Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55#include <linux/circ_buf.h>
  56#include <linux/device.h>
  57#include <scsi/sas.h>
  58#include "host.h"
  59#include "isci.h"
  60#include "port.h"
  61#include "probe_roms.h"
  62#include "remote_device.h"
  63#include "request.h"
  64#include "scu_completion_codes.h"
  65#include "scu_event_codes.h"
  66#include "registers.h"
  67#include "scu_remote_node_context.h"
  68#include "scu_task_context.h"
  69
  70#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
  71
  72#define smu_max_ports(dcc_value) \
  73	(\
  74		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
  75		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
  76	)
  77
  78#define smu_max_task_contexts(dcc_value)	\
  79	(\
  80		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
  81		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
  82	)
  83
  84#define smu_max_rncs(dcc_value) \
  85	(\
  86		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
  87		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
  88	)
  89
  90#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
  91
  92/*
  93 * The number of milliseconds to wait while a given phy is consuming power
  94 * before allowing another set of phys to consume power. Ultimately, this will
  95 * be specified by OEM parameter.
  96 */
  97#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
  98
  99/*
 100 * NORMALIZE_PUT_POINTER() -
 101 *
 102 * This macro will normalize the completion queue put pointer so its value can
 103 * be used as an array inde
 104 */
 105#define NORMALIZE_PUT_POINTER(x) \
 106	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
 107
 108
 109/*
 110 * NORMALIZE_EVENT_POINTER() -
 111 *
 112 * This macro will normalize the completion queue event entry so its value can
 113 * be used as an index.
 114 */
 115#define NORMALIZE_EVENT_POINTER(x) \
 116	(\
 117		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
 118		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
 119	)
 120
 121/*
 122 * NORMALIZE_GET_POINTER() -
 123 *
 124 * This macro will normalize the completion queue get pointer so its value can
 125 * be used as an index into an array
 126 */
 127#define NORMALIZE_GET_POINTER(x) \
 128	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
 129
 130/*
 131 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
 132 *
 133 * This macro will normalize the completion queue cycle pointer so it matches
 134 * the completion queue cycle bit
 135 */
 136#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
 137	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
 138
 139/*
 140 * COMPLETION_QUEUE_CYCLE_BIT() -
 141 *
 142 * This macro will return the cycle bit of the completion queue entry
 143 */
 144#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
 145
 146/* Init the state machine and call the state entry function (if any) */
 147void sci_init_sm(struct sci_base_state_machine *sm,
 148		 const struct sci_base_state *state_table, u32 initial_state)
 149{
 150	sci_state_transition_t handler;
 151
 152	sm->initial_state_id    = initial_state;
 153	sm->previous_state_id   = initial_state;
 154	sm->current_state_id    = initial_state;
 155	sm->state_table         = state_table;
 156
 157	handler = sm->state_table[initial_state].enter_state;
 158	if (handler)
 159		handler(sm);
 160}
 161
 162/* Call the state exit fn, update the current state, call the state entry fn */
 163void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
 164{
 165	sci_state_transition_t handler;
 166
 167	handler = sm->state_table[sm->current_state_id].exit_state;
 168	if (handler)
 169		handler(sm);
 170
 171	sm->previous_state_id = sm->current_state_id;
 172	sm->current_state_id = next_state;
 173
 174	handler = sm->state_table[sm->current_state_id].enter_state;
 175	if (handler)
 176		handler(sm);
 177}
 178
 179static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
 180{
 181	u32 get_value = ihost->completion_queue_get;
 182	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
 183
 184	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
 185	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
 186		return true;
 187
 188	return false;
 189}
 190
 191static bool sci_controller_isr(struct isci_host *ihost)
 192{
 193	if (sci_controller_completion_queue_has_entries(ihost))
 194		return true;
 195
 196	/* we have a spurious interrupt it could be that we have already
 197	 * emptied the completion queue from a previous interrupt
 198	 * FIXME: really!?
 199	 */
 200	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
 201
 202	/* There is a race in the hardware that could cause us not to be
 203	 * notified of an interrupt completion if we do not take this
 204	 * step.  We will mask then unmask the interrupts so if there is
 205	 * another interrupt pending the clearing of the interrupt
 206	 * source we get the next interrupt message.
 207	 */
 208	spin_lock(&ihost->scic_lock);
 209	if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
 210		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
 211		writel(0, &ihost->smu_registers->interrupt_mask);
 212	}
 213	spin_unlock(&ihost->scic_lock);
 214
 215	return false;
 216}
 217
 218irqreturn_t isci_msix_isr(int vec, void *data)
 219{
 220	struct isci_host *ihost = data;
 221
 222	if (sci_controller_isr(ihost))
 223		tasklet_schedule(&ihost->completion_tasklet);
 224
 225	return IRQ_HANDLED;
 226}
 227
 228static bool sci_controller_error_isr(struct isci_host *ihost)
 229{
 230	u32 interrupt_status;
 231
 232	interrupt_status =
 233		readl(&ihost->smu_registers->interrupt_status);
 234	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
 235
 236	if (interrupt_status != 0) {
 237		/*
 238		 * There is an error interrupt pending so let it through and handle
 239		 * in the callback */
 240		return true;
 241	}
 242
 243	/*
 244	 * There is a race in the hardware that could cause us not to be notified
 245	 * of an interrupt completion if we do not take this step.  We will mask
 246	 * then unmask the error interrupts so if there was another interrupt
 247	 * pending we will be notified.
