Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2
3#ifndef BTRFS_BLOCK_GROUP_H
4#define BTRFS_BLOCK_GROUP_H
5
6#include "free-space-cache.h"
7
8struct btrfs_chunk_map;
9
10enum btrfs_disk_cache_state {
11 BTRFS_DC_WRITTEN,
12 BTRFS_DC_ERROR,
13 BTRFS_DC_CLEAR,
14 BTRFS_DC_SETUP,
15};
16
17enum btrfs_block_group_size_class {
18 /* Unset */
19 BTRFS_BG_SZ_NONE,
20 /* 0 < size <= 128K */
21 BTRFS_BG_SZ_SMALL,
22 /* 128K < size <= 8M */
23 BTRFS_BG_SZ_MEDIUM,
24 /* 8M < size < BG_LENGTH */
25 BTRFS_BG_SZ_LARGE,
26};
27
28/*
29 * This describes the state of the block_group for async discard. This is due
30 * to the two pass nature of it where extent discarding is prioritized over
31 * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
32 * between lists to prevent contention for discard state variables
33 * (eg. discard_cursor).
34 */
35enum btrfs_discard_state {
36 BTRFS_DISCARD_EXTENTS,
37 BTRFS_DISCARD_BITMAPS,
38 BTRFS_DISCARD_RESET_CURSOR,
39};
40
41/*
42 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
43 * only allocate a chunk if we really need one.
44 *
45 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
46 * chunks already allocated. This is used as part of the clustering code to
47 * help make sure we have a good pool of storage to cluster in, without filling
48 * the FS with empty chunks
49 *
50 * CHUNK_ALLOC_FORCE means it must try to allocate one
51 *
52 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from
53 * find_free_extent() that also activaes the zone
54 */
55enum btrfs_chunk_alloc_enum {
56 CHUNK_ALLOC_NO_FORCE,
57 CHUNK_ALLOC_LIMITED,
58 CHUNK_ALLOC_FORCE,
59 CHUNK_ALLOC_FORCE_FOR_EXTENT,
60};
61
62/* Block group flags set at runtime */
63enum btrfs_block_group_flags {
64 BLOCK_GROUP_FLAG_IREF,
65 BLOCK_GROUP_FLAG_REMOVED,
66 BLOCK_GROUP_FLAG_TO_COPY,
67 BLOCK_GROUP_FLAG_RELOCATING_REPAIR,
68 BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
69 BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
70 BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
71 /* Does the block group need to be added to the free space tree? */
72 BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE,
73 /* Indicate that the block group is placed on a sequential zone */
74 BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE,
75 /*
76 * Indicate that block group is in the list of new block groups of a
77 * transaction.
78 */
79 BLOCK_GROUP_FLAG_NEW,
80};
81
82enum btrfs_caching_type {
83 BTRFS_CACHE_NO,
84 BTRFS_CACHE_STARTED,
85 BTRFS_CACHE_FINISHED,
86 BTRFS_CACHE_ERROR,
87};
88
89struct btrfs_caching_control {
90 struct list_head list;
91 struct mutex mutex;
92 wait_queue_head_t wait;
93 struct btrfs_work work;
94 struct btrfs_block_group *block_group;
95 /* Track progress of caching during allocation. */
96 atomic_t progress;
97 refcount_t count;
98};
99
100/* Once caching_thread() finds this much free space, it will wake up waiters. */
101#define CACHING_CTL_WAKE_UP SZ_2M
102
103struct btrfs_block_group {
104 struct btrfs_fs_info *fs_info;
105 struct inode *inode;
106 spinlock_t lock;
107 u64 start;
108 u64 length;
109 u64 pinned;
110 u64 reserved;
111 u64 used;
112 u64 delalloc_bytes;
113 u64 bytes_super;
114 u64 flags;
115 u64 cache_generation;
116 u64 global_root_id;
117
118 /*
119 * The last committed used bytes of this block group, if the above @used
120 * is still the same as @commit_used, we don't need to update block
121 * group item of this block group.
122 */
123 u64 commit_used;
124 /*
125 * If the free space extent count exceeds this number, convert the block
126 * group to bitmaps.
127 */
128 u32 bitmap_high_thresh;
129
130 /*
131 * If the free space extent count drops below this number, convert the
132 * block group back to extents.
