Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
8#include "free-space-cache.h"
9#include "ordered-data.h"
10#include "transaction.h"
11#include "block-group.h"
12#include "zoned.h"
13#include "fs.h"
14#include "accessors.h"
15#include "extent-tree.h"
16
17/*
18 * HOW DOES SPACE RESERVATION WORK
19 *
20 * If you want to know about delalloc specifically, there is a separate comment
21 * for that with the delalloc code. This comment is about how the whole system
22 * works generally.
23 *
24 * BASIC CONCEPTS
25 *
26 * 1) space_info. This is the ultimate arbiter of how much space we can use.
27 * There's a description of the bytes_ fields with the struct declaration,
28 * refer to that for specifics on each field. Suffice it to say that for
29 * reservations we care about total_bytes - SUM(space_info->bytes_) when
30 * determining if there is space to make an allocation. There is a space_info
31 * for METADATA, SYSTEM, and DATA areas.
32 *
33 * 2) block_rsv's. These are basically buckets for every different type of
34 * metadata reservation we have. You can see the comment in the block_rsv
35 * code on the rules for each type, but generally block_rsv->reserved is how
36 * much space is accounted for in space_info->bytes_may_use.
37 *
38 * 3) btrfs_calc*_size. These are the worst case calculations we used based
39 * on the number of items we will want to modify. We have one for changing
40 * items, and one for inserting new items. Generally we use these helpers to
41 * determine the size of the block reserves, and then use the actual bytes
42 * values to adjust the space_info counters.
43 *
44 * MAKING RESERVATIONS, THE NORMAL CASE
45 *
46 * We call into either btrfs_reserve_data_bytes() or
47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48 * num_bytes we want to reserve.
49 *
50 * ->reserve
51 * space_info->bytes_may_reserve += num_bytes
52 *
53 * ->extent allocation
54 * Call btrfs_add_reserved_bytes() which does
55 * space_info->bytes_may_reserve -= num_bytes
56 * space_info->bytes_reserved += extent_bytes
57 *
58 * ->insert reference
59 * Call btrfs_update_block_group() which does
60 * space_info->bytes_reserved -= extent_bytes
61 * space_info->bytes_used += extent_bytes
62 *
63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64 *
65 * Assume we are unable to simply make the reservation because we do not have
66 * enough space
67 *
68 * -> __reserve_bytes
69 * create a reserve_ticket with ->bytes set to our reservation, add it to
70 * the tail of space_info->tickets, kick async flush thread
71 *
72 * ->handle_reserve_ticket
73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74 * on the ticket.
75 *
76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77 * Flushes various things attempting to free up space.
78 *
79 * -> btrfs_try_granting_tickets()
80 * This is called by anything that either subtracts space from
81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82 * space_info->total_bytes. This loops through the ->priority_tickets and
83 * then the ->tickets list checking to see if the reservation can be
84 * completed. If it can the space is added to space_info->bytes_may_use and
85 * the ticket is woken up.
86 *
87 * -> ticket wakeup
88 * Check if ->bytes == 0, if it does we got our reservation and we can carry
89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90 * were interrupted.)
91 *
92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93 *
94 * Same as the above, except we add ourselves to the
95 * space_info->priority_tickets, and we do not use ticket->wait, we simply
96 * call flush_space() ourselves for the states that are safe for us to call
97 * without deadlocking and hope for the best.
98 *
99 * THE FLUSHING STATES
100 *
101 * Generally speaking we will have two cases for each state, a "nice" state
102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
103 * reduce the locking over head on the various trees, and even to keep from
104 * doing any work at all in the case of delayed refs. Each of these delayed
105 * things however hold reservations, and so letting them run allows us to
106 * reclaim space so we can make new reservations.
107 *
108 * FLUSH_DELAYED_ITEMS
109 * Every inode has a delayed item to update the inode. Take a simple write
110 * for example, we would update the inode item at write time to update the
111 * mtime, and then again at finish_ordered_io() time in order to update the
112 * isize or bytes. We keep these delayed items to coalesce these operations
113 * into a single operation done on demand. These are an easy way to reclaim
114 * metadata space.
115 *
116 * FLUSH_DELALLOC
117 * Look at the delalloc comment to get an idea of how much space is reserved
118 * for delayed allocation. We can reclaim some of this space simply by
119 * running delalloc, but usually we need to wait for ordered extents to
120 * reclaim the bulk of this space.
121 *
122 * FLUSH_DELAYED_REFS
123 * We have a block reserve for the outstanding delayed refs space, and every
124 * delayed ref operation holds a reservation. Running these is a quick way
125 * to reclaim space, but we want to hold this until the end because COW can
126 * churn a lot and we can avoid making some extent tree modifications if we
127 * are able to delay for as long as possible.
128 *
129 * ALLOC_CHUNK
130 * We will skip this the first time through space reservation, because of
131 * overcommit and we don't want to have a lot of useless metadata space when
132 * our worst case reservations will likely never come true.
133 *
134 * RUN_DELAYED_IPUTS
135 * If we're freeing inodes we're likely freeing checksums, file extent
136 * items, and extent tree items. Loads of space could be freed up by these
137 * operations, however they won't be usable until the transaction commits.
138 *
139 * COMMIT_TRANS
140 * This will commit the transaction. Historically we had a lot of logic
141 * surrounding whether or not we'd commit the transaction, but this waits born
142 * out of a pre-tickets era where we could end up committing the transaction
143 * thousands of times in a row without making progress. Now thanks to our
144 * ticketing system we know if we're not making progress and can error
145 * everybody out after a few commits rather than burning the disk hoping for
146 * a different answer.
147 *
148 * OVERCOMMIT
149 *
150 * Because we hold so many reservations for metadata we will allow you to
151 * reserve more space than is currently free in the currently allocate
152 * metadata space. This only happens with metadata, data does not allow
153 * overcommitting.
154 *
155 * You can see the current logic for when we allow overcommit in
156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
157 * is no unallocated space to be had, all reservations are kept within the
158 * free space in the allocated metadata chunks.
159 *
160 * Because of overcommitting, you generally want to use the
161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
162 * thing with or without extra unallocated space.
163 */
164
165u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 bool may_use_included)
167{
168 ASSERT(s_info);
169 return s_info->bytes_used + s_info->bytes_reserved +
170 s_info->bytes_pinned + s_info->bytes_readonly +
171 s_info->bytes_zone_unusable +
172 (may_use_included ? s_info->bytes_may_use : 0);
173}
174
175/*
176 * after adding space to the filesystem, we need to clear the full flags
177 * on all the space infos.
178 */
179void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180{
181 struct list_head *head = &info->space_info;
182 struct btrfs_space_info *found;
183
184 list_for_each_entry(found, head, list)
185 found->full = 0;
186}
187
188/*
189 * Block groups with more than this value (percents) of unusable space will be
190 * scheduled for background reclaim.
191 */
192#define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
193
194/*
195 * Calculate chunk size depending on volume type (regular or zoned).
196 */
197static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198{
199 if (btrfs_is_zoned(fs_info))
200 return fs_info->zone_size;
201
202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203
204 if (flags & BTRFS_BLOCK_GROUP_DATA)
205 return BTRFS_MAX_DATA_CHUNK_SIZE;
206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 return SZ_32M;
208
209 /* Handle BTRFS_BLOCK_GROUP_METADATA */
210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 return SZ_1G;
212
213 return SZ_256M;
214}
215
216/*
217 * Update default chunk size.
218 */
219void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 u64 chunk_size)
221{
222 WRITE_ONCE(space_info->chunk_size, chunk_size);
223}
224
225static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226{
227
228 struct btrfs_space_info *space_info;
229 int i;
230 int ret;
231
232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 if (!space_info)
234 return -ENOMEM;
235
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 INIT_LIST_HEAD(&space_info->block_groups[i]);
238 init_rwsem(&space_info->groups_sem);
239 spin_lock_init(&space_info->lock);
240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 INIT_LIST_HEAD(&space_info->ro_bgs);
243 INIT_LIST_HEAD(&space_info->tickets);
244 INIT_LIST_HEAD(&space_info->priority_tickets);
245 space_info->clamp = 1;
246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247
248 if (btrfs_is_zoned(info))
249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250
251 ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 if (ret)
253 return ret;
254
255 list_add(&space_info->list, &info->space_info);
256 if (flags & BTRFS_BLOCK_GROUP_DATA)
257 info->data_sinfo = space_info;
258
259 return ret;
260}
261
262int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263{
264 struct btrfs_super_block *disk_super;
265 u64 features;
266 u64 flags;
267 int mixed = 0;
268 int ret;
269
270 disk_super = fs_info->super_copy;
271 if (!btrfs_super_root(disk_super))
272 return -EINVAL;
273
274 features = btrfs_super_incompat_flags(disk_super);
275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 mixed = 1;
277
278 flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 ret = create_space_info(fs_info, flags);
280 if (ret)
281 goto out;
282
283 if (mixed) {
284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 ret = create_space_info(fs_info, flags);
286 } else {
287 flags = BTRFS_BLOCK_GROUP_METADATA;
288 ret = create_space_info(fs_info, flags);
289 if (ret)
290 goto out;
291
292 flags = BTRFS_BLOCK_GROUP_DATA;
293 ret = create_space_info(fs_info, flags);
294 }
295out:
296 return ret;
297}
298
299void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 struct btrfs_block_group *block_group)
301{
302 struct btrfs_space_info *found;
303 int factor, index;
304
305 factor = btrfs_bg_type_to_factor(block_group->flags);
306
307 found = btrfs_find_space_info(info, block_group->flags);
308 ASSERT(found);
309 spin_lock(&found->lock);
310 found->total_bytes += block_group->length;
311 found->disk_total += block_group->length * factor;
312 found->bytes_used += block_group->used;
313 found->disk_used += block_group->used * factor;
314 found->bytes_readonly += block_group->bytes_super;
315 found->bytes_zone_unusable += block_group->zone_unusable;
316 if (block_group->length > 0)
317 found->full = 0;
318 btrfs_try_granting_tickets(info, found);
319 spin_unlock(&found->lock);
320
321 block_group->space_info = found;
322
323 index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 down_write(&found->groups_sem);
325 list_add_tail(&block_group->list, &found->block_groups[index]);
326 up_write(&found->groups_sem);
327}
328
329struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 u64 flags)
331{
332 struct list_head *head = &info->space_info;
333 struct btrfs_space_info *found;
334
335 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336
337 list_for_each_entry(found, head, list) {
338 if (found->flags & flags)
339 return found;
340 }
341 return NULL;
342}
343
344static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 struct btrfs_space_info *space_info,
346 enum btrfs_reserve_flush_enum flush)
347{
348 struct btrfs_space_info *data_sinfo;
349 u64 profile;
350 u64 avail;
351 u64 data_chunk_size;
352 int factor;
353
354 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
355 profile = btrfs_system_alloc_profile(fs_info);
356 else
357 profile = btrfs_metadata_alloc_profile(fs_info);
358
359 avail = atomic64_read(&fs_info->free_chunk_space);
360
361 /*
362 * If we have dup, raid1 or raid10 then only half of the free
363 * space is actually usable. For raid56, the space info used
364 * doesn't include the parity drive, so we don't have to
365 * change the math
366 */
367 factor = btrfs_bg_type_to_factor(profile);
368 avail = div_u64(avail, factor);
369 if (avail == 0)
370 return 0;
371
372 /*
373 * Calculate the data_chunk_size, space_info->chunk_size is the
374 * "optimal" chunk size based on the fs size. However when we actually
375 * allocate the chunk we will strip this down further, making it no more
376 * than 10% of the disk or 1G, whichever is smaller.
377 */
378 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
379 data_chunk_size = min(data_sinfo->chunk_size,
380 mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
381 data_chunk_size = min_t(u64, data_chunk_size, SZ_1G);
382
383 /*
384 * Since data allocations immediately use block groups as part of the
385 * reservation, because we assume that data reservations will == actual
386 * usage, we could potentially overcommit and then immediately have that
387 * available space used by a data allocation, which could put us in a
388 * bind when we get close to filling the file system.
389 *
390 * To handle this simply remove the data_chunk_size from the available
391 * space. If we are relatively empty this won't affect our ability to
392 * overcommit much, and if we're very close to full it'll keep us from
393 * getting into a position where we've given ourselves very little
394 * metadata wiggle room.
395 */
396 if (avail <= data_chunk_size)
397 return 0;
398 avail -= data_chunk_size;
399
400 /*
401 * If we aren't flushing all things, let us overcommit up to
402 * 1/2th of the space. If we can flush, don't let us overcommit
403 * too much, let it overcommit up to 1/8 of the space.
404 */
405 if (flush == BTRFS_RESERVE_FLUSH_ALL)
406 avail >>= 3;
407 else
408 avail >>= 1;
409 return avail;
410}
411
412int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
413 struct btrfs_space_info *space_info, u64 bytes,
414 enum btrfs_reserve_flush_enum flush)
415{
416 u64 avail;
417 u64 used;
418
419 /* Don't overcommit when in mixed mode */
420 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
421 return 0;
422
423 used = btrfs_space_info_used(space_info, true);
424 avail = calc_available_free_space(fs_info, space_info, flush);
425
426 if (used + bytes < space_info->total_bytes + avail)
427 return 1;
428 return 0;
429}
430
431static void remove_ticket(struct btrfs_space_info *space_info,
432 struct reserve_ticket *ticket)
433{
434 if (!list_empty(&ticket->list)) {
435 list_del_init(&ticket->list);
436 ASSERT(space_info->reclaim_size >= ticket->bytes);
437 space_info->reclaim_size -= ticket->bytes;
438 }
439}
440
441/*
442 * This is for space we already have accounted in space_info->bytes_may_use, so
443 * basically when we're returning space from block_rsv's.
