Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/blkdev.h>
  4#include <linux/iversion.h>
  5#include "ctree.h"
  6#include "fs.h"
  7#include "messages.h"
  8#include "compression.h"
 
  9#include "delalloc-space.h"
 10#include "disk-io.h"
 11#include "reflink.h"
 12#include "transaction.h"
 13#include "subpage.h"
 14#include "accessors.h"
 15#include "file-item.h"
 16#include "file.h"
 17#include "super.h"
 18
 19#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
 20
 21static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
 22				     struct inode *inode,
 23				     u64 endoff,
 24				     const u64 destoff,
 25				     const u64 olen,
 26				     int no_time_update)
 27{
 
 28	int ret;
 29
 30	inode_inc_iversion(inode);
 31	if (!no_time_update) {
 32		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
 33	}
 34	/*
 35	 * We round up to the block size at eof when determining which
 36	 * extents to clone above, but shouldn't round up the file size.
 37	 */
 38	if (endoff > destoff + olen)
 39		endoff = destoff + olen;
 40	if (endoff > inode->i_size) {
 41		i_size_write(inode, endoff);
 42		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 43	}
 44
 45	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 46	if (ret) {
 47		btrfs_abort_transaction(trans, ret);
 48		btrfs_end_transaction(trans);
 49		goto out;
 50	}
 51	ret = btrfs_end_transaction(trans);
 52out:
 53	return ret;
 54}
 55
 56static int copy_inline_to_page(struct btrfs_inode *inode,
 57			       const u64 file_offset,
 58			       char *inline_data,
 59			       const u64 size,
 60			       const u64 datal,
 61			       const u8 comp_type)
 62{
 63	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 64	const u32 block_size = fs_info->sectorsize;
 65	const u64 range_end = file_offset + block_size - 1;
 66	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
 67	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
 68	struct extent_changeset *data_reserved = NULL;
 69	struct page *page = NULL;
 70	struct address_space *mapping = inode->vfs_inode.i_mapping;
 71	int ret;
 72
 73	ASSERT(IS_ALIGNED(file_offset, block_size));
 74
 75	/*
 76	 * We have flushed and locked the ranges of the source and destination
 77	 * inodes, we also have locked the inodes, so we are safe to do a
 78	 * reservation here. Also we must not do the reservation while holding
 79	 * a transaction open, otherwise we would deadlock.
 80	 */
 81	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
 82					   block_size);
 83	if (ret)
 84		goto out;
 85
 86	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
 87				   btrfs_alloc_write_mask(mapping));
 88	if (!page) {
 89		ret = -ENOMEM;
 90		goto out_unlock;
 91	}
 92
 93	ret = set_page_extent_mapped(page);
 94	if (ret < 0)
 95		goto out_unlock;
 96
 97	clear_extent_bit(&inode->io_tree, file_offset, range_end,
 98			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 99			 NULL);
100	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
101	if (ret)
102		goto out_unlock;
103
104	/*
105	 * After dirtying the page our caller will need to start a transaction,
106	 * and if we are low on metadata free space, that can cause flushing of
107	 * delalloc for all inodes in order to get metadata space released.
108	 * However we are holding the range locked for the whole duration of
109	 * the clone/dedupe operation, so we may deadlock if that happens and no
110	 * other task releases enough space. So mark this inode as not being
111	 * possible to flush to avoid such deadlock. We will clear that flag
112	 * when we finish cloning all extents, since a transaction is started
113	 * after finding each extent to clone.
114	 */
115	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
116
117	if (comp_type == BTRFS_COMPRESS_NONE) {
118		memcpy_to_page(page, offset_in_page(file_offset), data_start,
119			       datal);
 
120	} else {
121		ret = btrfs_decompress(comp_type, data_start, page,
122				       offset_in_page(file_offset),
123				       inline_size, datal);
124		if (ret)
125			goto out_unlock;
126		flush_dcache_page(page);
127	}
128
129	/*
130	 * If our inline data is smaller then the block/page size, then the
131	 * remaining of the block/page is equivalent to zeroes. We had something
132	 * like the following done:
133	 *
134	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
135	 * $ sync  # (or fsync)
136	 * $ xfs_io -c "falloc 0 4K" file
137	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
138	 *
139	 * So what's in the range [500, 4095] corresponds to zeroes.
140	 */
141	if (datal < block_size)
142		memzero_page(page, datal, block_size - datal);
 