133 */
134 u32 bitmap_low_thresh;
135
136 /*
137 * It is just used for the delayed data space allocation because
138 * only the data space allocation and the relative metadata update
139 * can be done cross the transaction.
140 */
141 struct rw_semaphore data_rwsem;
142
143 /* For raid56, this is a full stripe, without parity */
144 unsigned long full_stripe_len;
145 unsigned long runtime_flags;
146
147 unsigned int ro;
148
149 int disk_cache_state;
150
151 /* Cache tracking stuff */
152 int cached;
153 struct btrfs_caching_control *caching_ctl;
154
155 struct btrfs_space_info *space_info;
156
157 /* Free space cache stuff */
158 struct btrfs_free_space_ctl *free_space_ctl;
159
160 /* Block group cache stuff */
161 struct rb_node cache_node;
162
163 /* For block groups in the same raid type */
164 struct list_head list;
165
166 refcount_t refs;
167
168 /*
169 * List of struct btrfs_free_clusters for this block group.
170 * Today it will only have one thing on it, but that may change
171 */
172 struct list_head cluster_list;
173
174 /*
175 * Used for several lists:
176 *
177 * 1) struct btrfs_fs_info::unused_bgs
178 * 2) struct btrfs_fs_info::reclaim_bgs
179 * 3) struct btrfs_transaction::deleted_bgs
180 * 4) struct btrfs_trans_handle::new_bgs
181 */
182 struct list_head bg_list;
183
184 /* For read-only block groups */
185 struct list_head ro_list;
186
187 /*
188 * When non-zero it means the block group's logical address and its
189 * device extents can not be reused for future block group allocations
190 * until the counter goes down to 0. This is to prevent them from being
191 * reused while some task is still using the block group after it was
192 * deleted - we want to make sure they can only be reused for new block
193 * groups after that task is done with the deleted block group.
194 */
195 atomic_t frozen;
196
197 /* For discard operations */
198 struct list_head discard_list;
199 int discard_index;
200 u64 discard_eligible_time;
201 u64 discard_cursor;
202 enum btrfs_discard_state discard_state;
203
204 /* For dirty block groups */
205 struct list_head dirty_list;
206 struct list_head io_list;
207
208 struct btrfs_io_ctl io_ctl;
209
210 /*
211 * Incremented when doing extent allocations and holding a read lock
212 * on the space_info's groups_sem semaphore.
213 * Decremented when an ordered extent that represents an IO against this
214 * block group's range is created (after it's added to its inode's
215 * root's list of ordered extents) or immediately after the allocation
216 * if it's a metadata extent or fallocate extent (for these cases we
217 * don't create ordered extents).
218 */
219 atomic_t reservations;
220
221 /*
222 * Incremented while holding the spinlock *lock* by a task checking if
223 * it can perform a nocow write (incremented if the value for the *ro*
224 * field is 0). Decremented by such tasks once they create an ordered
225 * extent or before that if some error happens before reaching that step.
226 * This is to prevent races between block group relocation and nocow
227 * writes through direct IO.
228 */
229 atomic_t nocow_writers;
230
231 /* Lock for free space tree operations. */
232 struct mutex free_space_lock;
233
234 /*
235 * Number of extents in this block group used for swap files.
236 * All accesses protected by the spinlock 'lock'.
237 */
238 int swap_extents;
239
240 /*
241 * Allocation offset for the block group to implement sequential
242 * allocation. This is used only on a zoned filesystem.
243 */
244 u64 alloc_offset;
245 u64 zone_unusable;
246 u64 zone_capacity;
247 u64 meta_write_pointer;
248 struct btrfs_chunk_map *physical_map;
249 struct list_head active_bg_list;
250 struct work_struct zone_finish_work;
251 struct extent_buffer *last_eb;
252 enum btrfs_block_group_size_class size_class;
253};
254
255static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
256{
257 return (block_group->start + block_group->length);
258}
259
260static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg)
261{
262 lockdep_assert_held(&bg->lock);
263
264 return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0);
265}
266
267static inline bool btrfs_is_block_group_data_only(
268 struct btrfs_block_group *block_group)
269{
270 /*
271 * In mixed mode the fragmentation is expected to be high, lowering the
272 * efficiency, so only proper data block groups are considered.
