Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "messages.h"
   4#include "tree-mod-log.h"
   5#include "disk-io.h"
   6#include "fs.h"
   7#include "accessors.h"
   8#include "tree-checker.h"
   9
  10struct tree_mod_root {
  11	u64 logical;
  12	u8 level;
  13};
  14
  15struct tree_mod_elem {
  16	struct rb_node node;
  17	u64 logical;
  18	u64 seq;
  19	enum btrfs_mod_log_op op;
  20
  21	/*
  22	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
  23	 * operations.
  24	 */
  25	int slot;
  26
  27	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
  28	u64 generation;
  29
  30	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
  31	struct btrfs_disk_key key;
  32	u64 blockptr;
  33
  34	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
  35	struct {
  36		int dst_slot;
  37		int nr_items;
  38	} move;
  39
  40	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
  41	struct tree_mod_root old_root;
  42};
  43
  44/*
  45 * Pull a new tree mod seq number for our operation.
  46 */
  47static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
  48{
  49	return atomic64_inc_return(&fs_info->tree_mod_seq);
  50}
  51
  52/*
  53 * This adds a new blocker to the tree mod log's blocker list if the @elem
  54 * passed does not already have a sequence number set. So when a caller expects
  55 * to record tree modifications, it should ensure to set elem->seq to zero
  56 * before calling btrfs_get_tree_mod_seq.
  57 * Returns a fresh, unused tree log modification sequence number, even if no new
  58 * blocker was added.
  59 */
  60u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
  61			   struct btrfs_seq_list *elem)
  62{
  63	write_lock(&fs_info->tree_mod_log_lock);
  64	if (!elem->seq) {
  65		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
  66		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
  67		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
  68	}
  69	write_unlock(&fs_info->tree_mod_log_lock);
  70
  71	return elem->seq;
  72}
  73
  74void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
  75			    struct btrfs_seq_list *elem)
  76{
  77	struct rb_root *tm_root;
  78	struct rb_node *node;
  79	struct rb_node *next;
  80	struct tree_mod_elem *tm;
  81	u64 min_seq = BTRFS_SEQ_LAST;
  82	u64 seq_putting = elem->seq;
  83
  84	if (!seq_putting)
  85		return;
  86
  87	write_lock(&fs_info->tree_mod_log_lock);
  88	list_del(&elem->list);
  89	elem->seq = 0;
  90
  91	if (list_empty(&fs_info->tree_mod_seq_list)) {
  92		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
  93	} else {
  94		struct btrfs_seq_list *first;
  95
  96		first = list_first_entry(&fs_info->tree_mod_seq_list,
  97					 struct btrfs_seq_list, list);
  98		if (seq_putting > first->seq) {
  99			/*
 100			 * Blocker with lower sequence number exists, we cannot
 101			 * remove anything from the log.
 102			 */
 103			write_unlock(&fs_info->tree_mod_log_lock);
 104			return;
 105		}
 106		min_seq = first->seq;
 107	}
 108
 109	/*
 110	 * Anything that's lower than the lowest existing (read: blocked)
 111	 * sequence number can be removed from the tree.
 112	 */
 113	tm_root = &fs_info->tree_mod_log;
 114	for (node = rb_first(tm_root); node; node = next) {
 115		next = rb_next(node);
 116		tm = rb_entry(node, struct tree_mod_elem, node);
 117		if (tm->seq >= min_seq)
 118			continue;
 119		rb_erase(node, tm_root);
 120		kfree(tm);
 121	}
 122	write_unlock(&fs_info->tree_mod_log_lock);
 123}
 124
 125/*
 126 * Key order of the log:
 127 *       node/leaf start address -> sequence
 128 *
 129 * The 'start address' is the logical address of the *new* root node for root
 130 * replace operations, or the logical address of the affected block for all
 131 * other operations.
 132 */
 133static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
 134					struct tree_mod_elem *tm)
 135{
 136	struct rb_root *tm_root;
 137	struct rb_node **new;
 138	struct rb_node *parent = NULL;
 139	struct tree_mod_elem *cur;
 140
 141	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
 142
 143	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 144
 145	tm_root = &fs_info->tree_mod_log;
 146	new = &tm_root->rb_node;
 147	while (*new) {
 148		cur = rb_entry(*new, struct tree_mod_elem, node);
 149		parent = *new;
 150		if (cur->logical < tm->logical)
 151			new = &((*new)->rb_left);
 152		else if (cur->logical > tm->logical)
 153			new = &((*new)->rb_right);
 154		else if (cur->seq < tm->seq)
 155			new = &((*new)->rb_left);
 156		else if (cur->seq > tm->seq)
 157			new = &((*new)->rb_right);
 158		else
 159			return -EEXIST;
 160	}
 161
 162	rb_link_node(&tm->node, parent, new);
 163	rb_insert_color(&tm->node, tm_root);
 164	return 0;
 165}
 166
 167/*
 168 * Determines if logging can be omitted. Returns true if it can. Otherwise, it
 169 * returns false with the tree_mod_log_lock acquired. The caller must hold
 170 * this until all tree mod log insertions are recorded in the rb tree and then
 171 * write unlock fs_info::tree_mod_log_lock.
 172 */
 173static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 174				    struct extent_buffer *eb)
 175{
 176	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
 177		return true;
 178	if (eb && btrfs_header_level(eb) == 0)
 179		return true;
 180
 181	write_lock(&fs_info->tree_mod_log_lock);
 182	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 183		write_unlock(&fs_info->tree_mod_log_lock);
 184		return true;
 185	}
 186
 187	return false;
 188}
 189
 190/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 191static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 192				    struct extent_buffer *eb)
 193{
 194	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
 195		return false;
 196	if (eb && btrfs_header_level(eb) == 0)
 197		return false;
 198
 199	return true;
 200}
 201
 202static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
 203						 int slot,
 204						 enum btrfs_mod_log_op op)
 
 205{
 206	struct tree_mod_elem *tm;
 207
 208	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 209	if (!tm)
 210		return NULL;
 211
 212	tm->logical = eb->start;
 213	if (op != BTRFS_MOD_LOG_KEY_ADD) {
 214		btrfs_node_key(eb, &tm->key, slot);
 215		tm->blockptr = btrfs_node_blockptr(eb, slot);
 216	}
 217	tm->op = op;
 218	tm->slot = slot;
 219	tm->generation = btrfs_node_ptr_generation(eb, slot);
 220	RB_CLEAR_NODE(&tm->node);
 221
 222	return tm;
 223}
 224
 225int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
 226				  enum btrfs_mod_log_op op)
 227{
 228	struct tree_mod_elem *tm;
 229	int ret = 0;
 230
 231	if (!tree_mod_need_log(eb->fs_info, eb))
 232		return 0;
 233
 234	tm = alloc_tree_mod_elem(eb, slot, op);
 235	if (!tm)
 236		ret = -ENOMEM;
 237
 238	if (tree_mod_dont_log(eb->fs_info, eb)) {
 239		kfree(tm);
 240		/*
 241		 * Don't error if we failed to allocate memory because we don't
 242		 * need to log.
 243		 */
 244		return 0;
 245	} else if (ret != 0) {
 246		/*
 247		 * We previously failed to allocate memory and we need to log,
 248		 * so we have to fail.
 249		 */
 250		goto out_unlock;
 251	}
 252
 253	ret = tree_mod_log_insert(eb->fs_info, tm);
 254out_unlock:
 255	write_unlock(&eb->fs_info->tree_mod_log_lock);
 256	if (ret)
 257		kfree(tm);
 258
 259	return ret;
 260}
 261
 262static struct tree_mod_elem *tree_mod_log_alloc_move(struct extent_buffer *eb,
 263						     int dst_slot, int src_slot,
 264						     int nr_items)
 265{
 266	struct tree_mod_elem *tm;
 267
 268	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 269	if (!tm)
 270		return ERR_PTR(-ENOMEM);
 271
 272	tm->logical = eb->start;
 273	tm->slot = src_slot;
 274	tm->move.dst_slot = dst_slot;
 275	tm->move.nr_items = nr_items;
 276	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
 277	RB_CLEAR_NODE(&tm->node);
 278
 279	return tm;
 280}
 281
 282int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
 283				   int dst_slot, int src_slot,
 284				   int nr_items)
 285{
 286	struct tree_mod_elem *tm = NULL;
 287	struct tree_mod_elem **tm_list = NULL;
 288	int ret = 0;
 289	int i;
 290	bool locked = false;
 291
 292	if (!tree_mod_need_log(eb->fs_info, eb))
 293		return 0;
 294
 295	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
 296	if (!tm_list) {
 