 
143
144	btrfs_folio_set_uptodate(fs_info, page_folio(page), file_offset, block_size);
145	btrfs_folio_clear_checked(fs_info, page_folio(page), file_offset, block_size);
146	btrfs_folio_set_dirty(fs_info, page_folio(page), file_offset, block_size);
147out_unlock:
148	if (page) {
149		unlock_page(page);
150		put_page(page);
151	}
152	if (ret)
153		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
154					     block_size, true);
155	btrfs_delalloc_release_extents(inode, block_size);
156out:
157	extent_changeset_free(data_reserved);
158
159	return ret;
160}
161
162/*
163 * Deal with cloning of inline extents. We try to copy the inline extent from
164 * the source inode to destination inode when possible. When not possible we
165 * copy the inline extent's data into the respective page of the inode.
166 */
167static int clone_copy_inline_extent(struct inode *dst,
168				    struct btrfs_path *path,
169				    struct btrfs_key *new_key,
170				    const u64 drop_start,
171				    const u64 datal,
172				    const u64 size,
173				    const u8 comp_type,
174				    char *inline_data,
175				    struct btrfs_trans_handle **trans_out)
176{
177	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
178	struct btrfs_root *root = BTRFS_I(dst)->root;
179	const u64 aligned_end = ALIGN(new_key->offset + datal,
180				      fs_info->sectorsize);
181	struct btrfs_trans_handle *trans = NULL;
182	struct btrfs_drop_extents_args drop_args = { 0 };
183	int ret;
184	struct btrfs_key key;
185
186	if (new_key->offset > 0) {
187		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
188					  inline_data, size, datal, comp_type);
189		goto out;
190	}
191
192	key.objectid = btrfs_ino(BTRFS_I(dst));
193	key.type = BTRFS_EXTENT_DATA_KEY;
194	key.offset = 0;
195	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
196	if (ret < 0) {
197		return ret;
198	} else if (ret > 0) {
199		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
200			ret = btrfs_next_leaf(root, path);
201			if (ret < 0)
202				return ret;
203			else if (ret > 0)
204				goto copy_inline_extent;
205		}
206		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
207		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
208		    key.type == BTRFS_EXTENT_DATA_KEY) {
209			/*
210			 * There's an implicit hole at file offset 0, copy the
211			 * inline extent's data to the page.
212			 */
213			ASSERT(key.offset > 0);
214			goto copy_to_page;
215		}
216	} else if (i_size_read(dst) <= datal) {
217		struct btrfs_file_extent_item *ei;
218
219		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
220				    struct btrfs_file_extent_item);
221		/*
222		 * If it's an inline extent replace it with the source inline
223		 * extent, otherwise copy the source inline extent data into
224		 * the respective page at the destination inode.
225		 */
226		if (btrfs_file_extent_type(path->nodes[0], ei) ==
227		    BTRFS_FILE_EXTENT_INLINE)
228			goto copy_inline_extent;
229
230		goto copy_to_page;
231	}
232
233copy_inline_extent:
234	/*
235	 * We have no extent items, or we have an extent at offset 0 which may
236	 * or may not be inlined. All these cases are dealt the same way.
237	 */
238	if (i_size_read(dst) > datal) {
239		/*
240		 * At the destination offset 0 we have either a hole, a regular
241		 * extent or an inline extent larger then the one we want to
242		 * clone. Deal with all these cases by copying the inline extent
243		 * data into the respective page at the destination inode.
244		 */
245		goto copy_to_page;
246	}
247
248	/*
249	 * Release path before starting a new transaction so we don't hold locks
250	 * that would confuse lockdep.
251	 */
252	btrfs_release_path(path);
253	/*
254	 * If we end up here it means were copy the inline extent into a leaf
255	 * of the destination inode. We know we will drop or adjust at most one
256	 * extent item in the destination root.
257	 *
258	 * 1 unit - adjusting old extent (we may have to split it)
259	 * 1 unit - add new extent
260	 * 1 unit - inode update
261	 */
262	trans = btrfs_start_transaction(root, 3);
263	if (IS_ERR(trans)) {
264		ret = PTR_ERR(trans);
265		trans = NULL;
266		goto out;
267	}
268	drop_args.path = path;
269	drop_args.start = drop_start;
270	drop_args.end = aligned_end;
271	drop_args.drop_cache = true;
272	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
273	if (ret)
274		goto out;
275	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
276	if (ret)
277		goto out;
278
279	write_extent_buffer(path->nodes[0], inline_data,
280			    btrfs_item_ptr_offset(path->nodes[0],
281						  path->slots[0]),
282			    size);
283	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
284	btrfs_set_inode_full_sync(BTRFS_I(dst));
285	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
286out:
287	if (!ret && !trans) {
288		/*
289		 * No transaction here means we copied the inline extent into a
290		 * page of the destination inode.
291		 *
292		 * 1 unit to update inode item
293		 */
294		trans = btrfs_start_transaction(root, 1);
295		if (IS_ERR(trans)) {
296			ret = PTR_ERR(trans);
297			trans = NULL;
298		}
299	}
300	if (ret && trans) {
301		btrfs_abort_transaction(trans, ret);
302		btrfs_end_transaction(trans);
303	}
304	if (!ret)
305		*trans_out = trans;
306
307	return ret;
308
309copy_to_page:
310	/*
311	 * Release our path because we don't need it anymore and also because
312	 * copy_inline_to_page() needs to reserve data and metadata, which may
313	 * need to flush delalloc when we are low on available space and
314	 * therefore cause a deadlock if writeback of an inline extent needs to
315	 * write to the same leaf or an ordered extent completion needs to write
316	 * to the same leaf.
317	 */
318	btrfs_release_path(path);
319
320	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
321				  inline_data, size, datal, comp_type);
322	goto out;
323}
324
325/*
326 * Clone a range from inode file to another.
327 *
328 * @src:             Inode to clone from
329 * @inode:           Inode to clone to
330 * @off:             Offset within source to start clone from
331 * @olen:            Original length, passed by user, of range to clone
332 * @olen_aligned:    Block-aligned value of olen
333 * @destoff:         Offset within @inode to start clone
334 * @no_time_update:  Whether to update mtime/ctime on the target inode
335 */
336static int btrfs_clone(struct inode *src, struct inode *inode,
337		       const u64 off, const u64 olen, const u64 olen_aligned,
338		       const u64 destoff, int no_time_update)
339{
340	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
341	struct btrfs_path *path = NULL;
342	struct extent_buffer *leaf;
343	struct btrfs_trans_handle *trans;
344	char *buf = NULL;
345	struct btrfs_key key;
346	u32 nritems;
347	int slot;
348	int ret;
349	const u64 len = olen_aligned;
350	u64 last_dest_end = destoff;
351	u64 prev_extent_end = off;
352
353	ret = -ENOMEM;
354	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
355	if (!buf)
356		return ret;
357
358	path = btrfs_alloc_path();
359	if (!path) {
360		kvfree(buf);
361		return ret;
362	}
363
364	path->reada = READA_FORWARD;
365	/* Clone data */
366	key.objectid = btrfs_ino(BTRFS_I(src));
367	key.type = BTRFS_EXTENT_DATA_KEY;
368	key.offset = off;
369
370	while (1) {
 