273 */
274 return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
275 !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
276}
277
278#ifdef CONFIG_BTRFS_DEBUG
279int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group);
280#endif
281
282struct btrfs_block_group *btrfs_lookup_first_block_group(
283 struct btrfs_fs_info *info, u64 bytenr);
284struct btrfs_block_group *btrfs_lookup_block_group(
285 struct btrfs_fs_info *info, u64 bytenr);
286struct btrfs_block_group *btrfs_next_block_group(
287 struct btrfs_block_group *cache);
288void btrfs_get_block_group(struct btrfs_block_group *cache);
289void btrfs_put_block_group(struct btrfs_block_group *cache);
290void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
291 const u64 start);
292void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
293struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
294 u64 bytenr);
295void btrfs_dec_nocow_writers(struct btrfs_block_group *bg);
296void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
297void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
298 u64 num_bytes);
299int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait);
300void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
301struct btrfs_caching_control *btrfs_get_caching_control(
302 struct btrfs_block_group *cache);
303int btrfs_add_new_free_space(struct btrfs_block_group *block_group,
304 u64 start, u64 end, u64 *total_added_ret);
305struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
306 struct btrfs_fs_info *fs_info,
307 const u64 chunk_offset);
308int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
309 struct btrfs_chunk_map *map);
310void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
311void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
312void btrfs_reclaim_bgs_work(struct work_struct *work);
313void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
314void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
315int btrfs_read_block_groups(struct btrfs_fs_info *info);
316struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
317 u64 type,
318 u64 chunk_offset, u64 size);
319void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
320int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
321 bool do_chunk_alloc);
322void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
323int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
324int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
325int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
326int btrfs_update_block_group(struct btrfs_trans_handle *trans,
327 u64 bytenr, u64 num_bytes, bool alloc);
328int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
329 u64 ram_bytes, u64 num_bytes, int delalloc,
330 bool force_wrong_size_class);
331void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
332 u64 num_bytes, int delalloc);
333int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
334 enum btrfs_chunk_alloc_enum force);
335int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
336void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
337void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
338 bool is_item_insertion);
339u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
340void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
341int btrfs_free_block_groups(struct btrfs_fs_info *info);
342int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
343 u64 physical, u64 **logical, int *naddrs, int *stripe_len);
344
345static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
346{
347 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
348}
349
350static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
351{
352 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
353}
354
355static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
356{
357 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
358}
359
360static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
361{
362 smp_mb();
363 return cache->cached == BTRFS_CACHE_FINISHED ||
364 cache->cached == BTRFS_CACHE_ERROR;
365}
366
367void btrfs_freeze_block_group(struct btrfs_block_group *cache);
368void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
369
370bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
371void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
372
373enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size);
374int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
375 enum btrfs_block_group_size_class size_class,
376 bool force_wrong_size_class);
377bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg);
378
379#endif /* BTRFS_BLOCK_GROUP_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2
3#ifndef BTRFS_BLOCK_GROUP_H
4#define BTRFS_BLOCK_GROUP_H
5
6#include "free-space-cache.h"
7
8enum btrfs_disk_cache_state {
9 BTRFS_DC_WRITTEN,
10 BTRFS_DC_ERROR,
11 BTRFS_DC_CLEAR,
12 BTRFS_DC_SETUP,
13};
14
15/*
16 * This describes the state of the block_group for async discard. This is due
17 * to the two pass nature of it where extent discarding is prioritized over
18 * bitmap discarding. BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
19 * between lists to prevent contention for discard state variables
20 * (eg. discard_cursor).
21 */
22enum btrfs_discard_state {
23 BTRFS_DISCARD_EXTENTS,
24 BTRFS_DISCARD_BITMAPS,
25 BTRFS_DISCARD_RESET_CURSOR,
26};
27
28/*
29 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
30 * only allocate a chunk if we really need one.
