Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef BTRFS_BLOCK_GROUP_H
  4#define BTRFS_BLOCK_GROUP_H
  5
  6#include "free-space-cache.h"
  7
  8struct btrfs_chunk_map;
  9
 10enum btrfs_disk_cache_state {
 11	BTRFS_DC_WRITTEN,
 12	BTRFS_DC_ERROR,
 13	BTRFS_DC_CLEAR,
 14	BTRFS_DC_SETUP,
 15};
 16
 17enum btrfs_block_group_size_class {
 18	/* Unset */
 19	BTRFS_BG_SZ_NONE,
 20	/* 0 < size <= 128K */
 21	BTRFS_BG_SZ_SMALL,
 22	/* 128K < size <= 8M */
 23	BTRFS_BG_SZ_MEDIUM,
 24	/* 8M < size < BG_LENGTH */
 25	BTRFS_BG_SZ_LARGE,
 26};
 27
 28/*
 29 * This describes the state of the block_group for async discard.  This is due
 30 * to the two pass nature of it where extent discarding is prioritized over
 31 * bitmap discarding.  BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
 32 * between lists to prevent contention for discard state variables
 33 * (eg. discard_cursor).
 34 */
 35enum btrfs_discard_state {
 36	BTRFS_DISCARD_EXTENTS,
 37	BTRFS_DISCARD_BITMAPS,
 38	BTRFS_DISCARD_RESET_CURSOR,
 39};
 40
 41/*
 42 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
 43 * only allocate a chunk if we really need one.
 44 *
 45 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
 46 * chunks already allocated.  This is used as part of the clustering code to
 47 * help make sure we have a good pool of storage to cluster in, without filling
 48 * the FS with empty chunks
 49 *
 50 * CHUNK_ALLOC_FORCE means it must try to allocate one
 51 *
 52 * CHUNK_ALLOC_FORCE_FOR_EXTENT like CHUNK_ALLOC_FORCE but called from
 53 * find_free_extent() that also activaes the zone
 54 */
 55enum btrfs_chunk_alloc_enum {
 56	CHUNK_ALLOC_NO_FORCE,
 57	CHUNK_ALLOC_LIMITED,
 58	CHUNK_ALLOC_FORCE,
 59	CHUNK_ALLOC_FORCE_FOR_EXTENT,
 60};
 61
 62/* Block group flags set at runtime */
 63enum btrfs_block_group_flags {
 64	BLOCK_GROUP_FLAG_IREF,
 65	BLOCK_GROUP_FLAG_REMOVED,
 66	BLOCK_GROUP_FLAG_TO_COPY,
 67	BLOCK_GROUP_FLAG_RELOCATING_REPAIR,
 68	BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
 69	BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
 70	BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
 71	/* Does the block group need to be added to the free space tree? */
 72	BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE,
 73	/* Indicate that the block group is placed on a sequential zone */
 74	BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE,
 75	/*
 76	 * Indicate that block group is in the list of new block groups of a
 77	 * transaction.
 78	 */
 79	BLOCK_GROUP_FLAG_NEW,
 80};
 81
 82enum btrfs_caching_type {
 83	BTRFS_CACHE_NO,
 84	BTRFS_CACHE_STARTED,
 85	BTRFS_CACHE_FINISHED,
 86	BTRFS_CACHE_ERROR,
 87};
 88
 89struct btrfs_caching_control {
 90	struct list_head list;
 91	struct mutex mutex;
 92	wait_queue_head_t wait;
 93	struct btrfs_work work;
 94	struct btrfs_block_group *block_group;
 95	/* Track progress of caching during allocation. */
 96	atomic_t progress;
 97	refcount_t count;
 98};
 99
100/* Once caching_thread() finds this much free space, it will wake up waiters. */
101#define CACHING_CTL_WAKE_UP SZ_2M
102
103struct btrfs_block_group {
104	struct btrfs_fs_info *fs_info;
105	struct inode *inode;
106	spinlock_t lock;
107	u64 start;
108	u64 length;
109	u64 pinned;
110	u64 reserved;
111	u64 used;
112	u64 delalloc_bytes;
113	u64 bytes_super;
114	u64 flags;
115	u64 cache_generation;
116	u64 global_root_id;
117
118	/*
119	 * The last committed used bytes of this block group, if the above @used
120	 * is still the same as @commit_used, we don't need to update block
121	 * group item of this block group.
122	 */
123	u64 commit_used;
124	/*
125	 * If the free space extent count exceeds this number, convert the block
126	 * group to bitmaps.
127	 */
128	u32 bitmap_high_thresh;
129
130	/*
131	 * If the free space extent count drops below this number, convert the
132	 * block group back to extents.
133	 */
134	u32 bitmap_low_thresh;
135
136	/*
137	 * It is just used for the delayed data space allocation because
138	 * only the data space allocation and the relative metadata update
139	 * can be done cross the transaction.
140	 */
141	struct rw_semaphore data_rwsem;
142
143	/* For raid56, this is a full stripe, without parity */
144	unsigned long full_stripe_len;
145	unsigned long runtime_flags;
146
147	unsigned int ro;
 