371		struct btrfs_file_extent_item *extent;
372		u64 extent_gen;
373		int type;
374		u32 size;
375		struct btrfs_key new_key;
376		u64 disko = 0, diskl = 0;
377		u64 datao = 0, datal = 0;
378		u8 comp;
379		u64 drop_start;
380
381		/* Note the key will change type as we walk through the tree */
382		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
383				0, 0);
384		if (ret < 0)
385			goto out;
386		/*
387		 * First search, if no extent item that starts at offset off was
388		 * found but the previous item is an extent item, it's possible
389		 * it might overlap our target range, therefore process it.
390		 */
391		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
392			btrfs_item_key_to_cpu(path->nodes[0], &key,
393					      path->slots[0] - 1);
394			if (key.type == BTRFS_EXTENT_DATA_KEY)
395				path->slots[0]--;
396		}
397
398		nritems = btrfs_header_nritems(path->nodes[0]);
399process_slot:
400		if (path->slots[0] >= nritems) {
401			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
402			if (ret < 0)
403				goto out;
404			if (ret > 0)
405				break;
406			nritems = btrfs_header_nritems(path->nodes[0]);
407		}
408		leaf = path->nodes[0];
409		slot = path->slots[0];
410
411		btrfs_item_key_to_cpu(leaf, &key, slot);
412		if (key.type > BTRFS_EXTENT_DATA_KEY ||
413		    key.objectid != btrfs_ino(BTRFS_I(src)))
414			break;
415
416		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
417
418		extent = btrfs_item_ptr(leaf, slot,
419					struct btrfs_file_extent_item);
420		extent_gen = btrfs_file_extent_generation(leaf, extent);
421		comp = btrfs_file_extent_compression(leaf, extent);
422		type = btrfs_file_extent_type(leaf, extent);
423		if (type == BTRFS_FILE_EXTENT_REG ||
424		    type == BTRFS_FILE_EXTENT_PREALLOC) {
425			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
426			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
427			datao = btrfs_file_extent_offset(leaf, extent);
428			datal = btrfs_file_extent_num_bytes(leaf, extent);
429		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
430			/* Take upper bound, may be compressed */
431			datal = btrfs_file_extent_ram_bytes(leaf, extent);
432		}
433
434		/*
435		 * The first search might have left us at an extent item that
436		 * ends before our target range's start, can happen if we have
437		 * holes and NO_HOLES feature enabled.
438		 *
439		 * Subsequent searches may leave us on a file range we have
440		 * processed before - this happens due to a race with ordered
441		 * extent completion for a file range that is outside our source
442		 * range, but that range was part of a file extent item that
443		 * also covered a leading part of our source range.
444		 */
445		if (key.offset + datal <= prev_extent_end) {
446			path->slots[0]++;
447			goto process_slot;
448		} else if (key.offset >= off + len) {
449			break;
450		}
451
452		prev_extent_end = key.offset + datal;
453		size = btrfs_item_size(leaf, slot);
454		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
455				   size);
456
457		btrfs_release_path(path);
458
459		memcpy(&new_key, &key, sizeof(new_key));
460		new_key.objectid = btrfs_ino(BTRFS_I(inode));
461		if (off <= key.offset)
462			new_key.offset = key.offset + destoff - off;
463		else
464			new_key.offset = destoff;
465
466		/*
467		 * Deal with a hole that doesn't have an extent item that
468		 * represents it (NO_HOLES feature enabled).
469		 * This hole is either in the middle of the cloning range or at
470		 * the beginning (fully overlaps it or partially overlaps it).
471		 */
472		if (new_key.offset != last_dest_end)
473			drop_start = last_dest_end;
474		else
475			drop_start = new_key.offset;
476
477		if (type == BTRFS_FILE_EXTENT_REG ||
478		    type == BTRFS_FILE_EXTENT_PREALLOC) {
479			struct btrfs_replace_extent_info clone_info;
480
481			/*
482			 *    a  | --- range to clone ---|  b
483			 * | ------------- extent ------------- |
484			 */
485
486			/* Subtract range b */
487			if (key.offset + datal > off + len)
488				datal = off + len - key.offset;
489
490			/* Subtract range a */
491			if (off > key.offset) {
492				datao += off - key.offset;
493				datal -= off - key.offset;
494			}
495
496			clone_info.disk_offset = disko;
497			clone_info.disk_len = diskl;
498			clone_info.data_offset = datao;
499			clone_info.data_len = datal;
500			clone_info.file_offset = new_key.offset;
501			clone_info.extent_buf = buf;
502			clone_info.is_new_extent = false;
503			clone_info.update_times = !no_time_update;
504			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
505					drop_start, new_key.offset + datal - 1,
506					&clone_info, &trans);
507			if (ret)
508				goto out;
509		} else {
510			ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
511			/*
512			 * Inline extents always have to start at file offset 0
513			 * and can never be bigger then the sector size. We can
514			 * never clone only parts of an inline extent, since all
515			 * reflink operations must start at a sector size aligned
516			 * offset, and the length must be aligned too or end at
517			 * the i_size (which implies the whole inlined data).
518			 */
519			ASSERT(key.offset == 0);
520			ASSERT(datal <= fs_info->sectorsize);
521			if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
522			    WARN_ON(key.offset != 0) ||
523			    WARN_ON(datal > fs_info->sectorsize)) {
524				ret = -EUCLEAN;
525				goto out;
526			}
527
528			ret = clone_copy_inline_extent(inode, path, &new_key,
529						       drop_start, datal, size,
530						       comp, buf, &trans);
531			if (ret)
532				goto out;
533		}
534
535		btrfs_release_path(path);
536
537		/*
538		 * Whenever we share an extent we update the last_reflink_trans
539		 * of each inode to the current transaction. This is needed to
540		 * make sure fsync does not log multiple checksum items with
541		 * overlapping ranges (because some extent items might refer
542		 * only to sections of the original extent). For the destination
543		 * inode we do this regardless of the generation of the extents
544		 * or even if they are inline extents or explicit holes, to make
545		 * sure a full fsync does not skip them. For the source inode,
546		 * we only need to update last_reflink_trans in case it's a new
547		 * extent that is not a hole or an inline extent, to deal with
548		 * the checksums problem on fsync.
549		 */
550		if (extent_gen == trans->transid && disko > 0)
551			BTRFS_I(src)->last_reflink_trans = trans->transid;
552
553		BTRFS_I(inode)->last_reflink_trans = trans->transid;
554
555		last_dest_end = ALIGN(new_key.offset + datal,
556				      fs_info->sectorsize);
557		ret = clone_finish_inode_update(trans, inode, last_dest_end,
558						destoff, olen, no_time_update);
559		if (ret)
560			goto out;
561		if (new_key.offset + datal >= destoff + len)
562			break;
563
564		btrfs_release_path(path);
565		key.offset = prev_extent_end;
566
567		if (fatal_signal_pending(current)) {
568			ret = -EINTR;
569			goto out;
570		}
571
572		cond_resched();
573	}
574	ret = 0;
575
576	if (last_dest_end < destoff + len) {
577		/*
578		 * We have an implicit hole that fully or partially overlaps our
579		 * cloning range at its end. This means that we either have the
580		 * NO_HOLES feature enabled or the implicit hole happened due to
581		 * mixing buffered and direct IO writes against this file.
582		 */
583		btrfs_release_path(path);
584
585		/*
586		 * When using NO_HOLES and we are cloning a range that covers
587		 * only a hole (no extents) into a range beyond the current
588		 * i_size, punching a hole in the target range will not create
589		 * an extent map defining a hole, because the range starts at or
590		 * beyond current i_size. If the file previously had an i_size
591		 * greater than the new i_size set by this clone operation, we
592		 * need to make sure the next fsync is a full fsync, so that it
593		 * detects and logs a hole covering a range from the current
594		 * i_size to the new i_size. If the clone range covers extents,
595		 * besides a hole, then we know the full sync flag was already
596		 * set by previous calls to btrfs_replace_file_extents() that
597		 * replaced file extent items.
598		 */
599		if (last_dest_end >= i_size_read(inode))
600			btrfs_set_inode_full_sync(BTRFS_I(inode));
 