31 *
32 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
33 * chunks already allocated. This is used as part of the clustering code to
34 * help make sure we have a good pool of storage to cluster in, without filling
35 * the FS with empty chunks
36 *
37 * CHUNK_ALLOC_FORCE means it must try to allocate one
38 */
39enum btrfs_chunk_alloc_enum {
40 CHUNK_ALLOC_NO_FORCE,
41 CHUNK_ALLOC_LIMITED,
42 CHUNK_ALLOC_FORCE,
43};
44
45struct btrfs_caching_control {
46 struct list_head list;
47 struct mutex mutex;
48 wait_queue_head_t wait;
49 struct btrfs_work work;
50 struct btrfs_block_group *block_group;
51 u64 progress;
52 refcount_t count;
53};
54
55/* Once caching_thread() finds this much free space, it will wake up waiters. */
56#define CACHING_CTL_WAKE_UP SZ_2M
57
58struct btrfs_block_group {
59 struct btrfs_fs_info *fs_info;
60 struct inode *inode;
61 spinlock_t lock;
62 u64 start;
63 u64 length;
64 u64 pinned;
65 u64 reserved;
66 u64 used;
67 u64 delalloc_bytes;
68 u64 bytes_super;
69 u64 flags;
70 u64 cache_generation;
71
72 /*
73 * If the free space extent count exceeds this number, convert the block
74 * group to bitmaps.
75 */
76 u32 bitmap_high_thresh;
77
78 /*
79 * If the free space extent count drops below this number, convert the
80 * block group back to extents.
81 */
82 u32 bitmap_low_thresh;
83
84 /*
85 * It is just used for the delayed data space allocation because
86 * only the data space allocation and the relative metadata update
87 * can be done cross the transaction.
88 */
89 struct rw_semaphore data_rwsem;
90
91 /* For raid56, this is a full stripe, without parity */
92 unsigned long full_stripe_len;
93
94 unsigned int ro;
95 unsigned int iref:1;
96 unsigned int has_caching_ctl:1;
97 unsigned int removed:1;
98 unsigned int to_copy:1;
99 unsigned int relocating_repair:1;
100 unsigned int chunk_item_inserted:1;
101
102 int disk_cache_state;
103
104 /* Cache tracking stuff */
105 int cached;
106 struct btrfs_caching_control *caching_ctl;
107 u64 last_byte_to_unpin;
108
109 struct btrfs_space_info *space_info;
110
111 /* Free space cache stuff */
112 struct btrfs_free_space_ctl *free_space_ctl;
113
114 /* Block group cache stuff */
115 struct rb_node cache_node;
116
117 /* For block groups in the same raid type */
118 struct list_head list;
119
120 refcount_t refs;
121
122 /*
123 * List of struct btrfs_free_clusters for this block group.
124 * Today it will only have one thing on it, but that may change
125 */
126 struct list_head cluster_list;
127
128 /* For delayed block group creation or deletion of empty block groups */
129 struct list_head bg_list;
130
131 /* For read-only block groups */
132 struct list_head ro_list;
133
134 /*
135 * When non-zero it means the block group's logical address and its
136 * device extents can not be reused for future block group allocations
137 * until the counter goes down to 0. This is to prevent them from being
138 * reused while some task is still using the block group after it was
139 * deleted - we want to make sure they can only be reused for new block
140 * groups after that task is done with the deleted block group.
141 */
142 atomic_t frozen;
143
144 /* For discard operations */
145 struct list_head discard_list;
146 int discard_index;
147 u64 discard_eligible_time;
148 u64 discard_cursor;
149 enum btrfs_discard_state discard_state;
150
151 /* For dirty block groups */
152 struct list_head dirty_list;
153 struct list_head io_list;
154
155 struct btrfs_io_ctl io_ctl;
156
157 /*
158 * Incremented when doing extent allocations and holding a read lock
159 * on the space_info's groups_sem semaphore.
160 * Decremented when an ordered extent that represents an IO against this
161 * block group's range is created (after it's added to its inode's
162 * root's list of ordered extents) or immediately after the allocation
163 * if it's a metadata extent or fallocate extent (for these cases we
164 * don't create ordered extents).
165 */
166 atomic_t reservations;
167
168 /*
169 * Incremented while holding the spinlock *lock* by a task checking if
170 * it can perform a nocow write (incremented if the value for the *ro*
171 * field is 0). Decremented by such tasks once they create an ordered
172 * extent or before that if some error happens before reaching that step.
173 * This is to prevent races between block group relocation and nocow
174 * writes through direct IO.