 
 
 
 297		ret = -ENOMEM;
 298		goto lock;
 299	}
 300
 301	tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items);
 302	if (IS_ERR(tm)) {
 303		ret = PTR_ERR(tm);
 304		tm = NULL;
 305		goto lock;
 306	}
 307
 308	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 309		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 310				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING);
 311		if (!tm_list[i]) {
 312			ret = -ENOMEM;
 313			goto lock;
 314		}
 315	}
 316
 317lock:
 318	if (tree_mod_dont_log(eb->fs_info, eb)) {
 319		/*
 320		 * Don't error if we failed to allocate memory because we don't
 321		 * need to log.
 322		 */
 323		ret = 0;
 324		goto free_tms;
 325	}
 326	locked = true;
 327
 328	/*
 329	 * We previously failed to allocate memory and we need to log, so we
 330	 * have to fail.
 331	 */
 332	if (ret != 0)
 333		goto free_tms;
 334
 335	/*
 336	 * When we override something during the move, we log these removals.
 337	 * This can only happen when we move towards the beginning of the
 338	 * buffer, i.e. dst_slot < src_slot.
 339	 */
 340	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 341		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
 342		if (ret)
 343			goto free_tms;
 344	}
 345
 346	ret = tree_mod_log_insert(eb->fs_info, tm);
 347	if (ret)
 348		goto free_tms;
 349	write_unlock(&eb->fs_info->tree_mod_log_lock);
 350	kfree(tm_list);
 351
 352	return 0;
 353
 354free_tms:
 355	if (tm_list) {
 356		for (i = 0; i < nr_items; i++) {
 357			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 358				rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
 359			kfree(tm_list[i]);
 360		}
 361	}
 362	if (locked)
 363		write_unlock(&eb->fs_info->tree_mod_log_lock);
 364	kfree(tm_list);
 365	kfree(tm);
 366
 367	return ret;
 368}
 369
 370static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 371				       struct tree_mod_elem **tm_list,
 372				       int nritems)
 373{
 374	int i, j;
 375	int ret;
 376
 377	for (i = nritems - 1; i >= 0; i--) {
 378		ret = tree_mod_log_insert(fs_info, tm_list[i]);
 379		if (ret) {
 380			for (j = nritems - 1; j > i; j--)
 381				rb_erase(&tm_list[j]->node,
 382					 &fs_info->tree_mod_log);
 383			return ret;
 384		}
 385	}
 386
 387	return 0;
 388}
 389
 390int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
 391				   struct extent_buffer *new_root,
 392				   bool log_removal)
 393{
 394	struct btrfs_fs_info *fs_info = old_root->fs_info;
 395	struct tree_mod_elem *tm = NULL;
 396	struct tree_mod_elem **tm_list = NULL;
 397	int nritems = 0;
 398	int ret = 0;
 399	int i;
 400
 401	if (!tree_mod_need_log(fs_info, NULL))
 402		return 0;
 403
 404	if (log_removal && btrfs_header_level(old_root) > 0) {
 405		nritems = btrfs_header_nritems(old_root);
 406		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 407				  GFP_NOFS);
 408		if (!tm_list) {
 409			ret = -ENOMEM;
 410			goto lock;
 411		}
 412		for (i = 0; i < nritems; i++) {
 413			tm_list[i] = alloc_tree_mod_elem(old_root, i,
 414			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 415			if (!tm_list[i]) {
 416				ret = -ENOMEM;
 417				goto lock;
 418			}
 419		}
 420	}
 421
 422	tm = kzalloc(sizeof(*tm), GFP_NOFS);
 423	if (!tm) {
 424		ret = -ENOMEM;
 425		goto lock;
 426	}
 427
 428	tm->logical = new_root->start;
 429	tm->old_root.logical = old_root->start;
 430	tm->old_root.level = btrfs_header_level(old_root);
 431	tm->generation = btrfs_header_generation(old_root);
 432	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
 433
 434lock:
 435	if (tree_mod_dont_log(fs_info, NULL)) {
 436		/*
 437		 * Don't error if we failed to allocate memory because we don't
 438		 * need to log.
 439		 */
 440		ret = 0;
 441		goto free_tms;
 442	} else if (ret != 0) {
 443		/*
 444		 * We previously failed to allocate memory and we need to log,
 445		 * so we have to fail.
 446		 */
 447		goto out_unlock;
 448	}
 449
 450	if (tm_list)
 451		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
 452	if (!ret)
 453		ret = tree_mod_log_insert(fs_info, tm);
 454
 455out_unlock:
 456	write_unlock(&fs_info->tree_mod_log_lock);
 457	if (ret)
 458		goto free_tms;
 459	kfree(tm_list);
 460
 461	return ret;
 462
 463free_tms:
 464	if (tm_list) {
 465		for (i = 0; i < nritems; i++)
 466			kfree(tm_list[i]);
 467		kfree(tm_list);
 468	}
 469	kfree(tm);
 470
 471	return ret;
 472}
 473
 474static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
 475						   u64 start, u64 min_seq,
 476						   bool smallest)
 477{
 478	struct rb_root *tm_root;
 479	struct rb_node *node;
 480	struct tree_mod_elem *cur = NULL;
 481	struct tree_mod_elem *found = NULL;
 482
 483	read_lock(&fs_info->tree_mod_log_lock);
 484	tm_root = &fs_info->tree_mod_log;
 485	node = tm_root->rb_node;
 486	while (node) {
 487		cur = rb_entry(node, struct tree_mod_elem, node);
 488		if (cur->logical < start) {
 489			node = node->rb_left;
 490		} else if (cur->logical > start) {
 491			node = node->rb_right;
 492		} else if (cur->seq < min_seq) {
 493			node = node->rb_left;
 494		} else if (!smallest) {
 495			/* We want the node with the highest seq */
 496			if (found)
 497				BUG_ON(found->seq > cur->seq);
 498			found = cur;
 499			node = node->rb_left;
 500		} else if (cur->seq > min_seq) {
 501			/* We want the node with the smallest seq */
 502			if (found)
 503				BUG_ON(found->seq < cur->seq);
 504			found = cur;
 505			node = node->rb_right;
 506		} else {
 507			found = cur;
 508			break;
 509		}
 510	}
 511	read_unlock(&fs_info->tree_mod_log_lock);
 512
 513	return found;
 514}
 515
 516/*
 517 * This returns the element from the log with the smallest time sequence
 518 * value that's in the log (the oldest log item). Any element with a time
 519 * sequence lower than min_seq will be ignored.
 520 */
 521static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
 522							u64 start, u64 min_seq)
 523{
 524	return __tree_mod_log_search(fs_info, start, min_seq, true);
 525}
 526
 527/*
 528 * This returns the element from the log with the largest time sequence
 529 * value that's in the log (the most recent log item). Any element with
 530 * a time sequence lower than min_seq will be ignored.
 531 */
 532static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
 533						 u64 start, u64 min_seq)
 534{
 535	return __tree_mod_log_search(fs_info, start, min_seq, false);
 536}
 537
 538int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
 539			       struct extent_buffer *src,
 540			       unsigned long dst_offset,
 541			       unsigned long src_offset,
 542			       int nr_items)
 543{
 544	struct btrfs_fs_info *fs_info = dst->fs_info;
 545	int ret = 0;
 546	struct tree_mod_elem **tm_list = NULL;
 547	struct tree_mod_elem **tm_list_add = NULL;
 548	struct tree_mod_elem **tm_list_rem = NULL;
 549	int i;
 550	bool locked = false;
 551	struct tree_mod_elem *dst_move_tm = NULL;
 552	struct tree_mod_elem *src_move_tm = NULL;
 553	u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset;
 554	u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items);
 555
 556	if (!tree_mod_need_log(fs_info, NULL))
 557		return 0;
 558
 559	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 560		return 0;
 561
 562	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 563			  GFP_NOFS);
 564	if (!tm_list) {
 565		ret = -ENOMEM;
 566		goto lock;
 567	}
 568
 569	if (dst_move_nr_items) {
 570		dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items,
 571						      dst_offset, dst_move_nr_items);
 572		if (IS_ERR(dst_move_tm)) {
 573			ret = PTR_ERR(dst_move_tm);
 574			dst_move_tm = NULL;
 575			goto lock;
 576		}
 577	}
 578	if (src_move_nr_items) {
 579		src_move_tm = tree_mod_log_alloc_move(src, src_offset,
 580						      src_offset + nr_items,
 581						      src_move_nr_items);
 582		if (IS_ERR(src_move_tm)) {
 583			ret = PTR_ERR(src_move_tm);
 584			src_move_tm = NULL;
 585			goto lock;
 586		}
 587	}
 588
 589	tm_list_add = tm_list;
 590	tm_list_rem = tm_list + nr_items;
 591	for (i = 0; i < nr_items; i++) {
 592		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 593						     BTRFS_MOD_LOG_KEY_REMOVE);
 594		if (!tm_list_rem[i]) {
