info->chunk_root;
2922 int ret;
2923 struct btrfs_path *path;
2924 struct btrfs_key key;
2925
2926 path = btrfs_alloc_path();
2927 if (!path)
2928 return -ENOMEM;
2929
2930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931 key.offset = chunk_offset;
2932 key.type = BTRFS_CHUNK_ITEM_KEY;
2933
2934 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2935 if (ret < 0)
2936 goto out;
2937 else if (ret > 0) { /* Logic error or corruption */
2938 btrfs_handle_fs_error(fs_info, -ENOENT,
2939 "Failed lookup while freeing chunk.");
2940 ret = -ENOENT;
2941 goto out;
2942 }
2943
2944 ret = btrfs_del_item(trans, root, path);
2945 if (ret < 0)
2946 btrfs_handle_fs_error(fs_info, ret,
2947 "Failed to delete chunk item.");
2948out:
2949 btrfs_free_path(path);
2950 return ret;
2951}
2952
2953static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2954{
2955 struct btrfs_super_block *super_copy = fs_info->super_copy;
2956 struct btrfs_disk_key *disk_key;
2957 struct btrfs_chunk *chunk;
2958 u8 *ptr;
2959 int ret = 0;
2960 u32 num_stripes;
2961 u32 array_size;
2962 u32 len = 0;
2963 u32 cur;
2964 struct btrfs_key key;
2965
2966 lockdep_assert_held(&fs_info->chunk_mutex);
2967 array_size = btrfs_super_sys_array_size(super_copy);
2968
2969 ptr = super_copy->sys_chunk_array;
2970 cur = 0;
2971
2972 while (cur < array_size) {
2973 disk_key = (struct btrfs_disk_key *)ptr;
2974 btrfs_disk_key_to_cpu(&key, disk_key);
2975
2976 len = sizeof(*disk_key);
2977
2978 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2979 chunk = (struct btrfs_chunk *)(ptr + len);
2980 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2981 len += btrfs_chunk_item_size(num_stripes);
2982 } else {
2983 ret = -EIO;
2984 break;
2985 }
2986 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2987 key.offset == chunk_offset) {
2988 memmove(ptr, ptr + len, array_size - (cur + len));
2989 array_size -= len;
2990 btrfs_set_super_sys_array_size(super_copy, array_size);
2991 } else {
2992 ptr += len;
2993 cur += len;
2994 }
2995 }
2996 return ret;
2997}
2998
2999struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3000 u64 logical, u64 length)
3001{
3002 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3003 struct rb_node *prev = NULL;
3004 struct rb_node *orig_prev;
3005 struct btrfs_chunk_map *map;
3006 struct btrfs_chunk_map *prev_map = NULL;
3007
3008 while (node) {
3009 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3010 prev = node;
3011 prev_map = map;
3012
3013 if (logical < map->start) {
3014 node = node->rb_left;
3015 } else if (logical >= map->start + map->chunk_len) {
3016 node = node->rb_right;
3017 } else {
3018 refcount_inc(&map->refs);
3019 return map;
3020 }
3021 }
3022
3023 if (!prev)
3024 return NULL;
3025
3026 orig_prev = prev;
3027 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3028 prev = rb_next(prev);
3029 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3030 }
3031
3032 if (!prev) {
3033 prev = orig_prev;
3034 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3035 while (prev && logical < prev_map->start) {
3036 prev = rb_prev(prev);
3037 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3038 }
3039 }
3040
3041 if (prev) {
3042 u64 end = logical + length;
3043
3044 /*
3045 * Caller can pass a U64_MAX length when it wants to get any
3046 * chunk starting at an offset of 'logical' or higher, so deal
3047 * with underflow by resetting the end offset to U64_MAX.
3048 */
3049 if (end < logical)
3050 end = U64_MAX;
3051
3052 if (end > prev_map->start &&
3053 logical < prev_map->start + prev_map->chunk_len) {
3054 refcount_inc(&prev_map->refs);
3055 return prev_map;
3056 }
3057 }
3058
3059 return NULL;
3060}
3061
3062struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3063 u64 logical, u64 length)
3064{
3065 struct btrfs_chunk_map *map;
3066
3067 read_lock(&fs_info->mapping_tree_lock);
3068 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3069 read_unlock(&fs_info->mapping_tree_lock);
3070
3071 return map;
3072}
3073
3074/*
3075 * Find the mapping containing the given logical extent.
3076 *
3077 * @logical: Logical block offset in bytes.
3078 * @length: Length of extent in bytes.
3079 *
3080 * Return: Chunk mapping or ERR_PTR.
3081 */
3082struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3083 u64 logical, u64 length)
3084{
3085 struct btrfs_chunk_map *map;
3086
3087 map = btrfs_find_chunk_map(fs_info, logical, length);
3088
3089 if (unlikely(!map)) {
3090 btrfs_crit(fs_info,
3091 "unable to find chunk map for logical %llu length %llu",
3092 logical, length);
3093 return ERR_PTR(-EINVAL);
3094 }
3095
3096 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3097 btrfs_crit(fs_info,
3098 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3099 logical, logical + length, map->start,
3100 map->start + map->chunk_len);
3101 btrfs_free_chunk_map(map);
3102 return ERR_PTR(-EINVAL);
3103 }
3104
3105 /* Callers are responsible for dropping the reference. */
3106 return map;
3107}
3108
3109static int remove_chunk_item(struct btrfs_trans_handle *trans,
3110 struct btrfs_chunk_map *map, u64 chunk_offset)
3111{
3112 int i;
3113
3114 /*
3115 * Removing chunk items and updating the device items in the chunks btree
3116 * requires holding the chunk_mutex.
3117 * See the comment at btrfs_chunk_alloc() for the details.
3118 */
3119 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3120
3121 for (i = 0; i < map->num_stripes; i++) {
3122 int ret;
3123
3124 ret = btrfs_update_device(trans, map->stripes[i].dev);
3125 if (ret)
3126 return ret;
3127 }
3128
3129 return btrfs_free_chunk(trans, chunk_offset);
3130}
3131
3132int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3133{
3134 struct btrfs_fs_info *fs_info = trans->fs_info;
3135 struct btrfs_chunk_map *map;
3136 u64 dev_extent_len = 0;
3137 int i, ret = 0;
3138 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3139
3140 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3141 if (IS_ERR(map)) {
3142 /*
3143 * This is a logic error, but we don't want to just rely on the
3144 * user having built with ASSERT enabled, so if ASSERT doesn't
3145 * do anything we still error out.
3146 */
3147 ASSERT(0);
3148 return PTR_ERR(map);
3149 }
3150
3151 /*
3152 * First delete the device extent items from the devices btree.
3153 * We take the device_list_mutex to avoid racing with the finishing phase
3154 * of a device replace operation. See the comment below before acquiring
3155 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3156 * because that can result in a deadlock when deleting the device extent
3157 * items from the devices btree - COWing an extent buffer from the btree
3158 * may result in allocating a new metadata chunk, which would attempt to
3159 * lock again fs_info->chunk_mutex.
3160 */
3161 mutex_lock(&fs_devices->device_list_mutex);
3162 for (i = 0; i < map->num_stripes; i++) {
3163 struct btrfs_device *device = map->stripes[i].dev;
3164 ret = btrfs_free_dev_extent(trans, device,
3165 map->stripes[i].physical,
3166 &dev_extent_len);
3167 if (ret) {
3168 mutex_unlock(&fs_devices->device_list_mutex);
3169 btrfs_abort_transaction(trans, ret);
3170 goto out;
3171 }
3172
3173 if (device->bytes_used > 0) {
3174 mutex_lock(&fs_info->chunk_mutex);
3175 btrfs_device_set_bytes_used(device,
3176 device->bytes_used - dev_extent_len);
3177 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3178 btrfs_clear_space_info_full(fs_info);
3179 mutex_unlock(&fs_info->chunk_mutex);
3180 }
3181 }
3182 mutex_unlock(&fs_devices->device_list_mutex);
3183
3184 /*
3185 * We acquire fs_info->chunk_mutex for 2 reasons:
3186 *
3187 * 1) Just like with the first phase of the chunk allocation, we must
3188 * reserve system space, do all chunk btree updates and deletions, and
3189 * update the system chunk array in the superblock while holding this
3190 * mutex. This is for similar reasons as explained on the comment at
3191 * the top of btrfs_chunk_alloc();
3192 *
3193 * 2) Prevent races with the final phase of a device replace operation
3194 * that replaces the device object associated with the map's stripes,
3195 * because the device object's id can change at any time during that
3196 * final phase of the device replace operation
3197 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3198 * replaced device and then see it with an ID of
3199 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3200 * the device item, which does not exists on the chunk btree.
3201 * The finishing phase of device replace acquires both the
3202 * device_list_mutex and the chunk_mutex, in that order, so we are
3203 * safe by just acquiring the chunk_mutex.
3204 */
3205 trans->removing_chunk = true;
3206 mutex_lock(&fs_info->chunk_mutex);
3207
3208 check_system_chunk(trans, map->type);
3209
3210 ret = remove_chunk_item(trans, map, chunk_offset);
3211 /*
3212 * Normally we should not get -ENOSPC since we reserved space before
3213 * through the call to check_system_chunk().
3214 *
3215 * Despite our system space_info having enough free space, we may not
3216 * be able to allocate extents from its block groups, because all have
3217 * an incompatible profile, which will force us to allocate a new system
3218 * block group with the right profile, or right after we called
3219 * check_system_space() above, a scrub turned the only system block group
3220 * with enough free space into RO mode.
3221 * This is explained with more detail at do_chunk_alloc().
3222 *
3223 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3224 */
3225 if (ret == -ENOSPC) {
3226 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3227 struct btrfs_block_group *sys_bg;
3228
3229 sys_bg = btrfs_create_chunk(trans, sys_flags);
3230 if (IS_ERR(sys_bg)) {
3231 ret = PTR_ERR(sys_bg);
3232 btrfs_abort_transaction(trans, ret);
3233 goto out;
3234 }
3235
3236 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3237 if (ret) {
3238 btrfs_abort_transaction(trans, ret);
3239 goto out;
3240 }
3241
3242 ret = remove_chunk_item(trans, map, chunk_offset);
3243 if (ret) {
3244 btrfs_abort_transaction(trans, ret);
3245 goto out;
3246 }
3247 } else if (ret) {
3248 btrfs_abort_transaction(trans, ret);
3249 goto out;
3250 }
3251
3252 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3253
3254 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3255 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3256 if (ret) {
3257 btrfs_abort_transaction(trans, ret);
3258 goto out;
3259 }
3260 }
3261
3262 mutex_unlock(&fs_info->chunk_mutex);
3263 trans->removing_chunk = false;
3264
3265 /*
3266 * We are done with chunk btree updates and deletions, so release the
3267 * system space we previously reserved (with check_system_chunk()).
3268 */
3269 btrfs_trans_release_chunk_metadata(trans);
3270
3271 ret = btrfs_remove_block_group(trans, map);
3272 if (ret) {
3273 btrfs_abort_transaction(trans, ret);
3274 goto out;
3275 }
3276
3277out:
3278 if (trans->removing_chunk) {
3279 mutex_unlock(&fs_info->chunk_mutex);
3280 trans->removing_chunk = false;
3281 }
3282 /* once for us */
3283 btrfs_free_chunk_map(map);
3284 return ret;
3285}
3286
3287int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3288{
3289 struct btrfs_root *root = fs_info->chunk_root;
3290 struct btrfs_trans_handle *trans;
3291 struct btrfs_block_group *block_group;
3292 u64 length;
3293 int ret;
3294
3295 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3296 btrfs_err(fs_info,
3297 "relocate: not supported on extent tree v2 yet");
3298 return -EINVAL;
3299 }
3300
3301 /*
3302 * Prevent races with automatic removal of unused block groups.
3303 * After we relocate and before we remove the chunk with offset
3304 * chunk_offset, automatic removal of the block group can kick in,
3305 * resulting in a failure when calling btrfs_remove_chunk() below.
3306 *
3307 * Make sure to acquire this mutex before doing a tree search (dev
3308 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3309 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3310 * we release the path used to search the chunk/dev tree and before
3311 * the current task acquires this mutex and calls us.
3312 */
3313 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3314
3315 /* step one, relocate all the extents inside this chunk */
3316 btrfs_scrub_pause(fs_info);
3317 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3318 btrfs_scrub_continue(fs_info);
3319 if (ret) {
3320 /*
3321 * If we had a transaction abort, stop all running scrubs.
3322 * See transaction.c:cleanup_transaction() why we do it here.
3323 */
3324 if (BTRFS_FS_ERROR(fs_info))
3325 btrfs_scrub_cancel(fs_info);
3326 return ret;
3327 }
3328
3329 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3330 if (!block_group)
3331 return -ENOENT;
3332 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3333 length = block_group->length;
3334 btrfs_put_block_group(block_group);
3335
3336 /*
3337 * On a zoned file system, discard the whole block group, this will
3338 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3339 * resetting the zone fails, don't treat it as a fatal problem from the
3340 * filesystem's point of view.
3341 */
3342 if (btrfs_is_zoned(fs_info)) {
3343 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3344 if (ret)
3345 btrfs_info(fs_info,
3346 "failed to reset zone %llu after relocation",
3347 chunk_offset);
3348 }
3349
3350 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3351 chunk_offset);
3352 if (IS_ERR(trans)) {
3353 ret = PTR_ERR(trans);
3354 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3355 return ret;
3356 }
3357
3358 /*
3359 * step two, delete the device extents and the
3360 * chunk tree entries
3361 */
3362 ret = btrfs_remove_chunk(trans, chunk_offset);
3363 btrfs_end_transaction(trans);
3364 return ret;
3365}
3366
3367static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3368{
3369 struct btrfs_root *chunk_root = fs_info->chunk_root;
3370 struct btrfs_path *path;
3371 struct extent_buffer *leaf;
3372 struct btrfs_chunk *chunk;
3373 struct btrfs_key key;
3374 struct btrfs_key found_key;
3375 u64 chunk_type;
3376 bool retried = false;
3377 int failed = 0;
3378 int ret;
3379
3380 path = btrfs_alloc_path();
3381 if (!path)
3382 return -ENOMEM;
3383
3384again:
3385 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3386 key.offset = (u64)-1;
3387 key.type = BTRFS_CHUNK_ITEM_KEY;
3388
3389 while (1) {
3390 mutex_lock(&fs_info->reclaim_bgs_lock);
3391 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3392 if (ret < 0) {
3393 mutex_unlock(&fs_info->reclaim_bgs_lock);
3394 goto error;
3395 }
3396 BUG_ON(ret == 0); /* Corruption */
3397
3398 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3399 key.type);
3400 if (ret)
3401 mutex_unlock(&fs_info->reclaim_bgs_lock);
3402 if (ret < 0)
3403 goto error;
3404 if (ret > 0)
3405 break;
3406
3407 leaf = path->nodes[0];
3408 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409
3410 chunk = btrfs_item_ptr(leaf, path->slots[0],
3411 struct btrfs_chunk);
3412 chunk_type = btrfs_chunk_type(leaf, chunk);
3413 btrfs_release_path(path);
3414
3415 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3416 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3417 if (ret == -ENOSPC)
3418 failed++;
3419 else
3420 BUG_ON(ret);
3421 }
3422 mutex_unlock(&fs_info->reclaim_bgs_lock);
3423
3424 if (found_key.offset == 0)
3425 break;
3426 key.offset = found_key.offset - 1;
3427 }
3428 ret = 0;
3429 if (failed && !retried) {
3430 failed = 0;
3431 retried = true;
3432 goto again;
3433 } else if (WARN_ON(failed && retried)) {
3434 ret = -ENOSPC;
3435 }
3436error:
3437 btrfs_free_path(path);
3438 return ret;
3439}
3440
3441/*
3442 * return 1 : allocate a data chunk successfully,
3443 * return <0: errors during allocating a data chunk,
3444 * return 0 : no need to allocate a data chunk.
3445 */
3446static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3447 u64 chunk_offset)
3448{
3449 struct btrfs_block_group *cache;
3450 u64 bytes_used;
3451 u64 chunk_type;
3452
3453 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3454 ASSERT(cache);
3455 chunk_type = cache->flags;
3456 btrfs_put_block_group(cache);
3457
3458 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3459 return 0;
3460
3461 spin_lock(&fs_info->data_sinfo->lock);
3462 bytes_used = fs_info->data_sinfo->bytes_used;
3463 spin_unlock(&fs_info->data_sinfo->lock);
3464
3465 if (!bytes_used) {
3466 struct btrfs_trans_handle *trans;
3467 int ret;
3468
3469 trans = btrfs_join_transaction(fs_info->tree_root);
3470 if (IS_ERR(trans))
3471 return PTR_ERR(trans);
3472
3473 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3474 btrfs_end_transaction(trans);
3475 if (ret < 0)
3476 return ret;
3477 return 1;
3478 }
3479
3480 return 0;
3481}
3482
3483static int insert_balance_item(struct btrfs_fs_info *fs_info,
3484 struct btrfs_balance_control *bctl)
3485{
3486 struct btrfs_root *root = fs_info->tree_root;
3487 struct btrfs_trans_handle *trans;
3488 struct btrfs_balance_item *item;
3489 struct btrfs_disk_balance_args disk_bargs;
3490 struct btrfs_path *path;
3491 struct extent_buffer *leaf;
3492 struct btrfs_key key;
3493 int ret, err;
3494
3495 path = btrfs_alloc_path();
3496 if (!path)
3497 return -ENOMEM;
3498
3499 trans = btrfs_start_transaction(root, 0);
3500 if (IS_ERR(trans)) {
3501 btrfs_free_path(path);
3502 return PTR_ERR(trans);
3503 }
3504
3505 key.objectid = BTRFS_BALANCE_OBJECTID;
3506 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3507 key.offset = 0;
3508
3509 ret = btrfs_insert_empty_item(trans, root, path, &key,
3510 sizeof(*item));
3511 if (ret)
3512 goto out;
3513
3514 leaf = path->nodes[0];
3515 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3516
3517 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3518
3519 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3520 btrfs_set_balance_data(leaf, item, &disk_bargs);
3521 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3522 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3523 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3524 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3525
3526 btrfs_set_balance_flags(leaf, item, bctl->flags);
3527
3528 btrfs_mark_buffer_dirty(trans, leaf);
3529out:
3530 btrfs_free_path(path);
3531 err = btrfs_commit_transaction(trans);
3532 if (err && !ret)
3533 ret = err;
3534 return ret;
3535}
3536
3537static int del_balance_item(struct btrfs_fs_info *fs_info)
3538{
3539 struct btrfs_root *root = fs_info->tree_root;
3540 struct btrfs_trans_handle *trans;
3541 struct btrfs_path *path;
3542 struct btrfs_key key;
3543 int ret, err;
3544
3545 path = btrfs_alloc_path();
3546 if (!path)
3547 return -ENOMEM;
3548
3549 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3550 if (IS_ERR(trans)) {
3551 btrfs_free_path(path);
3552 return PTR_ERR(trans);
3553 }
3554
3555 key.objectid = BTRFS_BALANCE_OBJECTID;
3556 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3557 key.offset = 0;
3558
3559 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3560 if (ret < 0)
3561 goto out;
3562 if (ret > 0) {
3563 ret = -ENOENT;
3564 goto out;
3565 }
3566
3567 ret = btrfs_del_item(trans, root, path);
3568out:
3569 btrfs_free_path(path);
3570 err = btrfs_commit_transaction(trans);
3571 if (err && !ret)
3572 ret = err;
3573 return ret;
3574}
3575
3576/*
3577 * This is a heuristic used to reduce the number of chunks balanced on
3578 * resume after balance was interrupted.
3579 */
3580static void update_balance_args(struct btrfs_balance_control *bctl)
3581{
3582 /*
3583 * Turn on soft mode for chunk types that were being converted.
3584 */
3585 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3586 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3587 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3588 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3589 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3590 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3591
3592 /*
3593 * Turn on usage filter if is not already used. The idea is
3594 * that chunks that we have already balanced should be
3595 * reasonably full. Don't do it for chunks that are being
3596 * converted - that will keep us from relocating unconverted
3597 * (albeit full) chunks.
3598 */
3599 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3600 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3601 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3602 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3603 bctl->data.usage = 90;
3604 }
3605 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3606 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3607 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3608 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3609 bctl->sys.usage = 90;
3610 }
3611 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3612 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3613 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3614 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3615 bctl->meta.usage = 90;
3616 }
3617}
3618
3619/*
3620 * Clear the balance status in fs_info and delete the balance item from disk.
3621 */
3622static void reset_balance_state(struct btrfs_fs_info *fs_info)
3623{
3624 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3625 int ret;
3626
3627 BUG_ON(!fs_info->balance_ctl);
3628
3629 spin_lock(&fs_info->balance_lock);
3630 fs_info->balance_ctl = NULL;
3631 spin_unlock(&fs_info->balance_lock);
3632
3633 kfree(bctl);
3634 ret = del_balance_item(fs_info);
3635 if (ret)
3636 btrfs_handle_fs_error(fs_info, ret, NULL);
3637}
3638
3639/*
3640 * Balance filters. Return 1 if chunk should be filtered out
3641 * (should not be balanced).
3642 */
3643static int chunk_profiles_filter(u64 chunk_type,
3644 struct btrfs_balance_args *bargs)
3645{
3646 chunk_type = chunk_to_extended(chunk_type) &
3647 BTRFS_EXTENDED_PROFILE_MASK;
3648
3649 if (bargs->profiles & chunk_type)
3650 return 0;
3651
3652 return 1;
3653}
3654
3655static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3656 struct btrfs_balance_args *bargs)
3657{
3658 struct btrfs_block_group *cache;
3659 u64 chunk_used;
3660 u64 user_thresh_min;
3661 u64 user_thresh_max;
3662 int ret = 1;
3663
3664 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3665 chunk_used = cache->used;
3666
3667 if (bargs->usage_min == 0)
3668 user_thresh_min = 0;
3669 else
3670 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3671
3672 if (bargs->usage_max == 0)
3673 user_thresh_max = 1;
3674 else if (bargs->usage_max > 100)
3675 user_thresh_max = cache->length;
3676 else
3677 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3678
3679 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3680 ret = 0;
3681
3682 btrfs_put_block_group(cache);
3683 return ret;
3684}
3685
3686static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3687 u64 chunk_offset, struct btrfs_balance_args *bargs)
3688{
3689 struct btrfs_block_group *cache;
3690 u64 chunk_used, user_thresh;
3691 int ret = 1;
3692
3693 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3694 chunk_used = cache->used;
3695
3696 if (bargs->usage_min == 0)
3697 user_thresh = 1;
3698 else if (bargs->usage > 100)
3699 user_thresh = cache->length;
3700 else
3701 user_thresh = mult_perc(cache->length, bargs->usage);
3702
3703 if (chunk_used < user_thresh)
3704 ret = 0;
3705
3706 btrfs_put_block_group(cache);
3707 return ret;
3708}
3709
3710static int chunk_devid_filter(struct extent_buffer *leaf,
3711 struct btrfs_chunk *chunk,
3712 struct btrfs_balance_args *bargs)
3713{
3714 struct btrfs_stripe *stripe;
3715 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716 int i;
3717
3718 for (i = 0; i < num_stripes; i++) {
3719 stripe = btrfs_stripe_nr(chunk, i);
3720 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3721 return 0;
3722 }
3723
3724 return 1;
3725}
3726
3727static u64 calc_data_stripes(u64 type, int num_stripes)
3728{
3729 const int index = btrfs_bg_flags_to_raid_index(type);
3730 const int ncopies = btrfs_raid_array[index].ncopies;
3731 const int nparity = btrfs_raid_array[index].nparity;
3732
3733 return (num_stripes - nparity) / ncopies;
3734}
3735
3736/* [pstart, pend) */
3737static int chunk_drange_filter(struct extent_buffer *leaf,
3738 struct btrfs_chunk *chunk,
3739 struct btrfs_balance_args *bargs)
3740{
3741 struct btrfs_stripe *stripe;
3742 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3743 u64 stripe_offset;
3744 u64 stripe_length;
3745 u64 type;
3746 int factor;
3747 int i;
3748
3749 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3750 return 0;
3751
3752 type = btrfs_chunk_type(leaf, chunk);
3753 factor = calc_data_stripes(type, num_stripes);
3754
3755 for (i = 0; i < num_stripes; i++) {
3756 stripe = btrfs_stripe_nr(chunk, i);
3757 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3758 continue;
3759
3760 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3761 stripe_length = btrfs_chunk_length(leaf, chunk);
3762 stripe_length = div_u64(stripe_length, factor);
3763
3764 if (stripe_offset < bargs->pend &&
3765 stripe_offset + stripe_length > bargs->pstart)
3766 return 0;
3767 }
3768
3769 return 1;
3770}
3771
3772/* [vstart, vend) */
3773static int chunk_vrange_filter(struct extent_buffer *leaf,
3774 struct btrfs_chunk *chunk,
3775 u64 chunk_offset,
3776 struct btrfs_balance_args *bargs)
3777{
3778 if (chunk_offset < bargs->vend &&
3779 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3780 /* at least part of the chunk is inside this vrange */
3781 return 0;
3782
3783 return 1;
3784}
3785
3786static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3787 struct btrfs_chunk *chunk,
3788 struct btrfs_balance_args *bargs)
3789{
3790 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3791
3792 if (bargs->stripes_min <= num_stripes
3793 && num_stripes <= bargs->stripes_max)
3794 return 0;
3795
3796 return 1;
3797}
3798
3799static int chunk_soft_convert_filter(u64 chunk_type,
3800 struct btrfs_balance_args *bargs)
3801{
3802 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3803 return 0;
3804
3805 chunk_type = chunk_to_extended(chunk_type) &
3806 BTRFS_EXTENDED_PROFILE_MASK;
3807
3808 if (bargs->target == chunk_type)
3809 return 1;
3810
3811 return 0;
3812}
3813
3814static int should_balance_chunk(struct extent_buffer *leaf,
3815 struct btrfs_chunk *chunk, u64 chunk_offset)
3816{
3817 struct btrfs_fs_info *fs_info = leaf->fs_info;
3818 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3819 struct btrfs_balance_args *bargs = NULL;
3820 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3821
3822 /* type filter */
3823 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3824 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3825 return 0;
3826 }
3827
3828 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3829 bargs = &bctl->data;
3830 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3831 bargs = &bctl->sys;
3832 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3833 bargs = &bctl->meta;
3834
3835 /* profiles filter */
3836 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3837 chunk_profiles_filter(chunk_type, bargs)) {
3838 return 0;
3839 }
3840
3841 /* usage filter */
3842 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3843 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3844 return 0;
3845 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3846 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3847 return 0;
3848 }
3849
3850 /* devid filter */
3851 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3852 chunk_devid_filter(leaf, chunk, bargs)) {
3853 return 0;
3854 }
3855
3856 /* drange filter, makes sense only with devid filter */
3857 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3858 chunk_drange_filter(leaf, chunk, bargs)) {
3859 return 0;
3860 }
3861
3862 /* vrange filter */
3863 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3864 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3865 return 0;
3866 }
3867
3868 /* stripes filter */
3869 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3870 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3871 return 0;
3872 }
3873
3874 /* soft profile changing mode */
3875 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3876 chunk_soft_convert_filter(chunk_type, bargs)) {
3877 return 0;
3878 }
3879
3880 /*
3881 * limited by count, must be the last filter
3882 */
3883 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3884 if (bargs->limit == 0)
3885 return 0;
3886 else
3887 bargs->limit--;
3888 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3889 /*
3890 * Same logic as the 'limit' filter; the minimum cannot be
3891 * determined here because we do not have the global information
3892 * about the count of all chunks that satisfy the filters.
3893 */
3894 if (bargs->limit_max == 0)
3895 return 0;
3896 else
3897 bargs->limit_max--;
3898 }
3899
3900 return 1;
3901}
3902
3903static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3904{
3905 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3906 struct btrfs_root *chunk_root = fs_info->chunk_root;
3907 u64 chunk_type;
3908 struct btrfs_chunk *chunk;
3909 struct btrfs_path *path = NULL;
3910 struct btrfs_key key;
3911 struct btrfs_key found_key;
3912 struct extent_buffer *leaf;
3913 int slot;
3914 int ret;
3915 int enospc_errors = 0;
3916 bool counting = true;
3917 /* The single value limit and min/max limits use the same bytes in the */
3918 u64 limit_data = bctl->data.limit;
3919 u64 limit_meta = bctl->meta.limit;
3920 u64 limit_sys = bctl->sys.limit;
3921 u32 count_data = 0;
3922 u32 count_meta = 0;
3923 u32 count_sys = 0;
3924 int chunk_reserved = 0;
3925
3926 path = btrfs_alloc_path();
3927 if (!path) {
3928 ret = -ENOMEM;
3929 goto error;
3930 }
3931
3932 /* zero out stat counters */
3933 spin_lock(&fs_info->balance_lock);
3934 memset(&bctl->stat, 0, sizeof(bctl->stat));
3935 spin_unlock(&fs_info->balance_lock);
3936again:
3937 if (!counting) {
3938 /*
3939 * The single value limit and min/max limits use the same bytes
3940 * in the
3941 */
3942 bctl->data.limit = limit_data;
3943 bctl->meta.limit = limit_meta;
3944 bctl->sys.limit = limit_sys;
3945 }
3946 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3947 key.offset = (u64)-1;
3948 key.type = BTRFS_CHUNK_ITEM_KEY;
3949
3950 while (1) {
3951 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3952 atomic_read(&fs_info->balance_cancel_req)) {
3953 ret = -ECANCELED;
3954 goto error;
3955 }
3956
3957 mutex_lock(&fs_info->reclaim_bgs_lock);
3958 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3959 if (ret < 0) {
3960 mutex_unlock(&fs_info->reclaim_bgs_lock);
3961 goto error;
3962 }
3963
3964 /*
3965 * this shouldn't happen, it means the last relocate
3966 * failed
3967 */
3968 if (ret == 0)
3969 BUG(); /* FIXME break ? */
3970
3971 ret = btrfs_previous_item(chunk_root, path, 0,
3972 BTRFS_CHUNK_ITEM_KEY);
3973 if (ret) {
3974 mutex_unlock(&fs_info->reclaim_bgs_lock);
3975 ret = 0;
3976 break;
3977 }
3978
3979 leaf = path->nodes[0];
3980 slot = path->slots[0];
3981 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3982
3983 if (found_key.objectid != key.objectid) {
3984 mutex_unlock(&fs_info->reclaim_bgs_lock);
3985 break;
3986 }
3987
3988 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3989 chunk_type = btrfs_chunk_type(leaf, chunk);
3990
3991 if (!counting) {
3992 spin_lock(&fs_info->balance_lock);
3993 bctl->stat.considered++;
3994 spin_unlock(&fs_info->balance_lock);
3995 }
3996
3997 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3998
3999 btrfs_release_path(path);
4000 if (!ret) {
4001 mutex_unlock(&fs_info->reclaim_bgs_lock);
4002 goto loop;
4003 }
4004
4005 if (counting) {
4006 mutex_unlock(&fs_info->reclaim_bgs_lock);
4007 spin_lock(&fs_info->balance_lock);
4008 bctl->stat.expected++;
4009 spin_unlock(&fs_info->balance_lock);
4010
4011 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4012 count_data++;
4013 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4014 count_sys++;
4015 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4016 count_meta++;
4017
4018 goto loop;
4019 }
4020
4021 /*
4022 * Apply limit_min filter, no need to check if the LIMITS
4023 * filter is used, limit_min is 0 by default
4024 */
4025 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4026 count_data < bctl->data.limit_min)
4027 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4028 count_meta < bctl->meta.limit_min)
4029 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4030 count_sys < bctl->sys.limit_min)) {
4031 mutex_unlock(&fs_info->reclaim_bgs_lock);
4032 goto loop;
4033 }
4034
4035 if (!chunk_reserved) {
4036 /*
4037 * We may be relocating the only data chunk we have,
4038 * which could potentially end up with losing data's
4039 * raid profile, so lets allocate an empty one in
4040 * advance.
4041 */
4042 ret = btrfs_may_alloc_data_chunk(fs_info,
4043 found_key.offset);
4044 if (ret < 0) {
4045 mutex_unlock(&fs_info->reclaim_bgs_lock);
4046 goto error;
4047 } else if (ret == 1) {
4048 chunk_reserved = 1;
4049 }
4050 }
4051
4052 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4053 mutex_unlock(&fs_info->reclaim_bgs_lock);
4054 if (ret == -ENOSPC) {
4055 enospc_errors++;
4056 } else if (ret == -ETXTBSY) {
4057 btrfs_info(fs_info,
4058 "skipping relocation of block group %llu due to active swapfile",
4059 found_key.offset);
4060 ret = 0;
4061 } else if (ret) {
4062 goto error;
4063 } else {
4064 spin_lock(&fs_info->balance_lock);
4065 bctl->stat.completed++;
4066 spin_unlock(&fs_info->balance_lock);
4067 }
4068loop:
4069 if (found_key.offset == 0)
4070 break;
4071 key.offset = found_key.offset - 1;
4072 }
4073
4074 if (counting) {
4075 btrfs_release_path(path);
4076 counting = false;
4077 goto again;
4078 }
4079error:
4080 btrfs_free_path(path);
4081 if (enospc_errors) {
4082 btrfs_info(fs_info, "%d enospc errors during balance",
4083 enospc_errors);
4084 if (!ret)
4085 ret = -ENOSPC;
4086 }
4087
4088 return ret;
4089}
4090
4091/*
4092 * See if a given profile is valid and reduced.
4093 *
4094 * @flags: profile to validate
4095 * @extended: if true @flags is treated as an extended profile
4096 */
4097static int alloc_profile_is_valid(u64 flags, int extended)
4098{
4099 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4100 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4101
4102 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4103
4104 /* 1) check that all other bits are zeroed */
4105 if (flags & ~mask)
4106 return 0;
4107
4108 /* 2) see if profile is reduced */
4109 if (flags == 0)
4110 return !extended; /* "0" is valid for usual profiles */
4111
4112 return has_single_bit_set(flags);
4113}
4114
4115/*
4116 * Validate target profile against allowed profiles and return true if it's OK.
4117 * Otherwise print the error message and return false.
4118 */
4119static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4120 const struct btrfs_balance_args *bargs,
4121 u64 allowed, const char *type)
4122{
4123 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4124 return true;
4125
4126 /* Profile is valid and does not have bits outside of the allowed set */
4127 if (alloc_profile_is_valid(bargs->target, 1) &&
4128 (bargs->target & ~allowed) == 0)
4129 return true;
4130
4131 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4132 type, btrfs_bg_type_to_raid_name(bargs->target));
4133 return false;
4134}
4135
4136/*
4137 * Fill @buf with textual description of balance filter flags @bargs, up to
4138 * @size_buf including the terminating null. The output may be trimmed if it
4139 * does not fit into the provided buffer.
4140 */
4141static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4142 u32 size_buf)
4143{
4144 int ret;
4145 u32 size_bp = size_buf;
4146 char *bp = buf;
4147 u64 flags = bargs->flags;
4148 char tmp_buf[128] = {'\0'};
4149
4150 if (!flags)
4151 return;
4152
4153#define CHECK_APPEND_NOARG(a) \
4154 do { \
4155 ret = snprintf(bp, size_bp, (a)); \
4156 if (ret < 0 || ret >= size_bp) \
4157 goto out_overflow; \
4158 size_bp -= ret; \
4159 bp += ret; \
4160 } while (0)
4161
4162#define CHECK_APPEND_1ARG(a, v1) \
4163 do { \
4164 ret = snprintf(bp, size_bp, (a), (v1)); \
4165 if (ret < 0 || ret >= size_bp) \
4166 goto out_overflow; \
4167 size_bp -= ret; \
4168 bp += ret; \
4169 } while (0)
4170
4171#define CHECK_APPEND_2ARG(a, v1, v2) \
4172 do { \
4173 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4174 if (ret < 0 || ret >= size_bp) \
4175 goto out_overflow; \
4176 size_bp -= ret; \
4177 bp += ret; \
4178 } while (0)
4179
4180 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4181 CHECK_APPEND_1ARG("convert=%s,",
4182 btrfs_bg_type_to_raid_name(bargs->target));
4183
4184 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4185 CHECK_APPEND_NOARG("soft,");
4186
4187 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4188 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4189 sizeof(tmp_buf));
4190 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4191 }
4192
4193 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4194 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4195
4196 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4197 CHECK_APPEND_2ARG("usage=%u..%u,",
4198 bargs->usage_min, bargs->usage_max);
4199
4200 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4201 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4202
4203 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4204 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4205 bargs->pstart, bargs->pend);
4206
4207 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4208 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4209 bargs->vstart, bargs->vend);
4210
4211 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4212 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4213
4214 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4215 CHECK_APPEND_2ARG("limit=%u..%u,",
4216 bargs->limit_min, bargs->limit_max);
4217
4218 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4219 CHECK_APPEND_2ARG("stripes=%u..%u,",
4220 bargs->stripes_min, bargs->stripes_max);
4221
4222#undef CHECK_APPEND_2ARG
4223#undef CHECK_APPEND_1ARG
4224#undef CHECK_APPEND_NOARG
4225
4226out_overflow:
4227
4228 if (size_bp < size_buf)
4229 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4230 else
4231 buf[0] = '\0';
4232}
4233
4234static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4235{
4236 u32 size_buf = 1024;
4237 char tmp_buf[192] = {'\0'};
4238 char *buf;
4239 char *bp;
4240 u32 size_bp = size_buf;
4241 int ret;
4242 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4243
4244 buf = kzalloc(size_buf, GFP_KERNEL);
4245 if (!buf)
4246 return;
4247
4248 bp = buf;
4249
4250#define CHECK_APPEND_1ARG(a, v1) \
4251 do { \
4252 ret = snprintf(bp, size_bp, (a), (v1)); \
4253 if (ret < 0 || ret >= size_bp) \
4254 goto out_overflow; \
4255 size_bp -= ret; \
4256 bp += ret; \
4257 } while (0)
4258
4259 if (bctl->flags & BTRFS_BALANCE_FORCE)
4260 CHECK_APPEND_1ARG("%s", "-f ");
4261
4262 if (bctl->flags & BTRFS_BALANCE_DATA) {
4263 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4264 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4265 }
4266
4267 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4268 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4269 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4270 }
4271
4272 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4273 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4274 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4275 }
4276
4277#undef CHECK_APPEND_1ARG
4278
4279out_overflow:
4280
4281 if (size_bp < size_buf)
4282 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4283 btrfs_info(fs_info, "balance: %s %s",
4284 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4285 "resume" : "start", buf);
4286
4287 kfree(buf);
4288}
4289
4290/*
4291 * Should be called with balance mutexe held
4292 */
4293int btrfs_balance(struct btrfs_fs_info *fs_info,
4294 struct btrfs_balance_control *bctl,
4295 struct btrfs_ioctl_balance_args *bargs)
4296{
4297 u64 meta_target, data_target;
4298 u64 allowed;
4299 int mixed = 0;
4300 int ret;
4301 u64 num_devices;
4302 unsigned seq;
4303 bool reducing_redundancy;
4304 bool paused = false;
4305 int i;
4306
4307 if (btrfs_fs_closing(fs_info) ||
4308 atomic_read(&fs_info->balance_pause_req) ||
4309 btrfs_should_cancel_balance(fs_info)) {
4310 ret = -EINVAL;
4311 goto out;
4312 }
4313
4314 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4315 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4316 mixed = 1;
4317
4318 /*
4319 * In case of mixed groups both data and meta should be picked,
4320 * and identical options should be given for both of them.
4321 */
4322 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4323 if (mixed && (bctl->flags & allowed)) {
4324 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4325 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4326 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4327 btrfs_err(fs_info,
4328 "balance: mixed groups data and metadata options must be the same");
4329 ret = -EINVAL;
4330 goto out;
4331 }
4332 }
4333
4334 /*
4335 * rw_devices will not change at the moment, device add/delete/replace
4336 * are exclusive
4337 */
4338 num_devices = fs_info->fs_devices->rw_devices;
4339
4340 /*
4341 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4342 * special bit for it, to make it easier to distinguish. Thus we need
4343 * to set it manually, or balance would refuse the profile.
4344 */
4345 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4346 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4347 if (num_devices >= btrfs_raid_array[i].devs_min)
4348 allowed |= btrfs_raid_array[i].bg_flag;
4349
4350 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4351 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4352 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4353 ret = -EINVAL;
4354 goto out;
4355 }
4356
4357 /*
4358 * Allow to reduce metadata or system integrity only if force set for
4359 * profiles with redundancy (copies, parity)
4360 */
4361 allowed = 0;
4362 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4363 if (btrfs_raid_array[i].ncopies >= 2 ||
4364 btrfs_raid_array[i].tolerated_failures >= 1)
4365 allowed |= btrfs_raid_array[i].bg_flag;
4366 }
4367 do {
4368 seq = read_seqbegin(&fs_info->profiles_lock);
4369
4370 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4371 (fs_info->avail_system_alloc_bits & allowed) &&
4372 !(bctl->sys.target & allowed)) ||
4373 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4374 (fs_info->avail_metadata_alloc_bits & allowed) &&
4375 !(bctl->meta.target & allowed)))
4376 reducing_redundancy = true;
4377 else
4378 reducing_redundancy = false;
4379
4380 /* if we're not converting, the target field is uninitialized */
4381 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4382 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4383 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4384 bctl->data.target : fs_info->avail_data_alloc_bits;
4385 } while (read_seqretry(&fs_info->profiles_lock, seq));
4386
4387 if (reducing_redundancy) {
4388 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4389 btrfs_info(fs_info,
4390 "balance: force reducing metadata redundancy");
4391 } else {
4392 btrfs_err(fs_info,
4393 "balance: reduces metadata redundancy, use --force if you want this");
4394 ret = -EINVAL;
4395 goto out;
4396 }
4397 }
4398
4399 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4400 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4401 btrfs_warn(fs_info,
4402 "balance: metadata profile %s has lower redundancy than data profile %s",
4403 btrfs_bg_type_to_raid_name(meta_target),
4404 btrfs_bg_type_to_raid_name(data_target));
4405 }
4406
4407 ret = insert_balance_item(fs_info, bctl);
4408 if (ret && ret != -EEXIST)
4409 goto out;
4410
4411 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4412 BUG_ON(ret == -EEXIST);
4413 BUG_ON(fs_info->balance_ctl);
4414 spin_lock(&fs_info->balance_lock);
4415 fs_info->balance_ctl = bctl;
4416 spin_unlock(&fs_info->balance_lock);
4417 } else {
4418 BUG_ON(ret != -EEXIST);
4419 spin_lock(&fs_info->balance_lock);
4420 update_balance_args(bctl);
4421 spin_unlock(&fs_info->balance_lock);
4422 }
4423
4424 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4425 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4426 describe_balance_start_or_resume(fs_info);
4427 mutex_unlock(&fs_info->balance_mutex);
4428
4429 ret = __btrfs_balance(fs_info);
4430
4431 mutex_lock(&fs_info->balance_mutex);
4432 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4433 btrfs_info(fs_info, "balance: paused");
4434 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4435 paused = true;
4436 }
4437 /*
4438 * Balance can be canceled by:
4439 *
4440 * - Regular cancel request
4441 * Then ret == -ECANCELED and balance_cancel_req > 0
4442 *
4443 * - Fatal signal to "btrfs" process
4444 * Either the signal caught by wait_reserve_ticket() and callers
4445 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4446 * got -ECANCELED.
4447 * Either way, in this case balance_cancel_req = 0, and
4448 * ret == -EINTR or ret == -ECANCELED.
4449 *
4450 * So here we only check the return value to catch canceled balance.
4451 */
4452 else if (ret == -ECANCELED || ret == -EINTR)
4453 btrfs_info(fs_info, "balance: canceled");
4454 else
4455 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4456
4457 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4458
4459 if (bargs) {
4460 memset(bargs, 0, sizeof(*bargs));
4461 btrfs_update_ioctl_balance_args(fs_info, bargs);
4462 }
4463
4464 /* We didn't pause, we can clean everything up. */
4465 if (!paused) {
4466 reset_balance_state(fs_info);
4467 btrfs_exclop_finish(fs_info);
4468 }
4469
4470 wake_up(&fs_info->balance_wait_q);
4471
4472 return ret;
4473out:
4474 if (bctl->flags & BTRFS_BALANCE_RESUME)
4475 reset_balance_state(fs_info);
4476 else
4477 kfree(bctl);
4478 btrfs_exclop_finish(fs_info);
4479
4480 return ret;
4481}
4482
4483static int balance_kthread(void *data)
4484{
4485 struct btrfs_fs_info *fs_info = data;
4486 int ret = 0;
4487
4488 sb_start_write(fs_info->sb);
4489 mutex_lock(&fs_info->balance_mutex);
4490 if (fs_info->balance_ctl)
4491 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4492 mutex_unlock(&fs_info->balance_mutex);
4493 sb_end_write(fs_info->sb);
4494
4495 return ret;
4496}
4497
4498int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4499{
4500 struct task_struct *tsk;
4501
4502 mutex_lock(&fs_info->balance_mutex);
4503 if (!fs_info->balance_ctl) {
4504 mutex_unlock(&fs_info->balance_mutex);
4505 return 0;
4506 }
4507 mutex_unlock(&fs_info->balance_mutex);
4508
4509 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4510 btrfs_info(fs_info, "balance: resume skipped");
4511 return 0;
4512 }
4513
4514 spin_lock(&fs_info->super_lock);
4515 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4516 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4517 spin_unlock(&fs_info->super_lock);
4518 /*
4519 * A ro->rw remount sequence should continue with the paused balance
4520 * regardless of who pauses it, system or the user as of now, so set
4521 * the resume flag.
4522 */
4523 spin_lock(&fs_info->balance_lock);
4524 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4525 spin_unlock(&fs_info->balance_lock);
4526
4527 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4528 return PTR_ERR_OR_ZERO(tsk);
4529}
4530
4531int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4532{
4533 struct btrfs_balance_control *bctl;
4534 struct btrfs_balance_item *item;
4535 struct btrfs_disk_balance_args disk_bargs;
4536 struct btrfs_path *path;
4537 struct extent_buffer *leaf;
4538 struct btrfs_key key;
4539 int ret;
4540
4541 path = btrfs_alloc_path();
4542 if (!path)
4543 return -ENOMEM;
4544
4545 key.objectid = BTRFS_BALANCE_OBJECTID;
4546 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4547 key.offset = 0;
4548
4549 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4550 if (ret < 0)
4551 goto out;
4552 if (ret > 0) { /* ret = -ENOENT; */
4553 ret = 0;
4554 goto out;
4555 }
4556
4557 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4558 if (!bctl) {
4559 ret = -ENOMEM;
4560 goto out;
4561 }
4562
4563 leaf = path->nodes[0];
4564 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4565
4566 bctl->flags = btrfs_balance_flags(leaf, item);
4567 bctl->flags |= BTRFS_BALANCE_RESUME;
4568
4569 btrfs_balance_data(leaf, item, &disk_bargs);
4570 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4571 btrfs_balance_meta(leaf, item, &disk_bargs);
4572 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4573 btrfs_balance_sys(leaf, item, &disk_bargs);
4574 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4575
4576 /*
4577 * This should never happen, as the paused balance state is recovered
4578 * during mount without any chance of other exclusive ops to collide.
4579 *
4580 * This gives the exclusive op status to balance and keeps in paused
4581 * state until user intervention (cancel or umount). If the ownership
4582 * cannot be assigned, show a message but do not fail. The balance
4583 * is in a paused state and must have fs_info::balance_ctl properly
4584 * set up.
4585 */
4586 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4587 btrfs_warn(fs_info,
4588 "balance: cannot set exclusive op status, resume manually");
4589
4590 btrfs_release_path(path);
4591
4592 mutex_lock(&fs_info->balance_mutex);
4593 BUG_ON(fs_info->balance_ctl);
4594 spin_lock(&fs_info->balance_lock);
4595 fs_info->balance_ctl = bctl;
4596 spin_unlock(&fs_info->balance_lock);
4597 mutex_unlock(&fs_info->balance_mutex);
4598out:
4599 btrfs_free_path(path);
4600 return ret;
4601}
4602
4603int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4604{
4605 int ret = 0;
4606
4607 mutex_lock(&fs_info->balance_mutex);
4608 if (!fs_info->balance_ctl) {
4609 mutex_unlock(&fs_info->balance_mutex);
4610 return -ENOTCONN;
4611 }
4612
4613 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4614 atomic_inc(&fs_info->balance_pause_req);
4615 mutex_unlock(&fs_info->balance_mutex);
4616
4617 wait_event(fs_info->balance_wait_q,
4618 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4619
4620 mutex_lock(&fs_info->balance_mutex);
4621 /* we are good with balance_ctl ripped off from under us */
4622 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4623 atomic_dec(&fs_info->balance_pause_req);
4624 } else {
4625 ret = -ENOTCONN;
4626 }
4627
4628 mutex_unlock(&fs_info->balance_mutex);
4629 return ret;
4630}
4631
4632int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4633{
4634 mutex_lock(&fs_info->balance_mutex);
4635 if (!fs_info->balance_ctl) {
4636 mutex_unlock(&fs_info->balance_mutex);
4637 return -ENOTCONN;
4638 }
4639
4640 /*
4641 * A paused balance with the item stored on disk can be resumed at
4642 * mount time if the mount is read-write. Otherwise it's still paused
4643 * and we must not allow cancelling as it deletes the item.