 
 
 
 
 
148
149	int disk_cache_state;
150
151	/* Cache tracking stuff */
152	int cached;
153	struct btrfs_caching_control *caching_ctl;
 
154
155	struct btrfs_space_info *space_info;
156
157	/* Free space cache stuff */
158	struct btrfs_free_space_ctl *free_space_ctl;
159
160	/* Block group cache stuff */
161	struct rb_node cache_node;
162
163	/* For block groups in the same raid type */
164	struct list_head list;
165
166	refcount_t refs;
167
168	/*
169	 * List of struct btrfs_free_clusters for this block group.
170	 * Today it will only have one thing on it, but that may change
171	 */
172	struct list_head cluster_list;
173
174	/*
175	 * Used for several lists:
176	 *
177	 * 1) struct btrfs_fs_info::unused_bgs
178	 * 2) struct btrfs_fs_info::reclaim_bgs
179	 * 3) struct btrfs_transaction::deleted_bgs
180	 * 4) struct btrfs_trans_handle::new_bgs
181	 */
182	struct list_head bg_list;
183
184	/* For read-only block groups */
185	struct list_head ro_list;
186
187	/*
188	 * When non-zero it means the block group's logical address and its
189	 * device extents can not be reused for future block group allocations
190	 * until the counter goes down to 0. This is to prevent them from being
191	 * reused while some task is still using the block group after it was
192	 * deleted - we want to make sure they can only be reused for new block
193	 * groups after that task is done with the deleted block group.
194	 */
195	atomic_t frozen;
196
197	/* For discard operations */
198	struct list_head discard_list;
199	int discard_index;
200	u64 discard_eligible_time;
201	u64 discard_cursor;
202	enum btrfs_discard_state discard_state;
203
204	/* For dirty block groups */
205	struct list_head dirty_list;
206	struct list_head io_list;
207
208	struct btrfs_io_ctl io_ctl;
209
210	/*
211	 * Incremented when doing extent allocations and holding a read lock
212	 * on the space_info's groups_sem semaphore.
213	 * Decremented when an ordered extent that represents an IO against this
214	 * block group's range is created (after it's added to its inode's
215	 * root's list of ordered extents) or immediately after the allocation
216	 * if it's a metadata extent or fallocate extent (for these cases we
217	 * don't create ordered extents).
218	 */
219	atomic_t reservations;
220
221	/*
222	 * Incremented while holding the spinlock *lock* by a task checking if
223	 * it can perform a nocow write (incremented if the value for the *ro*
224	 * field is 0). Decremented by such tasks once they create an ordered
225	 * extent or before that if some error happens before reaching that step.
226	 * This is to prevent races between block group relocation and nocow
227	 * writes through direct IO.
228	 */
229	atomic_t nocow_writers;
230
231	/* Lock for free space tree operations. */
232	struct mutex free_space_lock;
233
234	/*
 
 
 
 
 
 
 
 
 
235	 * Number of extents in this block group used for swap files.
236	 * All accesses protected by the spinlock 'lock'.
237	 */
238	int swap_extents;
239
 
 
 
240	/*
241	 * Allocation offset for the block group to implement sequential
242	 * allocation. This is used only on a zoned filesystem.
243	 */
244	u64 alloc_offset;
245	u64 zone_unusable;
246	u64 zone_capacity;
247	u64 meta_write_pointer;
248	struct btrfs_chunk_map *physical_map;
249	struct list_head active_bg_list;
250	struct work_struct zone_finish_work;
251	struct extent_buffer *last_eb;
252	enum btrfs_block_group_size_class size_class;
253};
254
255static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
256{
257	return (block_group->start + block_group->length);
258}
259
260static inline bool btrfs_is_block_group_used(const struct btrfs_block_group *bg)
261{
262	lockdep_assert_held(&bg->lock);
263
264	return (bg->used > 0 || bg->reserved > 0 || bg->pinned > 0);
265}
266
267static inline bool btrfs_is_block_group_data_only(
268					struct btrfs_block_group *block_group)
269{
270	/*
271	 * In mixed mode the fragmentation is expected to be high, lowering the
272	 * efficiency, so only proper data block groups are considered.
273	 */
274	return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
275	       !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
276}
277
278#ifdef CONFIG_BTRFS_DEBUG
279int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group);
 