 595			ret = -ENOMEM;
 596			goto lock;
 597		}
 598
 599		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 600						     BTRFS_MOD_LOG_KEY_ADD);
 601		if (!tm_list_add[i]) {
 602			ret = -ENOMEM;
 603			goto lock;
 604		}
 605	}
 606
 607lock:
 608	if (tree_mod_dont_log(fs_info, NULL)) {
 609		/*
 610		 * Don't error if we failed to allocate memory because we don't
 611		 * need to log.
 612		 */
 613		ret = 0;
 614		goto free_tms;
 615	}
 616	locked = true;
 617
 618	/*
 619	 * We previously failed to allocate memory and we need to log, so we
 620	 * have to fail.
 621	 */
 622	if (ret != 0)
 623		goto free_tms;
 624
 625	if (dst_move_tm) {
 626		ret = tree_mod_log_insert(fs_info, dst_move_tm);
 627		if (ret)
 628			goto free_tms;
 629	}
 630	for (i = 0; i < nr_items; i++) {
 631		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
 632		if (ret)
 633			goto free_tms;
 634		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
 635		if (ret)
 636			goto free_tms;
 637	}
 638	if (src_move_tm) {
 639		ret = tree_mod_log_insert(fs_info, src_move_tm);
 640		if (ret)
 641			goto free_tms;
 642	}
 643
 644	write_unlock(&fs_info->tree_mod_log_lock);
 645	kfree(tm_list);
 646
 647	return 0;
 648
 649free_tms:
 650	if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node))
 651		rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log);
 652	kfree(dst_move_tm);
 653	if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node))
 654		rb_erase(&src_move_tm->node, &fs_info->tree_mod_log);
 655	kfree(src_move_tm);
 656	if (tm_list) {
 657		for (i = 0; i < nr_items * 2; i++) {
 658			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 659				rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 660			kfree(tm_list[i]);
 661		}
 662	}
 663	if (locked)
 664		write_unlock(&fs_info->tree_mod_log_lock);
 665	kfree(tm_list);
 666
 667	return ret;
 668}
 669
 670int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
 671{
 672	struct tree_mod_elem **tm_list = NULL;
 673	int nritems = 0;
 674	int i;
 675	int ret = 0;
 676
 677	if (!tree_mod_need_log(eb->fs_info, eb))
 678		return 0;
 679
 680	nritems = btrfs_header_nritems(eb);
 681	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 682	if (!tm_list) {
 683		ret = -ENOMEM;
 684		goto lock;
 685	}
 686
 687	for (i = 0; i < nritems; i++) {
 688		tm_list[i] = alloc_tree_mod_elem(eb, i,
 689				    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
 690		if (!tm_list[i]) {
 691			ret = -ENOMEM;
 692			goto lock;
 693		}
 694	}
 695
 696lock:
 697	if (tree_mod_dont_log(eb->fs_info, eb)) {
 698		/*
 699		 * Don't error if we failed to allocate memory because we don't
 700		 * need to log.
 701		 */
 702		ret = 0;
 703		goto free_tms;
 704	} else if (ret != 0) {
 705		/*
 706		 * We previously failed to allocate memory and we need to log,
 707		 * so we have to fail.
 708		 */
 709		goto out_unlock;
 710	}
 711
 712	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 713out_unlock:
 714	write_unlock(&eb->fs_info->tree_mod_log_lock);
 715	if (ret)
 716		goto free_tms;
 717	kfree(tm_list);
 718
 719	return 0;
 720
 721free_tms:
 722	if (tm_list) {
 723		for (i = 0; i < nritems; i++)
 724			kfree(tm_list[i]);
 725		kfree(tm_list);
 726	}
 727
 728	return ret;
 729}
 730
 731/*
 732 * Returns the logical address of the oldest predecessor of the given root.
 733 * Entries older than time_seq are ignored.
 734 */
 735static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
 736						      u64 time_seq)
 737{
 738	struct tree_mod_elem *tm;
 739	struct tree_mod_elem *found = NULL;
 740	u64 root_logical = eb_root->start;
 741	bool looped = false;
 742
 743	if (!time_seq)
 744		return NULL;
 745
 746	/*
 747	 * The very last operation that's logged for a root is the replacement
 748	 * operation (if it is replaced at all). This has the logical address
 749	 * of the *new* root, making it the very first operation that's logged
 750	 * for this root.
 751	 */
 752	while (1) {
 753		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
 754						time_seq);
 755		if (!looped && !tm)
 756			return NULL;
 757		/*
 758		 * If there are no tree operation for the oldest root, we simply
 759		 * return it. This should only happen if that (old) root is at
 760		 * level 0.
 761		 */
 762		if (!tm)
 763			break;
 764
 765		/*
 766		 * If there's an operation that's not a root replacement, we
 767		 * found the oldest version of our root. Normally, we'll find a
 768		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
 769		 */
 770		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
 771			break;
 772
 773		found = tm;
 774		root_logical = tm->old_root.logical;
 775		looped = true;
 776	}
 777
 778	/* If there's no old root to return, return what we found instead */
 779	if (!found)
 780		found = tm;
 781
 782	return found;
 783}
 784
 785
 786/*
 787 * tm is a pointer to the first operation to rewind within eb. Then, all
 788 * previous operations will be rewound (until we reach something older than
 789 * time_seq).
 790 */
 791static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 792				struct extent_buffer *eb,
 793				u64 time_seq,
 794				struct tree_mod_elem *first_tm)
 795{
 796	u32 n;
 797	struct rb_node *next;
 798	struct tree_mod_elem *tm = first_tm;
 799	unsigned long o_dst;
 800	unsigned long o_src;
 801	unsigned long p_size = sizeof(struct btrfs_key_ptr);
 802	/*
 803	 * max_slot tracks the maximum valid slot of the rewind eb at every
 804	 * step of the rewind. This is in contrast with 'n' which eventually
 805	 * matches the number of items, but can be wrong during moves or if
 806	 * removes overlap on already valid slots (which is probably separately
 807	 * a bug). We do this to validate the offsets of memmoves for rewinding
 808	 * moves and detect invalid memmoves.
 809	 *
 810	 * Since a rewind eb can start empty, max_slot is a signed integer with
 811	 * a special meaning for -1, which is that no slot is valid to move out
 812	 * of. Any other negative value is invalid.
 813	 */
 814	int max_slot;
 815	int move_src_end_slot;
 816	int move_dst_end_slot;
 817
 818	n = btrfs_header_nritems(eb);
 819	max_slot = n - 1;
 820	read_lock(&fs_info->tree_mod_log_lock);
 821	while (tm && tm->seq >= time_seq) {
 822		ASSERT(max_slot >= -1);
 823		/*
 824		 * All the operations are recorded with the operator used for
 825		 * the modification. As we're going backwards, we do the
 826		 * opposite of each operation here.
 827		 */
 828		switch (tm->op) {
 829		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
 830			BUG_ON(tm->slot < n);
 831			fallthrough;
 832		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
 833		case BTRFS_MOD_LOG_KEY_REMOVE:
 834			btrfs_set_node_key(eb, &tm->key, tm->slot);
 835			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 836			btrfs_set_node_ptr_generation(eb, tm->slot,
 837						      tm->generation);
 838			n++;
 839			if (tm->slot > max_slot)
 840				max_slot = tm->slot;
 841			break;
 842		case BTRFS_MOD_LOG_KEY_REPLACE:
 843			BUG_ON(tm->slot >= n);
 844			btrfs_set_node_key(eb, &tm->key, tm->slot);
 845			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
 846			btrfs_set_node_ptr_generation(eb, tm->slot,
 847						      tm->generation);
 848			break;
 849		case BTRFS_MOD_LOG_KEY_ADD:
 850			/*
 851			 * It is possible we could have already removed keys
 852			 * behind the known max slot, so this will be an
 853			 * overestimate. In practice, the copy operation
 854			 * inserts them in increasing order, and overestimating
 855			 * just means we miss some warnings, so it's OK. It
 856			 * isn't worth carefully tracking the full array of
 857			 * valid slots to check against when moving.
 858			 */
 859			if (tm->slot == max_slot)
 860				max_slot--;
 861			/* if a move operation is needed it's in the log */
 862			n--;
 863			break;
 864		case BTRFS_MOD_LOG_MOVE_KEYS:
 865			ASSERT(tm->move.nr_items > 0);
 866			move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1;
 867			move_dst_end_slot = tm->slot + tm->move.nr_items - 1;
 868			o_dst = btrfs_node_key_ptr_offset(eb, tm->slot);
 869			o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot);