4644 */
4645 if (sb_rdonly(fs_info->sb)) {
4646 mutex_unlock(&fs_info->balance_mutex);
4647 return -EROFS;
4648 }
4649
4650 atomic_inc(&fs_info->balance_cancel_req);
4651 /*
4652 * if we are running just wait and return, balance item is
4653 * deleted in btrfs_balance in this case
4654 */
4655 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4656 mutex_unlock(&fs_info->balance_mutex);
4657 wait_event(fs_info->balance_wait_q,
4658 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4659 mutex_lock(&fs_info->balance_mutex);
4660 } else {
4661 mutex_unlock(&fs_info->balance_mutex);
4662 /*
4663 * Lock released to allow other waiters to continue, we'll
4664 * reexamine the status again.
4665 */
4666 mutex_lock(&fs_info->balance_mutex);
4667
4668 if (fs_info->balance_ctl) {
4669 reset_balance_state(fs_info);
4670 btrfs_exclop_finish(fs_info);
4671 btrfs_info(fs_info, "balance: canceled");
4672 }
4673 }
4674
4675 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4676 atomic_dec(&fs_info->balance_cancel_req);
4677 mutex_unlock(&fs_info->balance_mutex);
4678 return 0;
4679}
4680
4681int btrfs_uuid_scan_kthread(void *data)
4682{
4683 struct btrfs_fs_info *fs_info = data;
4684 struct btrfs_root *root = fs_info->tree_root;
4685 struct btrfs_key key;
4686 struct btrfs_path *path = NULL;
4687 int ret = 0;
4688 struct extent_buffer *eb;
4689 int slot;
4690 struct btrfs_root_item root_item;
4691 u32 item_size;
4692 struct btrfs_trans_handle *trans = NULL;
4693 bool closing = false;
4694
4695 path = btrfs_alloc_path();
4696 if (!path) {
4697 ret = -ENOMEM;
4698 goto out;
4699 }
4700
4701 key.objectid = 0;
4702 key.type = BTRFS_ROOT_ITEM_KEY;
4703 key.offset = 0;
4704
4705 while (1) {
4706 if (btrfs_fs_closing(fs_info)) {
4707 closing = true;
4708 break;
4709 }
4710 ret = btrfs_search_forward(root, &key, path,
4711 BTRFS_OLDEST_GENERATION);
4712 if (ret) {
4713 if (ret > 0)
4714 ret = 0;
4715 break;
4716 }
4717
4718 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4719 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4720 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4721 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4722 goto skip;
4723
4724 eb = path->nodes[0];
4725 slot = path->slots[0];
4726 item_size = btrfs_item_size(eb, slot);
4727 if (item_size < sizeof(root_item))
4728 goto skip;
4729
4730 read_extent_buffer(eb, &root_item,
4731 btrfs_item_ptr_offset(eb, slot),
4732 (int)sizeof(root_item));
4733 if (btrfs_root_refs(&root_item) == 0)
4734 goto skip;
4735
4736 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4737 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4738 if (trans)
4739 goto update_tree;
4740
4741 btrfs_release_path(path);
4742 /*
4743 * 1 - subvol uuid item
4744 * 1 - received_subvol uuid item
4745 */
4746 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4747 if (IS_ERR(trans)) {
4748 ret = PTR_ERR(trans);
4749 break;
4750 }
4751 continue;
4752 } else {
4753 goto skip;
4754 }
4755update_tree:
4756 btrfs_release_path(path);
4757 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4758 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4759 BTRFS_UUID_KEY_SUBVOL,
4760 key.objectid);
4761 if (ret < 0) {
4762 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4763 ret);
4764 break;
4765 }
4766 }
4767
4768 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4769 ret = btrfs_uuid_tree_add(trans,
4770 root_item.received_uuid,
4771 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4772 key.objectid);
4773 if (ret < 0) {
4774 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4775 ret);
4776 break;
4777 }
4778 }
4779
4780skip:
4781 btrfs_release_path(path);
4782 if (trans) {
4783 ret = btrfs_end_transaction(trans);
4784 trans = NULL;
4785 if (ret)
4786 break;
4787 }
4788
4789 if (key.offset < (u64)-1) {
4790 key.offset++;
4791 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4792 key.offset = 0;
4793 key.type = BTRFS_ROOT_ITEM_KEY;
4794 } else if (key.objectid < (u64)-1) {
4795 key.offset = 0;
4796 key.type = BTRFS_ROOT_ITEM_KEY;
4797 key.objectid++;
4798 } else {
4799 break;
4800 }
4801 cond_resched();
4802 }
4803
4804out:
4805 btrfs_free_path(path);
4806 if (trans && !IS_ERR(trans))
4807 btrfs_end_transaction(trans);
4808 if (ret)
4809 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4810 else if (!closing)
4811 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4812 up(&fs_info->uuid_tree_rescan_sem);
4813 return 0;
4814}
4815
4816int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4817{
4818 struct btrfs_trans_handle *trans;
4819 struct btrfs_root *tree_root = fs_info->tree_root;
4820 struct btrfs_root *uuid_root;
4821 struct task_struct *task;
4822 int ret;
4823
4824 /*
4825 * 1 - root node
4826 * 1 - root item
4827 */
4828 trans = btrfs_start_transaction(tree_root, 2);
4829 if (IS_ERR(trans))
4830 return PTR_ERR(trans);
4831
4832 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4833 if (IS_ERR(uuid_root)) {
4834 ret = PTR_ERR(uuid_root);
4835 btrfs_abort_transaction(trans, ret);
4836 btrfs_end_transaction(trans);
4837 return ret;
4838 }
4839
4840 fs_info->uuid_root = uuid_root;
4841
4842 ret = btrfs_commit_transaction(trans);
4843 if (ret)
4844 return ret;
4845
4846 down(&fs_info->uuid_tree_rescan_sem);
4847 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4848 if (IS_ERR(task)) {
4849 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4850 btrfs_warn(fs_info, "failed to start uuid_scan task");
4851 up(&fs_info->uuid_tree_rescan_sem);
4852 return PTR_ERR(task);
4853 }
4854
4855 return 0;
4856}
4857
4858/*
4859 * shrinking a device means finding all of the device extents past
4860 * the new size, and then following the back refs to the chunks.
4861 * The chunk relocation code actually frees the device extent
4862 */
4863int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4864{
4865 struct btrfs_fs_info *fs_info = device->fs_info;
4866 struct btrfs_root *root = fs_info->dev_root;
4867 struct btrfs_trans_handle *trans;
4868 struct btrfs_dev_extent *dev_extent = NULL;
4869 struct btrfs_path *path;
4870 u64 length;
4871 u64 chunk_offset;
4872 int ret;
4873 int slot;
4874 int failed = 0;
4875 bool retried = false;
4876 struct extent_buffer *l;
4877 struct btrfs_key key;
4878 struct btrfs_super_block *super_copy = fs_info->super_copy;
4879 u64 old_total = btrfs_super_total_bytes(super_copy);
4880 u64 old_size = btrfs_device_get_total_bytes(device);
4881 u64 diff;
4882 u64 start;
4883 u64 free_diff = 0;
4884
4885 new_size = round_down(new_size, fs_info->sectorsize);
4886 start = new_size;
4887 diff = round_down(old_size - new_size, fs_info->sectorsize);
4888
4889 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4890 return -EINVAL;
4891
4892 path = btrfs_alloc_path();
4893 if (!path)
4894 return -ENOMEM;
4895
4896 path->reada = READA_BACK;
4897
4898 trans = btrfs_start_transaction(root, 0);
4899 if (IS_ERR(trans)) {
4900 btrfs_free_path(path);
4901 return PTR_ERR(trans);
4902 }
4903
4904 mutex_lock(&fs_info->chunk_mutex);
4905
4906 btrfs_device_set_total_bytes(device, new_size);
4907 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4908 device->fs_devices->total_rw_bytes -= diff;
4909
4910 /*
4911 * The new free_chunk_space is new_size - used, so we have to
4912 * subtract the delta of the old free_chunk_space which included
4913 * old_size - used. If used > new_size then just subtract this
4914 * entire device's free space.
4915 */
4916 if (device->bytes_used < new_size)
4917 free_diff = (old_size - device->bytes_used) -
4918 (new_size - device->bytes_used);
4919 else
4920 free_diff = old_size - device->bytes_used;
4921 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4922 }
4923
4924 /*
4925 * Once the device's size has been set to the new size, ensure all
4926 * in-memory chunks are synced to disk so that the loop below sees them
4927 * and relocates them accordingly.
4928 */
4929 if (contains_pending_extent(device, &start, diff)) {
4930 mutex_unlock(&fs_info->chunk_mutex);
4931 ret = btrfs_commit_transaction(trans);
4932 if (ret)
4933 goto done;
4934 } else {
4935 mutex_unlock(&fs_info->chunk_mutex);
4936 btrfs_end_transaction(trans);
4937 }
4938
4939again:
4940 key.objectid = device->devid;
4941 key.offset = (u64)-1;
4942 key.type = BTRFS_DEV_EXTENT_KEY;
4943
4944 do {
4945 mutex_lock(&fs_info->reclaim_bgs_lock);
4946 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4947 if (ret < 0) {
4948 mutex_unlock(&fs_info->reclaim_bgs_lock);
4949 goto done;
4950 }
4951
4952 ret = btrfs_previous_item(root, path, 0, key.type);
4953 if (ret) {
4954 mutex_unlock(&fs_info->reclaim_bgs_lock);
4955 if (ret < 0)
4956 goto done;
4957 ret = 0;
4958 btrfs_release_path(path);
4959 break;
4960 }
4961
4962 l = path->nodes[0];
4963 slot = path->slots[0];
4964 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4965
4966 if (key.objectid != device->devid) {
4967 mutex_unlock(&fs_info->reclaim_bgs_lock);
4968 btrfs_release_path(path);
4969 break;
4970 }
4971
4972 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4973 length = btrfs_dev_extent_length(l, dev_extent);
4974
4975 if (key.offset + length <= new_size) {
4976 mutex_unlock(&fs_info->reclaim_bgs_lock);
4977 btrfs_release_path(path);
4978 break;
4979 }
4980
4981 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4982 btrfs_release_path(path);
4983
4984 /*
4985 * We may be relocating the only data chunk we have,
4986 * which could potentially end up with losing data's
4987 * raid profile, so lets allocate an empty one in
4988 * advance.
4989 */
4990 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4991 if (ret < 0) {
4992 mutex_unlock(&fs_info->reclaim_bgs_lock);
4993 goto done;
4994 }
4995
4996 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4997 mutex_unlock(&fs_info->reclaim_bgs_lock);
4998 if (ret == -ENOSPC) {
4999 failed++;
5000 } else if (ret) {
5001 if (ret == -ETXTBSY) {
5002 btrfs_warn(fs_info,
5003 "could not shrink block group %llu due to active swapfile",
5004 chunk_offset);
5005 }
5006 goto done;
5007 }
5008 } while (key.offset-- > 0);
5009
5010 if (failed && !retried) {
5011 failed = 0;
5012 retried = true;
5013 goto again;
5014 } else if (failed && retried) {
5015 ret = -ENOSPC;
5016 goto done;
5017 }
5018
5019 /* Shrinking succeeded, else we would be at "done". */
5020 trans = btrfs_start_transaction(root, 0);
5021 if (IS_ERR(trans)) {
5022 ret = PTR_ERR(trans);
5023 goto done;
5024 }
5025
5026 mutex_lock(&fs_info->chunk_mutex);
5027 /* Clear all state bits beyond the shrunk device size */
5028 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5029 CHUNK_STATE_MASK);
5030
5031 btrfs_device_set_disk_total_bytes(device, new_size);
5032 if (list_empty(&device->post_commit_list))
5033 list_add_tail(&device->post_commit_list,
5034 &trans->transaction->dev_update_list);
5035
5036 WARN_ON(diff > old_total);
5037 btrfs_set_super_total_bytes(super_copy,
5038 round_down(old_total - diff, fs_info->sectorsize));
5039 mutex_unlock(&fs_info->chunk_mutex);
5040
5041 btrfs_reserve_chunk_metadata(trans, false);
5042 /* Now btrfs_update_device() will change the on-disk size. */
5043 ret = btrfs_update_device(trans, device);
5044 btrfs_trans_release_chunk_metadata(trans);
5045 if (ret < 0) {
5046 btrfs_abort_transaction(trans, ret);
5047 btrfs_end_transaction(trans);
5048 } else {
5049 ret = btrfs_commit_transaction(trans);
5050 }
5051done:
5052 btrfs_free_path(path);
5053 if (ret) {
5054 mutex_lock(&fs_info->chunk_mutex);
5055 btrfs_device_set_total_bytes(device, old_size);
5056 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5057 device->fs_devices->total_rw_bytes += diff;
5058 atomic64_add(free_diff, &fs_info->free_chunk_space);
5059 }
5060 mutex_unlock(&fs_info->chunk_mutex);
5061 }
5062 return ret;
5063}
5064
5065static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5066 struct btrfs_key *key,
5067 struct btrfs_chunk *chunk, int item_size)
5068{
5069 struct btrfs_super_block *super_copy = fs_info->super_copy;
5070 struct btrfs_disk_key disk_key;
5071 u32 array_size;
5072 u8 *ptr;
5073
5074 lockdep_assert_held(&fs_info->chunk_mutex);
5075
5076 array_size = btrfs_super_sys_array_size(super_copy);
5077 if (array_size + item_size + sizeof(disk_key)
5078 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5079 return -EFBIG;
5080
5081 ptr = super_copy->sys_chunk_array + array_size;
5082 btrfs_cpu_key_to_disk(&disk_key, key);
5083 memcpy(ptr, &disk_key, sizeof(disk_key));
5084 ptr += sizeof(disk_key);
5085 memcpy(ptr, chunk, item_size);
5086 item_size += sizeof(disk_key);
5087 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5088
5089 return 0;
5090}
5091
5092/*
5093 * sort the devices in descending order by max_avail, total_avail
5094 */
5095static int btrfs_cmp_device_info(const void *a, const void *b)
5096{
5097 const struct btrfs_device_info *di_a = a;
5098 const struct btrfs_device_info *di_b = b;
5099
5100 if (di_a->max_avail > di_b->max_avail)
5101 return -1;
5102 if (di_a->max_avail < di_b->max_avail)
5103 return 1;
5104 if (di_a->total_avail > di_b->total_avail)
5105 return -1;
5106 if (di_a->total_avail < di_b->total_avail)
5107 return 1;
5108 return 0;
5109}
5110
5111static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5112{
5113 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5114 return;
5115
5116 btrfs_set_fs_incompat(info, RAID56);
5117}
5118
5119static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5120{
5121 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5122 return;
5123
5124 btrfs_set_fs_incompat(info, RAID1C34);
5125}
5126
5127/*
5128 * Structure used internally for btrfs_create_chunk() function.
5129 * Wraps needed parameters.
5130 */
5131struct alloc_chunk_ctl {
5132 u64 start;
5133 u64 type;
5134 /* Total number of stripes to allocate */
5135 int num_stripes;
5136 /* sub_stripes info for map */
5137 int sub_stripes;
5138 /* Stripes per device */
5139 int dev_stripes;
5140 /* Maximum number of devices to use */
5141 int devs_max;
5142 /* Minimum number of devices to use */
5143 int devs_min;
5144 /* ndevs has to be a multiple of this */
5145 int devs_increment;
5146 /* Number of copies */
5147 int ncopies;
5148 /* Number of stripes worth of bytes to store parity information */
5149 int nparity;
5150 u64 max_stripe_size;
5151 u64 max_chunk_size;
5152 u64 dev_extent_min;
5153 u64 stripe_size;
5154 u64 chunk_size;
5155 int ndevs;
5156};
5157
5158static void init_alloc_chunk_ctl_policy_regular(
5159 struct btrfs_fs_devices *fs_devices,
5160 struct alloc_chunk_ctl *ctl)
5161{
5162 struct btrfs_space_info *space_info;
5163
5164 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5165 ASSERT(space_info);
5166
5167 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5168 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5169
5170 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5171 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5172
5173 /* We don't want a chunk larger than 10% of writable space */
5174 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5175 ctl->max_chunk_size);
5176 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5177}
5178
5179static void init_alloc_chunk_ctl_policy_zoned(
5180 struct btrfs_fs_devices *fs_devices,
5181 struct alloc_chunk_ctl *ctl)
5182{
5183 u64 zone_size = fs_devices->fs_info->zone_size;
5184 u64 limit;
5185 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5186 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5187 u64 min_chunk_size = min_data_stripes * zone_size;
5188 u64 type = ctl->type;
5189
5190 ctl->max_stripe_size = zone_size;
5191 if (type & BTRFS_BLOCK_GROUP_DATA) {
5192 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5193 zone_size);
5194 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5195 ctl->max_chunk_size = ctl->max_stripe_size;
5196 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5197 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5198 ctl->devs_max = min_t(int, ctl->devs_max,
5199 BTRFS_MAX_DEVS_SYS_CHUNK);
5200 } else {
5201 BUG();
5202 }
5203
5204 /* We don't want a chunk larger than 10% of writable space */
5205 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5206 zone_size),
5207 min_chunk_size);
5208 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5209 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5210}
5211
5212static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5213 struct alloc_chunk_ctl *ctl)
5214{
5215 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5216
5217 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5218 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5219 ctl->devs_max = btrfs_raid_array[index].devs_max;
5220 if (!ctl->devs_max)
5221 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5222 ctl->devs_min = btrfs_raid_array[index].devs_min;
5223 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5224 ctl->ncopies = btrfs_raid_array[index].ncopies;
5225 ctl->nparity = btrfs_raid_array[index].nparity;
5226 ctl->ndevs = 0;
5227
5228 switch (fs_devices->chunk_alloc_policy) {
5229 case BTRFS_CHUNK_ALLOC_REGULAR:
5230 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5231 break;
5232 case BTRFS_CHUNK_ALLOC_ZONED:
5233 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5234 break;
5235 default:
5236 BUG();
5237 }
5238}
5239
5240static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5241 struct alloc_chunk_ctl *ctl,
5242 struct btrfs_device_info *devices_info)
5243{
5244 struct btrfs_fs_info *info = fs_devices->fs_info;
5245 struct btrfs_device *device;
5246 u64 total_avail;
5247 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5248 int ret;
5249 int ndevs = 0;
5250 u64 max_avail;
5251 u64 dev_offset;
5252
5253 /*
5254 * in the first pass through the devices list, we gather information
5255 * about the available holes on each device.
5256 */
5257 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5258 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5259 WARN(1, KERN_ERR
5260 "BTRFS: read-only device in alloc_list\n");
5261 continue;
5262 }
5263
5264 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5265 &device->dev_state) ||
5266 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5267 continue;
5268
5269 if (device->total_bytes > device->bytes_used)
5270 total_avail = device->total_bytes - device->bytes_used;
5271 else
5272 total_avail = 0;
5273
5274 /* If there is no space on this device, skip it. */
5275 if (total_avail < ctl->dev_extent_min)
5276 continue;
5277
5278 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5279 &max_avail);
5280 if (ret && ret != -ENOSPC)
5281 return ret;
5282
5283 if (ret == 0)
5284 max_avail = dev_extent_want;
5285
5286 if (max_avail < ctl->dev_extent_min) {
5287 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5288 btrfs_debug(info,
5289 "%s: devid %llu has no free space, have=%llu want=%llu",
5290 __func__, device->devid, max_avail,
5291 ctl->dev_extent_min);
5292 continue;
5293 }
5294
5295 if (ndevs == fs_devices->rw_devices) {
5296 WARN(1, "%s: found more than %llu devices\n",
5297 __func__, fs_devices->rw_devices);
5298 break;
5299 }
5300 devices_info[ndevs].dev_offset = dev_offset;
5301 devices_info[ndevs].max_avail = max_avail;
5302 devices_info[ndevs].total_avail = total_avail;
5303 devices_info[ndevs].dev = device;
5304 ++ndevs;
5305 }
5306 ctl->ndevs = ndevs;
5307
5308 /*
5309 * now sort the devices by hole size / available space
5310 */
5311 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5312 btrfs_cmp_device_info, NULL);
5313
5314 return 0;
5315}
5316
5317static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5318 struct btrfs_device_info *devices_info)
5319{
5320 /* Number of stripes that count for block group size */
5321 int data_stripes;
5322
5323 /*
5324 * The primary goal is to maximize the number of stripes, so use as
5325 * many devices as possible, even if the stripes are not maximum sized.
5326 *
5327 * The DUP profile stores more than one stripe per device, the
5328 * max_avail is the total size so we have to adjust.
5329 */
5330 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5331 ctl->dev_stripes);
5332 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5333
5334 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5335 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5336
5337 /*
5338 * Use the number of data stripes to figure out how big this chunk is
5339 * really going to be in terms of logical address space, and compare
5340 * that answer with the max chunk size. If it's higher, we try to
5341 * reduce stripe_size.
5342 */
5343 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5344 /*
5345 * Reduce stripe_size, round it up to a 16MB boundary again and
5346 * then use it, unless it ends up being even bigger than the
5347 * previous value we had already.
5348 */
5349 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5350 data_stripes), SZ_16M),
5351 ctl->stripe_size);
5352 }
5353
5354 /* Stripe size should not go beyond 1G. */
5355 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5356
5357 /* Align to BTRFS_STRIPE_LEN */
5358 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5359 ctl->chunk_size = ctl->stripe_size * data_stripes;
5360
5361 return 0;
5362}
5363
5364static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5365 struct btrfs_device_info *devices_info)
5366{
5367 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5368 /* Number of stripes that count for block group size */
5369 int data_stripes;
5370
5371 /*
5372 * It should hold because:
5373 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5374 */
5375 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5376
5377 ctl->stripe_size = zone_size;
5378 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5379 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5380
5381 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5382 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5383 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5384 ctl->stripe_size) + ctl->nparity,
5385 ctl->dev_stripes);
5386 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5387 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5388 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5389 }
5390
5391 ctl->chunk_size = ctl->stripe_size * data_stripes;
5392
5393 return 0;
5394}
5395
5396static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5397 struct alloc_chunk_ctl *ctl,
5398 struct btrfs_device_info *devices_info)
5399{
5400 struct btrfs_fs_info *info = fs_devices->fs_info;
5401
5402 /*
5403 * Round down to number of usable stripes, devs_increment can be any
5404 * number so we can't use round_down() that requires power of 2, while
5405 * rounddown is safe.
5406 */
5407 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5408
5409 if (ctl->ndevs < ctl->devs_min) {
5410 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5411 btrfs_debug(info,
5412 "%s: not enough devices with free space: have=%d minimum required=%d",
5413 __func__, ctl->ndevs, ctl->devs_min);
5414 }
5415 return -ENOSPC;
5416 }
5417
5418 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5419
5420 switch (fs_devices->chunk_alloc_policy) {
5421 case BTRFS_CHUNK_ALLOC_REGULAR:
5422 return decide_stripe_size_regular(ctl, devices_info);
5423 case BTRFS_CHUNK_ALLOC_ZONED:
5424 return decide_stripe_size_zoned(ctl, devices_info);
5425 default:
5426 BUG();
5427 }
5428}
5429
5430static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5431{
5432 for (int i = 0; i < map->num_stripes; i++) {
5433 struct btrfs_io_stripe *stripe = &map->stripes[i];
5434 struct btrfs_device *device = stripe->dev;
5435
5436 set_extent_bit(&device->alloc_state, stripe->physical,
5437 stripe->physical + map->stripe_size - 1,
5438 bits | EXTENT_NOWAIT, NULL);
5439 }
5440}
5441
5442static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5443{
5444 for (int i = 0; i < map->num_stripes; i++) {
5445 struct btrfs_io_stripe *stripe = &map->stripes[i];
5446 struct btrfs_device *device = stripe->dev;
5447
5448 __clear_extent_bit(&device->alloc_state, stripe->physical,
5449 stripe->physical + map->stripe_size - 1,
5450 bits | EXTENT_NOWAIT,
5451 NULL, NULL);
5452 }
5453}
5454
5455void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5456{
5457 write_lock(&fs_info->mapping_tree_lock);
5458 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5459 RB_CLEAR_NODE(&map->rb_node);
5460 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5461 write_unlock(&fs_info->mapping_tree_lock);
5462
5463 /* Once for the tree reference. */
5464 btrfs_free_chunk_map(map);
5465}
5466
5467EXPORT_FOR_TESTS
5468int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5469{
5470 struct rb_node **p;
5471 struct rb_node *parent = NULL;
5472 bool leftmost = true;
5473
5474 write_lock(&fs_info->mapping_tree_lock);
5475 p = &fs_info->mapping_tree.rb_root.rb_node;
5476 while (*p) {
5477 struct btrfs_chunk_map *entry;
5478
5479 parent = *p;
5480 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5481
5482 if (map->start < entry->start) {
5483 p = &(*p)->rb_left;
5484 } else if (map->start > entry->start) {
5485 p = &(*p)->rb_right;
5486 leftmost = false;
5487 } else {
5488 write_unlock(&fs_info->mapping_tree_lock);
5489 return -EEXIST;
5490 }
5491 }
5492 rb_link_node(&map->rb_node, parent, p);
5493 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5494 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5495 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5496 write_unlock(&fs_info->mapping_tree_lock);
5497
5498 return 0;
5499}
5500
5501EXPORT_FOR_TESTS
5502struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5503{
5504 struct btrfs_chunk_map *map;
5505
5506 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5507 if (!map)
5508 return NULL;
5509
5510 refcount_set(&map->refs, 1);
5511 RB_CLEAR_NODE(&map->rb_node);
5512
5513 return map;
5514}
5515
5516struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp)
5517{
5518 const int size = btrfs_chunk_map_size(map->num_stripes);
5519 struct btrfs_chunk_map *clone;
5520
5521 clone = kmemdup(map, size, gfp);
5522 if (!clone)
5523 return NULL;
5524
5525 refcount_set(&clone->refs, 1);
5526 RB_CLEAR_NODE(&clone->rb_node);
5527
5528 return clone;
5529}
5530
5531static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5532 struct alloc_chunk_ctl *ctl,
5533 struct btrfs_device_info *devices_info)
5534{
5535 struct btrfs_fs_info *info = trans->fs_info;
5536 struct btrfs_chunk_map *map;
5537 struct btrfs_block_group *block_group;
5538 u64 start = ctl->start;
5539 u64 type = ctl->type;
5540 int ret;
5541 int i;
5542 int j;
5543
5544 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5545 if (!map)
5546 return ERR_PTR(-ENOMEM);
5547
5548 map->start = start;
5549 map->chunk_len = ctl->chunk_size;
5550 map->stripe_size = ctl->stripe_size;
5551 map->type = type;
5552 map->io_align = BTRFS_STRIPE_LEN;
5553 map->io_width = BTRFS_STRIPE_LEN;
5554 map->sub_stripes = ctl->sub_stripes;
5555 map->num_stripes = ctl->num_stripes;
5556
5557 for (i = 0; i < ctl->ndevs; ++i) {
5558 for (j = 0; j < ctl->dev_stripes; ++j) {
5559 int s = i * ctl->dev_stripes + j;
5560 map->stripes[s].dev = devices_info[i].dev;
5561 map->stripes[s].physical = devices_info[i].dev_offset +
5562 j * ctl->stripe_size;
5563 }
5564 }
5565
5566 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5567
5568 ret = btrfs_add_chunk_map(info, map);
5569 if (ret) {
5570 btrfs_free_chunk_map(map);
5571 return ERR_PTR(ret);
5572 }
5573
5574 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5575 if (IS_ERR(block_group)) {
5576 btrfs_remove_chunk_map(info, map);
5577 return block_group;
5578 }
5579
5580 for (int i = 0; i < map->num_stripes; i++) {
5581 struct btrfs_device *dev = map->stripes[i].dev;
5582
5583 btrfs_device_set_bytes_used(dev,
5584 dev->bytes_used + ctl->stripe_size);
5585 if (list_empty(&dev->post_commit_list))
5586 list_add_tail(&dev->post_commit_list,
5587 &trans->transaction->dev_update_list);
5588 }
5589
5590 atomic64_sub(ctl->stripe_size * map->num_stripes,
5591 &info->free_chunk_space);
5592
5593 check_raid56_incompat_flag(info, type);
5594 check_raid1c34_incompat_flag(info, type);
5595
5596 return block_group;
5597}
5598
5599struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5600 u64 type)
5601{
5602 struct btrfs_fs_info *info = trans->fs_info;
5603 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5604 struct btrfs_device_info *devices_info = NULL;
5605 struct alloc_chunk_ctl ctl;
5606 struct btrfs_block_group *block_group;
5607 int ret;
5608
5609 lockdep_assert_held(&info->chunk_mutex);
5610
5611 if (!alloc_profile_is_valid(type, 0)) {
5612 ASSERT(0);
5613 return ERR_PTR(-EINVAL);
5614 }
5615
5616 if (list_empty(&fs_devices->alloc_list)) {
5617 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5618 btrfs_debug(info, "%s: no writable device", __func__);
5619 return ERR_PTR(-ENOSPC);
5620 }
5621
5622 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5623 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5624 ASSERT(0);
5625 return ERR_PTR(-EINVAL);
5626 }
5627
5628 ctl.start = find_next_chunk(info);
5629 ctl.type = type;
5630 init_alloc_chunk_ctl(fs_devices, &ctl);
5631
5632 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5633 GFP_NOFS);
5634 if (!devices_info)
5635 return ERR_PTR(-ENOMEM);
5636
5637 ret = gather_device_info(fs_devices, &ctl, devices_info);
5638 if (ret < 0) {
5639 block_group = ERR_PTR(ret);
5640 goto out;
5641 }
5642
5643 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5644 if (ret < 0) {
5645 block_group = ERR_PTR(ret);
5646 goto out;
5647 }
5648
5649 block_group = create_chunk(trans, &ctl, devices_info);
5650
5651out:
5652 kfree(devices_info);
5653 return block_group;
5654}
5655
5656/*
5657 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5658 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5659 * chunks.
5660 *
5661 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5662 * phases.
5663 */
5664int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5665 struct btrfs_block_group *bg)
5666{
5667 struct btrfs_fs_info *fs_info = trans->fs_info;
5668 struct btrfs_root *chunk_root = fs_info->chunk_root;
5669 struct btrfs_key key;
5670 struct btrfs_chunk *chunk;
5671 struct btrfs_stripe *stripe;
5672 struct btrfs_chunk_map *map;
5673 size_t item_size;
5674 int i;
5675 int ret;
5676
5677 /*
5678 * We take the chunk_mutex for 2 reasons:
5679 *
5680 * 1) Updates and insertions in the chunk btree must be done while holding
5681 * the chunk_mutex, as well as updating the system chunk array in the
5682 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5683 * details;
5684 *
5685 * 2) To prevent races with the final phase of a device replace operation
5686 * that replaces the device object associated with the map's stripes,
5687 * because the device object's id can change at any time during that
5688 * final phase of the device replace operation
5689 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5690 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5691 * which would cause a failure when updating the device item, which does
5692 * not exists, or persisting a stripe of the chunk item with such ID.
5693 * Here we can't use the device_list_mutex because our caller already
5694 * has locked the chunk_mutex, and the final phase of device replace
5695 * acquires both mutexes - first the device_list_mutex and then the
5696 * chunk_mutex. Using any of those two mutexes protects us from a
5697 * concurrent device replace.
5698 */
5699 lockdep_assert_held(&fs_info->chunk_mutex);
5700
5701 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5702 if (IS_ERR(map)) {
5703 ret = PTR_ERR(map);
5704 btrfs_abort_transaction(trans, ret);
5705 return ret;
5706 }
5707
5708 item_size = btrfs_chunk_item_size(map->num_stripes);
5709
5710 chunk = kzalloc(item_size, GFP_NOFS);
5711 if (!chunk) {
5712 ret = -ENOMEM;
5713 btrfs_abort_transaction(trans, ret);
5714 goto out;
5715 }
5716
5717 for (i = 0; i < map->num_stripes; i++) {
5718 struct btrfs_device *device = map->stripes[i].dev;
5719
5720 ret = btrfs_update_device(trans, device);
5721 if (ret)
5722 goto out;
5723 }
5724
5725 stripe = &chunk->stripe;
5726 for (i = 0; i < map->num_stripes; i++) {
5727 struct btrfs_device *device = map->stripes[i].dev;
5728 const u64 dev_offset = map->stripes[i].physical;
5729
5730 btrfs_set_stack_stripe_devid(stripe, device->devid);
5731 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5732 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5733 stripe++;
5734 }
5735
5736 btrfs_set_stack_chunk_length(chunk, bg->length);
5737 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5738 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5739 btrfs_set_stack_chunk_type(chunk, map->type);
5740 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5741 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5742 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5743 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5744 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5745
5746 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5747 key.type = BTRFS_CHUNK_ITEM_KEY;
5748 key.offset = bg->start;
5749
5750 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5751 if (ret)
5752 goto out;
5753
5754 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5755
5756 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5757 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5758 if (ret)
5759 goto out;
5760 }
5761
5762out:
5763 kfree(chunk);
5764 btrfs_free_chunk_map(map);
5765 return ret;
5766}
5767
5768static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5769{
5770 struct btrfs_fs_info *fs_info = trans->fs_info;
5771 u64 alloc_profile;
5772 struct btrfs_block_group *meta_bg;
5773 struct btrfs_block_group *sys_bg;
5774
5775 /*
5776 * When adding a new device for sprouting, the seed device is read-only
5777 * so we must first allocate a metadata and a system chunk. But before
5778 * adding the block group items to the extent, device and chunk btrees,
5779 * we must first:
5780 *
5781 * 1) Create both chunks without doing any changes to the btrees, as
5782 * otherwise we would get -ENOSPC since the block groups from the
5783 * seed device are read-only;
5784 *
5785 * 2) Add the device item for the new sprout device - finishing the setup
5786 * of a new block group requires updating the device item in the chunk
5787 * btree, so it must exist when we attempt to do it. The previous step
5788 * ensures this does not fail with -ENOSPC.
5789 *
5790 * After that we can add the block group items to their btrees:
5791 * update existing device item in the chunk btree, add a new block group
5792 * item to the extent btree, add a new chunk item to the chunk btree and
5793 * finally add the new device extent items to the devices btree.
5794 */
5795
5796 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5797 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5798 if (IS_ERR(meta_bg))
5799 return PTR_ERR(meta_bg);
5800
5801 alloc_profile = btrfs_system_alloc_profile(fs_info);
5802 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5803 if (IS_ERR(sys_bg))
5804 return PTR_ERR(sys_bg);
5805
5806 return 0;
5807}
5808
5809static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5810{
5811 const int index = btrfs_bg_flags_to_raid_index(map->type);
5812
5813 return btrfs_raid_array[index].tolerated_failures;
5814}
5815
5816bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5817{
5818 struct btrfs_chunk_map *map;
5819 int miss_ndevs = 0;
5820 int i;
5821 bool ret = true;
5822
5823 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5824 if (IS_ERR(map))
5825 return false;
5826
5827 for (i = 0; i < map->num_stripes; i++) {
5828 if (test_bit(BTRFS_DEV_STATE_MISSING,
5829 &map->stripes[i].dev->dev_state)) {
5830 miss_ndevs++;
5831 continue;
5832 }
5833 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5834 &map->stripes[i].dev->dev_state)) {
5835 ret = false;
5836 goto end;
5837 }
5838 }
5839
5840 /*
5841 * If the number of missing devices is larger than max errors, we can
5842 * not write the data into that chunk successfully.
5843 */
5844 if (miss_ndevs > btrfs_chunk_max_errors(map))
5845 ret = false;
5846end:
5847 btrfs_free_chunk_map(map);
5848 return ret;
5849}
5850
5851void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5852{
5853 write_lock(&fs_info->mapping_tree_lock);
5854 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5855 struct btrfs_chunk_map *map;
5856 struct rb_node *node;
5857
5858 node = rb_first_cached(&fs_info->mapping_tree);
5859 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5860 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5861 RB_CLEAR_NODE(&map->rb_node);
5862 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5863 /* Once for the tree ref. */
5864 btrfs_free_chunk_map(map);
5865 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5866 }
5867 write_unlock(&fs_info->mapping_tree_lock);
5868}
5869
5870int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5871{
5872 struct btrfs_chunk_map *map;
5873 enum btrfs_raid_types index;
5874 int ret = 1;
5875
5876 map = btrfs_get_chunk_map(fs_info, logical, len);
5877 if (IS_ERR(map))
5878 /*
5879 * We could return errors for these cases, but that could get
5880 * ugly and we'd probably do the same thing which is just not do
5881 * anything else and exit, so return 1 so the callers don't try
5882 * to use other copies.
5883 */
5884 return 1;
5885
5886 index = btrfs_bg_flags_to_raid_index(map->type);
5887
5888 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5889 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5890 ret = btrfs_raid_array[index].ncopies;
5891 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5892 ret = 2;
5893 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5894 /*
5895 * There could be two corrupted data stripes, we need
5896 * to loop retry in order to rebuild the correct data.
5897 *
5898 * Fail a stripe at a time on every retry except the
5899 * stripe under reconstruction.
5900 */
5901 ret = map->num_stripes;
5902 btrfs_free_chunk_map(map);
5903 return ret;
5904}
5905
5906unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5907 u64 logical)
5908{
5909 struct btrfs_chunk_map *map;
5910 unsigned long len = fs_info->sectorsize;
5911
5912 if (!btrfs_fs_incompat(fs_info, RAID56))
5913 return len;
5914
5915 map = btrfs_get_chunk_map(fs_info, logical, len);
5916
5917 if (!WARN_ON(IS_ERR(map))) {
5918 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5919 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5920 btrfs_free_chunk_map(map);
5921 }
5922 return len;
5923}
5924
5925int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5926{
5927 struct btrfs_chunk_map *map;
5928 int ret = 0;
5929
5930 if (!btrfs_fs_incompat(fs_info, RAID56))
5931 return 0;
5932
5933 map = btrfs_get_chunk_map(fs_info, logical, len);
5934
5935 if (!WARN_ON(IS_ERR(map))) {
5936 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5937 ret = 1;
5938 btrfs_free_chunk_map(map);
5939 }
5940 return ret;
5941}
5942
5943static int find_live_mirror(struct btrfs_fs_info *fs_info,
5944 struct btrfs_chunk_map *map, int first,
5945 int dev_replace_is_ongoing)
5946{
5947 int i;
5948 int num_stripes;
5949 int preferred_mirror;
5950 int tolerance;
5951 struct btrfs_device *srcdev;
5952
5953 ASSERT((map->type &
5954 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5955
5956 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5957 num_stripes = map->sub_stripes;
5958 else
5959 num_stripes = map->num_stripes;
5960
5961 switch (fs_info->fs_devices->read_policy) {
5962 default:
5963 /* Shouldn't happen, just warn and use pid instead of failing */
5964 btrfs_warn_rl(fs_info,
5965 "unknown read_policy type %u, reset to pid",
5966 fs_info->fs_devices->read_policy);
5967 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5968 fallthrough;
5969 case BTRFS_READ_POLICY_PID:
5970 preferred_mirror = first + (current->pid % num_stripes);
5971 break;
5972 }
5973
5974 if (dev_replace_is_ongoing &&
5975 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5976 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5977 srcdev = fs_info->dev_replace.srcdev;
5978 else
5979 srcdev = NULL;
5980
5981 /*
5982 * try to avoid the drive that is the source drive for a
5983 * dev-replace procedure, only choose it if no other non-missing
5984 * mirror is available
5985 */
5986 for (tolerance = 0; tolerance < 2; tolerance++) {
5987 if (map->stripes[preferred_mirror].dev->bdev &&
5988 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5989 return preferred_mirror;
5990 for (i = first; i < first + num_stripes; i++) {
5991 if (map->stripes[i].dev->bdev &&
5992 (tolerance || map->stripes[i].dev != srcdev))
5993 return i;
5994 }
5995 }
5996
5997 /* we couldn't find one that doesn't fail. Just return something
5998 * and the io error handling code will clean up eventually
5999 */
6000 return preferred_mirror;
6001}
6002
6003static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6004 u64 logical,
6005 u16 total_stripes)
6006{
6007 struct btrfs_io_context *bioc;
6008
6009 bioc = kzalloc(
6010 /* The size of btrfs_io_context */
6011 sizeof(struct btrfs_io_context) +
6012 /* Plus the variable array for the stripes */
6013 sizeof(struct btrfs_io_stripe) * (total_stripes),
6014 GFP_NOFS);
6015
6016 if (!bioc)
6017 return NULL;
6018
6019 refcount_set(&bioc->refs, 1);
6020
6021 bioc->fs_info = fs_info;
6022 bioc->replace_stripe_src = -1;
6023 bioc->full_stripe_logical = (u64)-1;
6024 bioc->logical = logical;
6025
6026 return bioc;
6027}
6028
6029void btrfs_get_bioc(struct btrfs_io_context *bioc)
6030{
6031 WARN_ON(!refcount_read(&bioc->refs));
6032 refcount_inc(&bioc->refs);
6033}
6034
6035void btrfs_put_bioc(struct btrfs_io_context *bioc)
6036{
6037 if (!bioc)
6038 return;
6039 if (refcount_dec_and_test(&bioc->refs))
6040 kfree(bioc);
6041}
6042
6043/*
6044 * Please note that, discard won't be sent to target device of device
6045 * replace.
6046 */
6047struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6048 u64 logical, u64 *length_ret,
6049 u32 *num_stripes)
6050{
6051 struct btrfs_chunk_map *map;
6052 struct btrfs_discard_stripe *stripes;
6053 u64 length = *length_ret;
6054 u64 offset;
6055 u32 stripe_nr;
6056 u32 stripe_nr_end;
6057 u32 stripe_cnt;
6058 u64 stripe_end_offset;
6059 u64 stripe_offset;
6060 u32 stripe_index;
6061 u32 factor = 0;
6062 u32 sub_stripes = 0;
6063 u32 stripes_per_dev = 0;
6064 u32 remaining_stripes = 0;
6065 u32 last_stripe = 0;
6066 int ret;
6067 int i;
6068
6069 map = btrfs_get_chunk_map(fs_info, logical, length);
6070 if (IS_ERR(map))
6071 return ERR_CAST(map);
6072
6073 /* we don't discard raid56 yet */
6074 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6075 ret = -EOPNOTSUPP;
6076 goto out_free_map;
6077 }
6078
6079 offset = logical - map->start;
6080 length = min_t(u64, map->start + map->chunk_len - logical, length);
6081 *length_ret = length;
6082
6083 /*
6084 * stripe_nr counts the total number of stripes we have to stride
6085 * to get to this block
6086 */
6087 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6088
6089 /* stripe_offset is the offset of this block in its stripe */
6090 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6091
6092 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6093 BTRFS_STRIPE_LEN_SHIFT;
6094 stripe_cnt = stripe_nr_end - stripe_nr;
6095 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6096 (offset + length);
6097 /*
6098 * after this, stripe_nr is the number of stripes on this
6099 * device we have to walk to find the data, and stripe_index is
6100 * the number of our device in the stripe array
6101 */
6102 *num_stripes = 1;
6103 stripe_index = 0;
6104 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6105 BTRFS_BLOCK_GROUP_RAID10)) {
6106 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6107 sub_stripes = 1;
6108 else
6109 sub_stripes = map->sub_stripes;
6110
6111 factor = map->num_stripes / sub_stripes;
6112 *num_stripes = min_t(u64, map->num_stripes,
6113 sub_stripes * stripe_cnt);
6114 stripe_index = stripe_nr % factor;
6115 stripe_nr /= factor;
6116 stripe_index *= sub_stripes;
6117
6118 remaining_stripes = stripe_cnt % factor;
6119 stripes_per_dev = stripe_cnt / factor;
6120 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6121 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6122 BTRFS_BLOCK_GROUP_DUP)) {
6123 *num_stripes = map->num_stripes;
6124 } else {
6125 stripe_index = stripe_nr % map->num_stripes;
6126 stripe_nr /= map->num_stripes;
6127 }
6128
6129 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6130 if (!stripes) {
6131 ret = -ENOMEM;
6132 goto out_free_map;
6133 }
6134
6135 for (i = 0; i < *num_stripes; i++) {
6136 stripes[i].physical =
6137 map->stripes[stripe_index].physical +
6138 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6139 stripes[i].dev = map->stripes[stripe_index].dev;
6140
6141 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6142 BTRFS_BLOCK_GROUP_RAID10)) {
6143 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6144
6145 if (i / sub_stripes < remaining_stripes)
6146 stripes[i].length += BTRFS_STRIPE_LEN;
6147
6148 /*
6149 * Special for the first stripe and
6150 * the last stripe:
6151 *
6152 * |-------|...|-------|
6153 * |----------|
6154 * off end_off
6155 */
6156 if (i < sub_stripes)
6157 stripes[i].length -= stripe_offset;
6158
6159 if (stripe_index >= last_stripe &&
6160 stripe_index <= (last_stripe +
6161 sub_stripes - 1))
6162 stripes[i].length -= stripe_end_offset;
6163
6164 if (i == sub_stripes - 1)
6165 stripe_offset = 0;
6166 } else {
6167 stripes[i].length = length;
6168 }
6169
6170 stripe_index++;
6171 if (stripe_index == map->num_stripes) {
6172 stripe_index = 0;
6173 stripe_nr++;
6174 }
6175 }
6176
6177 btrfs_free_chunk_map(map);
6178 return stripes;
6179out_free_map:
6180 btrfs_free_chunk_map(map);
6181 return ERR_PTR(ret);
6182}
6183
6184static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6185{
6186 struct btrfs_block_group *cache;
6187 bool ret;
6188
6189 /* Non zoned filesystem does not use "to_copy" flag */
6190 if (!btrfs_is_zoned(fs_info))
6191 return false;
6192
6193 cache = btrfs_lookup_block_group(fs_info, logical);
6194
6195 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6196
6197 btrfs_put_block_group(cache);
6198 return ret;
6199}
6200
6201static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6202 struct btrfs_io_context *bioc,
6203 struct btrfs_dev_replace *dev_replace,
6204 u64 logical,
6205 int *num_stripes_ret, int *max_errors_ret)
6206{
6207 u64 srcdev_devid = dev_replace->srcdev->devid;
6208 /*
6209 * At this stage, num_stripes is still the real number of stripes,
6210 * excluding the duplicated stripes.
6211 */
6212 int num_stripes = *num_stripes_ret;
6213 int nr_extra_stripes = 0;
6214 int max_errors = *max_errors_ret;
6215 int i;
6216
6217 /*
6218 * A block group which has "to_copy" set will eventually be copied by
6219 * the dev-replace process. We can avoid cloning IO here.
6220 */
6221 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6222 return;
6223
6224 /*
6225 * Duplicate the write operations while the dev-replace procedure is
6226 * running. Since the copying of the old disk to the new disk takes
6227 * place at run time while the filesystem is mounted writable, the
6228 * regular write operations to the old disk have to be duplicated to go
6229 * to the new disk as well.
6230 *
6231 * Note that device->missing is handled by the caller, and that the
6232 * write to the old disk is already set up in the stripes array.
6233 */
6234 for (i = 0; i < num_stripes; i++) {
6235 struct btrfs_io_stripe *old = &bioc->stripes[i];
6236 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6237
6238 if (old->dev->devid != srcdev_devid)
6239 continue;
6240
6241 new->physical = old->physical;
6242 new->dev = dev_replace->tgtdev;
6243 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6244 bioc->replace_stripe_src = i;
6245 nr_extra_stripes++;
6246 }
6247
6248 /* We can only have at most 2 extra nr_stripes (for DUP). */
6249 ASSERT(nr_extra_stripes <= 2);
6250 /*
6251 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6252 * replace.
6253 * If we have 2 extra stripes, only choose the one with smaller physical.
6254 */
6255 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6256 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6257 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6258
6259 /* Only DUP can have two extra stripes. */
6260 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6261
6262 /*
6263 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6264 * The extra stripe would still be there, but won't be accessed.
6265 */
6266 if (first->physical > second->physical) {
6267 swap(second->physical, first->physical);
6268 swap(second->dev, first->dev);
6269 nr_extra_stripes--;
6270 }
6271 }
6272
6273 *num_stripes_ret = num_stripes + nr_extra_stripes;
6274 *max_errors_ret = max_errors + nr_extra_stripes;
6275 bioc->replace_nr_stripes = nr_extra_stripes;
6276}
6277
6278static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6279 struct btrfs_io_geometry *io_geom)
6280{
6281 /*
6282 * Stripe_nr is the stripe where this block falls. stripe_offset is
6283 * the offset of this block in its stripe.
6284 */
6285 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6286 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6287 ASSERT(io_geom->stripe_offset < U32_MAX);
6288
6289 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6290 unsigned long full_stripe_len =
6291 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6292
6293 /*
6294 * For full stripe start, we use previously calculated
6295 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6296 * STRIPE_LEN.
6297 *
6298 * By this we can avoid u64 division completely. And we have
6299 * to go rounddown(), not round_down(), as nr_data_stripes is
6300 * not ensured to be power of 2.
6301 */
6302 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6303 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6304
6305 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6306 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6307 /*
6308 * For writes to RAID56, allow to write a full stripe set, but
6309 * no straddling of stripe sets.
6310 */
6311 if (io_geom->op == BTRFS_MAP_WRITE)
6312 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6313 }
6314
6315 /*
6316 * For other RAID types and for RAID56 reads, allow a single stripe (on
6317 * a single disk).