601
602		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
603				last_dest_end, destoff + len - 1, NULL, &trans);
604		if (ret)
605			goto out;
606
607		ret = clone_finish_inode_update(trans, inode, destoff + len,
608						destoff, olen, no_time_update);
609	}
610
611out:
612	btrfs_free_path(path);
613	kvfree(buf);
614	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
615
616	return ret;
617}
618
619static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
620				       struct inode *inode2, u64 loff2, u64 len)
621{
622	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
623	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
624}
625
626static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
627				     struct inode *inode2, u64 loff2, u64 len)
628{
629	u64 range1_end = loff1 + len - 1;
630	u64 range2_end = loff2 + len - 1;
631
632	if (inode1 < inode2) {
633		swap(inode1, inode2);
634		swap(loff1, loff2);
635		swap(range1_end, range2_end);
636	} else if (inode1 == inode2 && loff2 < loff1) {
637		swap(loff1, loff2);
638		swap(range1_end, range2_end);
639	}
640
641	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
642	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
643
644	btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
645	btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
646}
647
648static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
649{
650	if (inode1 < inode2)
651		swap(inode1, inode2);
652	down_write(&BTRFS_I(inode1)->i_mmap_lock);
653	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
654}
655
656static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
657{
658	up_write(&BTRFS_I(inode1)->i_mmap_lock);
659	up_write(&BTRFS_I(inode2)->i_mmap_lock);
660}
661
662static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
663				   struct inode *dst, u64 dst_loff)
664{
665	struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
666	const u64 bs = fs_info->sb->s_blocksize;
667	int ret;
668
669	/*
670	 * Lock destination range to serialize with concurrent readahead() and
671	 * source range to serialize with relocation.
672	 */
673	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
674	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
675	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
676
677	btrfs_btree_balance_dirty(fs_info);
678
679	return ret;
680}
681
682static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
683			     struct inode *dst, u64 dst_loff)
684{
685	int ret = 0;
686	u64 i, tail_len, chunk_count;
687	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
688
689	spin_lock(&root_dst->root_item_lock);
690	if (root_dst->send_in_progress) {
691		btrfs_warn_rl(root_dst->fs_info,
692"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
693			      root_dst->root_key.objectid,
694			      root_dst->send_in_progress);
695		spin_unlock(&root_dst->root_item_lock);
696		return -EAGAIN;
697	}
698	root_dst->dedupe_in_progress++;
699	spin_unlock(&root_dst->root_item_lock);
700
701	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
702	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
703
704	for (i = 0; i < chunk_count; i++) {
705		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
706					      dst, dst_loff);
707		if (ret)
708			goto out;
709
710		loff += BTRFS_MAX_DEDUPE_LEN;
711		dst_loff += BTRFS_MAX_DEDUPE_LEN;
712	}
713
714	if (tail_len > 0)
715		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
716out:
717	spin_lock(&root_dst->root_item_lock);
718	root_dst->dedupe_in_progress--;
719	spin_unlock(&root_dst->root_item_lock);
720
721	return ret;
722}
723
724static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
725					u64 off, u64 olen, u64 destoff)
726{
727	struct inode *inode = file_inode(file);
728	struct inode *src = file_inode(file_src);
729	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
730	int ret;
731	int wb_ret;
732	u64 len = olen;
733	u64 bs = fs_info->sb->s_blocksize;
734
735	/*
736	 * VFS's generic_remap_file_range_prep() protects us from cloning the
737	 * eof block into the middle of a file, which would result in corruption
738	 * if the file size is not blocksize aligned. So we don't need to check
739	 * for that case here.
740	 */
741	if (off + len == src->i_size)
742		len = ALIGN(src->i_size, bs) - off;
743
744	if (destoff > inode->i_size) {
745		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
746
747		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
748		if (ret)
749			return ret;
750		/*
751		 * We may have truncated the last block if the inode's size is
752		 * not sector size aligned, so we need to wait for writeback to
753		 * complete before proceeding further, otherwise we can race
754		 * with cloning and attempt to increment a reference to an
755		 * extent that no longer exists (writeback completed right after
756		 * we found the previous extent covering eof and before we
757		 * attempted to increment its reference count).
758		 */
759		ret = btrfs_wait_ordered_range(inode, wb_start,
760					       destoff - wb_start);
761		if (ret)
762			return ret;
763	}
764
765	/*
766	 * Lock destination range to serialize with concurrent readahead() and
767	 * source range to serialize with relocation.
768	 */
769	btrfs_double_extent_lock(src, off, inode, destoff, len);
770	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
771	btrfs_double_extent_unlock(src, off, inode, destoff, len);
772
773	/*
774	 * We may have copied an inline extent into a page of the destination
775	 * range, so wait for writeback to complete before truncating pages
776	 * from the page cache. This is a rare case.
777	 */
778	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
779	ret = ret ? ret : wb_ret;
780	/*
781	 * Truncate page cache pages so that future reads will see the cloned
782	 * data immediately and not the previous data.
783	 */
784	truncate_inode_pages_range(&inode->i_data,
785				round_down(destoff, PAGE_SIZE),
786				round_up(destoff + len, PAGE_SIZE) - 1);
787
788	btrfs_btree_balance_dirty(fs_info);
789
790	return ret;
791}
792
793static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
794				       struct file *file_out, loff_t pos_out,
795				       loff_t *len, unsigned int remap_flags)
796{
797	struct inode *inode_in = file_inode(file_in);
798	struct inode *inode_out = file_inode(file_out);
799	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
 
800	u64 wb_len;
801	int ret;
802
803	if (!(remap_flags & REMAP_FILE_DEDUP)) {
804		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
805
806		if (btrfs_root_readonly(root_out))
807			return -EROFS;
808
809		ASSERT(inode_in->i_sb == inode_out->i_sb);
 
 
810	}
811
812	/* Don't make the dst file partly checksummed */
813	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
814	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
815		return -EINVAL;
816	}
817
818	/*
819	 * Now that the inodes are locked, we need to start writeback ourselves
820	 * and can not rely on the writeback from the VFS's generic helper
821	 * generic_remap_file_range_prep() because:
822	 *
823	 * 1) For compression we must call filemap_fdatawrite_range() range
824	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
825	 *    helper only calls it once;
826	 *
827	 * 2) filemap_fdatawrite_range(), called by the generic helper only
828	 *    waits for the writeback to complete, i.e. for IO to be done, and
829	 *    not for the ordered extents to complete. We need to wait for them
830	 *    to complete so that new file extent items are in the fs tree.
831	 */
832	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
833		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
834	else
835		wb_len = ALIGN(*len, bs);
836
837	/*
 
 
 
 
 
 
 
 
 
838	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
839	 *
840	 * Btrfs' back references do not have a block level granularity, they
841	 * work at the whole extent level.
842	 * NOCOW buffered write without data space reserved may not be able
843	 * to fall back to CoW due to lack of data space, thus could cause
844	 * data loss.
845	 *
846	 * Here we take a shortcut by flushing the whole inode, so that all
847	 * nocow write should reach disk as nocow before we increase the
848	 * reference of the extent. We could do better by only flushing NOCOW
849	 * data, but that needs extra accounting.
850	 *
851	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
852	 * CoWed anyway, not affecting nocow part.
853	 */
854	ret = filemap_flush(inode_in->i_mapping);
855	if (ret < 0)
856		return ret;
857
858	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
859				       wb_len);
860	if (ret < 0)
861		return ret;
862	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
863				       wb_len);
864	if (ret < 0)
865		return ret;
866
867	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
868					    len, remap_flags);
869}
870
871static bool file_sync_write(const struct file *file)
872{
873	if (file->f_flags & (__O_SYNC | O_DSYNC))
874		return true;
875	if (IS_SYNC(file_inode(file)))
876		return true;
877
878	return false;
879}
880
881loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
882		struct file *dst_file, loff_t destoff, loff_t len,
883		unsigned int remap_flags)
884{
885	struct inode *src_inode = file_inode(src_file);
886	struct inode *dst_inode = file_inode(dst_file);
887	bool same_inode = dst_inode == src_inode;
888	int ret;
889
890	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
891		return -EINVAL;
892
893	if (same_inode) {
894		btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
895	} else {
896		lock_two_nondirectories(src_inode, dst_inode);
897		btrfs_double_mmap_lock(src_inode, dst_inode);
898	}
899
900	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
901					  &len, remap_flags);
902	if (ret < 0 || len == 0)
903		goto out_unlock;
904
905	if (remap_flags & REMAP_FILE_DEDUP)
906		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
907	else
908		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
909
910out_unlock:
911	if (same_inode) {
912		btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
913	} else {
914		btrfs_double_mmap_unlock(src_inode, dst_inode);
915		unlock_two_nondirectories(src_inode, dst_inode);
916	}
917
918	/*
919	 * If either the source or the destination file was opened with O_SYNC,
920	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
921	 * source files/ranges, so that after a successful return (0) followed
922	 * by a power failure results in the reflinked data to be readable from
923	 * both files/ranges.
924	 */
925	if (ret == 0 && len > 0 &&
926	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
927		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
928		if (ret == 0)
929			ret = btrfs_sync_file(dst_file, destoff,
930					      destoff + len - 1, 0);
931	}
932
933	return ret < 0 ? ret : len;
934}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/blkdev.h>
  4#include <linux/iversion.h>
 