 870			if (WARN_ON(move_src_end_slot > max_slot ||
 871				    tm->move.nr_items <= 0)) {
 872				btrfs_warn(fs_info,
 873"move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d",
 874					   eb->start, tm->slot,
 875					   tm->move.dst_slot, tm->move.nr_items,
 876					   tm->seq, n, max_slot);
 877			}
 878			memmove_extent_buffer(eb, o_dst, o_src,
 879					      tm->move.nr_items * p_size);
 880			max_slot = move_dst_end_slot;
 881			break;
 882		case BTRFS_MOD_LOG_ROOT_REPLACE:
 883			/*
 884			 * This operation is special. For roots, this must be
 885			 * handled explicitly before rewinding.
 886			 * For non-roots, this operation may exist if the node
 887			 * was a root: root A -> child B; then A gets empty and
 888			 * B is promoted to the new root. In the mod log, we'll
 889			 * have a root-replace operation for B, a tree block
 890			 * that is no root. We simply ignore that operation.
 891			 */
 892			break;
 893		}
 894		next = rb_next(&tm->node);
 895		if (!next)
 896			break;
 897		tm = rb_entry(next, struct tree_mod_elem, node);
 898		if (tm->logical != first_tm->logical)
 899			break;
 900	}
 901	read_unlock(&fs_info->tree_mod_log_lock);
 902	btrfs_set_header_nritems(eb, n);
 903}
 904
 905/*
 906 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
 907 * is returned. If rewind operations happen, a fresh buffer is returned. The
 908 * returned buffer is always read-locked. If the returned buffer is not the
 909 * input buffer, the lock on the input buffer is released and the input buffer
 910 * is freed (its refcount is decremented).
 911 */
 912struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
 913						struct btrfs_path *path,
 914						struct extent_buffer *eb,
 915						u64 time_seq)
 916{
 917	struct extent_buffer *eb_rewin;
 918	struct tree_mod_elem *tm;
 919
 920	if (!time_seq)
 921		return eb;
 922
 923	if (btrfs_header_level(eb) == 0)
 924		return eb;
 925
 926	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
 927	if (!tm)
 928		return eb;
 929
 930	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 931		BUG_ON(tm->slot != 0);
 932		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
 933		if (!eb_rewin) {
 934			btrfs_tree_read_unlock(eb);
 935			free_extent_buffer(eb);
 936			return NULL;
 937		}
 938		btrfs_set_header_bytenr(eb_rewin, eb->start);
 939		btrfs_set_header_backref_rev(eb_rewin,
 940					     btrfs_header_backref_rev(eb));
 941		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
 942		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
 943	} else {
 944		eb_rewin = btrfs_clone_extent_buffer(eb);
 945		if (!eb_rewin) {
 946			btrfs_tree_read_unlock(eb);
 947			free_extent_buffer(eb);
 948			return NULL;
 949		}
 950	}
 951
 952	btrfs_tree_read_unlock(eb);
 953	free_extent_buffer(eb);
 954
 955	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
 956				       eb_rewin, btrfs_header_level(eb_rewin));
 957	btrfs_tree_read_lock(eb_rewin);
 958	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
 959	WARN_ON(btrfs_header_nritems(eb_rewin) >
 960		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
 961
 962	return eb_rewin;
 963}
 964
 965/*
 966 * Rewind the state of @root's root node to the given @time_seq value.
 967 * If there are no changes, the current root->root_node is returned. If anything
 968 * changed in between, there's a fresh buffer allocated on which the rewind
 969 * operations are done. In any case, the returned buffer is read locked.
 970 * Returns NULL on error (with no locks held).
 971 */
 972struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
 973{
 974	struct btrfs_fs_info *fs_info = root->fs_info;
 975	struct tree_mod_elem *tm;
 976	struct extent_buffer *eb = NULL;
 977	struct extent_buffer *eb_root;
 978	u64 eb_root_owner = 0;
 979	struct extent_buffer *old;
 980	struct tree_mod_root *old_root = NULL;
 981	u64 old_generation = 0;
 982	u64 logical;
 983	int level;
 984
 985	eb_root = btrfs_read_lock_root_node(root);
 986	tm = tree_mod_log_oldest_root(eb_root, time_seq);
 987	if (!tm)
 988		return eb_root;
 989
 990	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
 991		old_root = &tm->old_root;
 992		old_generation = tm->generation;
 993		logical = old_root->logical;
 994		level = old_root->level;
 995	} else {
 996		logical = eb_root->start;
 997		level = btrfs_header_level(eb_root);
 998	}
 999
1000	tm = tree_mod_log_search(fs_info, logical, time_seq);
1001	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1002		struct btrfs_tree_parent_check check = { 0 };
1003
1004		btrfs_tree_read_unlock(eb_root);
1005		free_extent_buffer(eb_root);
1006
1007		check.level = level;
1008		check.owner_root = root->root_key.objectid;
1009
1010		old = read_tree_block(fs_info, logical, &check);
1011		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1012			if (!IS_ERR(old))
1013				free_extent_buffer(old);
1014			btrfs_warn(fs_info,
1015				   "failed to read tree block %llu from get_old_root",
1016				   logical);
1017		} else {
1018			struct tree_mod_elem *tm2;
1019
1020			btrfs_tree_read_lock(old);
1021			eb = btrfs_clone_extent_buffer(old);
1022			/*
1023			 * After the lookup for the most recent tree mod operation
1024			 * above and before we locked and cloned the extent buffer
1025			 * 'old', a new tree mod log operation may have been added.
1026			 * So lookup for a more recent one to make sure the number
1027			 * of mod log operations we replay is consistent with the
1028			 * number of items we have in the cloned extent buffer,
1029			 * otherwise we can hit a BUG_ON when rewinding the extent
1030			 * buffer.
1031			 */
1032			tm2 = tree_mod_log_search(fs_info, logical, time_seq);
1033			btrfs_tree_read_unlock(old);
1034			free_extent_buffer(old);
1035			ASSERT(tm2);
1036			ASSERT(tm2 == tm || tm2->seq > tm->seq);
1037			if (!tm2 || tm2->seq < tm->seq) {
1038				free_extent_buffer(eb);
1039				return NULL;
1040			}
1041			tm = tm2;
1042		}
1043	} else if (old_root) {
1044		eb_root_owner = btrfs_header_owner(eb_root);
1045		btrfs_tree_read_unlock(eb_root);
1046		free_extent_buffer(eb_root);
1047		eb = alloc_dummy_extent_buffer(fs_info, logical);
1048	} else {
1049		eb = btrfs_clone_extent_buffer(eb_root);
1050		btrfs_tree_read_unlock(eb_root);
1051		free_extent_buffer(eb_root);
1052	}
1053
1054	if (!eb)
1055		return NULL;
1056	if (old_root) {
1057		btrfs_set_header_bytenr(eb, eb->start);
1058		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1059		btrfs_set_header_owner(eb, eb_root_owner);
1060		btrfs_set_header_level(eb, old_root->level);
1061		btrfs_set_header_generation(eb, old_generation);
1062	}
1063	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1064				       btrfs_header_level(eb));
1065	btrfs_tree_read_lock(eb);
1066	if (tm)
1067		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1068	else
1069		WARN_ON(btrfs_header_level(eb) != 0);
1070	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1071
1072	return eb;
1073}
1074
1075int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1076{
1077	struct tree_mod_elem *tm;
1078	int level;
1079	struct extent_buffer *eb_root = btrfs_root_node(root);
1080
1081	tm = tree_mod_log_oldest_root(eb_root, time_seq);
1082	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
1083		level = tm->old_root.level;
1084	else
1085		level = btrfs_header_level(eb_root);
1086
1087	free_extent_buffer(eb_root);
1088
1089	return level;
1090}
1091
1092/*
1093 * Return the lowest sequence number in the tree modification log.
1094 *
1095 * Return the sequence number of the oldest tree modification log user, which
1096 * corresponds to the lowest sequence number of all existing users. If there are
1097 * no users it returns 0.
1098 */
1099u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
1100{
1101	u64 ret = 0;
1102
1103	read_lock(&fs_info->tree_mod_log_lock);
1104	if (!list_empty(&fs_info->tree_mod_seq_list)) {
1105		struct btrfs_seq_list *elem;
1106
1107		elem = list_first_entry(&fs_info->tree_mod_seq_list,
1108					struct btrfs_seq_list, list);
1109		ret = elem->seq;
1110	}
1111	read_unlock(&fs_info->tree_mod_log_lock);
1112
1113	return ret;
1114}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2
 