 
 
 
 
 
 
 
 
280#endif
281
282struct btrfs_block_group *btrfs_lookup_first_block_group(
283		struct btrfs_fs_info *info, u64 bytenr);
284struct btrfs_block_group *btrfs_lookup_block_group(
285		struct btrfs_fs_info *info, u64 bytenr);
286struct btrfs_block_group *btrfs_next_block_group(
287		struct btrfs_block_group *cache);
288void btrfs_get_block_group(struct btrfs_block_group *cache);
289void btrfs_put_block_group(struct btrfs_block_group *cache);
290void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
291					const u64 start);
292void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
293struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
294						  u64 bytenr);
295void btrfs_dec_nocow_writers(struct btrfs_block_group *bg);
296void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
297void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
298				           u64 num_bytes);
299int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait);
 
 
300void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
301struct btrfs_caching_control *btrfs_get_caching_control(
302		struct btrfs_block_group *cache);
303int btrfs_add_new_free_space(struct btrfs_block_group *block_group,
304			     u64 start, u64 end, u64 *total_added_ret);
305struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
306				struct btrfs_fs_info *fs_info,
307				const u64 chunk_offset);
308int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
309			     struct btrfs_chunk_map *map);
310void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
311void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
312void btrfs_reclaim_bgs_work(struct work_struct *work);
313void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
314void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
315int btrfs_read_block_groups(struct btrfs_fs_info *info);
316struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
317						 u64 type,
318						 u64 chunk_offset, u64 size);
319void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
320int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
321			     bool do_chunk_alloc);
322void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
323int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
324int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
325int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
326int btrfs_update_block_group(struct btrfs_trans_handle *trans,
327			     u64 bytenr, u64 num_bytes, bool alloc);
328int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
329			     u64 ram_bytes, u64 num_bytes, int delalloc,
330			     bool force_wrong_size_class);
331void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
332			       u64 num_bytes, int delalloc);
333int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
334		      enum btrfs_chunk_alloc_enum force);
335int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
336void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
337void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
338				  bool is_item_insertion);
339u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
340void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
341int btrfs_free_block_groups(struct btrfs_fs_info *info);
 
 
342int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
343		     u64 physical, u64 **logical, int *naddrs, int *stripe_len);
 
344
345static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
346{
347	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
348}
349
350static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
351{
352	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
353}
354
355static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
356{
357	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
358}
359
360static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
361{
362	smp_mb();
363	return cache->cached == BTRFS_CACHE_FINISHED ||
364		cache->cached == BTRFS_CACHE_ERROR;
365}
366
367void btrfs_freeze_block_group(struct btrfs_block_group *cache);
368void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
369
370bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
371void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
372
373enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size);
374int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
375				     enum btrfs_block_group_size_class size_class,
376				     bool force_wrong_size_class);
377bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg);
378
379#endif /* BTRFS_BLOCK_GROUP_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef BTRFS_BLOCK_GROUP_H
  4#define BTRFS_BLOCK_GROUP_H
  5
  6#include "free-space-cache.h"
  7
 
 
  8enum btrfs_disk_cache_state {
  9	BTRFS_DC_WRITTEN,
 10	BTRFS_DC_ERROR,
 11	BTRFS_DC_CLEAR,
 12	BTRFS_DC_SETUP,
 13};
 14
 
 
 
 
 
 
 
 
 
 
 
 15/*
 16 * This describes the state of the block_group for async discard.  This is due
 17 * to the two pass nature of it where extent discarding is prioritized over
 18 * bitmap discarding.  BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
 19 * between lists to prevent contention for discard state variables
 20 * (eg. discard_cursor).
 21 */
 22enum btrfs_discard_state {
 23	BTRFS_DISCARD_EXTENTS,
 24	BTRFS_DISCARD_BITMAPS,
 25	BTRFS_DISCARD_RESET_CURSOR,
 26};
 27
 28/*
 29 * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
 30 * only allocate a chunk if we really need one.
 31 *
 32 * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
 33 * chunks already allocated.  This is used as part of the clustering code to
 34 * help make sure we have a good pool of storage to cluster in, without filling
 35 * the FS with empty chunks
 36 *
 37 * CHUNK_ALLOC_FORCE means it must try to allocate one
 