444 */
445void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
446 struct btrfs_space_info *space_info)
447{
448 struct list_head *head;
449 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
450
451 lockdep_assert_held(&space_info->lock);
452
453 head = &space_info->priority_tickets;
454again:
455 while (!list_empty(head)) {
456 struct reserve_ticket *ticket;
457 u64 used = btrfs_space_info_used(space_info, true);
458
459 ticket = list_first_entry(head, struct reserve_ticket, list);
460
461 /* Check and see if our ticket can be satisfied now. */
462 if ((used + ticket->bytes <= space_info->total_bytes) ||
463 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
464 flush)) {
465 btrfs_space_info_update_bytes_may_use(fs_info,
466 space_info,
467 ticket->bytes);
468 remove_ticket(space_info, ticket);
469 ticket->bytes = 0;
470 space_info->tickets_id++;
471 wake_up(&ticket->wait);
472 } else {
473 break;
474 }
475 }
476
477 if (head == &space_info->priority_tickets) {
478 head = &space_info->tickets;
479 flush = BTRFS_RESERVE_FLUSH_ALL;
480 goto again;
481 }
482}
483
484#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
485do { \
486 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
487 spin_lock(&__rsv->lock); \
488 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
489 __rsv->size, __rsv->reserved); \
490 spin_unlock(&__rsv->lock); \
491} while (0)
492
493static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
494{
495 switch (space_info->flags) {
496 case BTRFS_BLOCK_GROUP_SYSTEM:
497 return "SYSTEM";
498 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
499 return "DATA+METADATA";
500 case BTRFS_BLOCK_GROUP_DATA:
501 return "DATA";
502 case BTRFS_BLOCK_GROUP_METADATA:
503 return "METADATA";
504 default:
505 return "UNKNOWN";
506 }
507}
508
509static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
510{
511 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
512 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
513 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
514 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
515 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
516}
517
518static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
519 struct btrfs_space_info *info)
520{
521 const char *flag_str = space_info_flag_to_str(info);
522 lockdep_assert_held(&info->lock);
523
524 /* The free space could be negative in case of overcommit */
525 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
526 flag_str,
527 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
528 info->full ? "" : "not ");
529 btrfs_info(fs_info,
530"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
531 info->total_bytes, info->bytes_used, info->bytes_pinned,
532 info->bytes_reserved, info->bytes_may_use,
533 info->bytes_readonly, info->bytes_zone_unusable);
534}
535
536void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
537 struct btrfs_space_info *info, u64 bytes,
538 int dump_block_groups)
539{
540 struct btrfs_block_group *cache;
541 u64 total_avail = 0;
542 int index = 0;
543
544 spin_lock(&info->lock);
545 __btrfs_dump_space_info(fs_info, info);
546 dump_global_block_rsv(fs_info);
547 spin_unlock(&info->lock);
548
549 if (!dump_block_groups)
550 return;
551
552 down_read(&info->groups_sem);
553again:
554 list_for_each_entry(cache, &info->block_groups[index], list) {
555 u64 avail;
556
557 spin_lock(&cache->lock);
558 avail = cache->length - cache->used - cache->pinned -
559 cache->reserved - cache->delalloc_bytes -
560 cache->bytes_super - cache->zone_unusable;
561 btrfs_info(fs_info,
562"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
563 cache->start, cache->length, cache->used, cache->pinned,
564 cache->reserved, cache->delalloc_bytes,
565 cache->bytes_super, cache->zone_unusable,
566 avail, cache->ro ? "[readonly]" : "");
567 spin_unlock(&cache->lock);
568 btrfs_dump_free_space(cache, bytes);
569 total_avail += avail;
570 }
571 if (++index < BTRFS_NR_RAID_TYPES)
572 goto again;
573 up_read(&info->groups_sem);
574
575 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
576}
577
578static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
579 u64 to_reclaim)
580{
581 u64 bytes;
582 u64 nr;
583
584 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
585 nr = div64_u64(to_reclaim, bytes);
586 if (!nr)
587 nr = 1;
588 return nr;
589}
590
591#define EXTENT_SIZE_PER_ITEM SZ_256K
592
593/*
594 * shrink metadata reservation for delalloc
595 */
596static void shrink_delalloc(struct btrfs_fs_info *fs_info,
597 struct btrfs_space_info *space_info,
598 u64 to_reclaim, bool wait_ordered,
599 bool for_preempt)
600{
601 struct btrfs_trans_handle *trans;
602 u64 delalloc_bytes;
603 u64 ordered_bytes;
604 u64 items;
605 long time_left;
606 int loops;
607
608 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
609 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
610 if (delalloc_bytes == 0 && ordered_bytes == 0)
611 return;
612
613 /* Calc the number of the pages we need flush for space reservation */
614 if (to_reclaim == U64_MAX) {
615 items = U64_MAX;
616 } else {
617 /*
618 * to_reclaim is set to however much metadata we need to
619 * reclaim, but reclaiming that much data doesn't really track
620 * exactly. What we really want to do is reclaim full inode's
621 * worth of reservations, however that's not available to us
622 * here. We will take a fraction of the delalloc bytes for our
623 * flushing loops and hope for the best. Delalloc will expand
624 * the amount we write to cover an entire dirty extent, which
625 * will reclaim the metadata reservation for that range. If
626 * it's not enough subsequent flush stages will be more
627 * aggressive.
628 */
629 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
630 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
631 }
632
633 trans = current->journal_info;
634
635 /*
636 * If we are doing more ordered than delalloc we need to just wait on
637 * ordered extents, otherwise we'll waste time trying to flush delalloc
638 * that likely won't give us the space back we need.
639 */
640 if (ordered_bytes > delalloc_bytes && !for_preempt)
641 wait_ordered = true;
642
643 loops = 0;
644 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
645 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
646 long nr_pages = min_t(u64, temp, LONG_MAX);
647 int async_pages;
648
649 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
650
651 /*
652 * We need to make sure any outstanding async pages are now
653 * processed before we continue. This is because things like
654 * sync_inode() try to be smart and skip writing if the inode is
655 * marked clean. We don't use filemap_fwrite for flushing
656 * because we want to control how many pages we write out at a
657 * time, thus this is the only safe way to make sure we've
658 * waited for outstanding compressed workers to have started
659 * their jobs and thus have ordered extents set up properly.
660 *
661 * This exists because we do not want to wait for each
662 * individual inode to finish its async work, we simply want to
663 * start the IO on everybody, and then come back here and wait
664 * for all of the async work to catch up. Once we're done with
665 * that we know we'll have ordered extents for everything and we
666 * can decide if we wait for that or not.
667 *
668 * If we choose to replace this in the future, make absolutely
669 * sure that the proper waiting is being done in the async case,
670 * as there have been bugs in that area before.
671 */
672 async_pages = atomic_read(&fs_info->async_delalloc_pages);
673 if (!async_pages)
674 goto skip_async;
675
676 /*
677 * We don't want to wait forever, if we wrote less pages in this
678 * loop than we have outstanding, only wait for that number of
679 * pages, otherwise we can wait for all async pages to finish
680 * before continuing.
681 */
682 if (async_pages > nr_pages)
683 async_pages -= nr_pages;
684 else
685 async_pages = 0;
686 wait_event(fs_info->async_submit_wait,
687 atomic_read(&fs_info->async_delalloc_pages) <=
688 async_pages);
689skip_async:
690 loops++;
691 if (wait_ordered && !trans) {
692 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
693 } else {
694 time_left = schedule_timeout_killable(1);
695 if (time_left)
696 break;
697 }
698
699 /*
700 * If we are for preemption we just want a one-shot of delalloc
701 * flushing so we can stop flushing if we decide we don't need
702 * to anymore.
703 */
704 if (for_preempt)
705 break;
706
707 spin_lock(&space_info->lock);
708 if (list_empty(&space_info->tickets) &&
709 list_empty(&space_info->priority_tickets)) {
710 spin_unlock(&space_info->lock);
711 break;
712 }
713 spin_unlock(&space_info->lock);
714
715 delalloc_bytes = percpu_counter_sum_positive(
716 &fs_info->delalloc_bytes);
717 ordered_bytes = percpu_counter_sum_positive(
718 &fs_info->ordered_bytes);
719 }
720}
721
722/*
723 * Try to flush some data based on policy set by @state. This is only advisory
724 * and may fail for various reasons. The caller is supposed to examine the
725 * state of @space_info to detect the outcome.
726 */
727static void flush_space(struct btrfs_fs_info *fs_info,
728 struct btrfs_space_info *space_info, u64 num_bytes,
729 enum btrfs_flush_state state, bool for_preempt)
730{
731 struct btrfs_root *root = fs_info->tree_root;
732 struct btrfs_trans_handle *trans;
733 int nr;
734 int ret = 0;
735
736 switch (state) {
737 case FLUSH_DELAYED_ITEMS_NR:
738 case FLUSH_DELAYED_ITEMS:
739 if (state == FLUSH_DELAYED_ITEMS_NR)
740 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
741 else
742 nr = -1;
743
744 trans = btrfs_join_transaction_nostart(root);
745 if (IS_ERR(trans)) {
746 ret = PTR_ERR(trans);
747 if (ret == -ENOENT)
748 ret = 0;
749 break;
750 }
751 ret = btrfs_run_delayed_items_nr(trans, nr);
752 btrfs_end_transaction(trans);
753 break;
754 case FLUSH_DELALLOC:
755 case FLUSH_DELALLOC_WAIT:
756 case FLUSH_DELALLOC_FULL:
757 if (state == FLUSH_DELALLOC_FULL)
758 num_bytes = U64_MAX;
759 shrink_delalloc(fs_info, space_info, num_bytes,
760 state != FLUSH_DELALLOC, for_preempt);
761 break;
762 case FLUSH_DELAYED_REFS_NR:
763 case FLUSH_DELAYED_REFS:
764 trans = btrfs_join_transaction_nostart(root);
765 if (IS_ERR(trans)) {
766 ret = PTR_ERR(trans);
767 if (ret == -ENOENT)
768 ret = 0;
769 break;
770 }
771 if (state == FLUSH_DELAYED_REFS_NR)
772 btrfs_run_delayed_refs(trans, num_bytes);
773 else
774 btrfs_run_delayed_refs(trans, 0);
775 btrfs_end_transaction(trans);
776 break;
777 case ALLOC_CHUNK:
778 case ALLOC_CHUNK_FORCE:
779 trans = btrfs_join_transaction(root);
780 if (IS_ERR(trans)) {
781 ret = PTR_ERR(trans);
782 break;
783 }
784 ret = btrfs_chunk_alloc(trans,
785 btrfs_get_alloc_profile(fs_info, space_info->flags),
786 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
787 CHUNK_ALLOC_FORCE);
788 btrfs_end_transaction(trans);
789
790 if (ret > 0 || ret == -ENOSPC)
791 ret = 0;
792 break;
793 case RUN_DELAYED_IPUTS:
794 /*
795 * If we have pending delayed iputs then we could free up a
796 * bunch of pinned space, so make sure we run the iputs before
797 * we do our pinned bytes check below.
798 */
799 btrfs_run_delayed_iputs(fs_info);
800 btrfs_wait_on_delayed_iputs(fs_info);
801 break;
802 case COMMIT_TRANS:
803 ASSERT(current->journal_info == NULL);
804 /*
805 * We don't want to start a new transaction, just attach to the
806 * current one or wait it fully commits in case its commit is
807 * happening at the moment. Note: we don't use a nostart join
808 * because that does not wait for a transaction to fully commit
809 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
810 */
811 trans = btrfs_attach_transaction_barrier(root);
812 if (IS_ERR(trans)) {
813 ret = PTR_ERR(trans);
814 if (ret == -ENOENT)
815 ret = 0;
816 break;
817 }
818 ret = btrfs_commit_transaction(trans);
819 break;
820 default:
821 ret = -ENOSPC;
822 break;
823 }
824
825 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
826 ret, for_preempt);
827 return;
828}
829
830static inline u64
831btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
832 struct btrfs_space_info *space_info)
833{
834 u64 used;
835 u64 avail;
836 u64 to_reclaim = space_info->reclaim_size;
837
838 lockdep_assert_held(&space_info->lock);
839
840 avail = calc_available_free_space(fs_info, space_info,
841 BTRFS_RESERVE_FLUSH_ALL);
842 used = btrfs_space_info_used(space_info, true);
843
844 /*
845 * We may be flushing because suddenly we have less space than we had
846 * before, and now we're well over-committed based on our current free
847 * space. If that's the case add in our overage so we make sure to put
848 * appropriate pressure on the flushing state machine.
849 */
850 if (space_info->total_bytes + avail < used)
851 to_reclaim += used - (space_info->total_bytes + avail);
852
853 return to_reclaim;
854}
855
856static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
857 struct btrfs_space_info *space_info)
858{
859 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
860 u64 ordered, delalloc;
861 u64 thresh;
862 u64 used;
863
864 thresh = mult_perc(space_info->total_bytes, 90);
865
866 lockdep_assert_held(&space_info->lock);
867
868 /* If we're just plain full then async reclaim just slows us down. */
869 if ((space_info->bytes_used + space_info->bytes_reserved +
870 global_rsv_size) >= thresh)
871 return false;
872
873 used = space_info->bytes_may_use + space_info->bytes_pinned;
874
875 /* The total flushable belongs to the global rsv, don't flush. */
876 if (global_rsv_size >= used)
877 return false;
878
879 /*
880 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
881 * that devoted to other reservations then there's no sense in flushing,
882 * we don't have a lot of things that need flushing.
883 */
884 if (used - global_rsv_size <= SZ_128M)
885 return false;
886
887 /*
888 * We have tickets queued, bail so we don't compete with the async
889 * flushers.
890 */
891 if (space_info->reclaim_size)
892 return false;
893
894 /*
895 * If we have over half of the free space occupied by reservations or
896 * pinned then we want to start flushing.
897 *
898 * We do not do the traditional thing here, which is to say
899 *
900 * if (used >= ((total_bytes + avail) / 2))
901 * return 1;
902 *
903 * because this doesn't quite work how we want. If we had more than 50%
904 * of the space_info used by bytes_used and we had 0 available we'd just
905 * constantly run the background flusher. Instead we want it to kick in
906 * if our reclaimable space exceeds our clamped free space.