  3#include "tree-mod-log.h"
  4#include "disk-io.h"
 
 
 
  5
  6struct tree_mod_root {
  7	u64 logical;
  8	u8 level;
  9};
 10
 11struct tree_mod_elem {
 12	struct rb_node node;
 13	u64 logical;
 14	u64 seq;
 15	enum btrfs_mod_log_op op;
 16
 17	/*
 18	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
 19	 * operations.
 20	 */
 21	int slot;
 22
 23	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
 24	u64 generation;
 25
 26	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
 27	struct btrfs_disk_key key;
 28	u64 blockptr;
 29
 30	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
 31	struct {
 32		int dst_slot;
 33		int nr_items;
 34	} move;
 35
 36	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
 37	struct tree_mod_root old_root;
 38};
 39
 40/*
 41 * Pull a new tree mod seq number for our operation.
 42 */
 43static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 44{
 45	return atomic64_inc_return(&fs_info->tree_mod_seq);
 46}
 47
 48/*
 49 * This adds a new blocker to the tree mod log's blocker list if the @elem
 50 * passed does not already have a sequence number set. So when a caller expects
 51 * to record tree modifications, it should ensure to set elem->seq to zero
 52 * before calling btrfs_get_tree_mod_seq.
 53 * Returns a fresh, unused tree log modification sequence number, even if no new
 54 * blocker was added.
 55 */
 56u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 57			   struct btrfs_seq_list *elem)
 58{
 59	write_lock(&fs_info->tree_mod_log_lock);
 60	if (!elem->seq) {
 61		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 62		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 63		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
 64	}
 65	write_unlock(&fs_info->tree_mod_log_lock);
 66
 67	return elem->seq;
 68}
 69
 70void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 71			    struct btrfs_seq_list *elem)
 72{
 73	struct rb_root *tm_root;
 74	struct rb_node *node;
 75	struct rb_node *next;
 76	struct tree_mod_elem *tm;
 77	u64 min_seq = BTRFS_SEQ_LAST;
 78	u64 seq_putting = elem->seq;
 79
 80	if (!seq_putting)
 81		return;
 82
 83	write_lock(&fs_info->tree_mod_log_lock);
 84	list_del(&elem->list);
 85	elem->seq = 0;
 86
 87	if (list_empty(&fs_info->tree_mod_seq_list)) {
 88		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
 89	} else {
 90		struct btrfs_seq_list *first;
 91
 92		first = list_first_entry(&fs_info->tree_mod_seq_list,
 93					 struct btrfs_seq_list, list);
 94		if (seq_putting > first->seq) {
 95			/*
 96			 * Blocker with lower sequence number exists, we cannot
 97			 * remove anything from the log.
 98			 */
 99			write_unlock(&fs_info->tree_mod_log_lock);
100			return;
101		}
102		min_seq = first->seq;
103	}
104
105	/*
106	 * Anything that's lower than the lowest existing (read: blocked)
107	 * sequence number can be removed from the tree.
108	 */
109	tm_root = &fs_info->tree_mod_log;
110	for (node = rb_first(tm_root); node; node = next) {
111		next = rb_next(node);
112		tm = rb_entry(node, struct tree_mod_elem, node);
113		if (tm->seq >= min_seq)
114			continue;
115		rb_erase(node, tm_root);
116		kfree(tm);
117	}
118	write_unlock(&fs_info->tree_mod_log_lock);
119}
120
121/*
122 * Key order of the log:
123 *       node/leaf start address -> sequence
124 *
125 * The 'start address' is the logical address of the *new* root node for root
126 * replace operations, or the logical address of the affected block for all
127 * other operations.
128 */
129static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
130					struct tree_mod_elem *tm)
131{
132	struct rb_root *tm_root;
133	struct rb_node **new;
134	struct rb_node *parent = NULL;
135	struct tree_mod_elem *cur;
136
137	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
138
139	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
140
141	tm_root = &fs_info->tree_mod_log;
142	new = &tm_root->rb_node;
143	while (*new) {
144		cur = rb_entry(*new, struct tree_mod_elem, node);
145		parent = *new;
146		if (cur->logical < tm->logical)
147			new = &((*new)->rb_left);
148		else if (cur->logical > tm->logical)
149			new = &((*new)->rb_right);
150		else if (cur->seq < tm->seq)
151			new = &((*new)->rb_left);
152		else if (cur->seq > tm->seq)
153			new = &((*new)->rb_right);
154		else
155			return -EEXIST;
156	}
157
158	rb_link_node(&tm->node, parent, new);
159	rb_insert_color(&tm->node, tm_root);
160	return 0;
161}
162
163/*
164 * Determines if logging can be omitted. Returns true if it can. Otherwise, it
165 * returns false with the tree_mod_log_lock acquired. The caller must hold
166 * this until all tree mod log insertions are recorded in the rb tree and then
167 * write unlock fs_info::tree_mod_log_lock.
168 */
169static inline bool tree_mod_dont_log(struct btrfs_fs_info *fs_info,
170				    struct extent_buffer *eb)
171{
172	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
173		return true;
174	if (eb && btrfs_header_level(eb) == 0)
175		return true;
176
177	write_lock(&fs_info->tree_mod_log_lock);
178	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
179		write_unlock(&fs_info->tree_mod_log_lock);
180		return true;
181	}
182
183	return false;
184}
185
186/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
187static inline bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
188				    struct extent_buffer *eb)
189{
190	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
191		return false;
192	if (eb && btrfs_header_level(eb) == 0)
193		return false;
194
195	return true;
196}
197
198static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
199						 int slot,
200						 enum btrfs_mod_log_op op,
201						 gfp_t flags)
202{
203	struct tree_mod_elem *tm;
204
205	tm = kzalloc(sizeof(*tm), flags);
206	if (!tm)
207		return NULL;
208
209	tm->logical = eb->start;
210	if (op != BTRFS_MOD_LOG_KEY_ADD) {
211		btrfs_node_key(eb, &tm->key, slot);
212		tm->blockptr = btrfs_node_blockptr(eb, slot);
213	}
214	tm->op = op;
215	tm->slot = slot;
216	tm->generation = btrfs_node_ptr_generation(eb, slot);
217	RB_CLEAR_NODE(&tm->node);
218
219	return tm;
220}
221
222int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
223				  enum btrfs_mod_log_op op, gfp_t flags)
224{
225	struct tree_mod_elem *tm;
226	int ret;
227
228	if (!tree_mod_need_log(eb->fs_info, eb))
229		return 0;
230
231	tm = alloc_tree_mod_elem(eb, slot, op, flags);
232	if (!tm)
233		return -ENOMEM;
234
235	if (tree_mod_dont_log(eb->fs_info, eb)) {
236		kfree(tm);
 