 
 
 38 */
 39enum btrfs_chunk_alloc_enum {
 40	CHUNK_ALLOC_NO_FORCE,
 41	CHUNK_ALLOC_LIMITED,
 42	CHUNK_ALLOC_FORCE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43};
 44
 45struct btrfs_caching_control {
 46	struct list_head list;
 47	struct mutex mutex;
 48	wait_queue_head_t wait;
 49	struct btrfs_work work;
 50	struct btrfs_block_group *block_group;
 51	u64 progress;
 
 52	refcount_t count;
 53};
 54
 55/* Once caching_thread() finds this much free space, it will wake up waiters. */
 56#define CACHING_CTL_WAKE_UP SZ_2M
 57
 58struct btrfs_block_group {
 59	struct btrfs_fs_info *fs_info;
 60	struct inode *inode;
 61	spinlock_t lock;
 62	u64 start;
 63	u64 length;
 64	u64 pinned;
 65	u64 reserved;
 66	u64 used;
 67	u64 delalloc_bytes;
 68	u64 bytes_super;
 69	u64 flags;
 70	u64 cache_generation;
 
 71
 72	/*
 
 
 
 
 
 
 73	 * If the free space extent count exceeds this number, convert the block
 74	 * group to bitmaps.
 75	 */
 76	u32 bitmap_high_thresh;
 77
 78	/*
 79	 * If the free space extent count drops below this number, convert the
 80	 * block group back to extents.
 81	 */
 82	u32 bitmap_low_thresh;
 83
 84	/*
 85	 * It is just used for the delayed data space allocation because
 86	 * only the data space allocation and the relative metadata update
 87	 * can be done cross the transaction.
 88	 */
 89	struct rw_semaphore data_rwsem;
 90
 91	/* For raid56, this is a full stripe, without parity */
 92	unsigned long full_stripe_len;
 
 93
 94	unsigned int ro;
 95	unsigned int iref:1;
 96	unsigned int has_caching_ctl:1;
 97	unsigned int removed:1;
 98	unsigned int to_copy:1;
 99	unsigned int relocating_repair:1;
100	unsigned int chunk_item_inserted:1;
101
102	int disk_cache_state;
103
104	/* Cache tracking stuff */
105	int cached;
106	struct btrfs_caching_control *caching_ctl;
107	u64 last_byte_to_unpin;
108
109	struct btrfs_space_info *space_info;
110
111	/* Free space cache stuff */
112	struct btrfs_free_space_ctl *free_space_ctl;
113
114	/* Block group cache stuff */
115	struct rb_node cache_node;
116
117	/* For block groups in the same raid type */
118	struct list_head list;
119
120	refcount_t refs;
121
122	/*
123	 * List of struct btrfs_free_clusters for this block group.
124	 * Today it will only have one thing on it, but that may change
125	 */
126	struct list_head cluster_list;
127
128	/* For delayed block group creation or deletion of empty block groups */
 
 
 
 
 
 
 
129	struct list_head bg_list;
130
131	/* For read-only block groups */
132	struct list_head ro_list;
133
134	/*
135	 * When non-zero it means the block group's logical address and its
136	 * device extents can not be reused for future block group allocations
137	 * until the counter goes down to 0. This is to prevent them from being
138	 * reused while some task is still using the block group after it was
139	 * deleted - we want to make sure they can only be reused for new block
140	 * groups after that task is done with the deleted block group.
141	 */
142	atomic_t frozen;
143
144	/* For discard operations */
145	struct list_head discard_list;
146	int discard_index;
147	u64 discard_eligible_time;
148	u64 discard_cursor;
149	enum btrfs_discard_state discard_state;
150
151	/* For dirty block groups */
152	struct list_head dirty_list;
153	struct list_head io_list;
154
155	struct btrfs_io_ctl io_ctl;
156
157	/*
158	 * Incremented when doing extent allocations and holding a read lock
159	 * on the space_info's groups_sem semaphore.
160	 * Decremented when an ordered extent that represents an IO against this
161	 * block group's range is created (after it's added to its inode's
162	 * root's list of ordered extents) or immediately after the allocation
163	 * if it's a metadata extent or fallocate extent (for these cases we
164	 * don't create ordered extents).
165	 */
166	atomic_t reservations;
167
168	/*
169	 * Incremented while holding the spinlock *lock* by a task checking if
170	 * it can perform a nocow write (incremented if the value for the *ro*
171	 * field is 0). Decremented by such tasks once they create an ordered
172	 * extent or before that if some error happens before reaching that step.
173	 * This is to prevent races between block group relocation and nocow
174	 * writes through direct IO.
175	 */
176	atomic_t nocow_writers;
177
178	/* Lock for free space tree operations. */
179	struct mutex free_space_lock;
180
181	/*
182	 * Does the block group need to be added to the free space tree?
183	 * Protected by free_space_lock.
184	 */
185	int needs_free_space;
186
187	/* Flag indicating this block group is placed on a sequential zone */
188	bool seq_zone;
189
190	/*
191	 * Number of extents in this block group used for swap files.
192	 * All accesses protected by the spinlock 'lock'.
193	 */
194	int swap_extents;
195
196	/* Record locked full stripes for RAID5/6 block group */
197	struct btrfs_full_stripe_locks_tree full_stripe_locks_root;
198
199	/*
200	 * Allocation offset for the block group to implement sequential
201	 * allocation. This is used only on a zoned filesystem.
202	 */
203	u64 alloc_offset;
204	u64 zone_unusable;
 