 
 
  5#include "compression.h"
  6#include "ctree.h"
  7#include "delalloc-space.h"
 
  8#include "reflink.h"
  9#include "transaction.h"
 10#include "subpage.h"
 
 
 
 
 11
 12#define BTRFS_MAX_DEDUPE_LEN	SZ_16M
 13
 14static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
 15				     struct inode *inode,
 16				     u64 endoff,
 17				     const u64 destoff,
 18				     const u64 olen,
 19				     int no_time_update)
 20{
 21	struct btrfs_root *root = BTRFS_I(inode)->root;
 22	int ret;
 23
 24	inode_inc_iversion(inode);
 25	if (!no_time_update)
 26		inode->i_mtime = inode->i_ctime = current_time(inode);
 
 27	/*
 28	 * We round up to the block size at eof when determining which
 29	 * extents to clone above, but shouldn't round up the file size.
 30	 */
 31	if (endoff > destoff + olen)
 32		endoff = destoff + olen;
 33	if (endoff > inode->i_size) {
 34		i_size_write(inode, endoff);
 35		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
 36	}
 37
 38	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 39	if (ret) {
 40		btrfs_abort_transaction(trans, ret);
 41		btrfs_end_transaction(trans);
 42		goto out;
 43	}
 44	ret = btrfs_end_transaction(trans);
 45out:
 46	return ret;
 47}
 48
 49static int copy_inline_to_page(struct btrfs_inode *inode,
 50			       const u64 file_offset,
 51			       char *inline_data,
 52			       const u64 size,
 53			       const u64 datal,
 54			       const u8 comp_type)
 55{
 56	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 57	const u32 block_size = fs_info->sectorsize;
 58	const u64 range_end = file_offset + block_size - 1;
 59	const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
 60	char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
 61	struct extent_changeset *data_reserved = NULL;
 62	struct page *page = NULL;
 63	struct address_space *mapping = inode->vfs_inode.i_mapping;
 64	int ret;
 65
 66	ASSERT(IS_ALIGNED(file_offset, block_size));
 67
 68	/*
 69	 * We have flushed and locked the ranges of the source and destination
 70	 * inodes, we also have locked the inodes, so we are safe to do a
 71	 * reservation here. Also we must not do the reservation while holding
 72	 * a transaction open, otherwise we would deadlock.
 73	 */
 74	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
 75					   block_size);
 76	if (ret)
 77		goto out;
 78
 79	page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
 80				   btrfs_alloc_write_mask(mapping));
 81	if (!page) {
 82		ret = -ENOMEM;
 83		goto out_unlock;
 84	}
 85
 86	ret = set_page_extent_mapped(page);
 87	if (ret < 0)
 88		goto out_unlock;
 89
 90	clear_extent_bit(&inode->io_tree, file_offset, range_end,
 91			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
 92			 0, 0, NULL);
 93	ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
 94	if (ret)
 95		goto out_unlock;
 96
 97	/*
 98	 * After dirtying the page our caller will need to start a transaction,
 99	 * and if we are low on metadata free space, that can cause flushing of
100	 * delalloc for all inodes in order to get metadata space released.
101	 * However we are holding the range locked for the whole duration of
102	 * the clone/dedupe operation, so we may deadlock if that happens and no
103	 * other task releases enough space. So mark this inode as not being
104	 * possible to flush to avoid such deadlock. We will clear that flag
105	 * when we finish cloning all extents, since a transaction is started
106	 * after finding each extent to clone.
107	 */
108	set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
109
110	if (comp_type == BTRFS_COMPRESS_NONE) {
111		memcpy_to_page(page, offset_in_page(file_offset), data_start,
112			       datal);
113		flush_dcache_page(page);
114	} else {
115		ret = btrfs_decompress(comp_type, data_start, page,
116				       offset_in_page(file_offset),
117				       inline_size, datal);
118		if (ret)
119			goto out_unlock;
120		flush_dcache_page(page);
121	}
122
123	/*
124	 * If our inline data is smaller then the block/page size, then the
125	 * remaining of the block/page is equivalent to zeroes. We had something
126	 * like the following done:
127	 *
128	 * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
129	 * $ sync  # (or fsync)
130	 * $ xfs_io -c "falloc 0 4K" file
131	 * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
132	 *
133	 * So what's in the range [500, 4095] corresponds to zeroes.
134	 */
135	if (datal < block_size) {
136		memzero_page(page, datal, block_size - datal);
137		flush_dcache_page(page);
138	}
139
140	btrfs_page_set_uptodate(fs_info, page, file_offset, block_size);
141	ClearPageChecked(page);
142	btrfs_page_set_dirty(fs_info, page, file_offset, block_size);
143out_unlock:
144	if (page) {
145		unlock_page(page);
146		put_page(page);
147	}
148	if (ret)
149		btrfs_delalloc_release_space(inode, data_reserved, file_offset,
150					     block_size, true);
151	btrfs_delalloc_release_extents(inode, block_size);
152out:
153	extent_changeset_free(data_reserved);
154
155	return ret;
156}
157
158/*
159 * Deal with cloning of inline extents. We try to copy the inline extent from
160 * the source inode to destination inode when possible. When not possible we
161 * copy the inline extent's data into the respective page of the inode.
162 */
163static int clone_copy_inline_extent(struct inode *dst,
164				    struct btrfs_path *path,
165				    struct btrfs_key *new_key,
166				    const u64 drop_start,
167				    const u64 datal,
168				    const u64 size,
169				    const u8 comp_type,
170				    char *inline_data,
171				    struct btrfs_trans_handle **trans_out)
172{
173	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
174	struct btrfs_root *root = BTRFS_I(dst)->root;
175	const u64 aligned_end = ALIGN(new_key->offset + datal,
176				      fs_info->sectorsize);
177	struct btrfs_trans_handle *trans = NULL;
178	struct btrfs_drop_extents_args drop_args = { 0 };
179	int ret;
180	struct btrfs_key key;
181
182	if (new_key->offset > 0) {
183		ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
184					  inline_data, size, datal, comp_type);
185		goto out;
186	}
187
188	key.objectid = btrfs_ino(BTRFS_I(dst));
189	key.type = BTRFS_EXTENT_DATA_KEY;
190	key.offset = 0;
191	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
192	if (ret < 0) {
193		return ret;
194	} else if (ret > 0) {
195		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
196			ret = btrfs_next_leaf(root, path);
197			if (ret < 0)
198				return ret;
199			else if (ret > 0)
200				goto copy_inline_extent;
201		}
202		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
203		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
204		    key.type == BTRFS_EXTENT_DATA_KEY) {
205			/*
206			 * There's an implicit hole at file offset 0, copy the
207			 * inline extent's data to the page.
208			 */
209			ASSERT(key.offset > 0);
210			goto copy_to_page;
211		}
212	} else if (i_size_read(dst) <= datal) {
213		struct btrfs_file_extent_item *ei;
214
215		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
216				    struct btrfs_file_extent_item);
217		/*
218		 * If it's an inline extent replace it with the source inline
219		 * extent, otherwise copy the source inline extent data into
220		 * the respective page at the destination inode.
221		 */
222		if (btrfs_file_extent_type(path->nodes[0], ei) ==
223		    BTRFS_FILE_EXTENT_INLINE)
224			goto copy_inline_extent;
225
226		goto copy_to_page;
227	}
228
229copy_inline_extent:
230	/*
231	 * We have no extent items, or we have an extent at offset 0 which may
232	 * or may not be inlined. All these cases are dealt the same way.
233	 */
234	if (i_size_read(dst) > datal) {
235		/*
236		 * At the destination offset 0 we have either a hole, a regular
237		 * extent or an inline extent larger then the one we want to
238		 * clone. Deal with all these cases by copying the inline extent
239		 * data into the respective page at the destination inode.
240		 */
241		goto copy_to_page;
242	}
243
244	/*
245	 * Release path before starting a new transaction so we don't hold locks
246	 * that would confuse lockdep.
247	 */
248	btrfs_release_path(path);
249	/*
250	 * If we end up here it means were copy the inline extent into a leaf
251	 * of the destination inode. We know we will drop or adjust at most one
252	 * extent item in the destination root.
253	 *
254	 * 1 unit - adjusting old extent (we may have to split it)
255	 * 1 unit - add new extent
256	 * 1 unit - inode update
257	 */
258	trans = btrfs_start_transaction(root, 3);
259	if (IS_ERR(trans)) {
260		ret = PTR_ERR(trans);
261		trans = NULL;
262		goto out;
263	}
264	drop_args.path = path;
265	drop_args.start = drop_start;
266	drop_args.end = aligned_end;
267	drop_args.drop_cache = true;
268	ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
269	if (ret)
270		goto out;
271	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
272	if (ret)
273		goto out;
274
275	write_extent_buffer(path->nodes[0], inline_data,
276			    btrfs_item_ptr_offset(path->nodes[0],
277						  path->slots[0]),
278			    size);
279	btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
280	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
281	ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
282out:
283	if (!ret && !trans) {
284		/*
285		 * No transaction here means we copied the inline extent into a
286		 * page of the destination inode.
287		 *
288		 * 1 unit to update inode item
289		 */
290		trans = btrfs_start_transaction(root, 1);
291		if (IS_ERR(trans)) {
292			ret = PTR_ERR(trans);
293			trans = NULL;
294		}
295	}
296	if (ret && trans) {
297		btrfs_abort_transaction(trans, ret);
298		btrfs_end_transaction(trans);
299	}
300	if (!ret)
301		*trans_out = trans;
302
303	return ret;
304
305copy_to_page:
306	/*
307	 * Release our path because we don't need it anymore and also because
308	 * copy_inline_to_page() needs to reserve data and metadata, which may
309	 * need to flush delalloc when we are low on available space and
310	 * therefore cause a deadlock if writeback of an inline extent needs to
311	 * write to the same leaf or an ordered extent completion needs to write
312	 * to the same leaf.
313	 */
314	btrfs_release_path(path);
315
316	ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
317				  inline_data, size, datal, comp_type);
318	goto out;
319}
320
321/**
322 * btrfs_clone() - clone a range from inode file to another
323 *
324 * @src: Inode to clone from
325 * @inode: Inode to clone to
326 * @off: Offset within source to start clone from
327 * @olen: Original length, passed by user, of range to clone
328 * @olen_aligned: Block-aligned value of olen
329 * @destoff: Offset within @inode to start clone
330 * @no_time_update: Whether to update mtime/ctime on the target inode
331 */
332static int btrfs_clone(struct inode *src, struct inode *inode,
333		       const u64 off, const u64 olen, const u64 olen_aligned,
334		       const u64 destoff, int no_time_update)
335{
336	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
337	struct btrfs_path *path = NULL;
338	struct extent_buffer *leaf;
339	struct btrfs_trans_handle *trans;
340	char *buf = NULL;
341	struct btrfs_key key;
342	u32 nritems;
343	int slot;
344	int ret;
345	const u64 len = olen_aligned;
346	u64 last_dest_end = destoff;
 