 
 
 
237		return 0;
 
 
 
 
 
 
238	}
239
240	ret = tree_mod_log_insert(eb->fs_info, tm);
 
241	write_unlock(&eb->fs_info->tree_mod_log_lock);
242	if (ret)
243		kfree(tm);
244
245	return ret;
246}
247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
249				   int dst_slot, int src_slot,
250				   int nr_items)
251{
252	struct tree_mod_elem *tm = NULL;
253	struct tree_mod_elem **tm_list = NULL;
254	int ret = 0;
255	int i;
256	bool locked = false;
257
258	if (!tree_mod_need_log(eb->fs_info, eb))
259		return 0;
260
261	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
262	if (!tm_list)
263		return -ENOMEM;
264
265	tm = kzalloc(sizeof(*tm), GFP_NOFS);
266	if (!tm) {
267		ret = -ENOMEM;
268		goto free_tms;
269	}
270
271	tm->logical = eb->start;
272	tm->slot = src_slot;
273	tm->move.dst_slot = dst_slot;
274	tm->move.nr_items = nr_items;
275	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
 
276
277	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
278		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
279				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
280		if (!tm_list[i]) {
281			ret = -ENOMEM;
282			goto free_tms;
283		}
284	}
285
286	if (tree_mod_dont_log(eb->fs_info, eb))
 
 
 
 
 
 
287		goto free_tms;
 
288	locked = true;
289
290	/*
 
 
 
 
 
 
 
291	 * When we override something during the move, we log these removals.
292	 * This can only happen when we move towards the beginning of the
293	 * buffer, i.e. dst_slot < src_slot.
294	 */
295	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
296		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
297		if (ret)
298			goto free_tms;
299	}
300
301	ret = tree_mod_log_insert(eb->fs_info, tm);
302	if (ret)
303		goto free_tms;
304	write_unlock(&eb->fs_info->tree_mod_log_lock);
305	kfree(tm_list);
306
307	return 0;
308
309free_tms:
310	for (i = 0; i < nr_items; i++) {
311		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
312			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
313		kfree(tm_list[i]);
 
 
314	}
315	if (locked)
316		write_unlock(&eb->fs_info->tree_mod_log_lock);
317	kfree(tm_list);
318	kfree(tm);
319
320	return ret;
321}
322
323static inline int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
324				       struct tree_mod_elem **tm_list,
325				       int nritems)
326{
327	int i, j;
328	int ret;
329
330	for (i = nritems - 1; i >= 0; i--) {
331		ret = tree_mod_log_insert(fs_info, tm_list[i]);
332		if (ret) {
333			for (j = nritems - 1; j > i; j--)
334				rb_erase(&tm_list[j]->node,
335					 &fs_info->tree_mod_log);
336			return ret;
337		}
338	}
339
340	return 0;
341}
342
343int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
344				   struct extent_buffer *new_root,
345				   bool log_removal)
346{
347	struct btrfs_fs_info *fs_info = old_root->fs_info;
348	struct tree_mod_elem *tm = NULL;
349	struct tree_mod_elem **tm_list = NULL;
350	int nritems = 0;
351	int ret = 0;
352	int i;
353
354	if (!tree_mod_need_log(fs_info, NULL))
355		return 0;
356
357	if (log_removal && btrfs_header_level(old_root) > 0) {
358		nritems = btrfs_header_nritems(old_root);
359		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
360				  GFP_NOFS);
361		if (!tm_list) {
362			ret = -ENOMEM;
363			goto free_tms;
364		}
365		for (i = 0; i < nritems; i++) {
366			tm_list[i] = alloc_tree_mod_elem(old_root, i,
367			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
368			if (!tm_list[i]) {
369				ret = -ENOMEM;
370				goto free_tms;
371			}
372		}
373	}
374
375	tm = kzalloc(sizeof(*tm), GFP_NOFS);
376	if (!tm) {
377		ret = -ENOMEM;
378		goto free_tms;
379	}
380
381	tm->logical = new_root->start;
382	tm->old_root.logical = old_root->start;
383	tm->old_root.level = btrfs_header_level(old_root);
384	tm->generation = btrfs_header_generation(old_root);
385	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
386
387	if (tree_mod_dont_log(fs_info, NULL))
 
 
 
 
 
 
388		goto free_tms;
 
 
 
 
 
 
 
389
390	if (tm_list)
391		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
392	if (!ret)
393		ret = tree_mod_log_insert(fs_info, tm);
394
 