907 *
908 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
909 * the following:
910 *
911 * Amount of RAM Minimum threshold Maximum threshold
912 *
913 * 256GiB 1GiB 128GiB
914 * 128GiB 512MiB 64GiB
915 * 64GiB 256MiB 32GiB
916 * 32GiB 128MiB 16GiB
917 * 16GiB 64MiB 8GiB
918 *
919 * These are the range our thresholds will fall in, corresponding to how
920 * much delalloc we need for the background flusher to kick in.
921 */
922
923 thresh = calc_available_free_space(fs_info, space_info,
924 BTRFS_RESERVE_FLUSH_ALL);
925 used = space_info->bytes_used + space_info->bytes_reserved +
926 space_info->bytes_readonly + global_rsv_size;
927 if (used < space_info->total_bytes)
928 thresh += space_info->total_bytes - used;
929 thresh >>= space_info->clamp;
930
931 used = space_info->bytes_pinned;
932
933 /*
934 * If we have more ordered bytes than delalloc bytes then we're either
935 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
936 * around. Preemptive flushing is only useful in that it can free up
937 * space before tickets need to wait for things to finish. In the case
938 * of ordered extents, preemptively waiting on ordered extents gets us
939 * nothing, if our reservations are tied up in ordered extents we'll
940 * simply have to slow down writers by forcing them to wait on ordered
941 * extents.
942 *
943 * In the case that ordered is larger than delalloc, only include the
944 * block reserves that we would actually be able to directly reclaim
945 * from. In this case if we're heavy on metadata operations this will
946 * clearly be heavy enough to warrant preemptive flushing. In the case
947 * of heavy DIO or ordered reservations, preemptive flushing will just
948 * waste time and cause us to slow down.
949 *
950 * We want to make sure we truly are maxed out on ordered however, so
951 * cut ordered in half, and if it's still higher than delalloc then we
952 * can keep flushing. This is to avoid the case where we start
953 * flushing, and now delalloc == ordered and we stop preemptively
954 * flushing when we could still have several gigs of delalloc to flush.
955 */
956 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
957 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
958 if (ordered >= delalloc)
959 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
960 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
961 else
962 used += space_info->bytes_may_use - global_rsv_size;
963
964 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
965 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
966}
967
968static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
969 struct btrfs_space_info *space_info,
970 struct reserve_ticket *ticket)
971{
972 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
973 u64 min_bytes;
974
975 if (!ticket->steal)
976 return false;
977
978 if (global_rsv->space_info != space_info)
979 return false;
980
981 spin_lock(&global_rsv->lock);
982 min_bytes = mult_perc(global_rsv->size, 10);
983 if (global_rsv->reserved < min_bytes + ticket->bytes) {
984 spin_unlock(&global_rsv->lock);
985 return false;
986 }
987 global_rsv->reserved -= ticket->bytes;
988 remove_ticket(space_info, ticket);
989 ticket->bytes = 0;
990 wake_up(&ticket->wait);
991 space_info->tickets_id++;
992 if (global_rsv->reserved < global_rsv->size)
993 global_rsv->full = 0;
994 spin_unlock(&global_rsv->lock);
995
996 return true;
997}
998
999/*
1000 * We've exhausted our flushing, start failing tickets.
1001 *
1002 * @fs_info - fs_info for this fs
1003 * @space_info - the space info we were flushing
1004 *
1005 * We call this when we've exhausted our flushing ability and haven't made
1006 * progress in satisfying tickets. The reservation code handles tickets in
1007 * order, so if there is a large ticket first and then smaller ones we could
1008 * very well satisfy the smaller tickets. This will attempt to wake up any
1009 * tickets in the list to catch this case.
1010 *
1011 * This function returns true if it was able to make progress by clearing out
1012 * other tickets, or if it stumbles across a ticket that was smaller than the
1013 * first ticket.
1014 */
1015static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1016 struct btrfs_space_info *space_info)
1017{
1018 struct reserve_ticket *ticket;
1019 u64 tickets_id = space_info->tickets_id;
1020 const bool aborted = BTRFS_FS_ERROR(fs_info);
1021
1022 trace_btrfs_fail_all_tickets(fs_info, space_info);
1023
1024 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1025 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1026 __btrfs_dump_space_info(fs_info, space_info);
1027 }
1028
1029 while (!list_empty(&space_info->tickets) &&
1030 tickets_id == space_info->tickets_id) {
1031 ticket = list_first_entry(&space_info->tickets,
1032 struct reserve_ticket, list);
1033
1034 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1035 return true;
1036
1037 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1038 btrfs_info(fs_info, "failing ticket with %llu bytes",
1039 ticket->bytes);
1040
1041 remove_ticket(space_info, ticket);
1042 if (aborted)
1043 ticket->error = -EIO;
1044 else
1045 ticket->error = -ENOSPC;
1046 wake_up(&ticket->wait);
1047
1048 /*
1049 * We're just throwing tickets away, so more flushing may not
1050 * trip over btrfs_try_granting_tickets, so we need to call it
1051 * here to see if we can make progress with the next ticket in
1052 * the list.
1053 */
1054 if (!aborted)
1055 btrfs_try_granting_tickets(fs_info, space_info);
1056 }
1057 return (tickets_id != space_info->tickets_id);
1058}
1059
1060/*
1061 * This is for normal flushers, we can wait all goddamned day if we want to. We
1062 * will loop and continuously try to flush as long as we are making progress.
1063 * We count progress as clearing off tickets each time we have to loop.
1064 */
1065static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1066{
1067 struct btrfs_fs_info *fs_info;
1068 struct btrfs_space_info *space_info;
1069 u64 to_reclaim;
1070 enum btrfs_flush_state flush_state;
1071 int commit_cycles = 0;
1072 u64 last_tickets_id;
1073
1074 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1075 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1076
1077 spin_lock(&space_info->lock);
1078 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1079 if (!to_reclaim) {
1080 space_info->flush = 0;
1081 spin_unlock(&space_info->lock);
1082 return;
1083 }
1084 last_tickets_id = space_info->tickets_id;
1085 spin_unlock(&space_info->lock);
1086
1087 flush_state = FLUSH_DELAYED_ITEMS_NR;
1088 do {
1089 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1090 spin_lock(&space_info->lock);
1091 if (list_empty(&space_info->tickets)) {
1092 space_info->flush = 0;
1093 spin_unlock(&space_info->lock);
1094 return;
1095 }
1096 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1097 space_info);
1098 if (last_tickets_id == space_info->tickets_id) {
1099 flush_state++;
1100 } else {
1101 last_tickets_id = space_info->tickets_id;
1102 flush_state = FLUSH_DELAYED_ITEMS_NR;
1103 if (commit_cycles)
1104 commit_cycles--;
1105 }
1106
1107 /*
1108 * We do not want to empty the system of delalloc unless we're
1109 * under heavy pressure, so allow one trip through the flushing
1110 * logic before we start doing a FLUSH_DELALLOC_FULL.
1111 */
1112 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1113 flush_state++;
1114
1115 /*
1116 * We don't want to force a chunk allocation until we've tried
1117 * pretty hard to reclaim space. Think of the case where we
1118 * freed up a bunch of space and so have a lot of pinned space
1119 * to reclaim. We would rather use that than possibly create a
1120 * underutilized metadata chunk. So if this is our first run
1121 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1122 * commit the transaction. If nothing has changed the next go
1123 * around then we can force a chunk allocation.
1124 */
1125 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1126 flush_state++;
1127
1128 if (flush_state > COMMIT_TRANS) {
1129 commit_cycles++;
1130 if (commit_cycles > 2) {
1131 if (maybe_fail_all_tickets(fs_info, space_info)) {
1132 flush_state = FLUSH_DELAYED_ITEMS_NR;
1133 commit_cycles--;
1134 } else {
1135 space_info->flush = 0;
1136 }
1137 } else {
1138 flush_state = FLUSH_DELAYED_ITEMS_NR;
1139 }
1140 }
1141 spin_unlock(&space_info->lock);
1142 } while (flush_state <= COMMIT_TRANS);
1143}
1144
1145/*
1146 * This handles pre-flushing of metadata space before we get to the point that
1147 * we need to start blocking threads on tickets. The logic here is different
1148 * from the other flush paths because it doesn't rely on tickets to tell us how
1149 * much we need to flush, instead it attempts to keep us below the 80% full
1150 * watermark of space by flushing whichever reservation pool is currently the
1151 * largest.
1152 */
1153static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1154{
1155 struct btrfs_fs_info *fs_info;
1156 struct btrfs_space_info *space_info;
1157 struct btrfs_block_rsv *delayed_block_rsv;
1158 struct btrfs_block_rsv *delayed_refs_rsv;
1159 struct btrfs_block_rsv *global_rsv;
1160 struct btrfs_block_rsv *trans_rsv;
1161 int loops = 0;
1162
1163 fs_info = container_of(work, struct btrfs_fs_info,
1164 preempt_reclaim_work);
1165 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1166 delayed_block_rsv = &fs_info->delayed_block_rsv;
1167 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1168 global_rsv = &fs_info->global_block_rsv;
1169 trans_rsv = &fs_info->trans_block_rsv;
1170
1171 spin_lock(&space_info->lock);
1172 while (need_preemptive_reclaim(fs_info, space_info)) {
1173 enum btrfs_flush_state flush;
1174 u64 delalloc_size = 0;
1175 u64 to_reclaim, block_rsv_size;
1176 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1177
1178 loops++;
1179
1180 /*
1181 * We don't have a precise counter for the metadata being
1182 * reserved for delalloc, so we'll approximate it by subtracting
1183 * out the block rsv's space from the bytes_may_use. If that
1184 * amount is higher than the individual reserves, then we can
1185 * assume it's tied up in delalloc reservations.
1186 */
1187 block_rsv_size = global_rsv_size +
1188 btrfs_block_rsv_reserved(delayed_block_rsv) +
1189 btrfs_block_rsv_reserved(delayed_refs_rsv) +
1190 btrfs_block_rsv_reserved(trans_rsv);
1191 if (block_rsv_size < space_info->bytes_may_use)
1192 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1193
1194 /*
1195 * We don't want to include the global_rsv in our calculation,
1196 * because that's space we can't touch. Subtract it from the
1197 * block_rsv_size for the next checks.
1198 */
1199 block_rsv_size -= global_rsv_size;
1200
1201 /*
1202 * We really want to avoid flushing delalloc too much, as it
1203 * could result in poor allocation patterns, so only flush it if
1204 * it's larger than the rest of the pools combined.
1205 */
1206 if (delalloc_size > block_rsv_size) {
1207 to_reclaim = delalloc_size;
1208 flush = FLUSH_DELALLOC;
1209 } else if (space_info->bytes_pinned >
1210 (btrfs_block_rsv_reserved(delayed_block_rsv) +
1211 btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1212 to_reclaim = space_info->bytes_pinned;
1213 flush = COMMIT_TRANS;
1214 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1215 btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1216 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1217 flush = FLUSH_DELAYED_ITEMS_NR;
1218 } else {
1219 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1220 flush = FLUSH_DELAYED_REFS_NR;
1221 }
1222
1223 spin_unlock(&space_info->lock);
1224
1225 /*
1226 * We don't want to reclaim everything, just a portion, so scale
1227 * down the to_reclaim by 1/4. If it takes us down to 0,
1228 * reclaim 1 items worth.
1229 */
1230 to_reclaim >>= 2;
1231 if (!to_reclaim)
1232 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1233 flush_space(fs_info, space_info, to_reclaim, flush, true);
1234 cond_resched();
1235 spin_lock(&space_info->lock);
1236 }
1237
1238 /* We only went through once, back off our clamping. */
1239 if (loops == 1 && !space_info->reclaim_size)
1240 space_info->clamp = max(1, space_info->clamp - 1);
1241 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1242 spin_unlock(&space_info->lock);
1243}
1244
1245/*
1246 * FLUSH_DELALLOC_WAIT:
1247 * Space is freed from flushing delalloc in one of two ways.
1248 *
1249 * 1) compression is on and we allocate less space than we reserved
1250 * 2) we are overwriting existing space
1251 *
1252 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1253 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1254 * length to ->bytes_reserved, and subtracts the reserved space from
1255 * ->bytes_may_use.
1256 *
1257 * For #2 this is trickier. Once the ordered extent runs we will drop the
1258 * extent in the range we are overwriting, which creates a delayed ref for
1259 * that freed extent. This however is not reclaimed until the transaction
1260 * commits, thus the next stages.
1261 *
1262 * RUN_DELAYED_IPUTS
1263 * If we are freeing inodes, we want to make sure all delayed iputs have
1264 * completed, because they could have been on an inode with i_nlink == 0, and
1265 * thus have been truncated and freed up space. But again this space is not
1266 * immediately re-usable, it comes in the form of a delayed ref, which must be
1267 * run and then the transaction must be committed.
1268 *
1269 * COMMIT_TRANS
1270 * This is where we reclaim all of the pinned space generated by running the
1271 * iputs
1272 *
1273 * ALLOC_CHUNK_FORCE
1274 * For data we start with alloc chunk force, however we could have been full
1275 * before, and then the transaction commit could have freed new block groups,
1276 * so if we now have space to allocate do the force chunk allocation.