6318 */
6319 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6320 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6321 return U64_MAX;
6322}
6323
6324static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6325 u64 *length, struct btrfs_io_stripe *dst,
6326 struct btrfs_chunk_map *map,
6327 struct btrfs_io_geometry *io_geom)
6328{
6329 dst->dev = map->stripes[io_geom->stripe_index].dev;
6330
6331 if (io_geom->op == BTRFS_MAP_READ &&
6332 btrfs_need_stripe_tree_update(fs_info, map->type))
6333 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6334 map->type,
6335 io_geom->stripe_index, dst);
6336
6337 dst->physical = map->stripes[io_geom->stripe_index].physical +
6338 io_geom->stripe_offset +
6339 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6340 return 0;
6341}
6342
6343static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6344 const struct btrfs_io_stripe *smap,
6345 const struct btrfs_chunk_map *map,
6346 int num_alloc_stripes,
6347 enum btrfs_map_op op, int mirror_num)
6348{
6349 if (!smap)
6350 return false;
6351
6352 if (num_alloc_stripes != 1)
6353 return false;
6354
6355 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6356 return false;
6357
6358 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6359 return false;
6360
6361 return true;
6362}
6363
6364static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6365 struct btrfs_io_geometry *io_geom)
6366{
6367 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6368 io_geom->stripe_nr /= map->num_stripes;
6369 if (io_geom->op == BTRFS_MAP_READ)
6370 io_geom->mirror_num = 1;
6371}
6372
6373static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6374 struct btrfs_chunk_map *map,
6375 struct btrfs_io_geometry *io_geom,
6376 bool dev_replace_is_ongoing)
6377{
6378 if (io_geom->op != BTRFS_MAP_READ) {
6379 io_geom->num_stripes = map->num_stripes;
6380 return;
6381 }
6382
6383 if (io_geom->mirror_num) {
6384 io_geom->stripe_index = io_geom->mirror_num - 1;
6385 return;
6386 }
6387
6388 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6389 dev_replace_is_ongoing);
6390 io_geom->mirror_num = io_geom->stripe_index + 1;
6391}
6392
6393static void map_blocks_dup(const struct btrfs_chunk_map *map,
6394 struct btrfs_io_geometry *io_geom)
6395{
6396 if (io_geom->op != BTRFS_MAP_READ) {
6397 io_geom->num_stripes = map->num_stripes;
6398 return;
6399 }
6400
6401 if (io_geom->mirror_num) {
6402 io_geom->stripe_index = io_geom->mirror_num - 1;
6403 return;
6404 }
6405
6406 io_geom->mirror_num = 1;
6407}
6408
6409static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6410 struct btrfs_chunk_map *map,
6411 struct btrfs_io_geometry *io_geom,
6412 bool dev_replace_is_ongoing)
6413{
6414 u32 factor = map->num_stripes / map->sub_stripes;
6415 int old_stripe_index;
6416
6417 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6418 io_geom->stripe_nr /= factor;
6419
6420 if (io_geom->op != BTRFS_MAP_READ) {
6421 io_geom->num_stripes = map->sub_stripes;
6422 return;
6423 }
6424
6425 if (io_geom->mirror_num) {
6426 io_geom->stripe_index += io_geom->mirror_num - 1;
6427 return;
6428 }
6429
6430 old_stripe_index = io_geom->stripe_index;
6431 io_geom->stripe_index = find_live_mirror(fs_info, map,
6432 io_geom->stripe_index,
6433 dev_replace_is_ongoing);
6434 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6435}
6436
6437static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6438 struct btrfs_io_geometry *io_geom,
6439 u64 logical, u64 *length)
6440{
6441 int data_stripes = nr_data_stripes(map);
6442
6443 /*
6444 * Needs full stripe mapping.
6445 *
6446 * Push stripe_nr back to the start of the full stripe For those cases
6447 * needing a full stripe, @stripe_nr is the full stripe number.
6448 *
6449 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6450 * that can be expensive. Here we just divide @stripe_nr with
6451 * @data_stripes.
6452 */
6453 io_geom->stripe_nr /= data_stripes;
6454
6455 /* RAID[56] write or recovery. Return all stripes */
6456 io_geom->num_stripes = map->num_stripes;
6457 io_geom->max_errors = btrfs_chunk_max_errors(map);
6458
6459 /* Return the length to the full stripe end. */
6460 *length = min(logical + *length,
6461 io_geom->raid56_full_stripe_start + map->start +
6462 btrfs_stripe_nr_to_offset(data_stripes)) -
6463 logical;
6464 io_geom->stripe_index = 0;
6465 io_geom->stripe_offset = 0;
6466}
6467
6468static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6469 struct btrfs_io_geometry *io_geom)
6470{
6471 int data_stripes = nr_data_stripes(map);
6472
6473 ASSERT(io_geom->mirror_num <= 1);
6474 /* Just grab the data stripe directly. */
6475 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6476 io_geom->stripe_nr /= data_stripes;
6477
6478 /* We distribute the parity blocks across stripes. */
6479 io_geom->stripe_index =
6480 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6481
6482 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6483 io_geom->mirror_num = 1;
6484}
6485
6486static void map_blocks_single(const struct btrfs_chunk_map *map,
6487 struct btrfs_io_geometry *io_geom)
6488{
6489 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6490 io_geom->stripe_nr /= map->num_stripes;
6491 io_geom->mirror_num = io_geom->stripe_index + 1;
6492}
6493
6494/*
6495 * Map one logical range to one or more physical ranges.
6496 *
6497 * @length: (Mandatory) mapped length of this run.
6498 * One logical range can be split into different segments
6499 * due to factors like zones and RAID0/5/6/10 stripe
6500 * boundaries.
6501 *
6502 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6503 * which has one or more physical ranges (btrfs_io_stripe)
6504 * recorded inside.
6505 * Caller should call btrfs_put_bioc() to free it after use.
6506 *
6507 * @smap: (Optional) single physical range optimization.
6508 * If the map request can be fulfilled by one single
6509 * physical range, and this is parameter is not NULL,
6510 * then @bioc_ret would be NULL, and @smap would be
6511 * updated.
6512 *
6513 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6514 * value is 0.
6515 *
6516 * Mirror number 0 means to choose any live mirrors.
6517 *
6518 * For non-RAID56 profiles, non-zero mirror_num means
6519 * the Nth mirror. (e.g. mirror_num 1 means the first
6520 * copy).
6521 *
6522 * For RAID56 profile, mirror 1 means rebuild from P and
6523 * the remaining data stripes.
6524 *
6525 * For RAID6 profile, mirror > 2 means mark another
6526 * data/P stripe error and rebuild from the remaining
6527 * stripes..
6528 */
6529int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6530 u64 logical, u64 *length,
6531 struct btrfs_io_context **bioc_ret,
6532 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6533{
6534 struct btrfs_chunk_map *map;
6535 struct btrfs_io_geometry io_geom = { 0 };
6536 u64 map_offset;
6537 int i;
6538 int ret = 0;
6539 int num_copies;
6540 struct btrfs_io_context *bioc = NULL;
6541 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6542 int dev_replace_is_ongoing = 0;
6543 u16 num_alloc_stripes;
6544 u64 max_len;
6545
6546 ASSERT(bioc_ret);
6547
6548 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6549 io_geom.num_stripes = 1;
6550 io_geom.stripe_index = 0;
6551 io_geom.op = op;
6552
6553 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6554 if (io_geom.mirror_num > num_copies)
6555 return -EINVAL;
6556
6557 map = btrfs_get_chunk_map(fs_info, logical, *length);
6558 if (IS_ERR(map))
6559 return PTR_ERR(map);
6560
6561 map_offset = logical - map->start;
6562 io_geom.raid56_full_stripe_start = (u64)-1;
6563 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6564 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6565
6566 down_read(&dev_replace->rwsem);
6567 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6568 /*
6569 * Hold the semaphore for read during the whole operation, write is
6570 * requested at commit time but must wait.
6571 */
6572 if (!dev_replace_is_ongoing)
6573 up_read(&dev_replace->rwsem);
6574
6575 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6576 case BTRFS_BLOCK_GROUP_RAID0:
6577 map_blocks_raid0(map, &io_geom);
6578 break;
6579 case BTRFS_BLOCK_GROUP_RAID1:
6580 case BTRFS_BLOCK_GROUP_RAID1C3:
6581 case BTRFS_BLOCK_GROUP_RAID1C4:
6582 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6583 break;
6584 case BTRFS_BLOCK_GROUP_DUP:
6585 map_blocks_dup(map, &io_geom);
6586 break;
6587 case BTRFS_BLOCK_GROUP_RAID10:
6588 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6589 break;
6590 case BTRFS_BLOCK_GROUP_RAID5:
6591 case BTRFS_BLOCK_GROUP_RAID6:
6592 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6593 map_blocks_raid56_write(map, &io_geom, logical, length);
6594 else
6595 map_blocks_raid56_read(map, &io_geom);
6596 break;
6597 default:
6598 /*
6599 * After this, stripe_nr is the number of stripes on this
6600 * device we have to walk to find the data, and stripe_index is
6601 * the number of our device in the stripe array
6602 */
6603 map_blocks_single(map, &io_geom);
6604 break;
6605 }
6606 if (io_geom.stripe_index >= map->num_stripes) {
6607 btrfs_crit(fs_info,
6608 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6609 io_geom.stripe_index, map->num_stripes);
6610 ret = -EINVAL;
6611 goto out;
6612 }
6613
6614 num_alloc_stripes = io_geom.num_stripes;
6615 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6616 op != BTRFS_MAP_READ)
6617 /*
6618 * For replace case, we need to add extra stripes for extra
6619 * duplicated stripes.
6620 *
6621 * For both WRITE and GET_READ_MIRRORS, we may have at most
6622 * 2 more stripes (DUP types, otherwise 1).
6623 */
6624 num_alloc_stripes += 2;
6625
6626 /*
6627 * If this I/O maps to a single device, try to return the device and
6628 * physical block information on the stack instead of allocating an
6629 * I/O context structure.
6630 */
6631 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6632 io_geom.mirror_num)) {
6633 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6634 if (mirror_num_ret)
6635 *mirror_num_ret = io_geom.mirror_num;
6636 *bioc_ret = NULL;
6637 goto out;
6638 }
6639
6640 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6641 if (!bioc) {
6642 ret = -ENOMEM;
6643 goto out;
6644 }
6645 bioc->map_type = map->type;
6646
6647 /*
6648 * For RAID56 full map, we need to make sure the stripes[] follows the
6649 * rule that data stripes are all ordered, then followed with P and Q
6650 * (if we have).
6651 *
6652 * It's still mostly the same as other profiles, just with extra rotation.
6653 */
6654 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6655 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6656 /*
6657 * For RAID56 @stripe_nr is already the number of full stripes
6658 * before us, which is also the rotation value (needs to modulo
6659 * with num_stripes).
6660 *
6661 * In this case, we just add @stripe_nr with @i, then do the
6662 * modulo, to reduce one modulo call.
6663 */
6664 bioc->full_stripe_logical = map->start +
6665 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6666 nr_data_stripes(map));
6667 for (int i = 0; i < io_geom.num_stripes; i++) {
6668 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6669 u32 stripe_index;
6670
6671 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6672 dst->dev = map->stripes[stripe_index].dev;
6673 dst->physical =
6674 map->stripes[stripe_index].physical +
6675 io_geom.stripe_offset +
6676 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6677 }
6678 } else {
6679 /*
6680 * For all other non-RAID56 profiles, just copy the target
6681 * stripe into the bioc.
6682 */
6683 for (i = 0; i < io_geom.num_stripes; i++) {
6684 ret = set_io_stripe(fs_info, logical, length,
6685 &bioc->stripes[i], map, &io_geom);
6686 if (ret < 0)
6687 break;
6688 io_geom.stripe_index++;
6689 }
6690 }
6691
6692 if (ret) {
6693 *bioc_ret = NULL;
6694 btrfs_put_bioc(bioc);
6695 goto out;
6696 }
6697
6698 if (op != BTRFS_MAP_READ)
6699 io_geom.max_errors = btrfs_chunk_max_errors(map);
6700
6701 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6702 op != BTRFS_MAP_READ) {
6703 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6704 &io_geom.num_stripes, &io_geom.max_errors);
6705 }
6706
6707 *bioc_ret = bioc;
6708 bioc->num_stripes = io_geom.num_stripes;
6709 bioc->max_errors = io_geom.max_errors;
6710 bioc->mirror_num = io_geom.mirror_num;
6711
6712out:
6713 if (dev_replace_is_ongoing) {
6714 lockdep_assert_held(&dev_replace->rwsem);
6715 /* Unlock and let waiting writers proceed */
6716 up_read(&dev_replace->rwsem);
6717 }
6718 btrfs_free_chunk_map(map);
6719 return ret;
6720}
6721
6722static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6723 const struct btrfs_fs_devices *fs_devices)
6724{
6725 if (args->fsid == NULL)
6726 return true;
6727 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6728 return true;
6729 return false;
6730}
6731
6732static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6733 const struct btrfs_device *device)
6734{
6735 if (args->missing) {
6736 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6737 !device->bdev)
6738 return true;
6739 return false;
6740 }
6741
6742 if (device->devid != args->devid)
6743 return false;
6744 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6745 return false;
6746 return true;
6747}
6748
6749/*
6750 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6751 * return NULL.
6752 *
6753 * If devid and uuid are both specified, the match must be exact, otherwise
6754 * only devid is used.
6755 */
6756struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6757 const struct btrfs_dev_lookup_args *args)
6758{
6759 struct btrfs_device *device;
6760 struct btrfs_fs_devices *seed_devs;
6761
6762 if (dev_args_match_fs_devices(args, fs_devices)) {
6763 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6764 if (dev_args_match_device(args, device))
6765 return device;
6766 }
6767 }
6768
6769 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6770 if (!dev_args_match_fs_devices(args, seed_devs))
6771 continue;
6772 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6773 if (dev_args_match_device(args, device))
6774 return device;
6775 }
6776 }
6777
6778 return NULL;
6779}
6780
6781static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6782 u64 devid, u8 *dev_uuid)
6783{
6784 struct btrfs_device *device;
6785 unsigned int nofs_flag;
6786
6787 /*
6788 * We call this under the chunk_mutex, so we want to use NOFS for this
6789 * allocation, however we don't want to change btrfs_alloc_device() to
6790 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6791 * places.
6792 */
6793
6794 nofs_flag = memalloc_nofs_save();
6795 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6796 memalloc_nofs_restore(nofs_flag);
6797 if (IS_ERR(device))
6798 return device;
6799
6800 list_add(&device->dev_list, &fs_devices->devices);
6801 device->fs_devices = fs_devices;
6802 fs_devices->num_devices++;
6803
6804 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6805 fs_devices->missing_devices++;
6806
6807 return device;
6808}
6809
6810/*
6811 * Allocate new device struct, set up devid and UUID.
6812 *
6813 * @fs_info: used only for generating a new devid, can be NULL if
6814 * devid is provided (i.e. @devid != NULL).
6815 * @devid: a pointer to devid for this device. If NULL a new devid
6816 * is generated.
6817 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6818 * is generated.
6819 * @path: a pointer to device path if available, NULL otherwise.
6820 *
6821 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6822 * on error. Returned struct is not linked onto any lists and must be
6823 * destroyed with btrfs_free_device.
6824 */
6825struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6826 const u64 *devid, const u8 *uuid,
6827 const char *path)
6828{
6829 struct btrfs_device *dev;
6830 u64 tmp;
6831
6832 if (WARN_ON(!devid && !fs_info))
6833 return ERR_PTR(-EINVAL);
6834
6835 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6836 if (!dev)
6837 return ERR_PTR(-ENOMEM);
6838
6839 INIT_LIST_HEAD(&dev->dev_list);
6840 INIT_LIST_HEAD(&dev->dev_alloc_list);
6841 INIT_LIST_HEAD(&dev->post_commit_list);
6842
6843 atomic_set(&dev->dev_stats_ccnt, 0);
6844 btrfs_device_data_ordered_init(dev);
6845 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6846
6847 if (devid)
6848 tmp = *devid;
6849 else {
6850 int ret;
6851
6852 ret = find_next_devid(fs_info, &tmp);
6853 if (ret) {
6854 btrfs_free_device(dev);
6855 return ERR_PTR(ret);
6856 }
6857 }
6858 dev->devid = tmp;
6859
6860 if (uuid)
6861 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6862 else
6863 generate_random_uuid(dev->uuid);
6864
6865 if (path) {
6866 struct rcu_string *name;
6867
6868 name = rcu_string_strdup(path, GFP_KERNEL);
6869 if (!name) {
6870 btrfs_free_device(dev);
6871 return ERR_PTR(-ENOMEM);
6872 }
6873 rcu_assign_pointer(dev->name, name);
6874 }
6875
6876 return dev;
6877}
6878
6879static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6880 u64 devid, u8 *uuid, bool error)
6881{
6882 if (error)
6883 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6884 devid, uuid);
6885 else
6886 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6887 devid, uuid);
6888}
6889
6890u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6891{
6892 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6893
6894 return div_u64(map->chunk_len, data_stripes);
6895}
6896
6897#if BITS_PER_LONG == 32
6898/*
6899 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6900 * can't be accessed on 32bit systems.
6901 *
6902 * This function do mount time check to reject the fs if it already has
6903 * metadata chunk beyond that limit.
6904 */
6905static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6906 u64 logical, u64 length, u64 type)
6907{
6908 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6909 return 0;
6910
6911 if (logical + length < MAX_LFS_FILESIZE)
6912 return 0;
6913
6914 btrfs_err_32bit_limit(fs_info);
6915 return -EOVERFLOW;
6916}
6917
6918/*
6919 * This is to give early warning for any metadata chunk reaching
6920 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6921 * Although we can still access the metadata, it's not going to be possible
6922 * once the limit is reached.
6923 */
6924static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6925 u64 logical, u64 length, u64 type)
6926{
6927 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6928 return;
6929
6930 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6931 return;
6932
6933 btrfs_warn_32bit_limit(fs_info);
6934}
6935#endif
6936
6937static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6938 u64 devid, u8 *uuid)
6939{
6940 struct btrfs_device *dev;
6941
6942 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943 btrfs_report_missing_device(fs_info, devid, uuid, true);
6944 return ERR_PTR(-ENOENT);
6945 }
6946
6947 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6948 if (IS_ERR(dev)) {
6949 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6950 devid, PTR_ERR(dev));
6951 return dev;
6952 }
6953 btrfs_report_missing_device(fs_info, devid, uuid, false);
6954
6955 return dev;
6956}
6957
6958static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6959 struct btrfs_chunk *chunk)
6960{
6961 BTRFS_DEV_LOOKUP_ARGS(args);
6962 struct btrfs_fs_info *fs_info = leaf->fs_info;
6963 struct btrfs_chunk_map *map;
6964 u64 logical;
6965 u64 length;
6966 u64 devid;
6967 u64 type;
6968 u8 uuid[BTRFS_UUID_SIZE];
6969 int index;
6970 int num_stripes;
6971 int ret;
6972 int i;
6973
6974 logical = key->offset;
6975 length = btrfs_chunk_length(leaf, chunk);
6976 type = btrfs_chunk_type(leaf, chunk);
6977 index = btrfs_bg_flags_to_raid_index(type);
6978 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6979
6980#if BITS_PER_LONG == 32
6981 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6982 if (ret < 0)
6983 return ret;
6984 warn_32bit_meta_chunk(fs_info, logical, length, type);
6985#endif
6986
6987 /*
6988 * Only need to verify chunk item if we're reading from sys chunk array,
6989 * as chunk item in tree block is already verified by tree-checker.
6990 */
6991 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6992 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6993 if (ret)
6994 return ret;
6995 }
6996
6997 map = btrfs_find_chunk_map(fs_info, logical, 1);
6998
6999 /* already mapped? */
7000 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7001 btrfs_free_chunk_map(map);
7002 return 0;
7003 } else if (map) {
7004 btrfs_free_chunk_map(map);
7005 }
7006
7007 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7008 if (!map)
7009 return -ENOMEM;
7010
7011 map->start = logical;
7012 map->chunk_len = length;
7013 map->num_stripes = num_stripes;
7014 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7015 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7016 map->type = type;
7017 /*
7018 * We can't use the sub_stripes value, as for profiles other than
7019 * RAID10, they may have 0 as sub_stripes for filesystems created by
7020 * older mkfs (<v5.4).
7021 * In that case, it can cause divide-by-zero errors later.
7022 * Since currently sub_stripes is fixed for each profile, let's
7023 * use the trusted value instead.
7024 */
7025 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7026 map->verified_stripes = 0;
7027 map->stripe_size = btrfs_calc_stripe_length(map);
7028 for (i = 0; i < num_stripes; i++) {
7029 map->stripes[i].physical =
7030 btrfs_stripe_offset_nr(leaf, chunk, i);
7031 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7032 args.devid = devid;
7033 read_extent_buffer(leaf, uuid, (unsigned long)
7034 btrfs_stripe_dev_uuid_nr(chunk, i),
7035 BTRFS_UUID_SIZE);
7036 args.uuid = uuid;
7037 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7038 if (!map->stripes[i].dev) {
7039 map->stripes[i].dev = handle_missing_device(fs_info,
7040 devid, uuid);
7041 if (IS_ERR(map->stripes[i].dev)) {
7042 ret = PTR_ERR(map->stripes[i].dev);
7043 btrfs_free_chunk_map(map);
7044 return ret;
7045 }
7046 }
7047
7048 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7049 &(map->stripes[i].dev->dev_state));
7050 }
7051
7052 ret = btrfs_add_chunk_map(fs_info, map);
7053 if (ret < 0) {
7054 btrfs_err(fs_info,
7055 "failed to add chunk map, start=%llu len=%llu: %d",
7056 map->start, map->chunk_len, ret);
7057 }
7058
7059 return ret;
7060}
7061
7062static void fill_device_from_item(struct extent_buffer *leaf,
7063 struct btrfs_dev_item *dev_item,
7064 struct btrfs_device *device)
7065{
7066 unsigned long ptr;
7067
7068 device->devid = btrfs_device_id(leaf, dev_item);
7069 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7070 device->total_bytes = device->disk_total_bytes;
7071 device->commit_total_bytes = device->disk_total_bytes;
7072 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7073 device->commit_bytes_used = device->bytes_used;
7074 device->type = btrfs_device_type(leaf, dev_item);
7075 device->io_align = btrfs_device_io_align(leaf, dev_item);
7076 device->io_width = btrfs_device_io_width(leaf, dev_item);
7077 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7078 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7079 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7080
7081 ptr = btrfs_device_uuid(dev_item);
7082 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7083}
7084
7085static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7086 u8 *fsid)
7087{
7088 struct btrfs_fs_devices *fs_devices;
7089 int ret;
7090
7091 lockdep_assert_held(&uuid_mutex);
7092 ASSERT(fsid);
7093
7094 /* This will match only for multi-device seed fs */
7095 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7096 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7097 return fs_devices;
7098
7099
7100 fs_devices = find_fsid(fsid, NULL);
7101 if (!fs_devices) {
7102 if (!btrfs_test_opt(fs_info, DEGRADED))
7103 return ERR_PTR(-ENOENT);
7104
7105 fs_devices = alloc_fs_devices(fsid);
7106 if (IS_ERR(fs_devices))
7107 return fs_devices;
7108
7109 fs_devices->seeding = true;
7110 fs_devices->opened = 1;
7111 return fs_devices;
7112 }
7113
7114 /*
7115 * Upon first call for a seed fs fsid, just create a private copy of the
7116 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7117 */
7118 fs_devices = clone_fs_devices(fs_devices);
7119 if (IS_ERR(fs_devices))
7120 return fs_devices;
7121
7122 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7123 if (ret) {
7124 free_fs_devices(fs_devices);
7125 return ERR_PTR(ret);
7126 }
7127
7128 if (!fs_devices->seeding) {
7129 close_fs_devices(fs_devices);
7130 free_fs_devices(fs_devices);
7131 return ERR_PTR(-EINVAL);
7132 }
7133
7134 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7135
7136 return fs_devices;
7137}
7138
7139static int read_one_dev(struct extent_buffer *leaf,
7140 struct btrfs_dev_item *dev_item)
7141{
7142 BTRFS_DEV_LOOKUP_ARGS(args);
7143 struct btrfs_fs_info *fs_info = leaf->fs_info;
7144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145 struct btrfs_device *device;
7146 u64 devid;
7147 int ret;
7148 u8 fs_uuid[BTRFS_FSID_SIZE];
7149 u8 dev_uuid[BTRFS_UUID_SIZE];
7150
7151 devid = btrfs_device_id(leaf, dev_item);
7152 args.devid = devid;
7153 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7154 BTRFS_UUID_SIZE);
7155 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7156 BTRFS_FSID_SIZE);
7157 args.uuid = dev_uuid;
7158 args.fsid = fs_uuid;
7159
7160 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7161 fs_devices = open_seed_devices(fs_info, fs_uuid);
7162 if (IS_ERR(fs_devices))
7163 return PTR_ERR(fs_devices);
7164 }
7165
7166 device = btrfs_find_device(fs_info->fs_devices, &args);
7167 if (!device) {
7168 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7169 btrfs_report_missing_device(fs_info, devid,
7170 dev_uuid, true);
7171 return -ENOENT;
7172 }
7173
7174 device = add_missing_dev(fs_devices, devid, dev_uuid);
7175 if (IS_ERR(device)) {
7176 btrfs_err(fs_info,
7177 "failed to add missing dev %llu: %ld",
7178 devid, PTR_ERR(device));
7179 return PTR_ERR(device);
7180 }
7181 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7182 } else {
7183 if (!device->bdev) {
7184 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7185 btrfs_report_missing_device(fs_info,
7186 devid, dev_uuid, true);
7187 return -ENOENT;
7188 }
7189 btrfs_report_missing_device(fs_info, devid,
7190 dev_uuid, false);
7191 }
7192
7193 if (!device->bdev &&
7194 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7195 /*
7196 * this happens when a device that was properly setup
7197 * in the device info lists suddenly goes bad.
7198 * device->bdev is NULL, and so we have to set
7199 * device->missing to one here
7200 */
7201 device->fs_devices->missing_devices++;
7202 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7203 }
7204
7205 /* Move the device to its own fs_devices */
7206 if (device->fs_devices != fs_devices) {
7207 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7208 &device->dev_state));
7209
7210 list_move(&device->dev_list, &fs_devices->devices);
7211 device->fs_devices->num_devices--;
7212 fs_devices->num_devices++;
7213
7214 device->fs_devices->missing_devices--;
7215 fs_devices->missing_devices++;
7216
7217 device->fs_devices = fs_devices;
7218 }
7219 }
7220
7221 if (device->fs_devices != fs_info->fs_devices) {
7222 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7223 if (device->generation !=
7224 btrfs_device_generation(leaf, dev_item))
7225 return -EINVAL;
7226 }
7227
7228 fill_device_from_item(leaf, dev_item, device);
7229 if (device->bdev) {
7230 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7231
7232 if (device->total_bytes > max_total_bytes) {
7233 btrfs_err(fs_info,
7234 "device total_bytes should be at most %llu but found %llu",
7235 max_total_bytes, device->total_bytes);
7236 return -EINVAL;
7237 }
7238 }
7239 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7240 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7241 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7242 device->fs_devices->total_rw_bytes += device->total_bytes;
7243 atomic64_add(device->total_bytes - device->bytes_used,
7244 &fs_info->free_chunk_space);
7245 }
7246 ret = 0;
7247 return ret;
7248}
7249
7250int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7251{
7252 struct btrfs_super_block *super_copy = fs_info->super_copy;
7253 struct extent_buffer *sb;
7254 struct btrfs_disk_key *disk_key;
7255 struct btrfs_chunk *chunk;
7256 u8 *array_ptr;
7257 unsigned long sb_array_offset;
7258 int ret = 0;
7259 u32 num_stripes;
7260 u32 array_size;
7261 u32 len = 0;
7262 u32 cur_offset;
7263 u64 type;
7264 struct btrfs_key key;
7265
7266 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7267
7268 /*
7269 * We allocated a dummy extent, just to use extent buffer accessors.
7270 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7271 * that's fine, we will not go beyond system chunk array anyway.
7272 */
7273 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7274 if (!sb)
7275 return -ENOMEM;
7276 set_extent_buffer_uptodate(sb);
7277
7278 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7279 array_size = btrfs_super_sys_array_size(super_copy);
7280
7281 array_ptr = super_copy->sys_chunk_array;
7282 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7283 cur_offset = 0;
7284
7285 while (cur_offset < array_size) {
7286 disk_key = (struct btrfs_disk_key *)array_ptr;
7287 len = sizeof(*disk_key);
7288 if (cur_offset + len > array_size)
7289 goto out_short_read;
7290
7291 btrfs_disk_key_to_cpu(&key, disk_key);
7292
7293 array_ptr += len;
7294 sb_array_offset += len;
7295 cur_offset += len;
7296
7297 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7298 btrfs_err(fs_info,
7299 "unexpected item type %u in sys_array at offset %u",
7300 (u32)key.type, cur_offset);
7301 ret = -EIO;
7302 break;
7303 }
7304
7305 chunk = (struct btrfs_chunk *)sb_array_offset;
7306 /*
7307 * At least one btrfs_chunk with one stripe must be present,
7308 * exact stripe count check comes afterwards
7309 */
7310 len = btrfs_chunk_item_size(1);
7311 if (cur_offset + len > array_size)
7312 goto out_short_read;
7313
7314 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7315 if (!num_stripes) {
7316 btrfs_err(fs_info,
7317 "invalid number of stripes %u in sys_array at offset %u",
7318 num_stripes, cur_offset);
7319 ret = -EIO;
7320 break;
7321 }
7322
7323 type = btrfs_chunk_type(sb, chunk);
7324 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7325 btrfs_err(fs_info,
7326 "invalid chunk type %llu in sys_array at offset %u",
7327 type, cur_offset);
7328 ret = -EIO;
7329 break;
7330 }
7331
7332 len = btrfs_chunk_item_size(num_stripes);
7333 if (cur_offset + len > array_size)
7334 goto out_short_read;
7335
7336 ret = read_one_chunk(&key, sb, chunk);
7337 if (ret)
7338 break;
7339
7340 array_ptr += len;
7341 sb_array_offset += len;
7342 cur_offset += len;
7343 }
7344 clear_extent_buffer_uptodate(sb);
7345 free_extent_buffer_stale(sb);
7346 return ret;
7347
7348out_short_read:
7349 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7350 len, cur_offset);
7351 clear_extent_buffer_uptodate(sb);
7352 free_extent_buffer_stale(sb);
7353 return -EIO;
7354}
7355
7356/*
7357 * Check if all chunks in the fs are OK for read-write degraded mount
7358 *
7359 * If the @failing_dev is specified, it's accounted as missing.
7360 *
7361 * Return true if all chunks meet the minimal RW mount requirements.
7362 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7363 */
7364bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7365 struct btrfs_device *failing_dev)
7366{
7367 struct btrfs_chunk_map *map;
7368 u64 next_start;
7369 bool ret = true;
7370
7371 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7372 /* No chunk at all? Return false anyway */
7373 if (!map) {
7374 ret = false;
7375 goto out;
7376 }
7377 while (map) {
7378 int missing = 0;
7379 int max_tolerated;
7380 int i;
7381
7382 max_tolerated =
7383 btrfs_get_num_tolerated_disk_barrier_failures(
7384 map->type);
7385 for (i = 0; i < map->num_stripes; i++) {
7386 struct btrfs_device *dev = map->stripes[i].dev;
7387
7388 if (!dev || !dev->bdev ||
7389 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7390 dev->last_flush_error)
7391 missing++;
7392 else if (failing_dev && failing_dev == dev)
7393 missing++;
7394 }
7395 if (missing > max_tolerated) {
7396 if (!failing_dev)
7397 btrfs_warn(fs_info,
7398 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7399 map->start, missing, max_tolerated);
7400 btrfs_free_chunk_map(map);
7401 ret = false;
7402 goto out;
7403 }
7404 next_start = map->start + map->chunk_len;
7405 btrfs_free_chunk_map(map);
7406
7407 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7408 }
7409out:
7410 return ret;
7411}
7412
7413static void readahead_tree_node_children(struct extent_buffer *node)
7414{
7415 int i;
7416 const int nr_items = btrfs_header_nritems(node);
7417
7418 for (i = 0; i < nr_items; i++)
7419 btrfs_readahead_node_child(node, i);
7420}
7421
7422int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7423{
7424 struct btrfs_root *root = fs_info->chunk_root;
7425 struct btrfs_path *path;
7426 struct extent_buffer *leaf;
7427 struct btrfs_key key;
7428 struct btrfs_key found_key;
7429 int ret;
7430 int slot;
7431 int iter_ret = 0;
7432 u64 total_dev = 0;
7433 u64 last_ra_node = 0;
7434
7435 path = btrfs_alloc_path();
7436 if (!path)
7437 return -ENOMEM;
7438
7439 /*
7440 * uuid_mutex is needed only if we are mounting a sprout FS
7441 * otherwise we don't need it.
7442 */
7443 mutex_lock(&uuid_mutex);
7444
7445 /*
7446 * It is possible for mount and umount to race in such a way that
7447 * we execute this code path, but open_fs_devices failed to clear
7448 * total_rw_bytes. We certainly want it cleared before reading the
7449 * device items, so clear it here.
7450 */
7451 fs_info->fs_devices->total_rw_bytes = 0;
7452
7453 /*
7454 * Lockdep complains about possible circular locking dependency between
7455 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7456 * used for freeze procection of a fs (struct super_block.s_writers),
7457 * which we take when starting a transaction, and extent buffers of the
7458 * chunk tree if we call read_one_dev() while holding a lock on an
7459 * extent buffer of the chunk tree. Since we are mounting the filesystem
7460 * and at this point there can't be any concurrent task modifying the
7461 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7462 */
7463 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7464 path->skip_locking = 1;
7465
7466 /*
7467 * Read all device items, and then all the chunk items. All
7468 * device items are found before any chunk item (their object id
7469 * is smaller than the lowest possible object id for a chunk
7470 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7471 */
7472 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7473 key.offset = 0;
7474 key.type = 0;
7475 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7476 struct extent_buffer *node = path->nodes[1];
7477
7478 leaf = path->nodes[0];
7479 slot = path->slots[0];
7480
7481 if (node) {
7482 if (last_ra_node != node->start) {
7483 readahead_tree_node_children(node);
7484 last_ra_node = node->start;
7485 }
7486 }
7487 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7488 struct btrfs_dev_item *dev_item;
7489 dev_item = btrfs_item_ptr(leaf, slot,
7490 struct btrfs_dev_item);
7491 ret = read_one_dev(leaf, dev_item);
7492 if (ret)
7493 goto error;
7494 total_dev++;
7495 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7496 struct btrfs_chunk *chunk;
7497
7498 /*
7499 * We are only called at mount time, so no need to take
7500 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7501 * we always lock first fs_info->chunk_mutex before
7502 * acquiring any locks on the chunk tree. This is a
7503 * requirement for chunk allocation, see the comment on
7504 * top of btrfs_chunk_alloc() for details.
7505 */
7506 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7507 ret = read_one_chunk(&found_key, leaf, chunk);
7508 if (ret)
7509 goto error;
7510 }
7511 }
7512 /* Catch error found during iteration */
7513 if (iter_ret < 0) {
7514 ret = iter_ret;
7515 goto error;
7516 }
7517
7518 /*
7519 * After loading chunk tree, we've got all device information,
7520 * do another round of validation checks.
7521 */
7522 if (total_dev != fs_info->fs_devices->total_devices) {
7523 btrfs_warn(fs_info,
7524"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7525 btrfs_super_num_devices(fs_info->super_copy),
7526 total_dev);
7527 fs_info->fs_devices->total_devices = total_dev;
7528 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7529 }
7530 if (btrfs_super_total_bytes(fs_info->super_copy) <
7531 fs_info->fs_devices->total_rw_bytes) {
7532 btrfs_err(fs_info,
7533 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7534 btrfs_super_total_bytes(fs_info->super_copy),
7535 fs_info->fs_devices->total_rw_bytes);
7536 ret = -EINVAL;
7537 goto error;
7538 }
7539 ret = 0;
7540error:
7541 mutex_unlock(&uuid_mutex);
7542
7543 btrfs_free_path(path);
7544 return ret;
7545}
7546
7547int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7548{
7549 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7550 struct btrfs_device *device;
7551 int ret = 0;
7552
7553 fs_devices->fs_info = fs_info;
7554
7555 mutex_lock(&fs_devices->device_list_mutex);
7556 list_for_each_entry(device, &fs_devices->devices, dev_list)
7557 device->fs_info = fs_info;
7558
7559 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7560 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7561 device->fs_info = fs_info;
7562 ret = btrfs_get_dev_zone_info(device, false);
7563 if (ret)
7564 break;
7565 }
7566
7567 seed_devs->fs_info = fs_info;
7568 }
7569 mutex_unlock(&fs_devices->device_list_mutex);
7570
7571 return ret;
7572}
7573
7574static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7575 const struct btrfs_dev_stats_item *ptr,
7576 int index)
7577{
7578 u64 val;
7579
7580 read_extent_buffer(eb, &val,
7581 offsetof(struct btrfs_dev_stats_item, values) +
7582 ((unsigned long)ptr) + (index * sizeof(u64)),
7583 sizeof(val));
7584 return val;
7585}
7586
7587static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7588 struct btrfs_dev_stats_item *ptr,
7589 int index, u64 val)
7590{
7591 write_extent_buffer(eb, &val,
7592 offsetof(struct btrfs_dev_stats_item, values) +
7593 ((unsigned long)ptr) + (index * sizeof(u64)),
7594 sizeof(val));
7595}
7596
7597static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7598 struct btrfs_path *path)
7599{
7600 struct btrfs_dev_stats_item *ptr;
7601 struct extent_buffer *eb;
7602 struct btrfs_key key;
7603 int item_size;
7604 int i, ret, slot;
7605
7606 if (!device->fs_info->dev_root)
7607 return 0;
7608
7609 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7610 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7611 key.offset = device->devid;
7612 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7613 if (ret) {
7614 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7615 btrfs_dev_stat_set(device, i, 0);
7616 device->dev_stats_valid = 1;
7617 btrfs_release_path(path);
7618 return ret < 0 ? ret : 0;
7619 }
7620 slot = path->slots[0];
7621 eb = path->nodes[0];
7622 item_size = btrfs_item_size(eb, slot);
7623
7624 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7625
7626 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7627 if (item_size >= (1 + i) * sizeof(__le64))
7628 btrfs_dev_stat_set(device, i,
7629 btrfs_dev_stats_value(eb, ptr, i));
7630 else
7631 btrfs_dev_stat_set(device, i, 0);
7632 }
7633
7634 device->dev_stats_valid = 1;
7635 btrfs_dev_stat_print_on_load(device);
7636 btrfs_release_path(path);
7637
7638 return 0;
7639}
7640
7641int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7642{
7643 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7644 struct btrfs_device *device;
7645 struct btrfs_path *path = NULL;
7646 int ret = 0;
7647
7648 path = btrfs_alloc_path();
7649 if (!path)
7650 return -ENOMEM;
7651
7652 mutex_lock(&fs_devices->device_list_mutex);
7653 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7654 ret = btrfs_device_init_dev_stats(device, path);
7655 if (ret)
7656 goto out;
7657 }
7658 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7659 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7660 ret = btrfs_device_init_dev_stats(device, path);
7661 if (ret)
7662 goto out;
7663 }
7664 }
7665out:
7666 mutex_unlock(&fs_devices->device_list_mutex);
7667
7668 btrfs_free_path(path);
7669 return ret;
7670}
7671
7672static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7673 struct btrfs_device *device)
7674{
7675 struct btrfs_fs_info *fs_info = trans->fs_info;
7676 struct btrfs_root *dev_root = fs_info->dev_root;
7677 struct btrfs_path *path;
7678 struct btrfs_key key;
7679 struct extent_buffer *eb;
7680 struct btrfs_dev_stats_item *ptr;
7681 int ret;
7682 int i;
7683
7684 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7685 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7686 key.offset = device->devid;
7687
7688 path = btrfs_alloc_path();
7689 if (!path)
7690 return -ENOMEM;
7691 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7692 if (ret < 0) {
7693 btrfs_warn_in_rcu(fs_info,
7694 "error %d while searching for dev_stats item for device %s",
7695 ret, btrfs_dev_name(device));
7696 goto out;
7697 }
7698
7699 if (ret == 0 &&
7700 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7701 /* need to delete old one and insert a new one */
7702 ret = btrfs_del_item(trans, dev_root, path);
7703 if (ret != 0) {
7704 btrfs_warn_in_rcu(fs_info,
7705 "delete too small dev_stats item for device %s failed %d",
7706 btrfs_dev_name(device), ret);
7707 goto out;
7708 }
7709 ret = 1;
7710 }
7711
7712 if (ret == 1) {
7713 /* need to insert a new item */
7714 btrfs_release_path(path);
7715 ret = btrfs_insert_empty_item(trans, dev_root, path,
7716 &key, sizeof(*ptr));
7717 if (ret < 0) {
7718 btrfs_warn_in_rcu(fs_info,
7719 "insert dev_stats item for device %s failed %d",
7720 btrfs_dev_name(device), ret);
7721 goto out;
7722 }
7723 }
7724
7725 eb = path->nodes[0];
7726 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7727 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7728 btrfs_set_dev_stats_value(eb, ptr, i,
7729 btrfs_dev_stat_read(device, i));
7730 btrfs_mark_buffer_dirty(trans, eb);
7731
7732out:
7733 btrfs_free_path(path);
7734 return ret;
7735}
7736
7737/*
7738 * called from commit_transaction. Writes all changed device stats to disk.
7739 */
7740int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7741{
7742 struct btrfs_fs_info *fs_info = trans->fs_info;
7743 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7744 struct btrfs_device *device;
7745 int stats_cnt;
7746 int ret = 0;
7747
7748 mutex_lock(&fs_devices->device_list_mutex);
7749 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7750 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7751 if (!device->dev_stats_valid || stats_cnt == 0)
7752 continue;
7753
7754
7755 /*
7756 * There is a LOAD-LOAD control dependency between the value of
7757 * dev_stats_ccnt and updating the on-disk values which requires
7758 * reading the in-memory counters. Such control dependencies
7759 * require explicit read memory barriers.
7760 *
7761 * This memory barriers pairs with smp_mb__before_atomic in
7762 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7763 * barrier implied by atomic_xchg in
7764 * btrfs_dev_stats_read_and_reset
7765 */
7766 smp_rmb();
7767
7768 ret = update_dev_stat_item(trans, device);
7769 if (!ret)
7770 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7771 }
7772 mutex_unlock(&fs_devices->device_list_mutex);
7773
7774 return ret;
7775}
7776
7777void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7778{
7779 btrfs_dev_stat_inc(dev, index);
7780
7781 if (!dev->dev_stats_valid)
7782 return;
7783 btrfs_err_rl_in_rcu(dev->fs_info,
7784 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7785 btrfs_dev_name(dev),
7786 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7787 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7788 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7789 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7790 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7791}
7792
7793static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7794{
7795 int i;
7796
7797 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7798 if (btrfs_dev_stat_read(dev, i) != 0)
7799 break;
7800 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7801 return; /* all values == 0, suppress message */
7802
7803 btrfs_info_in_rcu(dev->fs_info,
7804 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7805 btrfs_dev_name(dev),
7806 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7807 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7808 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7811}
7812
7813int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7814 struct btrfs_ioctl_get_dev_stats *stats)
7815{
7816 BTRFS_DEV_LOOKUP_ARGS(args);
7817 struct btrfs_device *dev;
7818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7819 int i;
7820
7821 mutex_lock(&fs_devices->device_list_mutex);
7822 args.devid = stats->devid;
7823 dev = btrfs_find_device(fs_info->fs_devices, &args);
7824 mutex_unlock(&fs_devices->device_list_mutex);
7825
7826 if (!dev) {
7827 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7828 return -ENODEV;
7829 } else if (!dev->dev_stats_valid) {
7830 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7831 return -ENODEV;
7832 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7833 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7834 if (stats->nr_items > i)
7835 stats->values[i] =
7836 btrfs_dev_stat_read_and_reset(dev, i);
7837 else
7838 btrfs_dev_stat_set(dev, i, 0);
7839 }
7840 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7841 current->comm, task_pid_nr(current));
7842 } else {
7843 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7844 if (stats->nr_items > i)
7845 stats->values[i] = btrfs_dev_stat_read(dev, i);
7846 }
7847 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7848 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7849 return 0;
7850}
7851
7852/*
7853 * Update the size and bytes used for each device where it changed. This is
7854 * delayed since we would otherwise get errors while writing out the
7855 * superblocks.
7856 *
7857 * Must be invoked during transaction commit.
7858 */
7859void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7860{
7861 struct btrfs_device *curr, *next;
7862
7863 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7864
7865 if (list_empty(&trans->dev_update_list))
7866 return;
7867
7868 /*
7869 * We don't need the device_list_mutex here. This list is owned by the
7870 * transaction and the transaction must complete before the device is
7871 * released.
7872 */
7873 mutex_lock(&trans->fs_info->chunk_mutex);
7874 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7875 post_commit_list) {
7876 list_del_init(&curr->post_commit_list);
7877 curr->commit_total_bytes = curr->disk_total_bytes;
7878 curr->commit_bytes_used = curr->bytes_used;
7879 }
7880 mutex_unlock(&trans->fs_info->chunk_mutex);
7881}
7882
7883/*
7884 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7885 */
7886int btrfs_bg_type_to_factor(u64 flags)
7887{
7888 const int index = btrfs_bg_flags_to_raid_index(flags);
7889
7890 return btrfs_raid_array[index].ncopies;
7891}
7892
7893
7894
7895static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7896 u64 chunk_offset, u64 devid,
7897 u64 physical_offset, u64 physical_len)
7898{
7899 struct btrfs_dev_lookup_args args = { .devid = devid };
7900 struct btrfs_chunk_map *map;
7901 struct btrfs_device *dev;
7902 u64 stripe_len;
7903 bool found = false;
7904 int ret = 0;
7905 int i;
7906
7907 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7908 if (!map) {
7909 btrfs_err(fs_info,
7910"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7911 physical_offset, devid);
7912 ret = -EUCLEAN;
7913 goto out;
7914 }
7915
7916 stripe_len = btrfs_calc_stripe_length(map);
7917 if (physical_len != stripe_len) {
7918 btrfs_err(fs_info,
7919"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7920 physical_offset, devid, map->start, physical_len,
7921 stripe_len);
7922 ret = -EUCLEAN;
7923 goto out;
7924 }
7925
7926 /*
7927 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7928 * space. Although kernel can handle it without problem, better to warn
7929 * the users.
7930 */
7931 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7932 btrfs_warn(fs_info,
7933 "devid %llu physical %llu len %llu inside the reserved space",
7934 devid, physical_offset, physical_len);
7935
7936 for (i = 0; i < map->num_stripes; i++) {
7937 if (map->stripes[i].dev->devid == devid &&
7938 map->stripes[i].physical == physical_offset) {
7939 found = true;
7940 if (map->verified_stripes >= map->num_stripes) {
7941 btrfs_err(fs_info,
7942 "too many dev extents for chunk %llu found",
7943 map->start);
7944 ret = -EUCLEAN;
7945 goto out;
7946 }
7947 map->verified_stripes++;
7948 break;
7949 }
7950 }
7951 if (!found) {
7952 btrfs_err(fs_info,
7953 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7954 physical_offset, devid);
7955 ret = -EUCLEAN;
7956 }
7957
7958 /* Make sure no dev extent is beyond device boundary */
7959 dev = btrfs_find_device(fs_info->fs_devices, &args);
7960 if (!dev) {
7961 btrfs_err(fs_info, "failed to find devid %llu", devid);
7962 ret = -EUCLEAN;
7963 goto out;
7964 }
7965
7966 if (physical_offset + physical_len > dev->disk_total_bytes) {
7967 btrfs_err(fs_info,
7968"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7969 devid, physical_offset, physical_len,
7970 dev->disk_total_bytes);
7971 ret = -EUCLEAN;
7972 goto out;
7973 }
7974
7975 if (dev->zone_info) {
7976 u64 zone_size = dev->zone_info->zone_size;
7977
7978 if (!IS_ALIGNED(physical_offset, zone_size) ||
7979 !IS_ALIGNED(physical_len, zone_size)) {
7980 btrfs_err(fs_info,
7981"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7982 devid, physical_offset, physical_len);
7983 ret = -EUCLEAN;
7984 goto out;
7985 }
7986 }
7987
7988out:
7989 btrfs_free_chunk_map(map);
7990 return ret;
7991}
7992
7993static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7994{
7995 struct rb_node *node;
7996 int ret = 0;
7997
7998 read_lock(&fs_info->mapping_tree_lock);
7999 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8000 struct btrfs_chunk_map *map;
8001
8002 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8003 if (map->num_stripes != map->verified_stripes) {
8004 btrfs_err(fs_info,
8005 "chunk %llu has missing dev extent, have %d expect %d",
8006 map->start, map->verified_stripes, map->num_stripes);
8007 ret = -EUCLEAN;
8008 goto out;
8009 }
8010 }
8011out:
8012 read_unlock(&fs_info->mapping_tree_lock);
8013 return ret;
8014}
8015
8016/*
8017 * Ensure that all dev extents are mapped to correct chunk, otherwise
8018 * later chunk allocation/free would cause unexpected behavior.
8019 *
8020 * NOTE: This will iterate through the whole device tree, which should be of
8021 * the same size level as the chunk tree. This slightly increases mount time.
8022 */
8023int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8024{
8025 struct btrfs_path *path;
8026 struct btrfs_root *root = fs_info->dev_root;
8027 struct btrfs_key key;
8028 u64 prev_devid = 0;
8029 u64 prev_dev_ext_end = 0;
8030 int ret = 0;
8031
8032 /*
8033 * We don't have a dev_root because we mounted with ignorebadroots and
8034 * failed to load the root, so we want to skip the verification in this
8035 * case for sure.
8036 *
8037 * However if the dev root is fine, but the tree itself is corrupted
8038 * we'd still fail to mount. This verification is only to make sure
8039 * writes can happen safely, so instead just bypass this check
8040 * completely in the case of IGNOREBADROOTS.