205	u64 meta_write_pointer;
 
 
 
 
 
206};
207
208static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
209{
210	return (block_group->start + block_group->length);
211}
212
 
 
 
 
 
 
 
213static inline bool btrfs_is_block_group_data_only(
214					struct btrfs_block_group *block_group)
215{
216	/*
217	 * In mixed mode the fragmentation is expected to be high, lowering the
218	 * efficiency, so only proper data block groups are considered.
219	 */
220	return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
221	       !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
222}
223
224#ifdef CONFIG_BTRFS_DEBUG
225static inline int btrfs_should_fragment_free_space(
226		struct btrfs_block_group *block_group)
227{
228	struct btrfs_fs_info *fs_info = block_group->fs_info;
229
230	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
231		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
232	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
233		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
234}
235#endif
236
237struct btrfs_block_group *btrfs_lookup_first_block_group(
238		struct btrfs_fs_info *info, u64 bytenr);
239struct btrfs_block_group *btrfs_lookup_block_group(
240		struct btrfs_fs_info *info, u64 bytenr);
241struct btrfs_block_group *btrfs_next_block_group(
242		struct btrfs_block_group *cache);
243void btrfs_get_block_group(struct btrfs_block_group *cache);
244void btrfs_put_block_group(struct btrfs_block_group *cache);
245void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
246					const u64 start);
247void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
248bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
249void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
 
250void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
251void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
252				           u64 num_bytes);
253int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache);
254int btrfs_cache_block_group(struct btrfs_block_group *cache,
255			    int load_cache_only);
256void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
257struct btrfs_caching_control *btrfs_get_caching_control(
258		struct btrfs_block_group *cache);
259u64 add_new_free_space(struct btrfs_block_group *block_group,
260		       u64 start, u64 end);
261struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
262				struct btrfs_fs_info *fs_info,
263				const u64 chunk_offset);
264int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
265			     u64 group_start, struct extent_map *em);
266void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
267void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
268void btrfs_reclaim_bgs_work(struct work_struct *work);
269void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info);
270void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg);
271int btrfs_read_block_groups(struct btrfs_fs_info *info);
272struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
273						 u64 bytes_used, u64 type,
274						 u64 chunk_offset, u64 size);
275void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
276int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
277			     bool do_chunk_alloc);
278void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
279int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
280int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
281int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
282int btrfs_update_block_group(struct btrfs_trans_handle *trans,
283			     u64 bytenr, u64 num_bytes, int alloc);
284int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
285			     u64 ram_bytes, u64 num_bytes, int delalloc);
 
286void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
287			       u64 num_bytes, int delalloc);
288int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
289		      enum btrfs_chunk_alloc_enum force);
290int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
291void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
 
 
292u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
293void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
294int btrfs_free_block_groups(struct btrfs_fs_info *info);
295void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
296				struct btrfs_caching_control *caching_ctl);
297int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
298		       struct block_device *bdev, u64 physical, u64 **logical,
299		       int *naddrs, int *stripe_len);
300
301static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
302{
303	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
304}
305
306static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
307{
308	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
309}
310
311static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
312{
313	return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
314}
315
316static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
317{
318	smp_mb();
319	return cache->cached == BTRFS_CACHE_FINISHED ||
320		cache->cached == BTRFS_CACHE_ERROR;
321}
322
323void btrfs_freeze_block_group(struct btrfs_block_group *cache);
324void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
325
326bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg);
327void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount);
 
 
 
 
 
 
328
329#endif /* BTRFS_BLOCK_GROUP_H */