1277 */
1278static const enum btrfs_flush_state data_flush_states[] = {
1279 FLUSH_DELALLOC_FULL,
1280 RUN_DELAYED_IPUTS,
1281 COMMIT_TRANS,
1282 ALLOC_CHUNK_FORCE,
1283};
1284
1285static void btrfs_async_reclaim_data_space(struct work_struct *work)
1286{
1287 struct btrfs_fs_info *fs_info;
1288 struct btrfs_space_info *space_info;
1289 u64 last_tickets_id;
1290 enum btrfs_flush_state flush_state = 0;
1291
1292 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1293 space_info = fs_info->data_sinfo;
1294
1295 spin_lock(&space_info->lock);
1296 if (list_empty(&space_info->tickets)) {
1297 space_info->flush = 0;
1298 spin_unlock(&space_info->lock);
1299 return;
1300 }
1301 last_tickets_id = space_info->tickets_id;
1302 spin_unlock(&space_info->lock);
1303
1304 while (!space_info->full) {
1305 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1306 spin_lock(&space_info->lock);
1307 if (list_empty(&space_info->tickets)) {
1308 space_info->flush = 0;
1309 spin_unlock(&space_info->lock);
1310 return;
1311 }
1312
1313 /* Something happened, fail everything and bail. */
1314 if (BTRFS_FS_ERROR(fs_info))
1315 goto aborted_fs;
1316 last_tickets_id = space_info->tickets_id;
1317 spin_unlock(&space_info->lock);
1318 }
1319
1320 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1321 flush_space(fs_info, space_info, U64_MAX,
1322 data_flush_states[flush_state], false);
1323 spin_lock(&space_info->lock);
1324 if (list_empty(&space_info->tickets)) {
1325 space_info->flush = 0;
1326 spin_unlock(&space_info->lock);
1327 return;
1328 }
1329
1330 if (last_tickets_id == space_info->tickets_id) {
1331 flush_state++;
1332 } else {
1333 last_tickets_id = space_info->tickets_id;
1334 flush_state = 0;
1335 }
1336
1337 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1338 if (space_info->full) {
1339 if (maybe_fail_all_tickets(fs_info, space_info))
1340 flush_state = 0;
1341 else
1342 space_info->flush = 0;
1343 } else {
1344 flush_state = 0;
1345 }
1346
1347 /* Something happened, fail everything and bail. */
1348 if (BTRFS_FS_ERROR(fs_info))
1349 goto aborted_fs;
1350
1351 }
1352 spin_unlock(&space_info->lock);
1353 }
1354 return;
1355
1356aborted_fs:
1357 maybe_fail_all_tickets(fs_info, space_info);
1358 space_info->flush = 0;
1359 spin_unlock(&space_info->lock);
1360}
1361
1362void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1363{
1364 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1365 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1366 INIT_WORK(&fs_info->preempt_reclaim_work,
1367 btrfs_preempt_reclaim_metadata_space);
1368}
1369
1370static const enum btrfs_flush_state priority_flush_states[] = {
1371 FLUSH_DELAYED_ITEMS_NR,
1372 FLUSH_DELAYED_ITEMS,
1373 ALLOC_CHUNK,
1374};
1375
1376static const enum btrfs_flush_state evict_flush_states[] = {
1377 FLUSH_DELAYED_ITEMS_NR,
1378 FLUSH_DELAYED_ITEMS,
1379 FLUSH_DELAYED_REFS_NR,
1380 FLUSH_DELAYED_REFS,
1381 FLUSH_DELALLOC,
1382 FLUSH_DELALLOC_WAIT,
1383 FLUSH_DELALLOC_FULL,
1384 ALLOC_CHUNK,
1385 COMMIT_TRANS,
1386};
1387
1388static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1389 struct btrfs_space_info *space_info,
1390 struct reserve_ticket *ticket,
1391 const enum btrfs_flush_state *states,
1392 int states_nr)
1393{
1394 u64 to_reclaim;
1395 int flush_state = 0;
1396
1397 spin_lock(&space_info->lock);
1398 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1399 /*
1400 * This is the priority reclaim path, so to_reclaim could be >0 still
1401 * because we may have only satisfied the priority tickets and still
1402 * left non priority tickets on the list. We would then have
1403 * to_reclaim but ->bytes == 0.
1404 */
1405 if (ticket->bytes == 0) {
1406 spin_unlock(&space_info->lock);
1407 return;
1408 }
1409
1410 while (flush_state < states_nr) {
1411 spin_unlock(&space_info->lock);
1412 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1413 false);
1414 flush_state++;
1415 spin_lock(&space_info->lock);
1416 if (ticket->bytes == 0) {
1417 spin_unlock(&space_info->lock);
1418 return;
1419 }
1420 }
1421
1422 /*
1423 * Attempt to steal from the global rsv if we can, except if the fs was
1424 * turned into error mode due to a transaction abort when flushing space
1425 * above, in that case fail with the abort error instead of returning
1426 * success to the caller if we can steal from the global rsv - this is
1427 * just to have caller fail immeditelly instead of later when trying to
1428 * modify the fs, making it easier to debug -ENOSPC problems.
1429 */
1430 if (BTRFS_FS_ERROR(fs_info)) {
1431 ticket->error = BTRFS_FS_ERROR(fs_info);
1432 remove_ticket(space_info, ticket);
1433 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1434 ticket->error = -ENOSPC;
1435 remove_ticket(space_info, ticket);
1436 }
1437
1438 /*
1439 * We must run try_granting_tickets here because we could be a large
1440 * ticket in front of a smaller ticket that can now be satisfied with
1441 * the available space.
1442 */
1443 btrfs_try_granting_tickets(fs_info, space_info);
1444 spin_unlock(&space_info->lock);
1445}
1446
1447static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1448 struct btrfs_space_info *space_info,
1449 struct reserve_ticket *ticket)
1450{
1451 spin_lock(&space_info->lock);
1452
1453 /* We could have been granted before we got here. */
1454 if (ticket->bytes == 0) {
1455 spin_unlock(&space_info->lock);
1456 return;
1457 }
1458
1459 while (!space_info->full) {
1460 spin_unlock(&space_info->lock);
1461 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1462 spin_lock(&space_info->lock);
1463 if (ticket->bytes == 0) {
1464 spin_unlock(&space_info->lock);
1465 return;
1466 }
1467 }
1468
1469 ticket->error = -ENOSPC;
1470 remove_ticket(space_info, ticket);
1471 btrfs_try_granting_tickets(fs_info, space_info);
1472 spin_unlock(&space_info->lock);
1473}
1474
1475static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1476 struct btrfs_space_info *space_info,
1477 struct reserve_ticket *ticket)
1478
1479{
1480 DEFINE_WAIT(wait);
1481 int ret = 0;
1482
1483 spin_lock(&space_info->lock);
1484 while (ticket->bytes > 0 && ticket->error == 0) {
1485 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1486 if (ret) {
1487 /*
1488 * Delete us from the list. After we unlock the space
1489 * info, we don't want the async reclaim job to reserve
1490 * space for this ticket. If that would happen, then the
1491 * ticket's task would not known that space was reserved
1492 * despite getting an error, resulting in a space leak
1493 * (bytes_may_use counter of our space_info).
1494 */
1495 remove_ticket(space_info, ticket);
1496 ticket->error = -EINTR;
1497 break;
1498 }
1499 spin_unlock(&space_info->lock);
1500
1501 schedule();
1502
1503 finish_wait(&ticket->wait, &wait);
1504 spin_lock(&space_info->lock);
1505 }
1506 spin_unlock(&space_info->lock);
1507}
1508
1509/*
1510 * Do the appropriate flushing and waiting for a ticket.
1511 *
1512 * @fs_info: the filesystem
1513 * @space_info: space info for the reservation
1514 * @ticket: ticket for the reservation
1515 * @start_ns: timestamp when the reservation started
1516 * @orig_bytes: amount of bytes originally reserved
1517 * @flush: how much we can flush
1518 *
1519 * This does the work of figuring out how to flush for the ticket, waiting for
1520 * the reservation, and returning the appropriate error if there is one.
1521 */
1522static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1523 struct btrfs_space_info *space_info,
1524 struct reserve_ticket *ticket,
1525 u64 start_ns, u64 orig_bytes,
1526 enum btrfs_reserve_flush_enum flush)
1527{
1528 int ret;
1529
1530 switch (flush) {
1531 case BTRFS_RESERVE_FLUSH_DATA:
1532 case BTRFS_RESERVE_FLUSH_ALL:
1533 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1534 wait_reserve_ticket(fs_info, space_info, ticket);
1535 break;
1536 case BTRFS_RESERVE_FLUSH_LIMIT:
1537 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1538 priority_flush_states,
1539 ARRAY_SIZE(priority_flush_states));
1540 break;
1541 case BTRFS_RESERVE_FLUSH_EVICT:
1542 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1543 evict_flush_states,
1544 ARRAY_SIZE(evict_flush_states));
1545 break;
1546 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1547 priority_reclaim_data_space(fs_info, space_info, ticket);
1548 break;
1549 default:
1550 ASSERT(0);
1551 break;
1552 }
1553
1554 ret = ticket->error;
1555 ASSERT(list_empty(&ticket->list));
1556 /*
1557 * Check that we can't have an error set if the reservation succeeded,
1558 * as that would confuse tasks and lead them to error out without
1559 * releasing reserved space (if an error happens the expectation is that
1560 * space wasn't reserved at all).
1561 */
1562 ASSERT(!(ticket->bytes == 0 && ticket->error));
1563 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1564 start_ns, flush, ticket->error);
1565 return ret;
1566}
1567
1568/*
1569 * This returns true if this flush state will go through the ordinary flushing
1570 * code.
1571 */
1572static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1573{
1574 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1575 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1576}
1577
1578static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1579 struct btrfs_space_info *space_info)
1580{
1581 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1582 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1583
1584 /*
1585 * If we're heavy on ordered operations then clamping won't help us. We
1586 * need to clamp specifically to keep up with dirty'ing buffered
1587 * writers, because there's not a 1:1 correlation of writing delalloc
1588 * and freeing space, like there is with flushing delayed refs or
1589 * delayed nodes. If we're already more ordered than delalloc then
1590 * we're keeping up, otherwise we aren't and should probably clamp.
1591 */
1592 if (ordered < delalloc)
1593 space_info->clamp = min(space_info->clamp + 1, 8);
1594}
1595
1596static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1597{
1598 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1599 flush == BTRFS_RESERVE_FLUSH_EVICT);
1600}
1601
1602/*
1603 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1604 * fail as quickly as possible.
1605 */
1606static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1607{
1608 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1609 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1610}
1611
1612/*
1613 * Try to reserve bytes from the block_rsv's space.
1614 *
1615 * @fs_info: the filesystem
1616 * @space_info: space info we want to allocate from
1617 * @orig_bytes: number of bytes we want
1618 * @flush: whether or not we can flush to make our reservation
1619 *
1620 * This will reserve orig_bytes number of bytes from the space info associated
1621 * with the block_rsv. If there is not enough space it will make an attempt to
1622 * flush out space to make room. It will do this by flushing delalloc if
1623 * possible or committing the transaction. If flush is 0 then no attempts to
1624 * regain reservations will be made and this will fail if there is not enough
1625 * space already.
1626 */
1627static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1628 struct btrfs_space_info *space_info, u64 orig_bytes,
1629 enum btrfs_reserve_flush_enum flush)
1630{
1631 struct work_struct *async_work;
1632 struct reserve_ticket ticket;
1633 u64 start_ns = 0;
1634 u64 used;
1635 int ret = -ENOSPC;
1636 bool pending_tickets;
1637
1638 ASSERT(orig_bytes);
1639 /*
1640 * If have a transaction handle (current->journal_info != NULL), then
1641 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1642 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1643 * flushing methods can trigger transaction commits.
1644 */
1645 if (current->journal_info) {
1646 /* One assert per line for easier debugging. */
1647 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1648 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1649 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1650 }
1651
1652 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1653 async_work = &fs_info->async_data_reclaim_work;
1654 else
1655 async_work = &fs_info->async_reclaim_work;
1656
1657 spin_lock(&space_info->lock);
1658 used = btrfs_space_info_used(space_info, true);
1659
1660 /*
1661 * We don't want NO_FLUSH allocations to jump everybody, they can
1662 * generally handle ENOSPC in a different way, so treat them the same as
1663 * normal flushers when it comes to skipping pending tickets.
1664 */
1665 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1666 pending_tickets = !list_empty(&space_info->tickets) ||
1667 !list_empty(&space_info->priority_tickets);
1668 else
1669 pending_tickets = !list_empty(&space_info->priority_tickets);
1670
1671 /*
1672 * Carry on if we have enough space (short-circuit) OR call
1673 * can_overcommit() to ensure we can overcommit to continue.
1674 */
1675 if (!pending_tickets &&
1676 ((used + orig_bytes <= space_info->total_bytes) ||
1677 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1678 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1679 orig_bytes);
1680 ret = 0;
1681 }
1682
1683 /*
1684 * Things are dire, we need to make a reservation so we don't abort. We
1685 * will let this reservation go through as long as we have actual space
1686 * left to allocate for the block.
1687 */
1688 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1689 used = btrfs_space_info_used(space_info, false);
1690 if (used + orig_bytes <= space_info->total_bytes) {
1691 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1692 orig_bytes);
1693 ret = 0;
1694 }
1695 }
1696
1697 /*
1698 * If we couldn't make a reservation then setup our reservation ticket
1699 * and kick the async worker if it's not already running.
1700 *
1701 * If we are a priority flusher then we just need to add our ticket to
1702 * the list and we will do our own flushing further down.
1703 */
1704 if (ret && can_ticket(flush)) {
1705 ticket.bytes = orig_bytes;
1706 ticket.error = 0;
1707 space_info->reclaim_size += ticket.bytes;
1708 init_waitqueue_head(&ticket.wait);
1709 ticket.steal = can_steal(flush);
1710 if (trace_btrfs_reserve_ticket_enabled())
1711 start_ns = ktime_get_ns();
1712
1713 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1714 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1715 flush == BTRFS_RESERVE_FLUSH_DATA) {
1716 list_add_tail(&ticket.list, &space_info->tickets);
1717 if (!space_info->flush) {
1718 /*
1719 * We were forced to add a reserve ticket, so
1720 * our preemptive flushing is unable to keep
1721 * up. Clamp down on the threshold for the
1722 * preemptive flushing in order to keep up with
1723 * the workload.
1724 */
1725 maybe_clamp_preempt(fs_info, space_info);
1726
1727 space_info->flush = 1;
1728 trace_btrfs_trigger_flush(fs_info,
1729 space_info->flags,
1730 orig_bytes, flush,
1731 "enospc");
1732 queue_work(system_unbound_wq, async_work);
1733 }
1734 } else {
1735 list_add_tail(&ticket.list,
1736 &space_info->priority_tickets);
1737 }
1738 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1739 /*
1740 * We will do the space reservation dance during log replay,
1741 * which means we won't have fs_info->fs_root set, so don't do
1742 * the async reclaim as we will panic.