8041 */
8042 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8043 return 0;
8044
8045 key.objectid = 1;
8046 key.type = BTRFS_DEV_EXTENT_KEY;
8047 key.offset = 0;
8048
8049 path = btrfs_alloc_path();
8050 if (!path)
8051 return -ENOMEM;
8052
8053 path->reada = READA_FORWARD;
8054 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8055 if (ret < 0)
8056 goto out;
8057
8058 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8059 ret = btrfs_next_leaf(root, path);
8060 if (ret < 0)
8061 goto out;
8062 /* No dev extents at all? Not good */
8063 if (ret > 0) {
8064 ret = -EUCLEAN;
8065 goto out;
8066 }
8067 }
8068 while (1) {
8069 struct extent_buffer *leaf = path->nodes[0];
8070 struct btrfs_dev_extent *dext;
8071 int slot = path->slots[0];
8072 u64 chunk_offset;
8073 u64 physical_offset;
8074 u64 physical_len;
8075 u64 devid;
8076
8077 btrfs_item_key_to_cpu(leaf, &key, slot);
8078 if (key.type != BTRFS_DEV_EXTENT_KEY)
8079 break;
8080 devid = key.objectid;
8081 physical_offset = key.offset;
8082
8083 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8084 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8085 physical_len = btrfs_dev_extent_length(leaf, dext);
8086
8087 /* Check if this dev extent overlaps with the previous one */
8088 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8089 btrfs_err(fs_info,
8090"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8091 devid, physical_offset, prev_dev_ext_end);
8092 ret = -EUCLEAN;
8093 goto out;
8094 }
8095
8096 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8097 physical_offset, physical_len);
8098 if (ret < 0)
8099 goto out;
8100 prev_devid = devid;
8101 prev_dev_ext_end = physical_offset + physical_len;
8102
8103 ret = btrfs_next_item(root, path);
8104 if (ret < 0)
8105 goto out;
8106 if (ret > 0) {
8107 ret = 0;
8108 break;
8109 }
8110 }
8111
8112 /* Ensure all chunks have corresponding dev extents */
8113 ret = verify_chunk_dev_extent_mapping(fs_info);
8114out:
8115 btrfs_free_path(path);
8116 return ret;
8117}
8118
8119/*
8120 * Check whether the given block group or device is pinned by any inode being
8121 * used as a swapfile.
8122 */
8123bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8124{
8125 struct btrfs_swapfile_pin *sp;
8126 struct rb_node *node;
8127
8128 spin_lock(&fs_info->swapfile_pins_lock);
8129 node = fs_info->swapfile_pins.rb_node;
8130 while (node) {
8131 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8132 if (ptr < sp->ptr)
8133 node = node->rb_left;
8134 else if (ptr > sp->ptr)
8135 node = node->rb_right;
8136 else
8137 break;
8138 }
8139 spin_unlock(&fs_info->swapfile_pins_lock);
8140 return node != NULL;
8141}
8142
8143static int relocating_repair_kthread(void *data)
8144{
8145 struct btrfs_block_group *cache = data;
8146 struct btrfs_fs_info *fs_info = cache->fs_info;
8147 u64 target;
8148 int ret = 0;
8149
8150 target = cache->start;
8151 btrfs_put_block_group(cache);
8152
8153 sb_start_write(fs_info->sb);
8154 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8155 btrfs_info(fs_info,
8156 "zoned: skip relocating block group %llu to repair: EBUSY",
8157 target);
8158 sb_end_write(fs_info->sb);
8159 return -EBUSY;
8160 }
8161
8162 mutex_lock(&fs_info->reclaim_bgs_lock);
8163
8164 /* Ensure block group still exists */
8165 cache = btrfs_lookup_block_group(fs_info, target);
8166 if (!cache)
8167 goto out;
8168
8169 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8170 goto out;
8171
8172 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8173 if (ret < 0)
8174 goto out;
8175
8176 btrfs_info(fs_info,
8177 "zoned: relocating block group %llu to repair IO failure",
8178 target);
8179 ret = btrfs_relocate_chunk(fs_info, target);
8180
8181out:
8182 if (cache)
8183 btrfs_put_block_group(cache);
8184 mutex_unlock(&fs_info->reclaim_bgs_lock);
8185 btrfs_exclop_finish(fs_info);
8186 sb_end_write(fs_info->sb);
8187
8188 return ret;
8189}
8190
8191bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8192{
8193 struct btrfs_block_group *cache;
8194
8195 if (!btrfs_is_zoned(fs_info))
8196 return false;
8197
8198 /* Do not attempt to repair in degraded state */
8199 if (btrfs_test_opt(fs_info, DEGRADED))
8200 return true;
8201
8202 cache = btrfs_lookup_block_group(fs_info, logical);
8203 if (!cache)
8204 return true;
8205
8206 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8207 btrfs_put_block_group(cache);
8208 return true;
8209 }
8210
8211 kthread_run(relocating_repair_kthread, cache,
8212 "btrfs-relocating-repair");
8213
8214 return true;
8215}
8216
8217static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8218 struct btrfs_io_stripe *smap,
8219 u64 logical)
8220{
8221 int data_stripes = nr_bioc_data_stripes(bioc);
8222 int i;
8223
8224 for (i = 0; i < data_stripes; i++) {
8225 u64 stripe_start = bioc->full_stripe_logical +
8226 btrfs_stripe_nr_to_offset(i);
8227
8228 if (logical >= stripe_start &&
8229 logical < stripe_start + BTRFS_STRIPE_LEN)
8230 break;
8231 }
8232 ASSERT(i < data_stripes);
8233 smap->dev = bioc->stripes[i].dev;
8234 smap->physical = bioc->stripes[i].physical +
8235 ((logical - bioc->full_stripe_logical) &
8236 BTRFS_STRIPE_LEN_MASK);
8237}
8238
8239/*
8240 * Map a repair write into a single device.
8241 *
8242 * A repair write is triggered by read time repair or scrub, which would only
8243 * update the contents of a single device.
8244 * Not update any other mirrors nor go through RMW path.
8245 *
8246 * Callers should ensure:
8247 *
8248 * - Call btrfs_bio_counter_inc_blocked() first
8249 * - The range does not cross stripe boundary
8250 * - Has a valid @mirror_num passed in.
8251 */
8252int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8253 struct btrfs_io_stripe *smap, u64 logical,
8254 u32 length, int mirror_num)
8255{
8256 struct btrfs_io_context *bioc = NULL;
8257 u64 map_length = length;
8258 int mirror_ret = mirror_num;
8259 int ret;
8260
8261 ASSERT(mirror_num > 0);
8262
8263 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8264 &bioc, smap, &mirror_ret);
8265 if (ret < 0)
8266 return ret;
8267
8268 /* The map range should not cross stripe boundary. */
8269 ASSERT(map_length >= length);
8270
8271 /* Already mapped to single stripe. */
8272 if (!bioc)
8273 goto out;
8274
8275 /* Map the RAID56 multi-stripe writes to a single one. */
8276 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8277 map_raid56_repair_block(bioc, smap, logical);
8278 goto out;
8279 }
8280
8281 ASSERT(mirror_num <= bioc->num_stripes);
8282 smap->dev = bioc->stripes[mirror_num - 1].dev;
8283 smap->physical = bioc->stripes[mirror_num - 1].physical;
8284out:
8285 btrfs_put_bioc(bioc);
8286 ASSERT(smap->dev);
8287 return 0;
8288}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/bio.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/ratelimit.h>
12#include <linux/kthread.h>
13#include <linux/raid/pq.h>
14#include <linux/semaphore.h>
15#include <linux/uuid.h>
16#include <linux/list_sort.h>
17#include "misc.h"
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
24#include "raid56.h"
25#include "async-thread.h"
26#include "check-integrity.h"
27#include "rcu-string.h"
28#include "dev-replace.h"
29#include "sysfs.h"
30#include "tree-checker.h"
31#include "space-info.h"
32#include "block-group.h"
33#include "discard.h"
34#include "zoned.h"
35
36const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
41 .devs_min = 4,
42 .tolerated_failures = 1,
43 .devs_increment = 2,
44 .ncopies = 2,
45 .nparity = 0,
46 .raid_name = "raid10",
47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
55 .tolerated_failures = 1,
56 .devs_increment = 2,
57 .ncopies = 2,
58 .nparity = 0,
59 .raid_name = "raid1",
60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 },
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
66 .devs_max = 3,
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
71 .nparity = 0,
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
79 .devs_max = 4,
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
84 .nparity = 0,
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
94 .tolerated_failures = 0,
95 .devs_increment = 1,
96 .ncopies = 2,
97 .nparity = 0,
98 .raid_name = "dup",
99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
100 .mindev_error = 0,
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
106 .devs_min = 2,
107 .tolerated_failures = 0,
108 .devs_increment = 1,
109 .ncopies = 1,
110 .nparity = 0,
111 .raid_name = "raid0",
112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
113 .mindev_error = 0,
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
120 .tolerated_failures = 0,
121 .devs_increment = 1,
122 .ncopies = 1,
123 .nparity = 0,
124 .raid_name = "single",
125 .bg_flag = 0,
126 .mindev_error = 0,
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
133 .tolerated_failures = 1,
134 .devs_increment = 1,
135 .ncopies = 1,
136 .nparity = 1,
137 .raid_name = "raid5",
138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
146 .tolerated_failures = 2,
147 .devs_increment = 1,
148 .ncopies = 1,
149 .nparity = 2,
150 .raid_name = "raid6",
151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 },
154};
155
156const char *btrfs_bg_type_to_raid_name(u64 flags)
157{
158 const int index = btrfs_bg_flags_to_raid_index(flags);
159
160 if (index >= BTRFS_NR_RAID_TYPES)
161 return NULL;
162
163 return btrfs_raid_array[index].raid_name;
164}
165
166/*
167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
168 * bytes including terminating null byte.
169 */
170void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171{
172 int i;
173 int ret;
174 char *bp = buf;
175 u64 flags = bg_flags;
176 u32 size_bp = size_buf;
177
178 if (!flags) {
179 strcpy(bp, "NONE");
180 return;
181 }
182
183#define DESCRIBE_FLAG(flag, desc) \
184 do { \
185 if (flags & (flag)) { \
186 ret = snprintf(bp, size_bp, "%s|", (desc)); \
187 if (ret < 0 || ret >= size_bp) \
188 goto out_overflow; \
189 size_bp -= ret; \
190 bp += ret; \
191 flags &= ~(flag); \
192 } \
193 } while (0)
194
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202 btrfs_raid_array[i].raid_name);
203#undef DESCRIBE_FLAG
204
205 if (flags) {
206 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207 size_bp -= ret;
208 }
209
210 if (size_bp < size_buf)
211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213 /*
214 * The text is trimmed, it's up to the caller to provide sufficiently
215 * large buffer
216 */
217out_overflow:;
218}
219
220static int init_first_rw_device(struct btrfs_trans_handle *trans);
221static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225 enum btrfs_map_op op,
226 u64 logical, u64 *length,
227 struct btrfs_bio **bbio_ret,
228 int mirror_num, int need_raid_map);
229
230/*
231 * Device locking
232 * ==============
233 *
234 * There are several mutexes that protect manipulation of devices and low-level
235 * structures like chunks but not block groups, extents or files
236 *
237 * uuid_mutex (global lock)
238 * ------------------------
239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241 * device) or requested by the device= mount option
242 *
243 * the mutex can be very coarse and can cover long-running operations
244 *
245 * protects: updates to fs_devices counters like missing devices, rw devices,
246 * seeding, structure cloning, opening/closing devices at mount/umount time
247 *
248 * global::fs_devs - add, remove, updates to the global list
249 *
250 * does not protect: manipulation of the fs_devices::devices list in general
251 * but in mount context it could be used to exclude list modifications by eg.
252 * scan ioctl
253 *
254 * btrfs_device::name - renames (write side), read is RCU
255 *
256 * fs_devices::device_list_mutex (per-fs, with RCU)
257 * ------------------------------------------------
258 * protects updates to fs_devices::devices, ie. adding and deleting
259 *
260 * simple list traversal with read-only actions can be done with RCU protection
261 *
262 * may be used to exclude some operations from running concurrently without any
263 * modifications to the list (see write_all_supers)
264 *
265 * Is not required at mount and close times, because our device list is
266 * protected by the uuid_mutex at that point.
267 *
268 * balance_mutex
269 * -------------
270 * protects balance structures (status, state) and context accessed from
271 * several places (internally, ioctl)
272 *
273 * chunk_mutex
274 * -----------
275 * protects chunks, adding or removing during allocation, trim or when a new
276 * device is added/removed. Additionally it also protects post_commit_list of
277 * individual devices, since they can be added to the transaction's
278 * post_commit_list only with chunk_mutex held.
279 *
280 * cleaner_mutex
281 * -------------
282 * a big lock that is held by the cleaner thread and prevents running subvolume
283 * cleaning together with relocation or delayed iputs
284 *
285 *
286 * Lock nesting
287 * ============
288 *
289 * uuid_mutex
290 * device_list_mutex
291 * chunk_mutex
292 * balance_mutex
293 *
294 *
295 * Exclusive operations
296 * ====================
297 *
298 * Maintains the exclusivity of the following operations that apply to the
299 * whole filesystem and cannot run in parallel.
300 *
301 * - Balance (*)
302 * - Device add
303 * - Device remove
304 * - Device replace (*)
305 * - Resize
306 *
307 * The device operations (as above) can be in one of the following states:
308 *
309 * - Running state
310 * - Paused state
311 * - Completed state
312 *
313 * Only device operations marked with (*) can go into the Paused state for the
314 * following reasons:
315 *
316 * - ioctl (only Balance can be Paused through ioctl)
317 * - filesystem remounted as read-only
318 * - filesystem unmounted and mounted as read-only
319 * - system power-cycle and filesystem mounted as read-only
320 * - filesystem or device errors leading to forced read-only
321 *
322 * The status of exclusive operation is set and cleared atomically.
323 * During the course of Paused state, fs_info::exclusive_operation remains set.
324 * A device operation in Paused or Running state can be canceled or resumed
325 * either by ioctl (Balance only) or when remounted as read-write.
326 * The exclusive status is cleared when the device operation is canceled or
327 * completed.
328 */
329
330DEFINE_MUTEX(uuid_mutex);
331static LIST_HEAD(fs_uuids);
332struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333{
334 return &fs_uuids;
335}
336
337/*
338 * alloc_fs_devices - allocate struct btrfs_fs_devices
339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
341 *
342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343 * The returned struct is not linked onto any lists and can be destroyed with
344 * kfree() right away.
345 */
346static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347 const u8 *metadata_fsid)
348{
349 struct btrfs_fs_devices *fs_devs;
350
351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352 if (!fs_devs)
353 return ERR_PTR(-ENOMEM);
354
355 mutex_init(&fs_devs->device_list_mutex);
356
357 INIT_LIST_HEAD(&fs_devs->devices);
358 INIT_LIST_HEAD(&fs_devs->alloc_list);
359 INIT_LIST_HEAD(&fs_devs->fs_list);
360 INIT_LIST_HEAD(&fs_devs->seed_list);
361 if (fsid)
362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364 if (metadata_fsid)
365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366 else if (fsid)
367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369 return fs_devs;
370}
371
372void btrfs_free_device(struct btrfs_device *device)
373{
374 WARN_ON(!list_empty(&device->post_commit_list));
375 rcu_string_free(device->name);
376 extent_io_tree_release(&device->alloc_state);
377 bio_put(device->flush_bio);
378 btrfs_destroy_dev_zone_info(device);
379 kfree(device);
380}
381
382static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
383{
384 struct btrfs_device *device;
385 WARN_ON(fs_devices->opened);
386 while (!list_empty(&fs_devices->devices)) {
387 device = list_entry(fs_devices->devices.next,
388 struct btrfs_device, dev_list);
389 list_del(&device->dev_list);
390 btrfs_free_device(device);
391 }
392 kfree(fs_devices);
393}
394
395void __exit btrfs_cleanup_fs_uuids(void)
396{
397 struct btrfs_fs_devices *fs_devices;
398
399 while (!list_empty(&fs_uuids)) {
400 fs_devices = list_entry(fs_uuids.next,
401 struct btrfs_fs_devices, fs_list);
402 list_del(&fs_devices->fs_list);
403 free_fs_devices(fs_devices);
404 }
405}
406
407/*
408 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
409 * Returned struct is not linked onto any lists and must be destroyed using
410 * btrfs_free_device.
411 */
412static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
413{
414 struct btrfs_device *dev;
415
416 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
417 if (!dev)
418 return ERR_PTR(-ENOMEM);
419
420 /*
421 * Preallocate a bio that's always going to be used for flushing device
422 * barriers and matches the device lifespan
423 */
424 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
425 if (!dev->flush_bio) {
426 kfree(dev);
427 return ERR_PTR(-ENOMEM);
428 }
429
430 INIT_LIST_HEAD(&dev->dev_list);
431 INIT_LIST_HEAD(&dev->dev_alloc_list);
432 INIT_LIST_HEAD(&dev->post_commit_list);
433
434 atomic_set(&dev->reada_in_flight, 0);
435 atomic_set(&dev->dev_stats_ccnt, 0);
436 btrfs_device_data_ordered_init(dev);
437 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
439 extent_io_tree_init(fs_info, &dev->alloc_state,
440 IO_TREE_DEVICE_ALLOC_STATE, NULL);
441
442 return dev;
443}
444
445static noinline struct btrfs_fs_devices *find_fsid(
446 const u8 *fsid, const u8 *metadata_fsid)
447{
448 struct btrfs_fs_devices *fs_devices;
449
450 ASSERT(fsid);
451
452 /* Handle non-split brain cases */
453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
463 }
464 return NULL;
465}
466
467static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
468 struct btrfs_super_block *disk_super)
469{
470
471 struct btrfs_fs_devices *fs_devices;
472
473 /*
474 * Handle scanned device having completed its fsid change but
475 * belonging to a fs_devices that was created by first scanning
476 * a device which didn't have its fsid/metadata_uuid changed
477 * at all and the CHANGING_FSID_V2 flag set.
478 */
479 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
480 if (fs_devices->fsid_change &&
481 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
482 BTRFS_FSID_SIZE) == 0 &&
483 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
484 BTRFS_FSID_SIZE) == 0) {
485 return fs_devices;
486 }
487 }
488 /*
489 * Handle scanned device having completed its fsid change but
490 * belonging to a fs_devices that was created by a device that
491 * has an outdated pair of fsid/metadata_uuid and
492 * CHANGING_FSID_V2 flag set.
493 */
494 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
495 if (fs_devices->fsid_change &&
496 memcmp(fs_devices->metadata_uuid,
497 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
498 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
499 BTRFS_FSID_SIZE) == 0) {
500 return fs_devices;
501 }
502 }
503
504 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
505}
506
507
508static int
509btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
510 int flush, struct block_device **bdev,
511 struct btrfs_super_block **disk_super)
512{
513 int ret;
514
515 *bdev = blkdev_get_by_path(device_path, flags, holder);
516
517 if (IS_ERR(*bdev)) {
518 ret = PTR_ERR(*bdev);
519 goto error;
520 }
521
522 if (flush)
523 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
524 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
525 if (ret) {
526 blkdev_put(*bdev, flags);
527 goto error;
528 }
529 invalidate_bdev(*bdev);
530 *disk_super = btrfs_read_dev_super(*bdev);
531 if (IS_ERR(*disk_super)) {
532 ret = PTR_ERR(*disk_super);
533 blkdev_put(*bdev, flags);
534 goto error;
535 }
536
537 return 0;
538
539error:
540 *bdev = NULL;
541 return ret;
542}
543
544static bool device_path_matched(const char *path, struct btrfs_device *device)
545{
546 int found;
547
548 rcu_read_lock();
549 found = strcmp(rcu_str_deref(device->name), path);
550 rcu_read_unlock();
551
552 return found == 0;
553}
554
555/*
556 * Search and remove all stale (devices which are not mounted) devices.
557 * When both inputs are NULL, it will search and release all stale devices.
558 * path: Optional. When provided will it release all unmounted devices
559 * matching this path only.
560 * skip_dev: Optional. Will skip this device when searching for the stale
561 * devices.
562 * Return: 0 for success or if @path is NULL.
563 * -EBUSY if @path is a mounted device.
564 * -ENOENT if @path does not match any device in the list.
565 */
566static int btrfs_free_stale_devices(const char *path,
567 struct btrfs_device *skip_device)
568{
569 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
570 struct btrfs_device *device, *tmp_device;
571 int ret = 0;
572
573 lockdep_assert_held(&uuid_mutex);
574
575 if (path)
576 ret = -ENOENT;
577
578 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
579
580 mutex_lock(&fs_devices->device_list_mutex);
581 list_for_each_entry_safe(device, tmp_device,
582 &fs_devices->devices, dev_list) {
583 if (skip_device && skip_device == device)
584 continue;
585 if (path && !device->name)
586 continue;
587 if (path && !device_path_matched(path, device))
588 continue;
589 if (fs_devices->opened) {
590 /* for an already deleted device return 0 */
591 if (path && ret != 0)
592 ret = -EBUSY;
593 break;
594 }
595
596 /* delete the stale device */
597 fs_devices->num_devices--;
598 list_del(&device->dev_list);
599 btrfs_free_device(device);
600
601 ret = 0;
602 }
603 mutex_unlock(&fs_devices->device_list_mutex);
604
605 if (fs_devices->num_devices == 0) {
606 btrfs_sysfs_remove_fsid(fs_devices);
607 list_del(&fs_devices->fs_list);
608 free_fs_devices(fs_devices);
609 }
610 }
611
612 return ret;
613}
614
615/*
616 * This is only used on mount, and we are protected from competing things
617 * messing with our fs_devices by the uuid_mutex, thus we do not need the
618 * fs_devices->device_list_mutex here.
619 */
620static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
621 struct btrfs_device *device, fmode_t flags,
622 void *holder)
623{
624 struct request_queue *q;
625 struct block_device *bdev;
626 struct btrfs_super_block *disk_super;
627 u64 devid;
628 int ret;
629
630 if (device->bdev)
631 return -EINVAL;
632 if (!device->name)
633 return -EINVAL;
634
635 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
636 &bdev, &disk_super);
637 if (ret)
638 return ret;
639
640 devid = btrfs_stack_device_id(&disk_super->dev_item);
641 if (devid != device->devid)
642 goto error_free_page;
643
644 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
645 goto error_free_page;
646
647 device->generation = btrfs_super_generation(disk_super);
648
649 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
650 if (btrfs_super_incompat_flags(disk_super) &
651 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
652 pr_err(
653 "BTRFS: Invalid seeding and uuid-changed device detected\n");
654 goto error_free_page;
655 }
656
657 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
658 fs_devices->seeding = true;
659 } else {
660 if (bdev_read_only(bdev))
661 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
662 else
663 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
664 }
665
666 q = bdev_get_queue(bdev);
667 if (!blk_queue_nonrot(q))
668 fs_devices->rotating = true;
669
670 device->bdev = bdev;
671 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
672 device->mode = flags;
673
674 fs_devices->open_devices++;
675 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
676 device->devid != BTRFS_DEV_REPLACE_DEVID) {
677 fs_devices->rw_devices++;
678 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
679 }
680 btrfs_release_disk_super(disk_super);
681
682 return 0;
683
684error_free_page:
685 btrfs_release_disk_super(disk_super);
686 blkdev_put(bdev, flags);
687
688 return -EINVAL;
689}
690
691/*
692 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
693 * being created with a disk that has already completed its fsid change. Such
694 * disk can belong to an fs which has its FSID changed or to one which doesn't.
695 * Handle both cases here.
696 */
697static struct btrfs_fs_devices *find_fsid_inprogress(
698 struct btrfs_super_block *disk_super)
699{
700 struct btrfs_fs_devices *fs_devices;
701
702 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
703 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
704 BTRFS_FSID_SIZE) != 0 &&
705 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
706 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
707 return fs_devices;
708 }
709 }
710
711 return find_fsid(disk_super->fsid, NULL);
712}
713
714
715static struct btrfs_fs_devices *find_fsid_changed(
716 struct btrfs_super_block *disk_super)
717{
718 struct btrfs_fs_devices *fs_devices;
719
720 /*
721 * Handles the case where scanned device is part of an fs that had
722 * multiple successful changes of FSID but currently device didn't
723 * observe it. Meaning our fsid will be different than theirs. We need
724 * to handle two subcases :
725 * 1 - The fs still continues to have different METADATA/FSID uuids.
726 * 2 - The fs is switched back to its original FSID (METADATA/FSID
727 * are equal).
728 */
729 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
730 /* Changed UUIDs */
731 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
732 BTRFS_FSID_SIZE) != 0 &&
733 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
734 BTRFS_FSID_SIZE) == 0 &&
735 memcmp(fs_devices->fsid, disk_super->fsid,
736 BTRFS_FSID_SIZE) != 0)
737 return fs_devices;
738
739 /* Unchanged UUIDs */
740 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
741 BTRFS_FSID_SIZE) == 0 &&
742 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
743 BTRFS_FSID_SIZE) == 0)
744 return fs_devices;
745 }
746
747 return NULL;
748}
749
750static struct btrfs_fs_devices *find_fsid_reverted_metadata(
751 struct btrfs_super_block *disk_super)
752{
753 struct btrfs_fs_devices *fs_devices;
754
755 /*
756 * Handle the case where the scanned device is part of an fs whose last
757 * metadata UUID change reverted it to the original FSID. At the same
758 * time * fs_devices was first created by another constitutent device
759 * which didn't fully observe the operation. This results in an
760 * btrfs_fs_devices created with metadata/fsid different AND
761 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
762 * fs_devices equal to the FSID of the disk.
763 */
764 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
765 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
766 BTRFS_FSID_SIZE) != 0 &&
767 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
768 BTRFS_FSID_SIZE) == 0 &&
769 fs_devices->fsid_change)
770 return fs_devices;
771 }
772
773 return NULL;
774}
775/*
776 * Add new device to list of registered devices
777 *
778 * Returns:
779 * device pointer which was just added or updated when successful
780 * error pointer when failed
781 */
782static noinline struct btrfs_device *device_list_add(const char *path,
783 struct btrfs_super_block *disk_super,
784 bool *new_device_added)
785{
786 struct btrfs_device *device;
787 struct btrfs_fs_devices *fs_devices = NULL;
788 struct rcu_string *name;
789 u64 found_transid = btrfs_super_generation(disk_super);
790 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
791 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
792 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
793 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
794 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
795
796 if (fsid_change_in_progress) {
797 if (!has_metadata_uuid)
798 fs_devices = find_fsid_inprogress(disk_super);
799 else
800 fs_devices = find_fsid_changed(disk_super);
801 } else if (has_metadata_uuid) {
802 fs_devices = find_fsid_with_metadata_uuid(disk_super);
803 } else {
804 fs_devices = find_fsid_reverted_metadata(disk_super);
805 if (!fs_devices)
806 fs_devices = find_fsid(disk_super->fsid, NULL);
807 }
808
809
810 if (!fs_devices) {
811 if (has_metadata_uuid)
812 fs_devices = alloc_fs_devices(disk_super->fsid,
813 disk_super->metadata_uuid);
814 else
815 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
816
817 if (IS_ERR(fs_devices))
818 return ERR_CAST(fs_devices);
819
820 fs_devices->fsid_change = fsid_change_in_progress;
821
822 mutex_lock(&fs_devices->device_list_mutex);
823 list_add(&fs_devices->fs_list, &fs_uuids);
824
825 device = NULL;
826 } else {
827 mutex_lock(&fs_devices->device_list_mutex);
828 device = btrfs_find_device(fs_devices, devid,
829 disk_super->dev_item.uuid, NULL);
830
831 /*
832 * If this disk has been pulled into an fs devices created by
833 * a device which had the CHANGING_FSID_V2 flag then replace the
834 * metadata_uuid/fsid values of the fs_devices.
835 */
836 if (fs_devices->fsid_change &&
837 found_transid > fs_devices->latest_generation) {
838 memcpy(fs_devices->fsid, disk_super->fsid,
839 BTRFS_FSID_SIZE);
840
841 if (has_metadata_uuid)
842 memcpy(fs_devices->metadata_uuid,
843 disk_super->metadata_uuid,
844 BTRFS_FSID_SIZE);
845 else
846 memcpy(fs_devices->metadata_uuid,
847 disk_super->fsid, BTRFS_FSID_SIZE);
848
849 fs_devices->fsid_change = false;
850 }
851 }
852
853 if (!device) {
854 if (fs_devices->opened) {
855 mutex_unlock(&fs_devices->device_list_mutex);
856 return ERR_PTR(-EBUSY);
857 }
858
859 device = btrfs_alloc_device(NULL, &devid,
860 disk_super->dev_item.uuid);
861 if (IS_ERR(device)) {
862 mutex_unlock(&fs_devices->device_list_mutex);
863 /* we can safely leave the fs_devices entry around */
864 return device;
865 }
866
867 name = rcu_string_strdup(path, GFP_NOFS);
868 if (!name) {
869 btrfs_free_device(device);
870 mutex_unlock(&fs_devices->device_list_mutex);
871 return ERR_PTR(-ENOMEM);
872 }
873 rcu_assign_pointer(device->name, name);
874
875 list_add_rcu(&device->dev_list, &fs_devices->devices);
876 fs_devices->num_devices++;
877
878 device->fs_devices = fs_devices;
879 *new_device_added = true;
880
881 if (disk_super->label[0])
882 pr_info(
883 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
884 disk_super->label, devid, found_transid, path,
885 current->comm, task_pid_nr(current));
886 else
887 pr_info(
888 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
889 disk_super->fsid, devid, found_transid, path,
890 current->comm, task_pid_nr(current));
891
892 } else if (!device->name || strcmp(device->name->str, path)) {
893 /*
894 * When FS is already mounted.
895 * 1. If you are here and if the device->name is NULL that
896 * means this device was missing at time of FS mount.
897 * 2. If you are here and if the device->name is different
898 * from 'path' that means either
899 * a. The same device disappeared and reappeared with
900 * different name. or
901 * b. The missing-disk-which-was-replaced, has
902 * reappeared now.
903 *
904 * We must allow 1 and 2a above. But 2b would be a spurious
905 * and unintentional.
906 *
907 * Further in case of 1 and 2a above, the disk at 'path'
908 * would have missed some transaction when it was away and
909 * in case of 2a the stale bdev has to be updated as well.
910 * 2b must not be allowed at all time.
911 */
912
913 /*
914 * For now, we do allow update to btrfs_fs_device through the
915 * btrfs dev scan cli after FS has been mounted. We're still
916 * tracking a problem where systems fail mount by subvolume id
917 * when we reject replacement on a mounted FS.
918 */
919 if (!fs_devices->opened && found_transid < device->generation) {
920 /*
921 * That is if the FS is _not_ mounted and if you
922 * are here, that means there is more than one
923 * disk with same uuid and devid.We keep the one
924 * with larger generation number or the last-in if
925 * generation are equal.
926 */
927 mutex_unlock(&fs_devices->device_list_mutex);
928 return ERR_PTR(-EEXIST);
929 }
930
931 /*
932 * We are going to replace the device path for a given devid,
933 * make sure it's the same device if the device is mounted
934 */
935 if (device->bdev) {
936 int error;
937 dev_t path_dev;
938
939 error = lookup_bdev(path, &path_dev);
940 if (error) {
941 mutex_unlock(&fs_devices->device_list_mutex);
942 return ERR_PTR(error);
943 }
944
945 if (device->bdev->bd_dev != path_dev) {
946 mutex_unlock(&fs_devices->device_list_mutex);
947 /*
948 * device->fs_info may not be reliable here, so
949 * pass in a NULL instead. This avoids a
950 * possible use-after-free when the fs_info and
951 * fs_info->sb are already torn down.
952 */
953 btrfs_warn_in_rcu(NULL,
954 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
955 path, devid, found_transid,
956 current->comm,
957 task_pid_nr(current));
958 return ERR_PTR(-EEXIST);
959 }
960 btrfs_info_in_rcu(device->fs_info,
961 "devid %llu device path %s changed to %s scanned by %s (%d)",
962 devid, rcu_str_deref(device->name),
963 path, current->comm,
964 task_pid_nr(current));
965 }
966
967 name = rcu_string_strdup(path, GFP_NOFS);
968 if (!name) {
969 mutex_unlock(&fs_devices->device_list_mutex);
970 return ERR_PTR(-ENOMEM);
971 }
972 rcu_string_free(device->name);
973 rcu_assign_pointer(device->name, name);
974 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
975 fs_devices->missing_devices--;
976 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
977 }
978 }
979
980 /*
981 * Unmount does not free the btrfs_device struct but would zero
982 * generation along with most of the other members. So just update
983 * it back. We need it to pick the disk with largest generation
984 * (as above).
985 */
986 if (!fs_devices->opened) {
987 device->generation = found_transid;
988 fs_devices->latest_generation = max_t(u64, found_transid,
989 fs_devices->latest_generation);
990 }
991
992 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
993
994 mutex_unlock(&fs_devices->device_list_mutex);
995 return device;
996}
997
998static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
999{
1000 struct btrfs_fs_devices *fs_devices;
1001 struct btrfs_device *device;
1002 struct btrfs_device *orig_dev;
1003 int ret = 0;
1004
1005 lockdep_assert_held(&uuid_mutex);
1006
1007 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1008 if (IS_ERR(fs_devices))
1009 return fs_devices;
1010
1011 fs_devices->total_devices = orig->total_devices;
1012
1013 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1014 struct rcu_string *name;
1015
1016 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1017 orig_dev->uuid);
1018 if (IS_ERR(device)) {
1019 ret = PTR_ERR(device);
1020 goto error;
1021 }
1022
1023 /*
1024 * This is ok to do without rcu read locked because we hold the
1025 * uuid mutex so nothing we touch in here is going to disappear.
1026 */
1027 if (orig_dev->name) {
1028 name = rcu_string_strdup(orig_dev->name->str,
1029 GFP_KERNEL);
1030 if (!name) {
1031 btrfs_free_device(device);
1032 ret = -ENOMEM;
1033 goto error;
1034 }
1035 rcu_assign_pointer(device->name, name);
1036 }
1037
1038 list_add(&device->dev_list, &fs_devices->devices);
1039 device->fs_devices = fs_devices;
1040 fs_devices->num_devices++;
1041 }
1042 return fs_devices;
1043error:
1044 free_fs_devices(fs_devices);
1045 return ERR_PTR(ret);
1046}
1047
1048static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1049 struct btrfs_device **latest_dev)
1050{
1051 struct btrfs_device *device, *next;
1052
1053 /* This is the initialized path, it is safe to release the devices. */
1054 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1055 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1056 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1057 &device->dev_state) &&
1058 !test_bit(BTRFS_DEV_STATE_MISSING,
1059 &device->dev_state) &&
1060 (!*latest_dev ||
1061 device->generation > (*latest_dev)->generation)) {
1062 *latest_dev = device;
1063 }
1064 continue;
1065 }
1066
1067 /*
1068 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1069 * in btrfs_init_dev_replace() so just continue.
1070 */
1071 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1072 continue;
1073
1074 if (device->bdev) {
1075 blkdev_put(device->bdev, device->mode);
1076 device->bdev = NULL;
1077 fs_devices->open_devices--;
1078 }
1079 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1080 list_del_init(&device->dev_alloc_list);
1081 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1082 fs_devices->rw_devices--;
1083 }
1084 list_del_init(&device->dev_list);
1085 fs_devices->num_devices--;
1086 btrfs_free_device(device);
1087 }
1088
1089}
1090
1091/*
1092 * After we have read the system tree and know devids belonging to this
1093 * filesystem, remove the device which does not belong there.
1094 */
1095void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1096{
1097 struct btrfs_device *latest_dev = NULL;
1098 struct btrfs_fs_devices *seed_dev;
1099
1100 mutex_lock(&uuid_mutex);
1101 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1102
1103 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1104 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1105
1106 fs_devices->latest_bdev = latest_dev->bdev;
1107
1108 mutex_unlock(&uuid_mutex);
1109}
1110
1111static void btrfs_close_bdev(struct btrfs_device *device)
1112{
1113 if (!device->bdev)
1114 return;
1115
1116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1117 sync_blockdev(device->bdev);
1118 invalidate_bdev(device->bdev);
1119 }
1120
1121 blkdev_put(device->bdev, device->mode);
1122}
1123
1124static void btrfs_close_one_device(struct btrfs_device *device)
1125{
1126 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1127
1128 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1129 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1130 list_del_init(&device->dev_alloc_list);
1131 fs_devices->rw_devices--;
1132 }
1133
1134 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1135 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1136
1137 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1138 fs_devices->missing_devices--;
1139
1140 btrfs_close_bdev(device);
1141 if (device->bdev) {
1142 fs_devices->open_devices--;
1143 device->bdev = NULL;
1144 }
1145 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1146 btrfs_destroy_dev_zone_info(device);
1147
1148 device->fs_info = NULL;
1149 atomic_set(&device->dev_stats_ccnt, 0);
1150 extent_io_tree_release(&device->alloc_state);
1151
1152 /*
1153 * Reset the flush error record. We might have a transient flush error
1154 * in this mount, and if so we aborted the current transaction and set
1155 * the fs to an error state, guaranteeing no super blocks can be further
1156 * committed. However that error might be transient and if we unmount the
1157 * filesystem and mount it again, we should allow the mount to succeed
1158 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1159 * filesystem again we still get flush errors, then we will again abort
1160 * any transaction and set the error state, guaranteeing no commits of
1161 * unsafe super blocks.
1162 */
1163 device->last_flush_error = 0;
1164
1165 /* Verify the device is back in a pristine state */
1166 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1167 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1168 ASSERT(list_empty(&device->dev_alloc_list));
1169 ASSERT(list_empty(&device->post_commit_list));
1170 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1171}
1172
1173static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1174{
1175 struct btrfs_device *device, *tmp;
1176
1177 lockdep_assert_held(&uuid_mutex);
1178
1179 if (--fs_devices->opened > 0)
1180 return;
1181
1182 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1183 btrfs_close_one_device(device);
1184
1185 WARN_ON(fs_devices->open_devices);
1186 WARN_ON(fs_devices->rw_devices);
1187 fs_devices->opened = 0;
1188 fs_devices->seeding = false;
1189 fs_devices->fs_info = NULL;
1190}
1191
1192void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1193{
1194 LIST_HEAD(list);
1195 struct btrfs_fs_devices *tmp;
1196
1197 mutex_lock(&uuid_mutex);
1198 close_fs_devices(fs_devices);
1199 if (!fs_devices->opened)
1200 list_splice_init(&fs_devices->seed_list, &list);
1201
1202 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1203 close_fs_devices(fs_devices);
1204 list_del(&fs_devices->seed_list);
1205 free_fs_devices(fs_devices);
1206 }
1207 mutex_unlock(&uuid_mutex);
1208}
1209
1210static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1211 fmode_t flags, void *holder)
1212{
1213 struct btrfs_device *device;
1214 struct btrfs_device *latest_dev = NULL;
1215 struct btrfs_device *tmp_device;
1216
1217 flags |= FMODE_EXCL;
1218
1219 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1220 dev_list) {
1221 int ret;
1222
1223 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1224 if (ret == 0 &&
1225 (!latest_dev || device->generation > latest_dev->generation)) {
1226 latest_dev = device;
1227 } else if (ret == -ENODATA) {
1228 fs_devices->num_devices--;
1229 list_del(&device->dev_list);
1230 btrfs_free_device(device);
1231 }
1232 }
1233 if (fs_devices->open_devices == 0)
1234 return -EINVAL;
1235
1236 fs_devices->opened = 1;
1237 fs_devices->latest_bdev = latest_dev->bdev;
1238 fs_devices->total_rw_bytes = 0;
1239 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1240 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1241
1242 return 0;
1243}
1244
1245static int devid_cmp(void *priv, const struct list_head *a,
1246 const struct list_head *b)
1247{
1248 struct btrfs_device *dev1, *dev2;
1249
1250 dev1 = list_entry(a, struct btrfs_device, dev_list);
1251 dev2 = list_entry(b, struct btrfs_device, dev_list);
1252
1253 if (dev1->devid < dev2->devid)
1254 return -1;
1255 else if (dev1->devid > dev2->devid)
1256 return 1;
1257 return 0;
1258}
1259
1260int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1261 fmode_t flags, void *holder)
1262{
1263 int ret;
1264
1265 lockdep_assert_held(&uuid_mutex);
1266 /*
1267 * The device_list_mutex cannot be taken here in case opening the
1268 * underlying device takes further locks like open_mutex.
1269 *
1270 * We also don't need the lock here as this is called during mount and
1271 * exclusion is provided by uuid_mutex
1272 */
1273
1274 if (fs_devices->opened) {
1275 fs_devices->opened++;
1276 ret = 0;
1277 } else {
1278 list_sort(NULL, &fs_devices->devices, devid_cmp);
1279 ret = open_fs_devices(fs_devices, flags, holder);
1280 }
1281
1282 return ret;
1283}
1284
1285void btrfs_release_disk_super(struct btrfs_super_block *super)
1286{
1287 struct page *page = virt_to_page(super);
1288
1289 put_page(page);
1290}
1291
1292static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1293 u64 bytenr, u64 bytenr_orig)
1294{
1295 struct btrfs_super_block *disk_super;
1296 struct page *page;
1297 void *p;
1298 pgoff_t index;
1299
1300 /* make sure our super fits in the device */
1301 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1302 return ERR_PTR(-EINVAL);
1303
1304 /* make sure our super fits in the page */
1305 if (sizeof(*disk_super) > PAGE_SIZE)
1306 return ERR_PTR(-EINVAL);
1307
1308 /* make sure our super doesn't straddle pages on disk */
1309 index = bytenr >> PAGE_SHIFT;
1310 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1311 return ERR_PTR(-EINVAL);
1312
1313 /* pull in the page with our super */
1314 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1315
1316 if (IS_ERR(page))
1317 return ERR_CAST(page);
1318
1319 p = page_address(page);
1320
1321 /* align our pointer to the offset of the super block */
1322 disk_super = p + offset_in_page(bytenr);
1323
1324 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1325 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1326 btrfs_release_disk_super(p);
1327 return ERR_PTR(-EINVAL);
1328 }
1329
1330 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1331 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1332
1333 return disk_super;
1334}
1335
1336int btrfs_forget_devices(const char *path)
1337{
1338 int ret;
1339
1340 mutex_lock(&uuid_mutex);
1341 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1342 mutex_unlock(&uuid_mutex);
1343
1344 return ret;
1345}
1346
1347/*
1348 * Look for a btrfs signature on a device. This may be called out of the mount path
1349 * and we are not allowed to call set_blocksize during the scan. The superblock
1350 * is read via pagecache
1351 */
1352struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1353 void *holder)
1354{
1355 struct btrfs_super_block *disk_super;
1356 bool new_device_added = false;
1357 struct btrfs_device *device = NULL;
1358 struct block_device *bdev;
1359 u64 bytenr, bytenr_orig;
1360 int ret;
1361
1362 lockdep_assert_held(&uuid_mutex);
1363
1364 /*
1365 * we would like to check all the supers, but that would make
1366 * a btrfs mount succeed after a mkfs from a different FS.
1367 * So, we need to add a special mount option to scan for
1368 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1369 */
1370 flags |= FMODE_EXCL;
1371
1372 bdev = blkdev_get_by_path(path, flags, holder);
1373 if (IS_ERR(bdev))
1374 return ERR_CAST(bdev);
1375
1376 bytenr_orig = btrfs_sb_offset(0);
1377 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
1378 if (ret)
1379 return ERR_PTR(ret);
1380
1381 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
1382 if (IS_ERR(disk_super)) {
1383 device = ERR_CAST(disk_super);
1384 goto error_bdev_put;
1385 }
1386
1387 device = device_list_add(path, disk_super, &new_device_added);
1388 if (!IS_ERR(device)) {
1389 if (new_device_added)
1390 btrfs_free_stale_devices(path, device);
1391 }
1392
1393 btrfs_release_disk_super(disk_super);
1394
1395error_bdev_put:
1396 blkdev_put(bdev, flags);
1397
1398 return device;
1399}
1400
1401/*
1402 * Try to find a chunk that intersects [start, start + len] range and when one
1403 * such is found, record the end of it in *start
1404 */
1405static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1406 u64 len)
1407{
1408 u64 physical_start, physical_end;
1409
1410 lockdep_assert_held(&device->fs_info->chunk_mutex);
1411
1412 if (!find_first_extent_bit(&device->alloc_state, *start,
1413 &physical_start, &physical_end,
1414 CHUNK_ALLOCATED, NULL)) {
1415
1416 if (in_range(physical_start, *start, len) ||
1417 in_range(*start, physical_start,
1418 physical_end - physical_start)) {
1419 *start = physical_end + 1;
1420 return true;
1421 }
1422 }
1423 return false;
1424}
1425
1426static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1427{
1428 switch (device->fs_devices->chunk_alloc_policy) {
1429 case BTRFS_CHUNK_ALLOC_REGULAR:
1430 /*
1431 * We don't want to overwrite the superblock on the drive nor
1432 * any area used by the boot loader (grub for example), so we
1433 * make sure to start at an offset of at least 1MB.
1434 */
1435 return max_t(u64, start, SZ_1M);
1436 case BTRFS_CHUNK_ALLOC_ZONED:
1437 /*
1438 * We don't care about the starting region like regular
1439 * allocator, because we anyway use/reserve the first two zones
1440 * for superblock logging.
1441 */
1442 return ALIGN(start, device->zone_info->zone_size);
1443 default:
1444 BUG();
1445 }
1446}
1447
1448static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1449 u64 *hole_start, u64 *hole_size,
1450 u64 num_bytes)
1451{
1452 u64 zone_size = device->zone_info->zone_size;
1453 u64 pos;
1454 int ret;
1455 bool changed = false;
1456
1457 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1458
1459 while (*hole_size > 0) {
1460 pos = btrfs_find_allocatable_zones(device, *hole_start,
1461 *hole_start + *hole_size,
1462 num_bytes);
1463 if (pos != *hole_start) {
1464 *hole_size = *hole_start + *hole_size - pos;
1465 *hole_start = pos;
1466 changed = true;
1467 if (*hole_size < num_bytes)
1468 break;
1469 }
1470
1471 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1472
1473 /* Range is ensured to be empty */
1474 if (!ret)
1475 return changed;
1476
1477 /* Given hole range was invalid (outside of device) */
1478 if (ret == -ERANGE) {
1479 *hole_start += *hole_size;
1480 *hole_size = 0;
1481 return true;
1482 }
1483
1484 *hole_start += zone_size;
1485 *hole_size -= zone_size;
1486 changed = true;
1487 }
1488
1489 return changed;
1490}
1491
1492/**
1493 * dev_extent_hole_check - check if specified hole is suitable for allocation
1494 * @device: the device which we have the hole
1495 * @hole_start: starting position of the hole
1496 * @hole_size: the size of the hole
1497 * @num_bytes: the size of the free space that we need
1498 *
1499 * This function may modify @hole_start and @hole_size to reflect the suitable
1500 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1501 */
1502static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1503 u64 *hole_size, u64 num_bytes)
1504{
1505 bool changed = false;
1506 u64 hole_end = *hole_start + *hole_size;
1507
1508 for (;;) {
1509 /*
1510 * Check before we set max_hole_start, otherwise we could end up
1511 * sending back this offset anyway.
1512 */
1513 if (contains_pending_extent(device, hole_start, *hole_size)) {
1514 if (hole_end >= *hole_start)
1515 *hole_size = hole_end - *hole_start;
1516 else
1517 *hole_size = 0;
1518 changed = true;
1519 }
1520
1521 switch (device->fs_devices->chunk_alloc_policy) {
1522 case BTRFS_CHUNK_ALLOC_REGULAR:
1523 /* No extra check */
1524 break;
1525 case BTRFS_CHUNK_ALLOC_ZONED:
1526 if (dev_extent_hole_check_zoned(device, hole_start,
1527 hole_size, num_bytes)) {
1528 changed = true;
1529 /*
1530 * The changed hole can contain pending extent.
1531 * Loop again to check that.
1532 */
1533 continue;
1534 }
1535 break;
1536 default:
1537 BUG();
1538 }
1539
1540 break;
1541 }
1542
1543 return changed;
1544}
1545
1546/*
1547 * find_free_dev_extent_start - find free space in the specified device
1548 * @device: the device which we search the free space in
1549 * @num_bytes: the size of the free space that we need
1550 * @search_start: the position from which to begin the search
1551 * @start: store the start of the free space.
1552 * @len: the size of the free space. that we find, or the size
1553 * of the max free space if we don't find suitable free space
1554 *
1555 * this uses a pretty simple search, the expectation is that it is
1556 * called very infrequently and that a given device has a small number
1557 * of extents
1558 *
1559 * @start is used to store the start of the free space if we find. But if we
1560 * don't find suitable free space, it will be used to store the start position
1561 * of the max free space.
1562 *
1563 * @len is used to store the size of the free space that we find.
1564 * But if we don't find suitable free space, it is used to store the size of
1565 * the max free space.
1566 *
1567 * NOTE: This function will search *commit* root of device tree, and does extra
1568 * check to ensure dev extents are not double allocated.
1569 * This makes the function safe to allocate dev extents but may not report
1570 * correct usable device space, as device extent freed in current transaction
1571 * is not reported as available.