395	write_unlock(&fs_info->tree_mod_log_lock);
396	if (ret)
397		goto free_tms;
398	kfree(tm_list);
399
400	return ret;
401
402free_tms:
403	if (tm_list) {
404		for (i = 0; i < nritems; i++)
405			kfree(tm_list[i]);
406		kfree(tm_list);
407	}
408	kfree(tm);
409
410	return ret;
411}
412
413static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
414						   u64 start, u64 min_seq,
415						   bool smallest)
416{
417	struct rb_root *tm_root;
418	struct rb_node *node;
419	struct tree_mod_elem *cur = NULL;
420	struct tree_mod_elem *found = NULL;
421
422	read_lock(&fs_info->tree_mod_log_lock);
423	tm_root = &fs_info->tree_mod_log;
424	node = tm_root->rb_node;
425	while (node) {
426		cur = rb_entry(node, struct tree_mod_elem, node);
427		if (cur->logical < start) {
428			node = node->rb_left;
429		} else if (cur->logical > start) {
430			node = node->rb_right;
431		} else if (cur->seq < min_seq) {
432			node = node->rb_left;
433		} else if (!smallest) {
434			/* We want the node with the highest seq */
435			if (found)
436				BUG_ON(found->seq > cur->seq);
437			found = cur;
438			node = node->rb_left;
439		} else if (cur->seq > min_seq) {
440			/* We want the node with the smallest seq */
441			if (found)
442				BUG_ON(found->seq < cur->seq);
443			found = cur;
444			node = node->rb_right;
445		} else {
446			found = cur;
447			break;
448		}
449	}
450	read_unlock(&fs_info->tree_mod_log_lock);
451
452	return found;
453}
454
455/*
456 * This returns the element from the log with the smallest time sequence
457 * value that's in the log (the oldest log item). Any element with a time
458 * sequence lower than min_seq will be ignored.
459 */
460static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
461							u64 start, u64 min_seq)
462{
463	return __tree_mod_log_search(fs_info, start, min_seq, true);
464}
465
466/*
467 * This returns the element from the log with the largest time sequence
468 * value that's in the log (the most recent log item). Any element with
469 * a time sequence lower than min_seq will be ignored.
470 */
471static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
472						 u64 start, u64 min_seq)
473{
474	return __tree_mod_log_search(fs_info, start, min_seq, false);
475}
476
477int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
478			       struct extent_buffer *src,
479			       unsigned long dst_offset,
480			       unsigned long src_offset,
481			       int nr_items)
482{
483	struct btrfs_fs_info *fs_info = dst->fs_info;
484	int ret = 0;
485	struct tree_mod_elem **tm_list = NULL;
486	struct tree_mod_elem **tm_list_add, **tm_list_rem;
 
487	int i;
488	bool locked = false;
 
 
 
 
489
490	if (!tree_mod_need_log(fs_info, NULL))
491		return 0;
492
493	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
494		return 0;
495
496	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
497			  GFP_NOFS);
498	if (!tm_list)
499		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500
501	tm_list_add = tm_list;
502	tm_list_rem = tm_list + nr_items;
503	for (i = 0; i < nr_items; i++) {
504		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
505		    BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
506		if (!tm_list_rem[i]) {
507			ret = -ENOMEM;
508			goto free_tms;
509		}
510
511		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
512						BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
513		if (!tm_list_add[i]) {
514			ret = -ENOMEM;
515			goto free_tms;
516		}
517	}
518
519	if (tree_mod_dont_log(fs_info, NULL))
 
 
 
 
 
 
520		goto free_tms;
 
521	locked = true;
522
 
 
 
 
 
 
 
 
 
 
 
 
523	for (i = 0; i < nr_items; i++) {
524		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
525		if (ret)
526			goto free_tms;
527		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
528		if (ret)
529			goto free_tms;
530	}
 
 
 
 
 
531
532	write_unlock(&fs_info->tree_mod_log_lock);
533	kfree(tm_list);
534
535	return 0;
536
537free_tms:
538	for (i = 0; i < nr_items * 2; i++) {
539		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
540			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
541		kfree(tm_list[i]);
 
 
 
 
 
 
 
 
542	}
543	if (locked)
544		write_unlock(&fs_info->tree_mod_log_lock);
545	kfree(tm_list);
546
547	return ret;
548}
549
550int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
551{
552	struct tree_mod_elem **tm_list = NULL;
553	int nritems = 0;
554	int i;
555	int ret = 0;
556
557	if (!tree_mod_need_log(eb->fs_info, eb))
558		return 0;
559
560	nritems = btrfs_header_nritems(eb);
561	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
562	if (!tm_list)
563		return -ENOMEM;
 
 
564
565	for (i = 0; i < nritems; i++) {
566		tm_list[i] = alloc_tree_mod_elem(eb, i,
567		    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
568		if (!tm_list[i]) {
569			ret = -ENOMEM;
570			goto free_tms;
571		}
572	}
573
574	if (tree_mod_dont_log(eb->fs_info, eb))
 
 
 
 
 
 
575		goto free_tms;
 
 
 
 
 
 
 
576
577	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
 
578	write_unlock(&eb->fs_info->tree_mod_log_lock);
579	if (ret)
580		goto free_tms;
581	kfree(tm_list);
582
583	return 0;
584
585free_tms:
586	for (i = 0; i < nritems; i++)
587		kfree(tm_list[i]);
588	kfree(tm_list);
 
 
589
590	return ret;
591}
592
593/*
594 * Returns the logical address of the oldest predecessor of the given root.
595 * Entries older than time_seq are ignored.
596 */
597static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
598						      u64 time_seq)
599{
600	struct tree_mod_elem *tm;
601	struct tree_mod_elem *found = NULL;
602	u64 root_logical = eb_root->start;
603	bool looped = false;
604
605	if (!time_seq)
606		return NULL;
607
608	/*
609	 * The very last operation that's logged for a root is the replacement
610	 * operation (if it is replaced at all). This has the logical address
611	 * of the *new* root, making it the very first operation that's logged
612	 * for this root.
613	 */
614	while (1) {
615		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
616						time_seq);
617		if (!looped && !tm)
618			return NULL;
619		/*
620		 * If there are no tree operation for the oldest root, we simply
621		 * return it. This should only happen if that (old) root is at
622		 * level 0.
623		 */
624		if (!tm)
625			break;
626
627		/*
628		 * If there's an operation that's not a root replacement, we
629		 * found the oldest version of our root. Normally, we'll find a
630		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
631		 */
632		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
633			break;
634
635		found = tm;
636		root_logical = tm->old_root.logical;
637		looped = true;
638	}
639
640	/* If there's no old root to return, return what we found instead */
641	if (!found)
642		found = tm;
643
644	return found;
645}
646
647
648/*
649 * tm is a pointer to the first operation to rewind within eb. Then, all
650 * previous operations will be rewound (until we reach something older than
651 * time_seq).
652 */
653static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
654				struct extent_buffer *eb,
655				u64 time_seq,
656				struct tree_mod_elem *first_tm)
657{
658	u32 n;
659	struct rb_node *next;
660	struct tree_mod_elem *tm = first_tm;
661	unsigned long o_dst;
662	unsigned long o_src;
663	unsigned long p_size = sizeof(struct btrfs_key_ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664
665	n = btrfs_header_nritems(eb);
 
666	read_lock(&fs_info->tree_mod_log_lock);
667	while (tm && tm->seq >= time_seq) {
 
668		/*
669		 * All the operations are recorded with the operator used for
670		 * the modification. As we're going backwards, we do the
671		 * opposite of each operation here.
672		 */
673		switch (tm->op) {
674		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
675			BUG_ON(tm->slot < n);
676			fallthrough;
677		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
678		case BTRFS_MOD_LOG_KEY_REMOVE:
679			btrfs_set_node_key(eb, &tm->key, tm->slot);
680			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
681			btrfs_set_node_ptr_generation(eb, tm->slot,
682						      tm->generation);
683			n++;
 
 
684			break;
685		case BTRFS_MOD_LOG_KEY_REPLACE:
686			BUG_ON(tm->slot >= n);
687			btrfs_set_node_key(eb, &tm->key, tm->slot);
688			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
689			btrfs_set_node_ptr_generation(eb, tm->slot,
690						      tm->generation);
691			break;
692		case BTRFS_MOD_LOG_KEY_ADD:
 
 
 
 
 
 
 
 
 
 
 