1743 */
1744 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1745 !work_busy(&fs_info->preempt_reclaim_work) &&
1746 need_preemptive_reclaim(fs_info, space_info)) {
1747 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1748 orig_bytes, flush, "preempt");
1749 queue_work(system_unbound_wq,
1750 &fs_info->preempt_reclaim_work);
1751 }
1752 }
1753 spin_unlock(&space_info->lock);
1754 if (!ret || !can_ticket(flush))
1755 return ret;
1756
1757 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1758 orig_bytes, flush);
1759}
1760
1761/*
1762 * Try to reserve metadata bytes from the block_rsv's space.
1763 *
1764 * @fs_info: the filesystem
1765 * @space_info: the space_info we're allocating for
1766 * @orig_bytes: number of bytes we want
1767 * @flush: whether or not we can flush to make our reservation
1768 *
1769 * This will reserve orig_bytes number of bytes from the space info associated
1770 * with the block_rsv. If there is not enough space it will make an attempt to
1771 * flush out space to make room. It will do this by flushing delalloc if
1772 * possible or committing the transaction. If flush is 0 then no attempts to
1773 * regain reservations will be made and this will fail if there is not enough
1774 * space already.
1775 */
1776int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1777 struct btrfs_space_info *space_info,
1778 u64 orig_bytes,
1779 enum btrfs_reserve_flush_enum flush)
1780{
1781 int ret;
1782
1783 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1784 if (ret == -ENOSPC) {
1785 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1786 space_info->flags, orig_bytes, 1);
1787
1788 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1789 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1790 }
1791 return ret;
1792}
1793
1794/*
1795 * Try to reserve data bytes for an allocation.
1796 *
1797 * @fs_info: the filesystem
1798 * @bytes: number of bytes we need
1799 * @flush: how we are allowed to flush
1800 *
1801 * This will reserve bytes from the data space info. If there is not enough
1802 * space then we will attempt to flush space as specified by flush.
1803 */
1804int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1805 enum btrfs_reserve_flush_enum flush)
1806{
1807 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1808 int ret;
1809
1810 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1811 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1812 flush == BTRFS_RESERVE_NO_FLUSH);
1813 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1814
1815 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1816 if (ret == -ENOSPC) {
1817 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1818 data_sinfo->flags, bytes, 1);
1819 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1820 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1821 }
1822 return ret;
1823}
1824
1825/* Dump all the space infos when we abort a transaction due to ENOSPC. */
1826__cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1827{
1828 struct btrfs_space_info *space_info;
1829
1830 btrfs_info(fs_info, "dumping space info:");
1831 list_for_each_entry(space_info, &fs_info->space_info, list) {
1832 spin_lock(&space_info->lock);
1833 __btrfs_dump_space_info(fs_info, space_info);
1834 spin_unlock(&space_info->lock);
1835 }
1836 dump_global_block_rsv(fs_info);
1837}
1838
1839/*
1840 * Account the unused space of all the readonly block group in the space_info.
1841 * takes mirrors into account.
1842 */
1843u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1844{
1845 struct btrfs_block_group *block_group;
1846 u64 free_bytes = 0;
1847 int factor;
1848
1849 /* It's df, we don't care if it's racy */
1850 if (list_empty(&sinfo->ro_bgs))
1851 return 0;
1852
1853 spin_lock(&sinfo->lock);
1854 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1855 spin_lock(&block_group->lock);
1856
1857 if (!block_group->ro) {
1858 spin_unlock(&block_group->lock);
1859 continue;
1860 }
1861
1862 factor = btrfs_bg_type_to_factor(block_group->flags);
1863 free_bytes += (block_group->length -
1864 block_group->used) * factor;
1865
1866 spin_unlock(&block_group->lock);
1867 }
1868 spin_unlock(&sinfo->lock);
1869
1870 return free_bytes;
1871}
1// SPDX-License-Identifier: GPL-2.0
2
3#include "misc.h"
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
8#include "free-space-cache.h"
9#include "ordered-data.h"
10#include "transaction.h"
11#include "block-group.h"
12
13/*
14 * HOW DOES SPACE RESERVATION WORK
15 *
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code. This comment is about how the whole system
18 * works generally.
19 *
20 * BASIC CONCEPTS
21 *
22 * 1) space_info. This is the ultimate arbiter of how much space we can use.
23 * There's a description of the bytes_ fields with the struct declaration,
24 * refer to that for specifics on each field. Suffice it to say that for
25 * reservations we care about total_bytes - SUM(space_info->bytes_) when
26 * determining if there is space to make an allocation. There is a space_info
27 * for METADATA, SYSTEM, and DATA areas.
28 *
29 * 2) block_rsv's. These are basically buckets for every different type of
30 * metadata reservation we have. You can see the comment in the block_rsv
31 * code on the rules for each type, but generally block_rsv->reserved is how
32 * much space is accounted for in space_info->bytes_may_use.
33 *
34 * 3) btrfs_calc*_size. These are the worst case calculations we used based
35 * on the number of items we will want to modify. We have one for changing
36 * items, and one for inserting new items. Generally we use these helpers to
37 * determine the size of the block reserves, and then use the actual bytes
38 * values to adjust the space_info counters.
39 *
40 * MAKING RESERVATIONS, THE NORMAL CASE
41 *
42 * We call into either btrfs_reserve_data_bytes() or
43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 * num_bytes we want to reserve.
45 *
46 * ->reserve
47 * space_info->bytes_may_reserve += num_bytes
48 *
49 * ->extent allocation
50 * Call btrfs_add_reserved_bytes() which does
51 * space_info->bytes_may_reserve -= num_bytes
52 * space_info->bytes_reserved += extent_bytes
53 *
54 * ->insert reference
55 * Call btrfs_update_block_group() which does
56 * space_info->bytes_reserved -= extent_bytes
57 * space_info->bytes_used += extent_bytes
58 *
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60 *
61 * Assume we are unable to simply make the reservation because we do not have
62 * enough space
63 *
64 * -> __reserve_bytes
65 * create a reserve_ticket with ->bytes set to our reservation, add it to
66 * the tail of space_info->tickets, kick async flush thread
67 *
68 * ->handle_reserve_ticket
69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70 * on the ticket.
71 *
72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 * Flushes various things attempting to free up space.
74 *
75 * -> btrfs_try_granting_tickets()
76 * This is called by anything that either subtracts space from
77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 * space_info->total_bytes. This loops through the ->priority_tickets and
79 * then the ->tickets list checking to see if the reservation can be
80 * completed. If it can the space is added to space_info->bytes_may_use and
81 * the ticket is woken up.
82 *
83 * -> ticket wakeup
84 * Check if ->bytes == 0, if it does we got our reservation and we can carry
85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86 * were interrupted.)
87 *
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89 *
90 * Same as the above, except we add ourselves to the
91 * space_info->priority_tickets, and we do not use ticket->wait, we simply
92 * call flush_space() ourselves for the states that are safe for us to call
93 * without deadlocking and hope for the best.
94 *
95 * THE FLUSHING STATES
96 *
97 * Generally speaking we will have two cases for each state, a "nice" state
98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
99 * reduce the locking over head on the various trees, and even to keep from
100 * doing any work at all in the case of delayed refs. Each of these delayed
101 * things however hold reservations, and so letting them run allows us to
102 * reclaim space so we can make new reservations.
103 *
104 * FLUSH_DELAYED_ITEMS
105 * Every inode has a delayed item to update the inode. Take a simple write
106 * for example, we would update the inode item at write time to update the
107 * mtime, and then again at finish_ordered_io() time in order to update the
108 * isize or bytes. We keep these delayed items to coalesce these operations
109 * into a single operation done on demand. These are an easy way to reclaim
110 * metadata space.
111 *
112 * FLUSH_DELALLOC
113 * Look at the delalloc comment to get an idea of how much space is reserved
114 * for delayed allocation. We can reclaim some of this space simply by
115 * running delalloc, but usually we need to wait for ordered extents to
116 * reclaim the bulk of this space.
117 *
118 * FLUSH_DELAYED_REFS
119 * We have a block reserve for the outstanding delayed refs space, and every
120 * delayed ref operation holds a reservation. Running these is a quick way
121 * to reclaim space, but we want to hold this until the end because COW can
122 * churn a lot and we can avoid making some extent tree modifications if we
123 * are able to delay for as long as possible.
124 *
125 * ALLOC_CHUNK
126 * We will skip this the first time through space reservation, because of
127 * overcommit and we don't want to have a lot of useless metadata space when
128 * our worst case reservations will likely never come true.
129 *
130 * RUN_DELAYED_IPUTS
131 * If we're freeing inodes we're likely freeing checksums, file extent
132 * items, and extent tree items. Loads of space could be freed up by these
133 * operations, however they won't be usable until the transaction commits.
134 *
135 * COMMIT_TRANS
136 * This will commit the transaction. Historically we had a lot of logic
137 * surrounding whether or not we'd commit the transaction, but this waits born
138 * out of a pre-tickets era where we could end up committing the transaction
139 * thousands of times in a row without making progress. Now thanks to our
140 * ticketing system we know if we're not making progress and can error
141 * everybody out after a few commits rather than burning the disk hoping for
142 * a different answer.
143 *
144 * OVERCOMMIT
145 *
146 * Because we hold so many reservations for metadata we will allow you to
147 * reserve more space than is currently free in the currently allocate
148 * metadata space. This only happens with metadata, data does not allow
149 * overcommitting.
150 *
151 * You can see the current logic for when we allow overcommit in
152 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
153 * is no unallocated space to be had, all reservations are kept within the
154 * free space in the allocated metadata chunks.
155 *
156 * Because of overcommitting, you generally want to use the
157 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
158 * thing with or without extra unallocated space.
159 */
160
161u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162 bool may_use_included)
163{
164 ASSERT(s_info);
165 return s_info->bytes_used + s_info->bytes_reserved +
166 s_info->bytes_pinned + s_info->bytes_readonly +
167 s_info->bytes_zone_unusable +
168 (may_use_included ? s_info->bytes_may_use : 0);
169}
170
171/*
172 * after adding space to the filesystem, we need to clear the full flags
173 * on all the space infos.
174 */
175void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176{
177 struct list_head *head = &info->space_info;
178 struct btrfs_space_info *found;
179
180 list_for_each_entry(found, head, list)
181 found->full = 0;
182}
183
184static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185{
186
187 struct btrfs_space_info *space_info;
188 int i;
189 int ret;
190
191 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192 if (!space_info)
193 return -ENOMEM;
194
195 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
196 INIT_LIST_HEAD(&space_info->block_groups[i]);
197 init_rwsem(&space_info->groups_sem);
198 spin_lock_init(&space_info->lock);
199 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
200 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
201 INIT_LIST_HEAD(&space_info->ro_bgs);
202 INIT_LIST_HEAD(&space_info->tickets);
203 INIT_LIST_HEAD(&space_info->priority_tickets);
204 space_info->clamp = 1;
205
206 ret = btrfs_sysfs_add_space_info_type(info, space_info);
207 if (ret)
208 return ret;
209
210 list_add(&space_info->list, &info->space_info);
211 if (flags & BTRFS_BLOCK_GROUP_DATA)
212 info->data_sinfo = space_info;
213
214 return ret;
215}
216
217int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
218{
219 struct btrfs_super_block *disk_super;
220 u64 features;
221 u64 flags;
222 int mixed = 0;
223 int ret;
224
225 disk_super = fs_info->super_copy;
226 if (!btrfs_super_root(disk_super))
227 return -EINVAL;
228
229 features = btrfs_super_incompat_flags(disk_super);
230 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
231 mixed = 1;
232
233 flags = BTRFS_BLOCK_GROUP_SYSTEM;
234 ret = create_space_info(fs_info, flags);
235 if (ret)
236 goto out;
237
238 if (mixed) {
239 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
240 ret = create_space_info(fs_info, flags);
241 } else {
242 flags = BTRFS_BLOCK_GROUP_METADATA;
243 ret = create_space_info(fs_info, flags);
244 if (ret)
245 goto out;
246
247 flags = BTRFS_BLOCK_GROUP_DATA;
248 ret = create_space_info(fs_info, flags);
249 }
250out:
251 return ret;
252}
253
254void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
255 u64 total_bytes, u64 bytes_used,
256 u64 bytes_readonly, u64 bytes_zone_unusable,
257 struct btrfs_space_info **space_info)
258{
259 struct btrfs_space_info *found;
260 int factor;
261
262 factor = btrfs_bg_type_to_factor(flags);
263
264 found = btrfs_find_space_info(info, flags);
265 ASSERT(found);
266 spin_lock(&found->lock);
267 found->total_bytes += total_bytes;
268 found->disk_total += total_bytes * factor;
269 found->bytes_used += bytes_used;
270 found->disk_used += bytes_used * factor;
271 found->bytes_readonly += bytes_readonly;
272 found->bytes_zone_unusable += bytes_zone_unusable;
273 if (total_bytes > 0)
274 found->full = 0;
275 btrfs_try_granting_tickets(info, found);
276 spin_unlock(&found->lock);
277 *space_info = found;
278}
279
280struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
281 u64 flags)
282{
283 struct list_head *head = &info->space_info;
284 struct btrfs_space_info *found;
285
286 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
287
288 list_for_each_entry(found, head, list) {
289 if (found->flags & flags)
290 return found;
291 }
292 return NULL;
293}
294
295static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
296 struct btrfs_space_info *space_info,
297 enum btrfs_reserve_flush_enum flush)
298{
299 u64 profile;
300 u64 avail;
301 int factor;
302
303 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
304 profile = btrfs_system_alloc_profile(fs_info);
305 else
306 profile = btrfs_metadata_alloc_profile(fs_info);
307
308 avail = atomic64_read(&fs_info->free_chunk_space);
309
310 /*
311 * If we have dup, raid1 or raid10 then only half of the free
312 * space is actually usable. For raid56, the space info used
313 * doesn't include the parity drive, so we don't have to
314 * change the math
315 */
316 factor = btrfs_bg_type_to_factor(profile);
317 avail = div_u64(avail, factor);
318
319 /*
320 * If we aren't flushing all things, let us overcommit up to
321 * 1/2th of the space. If we can flush, don't let us overcommit
322 * too much, let it overcommit up to 1/8 of the space.