347
348	ret = -ENOMEM;
349	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
350	if (!buf)
351		return ret;
352
353	path = btrfs_alloc_path();
354	if (!path) {
355		kvfree(buf);
356		return ret;
357	}
358
359	path->reada = READA_FORWARD;
360	/* Clone data */
361	key.objectid = btrfs_ino(BTRFS_I(src));
362	key.type = BTRFS_EXTENT_DATA_KEY;
363	key.offset = off;
364
365	while (1) {
366		u64 next_key_min_offset = key.offset + 1;
367		struct btrfs_file_extent_item *extent;
368		u64 extent_gen;
369		int type;
370		u32 size;
371		struct btrfs_key new_key;
372		u64 disko = 0, diskl = 0;
373		u64 datao = 0, datal = 0;
374		u8 comp;
375		u64 drop_start;
376
377		/* Note the key will change type as we walk through the tree */
378		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
379				0, 0);
380		if (ret < 0)
381			goto out;
382		/*
383		 * First search, if no extent item that starts at offset off was
384		 * found but the previous item is an extent item, it's possible
385		 * it might overlap our target range, therefore process it.
386		 */
387		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
388			btrfs_item_key_to_cpu(path->nodes[0], &key,
389					      path->slots[0] - 1);
390			if (key.type == BTRFS_EXTENT_DATA_KEY)
391				path->slots[0]--;
392		}
393
394		nritems = btrfs_header_nritems(path->nodes[0]);
395process_slot:
396		if (path->slots[0] >= nritems) {
397			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
398			if (ret < 0)
399				goto out;
400			if (ret > 0)
401				break;
402			nritems = btrfs_header_nritems(path->nodes[0]);
403		}
404		leaf = path->nodes[0];
405		slot = path->slots[0];
406
407		btrfs_item_key_to_cpu(leaf, &key, slot);
408		if (key.type > BTRFS_EXTENT_DATA_KEY ||
409		    key.objectid != btrfs_ino(BTRFS_I(src)))
410			break;
411
412		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
413
414		extent = btrfs_item_ptr(leaf, slot,
415					struct btrfs_file_extent_item);
416		extent_gen = btrfs_file_extent_generation(leaf, extent);
417		comp = btrfs_file_extent_compression(leaf, extent);
418		type = btrfs_file_extent_type(leaf, extent);
419		if (type == BTRFS_FILE_EXTENT_REG ||
420		    type == BTRFS_FILE_EXTENT_PREALLOC) {
421			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
422			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
423			datao = btrfs_file_extent_offset(leaf, extent);
424			datal = btrfs_file_extent_num_bytes(leaf, extent);
425		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
426			/* Take upper bound, may be compressed */
427			datal = btrfs_file_extent_ram_bytes(leaf, extent);
428		}
429
430		/*
431		 * The first search might have left us at an extent item that
432		 * ends before our target range's start, can happen if we have
433		 * holes and NO_HOLES feature enabled.
 