175 */
176 atomic_t nocow_writers;
177
178 /* Lock for free space tree operations. */
179 struct mutex free_space_lock;
180
181 /*
182 * Does the block group need to be added to the free space tree?
183 * Protected by free_space_lock.
184 */
185 int needs_free_space;
186
187 /* Flag indicating this block group is placed on a sequential zone */
188 bool seq_zone;
189
190 /*
191 * Number of extents in this block group used for swap files.
192 * All accesses protected by the spinlock 'lock'.
193 */
194 int swap_extents;
195
196 /* Record locked full stripes for RAID5/6 block group */
197 struct btrfs_full_stripe_locks_tree full_stripe_locks_root;
198
199 /*
200 * Allocation offset for the block group to implement sequential
201 * allocation. This is used only on a zoned filesystem.
202 */
203 u64 alloc_offset;
204 u64 zone_unusable;
205 u64 meta_write_pointer;
206};
207
208static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
209{
210 return (block_group->start + block_group->length);
211}
212
213static inline bool btrfs_is_block_group_data_only(
214 struct btrfs_block_group *block_group)
215{
216 /*
217 * In mixed mode the fragmentation is expected to be high, lowering the
218 * efficiency, so only proper data block groups are considered.
219 */
220 return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
221 !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
222}
223
224#ifdef CONFIG_BTRFS_DEBUG
225static inline int btrfs_should_fragment_free_space(
226 struct btrfs_block_group *block_group)
227{
228 struct btrfs_fs_info *fs_info = block_group->fs_info;
229
230 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
231 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
232 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
233 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
234}
235#endif
236
237struct btrfs_block_group *btrfs_lookup_first_block_group(
238 struct btrfs_fs_info *info, u64 bytenr);
239struct btrfs_block_group *btrfs_lookup_block_group(
240 struct btrfs_fs_info *info, u64 bytenr);
241struct btrfs_block_group *btrfs_next_block_group(
242 struct btrfs_block_group *cache);
243void btrfs_get_block_group(struct btrfs_block_group *cache);
244void btrfs_put_block_group(struct btrfs_block_group *cache);
245void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
246 const u64 start);
247void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
248bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
249void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
250void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
251void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
252 u64 num_bytes);
253int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache);
254int btrfs_cache_block_group(struct btrfs_block_group *cache,
255 int load_cache_only);
256void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
257struct btrfs_caching_control *btrfs_get_caching_control(
258 struct btrfs_block_group *cache);
259u64 add_new_free_space(struct btrfs_block_group *block_group,
260 u64 start, u64 end);
261struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
262 struct btrfs_fs_info *fs_info,
263 const u64 chunk_offset);
264int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
265 u64 group_start, struct extent_map *em);
266void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
267void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
268void btrfs_reclaim_bgs_work(struct work_struct *work);
269void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
270void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
271int btrfs_read_block_groups(struct btrfs_fs_info *info);
272struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
273 u64 bytes_used, u64 type,
274 u64 chunk_offset, u64 size);
275void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
276int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
277 bool do_chunk_alloc);
278void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
279int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
280int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
281int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
282int btrfs_update_block_group(struct btrfs_trans_handle *trans,
283 u64 bytenr, u64 num_bytes, int alloc);
284int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
285 u64 ram_bytes, u64 num_bytes, int delalloc);
286void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
287 u64 num_bytes, int delalloc);
288int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
289 enum btrfs_chunk_alloc_enum force);
290int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
291void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
292u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
293void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
294int btrfs_free_block_groups(struct btrfs_fs_info *info);
295void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
296 struct btrfs_caching_control *caching_ctl);
297int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
298 struct block_device *bdev, u64 physical, u64 **logical,
299 int *naddrs, int *stripe_len);
300
301static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
302{
303 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
304}
305
306static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
307{
308 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
309}
310
311static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
312{
313 return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
314}
315
316static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
317{
318 smp_mb();
319 return cache->cached == BTRFS_CACHE_FINISHED ||
320 cache->cached == BTRFS_CACHE_ERROR;
321}
322
323void btrfs_freeze_block_group(struct btrfs_block_group *cache);
324void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
325
326bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
327void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
328
329#endif /* BTRFS_BLOCK_GROUP_H */