323 */
324 if (flush == BTRFS_RESERVE_FLUSH_ALL)
325 avail >>= 3;
326 else
327 avail >>= 1;
328 return avail;
329}
330
331int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
332 struct btrfs_space_info *space_info, u64 bytes,
333 enum btrfs_reserve_flush_enum flush)
334{
335 u64 avail;
336 u64 used;
337
338 /* Don't overcommit when in mixed mode */
339 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
340 return 0;
341
342 used = btrfs_space_info_used(space_info, true);
343 avail = calc_available_free_space(fs_info, space_info, flush);
344
345 if (used + bytes < space_info->total_bytes + avail)
346 return 1;
347 return 0;
348}
349
350static void remove_ticket(struct btrfs_space_info *space_info,
351 struct reserve_ticket *ticket)
352{
353 if (!list_empty(&ticket->list)) {
354 list_del_init(&ticket->list);
355 ASSERT(space_info->reclaim_size >= ticket->bytes);
356 space_info->reclaim_size -= ticket->bytes;
357 }
358}
359
360/*
361 * This is for space we already have accounted in space_info->bytes_may_use, so
362 * basically when we're returning space from block_rsv's.
363 */
364void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
365 struct btrfs_space_info *space_info)
366{
367 struct list_head *head;
368 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
369
370 lockdep_assert_held(&space_info->lock);
371
372 head = &space_info->priority_tickets;
373again:
374 while (!list_empty(head)) {
375 struct reserve_ticket *ticket;
376 u64 used = btrfs_space_info_used(space_info, true);
377
378 ticket = list_first_entry(head, struct reserve_ticket, list);
379
380 /* Check and see if our ticket can be satisfied now. */
381 if ((used + ticket->bytes <= space_info->total_bytes) ||
382 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
383 flush)) {
384 btrfs_space_info_update_bytes_may_use(fs_info,
385 space_info,
386 ticket->bytes);
387 remove_ticket(space_info, ticket);
388 ticket->bytes = 0;
389 space_info->tickets_id++;
390 wake_up(&ticket->wait);
391 } else {
392 break;
393 }
394 }
395
396 if (head == &space_info->priority_tickets) {
397 head = &space_info->tickets;
398 flush = BTRFS_RESERVE_FLUSH_ALL;
399 goto again;
400 }
401}
402
403#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
404do { \
405 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
406 spin_lock(&__rsv->lock); \
407 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
408 __rsv->size, __rsv->reserved); \
409 spin_unlock(&__rsv->lock); \
410} while (0)
411
412static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
413 struct btrfs_space_info *info)
414{
415 lockdep_assert_held(&info->lock);
416
417 /* The free space could be negative in case of overcommit */
418 btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
419 info->flags,
420 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
421 info->full ? "" : "not ");
422 btrfs_info(fs_info,
423 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
424 info->total_bytes, info->bytes_used, info->bytes_pinned,
425 info->bytes_reserved, info->bytes_may_use,
426 info->bytes_readonly, info->bytes_zone_unusable);
427
428 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
429 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
430 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
431 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
432 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
433
434}
435
436void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
437 struct btrfs_space_info *info, u64 bytes,
438 int dump_block_groups)
439{
440 struct btrfs_block_group *cache;
441 int index = 0;
442
443 spin_lock(&info->lock);
444 __btrfs_dump_space_info(fs_info, info);
445 spin_unlock(&info->lock);
446
447 if (!dump_block_groups)
448 return;
449
450 down_read(&info->groups_sem);
451again:
452 list_for_each_entry(cache, &info->block_groups[index], list) {
453 spin_lock(&cache->lock);
454 btrfs_info(fs_info,
455 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
456 cache->start, cache->length, cache->used, cache->pinned,
457 cache->reserved, cache->zone_unusable,
458 cache->ro ? "[readonly]" : "");
459 spin_unlock(&cache->lock);
460 btrfs_dump_free_space(cache, bytes);
461 }
462 if (++index < BTRFS_NR_RAID_TYPES)
463 goto again;
464 up_read(&info->groups_sem);
465}
466
467static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
468 u64 to_reclaim)
469{
470 u64 bytes;
471 u64 nr;
472
473 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
474 nr = div64_u64(to_reclaim, bytes);
475 if (!nr)
476 nr = 1;
477 return nr;
478}
479
480#define EXTENT_SIZE_PER_ITEM SZ_256K
481
482/*
483 * shrink metadata reservation for delalloc
484 */
485static void shrink_delalloc(struct btrfs_fs_info *fs_info,
486 struct btrfs_space_info *space_info,
487 u64 to_reclaim, bool wait_ordered,
488 bool for_preempt)
489{
490 struct btrfs_trans_handle *trans;
491 u64 delalloc_bytes;
492 u64 ordered_bytes;
493 u64 items;
494 long time_left;
495 int loops;
496
497 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
498 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
499 if (delalloc_bytes == 0 && ordered_bytes == 0)
500 return;
501
502 /* Calc the number of the pages we need flush for space reservation */
503 if (to_reclaim == U64_MAX) {
504 items = U64_MAX;
505 } else {
506 /*
507 * to_reclaim is set to however much metadata we need to
508 * reclaim, but reclaiming that much data doesn't really track
509 * exactly. What we really want to do is reclaim full inode's
510 * worth of reservations, however that's not available to us
511 * here. We will take a fraction of the delalloc bytes for our
512 * flushing loops and hope for the best. Delalloc will expand
513 * the amount we write to cover an entire dirty extent, which
514 * will reclaim the metadata reservation for that range. If
515 * it's not enough subsequent flush stages will be more
516 * aggressive.
517 */
518 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
519 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
520 }
521
522 trans = (struct btrfs_trans_handle *)current->journal_info;
523
524 /*
525 * If we are doing more ordered than delalloc we need to just wait on
526 * ordered extents, otherwise we'll waste time trying to flush delalloc
527 * that likely won't give us the space back we need.
528 */
529 if (ordered_bytes > delalloc_bytes && !for_preempt)
530 wait_ordered = true;
531
532 loops = 0;
533 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
534 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
535 long nr_pages = min_t(u64, temp, LONG_MAX);
536 int async_pages;
537
538 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539
540 /*
541 * We need to make sure any outstanding async pages are now
542 * processed before we continue. This is because things like
543 * sync_inode() try to be smart and skip writing if the inode is
544 * marked clean. We don't use filemap_fwrite for flushing
545 * because we want to control how many pages we write out at a
546 * time, thus this is the only safe way to make sure we've
547 * waited for outstanding compressed workers to have started
548 * their jobs and thus have ordered extents set up properly.
549 *
550 * This exists because we do not want to wait for each
551 * individual inode to finish its async work, we simply want to
552 * start the IO on everybody, and then come back here and wait
553 * for all of the async work to catch up. Once we're done with
554 * that we know we'll have ordered extents for everything and we
555 * can decide if we wait for that or not.
556 *
557 * If we choose to replace this in the future, make absolutely
558 * sure that the proper waiting is being done in the async case,
559 * as there have been bugs in that area before.
560 */
561 async_pages = atomic_read(&fs_info->async_delalloc_pages);
562 if (!async_pages)
563 goto skip_async;
564
565 /*
566 * We don't want to wait forever, if we wrote less pages in this
567 * loop than we have outstanding, only wait for that number of
568 * pages, otherwise we can wait for all async pages to finish
569 * before continuing.
570 */
571 if (async_pages > nr_pages)
572 async_pages -= nr_pages;
573 else
574 async_pages = 0;
575 wait_event(fs_info->async_submit_wait,
576 atomic_read(&fs_info->async_delalloc_pages) <=
577 async_pages);
578skip_async:
579 loops++;
580 if (wait_ordered && !trans) {
581 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
582 } else {
583 time_left = schedule_timeout_killable(1);
584 if (time_left)
585 break;
586 }
587
588 /*
589 * If we are for preemption we just want a one-shot of delalloc
590 * flushing so we can stop flushing if we decide we don't need
591 * to anymore.
592 */
593 if (for_preempt)
594 break;
595
596 spin_lock(&space_info->lock);
597 if (list_empty(&space_info->tickets) &&
598 list_empty(&space_info->priority_tickets)) {
599 spin_unlock(&space_info->lock);
600 break;
601 }
602 spin_unlock(&space_info->lock);
603
604 delalloc_bytes = percpu_counter_sum_positive(
605 &fs_info->delalloc_bytes);
606 ordered_bytes = percpu_counter_sum_positive(
607 &fs_info->ordered_bytes);
608 }
609}
610
611/*
612 * Try to flush some data based on policy set by @state. This is only advisory
613 * and may fail for various reasons. The caller is supposed to examine the
614 * state of @space_info to detect the outcome.
615 */
616static void flush_space(struct btrfs_fs_info *fs_info,
617 struct btrfs_space_info *space_info, u64 num_bytes,
618 enum btrfs_flush_state state, bool for_preempt)
619{
620 struct btrfs_root *root = fs_info->extent_root;
621 struct btrfs_trans_handle *trans;
622 int nr;
623 int ret = 0;
624
625 switch (state) {
626 case FLUSH_DELAYED_ITEMS_NR:
627 case FLUSH_DELAYED_ITEMS:
628 if (state == FLUSH_DELAYED_ITEMS_NR)
629 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
630 else
631 nr = -1;
632
633 trans = btrfs_join_transaction(root);
634 if (IS_ERR(trans)) {
635 ret = PTR_ERR(trans);
636 break;
637 }
638 ret = btrfs_run_delayed_items_nr(trans, nr);
639 btrfs_end_transaction(trans);
640 break;
641 case FLUSH_DELALLOC:
642 case FLUSH_DELALLOC_WAIT:
643 case FLUSH_DELALLOC_FULL:
644 if (state == FLUSH_DELALLOC_FULL)
645 num_bytes = U64_MAX;
646 shrink_delalloc(fs_info, space_info, num_bytes,
647 state != FLUSH_DELALLOC, for_preempt);
648 break;
649 case FLUSH_DELAYED_REFS_NR:
650 case FLUSH_DELAYED_REFS:
651 trans = btrfs_join_transaction(root);
652 if (IS_ERR(trans)) {
653 ret = PTR_ERR(trans);
654 break;
655 }
656 if (state == FLUSH_DELAYED_REFS_NR)
657 nr = calc_reclaim_items_nr(fs_info, num_bytes);
658 else
659 nr = 0;
660 btrfs_run_delayed_refs(trans, nr);
661 btrfs_end_transaction(trans);
662 break;
663 case ALLOC_CHUNK:
664 case ALLOC_CHUNK_FORCE:
665 trans = btrfs_join_transaction(root);
666 if (IS_ERR(trans)) {
667 ret = PTR_ERR(trans);
668 break;
669 }
670 ret = btrfs_chunk_alloc(trans,
671 btrfs_get_alloc_profile(fs_info, space_info->flags),
672 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
673 CHUNK_ALLOC_FORCE);
674 btrfs_end_transaction(trans);
675 if (ret > 0 || ret == -ENOSPC)
676 ret = 0;
677 break;
678 case RUN_DELAYED_IPUTS:
679 /*
680 * If we have pending delayed iputs then we could free up a
681 * bunch of pinned space, so make sure we run the iputs before
682 * we do our pinned bytes check below.
683 */
684 btrfs_run_delayed_iputs(fs_info);
685 btrfs_wait_on_delayed_iputs(fs_info);
686 break;
687 case COMMIT_TRANS:
688 ASSERT(current->journal_info == NULL);
689 trans = btrfs_join_transaction(root);
690 if (IS_ERR(trans)) {
691 ret = PTR_ERR(trans);
692 break;
693 }
694 ret = btrfs_commit_transaction(trans);
695 break;
696 default:
697 ret = -ENOSPC;
698 break;
699 }
700
701 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
702 ret, for_preempt);
703 return;
704}
705
706static inline u64
707btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
708 struct btrfs_space_info *space_info)
709{
710 u64 used;
711 u64 avail;
712 u64 to_reclaim = space_info->reclaim_size;
713
714 lockdep_assert_held(&space_info->lock);
715
716 avail = calc_available_free_space(fs_info, space_info,
717 BTRFS_RESERVE_FLUSH_ALL);
718 used = btrfs_space_info_used(space_info, true);
719
720 /*
721 * We may be flushing because suddenly we have less space than we had
722 * before, and now we're well over-committed based on our current free
723 * space. If that's the case add in our overage so we make sure to put
724 * appropriate pressure on the flushing state machine.
725 */
726 if (space_info->total_bytes + avail < used)
727 to_reclaim += used - (space_info->total_bytes + avail);
728
729 return to_reclaim;
730}
731
732static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
733 struct btrfs_space_info *space_info)
734{
735 u64 global_rsv_size = fs_info->global_block_rsv.reserved;
736 u64 ordered, delalloc;
737 u64 thresh = div_factor_fine(space_info->total_bytes, 90);
738 u64 used;
739
740 /* If we're just plain full then async reclaim just slows us down. */
741 if ((space_info->bytes_used + space_info->bytes_reserved +
742 global_rsv_size) >= thresh)
743 return false;
744
745 used = space_info->bytes_may_use + space_info->bytes_pinned;
746
747 /* The total flushable belongs to the global rsv, don't flush. */
748 if (global_rsv_size >= used)
749 return false;
750
751 /*
752 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
753 * that devoted to other reservations then there's no sense in flushing,
754 * we don't have a lot of things that need flushing.
755 */
756 if (used - global_rsv_size <= SZ_128M)
757 return false;
758
759 /*
760 * We have tickets queued, bail so we don't compete with the async
761 * flushers.
762 */
763 if (space_info->reclaim_size)
764 return false;
765
766 /*
767 * If we have over half of the free space occupied by reservations or
768 * pinned then we want to start flushing.
769 *
770 * We do not do the traditional thing here, which is to say
771 *
772 * if (used >= ((total_bytes + avail) / 2))
773 * return 1;
774 *
775 * because this doesn't quite work how we want. If we had more than 50%
776 * of the space_info used by bytes_used and we had 0 available we'd just
777 * constantly run the background flusher. Instead we want it to kick in
778 * if our reclaimable space exceeds our clamped free space.