1572 */
1573static int find_free_dev_extent_start(struct btrfs_device *device,
1574 u64 num_bytes, u64 search_start, u64 *start,
1575 u64 *len)
1576{
1577 struct btrfs_fs_info *fs_info = device->fs_info;
1578 struct btrfs_root *root = fs_info->dev_root;
1579 struct btrfs_key key;
1580 struct btrfs_dev_extent *dev_extent;
1581 struct btrfs_path *path;
1582 u64 hole_size;
1583 u64 max_hole_start;
1584 u64 max_hole_size;
1585 u64 extent_end;
1586 u64 search_end = device->total_bytes;
1587 int ret;
1588 int slot;
1589 struct extent_buffer *l;
1590
1591 search_start = dev_extent_search_start(device, search_start);
1592
1593 WARN_ON(device->zone_info &&
1594 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1595
1596 path = btrfs_alloc_path();
1597 if (!path)
1598 return -ENOMEM;
1599
1600 max_hole_start = search_start;
1601 max_hole_size = 0;
1602
1603again:
1604 if (search_start >= search_end ||
1605 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1606 ret = -ENOSPC;
1607 goto out;
1608 }
1609
1610 path->reada = READA_FORWARD;
1611 path->search_commit_root = 1;
1612 path->skip_locking = 1;
1613
1614 key.objectid = device->devid;
1615 key.offset = search_start;
1616 key.type = BTRFS_DEV_EXTENT_KEY;
1617
1618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1619 if (ret < 0)
1620 goto out;
1621 if (ret > 0) {
1622 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1623 if (ret < 0)
1624 goto out;
1625 }
1626
1627 while (1) {
1628 l = path->nodes[0];
1629 slot = path->slots[0];
1630 if (slot >= btrfs_header_nritems(l)) {
1631 ret = btrfs_next_leaf(root, path);
1632 if (ret == 0)
1633 continue;
1634 if (ret < 0)
1635 goto out;
1636
1637 break;
1638 }
1639 btrfs_item_key_to_cpu(l, &key, slot);
1640
1641 if (key.objectid < device->devid)
1642 goto next;
1643
1644 if (key.objectid > device->devid)
1645 break;
1646
1647 if (key.type != BTRFS_DEV_EXTENT_KEY)
1648 goto next;
1649
1650 if (key.offset > search_start) {
1651 hole_size = key.offset - search_start;
1652 dev_extent_hole_check(device, &search_start, &hole_size,
1653 num_bytes);
1654
1655 if (hole_size > max_hole_size) {
1656 max_hole_start = search_start;
1657 max_hole_size = hole_size;
1658 }
1659
1660 /*
1661 * If this free space is greater than which we need,
1662 * it must be the max free space that we have found
1663 * until now, so max_hole_start must point to the start
1664 * of this free space and the length of this free space
1665 * is stored in max_hole_size. Thus, we return
1666 * max_hole_start and max_hole_size and go back to the
1667 * caller.
1668 */
1669 if (hole_size >= num_bytes) {
1670 ret = 0;
1671 goto out;
1672 }
1673 }
1674
1675 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1676 extent_end = key.offset + btrfs_dev_extent_length(l,
1677 dev_extent);
1678 if (extent_end > search_start)
1679 search_start = extent_end;
1680next:
1681 path->slots[0]++;
1682 cond_resched();
1683 }
1684
1685 /*
1686 * At this point, search_start should be the end of
1687 * allocated dev extents, and when shrinking the device,
1688 * search_end may be smaller than search_start.
1689 */
1690 if (search_end > search_start) {
1691 hole_size = search_end - search_start;
1692 if (dev_extent_hole_check(device, &search_start, &hole_size,
1693 num_bytes)) {
1694 btrfs_release_path(path);
1695 goto again;
1696 }
1697
1698 if (hole_size > max_hole_size) {
1699 max_hole_start = search_start;
1700 max_hole_size = hole_size;
1701 }
1702 }
1703
1704 /* See above. */
1705 if (max_hole_size < num_bytes)
1706 ret = -ENOSPC;
1707 else
1708 ret = 0;
1709
1710out:
1711 btrfs_free_path(path);
1712 *start = max_hole_start;
1713 if (len)
1714 *len = max_hole_size;
1715 return ret;
1716}
1717
1718int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1719 u64 *start, u64 *len)
1720{
1721 /* FIXME use last free of some kind */
1722 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1723}
1724
1725static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1726 struct btrfs_device *device,
1727 u64 start, u64 *dev_extent_len)
1728{
1729 struct btrfs_fs_info *fs_info = device->fs_info;
1730 struct btrfs_root *root = fs_info->dev_root;
1731 int ret;
1732 struct btrfs_path *path;
1733 struct btrfs_key key;
1734 struct btrfs_key found_key;
1735 struct extent_buffer *leaf = NULL;
1736 struct btrfs_dev_extent *extent = NULL;
1737
1738 path = btrfs_alloc_path();
1739 if (!path)
1740 return -ENOMEM;
1741
1742 key.objectid = device->devid;
1743 key.offset = start;
1744 key.type = BTRFS_DEV_EXTENT_KEY;
1745again:
1746 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1747 if (ret > 0) {
1748 ret = btrfs_previous_item(root, path, key.objectid,
1749 BTRFS_DEV_EXTENT_KEY);
1750 if (ret)
1751 goto out;
1752 leaf = path->nodes[0];
1753 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1754 extent = btrfs_item_ptr(leaf, path->slots[0],
1755 struct btrfs_dev_extent);
1756 BUG_ON(found_key.offset > start || found_key.offset +
1757 btrfs_dev_extent_length(leaf, extent) < start);
1758 key = found_key;
1759 btrfs_release_path(path);
1760 goto again;
1761 } else if (ret == 0) {
1762 leaf = path->nodes[0];
1763 extent = btrfs_item_ptr(leaf, path->slots[0],
1764 struct btrfs_dev_extent);
1765 } else {
1766 goto out;
1767 }
1768
1769 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1770
1771 ret = btrfs_del_item(trans, root, path);
1772 if (ret == 0)
1773 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1774out:
1775 btrfs_free_path(path);
1776 return ret;
1777}
1778
1779static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1780 struct btrfs_device *device,
1781 u64 chunk_offset, u64 start, u64 num_bytes)
1782{
1783 int ret;
1784 struct btrfs_path *path;
1785 struct btrfs_fs_info *fs_info = device->fs_info;
1786 struct btrfs_root *root = fs_info->dev_root;
1787 struct btrfs_dev_extent *extent;
1788 struct extent_buffer *leaf;
1789 struct btrfs_key key;
1790
1791 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1792 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1793 path = btrfs_alloc_path();
1794 if (!path)
1795 return -ENOMEM;
1796
1797 key.objectid = device->devid;
1798 key.offset = start;
1799 key.type = BTRFS_DEV_EXTENT_KEY;
1800 ret = btrfs_insert_empty_item(trans, root, path, &key,
1801 sizeof(*extent));
1802 if (ret)
1803 goto out;
1804
1805 leaf = path->nodes[0];
1806 extent = btrfs_item_ptr(leaf, path->slots[0],
1807 struct btrfs_dev_extent);
1808 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1809 BTRFS_CHUNK_TREE_OBJECTID);
1810 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1811 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1812 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1813
1814 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1815 btrfs_mark_buffer_dirty(leaf);
1816out:
1817 btrfs_free_path(path);
1818 return ret;
1819}
1820
1821static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1822{
1823 struct extent_map_tree *em_tree;
1824 struct extent_map *em;
1825 struct rb_node *n;
1826 u64 ret = 0;
1827
1828 em_tree = &fs_info->mapping_tree;
1829 read_lock(&em_tree->lock);
1830 n = rb_last(&em_tree->map.rb_root);
1831 if (n) {
1832 em = rb_entry(n, struct extent_map, rb_node);
1833 ret = em->start + em->len;
1834 }
1835 read_unlock(&em_tree->lock);
1836
1837 return ret;
1838}
1839
1840static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1841 u64 *devid_ret)
1842{
1843 int ret;
1844 struct btrfs_key key;
1845 struct btrfs_key found_key;
1846 struct btrfs_path *path;
1847
1848 path = btrfs_alloc_path();
1849 if (!path)
1850 return -ENOMEM;
1851
1852 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1853 key.type = BTRFS_DEV_ITEM_KEY;
1854 key.offset = (u64)-1;
1855
1856 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1857 if (ret < 0)
1858 goto error;
1859
1860 if (ret == 0) {
1861 /* Corruption */
1862 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1863 ret = -EUCLEAN;
1864 goto error;
1865 }
1866
1867 ret = btrfs_previous_item(fs_info->chunk_root, path,
1868 BTRFS_DEV_ITEMS_OBJECTID,
1869 BTRFS_DEV_ITEM_KEY);
1870 if (ret) {
1871 *devid_ret = 1;
1872 } else {
1873 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1874 path->slots[0]);
1875 *devid_ret = found_key.offset + 1;
1876 }
1877 ret = 0;
1878error:
1879 btrfs_free_path(path);
1880 return ret;
1881}
1882
1883/*
1884 * the device information is stored in the chunk root
1885 * the btrfs_device struct should be fully filled in
1886 */
1887static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1888 struct btrfs_device *device)
1889{
1890 int ret;
1891 struct btrfs_path *path;
1892 struct btrfs_dev_item *dev_item;
1893 struct extent_buffer *leaf;
1894 struct btrfs_key key;
1895 unsigned long ptr;
1896
1897 path = btrfs_alloc_path();
1898 if (!path)
1899 return -ENOMEM;
1900
1901 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1902 key.type = BTRFS_DEV_ITEM_KEY;
1903 key.offset = device->devid;
1904
1905 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1906 &key, sizeof(*dev_item));
1907 if (ret)
1908 goto out;
1909
1910 leaf = path->nodes[0];
1911 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1912
1913 btrfs_set_device_id(leaf, dev_item, device->devid);
1914 btrfs_set_device_generation(leaf, dev_item, 0);
1915 btrfs_set_device_type(leaf, dev_item, device->type);
1916 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1917 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1918 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1919 btrfs_set_device_total_bytes(leaf, dev_item,
1920 btrfs_device_get_disk_total_bytes(device));
1921 btrfs_set_device_bytes_used(leaf, dev_item,
1922 btrfs_device_get_bytes_used(device));
1923 btrfs_set_device_group(leaf, dev_item, 0);
1924 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1925 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1926 btrfs_set_device_start_offset(leaf, dev_item, 0);
1927
1928 ptr = btrfs_device_uuid(dev_item);
1929 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1930 ptr = btrfs_device_fsid(dev_item);
1931 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1932 ptr, BTRFS_FSID_SIZE);
1933 btrfs_mark_buffer_dirty(leaf);
1934
1935 ret = 0;
1936out:
1937 btrfs_free_path(path);
1938 return ret;
1939}
1940
1941/*
1942 * Function to update ctime/mtime for a given device path.
1943 * Mainly used for ctime/mtime based probe like libblkid.
1944 */
1945static void update_dev_time(struct block_device *bdev)
1946{
1947 struct inode *inode = bdev->bd_inode;
1948 struct timespec64 now;
1949
1950 /* Shouldn't happen but just in case. */
1951 if (!inode)
1952 return;
1953
1954 now = current_time(inode);
1955 generic_update_time(inode, &now, S_MTIME | S_CTIME);
1956}
1957
1958static int btrfs_rm_dev_item(struct btrfs_device *device)
1959{
1960 struct btrfs_root *root = device->fs_info->chunk_root;
1961 int ret;
1962 struct btrfs_path *path;
1963 struct btrfs_key key;
1964 struct btrfs_trans_handle *trans;
1965
1966 path = btrfs_alloc_path();
1967 if (!path)
1968 return -ENOMEM;
1969
1970 trans = btrfs_start_transaction(root, 0);
1971 if (IS_ERR(trans)) {
1972 btrfs_free_path(path);
1973 return PTR_ERR(trans);
1974 }
1975 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1976 key.type = BTRFS_DEV_ITEM_KEY;
1977 key.offset = device->devid;
1978
1979 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1980 if (ret) {
1981 if (ret > 0)
1982 ret = -ENOENT;
1983 btrfs_abort_transaction(trans, ret);
1984 btrfs_end_transaction(trans);
1985 goto out;
1986 }
1987
1988 ret = btrfs_del_item(trans, root, path);
1989 if (ret) {
1990 btrfs_abort_transaction(trans, ret);
1991 btrfs_end_transaction(trans);
1992 }
1993
1994out:
1995 btrfs_free_path(path);
1996 if (!ret)
1997 ret = btrfs_commit_transaction(trans);
1998 return ret;
1999}
2000
2001/*
2002 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2003 * filesystem. It's up to the caller to adjust that number regarding eg. device
2004 * replace.
2005 */
2006static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2007 u64 num_devices)
2008{
2009 u64 all_avail;
2010 unsigned seq;
2011 int i;
2012
2013 do {
2014 seq = read_seqbegin(&fs_info->profiles_lock);
2015
2016 all_avail = fs_info->avail_data_alloc_bits |
2017 fs_info->avail_system_alloc_bits |
2018 fs_info->avail_metadata_alloc_bits;
2019 } while (read_seqretry(&fs_info->profiles_lock, seq));
2020
2021 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2022 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2023 continue;
2024
2025 if (num_devices < btrfs_raid_array[i].devs_min) {
2026 int ret = btrfs_raid_array[i].mindev_error;
2027
2028 if (ret)
2029 return ret;
2030 }
2031 }
2032
2033 return 0;
2034}
2035
2036static struct btrfs_device * btrfs_find_next_active_device(
2037 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2038{
2039 struct btrfs_device *next_device;
2040
2041 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2042 if (next_device != device &&
2043 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2044 && next_device->bdev)
2045 return next_device;
2046 }
2047
2048 return NULL;
2049}
2050
2051/*
2052 * Helper function to check if the given device is part of s_bdev / latest_bdev
2053 * and replace it with the provided or the next active device, in the context
2054 * where this function called, there should be always be another device (or
2055 * this_dev) which is active.
2056 */
2057void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2058 struct btrfs_device *next_device)
2059{
2060 struct btrfs_fs_info *fs_info = device->fs_info;
2061
2062 if (!next_device)
2063 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2064 device);
2065 ASSERT(next_device);
2066
2067 if (fs_info->sb->s_bdev &&
2068 (fs_info->sb->s_bdev == device->bdev))
2069 fs_info->sb->s_bdev = next_device->bdev;
2070
2071 if (fs_info->fs_devices->latest_bdev == device->bdev)
2072 fs_info->fs_devices->latest_bdev = next_device->bdev;
2073}
2074
2075/*
2076 * Return btrfs_fs_devices::num_devices excluding the device that's being
2077 * currently replaced.
2078 */
2079static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2080{
2081 u64 num_devices = fs_info->fs_devices->num_devices;
2082
2083 down_read(&fs_info->dev_replace.rwsem);
2084 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2085 ASSERT(num_devices > 1);
2086 num_devices--;
2087 }
2088 up_read(&fs_info->dev_replace.rwsem);
2089
2090 return num_devices;
2091}
2092
2093void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2094 struct block_device *bdev,
2095 const char *device_path)
2096{
2097 struct btrfs_super_block *disk_super;
2098 int copy_num;
2099
2100 if (!bdev)
2101 return;
2102
2103 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2104 struct page *page;
2105 int ret;
2106
2107 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2108 if (IS_ERR(disk_super))
2109 continue;
2110
2111 if (bdev_is_zoned(bdev)) {
2112 btrfs_reset_sb_log_zones(bdev, copy_num);
2113 continue;
2114 }
2115
2116 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2117
2118 page = virt_to_page(disk_super);
2119 set_page_dirty(page);
2120 lock_page(page);
2121 /* write_on_page() unlocks the page */
2122 ret = write_one_page(page);
2123 if (ret)
2124 btrfs_warn(fs_info,
2125 "error clearing superblock number %d (%d)",
2126 copy_num, ret);
2127 btrfs_release_disk_super(disk_super);
2128
2129 }
2130
2131 /* Notify udev that device has changed */
2132 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2133
2134 /* Update ctime/mtime for device path for libblkid */
2135 update_dev_time(bdev);
2136}
2137
2138int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2139 u64 devid, struct block_device **bdev, fmode_t *mode)
2140{
2141 struct btrfs_device *device;
2142 struct btrfs_fs_devices *cur_devices;
2143 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2144 u64 num_devices;
2145 int ret = 0;
2146
2147 mutex_lock(&uuid_mutex);
2148
2149 num_devices = btrfs_num_devices(fs_info);
2150
2151 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2152 if (ret)
2153 goto out;
2154
2155 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2156
2157 if (IS_ERR(device)) {
2158 if (PTR_ERR(device) == -ENOENT &&
2159 device_path && strcmp(device_path, "missing") == 0)
2160 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2161 else
2162 ret = PTR_ERR(device);
2163 goto out;
2164 }
2165
2166 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2167 btrfs_warn_in_rcu(fs_info,
2168 "cannot remove device %s (devid %llu) due to active swapfile",
2169 rcu_str_deref(device->name), device->devid);
2170 ret = -ETXTBSY;
2171 goto out;
2172 }
2173
2174 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2175 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2176 goto out;
2177 }
2178
2179 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2180 fs_info->fs_devices->rw_devices == 1) {
2181 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2182 goto out;
2183 }
2184
2185 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2186 mutex_lock(&fs_info->chunk_mutex);
2187 list_del_init(&device->dev_alloc_list);
2188 device->fs_devices->rw_devices--;
2189 mutex_unlock(&fs_info->chunk_mutex);
2190 }
2191
2192 mutex_unlock(&uuid_mutex);
2193 ret = btrfs_shrink_device(device, 0);
2194 if (!ret)
2195 btrfs_reada_remove_dev(device);
2196 mutex_lock(&uuid_mutex);
2197 if (ret)
2198 goto error_undo;
2199
2200 /*
2201 * TODO: the superblock still includes this device in its num_devices
2202 * counter although write_all_supers() is not locked out. This
2203 * could give a filesystem state which requires a degraded mount.
2204 */
2205 ret = btrfs_rm_dev_item(device);
2206 if (ret)
2207 goto error_undo;
2208
2209 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2210 btrfs_scrub_cancel_dev(device);
2211
2212 /*
2213 * the device list mutex makes sure that we don't change
2214 * the device list while someone else is writing out all
2215 * the device supers. Whoever is writing all supers, should
2216 * lock the device list mutex before getting the number of
2217 * devices in the super block (super_copy). Conversely,
2218 * whoever updates the number of devices in the super block
2219 * (super_copy) should hold the device list mutex.
2220 */
2221
2222 /*
2223 * In normal cases the cur_devices == fs_devices. But in case
2224 * of deleting a seed device, the cur_devices should point to
2225 * its own fs_devices listed under the fs_devices->seed.
2226 */
2227 cur_devices = device->fs_devices;
2228 mutex_lock(&fs_devices->device_list_mutex);
2229 list_del_rcu(&device->dev_list);
2230
2231 cur_devices->num_devices--;
2232 cur_devices->total_devices--;
2233 /* Update total_devices of the parent fs_devices if it's seed */
2234 if (cur_devices != fs_devices)
2235 fs_devices->total_devices--;
2236
2237 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2238 cur_devices->missing_devices--;
2239
2240 btrfs_assign_next_active_device(device, NULL);
2241
2242 if (device->bdev) {
2243 cur_devices->open_devices--;
2244 /* remove sysfs entry */
2245 btrfs_sysfs_remove_device(device);
2246 }
2247
2248 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2249 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2250 mutex_unlock(&fs_devices->device_list_mutex);
2251
2252 /*
2253 * At this point, the device is zero sized and detached from the
2254 * devices list. All that's left is to zero out the old supers and
2255 * free the device.
2256 *
2257 * We cannot call btrfs_close_bdev() here because we're holding the sb
2258 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2259 * block device and it's dependencies. Instead just flush the device
2260 * and let the caller do the final blkdev_put.
2261 */
2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2263 btrfs_scratch_superblocks(fs_info, device->bdev,
2264 device->name->str);
2265 if (device->bdev) {
2266 sync_blockdev(device->bdev);
2267 invalidate_bdev(device->bdev);
2268 }
2269 }
2270
2271 *bdev = device->bdev;
2272 *mode = device->mode;
2273 synchronize_rcu();
2274 btrfs_free_device(device);
2275
2276 if (cur_devices->open_devices == 0) {
2277 list_del_init(&cur_devices->seed_list);
2278 close_fs_devices(cur_devices);
2279 free_fs_devices(cur_devices);
2280 }
2281
2282out:
2283 mutex_unlock(&uuid_mutex);
2284 return ret;
2285
2286error_undo:
2287 btrfs_reada_undo_remove_dev(device);
2288 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2289 mutex_lock(&fs_info->chunk_mutex);
2290 list_add(&device->dev_alloc_list,
2291 &fs_devices->alloc_list);
2292 device->fs_devices->rw_devices++;
2293 mutex_unlock(&fs_info->chunk_mutex);
2294 }
2295 goto out;
2296}
2297
2298void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2299{
2300 struct btrfs_fs_devices *fs_devices;
2301
2302 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2303
2304 /*
2305 * in case of fs with no seed, srcdev->fs_devices will point
2306 * to fs_devices of fs_info. However when the dev being replaced is
2307 * a seed dev it will point to the seed's local fs_devices. In short
2308 * srcdev will have its correct fs_devices in both the cases.
2309 */
2310 fs_devices = srcdev->fs_devices;
2311
2312 list_del_rcu(&srcdev->dev_list);
2313 list_del(&srcdev->dev_alloc_list);
2314 fs_devices->num_devices--;
2315 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2316 fs_devices->missing_devices--;
2317
2318 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2319 fs_devices->rw_devices--;
2320
2321 if (srcdev->bdev)
2322 fs_devices->open_devices--;
2323}
2324
2325void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2326{
2327 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2328
2329 mutex_lock(&uuid_mutex);
2330
2331 btrfs_close_bdev(srcdev);
2332 synchronize_rcu();
2333 btrfs_free_device(srcdev);
2334
2335 /* if this is no devs we rather delete the fs_devices */
2336 if (!fs_devices->num_devices) {
2337 /*
2338 * On a mounted FS, num_devices can't be zero unless it's a
2339 * seed. In case of a seed device being replaced, the replace
2340 * target added to the sprout FS, so there will be no more
2341 * device left under the seed FS.
2342 */
2343 ASSERT(fs_devices->seeding);
2344
2345 list_del_init(&fs_devices->seed_list);
2346 close_fs_devices(fs_devices);
2347 free_fs_devices(fs_devices);
2348 }
2349 mutex_unlock(&uuid_mutex);
2350}
2351
2352void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2353{
2354 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2355
2356 mutex_lock(&fs_devices->device_list_mutex);
2357
2358 btrfs_sysfs_remove_device(tgtdev);
2359
2360 if (tgtdev->bdev)
2361 fs_devices->open_devices--;
2362
2363 fs_devices->num_devices--;
2364
2365 btrfs_assign_next_active_device(tgtdev, NULL);
2366
2367 list_del_rcu(&tgtdev->dev_list);
2368
2369 mutex_unlock(&fs_devices->device_list_mutex);
2370
2371 /*
2372 * The update_dev_time() with in btrfs_scratch_superblocks()
2373 * may lead to a call to btrfs_show_devname() which will try
2374 * to hold device_list_mutex. And here this device
2375 * is already out of device list, so we don't have to hold
2376 * the device_list_mutex lock.
2377 */
2378 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2379 tgtdev->name->str);
2380
2381 btrfs_close_bdev(tgtdev);
2382 synchronize_rcu();
2383 btrfs_free_device(tgtdev);
2384}
2385
2386static struct btrfs_device *btrfs_find_device_by_path(
2387 struct btrfs_fs_info *fs_info, const char *device_path)
2388{
2389 int ret = 0;
2390 struct btrfs_super_block *disk_super;
2391 u64 devid;
2392 u8 *dev_uuid;
2393 struct block_device *bdev;
2394 struct btrfs_device *device;
2395
2396 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2397 fs_info->bdev_holder, 0, &bdev, &disk_super);
2398 if (ret)
2399 return ERR_PTR(ret);
2400
2401 devid = btrfs_stack_device_id(&disk_super->dev_item);
2402 dev_uuid = disk_super->dev_item.uuid;
2403 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2404 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2405 disk_super->metadata_uuid);
2406 else
2407 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2408 disk_super->fsid);
2409
2410 btrfs_release_disk_super(disk_super);
2411 if (!device)
2412 device = ERR_PTR(-ENOENT);
2413 blkdev_put(bdev, FMODE_READ);
2414 return device;
2415}
2416
2417/*
2418 * Lookup a device given by device id, or the path if the id is 0.
2419 */
2420struct btrfs_device *btrfs_find_device_by_devspec(
2421 struct btrfs_fs_info *fs_info, u64 devid,
2422 const char *device_path)
2423{
2424 struct btrfs_device *device;
2425
2426 if (devid) {
2427 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2428 NULL);
2429 if (!device)
2430 return ERR_PTR(-ENOENT);
2431 return device;
2432 }
2433
2434 if (!device_path || !device_path[0])
2435 return ERR_PTR(-EINVAL);
2436
2437 if (strcmp(device_path, "missing") == 0) {
2438 /* Find first missing device */
2439 list_for_each_entry(device, &fs_info->fs_devices->devices,
2440 dev_list) {
2441 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2442 &device->dev_state) && !device->bdev)
2443 return device;
2444 }
2445 return ERR_PTR(-ENOENT);
2446 }
2447
2448 return btrfs_find_device_by_path(fs_info, device_path);
2449}
2450
2451/*
2452 * does all the dirty work required for changing file system's UUID.
2453 */
2454static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2455{
2456 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2457 struct btrfs_fs_devices *old_devices;
2458 struct btrfs_fs_devices *seed_devices;
2459 struct btrfs_super_block *disk_super = fs_info->super_copy;
2460 struct btrfs_device *device;
2461 u64 super_flags;
2462
2463 lockdep_assert_held(&uuid_mutex);
2464 if (!fs_devices->seeding)
2465 return -EINVAL;
2466
2467 /*
2468 * Private copy of the seed devices, anchored at
2469 * fs_info->fs_devices->seed_list
2470 */
2471 seed_devices = alloc_fs_devices(NULL, NULL);
2472 if (IS_ERR(seed_devices))
2473 return PTR_ERR(seed_devices);
2474
2475 /*
2476 * It's necessary to retain a copy of the original seed fs_devices in
2477 * fs_uuids so that filesystems which have been seeded can successfully
2478 * reference the seed device from open_seed_devices. This also supports
2479 * multiple fs seed.
2480 */
2481 old_devices = clone_fs_devices(fs_devices);
2482 if (IS_ERR(old_devices)) {
2483 kfree(seed_devices);
2484 return PTR_ERR(old_devices);
2485 }
2486
2487 list_add(&old_devices->fs_list, &fs_uuids);
2488
2489 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2490 seed_devices->opened = 1;
2491 INIT_LIST_HEAD(&seed_devices->devices);
2492 INIT_LIST_HEAD(&seed_devices->alloc_list);
2493 mutex_init(&seed_devices->device_list_mutex);
2494
2495 mutex_lock(&fs_devices->device_list_mutex);
2496 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2497 synchronize_rcu);
2498 list_for_each_entry(device, &seed_devices->devices, dev_list)
2499 device->fs_devices = seed_devices;
2500
2501 fs_devices->seeding = false;
2502 fs_devices->num_devices = 0;
2503 fs_devices->open_devices = 0;
2504 fs_devices->missing_devices = 0;
2505 fs_devices->rotating = false;
2506 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2507
2508 generate_random_uuid(fs_devices->fsid);
2509 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2510 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2511 mutex_unlock(&fs_devices->device_list_mutex);
2512
2513 super_flags = btrfs_super_flags(disk_super) &
2514 ~BTRFS_SUPER_FLAG_SEEDING;
2515 btrfs_set_super_flags(disk_super, super_flags);
2516
2517 return 0;
2518}
2519
2520/*
2521 * Store the expected generation for seed devices in device items.
2522 */
2523static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2524{
2525 struct btrfs_fs_info *fs_info = trans->fs_info;
2526 struct btrfs_root *root = fs_info->chunk_root;
2527 struct btrfs_path *path;
2528 struct extent_buffer *leaf;
2529 struct btrfs_dev_item *dev_item;
2530 struct btrfs_device *device;
2531 struct btrfs_key key;
2532 u8 fs_uuid[BTRFS_FSID_SIZE];
2533 u8 dev_uuid[BTRFS_UUID_SIZE];
2534 u64 devid;
2535 int ret;
2536
2537 path = btrfs_alloc_path();
2538 if (!path)
2539 return -ENOMEM;
2540
2541 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2542 key.offset = 0;
2543 key.type = BTRFS_DEV_ITEM_KEY;
2544
2545 while (1) {
2546 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2547 if (ret < 0)
2548 goto error;
2549
2550 leaf = path->nodes[0];
2551next_slot:
2552 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2553 ret = btrfs_next_leaf(root, path);
2554 if (ret > 0)
2555 break;
2556 if (ret < 0)
2557 goto error;
2558 leaf = path->nodes[0];
2559 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2560 btrfs_release_path(path);
2561 continue;
2562 }
2563
2564 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2565 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2566 key.type != BTRFS_DEV_ITEM_KEY)
2567 break;
2568
2569 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2570 struct btrfs_dev_item);
2571 devid = btrfs_device_id(leaf, dev_item);
2572 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2573 BTRFS_UUID_SIZE);
2574 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2575 BTRFS_FSID_SIZE);
2576 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2577 fs_uuid);
2578 BUG_ON(!device); /* Logic error */
2579
2580 if (device->fs_devices->seeding) {
2581 btrfs_set_device_generation(leaf, dev_item,
2582 device->generation);
2583 btrfs_mark_buffer_dirty(leaf);
2584 }
2585
2586 path->slots[0]++;
2587 goto next_slot;
2588 }
2589 ret = 0;
2590error:
2591 btrfs_free_path(path);
2592 return ret;
2593}
2594
2595int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2596{
2597 struct btrfs_root *root = fs_info->dev_root;
2598 struct request_queue *q;
2599 struct btrfs_trans_handle *trans;
2600 struct btrfs_device *device;
2601 struct block_device *bdev;
2602 struct super_block *sb = fs_info->sb;
2603 struct rcu_string *name;
2604 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2605 u64 orig_super_total_bytes;
2606 u64 orig_super_num_devices;
2607 int seeding_dev = 0;
2608 int ret = 0;
2609 bool locked = false;
2610
2611 if (sb_rdonly(sb) && !fs_devices->seeding)
2612 return -EROFS;
2613
2614 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2615 fs_info->bdev_holder);
2616 if (IS_ERR(bdev))
2617 return PTR_ERR(bdev);
2618
2619 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2620 ret = -EINVAL;
2621 goto error;
2622 }
2623
2624 if (fs_devices->seeding) {
2625 seeding_dev = 1;
2626 down_write(&sb->s_umount);
2627 mutex_lock(&uuid_mutex);
2628 locked = true;
2629 }
2630
2631 sync_blockdev(bdev);
2632
2633 rcu_read_lock();
2634 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2635 if (device->bdev == bdev) {
2636 ret = -EEXIST;
2637 rcu_read_unlock();
2638 goto error;
2639 }
2640 }
2641 rcu_read_unlock();
2642
2643 device = btrfs_alloc_device(fs_info, NULL, NULL);
2644 if (IS_ERR(device)) {
2645 /* we can safely leave the fs_devices entry around */
2646 ret = PTR_ERR(device);
2647 goto error;
2648 }
2649
2650 name = rcu_string_strdup(device_path, GFP_KERNEL);
2651 if (!name) {
2652 ret = -ENOMEM;
2653 goto error_free_device;
2654 }
2655 rcu_assign_pointer(device->name, name);
2656
2657 device->fs_info = fs_info;
2658 device->bdev = bdev;
2659
2660 ret = btrfs_get_dev_zone_info(device);
2661 if (ret)
2662 goto error_free_device;
2663
2664 trans = btrfs_start_transaction(root, 0);
2665 if (IS_ERR(trans)) {
2666 ret = PTR_ERR(trans);
2667 goto error_free_zone;
2668 }
2669
2670 q = bdev_get_queue(bdev);
2671 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2672 device->generation = trans->transid;
2673 device->io_width = fs_info->sectorsize;
2674 device->io_align = fs_info->sectorsize;
2675 device->sector_size = fs_info->sectorsize;
2676 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2677 fs_info->sectorsize);
2678 device->disk_total_bytes = device->total_bytes;
2679 device->commit_total_bytes = device->total_bytes;
2680 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2681 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2682 device->mode = FMODE_EXCL;
2683 device->dev_stats_valid = 1;
2684 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2685
2686 if (seeding_dev) {
2687 btrfs_clear_sb_rdonly(sb);
2688 ret = btrfs_prepare_sprout(fs_info);
2689 if (ret) {
2690 btrfs_abort_transaction(trans, ret);
2691 goto error_trans;
2692 }
2693 }
2694
2695 device->fs_devices = fs_devices;
2696
2697 mutex_lock(&fs_devices->device_list_mutex);
2698 mutex_lock(&fs_info->chunk_mutex);
2699 list_add_rcu(&device->dev_list, &fs_devices->devices);
2700 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2701 fs_devices->num_devices++;
2702 fs_devices->open_devices++;
2703 fs_devices->rw_devices++;
2704 fs_devices->total_devices++;
2705 fs_devices->total_rw_bytes += device->total_bytes;
2706
2707 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2708
2709 if (!blk_queue_nonrot(q))
2710 fs_devices->rotating = true;
2711
2712 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2713 btrfs_set_super_total_bytes(fs_info->super_copy,
2714 round_down(orig_super_total_bytes + device->total_bytes,
2715 fs_info->sectorsize));
2716
2717 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2718 btrfs_set_super_num_devices(fs_info->super_copy,
2719 orig_super_num_devices + 1);
2720
2721 /*
2722 * we've got more storage, clear any full flags on the space
2723 * infos
2724 */
2725 btrfs_clear_space_info_full(fs_info);
2726
2727 mutex_unlock(&fs_info->chunk_mutex);
2728
2729 /* Add sysfs device entry */
2730 btrfs_sysfs_add_device(device);
2731
2732 mutex_unlock(&fs_devices->device_list_mutex);
2733
2734 if (seeding_dev) {
2735 mutex_lock(&fs_info->chunk_mutex);
2736 ret = init_first_rw_device(trans);
2737 mutex_unlock(&fs_info->chunk_mutex);
2738 if (ret) {
2739 btrfs_abort_transaction(trans, ret);
2740 goto error_sysfs;
2741 }
2742 }
2743
2744 ret = btrfs_add_dev_item(trans, device);
2745 if (ret) {
2746 btrfs_abort_transaction(trans, ret);
2747 goto error_sysfs;
2748 }
2749
2750 if (seeding_dev) {
2751 ret = btrfs_finish_sprout(trans);
2752 if (ret) {
2753 btrfs_abort_transaction(trans, ret);
2754 goto error_sysfs;
2755 }
2756
2757 /*
2758 * fs_devices now represents the newly sprouted filesystem and
2759 * its fsid has been changed by btrfs_prepare_sprout
2760 */
2761 btrfs_sysfs_update_sprout_fsid(fs_devices);
2762 }
2763
2764 ret = btrfs_commit_transaction(trans);
2765
2766 if (seeding_dev) {
2767 mutex_unlock(&uuid_mutex);
2768 up_write(&sb->s_umount);
2769 locked = false;
2770
2771 if (ret) /* transaction commit */
2772 return ret;
2773
2774 ret = btrfs_relocate_sys_chunks(fs_info);
2775 if (ret < 0)
2776 btrfs_handle_fs_error(fs_info, ret,
2777 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2778 trans = btrfs_attach_transaction(root);
2779 if (IS_ERR(trans)) {
2780 if (PTR_ERR(trans) == -ENOENT)
2781 return 0;
2782 ret = PTR_ERR(trans);
2783 trans = NULL;
2784 goto error_sysfs;
2785 }
2786 ret = btrfs_commit_transaction(trans);
2787 }
2788
2789 /*
2790 * Now that we have written a new super block to this device, check all
2791 * other fs_devices list if device_path alienates any other scanned
2792 * device.
2793 * We can ignore the return value as it typically returns -EINVAL and
2794 * only succeeds if the device was an alien.
2795 */
2796 btrfs_forget_devices(device_path);
2797
2798 /* Update ctime/mtime for blkid or udev */
2799 update_dev_time(bdev);
2800
2801 return ret;
2802
2803error_sysfs:
2804 btrfs_sysfs_remove_device(device);
2805 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2806 mutex_lock(&fs_info->chunk_mutex);
2807 list_del_rcu(&device->dev_list);
2808 list_del(&device->dev_alloc_list);
2809 fs_info->fs_devices->num_devices--;
2810 fs_info->fs_devices->open_devices--;
2811 fs_info->fs_devices->rw_devices--;
2812 fs_info->fs_devices->total_devices--;
2813 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2814 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2815 btrfs_set_super_total_bytes(fs_info->super_copy,
2816 orig_super_total_bytes);
2817 btrfs_set_super_num_devices(fs_info->super_copy,
2818 orig_super_num_devices);
2819 mutex_unlock(&fs_info->chunk_mutex);
2820 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2821error_trans:
2822 if (seeding_dev)
2823 btrfs_set_sb_rdonly(sb);
2824 if (trans)
2825 btrfs_end_transaction(trans);
2826error_free_zone:
2827 btrfs_destroy_dev_zone_info(device);
2828error_free_device:
2829 btrfs_free_device(device);
2830error:
2831 blkdev_put(bdev, FMODE_EXCL);
2832 if (locked) {
2833 mutex_unlock(&uuid_mutex);
2834 up_write(&sb->s_umount);
2835 }
2836 return ret;
2837}
2838
2839static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2840 struct btrfs_device *device)
2841{
2842 int ret;
2843 struct btrfs_path *path;
2844 struct btrfs_root *root = device->fs_info->chunk_root;
2845 struct btrfs_dev_item *dev_item;
2846 struct extent_buffer *leaf;
2847 struct btrfs_key key;
2848
2849 path = btrfs_alloc_path();
2850 if (!path)
2851 return -ENOMEM;
2852
2853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2854 key.type = BTRFS_DEV_ITEM_KEY;
2855 key.offset = device->devid;
2856
2857 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2858 if (ret < 0)
2859 goto out;
2860
2861 if (ret > 0) {
2862 ret = -ENOENT;
2863 goto out;
2864 }
2865
2866 leaf = path->nodes[0];
2867 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2868
2869 btrfs_set_device_id(leaf, dev_item, device->devid);
2870 btrfs_set_device_type(leaf, dev_item, device->type);
2871 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2872 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2873 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2874 btrfs_set_device_total_bytes(leaf, dev_item,
2875 btrfs_device_get_disk_total_bytes(device));
2876 btrfs_set_device_bytes_used(leaf, dev_item,
2877 btrfs_device_get_bytes_used(device));
2878 btrfs_mark_buffer_dirty(leaf);
2879
2880out:
2881 btrfs_free_path(path);
2882 return ret;
2883}
2884
2885int btrfs_grow_device(struct btrfs_trans_handle *trans,
2886 struct btrfs_device *device, u64 new_size)
2887{
2888 struct btrfs_fs_info *fs_info = device->fs_info;
2889 struct btrfs_super_block *super_copy = fs_info->super_copy;
2890 u64 old_total;
2891 u64 diff;
2892
2893 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2894 return -EACCES;
2895
2896 new_size = round_down(new_size, fs_info->sectorsize);
2897
2898 mutex_lock(&fs_info->chunk_mutex);
2899 old_total = btrfs_super_total_bytes(super_copy);
2900 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2901
2902 if (new_size <= device->total_bytes ||
2903 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2904 mutex_unlock(&fs_info->chunk_mutex);
2905 return -EINVAL;
2906 }
2907
2908 btrfs_set_super_total_bytes(super_copy,
2909 round_down(old_total + diff, fs_info->sectorsize));
2910 device->fs_devices->total_rw_bytes += diff;
2911
2912 btrfs_device_set_total_bytes(device, new_size);
2913 btrfs_device_set_disk_total_bytes(device, new_size);
2914 btrfs_clear_space_info_full(device->fs_info);
2915 if (list_empty(&device->post_commit_list))
2916 list_add_tail(&device->post_commit_list,
2917 &trans->transaction->dev_update_list);
2918 mutex_unlock(&fs_info->chunk_mutex);
2919
2920 return btrfs_update_device(trans, device);
2921}
2922
2923static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2924{
2925 struct btrfs_fs_info *fs_info = trans->fs_info;
2926 struct btrfs_root *root = fs_info->chunk_root;
2927 int ret;
2928 struct btrfs_path *path;
2929 struct btrfs_key key;
2930
2931 path = btrfs_alloc_path();
2932 if (!path)
2933 return -ENOMEM;
2934
2935 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2936 key.offset = chunk_offset;
2937 key.type = BTRFS_CHUNK_ITEM_KEY;
2938
2939 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2940 if (ret < 0)
2941 goto out;
2942 else if (ret > 0) { /* Logic error or corruption */
2943 btrfs_handle_fs_error(fs_info, -ENOENT,
2944 "Failed lookup while freeing chunk.");
2945 ret = -ENOENT;
2946 goto out;
2947 }
2948
2949 ret = btrfs_del_item(trans, root, path);
2950 if (ret < 0)
2951 btrfs_handle_fs_error(fs_info, ret,
2952 "Failed to delete chunk item.");
2953out:
2954 btrfs_free_path(path);
2955 return ret;
2956}
2957
2958static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2959{
2960 struct btrfs_super_block *super_copy = fs_info->super_copy;
2961 struct btrfs_disk_key *disk_key;
2962 struct btrfs_chunk *chunk;
2963 u8 *ptr;
2964 int ret = 0;
2965 u32 num_stripes;
2966 u32 array_size;
2967 u32 len = 0;
2968 u32 cur;
2969 struct btrfs_key key;
2970
2971 lockdep_assert_held(&fs_info->chunk_mutex);
2972 array_size = btrfs_super_sys_array_size(super_copy);
2973
2974 ptr = super_copy->sys_chunk_array;
2975 cur = 0;
2976
2977 while (cur < array_size) {
2978 disk_key = (struct btrfs_disk_key *)ptr;
2979 btrfs_disk_key_to_cpu(&key, disk_key);
2980
2981 len = sizeof(*disk_key);
2982
2983 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2984 chunk = (struct btrfs_chunk *)(ptr + len);
2985 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2986 len += btrfs_chunk_item_size(num_stripes);
2987 } else {
2988 ret = -EIO;
2989 break;
2990 }
2991 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2992 key.offset == chunk_offset) {
2993 memmove(ptr, ptr + len, array_size - (cur + len));
2994 array_size -= len;
2995 btrfs_set_super_sys_array_size(super_copy, array_size);
2996 } else {
2997 ptr += len;
2998 cur += len;
2999 }
3000 }
3001 return ret;
3002}
3003
3004/*
3005 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3006 * @logical: Logical block offset in bytes.
3007 * @length: Length of extent in bytes.
3008 *
3009 * Return: Chunk mapping or ERR_PTR.
3010 */
3011struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3012 u64 logical, u64 length)
3013{
3014 struct extent_map_tree *em_tree;
3015 struct extent_map *em;
3016
3017 em_tree = &fs_info->mapping_tree;
3018 read_lock(&em_tree->lock);
3019 em = lookup_extent_mapping(em_tree, logical, length);
3020 read_unlock(&em_tree->lock);
3021
3022 if (!em) {
3023 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3024 logical, length);
3025 return ERR_PTR(-EINVAL);
3026 }
3027
3028 if (em->start > logical || em->start + em->len < logical) {
3029 btrfs_crit(fs_info,
3030 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3031 logical, length, em->start, em->start + em->len);
3032 free_extent_map(em);
3033 return ERR_PTR(-EINVAL);
3034 }
3035
3036 /* callers are responsible for dropping em's ref. */
3037 return em;
3038}
3039
3040static int remove_chunk_item(struct btrfs_trans_handle *trans,
3041 struct map_lookup *map, u64 chunk_offset)
3042{
3043 int i;
3044
3045 /*
3046 * Removing chunk items and updating the device items in the chunks btree
3047 * requires holding the chunk_mutex.
3048 * See the comment at btrfs_chunk_alloc() for the details.
3049 */
3050 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3051
3052 for (i = 0; i < map->num_stripes; i++) {
3053 int ret;
3054
3055 ret = btrfs_update_device(trans, map->stripes[i].dev);
3056 if (ret)
3057 return ret;
3058 }
3059
3060 return btrfs_free_chunk(trans, chunk_offset);
3061}
3062
3063int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3064{
3065 struct btrfs_fs_info *fs_info = trans->fs_info;
3066 struct extent_map *em;
3067 struct map_lookup *map;
3068 u64 dev_extent_len = 0;
3069 int i, ret = 0;
3070 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3071
3072 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3073 if (IS_ERR(em)) {
3074 /*
3075 * This is a logic error, but we don't want to just rely on the
3076 * user having built with ASSERT enabled, so if ASSERT doesn't
3077 * do anything we still error out.
3078 */
3079 ASSERT(0);
3080 return PTR_ERR(em);
3081 }
3082 map = em->map_lookup;
3083
3084 /*
3085 * First delete the device extent items from the devices btree.
3086 * We take the device_list_mutex to avoid racing with the finishing phase
3087 * of a device replace operation. See the comment below before acquiring
3088 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3089 * because that can result in a deadlock when deleting the device extent
3090 * items from the devices btree - COWing an extent buffer from the btree
3091 * may result in allocating a new metadata chunk, which would attempt to
3092 * lock again fs_info->chunk_mutex.
3093 */
3094 mutex_lock(&fs_devices->device_list_mutex);
3095 for (i = 0; i < map->num_stripes; i++) {
3096 struct btrfs_device *device = map->stripes[i].dev;
3097 ret = btrfs_free_dev_extent(trans, device,
3098 map->stripes[i].physical,
3099 &dev_extent_len);
3100 if (ret) {
3101 mutex_unlock(&fs_devices->device_list_mutex);
3102 btrfs_abort_transaction(trans, ret);
3103 goto out;
3104 }
3105
3106 if (device->bytes_used > 0) {
3107 mutex_lock(&fs_info->chunk_mutex);
3108 btrfs_device_set_bytes_used(device,
3109 device->bytes_used - dev_extent_len);
3110 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3111 btrfs_clear_space_info_full(fs_info);
3112 mutex_unlock(&fs_info->chunk_mutex);
3113 }
3114 }
3115 mutex_unlock(&fs_devices->device_list_mutex);
3116
3117 /*
3118 * We acquire fs_info->chunk_mutex for 2 reasons:
3119 *
3120 * 1) Just like with the first phase of the chunk allocation, we must
3121 * reserve system space, do all chunk btree updates and deletions, and
3122 * update the system chunk array in the superblock while holding this
3123 * mutex. This is for similar reasons as explained on the comment at
3124 * the top of btrfs_chunk_alloc();
3125 *
3126 * 2) Prevent races with the final phase of a device replace operation
3127 * that replaces the device object associated with the map's stripes,
3128 * because the device object's id can change at any time during that
3129 * final phase of the device replace operation
3130 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3131 * replaced device and then see it with an ID of
3132 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3133 * the device item, which does not exists on the chunk btree.
3134 * The finishing phase of device replace acquires both the
3135 * device_list_mutex and the chunk_mutex, in that order, so we are
3136 * safe by just acquiring the chunk_mutex.
3137 */
3138 trans->removing_chunk = true;
3139 mutex_lock(&fs_info->chunk_mutex);
3140
3141 check_system_chunk(trans, map->type);
3142
3143 ret = remove_chunk_item(trans, map, chunk_offset);
3144 /*
3145 * Normally we should not get -ENOSPC since we reserved space before
3146 * through the call to check_system_chunk().
3147 *
3148 * Despite our system space_info having enough free space, we may not
3149 * be able to allocate extents from its block groups, because all have
3150 * an incompatible profile, which will force us to allocate a new system
3151 * block group with the right profile, or right after we called
3152 * check_system_space() above, a scrub turned the only system block group
3153 * with enough free space into RO mode.
3154 * This is explained with more detail at do_chunk_alloc().
3155 *
3156 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3157 */
3158 if (ret == -ENOSPC) {
3159 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3160 struct btrfs_block_group *sys_bg;
3161
3162 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3163 if (IS_ERR(sys_bg)) {
3164 ret = PTR_ERR(sys_bg);
3165 btrfs_abort_transaction(trans, ret);
3166 goto out;
3167 }
3168
3169 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3170 if (ret) {
3171 btrfs_abort_transaction(trans, ret);
3172 goto out;
3173 }
3174
3175 ret = remove_chunk_item(trans, map, chunk_offset);
3176 if (ret) {
3177 btrfs_abort_transaction(trans, ret);
3178 goto out;
3179 }
3180 } else if (ret) {
3181 btrfs_abort_transaction(trans, ret);
3182 goto out;
3183 }
3184
3185 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3186
3187 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3188 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3189 if (ret) {
3190 btrfs_abort_transaction(trans, ret);
3191 goto out;
3192 }
3193 }
3194
3195 mutex_unlock(&fs_info->chunk_mutex);
3196 trans->removing_chunk = false;
3197
3198 /*
3199 * We are done with chunk btree updates and deletions, so release the
3200 * system space we previously reserved (with check_system_chunk()).
3201 */
3202 btrfs_trans_release_chunk_metadata(trans);
3203
3204 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3205 if (ret) {
3206 btrfs_abort_transaction(trans, ret);
3207 goto out;
3208 }
3209
3210out:
3211 if (trans->removing_chunk) {
3212 mutex_unlock(&fs_info->chunk_mutex);
3213 trans->removing_chunk = false;
3214 }
3215 /* once for us */
3216 free_extent_map(em);
3217 return ret;
3218}
3219
3220int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3221{
3222 struct btrfs_root *root = fs_info->chunk_root;
3223 struct btrfs_trans_handle *trans;
3224 struct btrfs_block_group *block_group;
3225 u64 length;
3226 int ret;
3227
3228 /*
3229 * Prevent races with automatic removal of unused block groups.
3230 * After we relocate and before we remove the chunk with offset
3231 * chunk_offset, automatic removal of the block group can kick in,
3232 * resulting in a failure when calling btrfs_remove_chunk() below.