 
 
 
 
 
434		 */
435		if (key.offset + datal <= off) {
436			path->slots[0]++;
437			goto process_slot;
438		} else if (key.offset >= off + len) {
439			break;
440		}
441		next_key_min_offset = key.offset + datal;
442		size = btrfs_item_size_nr(leaf, slot);
 
443		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
444				   size);
445
446		btrfs_release_path(path);
447
448		memcpy(&new_key, &key, sizeof(new_key));
449		new_key.objectid = btrfs_ino(BTRFS_I(inode));
450		if (off <= key.offset)
451			new_key.offset = key.offset + destoff - off;
452		else
453			new_key.offset = destoff;
454
455		/*
456		 * Deal with a hole that doesn't have an extent item that
457		 * represents it (NO_HOLES feature enabled).
458		 * This hole is either in the middle of the cloning range or at
459		 * the beginning (fully overlaps it or partially overlaps it).
460		 */
461		if (new_key.offset != last_dest_end)
462			drop_start = last_dest_end;
463		else
464			drop_start = new_key.offset;
465
466		if (type == BTRFS_FILE_EXTENT_REG ||
467		    type == BTRFS_FILE_EXTENT_PREALLOC) {
468			struct btrfs_replace_extent_info clone_info;
469
470			/*
471			 *    a  | --- range to clone ---|  b
472			 * | ------------- extent ------------- |
473			 */
474
475			/* Subtract range b */
476			if (key.offset + datal > off + len)
477				datal = off + len - key.offset;
478
479			/* Subtract range a */
480			if (off > key.offset) {
481				datao += off - key.offset;
482				datal -= off - key.offset;
483			}
484
485			clone_info.disk_offset = disko;
486			clone_info.disk_len = diskl;
487			clone_info.data_offset = datao;
488			clone_info.data_len = datal;
489			clone_info.file_offset = new_key.offset;
490			clone_info.extent_buf = buf;
491			clone_info.is_new_extent = false;
 
492			ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
493					drop_start, new_key.offset + datal - 1,
494					&clone_info, &trans);
495			if (ret)
496				goto out;
497		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
 
498			/*
499			 * Inline extents always have to start at file offset 0
500			 * and can never be bigger then the sector size. We can
501			 * never clone only parts of an inline extent, since all
502			 * reflink operations must start at a sector size aligned
503			 * offset, and the length must be aligned too or end at
504			 * the i_size (which implies the whole inlined data).
505			 */
506			ASSERT(key.offset == 0);
507			ASSERT(datal <= fs_info->sectorsize);
508			if (key.offset != 0 || datal > fs_info->sectorsize)
509				return -EUCLEAN;
 
 
 
 
510
511			ret = clone_copy_inline_extent(inode, path, &new_key,
512						       drop_start, datal, size,
513						       comp, buf, &trans);
514			if (ret)
515				goto out;
516		}
517
518		btrfs_release_path(path);
519
520		/*
521		 * If this is a new extent update the last_reflink_trans of both
522		 * inodes. This is used by fsync to make sure it does not log
523		 * multiple checksum items with overlapping ranges. For older
524		 * extents we don't need to do it since inode logging skips the
525		 * checksums for older extents. Also ignore holes and inline
526		 * extents because they don't have checksums in the csum tree.
 
 
 
 
 
527		 */
528		if (extent_gen == trans->transid && disko > 0) {
529			BTRFS_I(src)->last_reflink_trans = trans->transid;
530			BTRFS_I(inode)->last_reflink_trans = trans->transid;
531		}
532
533		last_dest_end = ALIGN(new_key.offset + datal,
534				      fs_info->sectorsize);
535		ret = clone_finish_inode_update(trans, inode, last_dest_end,
536						destoff, olen, no_time_update);
537		if (ret)
538			goto out;
539		if (new_key.offset + datal >= destoff + len)
540			break;
541
542		btrfs_release_path(path);
543		key.offset = next_key_min_offset;
544
545		if (fatal_signal_pending(current)) {
546			ret = -EINTR;
547			goto out;
548		}
549
550		cond_resched();
551	}
552	ret = 0;
553
554	if (last_dest_end < destoff + len) {
555		/*
556		 * We have an implicit hole that fully or partially overlaps our
557		 * cloning range at its end. This means that we either have the
558		 * NO_HOLES feature enabled or the implicit hole happened due to
559		 * mixing buffered and direct IO writes against this file.
560		 */
561		btrfs_release_path(path);
562
563		/*
564		 * When using NO_HOLES and we are cloning a range that covers
565		 * only a hole (no extents) into a range beyond the current
566		 * i_size, punching a hole in the target range will not create
567		 * an extent map defining a hole, because the range starts at or
568		 * beyond current i_size. If the file previously had an i_size
569		 * greater than the new i_size set by this clone operation, we
570		 * need to make sure the next fsync is a full fsync, so that it
571		 * detects and logs a hole covering a range from the current
572		 * i_size to the new i_size. If the clone range covers extents,
573		 * besides a hole, then we know the full sync flag was already
574		 * set by previous calls to btrfs_replace_file_extents() that
575		 * replaced file extent items.
576		 */
577		if (last_dest_end >= i_size_read(inode))
578			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
579				&BTRFS_I(inode)->runtime_flags);
580
581		ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
582				last_dest_end, destoff + len - 1, NULL, &trans);
583		if (ret)
584			goto out;
585
586		ret = clone_finish_inode_update(trans, inode, destoff + len,
587						destoff, olen, no_time_update);
588	}
589
590out:
591	btrfs_free_path(path);
592	kvfree(buf);
593	clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
594
595	return ret;
596}
597
598static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
599				       struct inode *inode2, u64 loff2, u64 len)
600{
601	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
602	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
603}
604
605static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
606				     struct inode *inode2, u64 loff2, u64 len)
607{
 
 
 
608	if (inode1 < inode2) {
609		swap(inode1, inode2);
610		swap(loff1, loff2);
 
611	} else if (inode1 == inode2 && loff2 < loff1) {
612		swap(loff1, loff2);
 
613	}
614	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
615	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
 
 
 
 
616}
617
618static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
619{
620	if (inode1 < inode2)
621		swap(inode1, inode2);
622	down_write(&BTRFS_I(inode1)->i_mmap_lock);
623	down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
624}
625
626static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
627{
628	up_write(&BTRFS_I(inode1)->i_mmap_lock);
629	up_write(&BTRFS_I(inode2)->i_mmap_lock);
630}
631
632static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
633				   struct inode *dst, u64 dst_loff)
634{
635	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
 
636	int ret;
637
638	/*
639	 * Lock destination range to serialize with concurrent readpages() and
640	 * source range to serialize with relocation.
641	 */
642	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
643	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
644	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
645
 