779 *
780 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
781 * the following:
782 *
783 * Amount of RAM Minimum threshold Maximum threshold
784 *
785 * 256GiB 1GiB 128GiB
786 * 128GiB 512MiB 64GiB
787 * 64GiB 256MiB 32GiB
788 * 32GiB 128MiB 16GiB
789 * 16GiB 64MiB 8GiB
790 *
791 * These are the range our thresholds will fall in, corresponding to how
792 * much delalloc we need for the background flusher to kick in.
793 */
794
795 thresh = calc_available_free_space(fs_info, space_info,
796 BTRFS_RESERVE_FLUSH_ALL);
797 used = space_info->bytes_used + space_info->bytes_reserved +
798 space_info->bytes_readonly + global_rsv_size;
799 if (used < space_info->total_bytes)
800 thresh += space_info->total_bytes - used;
801 thresh >>= space_info->clamp;
802
803 used = space_info->bytes_pinned;
804
805 /*
806 * If we have more ordered bytes than delalloc bytes then we're either
807 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
808 * around. Preemptive flushing is only useful in that it can free up
809 * space before tickets need to wait for things to finish. In the case
810 * of ordered extents, preemptively waiting on ordered extents gets us
811 * nothing, if our reservations are tied up in ordered extents we'll
812 * simply have to slow down writers by forcing them to wait on ordered
813 * extents.
814 *
815 * In the case that ordered is larger than delalloc, only include the
816 * block reserves that we would actually be able to directly reclaim
817 * from. In this case if we're heavy on metadata operations this will
818 * clearly be heavy enough to warrant preemptive flushing. In the case
819 * of heavy DIO or ordered reservations, preemptive flushing will just
820 * waste time and cause us to slow down.
821 *
822 * We want to make sure we truly are maxed out on ordered however, so
823 * cut ordered in half, and if it's still higher than delalloc then we
824 * can keep flushing. This is to avoid the case where we start
825 * flushing, and now delalloc == ordered and we stop preemptively
826 * flushing when we could still have several gigs of delalloc to flush.
827 */
828 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
829 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
830 if (ordered >= delalloc)
831 used += fs_info->delayed_refs_rsv.reserved +
832 fs_info->delayed_block_rsv.reserved;
833 else
834 used += space_info->bytes_may_use - global_rsv_size;
835
836 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
837 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
838}
839
840static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
841 struct btrfs_space_info *space_info,
842 struct reserve_ticket *ticket)
843{
844 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
845 u64 min_bytes;
846
847 if (global_rsv->space_info != space_info)
848 return false;
849
850 spin_lock(&global_rsv->lock);
851 min_bytes = div_factor(global_rsv->size, 1);
852 if (global_rsv->reserved < min_bytes + ticket->bytes) {
853 spin_unlock(&global_rsv->lock);
854 return false;
855 }
856 global_rsv->reserved -= ticket->bytes;
857 remove_ticket(space_info, ticket);
858 ticket->bytes = 0;
859 wake_up(&ticket->wait);
860 space_info->tickets_id++;
861 if (global_rsv->reserved < global_rsv->size)
862 global_rsv->full = 0;
863 spin_unlock(&global_rsv->lock);
864
865 return true;
866}
867
868/*
869 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
870 * @fs_info - fs_info for this fs
871 * @space_info - the space info we were flushing
872 *
873 * We call this when we've exhausted our flushing ability and haven't made
874 * progress in satisfying tickets. The reservation code handles tickets in
875 * order, so if there is a large ticket first and then smaller ones we could
876 * very well satisfy the smaller tickets. This will attempt to wake up any
877 * tickets in the list to catch this case.
878 *
879 * This function returns true if it was able to make progress by clearing out
880 * other tickets, or if it stumbles across a ticket that was smaller than the
881 * first ticket.
882 */
883static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
884 struct btrfs_space_info *space_info)
885{
886 struct reserve_ticket *ticket;
887 u64 tickets_id = space_info->tickets_id;
888
889 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
890 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
891 __btrfs_dump_space_info(fs_info, space_info);
892 }
893
894 while (!list_empty(&space_info->tickets) &&
895 tickets_id == space_info->tickets_id) {
896 ticket = list_first_entry(&space_info->tickets,
897 struct reserve_ticket, list);
898
899 if (ticket->steal &&
900 steal_from_global_rsv(fs_info, space_info, ticket))
901 return true;
902
903 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
904 btrfs_info(fs_info, "failing ticket with %llu bytes",
905 ticket->bytes);
906
907 remove_ticket(space_info, ticket);
908 ticket->error = -ENOSPC;
909 wake_up(&ticket->wait);
910
911 /*
912 * We're just throwing tickets away, so more flushing may not
913 * trip over btrfs_try_granting_tickets, so we need to call it
914 * here to see if we can make progress with the next ticket in
915 * the list.
916 */
917 btrfs_try_granting_tickets(fs_info, space_info);
918 }
919 return (tickets_id != space_info->tickets_id);
920}
921
922/*
923 * This is for normal flushers, we can wait all goddamned day if we want to. We
924 * will loop and continuously try to flush as long as we are making progress.
925 * We count progress as clearing off tickets each time we have to loop.
926 */
927static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
928{
929 struct btrfs_fs_info *fs_info;
930 struct btrfs_space_info *space_info;
931 u64 to_reclaim;
932 enum btrfs_flush_state flush_state;
933 int commit_cycles = 0;
934 u64 last_tickets_id;
935
936 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
937 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
938
939 spin_lock(&space_info->lock);
940 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
941 if (!to_reclaim) {
942 space_info->flush = 0;
943 spin_unlock(&space_info->lock);
944 return;
945 }
946 last_tickets_id = space_info->tickets_id;
947 spin_unlock(&space_info->lock);
948
949 flush_state = FLUSH_DELAYED_ITEMS_NR;
950 do {
951 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
952 spin_lock(&space_info->lock);
953 if (list_empty(&space_info->tickets)) {
954 space_info->flush = 0;
955 spin_unlock(&space_info->lock);
956 return;
957 }
958 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
959 space_info);
960 if (last_tickets_id == space_info->tickets_id) {
961 flush_state++;
962 } else {
963 last_tickets_id = space_info->tickets_id;
964 flush_state = FLUSH_DELAYED_ITEMS_NR;
965 if (commit_cycles)
966 commit_cycles--;
967 }
968
969 /*
970 * We do not want to empty the system of delalloc unless we're
971 * under heavy pressure, so allow one trip through the flushing
972 * logic before we start doing a FLUSH_DELALLOC_FULL.
973 */
974 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
975 flush_state++;
976
977 /*
978 * We don't want to force a chunk allocation until we've tried
979 * pretty hard to reclaim space. Think of the case where we
980 * freed up a bunch of space and so have a lot of pinned space
981 * to reclaim. We would rather use that than possibly create a
982 * underutilized metadata chunk. So if this is our first run
983 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
984 * commit the transaction. If nothing has changed the next go
985 * around then we can force a chunk allocation.
986 */
987 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
988 flush_state++;
989
990 if (flush_state > COMMIT_TRANS) {
991 commit_cycles++;
992 if (commit_cycles > 2) {
993 if (maybe_fail_all_tickets(fs_info, space_info)) {
994 flush_state = FLUSH_DELAYED_ITEMS_NR;
995 commit_cycles--;
996 } else {
997 space_info->flush = 0;
998 }
999 } else {
1000 flush_state = FLUSH_DELAYED_ITEMS_NR;
1001 }
1002 }
1003 spin_unlock(&space_info->lock);
1004 } while (flush_state <= COMMIT_TRANS);
1005}
1006
1007/*
1008 * This handles pre-flushing of metadata space before we get to the point that
1009 * we need to start blocking threads on tickets. The logic here is different
1010 * from the other flush paths because it doesn't rely on tickets to tell us how
1011 * much we need to flush, instead it attempts to keep us below the 80% full
1012 * watermark of space by flushing whichever reservation pool is currently the
1013 * largest.
1014 */
1015static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1016{
1017 struct btrfs_fs_info *fs_info;
1018 struct btrfs_space_info *space_info;
1019 struct btrfs_block_rsv *delayed_block_rsv;
1020 struct btrfs_block_rsv *delayed_refs_rsv;
1021 struct btrfs_block_rsv *global_rsv;
1022 struct btrfs_block_rsv *trans_rsv;
1023 int loops = 0;
1024
1025 fs_info = container_of(work, struct btrfs_fs_info,
1026 preempt_reclaim_work);
1027 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1028 delayed_block_rsv = &fs_info->delayed_block_rsv;
1029 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1030 global_rsv = &fs_info->global_block_rsv;
1031 trans_rsv = &fs_info->trans_block_rsv;
1032
1033 spin_lock(&space_info->lock);
1034 while (need_preemptive_reclaim(fs_info, space_info)) {
1035 enum btrfs_flush_state flush;
1036 u64 delalloc_size = 0;
1037 u64 to_reclaim, block_rsv_size;
1038 u64 global_rsv_size = global_rsv->reserved;
1039
1040 loops++;
1041
1042 /*
1043 * We don't have a precise counter for the metadata being
1044 * reserved for delalloc, so we'll approximate it by subtracting
1045 * out the block rsv's space from the bytes_may_use. If that
1046 * amount is higher than the individual reserves, then we can
1047 * assume it's tied up in delalloc reservations.
1048 */
1049 block_rsv_size = global_rsv_size +
1050 delayed_block_rsv->reserved +
1051 delayed_refs_rsv->reserved +
1052 trans_rsv->reserved;
1053 if (block_rsv_size < space_info->bytes_may_use)
1054 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1055 spin_unlock(&space_info->lock);
1056
1057 /*
1058 * We don't want to include the global_rsv in our calculation,
1059 * because that's space we can't touch. Subtract it from the
1060 * block_rsv_size for the next checks.
1061 */
1062 block_rsv_size -= global_rsv_size;
1063
1064 /*
1065 * We really want to avoid flushing delalloc too much, as it
1066 * could result in poor allocation patterns, so only flush it if
1067 * it's larger than the rest of the pools combined.
1068 */
1069 if (delalloc_size > block_rsv_size) {
1070 to_reclaim = delalloc_size;
1071 flush = FLUSH_DELALLOC;
1072 } else if (space_info->bytes_pinned >
1073 (delayed_block_rsv->reserved +
1074 delayed_refs_rsv->reserved)) {
1075 to_reclaim = space_info->bytes_pinned;
1076 flush = COMMIT_TRANS;
1077 } else if (delayed_block_rsv->reserved >
1078 delayed_refs_rsv->reserved) {
1079 to_reclaim = delayed_block_rsv->reserved;
1080 flush = FLUSH_DELAYED_ITEMS_NR;
1081 } else {
1082 to_reclaim = delayed_refs_rsv->reserved;
1083 flush = FLUSH_DELAYED_REFS_NR;
1084 }
1085
1086 /*
1087 * We don't want to reclaim everything, just a portion, so scale
1088 * down the to_reclaim by 1/4. If it takes us down to 0,
1089 * reclaim 1 items worth.
1090 */
1091 to_reclaim >>= 2;
1092 if (!to_reclaim)
1093 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1094 flush_space(fs_info, space_info, to_reclaim, flush, true);
1095 cond_resched();
1096 spin_lock(&space_info->lock);
1097 }
1098
1099 /* We only went through once, back off our clamping. */
1100 if (loops == 1 && !space_info->reclaim_size)
1101 space_info->clamp = max(1, space_info->clamp - 1);
1102 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1103 spin_unlock(&space_info->lock);
1104}
1105
1106/*
1107 * FLUSH_DELALLOC_WAIT:
1108 * Space is freed from flushing delalloc in one of two ways.
1109 *
1110 * 1) compression is on and we allocate less space than we reserved
1111 * 2) we are overwriting existing space
1112 *
1113 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1114 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1115 * length to ->bytes_reserved, and subtracts the reserved space from
1116 * ->bytes_may_use.
1117 *
1118 * For #2 this is trickier. Once the ordered extent runs we will drop the
1119 * extent in the range we are overwriting, which creates a delayed ref for
1120 * that freed extent. This however is not reclaimed until the transaction
1121 * commits, thus the next stages.
1122 *
1123 * RUN_DELAYED_IPUTS
1124 * If we are freeing inodes, we want to make sure all delayed iputs have
1125 * completed, because they could have been on an inode with i_nlink == 0, and
1126 * thus have been truncated and freed up space. But again this space is not
1127 * immediately re-usable, it comes in the form of a delayed ref, which must be
1128 * run and then the transaction must be committed.
1129 *
1130 * COMMIT_TRANS
1131 * This is where we reclaim all of the pinned space generated by running the
1132 * iputs
1133 *
1134 * ALLOC_CHUNK_FORCE
1135 * For data we start with alloc chunk force, however we could have been full
1136 * before, and then the transaction commit could have freed new block groups,
1137 * so if we now have space to allocate do the force chunk allocation.