3233 *
3234 * Make sure to acquire this mutex before doing a tree search (dev
3235 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3236 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3237 * we release the path used to search the chunk/dev tree and before
3238 * the current task acquires this mutex and calls us.
3239 */
3240 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3241
3242 /* step one, relocate all the extents inside this chunk */
3243 btrfs_scrub_pause(fs_info);
3244 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3245 btrfs_scrub_continue(fs_info);
3246 if (ret)
3247 return ret;
3248
3249 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3250 if (!block_group)
3251 return -ENOENT;
3252 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3253 length = block_group->length;
3254 btrfs_put_block_group(block_group);
3255
3256 /*
3257 * On a zoned file system, discard the whole block group, this will
3258 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3259 * resetting the zone fails, don't treat it as a fatal problem from the
3260 * filesystem's point of view.
3261 */
3262 if (btrfs_is_zoned(fs_info)) {
3263 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3264 if (ret)
3265 btrfs_info(fs_info,
3266 "failed to reset zone %llu after relocation",
3267 chunk_offset);
3268 }
3269
3270 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3271 chunk_offset);
3272 if (IS_ERR(trans)) {
3273 ret = PTR_ERR(trans);
3274 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3275 return ret;
3276 }
3277
3278 /*
3279 * step two, delete the device extents and the
3280 * chunk tree entries
3281 */
3282 ret = btrfs_remove_chunk(trans, chunk_offset);
3283 btrfs_end_transaction(trans);
3284 return ret;
3285}
3286
3287static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3288{
3289 struct btrfs_root *chunk_root = fs_info->chunk_root;
3290 struct btrfs_path *path;
3291 struct extent_buffer *leaf;
3292 struct btrfs_chunk *chunk;
3293 struct btrfs_key key;
3294 struct btrfs_key found_key;
3295 u64 chunk_type;
3296 bool retried = false;
3297 int failed = 0;
3298 int ret;
3299
3300 path = btrfs_alloc_path();
3301 if (!path)
3302 return -ENOMEM;
3303
3304again:
3305 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3306 key.offset = (u64)-1;
3307 key.type = BTRFS_CHUNK_ITEM_KEY;
3308
3309 while (1) {
3310 mutex_lock(&fs_info->reclaim_bgs_lock);
3311 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3312 if (ret < 0) {
3313 mutex_unlock(&fs_info->reclaim_bgs_lock);
3314 goto error;
3315 }
3316 BUG_ON(ret == 0); /* Corruption */
3317
3318 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3319 key.type);
3320 if (ret)
3321 mutex_unlock(&fs_info->reclaim_bgs_lock);
3322 if (ret < 0)
3323 goto error;
3324 if (ret > 0)
3325 break;
3326
3327 leaf = path->nodes[0];
3328 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3329
3330 chunk = btrfs_item_ptr(leaf, path->slots[0],
3331 struct btrfs_chunk);
3332 chunk_type = btrfs_chunk_type(leaf, chunk);
3333 btrfs_release_path(path);
3334
3335 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3336 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3337 if (ret == -ENOSPC)
3338 failed++;
3339 else
3340 BUG_ON(ret);
3341 }
3342 mutex_unlock(&fs_info->reclaim_bgs_lock);
3343
3344 if (found_key.offset == 0)
3345 break;
3346 key.offset = found_key.offset - 1;
3347 }
3348 ret = 0;
3349 if (failed && !retried) {
3350 failed = 0;
3351 retried = true;
3352 goto again;
3353 } else if (WARN_ON(failed && retried)) {
3354 ret = -ENOSPC;
3355 }
3356error:
3357 btrfs_free_path(path);
3358 return ret;
3359}
3360
3361/*
3362 * return 1 : allocate a data chunk successfully,
3363 * return <0: errors during allocating a data chunk,
3364 * return 0 : no need to allocate a data chunk.
3365 */
3366static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3367 u64 chunk_offset)
3368{
3369 struct btrfs_block_group *cache;
3370 u64 bytes_used;
3371 u64 chunk_type;
3372
3373 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3374 ASSERT(cache);
3375 chunk_type = cache->flags;
3376 btrfs_put_block_group(cache);
3377
3378 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3379 return 0;
3380
3381 spin_lock(&fs_info->data_sinfo->lock);
3382 bytes_used = fs_info->data_sinfo->bytes_used;
3383 spin_unlock(&fs_info->data_sinfo->lock);
3384
3385 if (!bytes_used) {
3386 struct btrfs_trans_handle *trans;
3387 int ret;
3388
3389 trans = btrfs_join_transaction(fs_info->tree_root);
3390 if (IS_ERR(trans))
3391 return PTR_ERR(trans);
3392
3393 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3394 btrfs_end_transaction(trans);
3395 if (ret < 0)
3396 return ret;
3397 return 1;
3398 }
3399
3400 return 0;
3401}
3402
3403static int insert_balance_item(struct btrfs_fs_info *fs_info,
3404 struct btrfs_balance_control *bctl)
3405{
3406 struct btrfs_root *root = fs_info->tree_root;
3407 struct btrfs_trans_handle *trans;
3408 struct btrfs_balance_item *item;
3409 struct btrfs_disk_balance_args disk_bargs;
3410 struct btrfs_path *path;
3411 struct extent_buffer *leaf;
3412 struct btrfs_key key;
3413 int ret, err;
3414
3415 path = btrfs_alloc_path();
3416 if (!path)
3417 return -ENOMEM;
3418
3419 trans = btrfs_start_transaction(root, 0);
3420 if (IS_ERR(trans)) {
3421 btrfs_free_path(path);
3422 return PTR_ERR(trans);
3423 }
3424
3425 key.objectid = BTRFS_BALANCE_OBJECTID;
3426 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3427 key.offset = 0;
3428
3429 ret = btrfs_insert_empty_item(trans, root, path, &key,
3430 sizeof(*item));
3431 if (ret)
3432 goto out;
3433
3434 leaf = path->nodes[0];
3435 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3436
3437 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3438
3439 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3440 btrfs_set_balance_data(leaf, item, &disk_bargs);
3441 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3442 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3443 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3444 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3445
3446 btrfs_set_balance_flags(leaf, item, bctl->flags);
3447
3448 btrfs_mark_buffer_dirty(leaf);
3449out:
3450 btrfs_free_path(path);
3451 err = btrfs_commit_transaction(trans);
3452 if (err && !ret)
3453 ret = err;
3454 return ret;
3455}
3456
3457static int del_balance_item(struct btrfs_fs_info *fs_info)
3458{
3459 struct btrfs_root *root = fs_info->tree_root;
3460 struct btrfs_trans_handle *trans;
3461 struct btrfs_path *path;
3462 struct btrfs_key key;
3463 int ret, err;
3464
3465 path = btrfs_alloc_path();
3466 if (!path)
3467 return -ENOMEM;
3468
3469 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3470 if (IS_ERR(trans)) {
3471 btrfs_free_path(path);
3472 return PTR_ERR(trans);
3473 }
3474
3475 key.objectid = BTRFS_BALANCE_OBJECTID;
3476 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3477 key.offset = 0;
3478
3479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3480 if (ret < 0)
3481 goto out;
3482 if (ret > 0) {
3483 ret = -ENOENT;
3484 goto out;
3485 }
3486
3487 ret = btrfs_del_item(trans, root, path);
3488out:
3489 btrfs_free_path(path);
3490 err = btrfs_commit_transaction(trans);
3491 if (err && !ret)
3492 ret = err;
3493 return ret;
3494}
3495
3496/*
3497 * This is a heuristic used to reduce the number of chunks balanced on
3498 * resume after balance was interrupted.
3499 */
3500static void update_balance_args(struct btrfs_balance_control *bctl)
3501{
3502 /*
3503 * Turn on soft mode for chunk types that were being converted.
3504 */
3505 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3506 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3507 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3508 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3509 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3510 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3511
3512 /*
3513 * Turn on usage filter if is not already used. The idea is
3514 * that chunks that we have already balanced should be
3515 * reasonably full. Don't do it for chunks that are being
3516 * converted - that will keep us from relocating unconverted
3517 * (albeit full) chunks.
3518 */
3519 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3520 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3521 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3522 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3523 bctl->data.usage = 90;
3524 }
3525 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3526 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3527 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3528 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3529 bctl->sys.usage = 90;
3530 }
3531 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3532 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3533 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3534 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3535 bctl->meta.usage = 90;
3536 }
3537}
3538
3539/*
3540 * Clear the balance status in fs_info and delete the balance item from disk.
3541 */
3542static void reset_balance_state(struct btrfs_fs_info *fs_info)
3543{
3544 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3545 int ret;
3546
3547 BUG_ON(!fs_info->balance_ctl);
3548
3549 spin_lock(&fs_info->balance_lock);
3550 fs_info->balance_ctl = NULL;
3551 spin_unlock(&fs_info->balance_lock);
3552
3553 kfree(bctl);
3554 ret = del_balance_item(fs_info);
3555 if (ret)
3556 btrfs_handle_fs_error(fs_info, ret, NULL);
3557}
3558
3559/*
3560 * Balance filters. Return 1 if chunk should be filtered out
3561 * (should not be balanced).
3562 */
3563static int chunk_profiles_filter(u64 chunk_type,
3564 struct btrfs_balance_args *bargs)
3565{
3566 chunk_type = chunk_to_extended(chunk_type) &
3567 BTRFS_EXTENDED_PROFILE_MASK;
3568
3569 if (bargs->profiles & chunk_type)
3570 return 0;
3571
3572 return 1;
3573}
3574
3575static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3576 struct btrfs_balance_args *bargs)
3577{
3578 struct btrfs_block_group *cache;
3579 u64 chunk_used;
3580 u64 user_thresh_min;
3581 u64 user_thresh_max;
3582 int ret = 1;
3583
3584 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3585 chunk_used = cache->used;
3586
3587 if (bargs->usage_min == 0)
3588 user_thresh_min = 0;
3589 else
3590 user_thresh_min = div_factor_fine(cache->length,
3591 bargs->usage_min);
3592
3593 if (bargs->usage_max == 0)
3594 user_thresh_max = 1;
3595 else if (bargs->usage_max > 100)
3596 user_thresh_max = cache->length;
3597 else
3598 user_thresh_max = div_factor_fine(cache->length,
3599 bargs->usage_max);
3600
3601 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3602 ret = 0;
3603
3604 btrfs_put_block_group(cache);
3605 return ret;
3606}
3607
3608static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3609 u64 chunk_offset, struct btrfs_balance_args *bargs)
3610{
3611 struct btrfs_block_group *cache;
3612 u64 chunk_used, user_thresh;
3613 int ret = 1;
3614
3615 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3616 chunk_used = cache->used;
3617
3618 if (bargs->usage_min == 0)
3619 user_thresh = 1;
3620 else if (bargs->usage > 100)
3621 user_thresh = cache->length;
3622 else
3623 user_thresh = div_factor_fine(cache->length, bargs->usage);
3624
3625 if (chunk_used < user_thresh)
3626 ret = 0;
3627
3628 btrfs_put_block_group(cache);
3629 return ret;
3630}
3631
3632static int chunk_devid_filter(struct extent_buffer *leaf,
3633 struct btrfs_chunk *chunk,
3634 struct btrfs_balance_args *bargs)
3635{
3636 struct btrfs_stripe *stripe;
3637 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3638 int i;
3639
3640 for (i = 0; i < num_stripes; i++) {
3641 stripe = btrfs_stripe_nr(chunk, i);
3642 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3643 return 0;
3644 }
3645
3646 return 1;
3647}
3648
3649static u64 calc_data_stripes(u64 type, int num_stripes)
3650{
3651 const int index = btrfs_bg_flags_to_raid_index(type);
3652 const int ncopies = btrfs_raid_array[index].ncopies;
3653 const int nparity = btrfs_raid_array[index].nparity;
3654
3655 if (nparity)
3656 return num_stripes - nparity;
3657 else
3658 return num_stripes / ncopies;
3659}
3660
3661/* [pstart, pend) */
3662static int chunk_drange_filter(struct extent_buffer *leaf,
3663 struct btrfs_chunk *chunk,
3664 struct btrfs_balance_args *bargs)
3665{
3666 struct btrfs_stripe *stripe;
3667 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3668 u64 stripe_offset;
3669 u64 stripe_length;
3670 u64 type;
3671 int factor;
3672 int i;
3673
3674 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3675 return 0;
3676
3677 type = btrfs_chunk_type(leaf, chunk);
3678 factor = calc_data_stripes(type, num_stripes);
3679
3680 for (i = 0; i < num_stripes; i++) {
3681 stripe = btrfs_stripe_nr(chunk, i);
3682 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3683 continue;
3684
3685 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3686 stripe_length = btrfs_chunk_length(leaf, chunk);
3687 stripe_length = div_u64(stripe_length, factor);
3688
3689 if (stripe_offset < bargs->pend &&
3690 stripe_offset + stripe_length > bargs->pstart)
3691 return 0;
3692 }
3693
3694 return 1;
3695}
3696
3697/* [vstart, vend) */
3698static int chunk_vrange_filter(struct extent_buffer *leaf,
3699 struct btrfs_chunk *chunk,
3700 u64 chunk_offset,
3701 struct btrfs_balance_args *bargs)
3702{
3703 if (chunk_offset < bargs->vend &&
3704 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3705 /* at least part of the chunk is inside this vrange */
3706 return 0;
3707
3708 return 1;
3709}
3710
3711static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3712 struct btrfs_chunk *chunk,
3713 struct btrfs_balance_args *bargs)
3714{
3715 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3716
3717 if (bargs->stripes_min <= num_stripes
3718 && num_stripes <= bargs->stripes_max)
3719 return 0;
3720
3721 return 1;
3722}
3723
3724static int chunk_soft_convert_filter(u64 chunk_type,
3725 struct btrfs_balance_args *bargs)
3726{
3727 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3728 return 0;
3729
3730 chunk_type = chunk_to_extended(chunk_type) &
3731 BTRFS_EXTENDED_PROFILE_MASK;
3732
3733 if (bargs->target == chunk_type)
3734 return 1;
3735
3736 return 0;
3737}
3738
3739static int should_balance_chunk(struct extent_buffer *leaf,
3740 struct btrfs_chunk *chunk, u64 chunk_offset)
3741{
3742 struct btrfs_fs_info *fs_info = leaf->fs_info;
3743 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3744 struct btrfs_balance_args *bargs = NULL;
3745 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3746
3747 /* type filter */
3748 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3749 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3750 return 0;
3751 }
3752
3753 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3754 bargs = &bctl->data;
3755 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3756 bargs = &bctl->sys;
3757 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3758 bargs = &bctl->meta;
3759
3760 /* profiles filter */
3761 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3762 chunk_profiles_filter(chunk_type, bargs)) {
3763 return 0;
3764 }
3765
3766 /* usage filter */
3767 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3768 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3769 return 0;
3770 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3771 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3772 return 0;
3773 }
3774
3775 /* devid filter */
3776 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3777 chunk_devid_filter(leaf, chunk, bargs)) {
3778 return 0;
3779 }
3780
3781 /* drange filter, makes sense only with devid filter */
3782 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3783 chunk_drange_filter(leaf, chunk, bargs)) {
3784 return 0;
3785 }
3786
3787 /* vrange filter */
3788 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3789 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3790 return 0;
3791 }
3792
3793 /* stripes filter */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3795 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3796 return 0;
3797 }
3798
3799 /* soft profile changing mode */
3800 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3801 chunk_soft_convert_filter(chunk_type, bargs)) {
3802 return 0;
3803 }
3804
3805 /*
3806 * limited by count, must be the last filter
3807 */
3808 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3809 if (bargs->limit == 0)
3810 return 0;
3811 else
3812 bargs->limit--;
3813 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3814 /*
3815 * Same logic as the 'limit' filter; the minimum cannot be
3816 * determined here because we do not have the global information
3817 * about the count of all chunks that satisfy the filters.
3818 */
3819 if (bargs->limit_max == 0)
3820 return 0;
3821 else
3822 bargs->limit_max--;
3823 }
3824
3825 return 1;
3826}
3827
3828static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3829{
3830 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3831 struct btrfs_root *chunk_root = fs_info->chunk_root;
3832 u64 chunk_type;
3833 struct btrfs_chunk *chunk;
3834 struct btrfs_path *path = NULL;
3835 struct btrfs_key key;
3836 struct btrfs_key found_key;
3837 struct extent_buffer *leaf;
3838 int slot;
3839 int ret;
3840 int enospc_errors = 0;
3841 bool counting = true;
3842 /* The single value limit and min/max limits use the same bytes in the */
3843 u64 limit_data = bctl->data.limit;
3844 u64 limit_meta = bctl->meta.limit;
3845 u64 limit_sys = bctl->sys.limit;
3846 u32 count_data = 0;
3847 u32 count_meta = 0;
3848 u32 count_sys = 0;
3849 int chunk_reserved = 0;
3850
3851 path = btrfs_alloc_path();
3852 if (!path) {
3853 ret = -ENOMEM;
3854 goto error;
3855 }
3856
3857 /* zero out stat counters */
3858 spin_lock(&fs_info->balance_lock);
3859 memset(&bctl->stat, 0, sizeof(bctl->stat));
3860 spin_unlock(&fs_info->balance_lock);
3861again:
3862 if (!counting) {
3863 /*
3864 * The single value limit and min/max limits use the same bytes
3865 * in the
3866 */
3867 bctl->data.limit = limit_data;
3868 bctl->meta.limit = limit_meta;
3869 bctl->sys.limit = limit_sys;
3870 }
3871 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3872 key.offset = (u64)-1;
3873 key.type = BTRFS_CHUNK_ITEM_KEY;
3874
3875 while (1) {
3876 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3877 atomic_read(&fs_info->balance_cancel_req)) {
3878 ret = -ECANCELED;
3879 goto error;
3880 }
3881
3882 mutex_lock(&fs_info->reclaim_bgs_lock);
3883 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3884 if (ret < 0) {
3885 mutex_unlock(&fs_info->reclaim_bgs_lock);
3886 goto error;
3887 }
3888
3889 /*
3890 * this shouldn't happen, it means the last relocate
3891 * failed
3892 */
3893 if (ret == 0)
3894 BUG(); /* FIXME break ? */
3895
3896 ret = btrfs_previous_item(chunk_root, path, 0,
3897 BTRFS_CHUNK_ITEM_KEY);
3898 if (ret) {
3899 mutex_unlock(&fs_info->reclaim_bgs_lock);
3900 ret = 0;
3901 break;
3902 }
3903
3904 leaf = path->nodes[0];
3905 slot = path->slots[0];
3906 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3907
3908 if (found_key.objectid != key.objectid) {
3909 mutex_unlock(&fs_info->reclaim_bgs_lock);
3910 break;
3911 }
3912
3913 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3914 chunk_type = btrfs_chunk_type(leaf, chunk);
3915
3916 if (!counting) {
3917 spin_lock(&fs_info->balance_lock);
3918 bctl->stat.considered++;
3919 spin_unlock(&fs_info->balance_lock);
3920 }
3921
3922 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3923
3924 btrfs_release_path(path);
3925 if (!ret) {
3926 mutex_unlock(&fs_info->reclaim_bgs_lock);
3927 goto loop;
3928 }
3929
3930 if (counting) {
3931 mutex_unlock(&fs_info->reclaim_bgs_lock);
3932 spin_lock(&fs_info->balance_lock);
3933 bctl->stat.expected++;
3934 spin_unlock(&fs_info->balance_lock);
3935
3936 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3937 count_data++;
3938 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3939 count_sys++;
3940 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3941 count_meta++;
3942
3943 goto loop;
3944 }
3945
3946 /*
3947 * Apply limit_min filter, no need to check if the LIMITS
3948 * filter is used, limit_min is 0 by default
3949 */
3950 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3951 count_data < bctl->data.limit_min)
3952 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3953 count_meta < bctl->meta.limit_min)
3954 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3955 count_sys < bctl->sys.limit_min)) {
3956 mutex_unlock(&fs_info->reclaim_bgs_lock);
3957 goto loop;
3958 }
3959
3960 if (!chunk_reserved) {
3961 /*
3962 * We may be relocating the only data chunk we have,
3963 * which could potentially end up with losing data's
3964 * raid profile, so lets allocate an empty one in
3965 * advance.
3966 */
3967 ret = btrfs_may_alloc_data_chunk(fs_info,
3968 found_key.offset);
3969 if (ret < 0) {
3970 mutex_unlock(&fs_info->reclaim_bgs_lock);
3971 goto error;
3972 } else if (ret == 1) {
3973 chunk_reserved = 1;
3974 }
3975 }
3976
3977 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3978 mutex_unlock(&fs_info->reclaim_bgs_lock);
3979 if (ret == -ENOSPC) {
3980 enospc_errors++;
3981 } else if (ret == -ETXTBSY) {
3982 btrfs_info(fs_info,
3983 "skipping relocation of block group %llu due to active swapfile",
3984 found_key.offset);
3985 ret = 0;
3986 } else if (ret) {
3987 goto error;
3988 } else {
3989 spin_lock(&fs_info->balance_lock);
3990 bctl->stat.completed++;
3991 spin_unlock(&fs_info->balance_lock);
3992 }
3993loop:
3994 if (found_key.offset == 0)
3995 break;
3996 key.offset = found_key.offset - 1;
3997 }
3998
3999 if (counting) {
4000 btrfs_release_path(path);
4001 counting = false;
4002 goto again;
4003 }
4004error:
4005 btrfs_free_path(path);
4006 if (enospc_errors) {
4007 btrfs_info(fs_info, "%d enospc errors during balance",
4008 enospc_errors);
4009 if (!ret)
4010 ret = -ENOSPC;
4011 }
4012
4013 return ret;
4014}
4015
4016/**
4017 * alloc_profile_is_valid - see if a given profile is valid and reduced
4018 * @flags: profile to validate
4019 * @extended: if true @flags is treated as an extended profile
4020 */
4021static int alloc_profile_is_valid(u64 flags, int extended)
4022{
4023 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4024 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4025
4026 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4027
4028 /* 1) check that all other bits are zeroed */
4029 if (flags & ~mask)
4030 return 0;
4031
4032 /* 2) see if profile is reduced */
4033 if (flags == 0)
4034 return !extended; /* "0" is valid for usual profiles */
4035
4036 return has_single_bit_set(flags);
4037}
4038
4039static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4040{
4041 /* cancel requested || normal exit path */
4042 return atomic_read(&fs_info->balance_cancel_req) ||
4043 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4044 atomic_read(&fs_info->balance_cancel_req) == 0);
4045}
4046
4047/*
4048 * Validate target profile against allowed profiles and return true if it's OK.
4049 * Otherwise print the error message and return false.
4050 */
4051static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4052 const struct btrfs_balance_args *bargs,
4053 u64 allowed, const char *type)
4054{
4055 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4056 return true;
4057
4058 /* Profile is valid and does not have bits outside of the allowed set */
4059 if (alloc_profile_is_valid(bargs->target, 1) &&
4060 (bargs->target & ~allowed) == 0)
4061 return true;
4062
4063 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4064 type, btrfs_bg_type_to_raid_name(bargs->target));
4065 return false;
4066}
4067
4068/*
4069 * Fill @buf with textual description of balance filter flags @bargs, up to
4070 * @size_buf including the terminating null. The output may be trimmed if it
4071 * does not fit into the provided buffer.
4072 */
4073static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4074 u32 size_buf)
4075{
4076 int ret;
4077 u32 size_bp = size_buf;
4078 char *bp = buf;
4079 u64 flags = bargs->flags;
4080 char tmp_buf[128] = {'\0'};
4081
4082 if (!flags)
4083 return;
4084
4085#define CHECK_APPEND_NOARG(a) \
4086 do { \
4087 ret = snprintf(bp, size_bp, (a)); \
4088 if (ret < 0 || ret >= size_bp) \
4089 goto out_overflow; \
4090 size_bp -= ret; \
4091 bp += ret; \
4092 } while (0)
4093
4094#define CHECK_APPEND_1ARG(a, v1) \
4095 do { \
4096 ret = snprintf(bp, size_bp, (a), (v1)); \
4097 if (ret < 0 || ret >= size_bp) \
4098 goto out_overflow; \
4099 size_bp -= ret; \
4100 bp += ret; \
4101 } while (0)
4102
4103#define CHECK_APPEND_2ARG(a, v1, v2) \
4104 do { \
4105 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4106 if (ret < 0 || ret >= size_bp) \
4107 goto out_overflow; \
4108 size_bp -= ret; \
4109 bp += ret; \
4110 } while (0)
4111
4112 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4113 CHECK_APPEND_1ARG("convert=%s,",
4114 btrfs_bg_type_to_raid_name(bargs->target));
4115
4116 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4117 CHECK_APPEND_NOARG("soft,");
4118
4119 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4120 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4121 sizeof(tmp_buf));
4122 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4123 }
4124
4125 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4126 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4127
4128 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4129 CHECK_APPEND_2ARG("usage=%u..%u,",
4130 bargs->usage_min, bargs->usage_max);
4131
4132 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4133 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4134
4135 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4136 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4137 bargs->pstart, bargs->pend);
4138
4139 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4140 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4141 bargs->vstart, bargs->vend);
4142
4143 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4144 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4145
4146 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4147 CHECK_APPEND_2ARG("limit=%u..%u,",
4148 bargs->limit_min, bargs->limit_max);
4149
4150 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4151 CHECK_APPEND_2ARG("stripes=%u..%u,",
4152 bargs->stripes_min, bargs->stripes_max);
4153
4154#undef CHECK_APPEND_2ARG
4155#undef CHECK_APPEND_1ARG
4156#undef CHECK_APPEND_NOARG
4157
4158out_overflow:
4159
4160 if (size_bp < size_buf)
4161 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4162 else
4163 buf[0] = '\0';
4164}
4165
4166static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4167{
4168 u32 size_buf = 1024;
4169 char tmp_buf[192] = {'\0'};
4170 char *buf;
4171 char *bp;
4172 u32 size_bp = size_buf;
4173 int ret;
4174 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4175
4176 buf = kzalloc(size_buf, GFP_KERNEL);
4177 if (!buf)
4178 return;
4179
4180 bp = buf;
4181
4182#define CHECK_APPEND_1ARG(a, v1) \
4183 do { \
4184 ret = snprintf(bp, size_bp, (a), (v1)); \
4185 if (ret < 0 || ret >= size_bp) \
4186 goto out_overflow; \
4187 size_bp -= ret; \
4188 bp += ret; \
4189 } while (0)
4190
4191 if (bctl->flags & BTRFS_BALANCE_FORCE)
4192 CHECK_APPEND_1ARG("%s", "-f ");
4193
4194 if (bctl->flags & BTRFS_BALANCE_DATA) {
4195 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4196 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4197 }
4198
4199 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4200 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4201 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4202 }
4203
4204 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4205 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4206 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4207 }
4208
4209#undef CHECK_APPEND_1ARG
4210
4211out_overflow:
4212
4213 if (size_bp < size_buf)
4214 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4215 btrfs_info(fs_info, "balance: %s %s",
4216 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4217 "resume" : "start", buf);
4218
4219 kfree(buf);
4220}
4221
4222/*
4223 * Should be called with balance mutexe held
4224 */
4225int btrfs_balance(struct btrfs_fs_info *fs_info,
4226 struct btrfs_balance_control *bctl,
4227 struct btrfs_ioctl_balance_args *bargs)
4228{
4229 u64 meta_target, data_target;
4230 u64 allowed;
4231 int mixed = 0;
4232 int ret;
4233 u64 num_devices;
4234 unsigned seq;
4235 bool reducing_redundancy;
4236 int i;
4237
4238 if (btrfs_fs_closing(fs_info) ||
4239 atomic_read(&fs_info->balance_pause_req) ||
4240 btrfs_should_cancel_balance(fs_info)) {
4241 ret = -EINVAL;
4242 goto out;
4243 }
4244
4245 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4246 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4247 mixed = 1;
4248
4249 /*
4250 * In case of mixed groups both data and meta should be picked,
4251 * and identical options should be given for both of them.
4252 */
4253 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4254 if (mixed && (bctl->flags & allowed)) {
4255 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4256 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4257 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4258 btrfs_err(fs_info,
4259 "balance: mixed groups data and metadata options must be the same");
4260 ret = -EINVAL;
4261 goto out;
4262 }
4263 }
4264
4265 /*
4266 * rw_devices will not change at the moment, device add/delete/replace
4267 * are exclusive
4268 */
4269 num_devices = fs_info->fs_devices->rw_devices;
4270
4271 /*
4272 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4273 * special bit for it, to make it easier to distinguish. Thus we need
4274 * to set it manually, or balance would refuse the profile.
4275 */
4276 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4277 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4278 if (num_devices >= btrfs_raid_array[i].devs_min)
4279 allowed |= btrfs_raid_array[i].bg_flag;
4280
4281 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4282 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4283 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4284 ret = -EINVAL;
4285 goto out;
4286 }
4287
4288 /*
4289 * Allow to reduce metadata or system integrity only if force set for
4290 * profiles with redundancy (copies, parity)
4291 */
4292 allowed = 0;
4293 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4294 if (btrfs_raid_array[i].ncopies >= 2 ||
4295 btrfs_raid_array[i].tolerated_failures >= 1)
4296 allowed |= btrfs_raid_array[i].bg_flag;
4297 }
4298 do {
4299 seq = read_seqbegin(&fs_info->profiles_lock);
4300
4301 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4302 (fs_info->avail_system_alloc_bits & allowed) &&
4303 !(bctl->sys.target & allowed)) ||
4304 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4305 (fs_info->avail_metadata_alloc_bits & allowed) &&
4306 !(bctl->meta.target & allowed)))
4307 reducing_redundancy = true;
4308 else
4309 reducing_redundancy = false;
4310
4311 /* if we're not converting, the target field is uninitialized */
4312 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4313 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4314 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4315 bctl->data.target : fs_info->avail_data_alloc_bits;
4316 } while (read_seqretry(&fs_info->profiles_lock, seq));
4317
4318 if (reducing_redundancy) {
4319 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4320 btrfs_info(fs_info,
4321 "balance: force reducing metadata redundancy");
4322 } else {
4323 btrfs_err(fs_info,
4324 "balance: reduces metadata redundancy, use --force if you want this");
4325 ret = -EINVAL;
4326 goto out;
4327 }
4328 }
4329
4330 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4331 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4332 btrfs_warn(fs_info,
4333 "balance: metadata profile %s has lower redundancy than data profile %s",
4334 btrfs_bg_type_to_raid_name(meta_target),
4335 btrfs_bg_type_to_raid_name(data_target));
4336 }
4337
4338 ret = insert_balance_item(fs_info, bctl);
4339 if (ret && ret != -EEXIST)
4340 goto out;
4341
4342 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4343 BUG_ON(ret == -EEXIST);
4344 BUG_ON(fs_info->balance_ctl);
4345 spin_lock(&fs_info->balance_lock);
4346 fs_info->balance_ctl = bctl;
4347 spin_unlock(&fs_info->balance_lock);
4348 } else {
4349 BUG_ON(ret != -EEXIST);
4350 spin_lock(&fs_info->balance_lock);
4351 update_balance_args(bctl);
4352 spin_unlock(&fs_info->balance_lock);
4353 }
4354
4355 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4356 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4357 describe_balance_start_or_resume(fs_info);
4358 mutex_unlock(&fs_info->balance_mutex);
4359
4360 ret = __btrfs_balance(fs_info);
4361
4362 mutex_lock(&fs_info->balance_mutex);
4363 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4364 btrfs_info(fs_info, "balance: paused");
4365 /*
4366 * Balance can be canceled by:
4367 *
4368 * - Regular cancel request
4369 * Then ret == -ECANCELED and balance_cancel_req > 0
4370 *
4371 * - Fatal signal to "btrfs" process
4372 * Either the signal caught by wait_reserve_ticket() and callers
4373 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4374 * got -ECANCELED.
4375 * Either way, in this case balance_cancel_req = 0, and
4376 * ret == -EINTR or ret == -ECANCELED.
4377 *
4378 * So here we only check the return value to catch canceled balance.
4379 */
4380 else if (ret == -ECANCELED || ret == -EINTR)
4381 btrfs_info(fs_info, "balance: canceled");
4382 else
4383 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4384
4385 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4386
4387 if (bargs) {
4388 memset(bargs, 0, sizeof(*bargs));
4389 btrfs_update_ioctl_balance_args(fs_info, bargs);
4390 }
4391
4392 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4393 balance_need_close(fs_info)) {
4394 reset_balance_state(fs_info);
4395 btrfs_exclop_finish(fs_info);
4396 }
4397
4398 wake_up(&fs_info->balance_wait_q);
4399
4400 return ret;
4401out:
4402 if (bctl->flags & BTRFS_BALANCE_RESUME)
4403 reset_balance_state(fs_info);
4404 else
4405 kfree(bctl);
4406 btrfs_exclop_finish(fs_info);
4407
4408 return ret;
4409}
4410
4411static int balance_kthread(void *data)
4412{
4413 struct btrfs_fs_info *fs_info = data;
4414 int ret = 0;
4415
4416 mutex_lock(&fs_info->balance_mutex);
4417 if (fs_info->balance_ctl)
4418 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4419 mutex_unlock(&fs_info->balance_mutex);
4420
4421 return ret;
4422}
4423
4424int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4425{
4426 struct task_struct *tsk;
4427
4428 mutex_lock(&fs_info->balance_mutex);
4429 if (!fs_info->balance_ctl) {
4430 mutex_unlock(&fs_info->balance_mutex);
4431 return 0;
4432 }
4433 mutex_unlock(&fs_info->balance_mutex);
4434
4435 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4436 btrfs_info(fs_info, "balance: resume skipped");
4437 return 0;
4438 }
4439
4440 /*
4441 * A ro->rw remount sequence should continue with the paused balance
4442 * regardless of who pauses it, system or the user as of now, so set
4443 * the resume flag.
4444 */
4445 spin_lock(&fs_info->balance_lock);
4446 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4447 spin_unlock(&fs_info->balance_lock);
4448
4449 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4450 return PTR_ERR_OR_ZERO(tsk);
4451}
4452
4453int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4454{
4455 struct btrfs_balance_control *bctl;
4456 struct btrfs_balance_item *item;
4457 struct btrfs_disk_balance_args disk_bargs;
4458 struct btrfs_path *path;
4459 struct extent_buffer *leaf;
4460 struct btrfs_key key;
4461 int ret;
4462
4463 path = btrfs_alloc_path();
4464 if (!path)
4465 return -ENOMEM;
4466
4467 key.objectid = BTRFS_BALANCE_OBJECTID;
4468 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4469 key.offset = 0;
4470
4471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4472 if (ret < 0)
4473 goto out;
4474 if (ret > 0) { /* ret = -ENOENT; */
4475 ret = 0;
4476 goto out;
4477 }
4478
4479 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4480 if (!bctl) {
4481 ret = -ENOMEM;
4482 goto out;
4483 }
4484
4485 leaf = path->nodes[0];
4486 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4487
4488 bctl->flags = btrfs_balance_flags(leaf, item);
4489 bctl->flags |= BTRFS_BALANCE_RESUME;
4490
4491 btrfs_balance_data(leaf, item, &disk_bargs);
4492 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4493 btrfs_balance_meta(leaf, item, &disk_bargs);
4494 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4495 btrfs_balance_sys(leaf, item, &disk_bargs);
4496 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4497
4498 /*
4499 * This should never happen, as the paused balance state is recovered
4500 * during mount without any chance of other exclusive ops to collide.
4501 *
4502 * This gives the exclusive op status to balance and keeps in paused
4503 * state until user intervention (cancel or umount). If the ownership
4504 * cannot be assigned, show a message but do not fail. The balance
4505 * is in a paused state and must have fs_info::balance_ctl properly
4506 * set up.
4507 */
4508 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4509 btrfs_warn(fs_info,
4510 "balance: cannot set exclusive op status, resume manually");
4511
4512 btrfs_release_path(path);
4513
4514 mutex_lock(&fs_info->balance_mutex);
4515 BUG_ON(fs_info->balance_ctl);
4516 spin_lock(&fs_info->balance_lock);
4517 fs_info->balance_ctl = bctl;
4518 spin_unlock(&fs_info->balance_lock);
4519 mutex_unlock(&fs_info->balance_mutex);
4520out:
4521 btrfs_free_path(path);
4522 return ret;
4523}
4524
4525int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4526{
4527 int ret = 0;
4528
4529 mutex_lock(&fs_info->balance_mutex);
4530 if (!fs_info->balance_ctl) {
4531 mutex_unlock(&fs_info->balance_mutex);
4532 return -ENOTCONN;
4533 }
4534
4535 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4536 atomic_inc(&fs_info->balance_pause_req);
4537 mutex_unlock(&fs_info->balance_mutex);
4538
4539 wait_event(fs_info->balance_wait_q,
4540 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4541
4542 mutex_lock(&fs_info->balance_mutex);
4543 /* we are good with balance_ctl ripped off from under us */
4544 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4545 atomic_dec(&fs_info->balance_pause_req);
4546 } else {
4547 ret = -ENOTCONN;
4548 }
4549
4550 mutex_unlock(&fs_info->balance_mutex);
4551 return ret;
4552}
4553
4554int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4555{
4556 mutex_lock(&fs_info->balance_mutex);
4557 if (!fs_info->balance_ctl) {
4558 mutex_unlock(&fs_info->balance_mutex);
4559 return -ENOTCONN;
4560 }
4561
4562 /*
4563 * A paused balance with the item stored on disk can be resumed at
4564 * mount time if the mount is read-write. Otherwise it's still paused
4565 * and we must not allow cancelling as it deletes the item.
4566 */
4567 if (sb_rdonly(fs_info->sb)) {
4568 mutex_unlock(&fs_info->balance_mutex);
4569 return -EROFS;
4570 }
4571
4572 atomic_inc(&fs_info->balance_cancel_req);
4573 /*
4574 * if we are running just wait and return, balance item is
4575 * deleted in btrfs_balance in this case
4576 */
4577 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4578 mutex_unlock(&fs_info->balance_mutex);
4579 wait_event(fs_info->balance_wait_q,
4580 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4581 mutex_lock(&fs_info->balance_mutex);
4582 } else {
4583 mutex_unlock(&fs_info->balance_mutex);
4584 /*
4585 * Lock released to allow other waiters to continue, we'll
4586 * reexamine the status again.
4587 */
4588 mutex_lock(&fs_info->balance_mutex);
4589
4590 if (fs_info->balance_ctl) {
4591 reset_balance_state(fs_info);
4592 btrfs_exclop_finish(fs_info);
4593 btrfs_info(fs_info, "balance: canceled");
4594 }
4595 }
4596
4597 BUG_ON(fs_info->balance_ctl ||
4598 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4599 atomic_dec(&fs_info->balance_cancel_req);
4600 mutex_unlock(&fs_info->balance_mutex);
4601 return 0;
4602}
4603
4604int btrfs_uuid_scan_kthread(void *data)
4605{
4606 struct btrfs_fs_info *fs_info = data;
4607 struct btrfs_root *root = fs_info->tree_root;
4608 struct btrfs_key key;
4609 struct btrfs_path *path = NULL;
4610 int ret = 0;
4611 struct extent_buffer *eb;
4612 int slot;
4613 struct btrfs_root_item root_item;
4614 u32 item_size;
4615 struct btrfs_trans_handle *trans = NULL;
4616 bool closing = false;
4617
4618 path = btrfs_alloc_path();
4619 if (!path) {
4620 ret = -ENOMEM;
4621 goto out;
4622 }
4623
4624 key.objectid = 0;
4625 key.type = BTRFS_ROOT_ITEM_KEY;
4626 key.offset = 0;
4627
4628 while (1) {
4629 if (btrfs_fs_closing(fs_info)) {
4630 closing = true;
4631 break;
4632 }
4633 ret = btrfs_search_forward(root, &key, path,
4634 BTRFS_OLDEST_GENERATION);
4635 if (ret) {
4636 if (ret > 0)
4637 ret = 0;
4638 break;
4639 }
4640
4641 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4642 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4643 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4644 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4645 goto skip;
4646
4647 eb = path->nodes[0];
4648 slot = path->slots[0];
4649 item_size = btrfs_item_size_nr(eb, slot);
4650 if (item_size < sizeof(root_item))
4651 goto skip;
4652
4653 read_extent_buffer(eb, &root_item,
4654 btrfs_item_ptr_offset(eb, slot),
4655 (int)sizeof(root_item));
4656 if (btrfs_root_refs(&root_item) == 0)
4657 goto skip;
4658
4659 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4660 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4661 if (trans)
4662 goto update_tree;
4663
4664 btrfs_release_path(path);
4665 /*
4666 * 1 - subvol uuid item
4667 * 1 - received_subvol uuid item
4668 */
4669 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4670 if (IS_ERR(trans)) {
4671 ret = PTR_ERR(trans);
4672 break;
4673 }
4674 continue;
4675 } else {
4676 goto skip;
4677 }
4678update_tree:
4679 btrfs_release_path(path);
4680 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4681 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4682 BTRFS_UUID_KEY_SUBVOL,
4683 key.objectid);
4684 if (ret < 0) {
4685 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4686 ret);
4687 break;
4688 }
4689 }
4690
4691 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4692 ret = btrfs_uuid_tree_add(trans,
4693 root_item.received_uuid,
4694 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4695 key.objectid);
4696 if (ret < 0) {
4697 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4698 ret);
4699 break;
4700 }
4701 }
4702
4703skip:
4704 btrfs_release_path(path);
4705 if (trans) {
4706 ret = btrfs_end_transaction(trans);
4707 trans = NULL;
4708 if (ret)
4709 break;
4710 }
4711
4712 if (key.offset < (u64)-1) {
4713 key.offset++;
4714 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4715 key.offset = 0;
4716 key.type = BTRFS_ROOT_ITEM_KEY;
4717 } else if (key.objectid < (u64)-1) {
4718 key.offset = 0;
4719 key.type = BTRFS_ROOT_ITEM_KEY;
4720 key.objectid++;
4721 } else {
4722 break;
4723 }
4724 cond_resched();
4725 }
4726
4727out:
4728 btrfs_free_path(path);
4729 if (trans && !IS_ERR(trans))
4730 btrfs_end_transaction(trans);
4731 if (ret)
4732 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4733 else if (!closing)
4734 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4735 up(&fs_info->uuid_tree_rescan_sem);
4736 return 0;
4737}
4738
4739int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4740{
4741 struct btrfs_trans_handle *trans;
4742 struct btrfs_root *tree_root = fs_info->tree_root;
4743 struct btrfs_root *uuid_root;
4744 struct task_struct *task;
4745 int ret;
4746
4747 /*
4748 * 1 - root node
4749 * 1 - root item
4750 */
4751 trans = btrfs_start_transaction(tree_root, 2);
4752 if (IS_ERR(trans))
4753 return PTR_ERR(trans);
4754
4755 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4756 if (IS_ERR(uuid_root)) {
4757 ret = PTR_ERR(uuid_root);
4758 btrfs_abort_transaction(trans, ret);
4759 btrfs_end_transaction(trans);
4760 return ret;
4761 }
4762
4763 fs_info->uuid_root = uuid_root;
4764
4765 ret = btrfs_commit_transaction(trans);
4766 if (ret)
4767 return ret;
4768
4769 down(&fs_info->uuid_tree_rescan_sem);
4770 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4771 if (IS_ERR(task)) {
4772 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4773 btrfs_warn(fs_info, "failed to start uuid_scan task");
4774 up(&fs_info->uuid_tree_rescan_sem);
4775 return PTR_ERR(task);
4776 }
4777
4778 return 0;
4779}
4780
4781/*
4782 * shrinking a device means finding all of the device extents past
4783 * the new size, and then following the back refs to the chunks.
4784 * The chunk relocation code actually frees the device extent
4785 */
4786int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4787{
4788 struct btrfs_fs_info *fs_info = device->fs_info;
4789 struct btrfs_root *root = fs_info->dev_root;
4790 struct btrfs_trans_handle *trans;
4791 struct btrfs_dev_extent *dev_extent = NULL;
4792 struct btrfs_path *path;
4793 u64 length;
4794 u64 chunk_offset;
4795 int ret;
4796 int slot;
4797 int failed = 0;
4798 bool retried = false;
4799 struct extent_buffer *l;
4800 struct btrfs_key key;
4801 struct btrfs_super_block *super_copy = fs_info->super_copy;
4802 u64 old_total = btrfs_super_total_bytes(super_copy);
4803 u64 old_size = btrfs_device_get_total_bytes(device);
4804 u64 diff;
4805 u64 start;
4806
4807 new_size = round_down(new_size, fs_info->sectorsize);
4808 start = new_size;
4809 diff = round_down(old_size - new_size, fs_info->sectorsize);
4810
4811 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4812 return -EINVAL;
4813
4814 path = btrfs_alloc_path();
4815 if (!path)
4816 return -ENOMEM;
4817
4818 path->reada = READA_BACK;
4819
4820 trans = btrfs_start_transaction(root, 0);
4821 if (IS_ERR(trans)) {
4822 btrfs_free_path(path);
4823 return PTR_ERR(trans);
4824 }
4825
4826 mutex_lock(&fs_info->chunk_mutex);
4827
4828 btrfs_device_set_total_bytes(device, new_size);
4829 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4830 device->fs_devices->total_rw_bytes -= diff;
4831 atomic64_sub(diff, &fs_info->free_chunk_space);
4832 }
4833
4834 /*
4835 * Once the device's size has been set to the new size, ensure all
4836 * in-memory chunks are synced to disk so that the loop below sees them
4837 * and relocates them accordingly.
4838 */
4839 if (contains_pending_extent(device, &start, diff)) {
4840 mutex_unlock(&fs_info->chunk_mutex);
4841 ret = btrfs_commit_transaction(trans);
4842 if (ret)
4843 goto done;
4844 } else {
4845 mutex_unlock(&fs_info->chunk_mutex);
4846 btrfs_end_transaction(trans);
4847 }
4848
4849again:
4850 key.objectid = device->devid;
4851 key.offset = (u64)-1;
4852 key.type = BTRFS_DEV_EXTENT_KEY;
4853
4854 do {
4855 mutex_lock(&fs_info->reclaim_bgs_lock);
4856 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4857 if (ret < 0) {
4858 mutex_unlock(&fs_info->reclaim_bgs_lock);
4859 goto done;
4860 }
4861
4862 ret = btrfs_previous_item(root, path, 0, key.type);
4863 if (ret) {
4864 mutex_unlock(&fs_info->reclaim_bgs_lock);
4865 if (ret < 0)
4866 goto done;
4867 ret = 0;
4868 btrfs_release_path(path);
4869 break;
4870 }
4871
4872 l = path->nodes[0];
4873 slot = path->slots[0];
4874 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4875
4876 if (key.objectid != device->devid) {
4877 mutex_unlock(&fs_info->reclaim_bgs_lock);
4878 btrfs_release_path(path);
4879 break;
4880 }
4881
4882 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4883 length = btrfs_dev_extent_length(l, dev_extent);
4884
4885 if (key.offset + length <= new_size) {
4886 mutex_unlock(&fs_info->reclaim_bgs_lock);
4887 btrfs_release_path(path);
4888 break;
4889 }
4890
4891 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4892 btrfs_release_path(path);
4893
4894 /*
4895 * We may be relocating the only data chunk we have,
4896 * which could potentially end up with losing data's
4897 * raid profile, so lets allocate an empty one in
4898 * advance.
4899 */
4900 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4901 if (ret < 0) {
4902 mutex_unlock(&fs_info->reclaim_bgs_lock);
4903 goto done;
4904 }
4905
4906 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4907 mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 if (ret == -ENOSPC) {
4909 failed++;
4910 } else if (ret) {
4911 if (ret == -ETXTBSY) {
4912 btrfs_warn(fs_info,
4913 "could not shrink block group %llu due to active swapfile",
4914 chunk_offset);
4915 }
4916 goto done;
4917 }
4918 } while (key.offset-- > 0);
4919
4920 if (failed && !retried) {
4921 failed = 0;
4922 retried = true;
4923 goto again;
4924 } else if (failed && retried) {
4925 ret = -ENOSPC;
4926 goto done;
4927 }
4928
4929 /* Shrinking succeeded, else we would be at "done". */
4930 trans = btrfs_start_transaction(root, 0);
4931 if (IS_ERR(trans)) {
4932 ret = PTR_ERR(trans);
4933 goto done;
4934 }
4935
4936 mutex_lock(&fs_info->chunk_mutex);
4937 /* Clear all state bits beyond the shrunk device size */
4938 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4939 CHUNK_STATE_MASK);
4940
4941 btrfs_device_set_disk_total_bytes(device, new_size);
4942 if (list_empty(&device->post_commit_list))
4943 list_add_tail(&device->post_commit_list,
4944 &trans->transaction->dev_update_list);
4945
4946 WARN_ON(diff > old_total);
4947 btrfs_set_super_total_bytes(super_copy,
4948 round_down(old_total - diff, fs_info->sectorsize));
4949 mutex_unlock(&fs_info->chunk_mutex);
4950
4951 /* Now btrfs_update_device() will change the on-disk size. */
4952 ret = btrfs_update_device(trans, device);
4953 if (ret < 0) {
4954 btrfs_abort_transaction(trans, ret);
4955 btrfs_end_transaction(trans);
4956 } else {
4957 ret = btrfs_commit_transaction(trans);
4958 }
4959done:
4960 btrfs_free_path(path);
4961 if (ret) {
4962 mutex_lock(&fs_info->chunk_mutex);
4963 btrfs_device_set_total_bytes(device, old_size);
4964 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4965 device->fs_devices->total_rw_bytes += diff;
4966 atomic64_add(diff, &fs_info->free_chunk_space);
4967 mutex_unlock(&fs_info->chunk_mutex);
4968 }
4969 return ret;
4970}
4971
4972static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4973 struct btrfs_key *key,
4974 struct btrfs_chunk *chunk, int item_size)
4975{
4976 struct btrfs_super_block *super_copy = fs_info->super_copy;
4977 struct btrfs_disk_key disk_key;
4978 u32 array_size;
4979 u8 *ptr;
4980
4981 lockdep_assert_held(&fs_info->chunk_mutex);
4982
4983 array_size = btrfs_super_sys_array_size(super_copy);
4984 if (array_size + item_size + sizeof(disk_key)
4985 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4986 return -EFBIG;
4987
4988 ptr = super_copy->sys_chunk_array + array_size;
4989 btrfs_cpu_key_to_disk(&disk_key, key);
4990 memcpy(ptr, &disk_key, sizeof(disk_key));
4991 ptr += sizeof(disk_key);
4992 memcpy(ptr, chunk, item_size);
4993 item_size += sizeof(disk_key);
4994 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4995
4996 return 0;
4997}
4998
4999/*
5000 * sort the devices in descending order by max_avail, total_avail
5001 */
5002static int btrfs_cmp_device_info(const void *a, const void *b)
5003{
5004 const struct btrfs_device_info *di_a = a;
5005 const struct btrfs_device_info *di_b = b;
5006
5007 if (di_a->max_avail > di_b->max_avail)
5008 return -1;
5009 if (di_a->max_avail < di_b->max_avail)
5010 return 1;
5011 if (di_a->total_avail > di_b->total_avail)
5012 return -1;
5013 if (di_a->total_avail < di_b->total_avail)
5014 return 1;
5015 return 0;
5016}
5017
5018static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5019{
5020 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5021 return;
5022
5023 btrfs_set_fs_incompat(info, RAID56);
5024}
5025
5026static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5027{
5028 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5029 return;
5030
5031 btrfs_set_fs_incompat(info, RAID1C34);
5032}
5033
5034/*
5035 * Structure used internally for __btrfs_alloc_chunk() function.