 
646	return ret;
647}
648
649static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
650			     struct inode *dst, u64 dst_loff)
651{
652	int ret;
653	u64 i, tail_len, chunk_count;
654	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
655
656	spin_lock(&root_dst->root_item_lock);
657	if (root_dst->send_in_progress) {
658		btrfs_warn_rl(root_dst->fs_info,
659"cannot deduplicate to root %llu while send operations are using it (%d in progress)",
660			      root_dst->root_key.objectid,
661			      root_dst->send_in_progress);
662		spin_unlock(&root_dst->root_item_lock);
663		return -EAGAIN;
664	}
665	root_dst->dedupe_in_progress++;
666	spin_unlock(&root_dst->root_item_lock);
667
668	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
669	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
670
671	for (i = 0; i < chunk_count; i++) {
672		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
673					      dst, dst_loff);
674		if (ret)
675			goto out;
676
677		loff += BTRFS_MAX_DEDUPE_LEN;
678		dst_loff += BTRFS_MAX_DEDUPE_LEN;
679	}
680
681	if (tail_len > 0)
682		ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
683out:
684	spin_lock(&root_dst->root_item_lock);
685	root_dst->dedupe_in_progress--;
686	spin_unlock(&root_dst->root_item_lock);
687
688	return ret;
689}
690
691static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
692					u64 off, u64 olen, u64 destoff)
693{
694	struct inode *inode = file_inode(file);
695	struct inode *src = file_inode(file_src);
696	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
697	int ret;
698	int wb_ret;
699	u64 len = olen;
700	u64 bs = fs_info->sb->s_blocksize;
701
702	/*
703	 * VFS's generic_remap_file_range_prep() protects us from cloning the
704	 * eof block into the middle of a file, which would result in corruption
705	 * if the file size is not blocksize aligned. So we don't need to check
706	 * for that case here.
707	 */
708	if (off + len == src->i_size)
709		len = ALIGN(src->i_size, bs) - off;
710
711	if (destoff > inode->i_size) {
712		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
713
714		ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
715		if (ret)
716			return ret;
717		/*
718		 * We may have truncated the last block if the inode's size is
719		 * not sector size aligned, so we need to wait for writeback to
720		 * complete before proceeding further, otherwise we can race
721		 * with cloning and attempt to increment a reference to an
722		 * extent that no longer exists (writeback completed right after
723		 * we found the previous extent covering eof and before we
724		 * attempted to increment its reference count).
725		 */
726		ret = btrfs_wait_ordered_range(inode, wb_start,
727					       destoff - wb_start);
728		if (ret)
729			return ret;
730	}
731
732	/*
733	 * Lock destination range to serialize with concurrent readpages() and
734	 * source range to serialize with relocation.
735	 */
736	btrfs_double_extent_lock(src, off, inode, destoff, len);
737	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
738	btrfs_double_extent_unlock(src, off, inode, destoff, len);
739
740	/*
741	 * We may have copied an inline extent into a page of the destination
742	 * range, so wait for writeback to complete before truncating pages
743	 * from the page cache. This is a rare case.
744	 */
745	wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
746	ret = ret ? ret : wb_ret;
747	/*
748	 * Truncate page cache pages so that future reads will see the cloned
749	 * data immediately and not the previous data.
750	 */
751	truncate_inode_pages_range(&inode->i_data,
752				round_down(destoff, PAGE_SIZE),
753				round_up(destoff + len, PAGE_SIZE) - 1);
754
 
 
755	return ret;
756}
757
758static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
759				       struct file *file_out, loff_t pos_out,
760				       loff_t *len, unsigned int remap_flags)
761{
762	struct inode *inode_in = file_inode(file_in);
763	struct inode *inode_out = file_inode(file_out);
764	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
765	bool same_inode = inode_out == inode_in;
766	u64 wb_len;
767	int ret;
768
769	if (!(remap_flags & REMAP_FILE_DEDUP)) {
770		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
771
772		if (btrfs_root_readonly(root_out))
773			return -EROFS;
774
775		if (file_in->f_path.mnt != file_out->f_path.mnt ||
776		    inode_in->i_sb != inode_out->i_sb)
777			return -EXDEV;
778	}
779
780	/* Don't make the dst file partly checksummed */
781	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
782	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
783		return -EINVAL;
784	}
785
786	/*
787	 * Now that the inodes are locked, we need to start writeback ourselves
788	 * and can not rely on the writeback from the VFS's generic helper
789	 * generic_remap_file_range_prep() because:
790	 *
791	 * 1) For compression we must call filemap_fdatawrite_range() range
792	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
793	 *    helper only calls it once;
794	 *
795	 * 2) filemap_fdatawrite_range(), called by the generic helper only
796	 *    waits for the writeback to complete, i.e. for IO to be done, and
797	 *    not for the ordered extents to complete. We need to wait for them
798	 *    to complete so that new file extent items are in the fs tree.
799	 */
800	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
801		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
802	else
803		wb_len = ALIGN(*len, bs);
804
805	/*
806	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
807	 * any in progress could create its ordered extents after we wait for
808	 * existing ordered extents below).
809	 */
810	inode_dio_wait(inode_in);
811	if (!same_inode)
812		inode_dio_wait(inode_out);
813
814	/*
815	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
816	 *
817	 * Btrfs' back references do not have a block level granularity, they
818	 * work at the whole extent level.
819	 * NOCOW buffered write without data space reserved may not be able
820	 * to fall back to CoW due to lack of data space, thus could cause
821	 * data loss.
822	 *
823	 * Here we take a shortcut by flushing the whole inode, so that all
824	 * nocow write should reach disk as nocow before we increase the
825	 * reference of the extent. We could do better by only flushing NOCOW
826	 * data, but that needs extra accounting.
827	 *
828	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
829	 * CoWed anyway, not affecting nocow part.
830	 */
831	ret = filemap_flush(inode_in->i_mapping);
832	if (ret < 0)
833		return ret;
834
835	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
836				       wb_len);
837	if (ret < 0)
838		return ret;
839	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
840				       wb_len);
841	if (ret < 0)
842		return ret;
843
844	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
845					    len, remap_flags);
846}
847
848static bool file_sync_write(const struct file *file)
849{
850	if (file->f_flags & (__O_SYNC | O_DSYNC))
851		return true;
852	if (IS_SYNC(file_inode(file)))
853		return true;
854
855	return false;
856}
857
858loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
859		struct file *dst_file, loff_t destoff, loff_t len,
860		unsigned int remap_flags)
861{
862	struct inode *src_inode = file_inode(src_file);
863	struct inode *dst_inode = file_inode(dst_file);
864	bool same_inode = dst_inode == src_inode;
865	int ret;
866
867	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
868		return -EINVAL;
869
870	if (same_inode) {
871		btrfs_inode_lock(src_inode, BTRFS_ILOCK_MMAP);
872	} else {
873		lock_two_nondirectories(src_inode, dst_inode);
874		btrfs_double_mmap_lock(src_inode, dst_inode);
875	}
876
877	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
878					  &len, remap_flags);
879	if (ret < 0 || len == 0)
880		goto out_unlock;
881
882	if (remap_flags & REMAP_FILE_DEDUP)
883		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
884	else
885		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
886
887out_unlock:
888	if (same_inode) {
889		btrfs_inode_unlock(src_inode, BTRFS_ILOCK_MMAP);
890	} else {
891		btrfs_double_mmap_unlock(src_inode, dst_inode);
892		unlock_two_nondirectories(src_inode, dst_inode);
893	}
894
895	/*
896	 * If either the source or the destination file was opened with O_SYNC,
897	 * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
898	 * source files/ranges, so that after a successful return (0) followed
899	 * by a power failure results in the reflinked data to be readable from
900	 * both files/ranges.
901	 */
902	if (ret == 0 && len > 0 &&
903	    (file_sync_write(src_file) || file_sync_write(dst_file))) {
904		ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
905		if (ret == 0)
906			ret = btrfs_sync_file(dst_file, destoff,
907					      destoff + len - 1, 0);
908	}
909
910	return ret < 0 ? ret : len;
911}