1138 */
1139static const enum btrfs_flush_state data_flush_states[] = {
1140 FLUSH_DELALLOC_FULL,
1141 RUN_DELAYED_IPUTS,
1142 COMMIT_TRANS,
1143 ALLOC_CHUNK_FORCE,
1144};
1145
1146static void btrfs_async_reclaim_data_space(struct work_struct *work)
1147{
1148 struct btrfs_fs_info *fs_info;
1149 struct btrfs_space_info *space_info;
1150 u64 last_tickets_id;
1151 enum btrfs_flush_state flush_state = 0;
1152
1153 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1154 space_info = fs_info->data_sinfo;
1155
1156 spin_lock(&space_info->lock);
1157 if (list_empty(&space_info->tickets)) {
1158 space_info->flush = 0;
1159 spin_unlock(&space_info->lock);
1160 return;
1161 }
1162 last_tickets_id = space_info->tickets_id;
1163 spin_unlock(&space_info->lock);
1164
1165 while (!space_info->full) {
1166 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1167 spin_lock(&space_info->lock);
1168 if (list_empty(&space_info->tickets)) {
1169 space_info->flush = 0;
1170 spin_unlock(&space_info->lock);
1171 return;
1172 }
1173 last_tickets_id = space_info->tickets_id;
1174 spin_unlock(&space_info->lock);
1175 }
1176
1177 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1178 flush_space(fs_info, space_info, U64_MAX,
1179 data_flush_states[flush_state], false);
1180 spin_lock(&space_info->lock);
1181 if (list_empty(&space_info->tickets)) {
1182 space_info->flush = 0;
1183 spin_unlock(&space_info->lock);
1184 return;
1185 }
1186
1187 if (last_tickets_id == space_info->tickets_id) {
1188 flush_state++;
1189 } else {
1190 last_tickets_id = space_info->tickets_id;
1191 flush_state = 0;
1192 }
1193
1194 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1195 if (space_info->full) {
1196 if (maybe_fail_all_tickets(fs_info, space_info))
1197 flush_state = 0;
1198 else
1199 space_info->flush = 0;
1200 } else {
1201 flush_state = 0;
1202 }
1203 }
1204 spin_unlock(&space_info->lock);
1205 }
1206}
1207
1208void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1209{
1210 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1211 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1212 INIT_WORK(&fs_info->preempt_reclaim_work,
1213 btrfs_preempt_reclaim_metadata_space);
1214}
1215
1216static const enum btrfs_flush_state priority_flush_states[] = {
1217 FLUSH_DELAYED_ITEMS_NR,
1218 FLUSH_DELAYED_ITEMS,
1219 ALLOC_CHUNK,
1220};
1221
1222static const enum btrfs_flush_state evict_flush_states[] = {
1223 FLUSH_DELAYED_ITEMS_NR,
1224 FLUSH_DELAYED_ITEMS,
1225 FLUSH_DELAYED_REFS_NR,
1226 FLUSH_DELAYED_REFS,
1227 FLUSH_DELALLOC,
1228 FLUSH_DELALLOC_WAIT,
1229 FLUSH_DELALLOC_FULL,
1230 ALLOC_CHUNK,
1231 COMMIT_TRANS,
1232};
1233
1234static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1235 struct btrfs_space_info *space_info,
1236 struct reserve_ticket *ticket,
1237 const enum btrfs_flush_state *states,
1238 int states_nr)
1239{
1240 u64 to_reclaim;
1241 int flush_state;
1242
1243 spin_lock(&space_info->lock);
1244 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1245 if (!to_reclaim) {
1246 spin_unlock(&space_info->lock);
1247 return;
1248 }
1249 spin_unlock(&space_info->lock);
1250
1251 flush_state = 0;
1252 do {
1253 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1254 false);
1255 flush_state++;
1256 spin_lock(&space_info->lock);
1257 if (ticket->bytes == 0) {
1258 spin_unlock(&space_info->lock);
1259 return;
1260 }
1261 spin_unlock(&space_info->lock);
1262 } while (flush_state < states_nr);
1263}
1264
1265static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1266 struct btrfs_space_info *space_info,
1267 struct reserve_ticket *ticket)
1268{
1269 while (!space_info->full) {
1270 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1271 spin_lock(&space_info->lock);
1272 if (ticket->bytes == 0) {
1273 spin_unlock(&space_info->lock);
1274 return;
1275 }
1276 spin_unlock(&space_info->lock);
1277 }
1278}
1279
1280static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1281 struct btrfs_space_info *space_info,
1282 struct reserve_ticket *ticket)
1283
1284{
1285 DEFINE_WAIT(wait);
1286 int ret = 0;
1287
1288 spin_lock(&space_info->lock);
1289 while (ticket->bytes > 0 && ticket->error == 0) {
1290 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1291 if (ret) {
1292 /*
1293 * Delete us from the list. After we unlock the space
1294 * info, we don't want the async reclaim job to reserve
1295 * space for this ticket. If that would happen, then the
1296 * ticket's task would not known that space was reserved
1297 * despite getting an error, resulting in a space leak
1298 * (bytes_may_use counter of our space_info).
1299 */
1300 remove_ticket(space_info, ticket);
1301 ticket->error = -EINTR;
1302 break;
1303 }
1304 spin_unlock(&space_info->lock);
1305
1306 schedule();
1307
1308 finish_wait(&ticket->wait, &wait);
1309 spin_lock(&space_info->lock);
1310 }
1311 spin_unlock(&space_info->lock);
1312}
1313
1314/**
1315 * Do the appropriate flushing and waiting for a ticket
1316 *
1317 * @fs_info: the filesystem
1318 * @space_info: space info for the reservation
1319 * @ticket: ticket for the reservation
1320 * @start_ns: timestamp when the reservation started
1321 * @orig_bytes: amount of bytes originally reserved
1322 * @flush: how much we can flush
1323 *
1324 * This does the work of figuring out how to flush for the ticket, waiting for
1325 * the reservation, and returning the appropriate error if there is one.
1326 */
1327static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1328 struct btrfs_space_info *space_info,
1329 struct reserve_ticket *ticket,
1330 u64 start_ns, u64 orig_bytes,
1331 enum btrfs_reserve_flush_enum flush)
1332{
1333 int ret;
1334
1335 switch (flush) {
1336 case BTRFS_RESERVE_FLUSH_DATA:
1337 case BTRFS_RESERVE_FLUSH_ALL:
1338 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1339 wait_reserve_ticket(fs_info, space_info, ticket);
1340 break;
1341 case BTRFS_RESERVE_FLUSH_LIMIT:
1342 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1343 priority_flush_states,
1344 ARRAY_SIZE(priority_flush_states));
1345 break;
1346 case BTRFS_RESERVE_FLUSH_EVICT:
1347 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1348 evict_flush_states,
1349 ARRAY_SIZE(evict_flush_states));
1350 break;
1351 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1352 priority_reclaim_data_space(fs_info, space_info, ticket);
1353 break;
1354 default:
1355 ASSERT(0);
1356 break;
1357 }
1358
1359 spin_lock(&space_info->lock);
1360 ret = ticket->error;
1361 if (ticket->bytes || ticket->error) {
1362 /*
1363 * We were a priority ticket, so we need to delete ourselves
1364 * from the list. Because we could have other priority tickets
1365 * behind us that require less space, run
1366 * btrfs_try_granting_tickets() to see if their reservations can
1367 * now be made.
1368 */
1369 if (!list_empty(&ticket->list)) {
1370 remove_ticket(space_info, ticket);
1371 btrfs_try_granting_tickets(fs_info, space_info);
1372 }
1373
1374 if (!ret)
1375 ret = -ENOSPC;
1376 }
1377 spin_unlock(&space_info->lock);
1378 ASSERT(list_empty(&ticket->list));
1379 /*
1380 * Check that we can't have an error set if the reservation succeeded,
1381 * as that would confuse tasks and lead them to error out without
1382 * releasing reserved space (if an error happens the expectation is that
1383 * space wasn't reserved at all).
1384 */
1385 ASSERT(!(ticket->bytes == 0 && ticket->error));
1386 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1387 start_ns, flush, ticket->error);
1388 return ret;
1389}
1390
1391/*
1392 * This returns true if this flush state will go through the ordinary flushing
1393 * code.
1394 */
1395static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1396{
1397 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1398 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1399}
1400
1401static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1402 struct btrfs_space_info *space_info)
1403{
1404 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1405 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1406
1407 /*
1408 * If we're heavy on ordered operations then clamping won't help us. We
1409 * need to clamp specifically to keep up with dirty'ing buffered
1410 * writers, because there's not a 1:1 correlation of writing delalloc
1411 * and freeing space, like there is with flushing delayed refs or
1412 * delayed nodes. If we're already more ordered than delalloc then
1413 * we're keeping up, otherwise we aren't and should probably clamp.
1414 */
1415 if (ordered < delalloc)
1416 space_info->clamp = min(space_info->clamp + 1, 8);
1417}
1418
1419/**
1420 * Try to reserve bytes from the block_rsv's space
1421 *
1422 * @fs_info: the filesystem
1423 * @space_info: space info we want to allocate from
1424 * @orig_bytes: number of bytes we want
1425 * @flush: whether or not we can flush to make our reservation
1426 *
1427 * This will reserve orig_bytes number of bytes from the space info associated
1428 * with the block_rsv. If there is not enough space it will make an attempt to
1429 * flush out space to make room. It will do this by flushing delalloc if
1430 * possible or committing the transaction. If flush is 0 then no attempts to
1431 * regain reservations will be made and this will fail if there is not enough
1432 * space already.
1433 */
1434static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1435 struct btrfs_space_info *space_info, u64 orig_bytes,
1436 enum btrfs_reserve_flush_enum flush)
1437{
1438 struct work_struct *async_work;
1439 struct reserve_ticket ticket;
1440 u64 start_ns = 0;
1441 u64 used;
1442 int ret = 0;
1443 bool pending_tickets;
1444
1445 ASSERT(orig_bytes);
1446 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1447
1448 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1449 async_work = &fs_info->async_data_reclaim_work;
1450 else
1451 async_work = &fs_info->async_reclaim_work;
1452
1453 spin_lock(&space_info->lock);
1454 ret = -ENOSPC;
1455 used = btrfs_space_info_used(space_info, true);
1456
1457 /*
1458 * We don't want NO_FLUSH allocations to jump everybody, they can
1459 * generally handle ENOSPC in a different way, so treat them the same as
1460 * normal flushers when it comes to skipping pending tickets.
1461 */
1462 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1463 pending_tickets = !list_empty(&space_info->tickets) ||
1464 !list_empty(&space_info->priority_tickets);
1465 else
1466 pending_tickets = !list_empty(&space_info->priority_tickets);
1467
1468 /*
1469 * Carry on if we have enough space (short-circuit) OR call
1470 * can_overcommit() to ensure we can overcommit to continue.
1471 */
1472 if (!pending_tickets &&
1473 ((used + orig_bytes <= space_info->total_bytes) ||
1474 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1475 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1476 orig_bytes);
1477 ret = 0;
1478 }
1479
1480 /*
1481 * If we couldn't make a reservation then setup our reservation ticket
1482 * and kick the async worker if it's not already running.
1483 *
1484 * If we are a priority flusher then we just need to add our ticket to
1485 * the list and we will do our own flushing further down.
1486 */
1487 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1488 ticket.bytes = orig_bytes;
1489 ticket.error = 0;
1490 space_info->reclaim_size += ticket.bytes;
1491 init_waitqueue_head(&ticket.wait);
1492 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1493 if (trace_btrfs_reserve_ticket_enabled())
1494 start_ns = ktime_get_ns();
1495
1496 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1497 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1498 flush == BTRFS_RESERVE_FLUSH_DATA) {
1499 list_add_tail(&ticket.list, &space_info->tickets);
1500 if (!space_info->flush) {
1501 /*
1502 * We were forced to add a reserve ticket, so
1503 * our preemptive flushing is unable to keep
1504 * up. Clamp down on the threshold for the
1505 * preemptive flushing in order to keep up with
1506 * the workload.
1507 */
1508 maybe_clamp_preempt(fs_info, space_info);
1509
1510 space_info->flush = 1;
1511 trace_btrfs_trigger_flush(fs_info,
1512 space_info->flags,
1513 orig_bytes, flush,
1514 "enospc");
1515 queue_work(system_unbound_wq, async_work);
1516 }
1517 } else {
1518 list_add_tail(&ticket.list,
1519 &space_info->priority_tickets);
1520 }
1521 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1522 used += orig_bytes;
1523 /*
1524 * We will do the space reservation dance during log replay,
1525 * which means we won't have fs_info->fs_root set, so don't do
1526 * the async reclaim as we will panic.
1527 */
1528 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1529 !work_busy(&fs_info->preempt_reclaim_work) &&
1530 need_preemptive_reclaim(fs_info, space_info)) {
1531 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1532 orig_bytes, flush, "preempt");
1533 queue_work(system_unbound_wq,
1534 &fs_info->preempt_reclaim_work);
1535 }
1536 }
1537 spin_unlock(&space_info->lock);
1538 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1539 return ret;
1540
1541 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1542 orig_bytes, flush);
1543}
1544
1545/**
1546 * Trye to reserve metadata bytes from the block_rsv's space
1547 *
1548 * @root: the root we're allocating for
1549 * @block_rsv: block_rsv we're allocating for
1550 * @orig_bytes: number of bytes we want
1551 * @flush: whether or not we can flush to make our reservation
1552 *
1553 * This will reserve orig_bytes number of bytes from the space info associated
1554 * with the block_rsv. If there is not enough space it will make an attempt to
1555 * flush out space to make room. It will do this by flushing delalloc if
1556 * possible or committing the transaction. If flush is 0 then no attempts to
1557 * regain reservations will be made and this will fail if there is not enough
1558 * space already.
1559 */
1560int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1561 struct btrfs_block_rsv *block_rsv,
1562 u64 orig_bytes,
1563 enum btrfs_reserve_flush_enum flush)
1564{
1565 struct btrfs_fs_info *fs_info = root->fs_info;
1566 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1567 int ret;
1568
1569 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1570 if (ret == -ENOSPC &&
1571 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1572 if (block_rsv != global_rsv &&
1573 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1574 ret = 0;
1575 }
1576 if (ret == -ENOSPC) {
1577 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1578 block_rsv->space_info->flags,
1579 orig_bytes, 1);
1580
1581 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1582 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1583 orig_bytes, 0);
1584 }
1585 return ret;
1586}
1587
1588/**
1589 * Try to reserve data bytes for an allocation
1590 *
1591 * @fs_info: the filesystem
1592 * @bytes: number of bytes we need
1593 * @flush: how we are allowed to flush
1594 *
1595 * This will reserve bytes from the data space info. If there is not enough
1596 * space then we will attempt to flush space as specified by flush.
1597 */
1598int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1599 enum btrfs_reserve_flush_enum flush)
1600{
1601 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1602 int ret;
1603
1604 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1605 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1606 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1607
1608 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1609 if (ret == -ENOSPC) {
1610 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1611 data_sinfo->flags, bytes, 1);
1612 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1613 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1614 }
1615 return ret;
1616}