5036 * Wraps needed parameters.
5037 */
5038struct alloc_chunk_ctl {
5039 u64 start;
5040 u64 type;
5041 /* Total number of stripes to allocate */
5042 int num_stripes;
5043 /* sub_stripes info for map */
5044 int sub_stripes;
5045 /* Stripes per device */
5046 int dev_stripes;
5047 /* Maximum number of devices to use */
5048 int devs_max;
5049 /* Minimum number of devices to use */
5050 int devs_min;
5051 /* ndevs has to be a multiple of this */
5052 int devs_increment;
5053 /* Number of copies */
5054 int ncopies;
5055 /* Number of stripes worth of bytes to store parity information */
5056 int nparity;
5057 u64 max_stripe_size;
5058 u64 max_chunk_size;
5059 u64 dev_extent_min;
5060 u64 stripe_size;
5061 u64 chunk_size;
5062 int ndevs;
5063};
5064
5065static void init_alloc_chunk_ctl_policy_regular(
5066 struct btrfs_fs_devices *fs_devices,
5067 struct alloc_chunk_ctl *ctl)
5068{
5069 u64 type = ctl->type;
5070
5071 if (type & BTRFS_BLOCK_GROUP_DATA) {
5072 ctl->max_stripe_size = SZ_1G;
5073 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5074 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5075 /* For larger filesystems, use larger metadata chunks */
5076 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5077 ctl->max_stripe_size = SZ_1G;
5078 else
5079 ctl->max_stripe_size = SZ_256M;
5080 ctl->max_chunk_size = ctl->max_stripe_size;
5081 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5082 ctl->max_stripe_size = SZ_32M;
5083 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5084 ctl->devs_max = min_t(int, ctl->devs_max,
5085 BTRFS_MAX_DEVS_SYS_CHUNK);
5086 } else {
5087 BUG();
5088 }
5089
5090 /* We don't want a chunk larger than 10% of writable space */
5091 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5092 ctl->max_chunk_size);
5093 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
5094}
5095
5096static void init_alloc_chunk_ctl_policy_zoned(
5097 struct btrfs_fs_devices *fs_devices,
5098 struct alloc_chunk_ctl *ctl)
5099{
5100 u64 zone_size = fs_devices->fs_info->zone_size;
5101 u64 limit;
5102 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5103 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5104 u64 min_chunk_size = min_data_stripes * zone_size;
5105 u64 type = ctl->type;
5106
5107 ctl->max_stripe_size = zone_size;
5108 if (type & BTRFS_BLOCK_GROUP_DATA) {
5109 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5110 zone_size);
5111 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5112 ctl->max_chunk_size = ctl->max_stripe_size;
5113 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5114 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5115 ctl->devs_max = min_t(int, ctl->devs_max,
5116 BTRFS_MAX_DEVS_SYS_CHUNK);
5117 } else {
5118 BUG();
5119 }
5120
5121 /* We don't want a chunk larger than 10% of writable space */
5122 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5123 zone_size),
5124 min_chunk_size);
5125 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5126 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5127}
5128
5129static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5130 struct alloc_chunk_ctl *ctl)
5131{
5132 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5133
5134 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5135 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5136 ctl->devs_max = btrfs_raid_array[index].devs_max;
5137 if (!ctl->devs_max)
5138 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5139 ctl->devs_min = btrfs_raid_array[index].devs_min;
5140 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5141 ctl->ncopies = btrfs_raid_array[index].ncopies;
5142 ctl->nparity = btrfs_raid_array[index].nparity;
5143 ctl->ndevs = 0;
5144
5145 switch (fs_devices->chunk_alloc_policy) {
5146 case BTRFS_CHUNK_ALLOC_REGULAR:
5147 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5148 break;
5149 case BTRFS_CHUNK_ALLOC_ZONED:
5150 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5151 break;
5152 default:
5153 BUG();
5154 }
5155}
5156
5157static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5158 struct alloc_chunk_ctl *ctl,
5159 struct btrfs_device_info *devices_info)
5160{
5161 struct btrfs_fs_info *info = fs_devices->fs_info;
5162 struct btrfs_device *device;
5163 u64 total_avail;
5164 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5165 int ret;
5166 int ndevs = 0;
5167 u64 max_avail;
5168 u64 dev_offset;
5169
5170 /*
5171 * in the first pass through the devices list, we gather information
5172 * about the available holes on each device.
5173 */
5174 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5175 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5176 WARN(1, KERN_ERR
5177 "BTRFS: read-only device in alloc_list\n");
5178 continue;
5179 }
5180
5181 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5182 &device->dev_state) ||
5183 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5184 continue;
5185
5186 if (device->total_bytes > device->bytes_used)
5187 total_avail = device->total_bytes - device->bytes_used;
5188 else
5189 total_avail = 0;
5190
5191 /* If there is no space on this device, skip it. */
5192 if (total_avail < ctl->dev_extent_min)
5193 continue;
5194
5195 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5196 &max_avail);
5197 if (ret && ret != -ENOSPC)
5198 return ret;
5199
5200 if (ret == 0)
5201 max_avail = dev_extent_want;
5202
5203 if (max_avail < ctl->dev_extent_min) {
5204 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5205 btrfs_debug(info,
5206 "%s: devid %llu has no free space, have=%llu want=%llu",
5207 __func__, device->devid, max_avail,
5208 ctl->dev_extent_min);
5209 continue;
5210 }
5211
5212 if (ndevs == fs_devices->rw_devices) {
5213 WARN(1, "%s: found more than %llu devices\n",
5214 __func__, fs_devices->rw_devices);
5215 break;
5216 }
5217 devices_info[ndevs].dev_offset = dev_offset;
5218 devices_info[ndevs].max_avail = max_avail;
5219 devices_info[ndevs].total_avail = total_avail;
5220 devices_info[ndevs].dev = device;
5221 ++ndevs;
5222 }
5223 ctl->ndevs = ndevs;
5224
5225 /*
5226 * now sort the devices by hole size / available space
5227 */
5228 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5229 btrfs_cmp_device_info, NULL);
5230
5231 return 0;
5232}
5233
5234static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5235 struct btrfs_device_info *devices_info)
5236{
5237 /* Number of stripes that count for block group size */
5238 int data_stripes;
5239
5240 /*
5241 * The primary goal is to maximize the number of stripes, so use as
5242 * many devices as possible, even if the stripes are not maximum sized.
5243 *
5244 * The DUP profile stores more than one stripe per device, the
5245 * max_avail is the total size so we have to adjust.
5246 */
5247 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5248 ctl->dev_stripes);
5249 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5250
5251 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5252 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5253
5254 /*
5255 * Use the number of data stripes to figure out how big this chunk is
5256 * really going to be in terms of logical address space, and compare
5257 * that answer with the max chunk size. If it's higher, we try to
5258 * reduce stripe_size.
5259 */
5260 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5261 /*
5262 * Reduce stripe_size, round it up to a 16MB boundary again and
5263 * then use it, unless it ends up being even bigger than the
5264 * previous value we had already.
5265 */
5266 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5267 data_stripes), SZ_16M),
5268 ctl->stripe_size);
5269 }
5270
5271 /* Align to BTRFS_STRIPE_LEN */
5272 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5273 ctl->chunk_size = ctl->stripe_size * data_stripes;
5274
5275 return 0;
5276}
5277
5278static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5279 struct btrfs_device_info *devices_info)
5280{
5281 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5282 /* Number of stripes that count for block group size */
5283 int data_stripes;
5284
5285 /*
5286 * It should hold because:
5287 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5288 */
5289 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5290
5291 ctl->stripe_size = zone_size;
5292 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5293 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5294
5295 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5296 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5297 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5298 ctl->stripe_size) + ctl->nparity,
5299 ctl->dev_stripes);
5300 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5301 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5302 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5303 }
5304
5305 ctl->chunk_size = ctl->stripe_size * data_stripes;
5306
5307 return 0;
5308}
5309
5310static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5311 struct alloc_chunk_ctl *ctl,
5312 struct btrfs_device_info *devices_info)
5313{
5314 struct btrfs_fs_info *info = fs_devices->fs_info;
5315
5316 /*
5317 * Round down to number of usable stripes, devs_increment can be any
5318 * number so we can't use round_down() that requires power of 2, while
5319 * rounddown is safe.
5320 */
5321 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5322
5323 if (ctl->ndevs < ctl->devs_min) {
5324 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5325 btrfs_debug(info,
5326 "%s: not enough devices with free space: have=%d minimum required=%d",
5327 __func__, ctl->ndevs, ctl->devs_min);
5328 }
5329 return -ENOSPC;
5330 }
5331
5332 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5333
5334 switch (fs_devices->chunk_alloc_policy) {
5335 case BTRFS_CHUNK_ALLOC_REGULAR:
5336 return decide_stripe_size_regular(ctl, devices_info);
5337 case BTRFS_CHUNK_ALLOC_ZONED:
5338 return decide_stripe_size_zoned(ctl, devices_info);
5339 default:
5340 BUG();
5341 }
5342}
5343
5344static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5345 struct alloc_chunk_ctl *ctl,
5346 struct btrfs_device_info *devices_info)
5347{
5348 struct btrfs_fs_info *info = trans->fs_info;
5349 struct map_lookup *map = NULL;
5350 struct extent_map_tree *em_tree;
5351 struct btrfs_block_group *block_group;
5352 struct extent_map *em;
5353 u64 start = ctl->start;
5354 u64 type = ctl->type;
5355 int ret;
5356 int i;
5357 int j;
5358
5359 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5360 if (!map)
5361 return ERR_PTR(-ENOMEM);
5362 map->num_stripes = ctl->num_stripes;
5363
5364 for (i = 0; i < ctl->ndevs; ++i) {
5365 for (j = 0; j < ctl->dev_stripes; ++j) {
5366 int s = i * ctl->dev_stripes + j;
5367 map->stripes[s].dev = devices_info[i].dev;
5368 map->stripes[s].physical = devices_info[i].dev_offset +
5369 j * ctl->stripe_size;
5370 }
5371 }
5372 map->stripe_len = BTRFS_STRIPE_LEN;
5373 map->io_align = BTRFS_STRIPE_LEN;
5374 map->io_width = BTRFS_STRIPE_LEN;
5375 map->type = type;
5376 map->sub_stripes = ctl->sub_stripes;
5377
5378 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5379
5380 em = alloc_extent_map();
5381 if (!em) {
5382 kfree(map);
5383 return ERR_PTR(-ENOMEM);
5384 }
5385 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5386 em->map_lookup = map;
5387 em->start = start;
5388 em->len = ctl->chunk_size;
5389 em->block_start = 0;
5390 em->block_len = em->len;
5391 em->orig_block_len = ctl->stripe_size;
5392
5393 em_tree = &info->mapping_tree;
5394 write_lock(&em_tree->lock);
5395 ret = add_extent_mapping(em_tree, em, 0);
5396 if (ret) {
5397 write_unlock(&em_tree->lock);
5398 free_extent_map(em);
5399 return ERR_PTR(ret);
5400 }
5401 write_unlock(&em_tree->lock);
5402
5403 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5404 if (IS_ERR(block_group))
5405 goto error_del_extent;
5406
5407 for (i = 0; i < map->num_stripes; i++) {
5408 struct btrfs_device *dev = map->stripes[i].dev;
5409
5410 btrfs_device_set_bytes_used(dev,
5411 dev->bytes_used + ctl->stripe_size);
5412 if (list_empty(&dev->post_commit_list))
5413 list_add_tail(&dev->post_commit_list,
5414 &trans->transaction->dev_update_list);
5415 }
5416
5417 atomic64_sub(ctl->stripe_size * map->num_stripes,
5418 &info->free_chunk_space);
5419
5420 free_extent_map(em);
5421 check_raid56_incompat_flag(info, type);
5422 check_raid1c34_incompat_flag(info, type);
5423
5424 return block_group;
5425
5426error_del_extent:
5427 write_lock(&em_tree->lock);
5428 remove_extent_mapping(em_tree, em);
5429 write_unlock(&em_tree->lock);
5430
5431 /* One for our allocation */
5432 free_extent_map(em);
5433 /* One for the tree reference */
5434 free_extent_map(em);
5435
5436 return block_group;
5437}
5438
5439struct btrfs_block_group *btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5440 u64 type)
5441{
5442 struct btrfs_fs_info *info = trans->fs_info;
5443 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5444 struct btrfs_device_info *devices_info = NULL;
5445 struct alloc_chunk_ctl ctl;
5446 struct btrfs_block_group *block_group;
5447 int ret;
5448
5449 lockdep_assert_held(&info->chunk_mutex);
5450
5451 if (!alloc_profile_is_valid(type, 0)) {
5452 ASSERT(0);
5453 return ERR_PTR(-EINVAL);
5454 }
5455
5456 if (list_empty(&fs_devices->alloc_list)) {
5457 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5458 btrfs_debug(info, "%s: no writable device", __func__);
5459 return ERR_PTR(-ENOSPC);
5460 }
5461
5462 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5463 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5464 ASSERT(0);
5465 return ERR_PTR(-EINVAL);
5466 }
5467
5468 ctl.start = find_next_chunk(info);
5469 ctl.type = type;
5470 init_alloc_chunk_ctl(fs_devices, &ctl);
5471
5472 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5473 GFP_NOFS);
5474 if (!devices_info)
5475 return ERR_PTR(-ENOMEM);
5476
5477 ret = gather_device_info(fs_devices, &ctl, devices_info);
5478 if (ret < 0) {
5479 block_group = ERR_PTR(ret);
5480 goto out;
5481 }
5482
5483 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5484 if (ret < 0) {
5485 block_group = ERR_PTR(ret);
5486 goto out;
5487 }
5488
5489 block_group = create_chunk(trans, &ctl, devices_info);
5490
5491out:
5492 kfree(devices_info);
5493 return block_group;
5494}
5495
5496/*
5497 * This function, btrfs_finish_chunk_alloc(), belongs to phase 2.
5498 *
5499 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5500 * phases.
5501 */
5502int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5503 u64 chunk_offset, u64 chunk_size)
5504{
5505 struct btrfs_fs_info *fs_info = trans->fs_info;
5506 struct btrfs_device *device;
5507 struct extent_map *em;
5508 struct map_lookup *map;
5509 u64 dev_offset;
5510 u64 stripe_size;
5511 int i;
5512 int ret = 0;
5513
5514 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5515 if (IS_ERR(em))
5516 return PTR_ERR(em);
5517
5518 map = em->map_lookup;
5519 stripe_size = em->orig_block_len;
5520
5521 /*
5522 * Take the device list mutex to prevent races with the final phase of
5523 * a device replace operation that replaces the device object associated
5524 * with the map's stripes, because the device object's id can change
5525 * at any time during that final phase of the device replace operation
5526 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5527 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5528 * resulting in persisting a device extent item with such ID.
5529 */
5530 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5531 for (i = 0; i < map->num_stripes; i++) {
5532 device = map->stripes[i].dev;
5533 dev_offset = map->stripes[i].physical;
5534
5535 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5536 dev_offset, stripe_size);
5537 if (ret)
5538 break;
5539 }
5540 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5541
5542 free_extent_map(em);
5543 return ret;
5544}
5545
5546/*
5547 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5548 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5549 * chunks.
5550 *
5551 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5552 * phases.
5553 */
5554int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5555 struct btrfs_block_group *bg)
5556{
5557 struct btrfs_fs_info *fs_info = trans->fs_info;
5558 struct btrfs_root *extent_root = fs_info->extent_root;
5559 struct btrfs_root *chunk_root = fs_info->chunk_root;
5560 struct btrfs_key key;
5561 struct btrfs_chunk *chunk;
5562 struct btrfs_stripe *stripe;
5563 struct extent_map *em;
5564 struct map_lookup *map;
5565 size_t item_size;
5566 int i;
5567 int ret;
5568
5569 /*
5570 * We take the chunk_mutex for 2 reasons:
5571 *
5572 * 1) Updates and insertions in the chunk btree must be done while holding
5573 * the chunk_mutex, as well as updating the system chunk array in the
5574 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5575 * details;
5576 *
5577 * 2) To prevent races with the final phase of a device replace operation
5578 * that replaces the device object associated with the map's stripes,
5579 * because the device object's id can change at any time during that
5580 * final phase of the device replace operation
5581 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5582 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5583 * which would cause a failure when updating the device item, which does
5584 * not exists, or persisting a stripe of the chunk item with such ID.
5585 * Here we can't use the device_list_mutex because our caller already
5586 * has locked the chunk_mutex, and the final phase of device replace
5587 * acquires both mutexes - first the device_list_mutex and then the
5588 * chunk_mutex. Using any of those two mutexes protects us from a
5589 * concurrent device replace.
5590 */
5591 lockdep_assert_held(&fs_info->chunk_mutex);
5592
5593 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5594 if (IS_ERR(em)) {
5595 ret = PTR_ERR(em);
5596 btrfs_abort_transaction(trans, ret);
5597 return ret;
5598 }
5599
5600 map = em->map_lookup;
5601 item_size = btrfs_chunk_item_size(map->num_stripes);
5602
5603 chunk = kzalloc(item_size, GFP_NOFS);
5604 if (!chunk) {
5605 ret = -ENOMEM;
5606 btrfs_abort_transaction(trans, ret);
5607 goto out;
5608 }
5609
5610 for (i = 0; i < map->num_stripes; i++) {
5611 struct btrfs_device *device = map->stripes[i].dev;
5612
5613 ret = btrfs_update_device(trans, device);
5614 if (ret)
5615 goto out;
5616 }
5617
5618 stripe = &chunk->stripe;
5619 for (i = 0; i < map->num_stripes; i++) {
5620 struct btrfs_device *device = map->stripes[i].dev;
5621 const u64 dev_offset = map->stripes[i].physical;
5622
5623 btrfs_set_stack_stripe_devid(stripe, device->devid);
5624 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5625 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5626 stripe++;
5627 }
5628
5629 btrfs_set_stack_chunk_length(chunk, bg->length);
5630 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5631 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5632 btrfs_set_stack_chunk_type(chunk, map->type);
5633 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5634 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5635 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5636 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5637 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5638
5639 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5640 key.type = BTRFS_CHUNK_ITEM_KEY;
5641 key.offset = bg->start;
5642
5643 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5644 if (ret)
5645 goto out;
5646
5647 bg->chunk_item_inserted = 1;
5648
5649 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5650 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5651 if (ret)
5652 goto out;
5653 }
5654
5655out:
5656 kfree(chunk);
5657 free_extent_map(em);
5658 return ret;
5659}
5660
5661static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5662{
5663 struct btrfs_fs_info *fs_info = trans->fs_info;
5664 u64 alloc_profile;
5665 struct btrfs_block_group *meta_bg;
5666 struct btrfs_block_group *sys_bg;
5667
5668 /*
5669 * When adding a new device for sprouting, the seed device is read-only
5670 * so we must first allocate a metadata and a system chunk. But before
5671 * adding the block group items to the extent, device and chunk btrees,
5672 * we must first:
5673 *
5674 * 1) Create both chunks without doing any changes to the btrees, as
5675 * otherwise we would get -ENOSPC since the block groups from the
5676 * seed device are read-only;
5677 *
5678 * 2) Add the device item for the new sprout device - finishing the setup
5679 * of a new block group requires updating the device item in the chunk
5680 * btree, so it must exist when we attempt to do it. The previous step
5681 * ensures this does not fail with -ENOSPC.
5682 *
5683 * After that we can add the block group items to their btrees:
5684 * update existing device item in the chunk btree, add a new block group
5685 * item to the extent btree, add a new chunk item to the chunk btree and
5686 * finally add the new device extent items to the devices btree.
5687 */
5688
5689 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5690 meta_bg = btrfs_alloc_chunk(trans, alloc_profile);
5691 if (IS_ERR(meta_bg))
5692 return PTR_ERR(meta_bg);
5693
5694 alloc_profile = btrfs_system_alloc_profile(fs_info);
5695 sys_bg = btrfs_alloc_chunk(trans, alloc_profile);
5696 if (IS_ERR(sys_bg))
5697 return PTR_ERR(sys_bg);
5698
5699 return 0;
5700}
5701
5702static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5703{
5704 const int index = btrfs_bg_flags_to_raid_index(map->type);
5705
5706 return btrfs_raid_array[index].tolerated_failures;
5707}
5708
5709int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5710{
5711 struct extent_map *em;
5712 struct map_lookup *map;
5713 int readonly = 0;
5714 int miss_ndevs = 0;
5715 int i;
5716
5717 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5718 if (IS_ERR(em))
5719 return 1;
5720
5721 map = em->map_lookup;
5722 for (i = 0; i < map->num_stripes; i++) {
5723 if (test_bit(BTRFS_DEV_STATE_MISSING,
5724 &map->stripes[i].dev->dev_state)) {
5725 miss_ndevs++;
5726 continue;
5727 }
5728 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5729 &map->stripes[i].dev->dev_state)) {
5730 readonly = 1;
5731 goto end;
5732 }
5733 }
5734
5735 /*
5736 * If the number of missing devices is larger than max errors,
5737 * we can not write the data into that chunk successfully, so
5738 * set it readonly.
5739 */
5740 if (miss_ndevs > btrfs_chunk_max_errors(map))
5741 readonly = 1;
5742end:
5743 free_extent_map(em);
5744 return readonly;
5745}
5746
5747void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5748{
5749 struct extent_map *em;
5750
5751 while (1) {
5752 write_lock(&tree->lock);
5753 em = lookup_extent_mapping(tree, 0, (u64)-1);
5754 if (em)
5755 remove_extent_mapping(tree, em);
5756 write_unlock(&tree->lock);
5757 if (!em)
5758 break;
5759 /* once for us */
5760 free_extent_map(em);
5761 /* once for the tree */
5762 free_extent_map(em);
5763 }
5764}
5765
5766int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5767{
5768 struct extent_map *em;
5769 struct map_lookup *map;
5770 int ret;
5771
5772 em = btrfs_get_chunk_map(fs_info, logical, len);
5773 if (IS_ERR(em))
5774 /*
5775 * We could return errors for these cases, but that could get
5776 * ugly and we'd probably do the same thing which is just not do
5777 * anything else and exit, so return 1 so the callers don't try
5778 * to use other copies.
5779 */
5780 return 1;
5781
5782 map = em->map_lookup;
5783 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5784 ret = map->num_stripes;
5785 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5786 ret = map->sub_stripes;
5787 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5788 ret = 2;
5789 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5790 /*
5791 * There could be two corrupted data stripes, we need
5792 * to loop retry in order to rebuild the correct data.
5793 *
5794 * Fail a stripe at a time on every retry except the
5795 * stripe under reconstruction.
5796 */
5797 ret = map->num_stripes;
5798 else
5799 ret = 1;
5800 free_extent_map(em);
5801
5802 down_read(&fs_info->dev_replace.rwsem);
5803 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5804 fs_info->dev_replace.tgtdev)
5805 ret++;
5806 up_read(&fs_info->dev_replace.rwsem);
5807
5808 return ret;
5809}
5810
5811unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5812 u64 logical)
5813{
5814 struct extent_map *em;
5815 struct map_lookup *map;
5816 unsigned long len = fs_info->sectorsize;
5817
5818 em = btrfs_get_chunk_map(fs_info, logical, len);
5819
5820 if (!WARN_ON(IS_ERR(em))) {
5821 map = em->map_lookup;
5822 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5823 len = map->stripe_len * nr_data_stripes(map);
5824 free_extent_map(em);
5825 }
5826 return len;
5827}
5828
5829int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5830{
5831 struct extent_map *em;
5832 struct map_lookup *map;
5833 int ret = 0;
5834
5835 em = btrfs_get_chunk_map(fs_info, logical, len);
5836
5837 if(!WARN_ON(IS_ERR(em))) {
5838 map = em->map_lookup;
5839 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5840 ret = 1;
5841 free_extent_map(em);
5842 }
5843 return ret;
5844}
5845
5846static int find_live_mirror(struct btrfs_fs_info *fs_info,
5847 struct map_lookup *map, int first,
5848 int dev_replace_is_ongoing)
5849{
5850 int i;
5851 int num_stripes;
5852 int preferred_mirror;
5853 int tolerance;
5854 struct btrfs_device *srcdev;
5855
5856 ASSERT((map->type &
5857 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5858
5859 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5860 num_stripes = map->sub_stripes;
5861 else
5862 num_stripes = map->num_stripes;
5863
5864 switch (fs_info->fs_devices->read_policy) {
5865 default:
5866 /* Shouldn't happen, just warn and use pid instead of failing */
5867 btrfs_warn_rl(fs_info,
5868 "unknown read_policy type %u, reset to pid",
5869 fs_info->fs_devices->read_policy);
5870 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5871 fallthrough;
5872 case BTRFS_READ_POLICY_PID:
5873 preferred_mirror = first + (current->pid % num_stripes);
5874 break;
5875 }
5876
5877 if (dev_replace_is_ongoing &&
5878 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5879 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5880 srcdev = fs_info->dev_replace.srcdev;
5881 else
5882 srcdev = NULL;
5883
5884 /*
5885 * try to avoid the drive that is the source drive for a
5886 * dev-replace procedure, only choose it if no other non-missing
5887 * mirror is available
5888 */
5889 for (tolerance = 0; tolerance < 2; tolerance++) {
5890 if (map->stripes[preferred_mirror].dev->bdev &&
5891 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5892 return preferred_mirror;
5893 for (i = first; i < first + num_stripes; i++) {
5894 if (map->stripes[i].dev->bdev &&
5895 (tolerance || map->stripes[i].dev != srcdev))
5896 return i;
5897 }
5898 }
5899
5900 /* we couldn't find one that doesn't fail. Just return something
5901 * and the io error handling code will clean up eventually
5902 */
5903 return preferred_mirror;
5904}
5905
5906/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5907static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5908{
5909 int i;
5910 int again = 1;
5911
5912 while (again) {
5913 again = 0;
5914 for (i = 0; i < num_stripes - 1; i++) {
5915 /* Swap if parity is on a smaller index */
5916 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5917 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5918 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5919 again = 1;
5920 }
5921 }
5922 }
5923}
5924
5925static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5926{
5927 struct btrfs_bio *bbio = kzalloc(
5928 /* the size of the btrfs_bio */
5929 sizeof(struct btrfs_bio) +
5930 /* plus the variable array for the stripes */
5931 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5932 /* plus the variable array for the tgt dev */
5933 sizeof(int) * (real_stripes) +
5934 /*
5935 * plus the raid_map, which includes both the tgt dev
5936 * and the stripes
5937 */
5938 sizeof(u64) * (total_stripes),
5939 GFP_NOFS|__GFP_NOFAIL);
5940
5941 atomic_set(&bbio->error, 0);
5942 refcount_set(&bbio->refs, 1);
5943
5944 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5945 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5946
5947 return bbio;
5948}
5949
5950void btrfs_get_bbio(struct btrfs_bio *bbio)
5951{
5952 WARN_ON(!refcount_read(&bbio->refs));
5953 refcount_inc(&bbio->refs);
5954}
5955
5956void btrfs_put_bbio(struct btrfs_bio *bbio)
5957{
5958 if (!bbio)
5959 return;
5960 if (refcount_dec_and_test(&bbio->refs))
5961 kfree(bbio);
5962}
5963
5964/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5965/*
5966 * Please note that, discard won't be sent to target device of device
5967 * replace.
5968 */
5969static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5970 u64 logical, u64 *length_ret,
5971 struct btrfs_bio **bbio_ret)
5972{
5973 struct extent_map *em;
5974 struct map_lookup *map;
5975 struct btrfs_bio *bbio;
5976 u64 length = *length_ret;
5977 u64 offset;
5978 u64 stripe_nr;
5979 u64 stripe_nr_end;
5980 u64 stripe_end_offset;
5981 u64 stripe_cnt;
5982 u64 stripe_len;
5983 u64 stripe_offset;
5984 u64 num_stripes;
5985 u32 stripe_index;
5986 u32 factor = 0;
5987 u32 sub_stripes = 0;
5988 u64 stripes_per_dev = 0;
5989 u32 remaining_stripes = 0;
5990 u32 last_stripe = 0;
5991 int ret = 0;
5992 int i;
5993
5994 /* discard always return a bbio */
5995 ASSERT(bbio_ret);
5996
5997 em = btrfs_get_chunk_map(fs_info, logical, length);
5998 if (IS_ERR(em))
5999 return PTR_ERR(em);
6000
6001 map = em->map_lookup;
6002 /* we don't discard raid56 yet */
6003 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6004 ret = -EOPNOTSUPP;
6005 goto out;
6006 }
6007
6008 offset = logical - em->start;
6009 length = min_t(u64, em->start + em->len - logical, length);
6010 *length_ret = length;
6011
6012 stripe_len = map->stripe_len;
6013 /*
6014 * stripe_nr counts the total number of stripes we have to stride
6015 * to get to this block
6016 */
6017 stripe_nr = div64_u64(offset, stripe_len);
6018
6019 /* stripe_offset is the offset of this block in its stripe */
6020 stripe_offset = offset - stripe_nr * stripe_len;
6021
6022 stripe_nr_end = round_up(offset + length, map->stripe_len);
6023 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
6024 stripe_cnt = stripe_nr_end - stripe_nr;
6025 stripe_end_offset = stripe_nr_end * map->stripe_len -
6026 (offset + length);
6027 /*
6028 * after this, stripe_nr is the number of stripes on this
6029 * device we have to walk to find the data, and stripe_index is
6030 * the number of our device in the stripe array
6031 */
6032 num_stripes = 1;
6033 stripe_index = 0;
6034 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6035 BTRFS_BLOCK_GROUP_RAID10)) {
6036 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6037 sub_stripes = 1;
6038 else
6039 sub_stripes = map->sub_stripes;
6040
6041 factor = map->num_stripes / sub_stripes;
6042 num_stripes = min_t(u64, map->num_stripes,
6043 sub_stripes * stripe_cnt);
6044 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6045 stripe_index *= sub_stripes;
6046 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6047 &remaining_stripes);
6048 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6049 last_stripe *= sub_stripes;
6050 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6051 BTRFS_BLOCK_GROUP_DUP)) {
6052 num_stripes = map->num_stripes;
6053 } else {
6054 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6055 &stripe_index);
6056 }
6057
6058 bbio = alloc_btrfs_bio(num_stripes, 0);
6059 if (!bbio) {
6060 ret = -ENOMEM;
6061 goto out;
6062 }
6063
6064 for (i = 0; i < num_stripes; i++) {
6065 bbio->stripes[i].physical =
6066 map->stripes[stripe_index].physical +
6067 stripe_offset + stripe_nr * map->stripe_len;
6068 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6069
6070 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6071 BTRFS_BLOCK_GROUP_RAID10)) {
6072 bbio->stripes[i].length = stripes_per_dev *
6073 map->stripe_len;
6074
6075 if (i / sub_stripes < remaining_stripes)
6076 bbio->stripes[i].length +=
6077 map->stripe_len;
6078
6079 /*
6080 * Special for the first stripe and
6081 * the last stripe:
6082 *
6083 * |-------|...|-------|
6084 * |----------|
6085 * off end_off
6086 */
6087 if (i < sub_stripes)
6088 bbio->stripes[i].length -=
6089 stripe_offset;
6090
6091 if (stripe_index >= last_stripe &&
6092 stripe_index <= (last_stripe +
6093 sub_stripes - 1))
6094 bbio->stripes[i].length -=
6095 stripe_end_offset;
6096
6097 if (i == sub_stripes - 1)
6098 stripe_offset = 0;
6099 } else {
6100 bbio->stripes[i].length = length;
6101 }
6102
6103 stripe_index++;
6104 if (stripe_index == map->num_stripes) {
6105 stripe_index = 0;
6106 stripe_nr++;
6107 }
6108 }
6109
6110 *bbio_ret = bbio;
6111 bbio->map_type = map->type;
6112 bbio->num_stripes = num_stripes;
6113out:
6114 free_extent_map(em);
6115 return ret;
6116}
6117
6118/*
6119 * In dev-replace case, for repair case (that's the only case where the mirror
6120 * is selected explicitly when calling btrfs_map_block), blocks left of the
6121 * left cursor can also be read from the target drive.
6122 *
6123 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6124 * array of stripes.
6125 * For READ, it also needs to be supported using the same mirror number.
6126 *
6127 * If the requested block is not left of the left cursor, EIO is returned. This
6128 * can happen because btrfs_num_copies() returns one more in the dev-replace
6129 * case.
6130 */
6131static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6132 u64 logical, u64 length,
6133 u64 srcdev_devid, int *mirror_num,
6134 u64 *physical)
6135{
6136 struct btrfs_bio *bbio = NULL;
6137 int num_stripes;
6138 int index_srcdev = 0;
6139 int found = 0;
6140 u64 physical_of_found = 0;
6141 int i;
6142 int ret = 0;
6143
6144 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
6145 logical, &length, &bbio, 0, 0);
6146 if (ret) {
6147 ASSERT(bbio == NULL);
6148 return ret;
6149 }
6150
6151 num_stripes = bbio->num_stripes;
6152 if (*mirror_num > num_stripes) {
6153 /*
6154 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6155 * that means that the requested area is not left of the left
6156 * cursor
6157 */
6158 btrfs_put_bbio(bbio);
6159 return -EIO;
6160 }
6161
6162 /*
6163 * process the rest of the function using the mirror_num of the source
6164 * drive. Therefore look it up first. At the end, patch the device
6165 * pointer to the one of the target drive.
6166 */
6167 for (i = 0; i < num_stripes; i++) {
6168 if (bbio->stripes[i].dev->devid != srcdev_devid)
6169 continue;
6170
6171 /*
6172 * In case of DUP, in order to keep it simple, only add the
6173 * mirror with the lowest physical address
6174 */
6175 if (found &&
6176 physical_of_found <= bbio->stripes[i].physical)
6177 continue;
6178
6179 index_srcdev = i;
6180 found = 1;
6181 physical_of_found = bbio->stripes[i].physical;
6182 }
6183
6184 btrfs_put_bbio(bbio);
6185
6186 ASSERT(found);
6187 if (!found)
6188 return -EIO;
6189
6190 *mirror_num = index_srcdev + 1;
6191 *physical = physical_of_found;
6192 return ret;
6193}
6194
6195static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6196{
6197 struct btrfs_block_group *cache;
6198 bool ret;
6199
6200 /* Non zoned filesystem does not use "to_copy" flag */
6201 if (!btrfs_is_zoned(fs_info))
6202 return false;
6203
6204 cache = btrfs_lookup_block_group(fs_info, logical);
6205
6206 spin_lock(&cache->lock);
6207 ret = cache->to_copy;
6208 spin_unlock(&cache->lock);
6209
6210 btrfs_put_block_group(cache);
6211 return ret;
6212}
6213
6214static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6215 struct btrfs_bio **bbio_ret,
6216 struct btrfs_dev_replace *dev_replace,
6217 u64 logical,
6218 int *num_stripes_ret, int *max_errors_ret)
6219{
6220 struct btrfs_bio *bbio = *bbio_ret;
6221 u64 srcdev_devid = dev_replace->srcdev->devid;
6222 int tgtdev_indexes = 0;
6223 int num_stripes = *num_stripes_ret;
6224 int max_errors = *max_errors_ret;
6225 int i;
6226
6227 if (op == BTRFS_MAP_WRITE) {
6228 int index_where_to_add;
6229
6230 /*
6231 * A block group which have "to_copy" set will eventually
6232 * copied by dev-replace process. We can avoid cloning IO here.
6233 */
6234 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6235 return;
6236
6237 /*
6238 * duplicate the write operations while the dev replace
6239 * procedure is running. Since the copying of the old disk to
6240 * the new disk takes place at run time while the filesystem is
6241 * mounted writable, the regular write operations to the old
6242 * disk have to be duplicated to go to the new disk as well.
6243 *
6244 * Note that device->missing is handled by the caller, and that
6245 * the write to the old disk is already set up in the stripes
6246 * array.
6247 */
6248 index_where_to_add = num_stripes;
6249 for (i = 0; i < num_stripes; i++) {
6250 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6251 /* write to new disk, too */
6252 struct btrfs_bio_stripe *new =
6253 bbio->stripes + index_where_to_add;
6254 struct btrfs_bio_stripe *old =
6255 bbio->stripes + i;
6256
6257 new->physical = old->physical;
6258 new->length = old->length;
6259 new->dev = dev_replace->tgtdev;
6260 bbio->tgtdev_map[i] = index_where_to_add;
6261 index_where_to_add++;
6262 max_errors++;
6263 tgtdev_indexes++;
6264 }
6265 }
6266 num_stripes = index_where_to_add;
6267 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6268 int index_srcdev = 0;
6269 int found = 0;
6270 u64 physical_of_found = 0;
6271
6272 /*
6273 * During the dev-replace procedure, the target drive can also
6274 * be used to read data in case it is needed to repair a corrupt
6275 * block elsewhere. This is possible if the requested area is
6276 * left of the left cursor. In this area, the target drive is a
6277 * full copy of the source drive.
6278 */
6279 for (i = 0; i < num_stripes; i++) {
6280 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6281 /*
6282 * In case of DUP, in order to keep it simple,
6283 * only add the mirror with the lowest physical
6284 * address
6285 */
6286 if (found &&
6287 physical_of_found <=
6288 bbio->stripes[i].physical)
6289 continue;
6290 index_srcdev = i;
6291 found = 1;
6292 physical_of_found = bbio->stripes[i].physical;
6293 }
6294 }
6295 if (found) {
6296 struct btrfs_bio_stripe *tgtdev_stripe =
6297 bbio->stripes + num_stripes;
6298
6299 tgtdev_stripe->physical = physical_of_found;
6300 tgtdev_stripe->length =
6301 bbio->stripes[index_srcdev].length;
6302 tgtdev_stripe->dev = dev_replace->tgtdev;
6303 bbio->tgtdev_map[index_srcdev] = num_stripes;
6304
6305 tgtdev_indexes++;
6306 num_stripes++;
6307 }
6308 }
6309
6310 *num_stripes_ret = num_stripes;
6311 *max_errors_ret = max_errors;
6312 bbio->num_tgtdevs = tgtdev_indexes;
6313 *bbio_ret = bbio;
6314}
6315
6316static bool need_full_stripe(enum btrfs_map_op op)
6317{
6318 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6319}
6320
6321/*
6322 * Calculate the geometry of a particular (address, len) tuple. This
6323 * information is used to calculate how big a particular bio can get before it
6324 * straddles a stripe.
6325 *
6326 * @fs_info: the filesystem
6327 * @em: mapping containing the logical extent
6328 * @op: type of operation - write or read
6329 * @logical: address that we want to figure out the geometry of
6330 * @io_geom: pointer used to return values
6331 *
6332 * Returns < 0 in case a chunk for the given logical address cannot be found,
6333 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6334 */
6335int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
6336 enum btrfs_map_op op, u64 logical,
6337 struct btrfs_io_geometry *io_geom)
6338{
6339 struct map_lookup *map;
6340 u64 len;
6341 u64 offset;
6342 u64 stripe_offset;
6343 u64 stripe_nr;
6344 u64 stripe_len;
6345 u64 raid56_full_stripe_start = (u64)-1;
6346 int data_stripes;
6347
6348 ASSERT(op != BTRFS_MAP_DISCARD);
6349
6350 map = em->map_lookup;
6351 /* Offset of this logical address in the chunk */
6352 offset = logical - em->start;
6353 /* Len of a stripe in a chunk */
6354 stripe_len = map->stripe_len;
6355 /* Stripe where this block falls in */
6356 stripe_nr = div64_u64(offset, stripe_len);
6357 /* Offset of stripe in the chunk */
6358 stripe_offset = stripe_nr * stripe_len;
6359 if (offset < stripe_offset) {
6360 btrfs_crit(fs_info,
6361"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6362 stripe_offset, offset, em->start, logical, stripe_len);
6363 return -EINVAL;
6364 }
6365
6366 /* stripe_offset is the offset of this block in its stripe */
6367 stripe_offset = offset - stripe_offset;
6368 data_stripes = nr_data_stripes(map);
6369
6370 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6371 u64 max_len = stripe_len - stripe_offset;
6372
6373 /*
6374 * In case of raid56, we need to know the stripe aligned start
6375 */
6376 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6377 unsigned long full_stripe_len = stripe_len * data_stripes;
6378 raid56_full_stripe_start = offset;
6379
6380 /*
6381 * Allow a write of a full stripe, but make sure we
6382 * don't allow straddling of stripes
6383 */
6384 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6385 full_stripe_len);
6386 raid56_full_stripe_start *= full_stripe_len;
6387
6388 /*
6389 * For writes to RAID[56], allow a full stripeset across
6390 * all disks. For other RAID types and for RAID[56]
6391 * reads, just allow a single stripe (on a single disk).
6392 */
6393 if (op == BTRFS_MAP_WRITE) {
6394 max_len = stripe_len * data_stripes -
6395 (offset - raid56_full_stripe_start);
6396 }
6397 }
6398 len = min_t(u64, em->len - offset, max_len);
6399 } else {
6400 len = em->len - offset;
6401 }
6402
6403 io_geom->len = len;
6404 io_geom->offset = offset;
6405 io_geom->stripe_len = stripe_len;
6406 io_geom->stripe_nr = stripe_nr;
6407 io_geom->stripe_offset = stripe_offset;
6408 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6409
6410 return 0;
6411}
6412
6413static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6414 enum btrfs_map_op op,
6415 u64 logical, u64 *length,
6416 struct btrfs_bio **bbio_ret,
6417 int mirror_num, int need_raid_map)
6418{
6419 struct extent_map *em;
6420 struct map_lookup *map;
6421 u64 stripe_offset;
6422 u64 stripe_nr;
6423 u64 stripe_len;
6424 u32 stripe_index;
6425 int data_stripes;
6426 int i;
6427 int ret = 0;
6428 int num_stripes;
6429 int max_errors = 0;
6430 int tgtdev_indexes = 0;
6431 struct btrfs_bio *bbio = NULL;
6432 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6433 int dev_replace_is_ongoing = 0;
6434 int num_alloc_stripes;
6435 int patch_the_first_stripe_for_dev_replace = 0;
6436 u64 physical_to_patch_in_first_stripe = 0;
6437 u64 raid56_full_stripe_start = (u64)-1;
6438 struct btrfs_io_geometry geom;
6439
6440 ASSERT(bbio_ret);
6441 ASSERT(op != BTRFS_MAP_DISCARD);
6442
6443 em = btrfs_get_chunk_map(fs_info, logical, *length);
6444 ASSERT(!IS_ERR(em));
6445
6446 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
6447 if (ret < 0)
6448 return ret;
6449
6450 map = em->map_lookup;
6451
6452 *length = geom.len;
6453 stripe_len = geom.stripe_len;
6454 stripe_nr = geom.stripe_nr;
6455 stripe_offset = geom.stripe_offset;
6456 raid56_full_stripe_start = geom.raid56_stripe_offset;
6457 data_stripes = nr_data_stripes(map);
6458
6459 down_read(&dev_replace->rwsem);
6460 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6461 /*
6462 * Hold the semaphore for read during the whole operation, write is
6463 * requested at commit time but must wait.
6464 */
6465 if (!dev_replace_is_ongoing)
6466 up_read(&dev_replace->rwsem);
6467
6468 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6469 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6470 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6471 dev_replace->srcdev->devid,
6472 &mirror_num,
6473 &physical_to_patch_in_first_stripe);
6474 if (ret)
6475 goto out;
6476 else
6477 patch_the_first_stripe_for_dev_replace = 1;
6478 } else if (mirror_num > map->num_stripes) {
6479 mirror_num = 0;
6480 }
6481
6482 num_stripes = 1;
6483 stripe_index = 0;
6484 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6485 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6486 &stripe_index);
6487 if (!need_full_stripe(op))
6488 mirror_num = 1;
6489 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6490 if (need_full_stripe(op))
6491 num_stripes = map->num_stripes;
6492 else if (mirror_num)
6493 stripe_index = mirror_num - 1;
6494 else {
6495 stripe_index = find_live_mirror(fs_info, map, 0,
6496 dev_replace_is_ongoing);
6497 mirror_num = stripe_index + 1;
6498 }
6499
6500 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6501 if (need_full_stripe(op)) {
6502 num_stripes = map->num_stripes;
6503 } else if (mirror_num) {
6504 stripe_index = mirror_num - 1;
6505 } else {
6506 mirror_num = 1;
6507 }
6508
6509 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6510 u32 factor = map->num_stripes / map->sub_stripes;
6511
6512 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6513 stripe_index *= map->sub_stripes;
6514
6515 if (need_full_stripe(op))
6516 num_stripes = map->sub_stripes;
6517 else if (mirror_num)
6518 stripe_index += mirror_num - 1;
6519 else {
6520 int old_stripe_index = stripe_index;
6521 stripe_index = find_live_mirror(fs_info, map,
6522 stripe_index,
6523 dev_replace_is_ongoing);
6524 mirror_num = stripe_index - old_stripe_index + 1;
6525 }
6526
6527 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6528 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6529 /* push stripe_nr back to the start of the full stripe */
6530 stripe_nr = div64_u64(raid56_full_stripe_start,
6531 stripe_len * data_stripes);
6532
6533 /* RAID[56] write or recovery. Return all stripes */
6534 num_stripes = map->num_stripes;
6535 max_errors = nr_parity_stripes(map);
6536
6537 *length = map->stripe_len;
6538 stripe_index = 0;
6539 stripe_offset = 0;
6540 } else {
6541 /*
6542 * Mirror #0 or #1 means the original data block.
6543 * Mirror #2 is RAID5 parity block.
6544 * Mirror #3 is RAID6 Q block.