693			/* if a move operation is needed it's in the log */
694			n--;
695			break;
696		case BTRFS_MOD_LOG_MOVE_KEYS:
697			o_dst = btrfs_node_key_ptr_offset(tm->slot);
698			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
 
 
 
 
 
 
 
 
 
 
 
699			memmove_extent_buffer(eb, o_dst, o_src,
700					      tm->move.nr_items * p_size);
 
701			break;
702		case BTRFS_MOD_LOG_ROOT_REPLACE:
703			/*
704			 * This operation is special. For roots, this must be
705			 * handled explicitly before rewinding.
706			 * For non-roots, this operation may exist if the node
707			 * was a root: root A -> child B; then A gets empty and
708			 * B is promoted to the new root. In the mod log, we'll
709			 * have a root-replace operation for B, a tree block
710			 * that is no root. We simply ignore that operation.
711			 */
712			break;
713		}
714		next = rb_next(&tm->node);
715		if (!next)
716			break;
717		tm = rb_entry(next, struct tree_mod_elem, node);
718		if (tm->logical != first_tm->logical)
719			break;
720	}
721	read_unlock(&fs_info->tree_mod_log_lock);
722	btrfs_set_header_nritems(eb, n);
723}
724
725/*
726 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
727 * is returned. If rewind operations happen, a fresh buffer is returned. The
728 * returned buffer is always read-locked. If the returned buffer is not the
729 * input buffer, the lock on the input buffer is released and the input buffer
730 * is freed (its refcount is decremented).
731 */
732struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
733						struct btrfs_path *path,
734						struct extent_buffer *eb,
735						u64 time_seq)
736{
737	struct extent_buffer *eb_rewin;
738	struct tree_mod_elem *tm;
739
740	if (!time_seq)
741		return eb;
742
743	if (btrfs_header_level(eb) == 0)
744		return eb;
745
746	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
747	if (!tm)
748		return eb;
749
750	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
751		BUG_ON(tm->slot != 0);
752		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
753		if (!eb_rewin) {
754			btrfs_tree_read_unlock(eb);
755			free_extent_buffer(eb);
756			return NULL;
757		}
758		btrfs_set_header_bytenr(eb_rewin, eb->start);
759		btrfs_set_header_backref_rev(eb_rewin,
760					     btrfs_header_backref_rev(eb));
761		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
762		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
763	} else {
764		eb_rewin = btrfs_clone_extent_buffer(eb);
765		if (!eb_rewin) {
766			btrfs_tree_read_unlock(eb);
767			free_extent_buffer(eb);
768			return NULL;
769		}
770	}
771
772	btrfs_tree_read_unlock(eb);
773	free_extent_buffer(eb);
774
775	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
776				       eb_rewin, btrfs_header_level(eb_rewin));
777	btrfs_tree_read_lock(eb_rewin);
778	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
779	WARN_ON(btrfs_header_nritems(eb_rewin) >
780		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
781
782	return eb_rewin;
783}
784
785/*
786 * Rewind the state of @root's root node to the given @time_seq value.
787 * If there are no changes, the current root->root_node is returned. If anything
788 * changed in between, there's a fresh buffer allocated on which the rewind
789 * operations are done. In any case, the returned buffer is read locked.
790 * Returns NULL on error (with no locks held).
791 */
792struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
793{
794	struct btrfs_fs_info *fs_info = root->fs_info;
795	struct tree_mod_elem *tm;
796	struct extent_buffer *eb = NULL;
797	struct extent_buffer *eb_root;
798	u64 eb_root_owner = 0;
799	struct extent_buffer *old;
800	struct tree_mod_root *old_root = NULL;
801	u64 old_generation = 0;
802	u64 logical;
803	int level;
804
805	eb_root = btrfs_read_lock_root_node(root);
806	tm = tree_mod_log_oldest_root(eb_root, time_seq);
807	if (!tm)
808		return eb_root;
809
810	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
811		old_root = &tm->old_root;
812		old_generation = tm->generation;
813		logical = old_root->logical;
814		level = old_root->level;
815	} else {
816		logical = eb_root->start;
817		level = btrfs_header_level(eb_root);
818	}
819
820	tm = tree_mod_log_search(fs_info, logical, time_seq);
821	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
 
 
822		btrfs_tree_read_unlock(eb_root);
823		free_extent_buffer(eb_root);
824		old = read_tree_block(fs_info, logical, root->root_key.objectid,
825				      0, level, NULL);
 
 
 
826		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
827			if (!IS_ERR(old))
828				free_extent_buffer(old);
829			btrfs_warn(fs_info,
830				   "failed to read tree block %llu from get_old_root",
831				   logical);
832		} else {
833			struct tree_mod_elem *tm2;
834
835			btrfs_tree_read_lock(old);
836			eb = btrfs_clone_extent_buffer(old);
837			/*
838			 * After the lookup for the most recent tree mod operation
839			 * above and before we locked and cloned the extent buffer
840			 * 'old', a new tree mod log operation may have been added.
841			 * So lookup for a more recent one to make sure the number
842			 * of mod log operations we replay is consistent with the
843			 * number of items we have in the cloned extent buffer,
844			 * otherwise we can hit a BUG_ON when rewinding the extent
845			 * buffer.
846			 */
847			tm2 = tree_mod_log_search(fs_info, logical, time_seq);
848			btrfs_tree_read_unlock(old);
849			free_extent_buffer(old);
850			ASSERT(tm2);
851			ASSERT(tm2 == tm || tm2->seq > tm->seq);
852			if (!tm2 || tm2->seq < tm->seq) {
853				free_extent_buffer(eb);
854				return NULL;
855			}
856			tm = tm2;
857		}
858	} else if (old_root) {
859		eb_root_owner = btrfs_header_owner(eb_root);
860		btrfs_tree_read_unlock(eb_root);
861		free_extent_buffer(eb_root);
862		eb = alloc_dummy_extent_buffer(fs_info, logical);
863	} else {
864		eb = btrfs_clone_extent_buffer(eb_root);
865		btrfs_tree_read_unlock(eb_root);
866		free_extent_buffer(eb_root);
867	}
868
869	if (!eb)
870		return NULL;
871	if (old_root) {
872		btrfs_set_header_bytenr(eb, eb->start);
873		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
874		btrfs_set_header_owner(eb, eb_root_owner);
875		btrfs_set_header_level(eb, old_root->level);
876		btrfs_set_header_generation(eb, old_generation);
877	}
878	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
879				       btrfs_header_level(eb));
880	btrfs_tree_read_lock(eb);
881	if (tm)
882		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
883	else
884		WARN_ON(btrfs_header_level(eb) != 0);
885	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
886
887	return eb;
888}
889
890int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
891{
892	struct tree_mod_elem *tm;
893	int level;
894	struct extent_buffer *eb_root = btrfs_root_node(root);
895
896	tm = tree_mod_log_oldest_root(eb_root, time_seq);
897	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
898		level = tm->old_root.level;
899	else
900		level = btrfs_header_level(eb_root);
901
902	free_extent_buffer(eb_root);
903
904	return level;
905}
906
907/*
908 * Return the lowest sequence number in the tree modification log.
909 *
910 * Return the sequence number of the oldest tree modification log user, which
911 * corresponds to the lowest sequence number of all existing users. If there are
912 * no users it returns 0.
913 */
914u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
915{
916	u64 ret = 0;
917
918	read_lock(&fs_info->tree_mod_log_lock);
919	if (!list_empty(&fs_info->tree_mod_seq_list)) {
920		struct btrfs_seq_list *elem;
921
922		elem = list_first_entry(&fs_info->tree_mod_seq_list,
923					struct btrfs_seq_list, list);
924		ret = elem->seq;
925	}
926	read_unlock(&fs_info->tree_mod_log_lock);
927
928	return ret;
929}