6545 */
6546 stripe_nr = div_u64_rem(stripe_nr,
6547 data_stripes, &stripe_index);
6548 if (mirror_num > 1)
6549 stripe_index = data_stripes + mirror_num - 2;
6550
6551 /* We distribute the parity blocks across stripes */
6552 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6553 &stripe_index);
6554 if (!need_full_stripe(op) && mirror_num <= 1)
6555 mirror_num = 1;
6556 }
6557 } else {
6558 /*
6559 * after this, stripe_nr is the number of stripes on this
6560 * device we have to walk to find the data, and stripe_index is
6561 * the number of our device in the stripe array
6562 */
6563 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6564 &stripe_index);
6565 mirror_num = stripe_index + 1;
6566 }
6567 if (stripe_index >= map->num_stripes) {
6568 btrfs_crit(fs_info,
6569 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6570 stripe_index, map->num_stripes);
6571 ret = -EINVAL;
6572 goto out;
6573 }
6574
6575 num_alloc_stripes = num_stripes;
6576 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6577 if (op == BTRFS_MAP_WRITE)
6578 num_alloc_stripes <<= 1;
6579 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6580 num_alloc_stripes++;
6581 tgtdev_indexes = num_stripes;
6582 }
6583
6584 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6585 if (!bbio) {
6586 ret = -ENOMEM;
6587 goto out;
6588 }
6589
6590 for (i = 0; i < num_stripes; i++) {
6591 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6592 stripe_offset + stripe_nr * map->stripe_len;
6593 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6594 stripe_index++;
6595 }
6596
6597 /* build raid_map */
6598 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6599 (need_full_stripe(op) || mirror_num > 1)) {
6600 u64 tmp;
6601 unsigned rot;
6602
6603 /* Work out the disk rotation on this stripe-set */
6604 div_u64_rem(stripe_nr, num_stripes, &rot);
6605
6606 /* Fill in the logical address of each stripe */
6607 tmp = stripe_nr * data_stripes;
6608 for (i = 0; i < data_stripes; i++)
6609 bbio->raid_map[(i+rot) % num_stripes] =
6610 em->start + (tmp + i) * map->stripe_len;
6611
6612 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6613 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6614 bbio->raid_map[(i+rot+1) % num_stripes] =
6615 RAID6_Q_STRIPE;
6616
6617 sort_parity_stripes(bbio, num_stripes);
6618 }
6619
6620 if (need_full_stripe(op))
6621 max_errors = btrfs_chunk_max_errors(map);
6622
6623 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6624 need_full_stripe(op)) {
6625 handle_ops_on_dev_replace(op, &bbio, dev_replace, logical,
6626 &num_stripes, &max_errors);
6627 }
6628
6629 *bbio_ret = bbio;
6630 bbio->map_type = map->type;
6631 bbio->num_stripes = num_stripes;
6632 bbio->max_errors = max_errors;
6633 bbio->mirror_num = mirror_num;
6634
6635 /*
6636 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6637 * mirror_num == num_stripes + 1 && dev_replace target drive is
6638 * available as a mirror
6639 */
6640 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6641 WARN_ON(num_stripes > 1);
6642 bbio->stripes[0].dev = dev_replace->tgtdev;
6643 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6644 bbio->mirror_num = map->num_stripes + 1;
6645 }
6646out:
6647 if (dev_replace_is_ongoing) {
6648 lockdep_assert_held(&dev_replace->rwsem);
6649 /* Unlock and let waiting writers proceed */
6650 up_read(&dev_replace->rwsem);
6651 }
6652 free_extent_map(em);
6653 return ret;
6654}
6655
6656int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6657 u64 logical, u64 *length,
6658 struct btrfs_bio **bbio_ret, int mirror_num)
6659{
6660 if (op == BTRFS_MAP_DISCARD)
6661 return __btrfs_map_block_for_discard(fs_info, logical,
6662 length, bbio_ret);
6663
6664 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6665 mirror_num, 0);
6666}
6667
6668/* For Scrub/replace */
6669int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6670 u64 logical, u64 *length,
6671 struct btrfs_bio **bbio_ret)
6672{
6673 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6674}
6675
6676static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6677{
6678 bio->bi_private = bbio->private;
6679 bio->bi_end_io = bbio->end_io;
6680 bio_endio(bio);
6681
6682 btrfs_put_bbio(bbio);
6683}
6684
6685static void btrfs_end_bio(struct bio *bio)
6686{
6687 struct btrfs_bio *bbio = bio->bi_private;
6688 int is_orig_bio = 0;
6689
6690 if (bio->bi_status) {
6691 atomic_inc(&bbio->error);
6692 if (bio->bi_status == BLK_STS_IOERR ||
6693 bio->bi_status == BLK_STS_TARGET) {
6694 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6695
6696 ASSERT(dev->bdev);
6697 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
6698 btrfs_dev_stat_inc_and_print(dev,
6699 BTRFS_DEV_STAT_WRITE_ERRS);
6700 else if (!(bio->bi_opf & REQ_RAHEAD))
6701 btrfs_dev_stat_inc_and_print(dev,
6702 BTRFS_DEV_STAT_READ_ERRS);
6703 if (bio->bi_opf & REQ_PREFLUSH)
6704 btrfs_dev_stat_inc_and_print(dev,
6705 BTRFS_DEV_STAT_FLUSH_ERRS);
6706 }
6707 }
6708
6709 if (bio == bbio->orig_bio)
6710 is_orig_bio = 1;
6711
6712 btrfs_bio_counter_dec(bbio->fs_info);
6713
6714 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6715 if (!is_orig_bio) {
6716 bio_put(bio);
6717 bio = bbio->orig_bio;
6718 }
6719
6720 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6721 /* only send an error to the higher layers if it is
6722 * beyond the tolerance of the btrfs bio
6723 */
6724 if (atomic_read(&bbio->error) > bbio->max_errors) {
6725 bio->bi_status = BLK_STS_IOERR;
6726 } else {
6727 /*
6728 * this bio is actually up to date, we didn't
6729 * go over the max number of errors
6730 */
6731 bio->bi_status = BLK_STS_OK;
6732 }
6733
6734 btrfs_end_bbio(bbio, bio);
6735 } else if (!is_orig_bio) {
6736 bio_put(bio);
6737 }
6738}
6739
6740static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6741 u64 physical, struct btrfs_device *dev)
6742{
6743 struct btrfs_fs_info *fs_info = bbio->fs_info;
6744
6745 bio->bi_private = bbio;
6746 btrfs_io_bio(bio)->device = dev;
6747 bio->bi_end_io = btrfs_end_bio;
6748 bio->bi_iter.bi_sector = physical >> 9;
6749 /*
6750 * For zone append writing, bi_sector must point the beginning of the
6751 * zone
6752 */
6753 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6754 if (btrfs_dev_is_sequential(dev, physical)) {
6755 u64 zone_start = round_down(physical, fs_info->zone_size);
6756
6757 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6758 } else {
6759 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6760 bio->bi_opf |= REQ_OP_WRITE;
6761 }
6762 }
6763 btrfs_debug_in_rcu(fs_info,
6764 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6765 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
6766 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6767 dev->devid, bio->bi_iter.bi_size);
6768 bio_set_dev(bio, dev->bdev);
6769
6770 btrfs_bio_counter_inc_noblocked(fs_info);
6771
6772 btrfsic_submit_bio(bio);
6773}
6774
6775static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6776{
6777 atomic_inc(&bbio->error);
6778 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6779 /* Should be the original bio. */
6780 WARN_ON(bio != bbio->orig_bio);
6781
6782 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6783 bio->bi_iter.bi_sector = logical >> 9;
6784 if (atomic_read(&bbio->error) > bbio->max_errors)
6785 bio->bi_status = BLK_STS_IOERR;
6786 else
6787 bio->bi_status = BLK_STS_OK;
6788 btrfs_end_bbio(bbio, bio);
6789 }
6790}
6791
6792blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6793 int mirror_num)
6794{
6795 struct btrfs_device *dev;
6796 struct bio *first_bio = bio;
6797 u64 logical = bio->bi_iter.bi_sector << 9;
6798 u64 length = 0;
6799 u64 map_length;
6800 int ret;
6801 int dev_nr;
6802 int total_devs;
6803 struct btrfs_bio *bbio = NULL;
6804
6805 length = bio->bi_iter.bi_size;
6806 map_length = length;
6807
6808 btrfs_bio_counter_inc_blocked(fs_info);
6809 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6810 &map_length, &bbio, mirror_num, 1);
6811 if (ret) {
6812 btrfs_bio_counter_dec(fs_info);
6813 return errno_to_blk_status(ret);
6814 }
6815
6816 total_devs = bbio->num_stripes;
6817 bbio->orig_bio = first_bio;
6818 bbio->private = first_bio->bi_private;
6819 bbio->end_io = first_bio->bi_end_io;
6820 bbio->fs_info = fs_info;
6821 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6822
6823 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6824 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
6825 /* In this case, map_length has been set to the length of
6826 a single stripe; not the whole write */
6827 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6828 ret = raid56_parity_write(fs_info, bio, bbio,
6829 map_length);
6830 } else {
6831 ret = raid56_parity_recover(fs_info, bio, bbio,
6832 map_length, mirror_num, 1);
6833 }
6834
6835 btrfs_bio_counter_dec(fs_info);
6836 return errno_to_blk_status(ret);
6837 }
6838
6839 if (map_length < length) {
6840 btrfs_crit(fs_info,
6841 "mapping failed logical %llu bio len %llu len %llu",
6842 logical, length, map_length);
6843 BUG();
6844 }
6845
6846 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6847 dev = bbio->stripes[dev_nr].dev;
6848 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6849 &dev->dev_state) ||
6850 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
6851 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6852 bbio_error(bbio, first_bio, logical);
6853 continue;
6854 }
6855
6856 if (dev_nr < total_devs - 1)
6857 bio = btrfs_bio_clone(first_bio);
6858 else
6859 bio = first_bio;
6860
6861 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6862 }
6863 btrfs_bio_counter_dec(fs_info);
6864 return BLK_STS_OK;
6865}
6866
6867/*
6868 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6869 * return NULL.
6870 *
6871 * If devid and uuid are both specified, the match must be exact, otherwise
6872 * only devid is used.
6873 */
6874struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6875 u64 devid, u8 *uuid, u8 *fsid)
6876{
6877 struct btrfs_device *device;
6878 struct btrfs_fs_devices *seed_devs;
6879
6880 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6881 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6882 if (device->devid == devid &&
6883 (!uuid || memcmp(device->uuid, uuid,
6884 BTRFS_UUID_SIZE) == 0))
6885 return device;
6886 }
6887 }
6888
6889 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6890 if (!fsid ||
6891 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6892 list_for_each_entry(device, &seed_devs->devices,
6893 dev_list) {
6894 if (device->devid == devid &&
6895 (!uuid || memcmp(device->uuid, uuid,
6896 BTRFS_UUID_SIZE) == 0))
6897 return device;
6898 }
6899 }
6900 }
6901
6902 return NULL;
6903}
6904
6905static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6906 u64 devid, u8 *dev_uuid)
6907{
6908 struct btrfs_device *device;
6909 unsigned int nofs_flag;
6910
6911 /*
6912 * We call this under the chunk_mutex, so we want to use NOFS for this
6913 * allocation, however we don't want to change btrfs_alloc_device() to
6914 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6915 * places.
6916 */
6917 nofs_flag = memalloc_nofs_save();
6918 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6919 memalloc_nofs_restore(nofs_flag);
6920 if (IS_ERR(device))
6921 return device;
6922
6923 list_add(&device->dev_list, &fs_devices->devices);
6924 device->fs_devices = fs_devices;
6925 fs_devices->num_devices++;
6926
6927 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6928 fs_devices->missing_devices++;
6929
6930 return device;
6931}
6932
6933/**
6934 * btrfs_alloc_device - allocate struct btrfs_device
6935 * @fs_info: used only for generating a new devid, can be NULL if
6936 * devid is provided (i.e. @devid != NULL).
6937 * @devid: a pointer to devid for this device. If NULL a new devid
6938 * is generated.
6939 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6940 * is generated.
6941 *
6942 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6943 * on error. Returned struct is not linked onto any lists and must be
6944 * destroyed with btrfs_free_device.
6945 */
6946struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6947 const u64 *devid,
6948 const u8 *uuid)
6949{
6950 struct btrfs_device *dev;
6951 u64 tmp;
6952
6953 if (WARN_ON(!devid && !fs_info))
6954 return ERR_PTR(-EINVAL);
6955
6956 dev = __alloc_device(fs_info);
6957 if (IS_ERR(dev))
6958 return dev;
6959
6960 if (devid)
6961 tmp = *devid;
6962 else {
6963 int ret;
6964
6965 ret = find_next_devid(fs_info, &tmp);
6966 if (ret) {
6967 btrfs_free_device(dev);
6968 return ERR_PTR(ret);
6969 }
6970 }
6971 dev->devid = tmp;
6972
6973 if (uuid)
6974 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6975 else
6976 generate_random_uuid(dev->uuid);
6977
6978 return dev;
6979}
6980
6981static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6982 u64 devid, u8 *uuid, bool error)
6983{
6984 if (error)
6985 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986 devid, uuid);
6987 else
6988 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989 devid, uuid);
6990}
6991
6992static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6993{
6994 int index = btrfs_bg_flags_to_raid_index(type);
6995 int ncopies = btrfs_raid_array[index].ncopies;
6996 const int nparity = btrfs_raid_array[index].nparity;
6997 int data_stripes;
6998
6999 if (nparity)
7000 data_stripes = num_stripes - nparity;
7001 else
7002 data_stripes = num_stripes / ncopies;
7003
7004 return div_u64(chunk_len, data_stripes);
7005}
7006
7007#if BITS_PER_LONG == 32
7008/*
7009 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7010 * can't be accessed on 32bit systems.
7011 *
7012 * This function do mount time check to reject the fs if it already has
7013 * metadata chunk beyond that limit.
7014 */
7015static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7016 u64 logical, u64 length, u64 type)
7017{
7018 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7019 return 0;
7020
7021 if (logical + length < MAX_LFS_FILESIZE)
7022 return 0;
7023
7024 btrfs_err_32bit_limit(fs_info);
7025 return -EOVERFLOW;
7026}
7027
7028/*
7029 * This is to give early warning for any metadata chunk reaching
7030 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7031 * Although we can still access the metadata, it's not going to be possible
7032 * once the limit is reached.
7033 */
7034static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7035 u64 logical, u64 length, u64 type)
7036{
7037 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7038 return;
7039
7040 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7041 return;
7042
7043 btrfs_warn_32bit_limit(fs_info);
7044}
7045#endif
7046
7047static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7048 struct btrfs_chunk *chunk)
7049{
7050 struct btrfs_fs_info *fs_info = leaf->fs_info;
7051 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7052 struct map_lookup *map;
7053 struct extent_map *em;
7054 u64 logical;
7055 u64 length;
7056 u64 devid;
7057 u64 type;
7058 u8 uuid[BTRFS_UUID_SIZE];
7059 int num_stripes;
7060 int ret;
7061 int i;
7062
7063 logical = key->offset;
7064 length = btrfs_chunk_length(leaf, chunk);
7065 type = btrfs_chunk_type(leaf, chunk);
7066 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7067
7068#if BITS_PER_LONG == 32
7069 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7070 if (ret < 0)
7071 return ret;
7072 warn_32bit_meta_chunk(fs_info, logical, length, type);
7073#endif
7074
7075 /*
7076 * Only need to verify chunk item if we're reading from sys chunk array,
7077 * as chunk item in tree block is already verified by tree-checker.
7078 */
7079 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7080 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7081 if (ret)
7082 return ret;
7083 }
7084
7085 read_lock(&map_tree->lock);
7086 em = lookup_extent_mapping(map_tree, logical, 1);
7087 read_unlock(&map_tree->lock);
7088
7089 /* already mapped? */
7090 if (em && em->start <= logical && em->start + em->len > logical) {
7091 free_extent_map(em);
7092 return 0;
7093 } else if (em) {
7094 free_extent_map(em);
7095 }
7096
7097 em = alloc_extent_map();
7098 if (!em)
7099 return -ENOMEM;
7100 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
7101 if (!map) {
7102 free_extent_map(em);
7103 return -ENOMEM;
7104 }
7105
7106 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
7107 em->map_lookup = map;
7108 em->start = logical;
7109 em->len = length;
7110 em->orig_start = 0;
7111 em->block_start = 0;
7112 em->block_len = em->len;
7113
7114 map->num_stripes = num_stripes;
7115 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7116 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7117 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
7118 map->type = type;
7119 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
7120 map->verified_stripes = 0;
7121 em->orig_block_len = calc_stripe_length(type, em->len,
7122 map->num_stripes);
7123 for (i = 0; i < num_stripes; i++) {
7124 map->stripes[i].physical =
7125 btrfs_stripe_offset_nr(leaf, chunk, i);
7126 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7127 read_extent_buffer(leaf, uuid, (unsigned long)
7128 btrfs_stripe_dev_uuid_nr(chunk, i),
7129 BTRFS_UUID_SIZE);
7130 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
7131 devid, uuid, NULL);
7132 if (!map->stripes[i].dev &&
7133 !btrfs_test_opt(fs_info, DEGRADED)) {
7134 free_extent_map(em);
7135 btrfs_report_missing_device(fs_info, devid, uuid, true);
7136 return -ENOENT;
7137 }
7138 if (!map->stripes[i].dev) {
7139 map->stripes[i].dev =
7140 add_missing_dev(fs_info->fs_devices, devid,
7141 uuid);
7142 if (IS_ERR(map->stripes[i].dev)) {
7143 free_extent_map(em);
7144 btrfs_err(fs_info,
7145 "failed to init missing dev %llu: %ld",
7146 devid, PTR_ERR(map->stripes[i].dev));
7147 return PTR_ERR(map->stripes[i].dev);
7148 }
7149 btrfs_report_missing_device(fs_info, devid, uuid, false);
7150 }
7151 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7152 &(map->stripes[i].dev->dev_state));
7153
7154 }
7155
7156 write_lock(&map_tree->lock);
7157 ret = add_extent_mapping(map_tree, em, 0);
7158 write_unlock(&map_tree->lock);
7159 if (ret < 0) {
7160 btrfs_err(fs_info,
7161 "failed to add chunk map, start=%llu len=%llu: %d",
7162 em->start, em->len, ret);
7163 }
7164 free_extent_map(em);
7165
7166 return ret;
7167}
7168
7169static void fill_device_from_item(struct extent_buffer *leaf,
7170 struct btrfs_dev_item *dev_item,
7171 struct btrfs_device *device)
7172{
7173 unsigned long ptr;
7174
7175 device->devid = btrfs_device_id(leaf, dev_item);
7176 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7177 device->total_bytes = device->disk_total_bytes;
7178 device->commit_total_bytes = device->disk_total_bytes;
7179 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7180 device->commit_bytes_used = device->bytes_used;
7181 device->type = btrfs_device_type(leaf, dev_item);
7182 device->io_align = btrfs_device_io_align(leaf, dev_item);
7183 device->io_width = btrfs_device_io_width(leaf, dev_item);
7184 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7185 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7186 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7187
7188 ptr = btrfs_device_uuid(dev_item);
7189 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7190}
7191
7192static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7193 u8 *fsid)
7194{
7195 struct btrfs_fs_devices *fs_devices;
7196 int ret;
7197
7198 lockdep_assert_held(&uuid_mutex);
7199 ASSERT(fsid);
7200
7201 /* This will match only for multi-device seed fs */
7202 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7203 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7204 return fs_devices;
7205
7206
7207 fs_devices = find_fsid(fsid, NULL);
7208 if (!fs_devices) {
7209 if (!btrfs_test_opt(fs_info, DEGRADED))
7210 return ERR_PTR(-ENOENT);
7211
7212 fs_devices = alloc_fs_devices(fsid, NULL);
7213 if (IS_ERR(fs_devices))
7214 return fs_devices;
7215
7216 fs_devices->seeding = true;
7217 fs_devices->opened = 1;
7218 return fs_devices;
7219 }
7220
7221 /*
7222 * Upon first call for a seed fs fsid, just create a private copy of the
7223 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7224 */
7225 fs_devices = clone_fs_devices(fs_devices);
7226 if (IS_ERR(fs_devices))
7227 return fs_devices;
7228
7229 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7230 if (ret) {
7231 free_fs_devices(fs_devices);
7232 return ERR_PTR(ret);
7233 }
7234
7235 if (!fs_devices->seeding) {
7236 close_fs_devices(fs_devices);
7237 free_fs_devices(fs_devices);
7238 return ERR_PTR(-EINVAL);
7239 }
7240
7241 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7242
7243 return fs_devices;
7244}
7245
7246static int read_one_dev(struct extent_buffer *leaf,
7247 struct btrfs_dev_item *dev_item)
7248{
7249 struct btrfs_fs_info *fs_info = leaf->fs_info;
7250 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7251 struct btrfs_device *device;
7252 u64 devid;
7253 int ret;
7254 u8 fs_uuid[BTRFS_FSID_SIZE];
7255 u8 dev_uuid[BTRFS_UUID_SIZE];
7256
7257 devid = btrfs_device_id(leaf, dev_item);
7258 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7259 BTRFS_UUID_SIZE);
7260 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7261 BTRFS_FSID_SIZE);
7262
7263 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7264 fs_devices = open_seed_devices(fs_info, fs_uuid);
7265 if (IS_ERR(fs_devices))
7266 return PTR_ERR(fs_devices);
7267 }
7268
7269 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7270 fs_uuid);
7271 if (!device) {
7272 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7273 btrfs_report_missing_device(fs_info, devid,
7274 dev_uuid, true);
7275 return -ENOENT;
7276 }
7277
7278 device = add_missing_dev(fs_devices, devid, dev_uuid);
7279 if (IS_ERR(device)) {
7280 btrfs_err(fs_info,
7281 "failed to add missing dev %llu: %ld",
7282 devid, PTR_ERR(device));
7283 return PTR_ERR(device);
7284 }
7285 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7286 } else {
7287 if (!device->bdev) {
7288 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7289 btrfs_report_missing_device(fs_info,
7290 devid, dev_uuid, true);
7291 return -ENOENT;
7292 }
7293 btrfs_report_missing_device(fs_info, devid,
7294 dev_uuid, false);
7295 }
7296
7297 if (!device->bdev &&
7298 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7299 /*
7300 * this happens when a device that was properly setup
7301 * in the device info lists suddenly goes bad.
7302 * device->bdev is NULL, and so we have to set
7303 * device->missing to one here
7304 */
7305 device->fs_devices->missing_devices++;
7306 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7307 }
7308
7309 /* Move the device to its own fs_devices */
7310 if (device->fs_devices != fs_devices) {
7311 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7312 &device->dev_state));
7313
7314 list_move(&device->dev_list, &fs_devices->devices);
7315 device->fs_devices->num_devices--;
7316 fs_devices->num_devices++;
7317
7318 device->fs_devices->missing_devices--;
7319 fs_devices->missing_devices++;
7320
7321 device->fs_devices = fs_devices;
7322 }
7323 }
7324
7325 if (device->fs_devices != fs_info->fs_devices) {
7326 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7327 if (device->generation !=
7328 btrfs_device_generation(leaf, dev_item))
7329 return -EINVAL;
7330 }
7331
7332 fill_device_from_item(leaf, dev_item, device);
7333 if (device->bdev) {
7334 u64 max_total_bytes = i_size_read(device->bdev->bd_inode);
7335
7336 if (device->total_bytes > max_total_bytes) {
7337 btrfs_err(fs_info,
7338 "device total_bytes should be at most %llu but found %llu",
7339 max_total_bytes, device->total_bytes);
7340 return -EINVAL;
7341 }
7342 }
7343 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7344 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7345 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7346 device->fs_devices->total_rw_bytes += device->total_bytes;
7347 atomic64_add(device->total_bytes - device->bytes_used,
7348 &fs_info->free_chunk_space);
7349 }
7350 ret = 0;
7351 return ret;
7352}
7353
7354int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7355{
7356 struct btrfs_root *root = fs_info->tree_root;
7357 struct btrfs_super_block *super_copy = fs_info->super_copy;
7358 struct extent_buffer *sb;
7359 struct btrfs_disk_key *disk_key;
7360 struct btrfs_chunk *chunk;
7361 u8 *array_ptr;
7362 unsigned long sb_array_offset;
7363 int ret = 0;
7364 u32 num_stripes;
7365 u32 array_size;
7366 u32 len = 0;
7367 u32 cur_offset;
7368 u64 type;
7369 struct btrfs_key key;
7370
7371 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7372 /*
7373 * This will create extent buffer of nodesize, superblock size is
7374 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7375 * overallocate but we can keep it as-is, only the first page is used.
7376 */
7377 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET,
7378 root->root_key.objectid, 0);
7379 if (IS_ERR(sb))
7380 return PTR_ERR(sb);
7381 set_extent_buffer_uptodate(sb);
7382 /*
7383 * The sb extent buffer is artificial and just used to read the system array.
7384 * set_extent_buffer_uptodate() call does not properly mark all it's
7385 * pages up-to-date when the page is larger: extent does not cover the
7386 * whole page and consequently check_page_uptodate does not find all
7387 * the page's extents up-to-date (the hole beyond sb),
7388 * write_extent_buffer then triggers a WARN_ON.
7389 *
7390 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7391 * but sb spans only this function. Add an explicit SetPageUptodate call
7392 * to silence the warning eg. on PowerPC 64.
7393 */
7394 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7395 SetPageUptodate(sb->pages[0]);
7396
7397 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7398 array_size = btrfs_super_sys_array_size(super_copy);
7399
7400 array_ptr = super_copy->sys_chunk_array;
7401 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7402 cur_offset = 0;
7403
7404 while (cur_offset < array_size) {
7405 disk_key = (struct btrfs_disk_key *)array_ptr;
7406 len = sizeof(*disk_key);
7407 if (cur_offset + len > array_size)
7408 goto out_short_read;
7409
7410 btrfs_disk_key_to_cpu(&key, disk_key);
7411
7412 array_ptr += len;
7413 sb_array_offset += len;
7414 cur_offset += len;
7415
7416 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7417 btrfs_err(fs_info,
7418 "unexpected item type %u in sys_array at offset %u",
7419 (u32)key.type, cur_offset);
7420 ret = -EIO;
7421 break;
7422 }
7423
7424 chunk = (struct btrfs_chunk *)sb_array_offset;
7425 /*
7426 * At least one btrfs_chunk with one stripe must be present,
7427 * exact stripe count check comes afterwards
7428 */
7429 len = btrfs_chunk_item_size(1);
7430 if (cur_offset + len > array_size)
7431 goto out_short_read;
7432
7433 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7434 if (!num_stripes) {
7435 btrfs_err(fs_info,
7436 "invalid number of stripes %u in sys_array at offset %u",
7437 num_stripes, cur_offset);
7438 ret = -EIO;
7439 break;
7440 }
7441
7442 type = btrfs_chunk_type(sb, chunk);
7443 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7444 btrfs_err(fs_info,
7445 "invalid chunk type %llu in sys_array at offset %u",
7446 type, cur_offset);
7447 ret = -EIO;
7448 break;
7449 }
7450
7451 len = btrfs_chunk_item_size(num_stripes);
7452 if (cur_offset + len > array_size)
7453 goto out_short_read;
7454
7455 ret = read_one_chunk(&key, sb, chunk);
7456 if (ret)
7457 break;
7458
7459 array_ptr += len;
7460 sb_array_offset += len;
7461 cur_offset += len;
7462 }
7463 clear_extent_buffer_uptodate(sb);
7464 free_extent_buffer_stale(sb);
7465 return ret;
7466
7467out_short_read:
7468 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7469 len, cur_offset);
7470 clear_extent_buffer_uptodate(sb);
7471 free_extent_buffer_stale(sb);
7472 return -EIO;
7473}
7474
7475/*
7476 * Check if all chunks in the fs are OK for read-write degraded mount
7477 *
7478 * If the @failing_dev is specified, it's accounted as missing.
7479 *
7480 * Return true if all chunks meet the minimal RW mount requirements.
7481 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7482 */
7483bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7484 struct btrfs_device *failing_dev)
7485{
7486 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7487 struct extent_map *em;
7488 u64 next_start = 0;
7489 bool ret = true;
7490
7491 read_lock(&map_tree->lock);
7492 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7493 read_unlock(&map_tree->lock);
7494 /* No chunk at all? Return false anyway */
7495 if (!em) {
7496 ret = false;
7497 goto out;
7498 }
7499 while (em) {
7500 struct map_lookup *map;
7501 int missing = 0;
7502 int max_tolerated;
7503 int i;
7504
7505 map = em->map_lookup;
7506 max_tolerated =
7507 btrfs_get_num_tolerated_disk_barrier_failures(
7508 map->type);
7509 for (i = 0; i < map->num_stripes; i++) {
7510 struct btrfs_device *dev = map->stripes[i].dev;
7511
7512 if (!dev || !dev->bdev ||
7513 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7514 dev->last_flush_error)
7515 missing++;
7516 else if (failing_dev && failing_dev == dev)
7517 missing++;
7518 }
7519 if (missing > max_tolerated) {
7520 if (!failing_dev)
7521 btrfs_warn(fs_info,
7522 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7523 em->start, missing, max_tolerated);
7524 free_extent_map(em);
7525 ret = false;
7526 goto out;
7527 }
7528 next_start = extent_map_end(em);
7529 free_extent_map(em);
7530
7531 read_lock(&map_tree->lock);
7532 em = lookup_extent_mapping(map_tree, next_start,
7533 (u64)(-1) - next_start);
7534 read_unlock(&map_tree->lock);
7535 }
7536out:
7537 return ret;
7538}
7539
7540static void readahead_tree_node_children(struct extent_buffer *node)
7541{
7542 int i;
7543 const int nr_items = btrfs_header_nritems(node);
7544
7545 for (i = 0; i < nr_items; i++)
7546 btrfs_readahead_node_child(node, i);
7547}
7548
7549int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7550{
7551 struct btrfs_root *root = fs_info->chunk_root;
7552 struct btrfs_path *path;
7553 struct extent_buffer *leaf;
7554 struct btrfs_key key;
7555 struct btrfs_key found_key;
7556 int ret;
7557 int slot;
7558 u64 total_dev = 0;
7559 u64 last_ra_node = 0;
7560
7561 path = btrfs_alloc_path();
7562 if (!path)
7563 return -ENOMEM;
7564
7565 /*
7566 * uuid_mutex is needed only if we are mounting a sprout FS
7567 * otherwise we don't need it.
7568 */
7569 mutex_lock(&uuid_mutex);
7570
7571 /*
7572 * It is possible for mount and umount to race in such a way that
7573 * we execute this code path, but open_fs_devices failed to clear
7574 * total_rw_bytes. We certainly want it cleared before reading the
7575 * device items, so clear it here.
7576 */
7577 fs_info->fs_devices->total_rw_bytes = 0;
7578
7579 /*
7580 * Read all device items, and then all the chunk items. All
7581 * device items are found before any chunk item (their object id
7582 * is smaller than the lowest possible object id for a chunk
7583 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7584 */
7585 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7586 key.offset = 0;
7587 key.type = 0;
7588 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7589 if (ret < 0)
7590 goto error;
7591 while (1) {
7592 struct extent_buffer *node;
7593
7594 leaf = path->nodes[0];
7595 slot = path->slots[0];
7596 if (slot >= btrfs_header_nritems(leaf)) {
7597 ret = btrfs_next_leaf(root, path);
7598 if (ret == 0)
7599 continue;
7600 if (ret < 0)
7601 goto error;
7602 break;
7603 }
7604 /*
7605 * The nodes on level 1 are not locked but we don't need to do
7606 * that during mount time as nothing else can access the tree
7607 */
7608 node = path->nodes[1];
7609 if (node) {
7610 if (last_ra_node != node->start) {
7611 readahead_tree_node_children(node);
7612 last_ra_node = node->start;
7613 }
7614 }
7615 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7616 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7617 struct btrfs_dev_item *dev_item;
7618 dev_item = btrfs_item_ptr(leaf, slot,
7619 struct btrfs_dev_item);
7620 ret = read_one_dev(leaf, dev_item);
7621 if (ret)
7622 goto error;
7623 total_dev++;
7624 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7625 struct btrfs_chunk *chunk;
7626
7627 /*
7628 * We are only called at mount time, so no need to take
7629 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7630 * we always lock first fs_info->chunk_mutex before
7631 * acquiring any locks on the chunk tree. This is a
7632 * requirement for chunk allocation, see the comment on
7633 * top of btrfs_chunk_alloc() for details.
7634 */
7635 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7636 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7637 ret = read_one_chunk(&found_key, leaf, chunk);
7638 if (ret)
7639 goto error;
7640 }
7641 path->slots[0]++;
7642 }
7643
7644 /*
7645 * After loading chunk tree, we've got all device information,
7646 * do another round of validation checks.
7647 */
7648 if (total_dev != fs_info->fs_devices->total_devices) {
7649 btrfs_err(fs_info,
7650 "super_num_devices %llu mismatch with num_devices %llu found here",
7651 btrfs_super_num_devices(fs_info->super_copy),
7652 total_dev);
7653 ret = -EINVAL;
7654 goto error;
7655 }
7656 if (btrfs_super_total_bytes(fs_info->super_copy) <
7657 fs_info->fs_devices->total_rw_bytes) {
7658 btrfs_err(fs_info,
7659 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7660 btrfs_super_total_bytes(fs_info->super_copy),
7661 fs_info->fs_devices->total_rw_bytes);
7662 ret = -EINVAL;
7663 goto error;
7664 }
7665 ret = 0;
7666error:
7667 mutex_unlock(&uuid_mutex);
7668
7669 btrfs_free_path(path);
7670 return ret;
7671}
7672
7673void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7674{
7675 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7676 struct btrfs_device *device;
7677
7678 fs_devices->fs_info = fs_info;
7679
7680 mutex_lock(&fs_devices->device_list_mutex);
7681 list_for_each_entry(device, &fs_devices->devices, dev_list)
7682 device->fs_info = fs_info;
7683
7684 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7685 list_for_each_entry(device, &seed_devs->devices, dev_list)
7686 device->fs_info = fs_info;
7687
7688 seed_devs->fs_info = fs_info;
7689 }
7690 mutex_unlock(&fs_devices->device_list_mutex);
7691}
7692
7693static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7694 const struct btrfs_dev_stats_item *ptr,
7695 int index)
7696{
7697 u64 val;
7698
7699 read_extent_buffer(eb, &val,
7700 offsetof(struct btrfs_dev_stats_item, values) +
7701 ((unsigned long)ptr) + (index * sizeof(u64)),
7702 sizeof(val));
7703 return val;
7704}
7705
7706static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7707 struct btrfs_dev_stats_item *ptr,
7708 int index, u64 val)
7709{
7710 write_extent_buffer(eb, &val,
7711 offsetof(struct btrfs_dev_stats_item, values) +
7712 ((unsigned long)ptr) + (index * sizeof(u64)),
7713 sizeof(val));
7714}
7715
7716static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7717 struct btrfs_path *path)
7718{
7719 struct btrfs_dev_stats_item *ptr;
7720 struct extent_buffer *eb;
7721 struct btrfs_key key;
7722 int item_size;
7723 int i, ret, slot;
7724
7725 if (!device->fs_info->dev_root)
7726 return 0;
7727
7728 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7729 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7730 key.offset = device->devid;
7731 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7732 if (ret) {
7733 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7734 btrfs_dev_stat_set(device, i, 0);
7735 device->dev_stats_valid = 1;
7736 btrfs_release_path(path);
7737 return ret < 0 ? ret : 0;
7738 }
7739 slot = path->slots[0];
7740 eb = path->nodes[0];
7741 item_size = btrfs_item_size_nr(eb, slot);
7742
7743 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7744
7745 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7746 if (item_size >= (1 + i) * sizeof(__le64))
7747 btrfs_dev_stat_set(device, i,
7748 btrfs_dev_stats_value(eb, ptr, i));
7749 else
7750 btrfs_dev_stat_set(device, i, 0);
7751 }
7752
7753 device->dev_stats_valid = 1;
7754 btrfs_dev_stat_print_on_load(device);
7755 btrfs_release_path(path);
7756
7757 return 0;
7758}
7759
7760int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7761{
7762 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7763 struct btrfs_device *device;
7764 struct btrfs_path *path = NULL;
7765 int ret = 0;
7766
7767 path = btrfs_alloc_path();
7768 if (!path)
7769 return -ENOMEM;
7770
7771 mutex_lock(&fs_devices->device_list_mutex);
7772 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7773 ret = btrfs_device_init_dev_stats(device, path);
7774 if (ret)
7775 goto out;
7776 }
7777 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7778 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7779 ret = btrfs_device_init_dev_stats(device, path);
7780 if (ret)
7781 goto out;
7782 }
7783 }
7784out:
7785 mutex_unlock(&fs_devices->device_list_mutex);
7786
7787 btrfs_free_path(path);
7788 return ret;
7789}
7790
7791static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7792 struct btrfs_device *device)
7793{
7794 struct btrfs_fs_info *fs_info = trans->fs_info;
7795 struct btrfs_root *dev_root = fs_info->dev_root;
7796 struct btrfs_path *path;
7797 struct btrfs_key key;
7798 struct extent_buffer *eb;
7799 struct btrfs_dev_stats_item *ptr;
7800 int ret;
7801 int i;
7802
7803 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7804 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7805 key.offset = device->devid;
7806
7807 path = btrfs_alloc_path();
7808 if (!path)
7809 return -ENOMEM;
7810 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7811 if (ret < 0) {
7812 btrfs_warn_in_rcu(fs_info,
7813 "error %d while searching for dev_stats item for device %s",
7814 ret, rcu_str_deref(device->name));
7815 goto out;
7816 }
7817
7818 if (ret == 0 &&
7819 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7820 /* need to delete old one and insert a new one */
7821 ret = btrfs_del_item(trans, dev_root, path);
7822 if (ret != 0) {
7823 btrfs_warn_in_rcu(fs_info,
7824 "delete too small dev_stats item for device %s failed %d",
7825 rcu_str_deref(device->name), ret);
7826 goto out;
7827 }
7828 ret = 1;
7829 }
7830
7831 if (ret == 1) {
7832 /* need to insert a new item */
7833 btrfs_release_path(path);
7834 ret = btrfs_insert_empty_item(trans, dev_root, path,
7835 &key, sizeof(*ptr));
7836 if (ret < 0) {
7837 btrfs_warn_in_rcu(fs_info,
7838 "insert dev_stats item for device %s failed %d",
7839 rcu_str_deref(device->name), ret);
7840 goto out;
7841 }
7842 }
7843
7844 eb = path->nodes[0];
7845 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7846 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7847 btrfs_set_dev_stats_value(eb, ptr, i,
7848 btrfs_dev_stat_read(device, i));
7849 btrfs_mark_buffer_dirty(eb);
7850
7851out:
7852 btrfs_free_path(path);
7853 return ret;
7854}
7855
7856/*
7857 * called from commit_transaction. Writes all changed device stats to disk.
7858 */
7859int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7860{
7861 struct btrfs_fs_info *fs_info = trans->fs_info;
7862 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7863 struct btrfs_device *device;
7864 int stats_cnt;
7865 int ret = 0;
7866
7867 mutex_lock(&fs_devices->device_list_mutex);
7868 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7869 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7870 if (!device->dev_stats_valid || stats_cnt == 0)
7871 continue;
7872
7873
7874 /*
7875 * There is a LOAD-LOAD control dependency between the value of
7876 * dev_stats_ccnt and updating the on-disk values which requires
7877 * reading the in-memory counters. Such control dependencies
7878 * require explicit read memory barriers.
7879 *
7880 * This memory barriers pairs with smp_mb__before_atomic in
7881 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7882 * barrier implied by atomic_xchg in
7883 * btrfs_dev_stats_read_and_reset
7884 */
7885 smp_rmb();
7886
7887 ret = update_dev_stat_item(trans, device);
7888 if (!ret)
7889 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7890 }
7891 mutex_unlock(&fs_devices->device_list_mutex);
7892
7893 return ret;
7894}
7895
7896void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7897{
7898 btrfs_dev_stat_inc(dev, index);
7899 btrfs_dev_stat_print_on_error(dev);
7900}
7901
7902static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7903{
7904 if (!dev->dev_stats_valid)
7905 return;
7906 btrfs_err_rl_in_rcu(dev->fs_info,
7907 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7908 rcu_str_deref(dev->name),
7909 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7910 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7911 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7912 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7913 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7914}
7915
7916static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7917{
7918 int i;
7919
7920 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7921 if (btrfs_dev_stat_read(dev, i) != 0)
7922 break;
7923 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7924 return; /* all values == 0, suppress message */
7925
7926 btrfs_info_in_rcu(dev->fs_info,
7927 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7928 rcu_str_deref(dev->name),
7929 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7930 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7931 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7932 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7933 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7934}
7935
7936int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7937 struct btrfs_ioctl_get_dev_stats *stats)
7938{
7939 struct btrfs_device *dev;
7940 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7941 int i;
7942
7943 mutex_lock(&fs_devices->device_list_mutex);
7944 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL);
7945 mutex_unlock(&fs_devices->device_list_mutex);
7946
7947 if (!dev) {
7948 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7949 return -ENODEV;
7950 } else if (!dev->dev_stats_valid) {
7951 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7952 return -ENODEV;
7953 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7954 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7955 if (stats->nr_items > i)
7956 stats->values[i] =
7957 btrfs_dev_stat_read_and_reset(dev, i);
7958 else
7959 btrfs_dev_stat_set(dev, i, 0);
7960 }
7961 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7962 current->comm, task_pid_nr(current));
7963 } else {
7964 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7965 if (stats->nr_items > i)
7966 stats->values[i] = btrfs_dev_stat_read(dev, i);
7967 }
7968 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7969 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7970 return 0;
7971}
7972
7973/*
7974 * Update the size and bytes used for each device where it changed. This is
7975 * delayed since we would otherwise get errors while writing out the
7976 * superblocks.
7977 *
7978 * Must be invoked during transaction commit.
7979 */
7980void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7981{
7982 struct btrfs_device *curr, *next;
7983
7984 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7985
7986 if (list_empty(&trans->dev_update_list))
7987 return;
7988
7989 /*
7990 * We don't need the device_list_mutex here. This list is owned by the
7991 * transaction and the transaction must complete before the device is
7992 * released.
7993 */
7994 mutex_lock(&trans->fs_info->chunk_mutex);
7995 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7996 post_commit_list) {
7997 list_del_init(&curr->post_commit_list);
7998 curr->commit_total_bytes = curr->disk_total_bytes;
7999 curr->commit_bytes_used = curr->bytes_used;
8000 }
8001 mutex_unlock(&trans->fs_info->chunk_mutex);
8002}
8003
8004/*
8005 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8006 */
8007int btrfs_bg_type_to_factor(u64 flags)
8008{
8009 const int index = btrfs_bg_flags_to_raid_index(flags);
8010
8011 return btrfs_raid_array[index].ncopies;
8012}
8013
8014
8015
8016static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8017 u64 chunk_offset, u64 devid,
8018 u64 physical_offset, u64 physical_len)
8019{
8020 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8021 struct extent_map *em;
8022 struct map_lookup *map;
8023 struct btrfs_device *dev;
8024 u64 stripe_len;
8025 bool found = false;
8026 int ret = 0;
8027 int i;
8028
8029 read_lock(&em_tree->lock);
8030 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8031 read_unlock(&em_tree->lock);
8032
8033 if (!em) {
8034 btrfs_err(fs_info,
8035"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8036 physical_offset, devid);
8037 ret = -EUCLEAN;
8038 goto out;
8039 }
8040
8041 map = em->map_lookup;
8042 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8043 if (physical_len != stripe_len) {
8044 btrfs_err(fs_info,
8045"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8046 physical_offset, devid, em->start, physical_len,
8047 stripe_len);
8048 ret = -EUCLEAN;
8049 goto out;
8050 }
8051
8052 for (i = 0; i < map->num_stripes; i++) {
8053 if (map->stripes[i].dev->devid == devid &&
8054 map->stripes[i].physical == physical_offset) {
8055 found = true;
8056 if (map->verified_stripes >= map->num_stripes) {
8057 btrfs_err(fs_info,
8058 "too many dev extents for chunk %llu found",
8059 em->start);
8060 ret = -EUCLEAN;
8061 goto out;
8062 }
8063 map->verified_stripes++;
8064 break;
8065 }
8066 }
8067 if (!found) {
8068 btrfs_err(fs_info,
8069 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8070 physical_offset, devid);
8071 ret = -EUCLEAN;
8072 }
8073
8074 /* Make sure no dev extent is beyond device boundary */
8075 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
8076 if (!dev) {
8077 btrfs_err(fs_info, "failed to find devid %llu", devid);
8078 ret = -EUCLEAN;
8079 goto out;
8080 }
8081
8082 if (physical_offset + physical_len > dev->disk_total_bytes) {
8083 btrfs_err(fs_info,
8084"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8085 devid, physical_offset, physical_len,
8086 dev->disk_total_bytes);
8087 ret = -EUCLEAN;
8088 goto out;
8089 }
8090
8091 if (dev->zone_info) {
8092 u64 zone_size = dev->zone_info->zone_size;
8093
8094 if (!IS_ALIGNED(physical_offset, zone_size) ||
8095 !IS_ALIGNED(physical_len, zone_size)) {
8096 btrfs_err(fs_info,
8097"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8098 devid, physical_offset, physical_len);
8099 ret = -EUCLEAN;
8100 goto out;
8101 }
8102 }
8103
8104out:
8105 free_extent_map(em);
8106 return ret;
8107}
8108
8109static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8110{
8111 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
8112 struct extent_map *em;
8113 struct rb_node *node;
8114 int ret = 0;
8115
8116 read_lock(&em_tree->lock);
8117 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
8118 em = rb_entry(node, struct extent_map, rb_node);
8119 if (em->map_lookup->num_stripes !=
8120 em->map_lookup->verified_stripes) {
8121 btrfs_err(fs_info,
8122 "chunk %llu has missing dev extent, have %d expect %d",
8123 em->start, em->map_lookup->verified_stripes,
8124 em->map_lookup->num_stripes);
8125 ret = -EUCLEAN;
8126 goto out;
8127 }
8128 }
8129out:
8130 read_unlock(&em_tree->lock);
8131 return ret;
8132}
8133
8134/*
8135 * Ensure that all dev extents are mapped to correct chunk, otherwise
8136 * later chunk allocation/free would cause unexpected behavior.
8137 *
8138 * NOTE: This will iterate through the whole device tree, which should be of
8139 * the same size level as the chunk tree. This slightly increases mount time.
8140 */
8141int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8142{
8143 struct btrfs_path *path;
8144 struct btrfs_root *root = fs_info->dev_root;
8145 struct btrfs_key key;
8146 u64 prev_devid = 0;
8147 u64 prev_dev_ext_end = 0;
8148 int ret = 0;
8149
8150 /*
8151 * We don't have a dev_root because we mounted with ignorebadroots and
8152 * failed to load the root, so we want to skip the verification in this
8153 * case for sure.
8154 *
8155 * However if the dev root is fine, but the tree itself is corrupted
8156 * we'd still fail to mount. This verification is only to make sure
8157 * writes can happen safely, so instead just bypass this check
8158 * completely in the case of IGNOREBADROOTS.
8159 */
8160 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8161 return 0;
8162
8163 key.objectid = 1;
8164 key.type = BTRFS_DEV_EXTENT_KEY;
8165 key.offset = 0;
8166
8167 path = btrfs_alloc_path();
8168 if (!path)
8169 return -ENOMEM;
8170
8171 path->reada = READA_FORWARD;
8172 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8173 if (ret < 0)
8174 goto out;
8175
8176 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8177 ret = btrfs_next_item(root, path);
8178 if (ret < 0)
8179 goto out;
8180 /* No dev extents at all? Not good */
8181 if (ret > 0) {
8182 ret = -EUCLEAN;
8183 goto out;
8184 }
8185 }
8186 while (1) {
8187 struct extent_buffer *leaf = path->nodes[0];
8188 struct btrfs_dev_extent *dext;
8189 int slot = path->slots[0];
8190 u64 chunk_offset;
8191 u64 physical_offset;
8192 u64 physical_len;
8193 u64 devid;
8194
8195 btrfs_item_key_to_cpu(leaf, &key, slot);
8196 if (key.type != BTRFS_DEV_EXTENT_KEY)
8197 break;
8198 devid = key.objectid;
8199 physical_offset = key.offset;
8200
8201 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8202 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8203 physical_len = btrfs_dev_extent_length(leaf, dext);
8204
8205 /* Check if this dev extent overlaps with the previous one */
8206 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8207 btrfs_err(fs_info,
8208"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8209 devid, physical_offset, prev_dev_ext_end);
8210 ret = -EUCLEAN;
8211 goto out;
8212 }
8213
8214 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8215 physical_offset, physical_len);
8216 if (ret < 0)
8217 goto out;
8218 prev_devid = devid;
8219 prev_dev_ext_end = physical_offset + physical_len;
8220
8221 ret = btrfs_next_item(root, path);
8222 if (ret < 0)
8223 goto out;
8224 if (ret > 0) {
8225 ret = 0;
8226 break;
8227 }
8228 }
8229
8230 /* Ensure all chunks have corresponding dev extents */
8231 ret = verify_chunk_dev_extent_mapping(fs_info);
8232out:
8233 btrfs_free_path(path);
8234 return ret;
8235}
8236
8237/*
8238 * Check whether the given block group or device is pinned by any inode being
8239 * used as a swapfile.
8240 */
8241bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8242{
8243 struct btrfs_swapfile_pin *sp;
8244 struct rb_node *node;
8245
8246 spin_lock(&fs_info->swapfile_pins_lock);
8247 node = fs_info->swapfile_pins.rb_node;
8248 while (node) {
8249 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8250 if (ptr < sp->ptr)
8251 node = node->rb_left;
8252 else if (ptr > sp->ptr)
8253 node = node->rb_right;
8254 else
8255 break;
8256 }
8257 spin_unlock(&fs_info->swapfile_pins_lock);
8258 return node != NULL;
8259}
8260
8261static int relocating_repair_kthread(void *data)
8262{
8263 struct btrfs_block_group *cache = (struct btrfs_block_group *)data;
8264 struct btrfs_fs_info *fs_info = cache->fs_info;
8265 u64 target;
8266 int ret = 0;
8267
8268 target = cache->start;
8269 btrfs_put_block_group(cache);
8270
8271 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8272 btrfs_info(fs_info,
8273 "zoned: skip relocating block group %llu to repair: EBUSY",
8274 target);
8275 return -EBUSY;
8276 }
8277
8278 mutex_lock(&fs_info->reclaim_bgs_lock);
8279
8280 /* Ensure block group still exists */
8281 cache = btrfs_lookup_block_group(fs_info, target);
8282 if (!cache)
8283 goto out;
8284
8285 if (!cache->relocating_repair)
8286 goto out;
8287
8288 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8289 if (ret < 0)
8290 goto out;
8291
8292 btrfs_info(fs_info,
8293 "zoned: relocating block group %llu to repair IO failure",
8294 target);
8295 ret = btrfs_relocate_chunk(fs_info, target);
8296
8297out:
8298 if (cache)
8299 btrfs_put_block_group(cache);
8300 mutex_unlock(&fs_info->reclaim_bgs_lock);
8301 btrfs_exclop_finish(fs_info);
8302
8303 return ret;
8304}
8305
8306int btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8307{
8308 struct btrfs_block_group *cache;
8309
8310 /* Do not attempt to repair in degraded state */
8311 if (btrfs_test_opt(fs_info, DEGRADED))
8312 return 0;
8313
8314 cache = btrfs_lookup_block_group(fs_info, logical);
8315 if (!cache)
8316 return 0;
8317
8318 spin_lock(&cache->lock);
8319 if (cache->relocating_repair) {
8320 spin_unlock(&cache->lock);
8321 btrfs_put_block_group(cache);
8322 return 0;
8323 }
8324 cache->relocating_repair = 1;
8325 spin_unlock(&cache->lock);
8326
8327 kthread_run(relocating_repair_kthread, cache,
8328 "btrfs-relocating-repair");
8329
8330 return 0;
8331}