 248	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
 249	writel(0xff, &ihost->smu_registers->interrupt_mask);
 250	writel(0, &ihost->smu_registers->interrupt_mask);
 251
 252	return false;
 253}
 254
 255static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
 256{
 257	u32 index = SCU_GET_COMPLETION_INDEX(ent);
 258	struct isci_request *ireq = ihost->reqs[index];
 259
 260	/* Make sure that we really want to process this IO request */
 261	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
 262	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
 263	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
 264		/* Yep this is a valid io request pass it along to the
 265		 * io request handler
 266		 */
 267		sci_io_request_tc_completion(ireq, ent);
 268}
 269
 270static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
 271{
 272	u32 index;
 273	struct isci_request *ireq;
 274	struct isci_remote_device *idev;
 275
 276	index = SCU_GET_COMPLETION_INDEX(ent);
 277
 278	switch (scu_get_command_request_type(ent)) {
 279	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
 280	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
 281		ireq = ihost->reqs[index];
 282		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
 283			 __func__, ent, ireq);
 284		/* @todo For a post TC operation we need to fail the IO
 285		 * request
 286		 */
 287		break;
 288	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
 289	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
 290	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
 291		idev = ihost->device_table[index];
 292		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
 293			 __func__, ent, idev);
 294		/* @todo For a port RNC operation we need to fail the
 295		 * device
 296		 */
 297		break;
 298	default:
 299		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
 300			 __func__, ent);
 301		break;
 302	}
 303}
 304
 305static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
 306{
 307	u32 index;
 308	u32 frame_index;
 309
 310	struct scu_unsolicited_frame_header *frame_header;
 311	struct isci_phy *iphy;
 312	struct isci_remote_device *idev;
 313
 314	enum sci_status result = SCI_FAILURE;
 315
 316	frame_index = SCU_GET_FRAME_INDEX(ent);
 317
 318	frame_header = ihost->uf_control.buffers.array[frame_index].header;
 319	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
 320
 321	if (SCU_GET_FRAME_ERROR(ent)) {
 322		/*
 323		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
 324		 * /       this cause a problem? We expect the phy initialization will
 325		 * /       fail if there is an error in the frame. */
 326		sci_controller_release_frame(ihost, frame_index);
 327		return;
 328	}
 329
 330	if (frame_header->is_address_frame) {
 331		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 332		iphy = &ihost->phys[index];
 333		result = sci_phy_frame_handler(iphy, frame_index);
 334	} else {
 335
 336		index = SCU_GET_COMPLETION_INDEX(ent);
 337
 338		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
 339			/*
 340			 * This is a signature fis or a frame from a direct attached SATA
 341			 * device that has not yet been created.  In either case forwared
 342			 * the frame to the PE and let it take care of the frame data. */
 343			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 344			iphy = &ihost->phys[index];
 345			result = sci_phy_frame_handler(iphy, frame_index);
 346		} else {
 347			if (index < ihost->remote_node_entries)
 348				idev = ihost->device_table[index];
 349			else
 350				idev = NULL;
 351
 352			if (idev != NULL)
 353				result = sci_remote_device_frame_handler(idev, frame_index);
 354			else
 355				sci_controller_release_frame(ihost, frame_index);
 356		}
 357	}
 358
 359	if (result != SCI_SUCCESS) {
 360		/*
 361		 * / @todo Is there any reason to report some additional error message
 362		 * /       when we get this failure notifiction? */
 363	}
 364}
 365
 366static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
 367{
 368	struct isci_remote_device *idev;
 369	struct isci_request *ireq;
 370	struct isci_phy *iphy;
 371	u32 index;
 372
 373	index = SCU_GET_COMPLETION_INDEX(ent);
 374
 375	switch (scu_get_event_type(ent)) {
 376	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
 377		/* / @todo The driver did something wrong and we need to fix the condtion. */
 378		dev_err(&ihost->pdev->dev,
 379			"%s: SCIC Controller 0x%p received SMU command error "
 380			"0x%x\n",
 381			__func__,
 382			ihost,
 383			ent);
 384		break;
 385
 386	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
 387	case SCU_EVENT_TYPE_SMU_ERROR:
 388	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
 389		/*
 390		 * / @todo This is a hardware failure and its likely that we want to
 391		 * /       reset the controller. */
 392		dev_err(&ihost->pdev->dev,
 393			"%s: SCIC Controller 0x%p received fatal controller "
 394			"event  0x%x\n",
 395			__func__,
 396			ihost,
 397			ent);
 398		break;
 399
 400	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
 401		ireq = ihost->reqs[index];
 402		sci_io_request_event_handler(ireq, ent);
 403		break;
 404
 405	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
 406		switch (scu_get_event_specifier(ent)) {
 407		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
 408		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
 409			ireq = ihost->reqs[index];
 410			if (ireq != NULL)
 411				sci_io_request_event_handler(ireq, ent);
 412			else
 413				dev_warn(&ihost->pdev->dev,
 414					 "%s: SCIC Controller 0x%p received "
 415					 "event 0x%x for io request object "
 416					 "that doesn't exist.\n",
 417					 __func__,
 418					 ihost,
 419					 ent);
 420
 421			break;
 422
 423		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
 424			idev = ihost->device_table[index];
 425			if (idev != NULL)
 426				sci_remote_device_event_handler(idev, ent);
 427			else
 428				dev_warn(&ihost->pdev->dev,
 429					 "%s: SCIC Controller 0x%p received "
 430					 "event 0x%x for remote device object "
 431					 "that doesn't exist.\n",
 432					 __func__,
 433					 ihost,
 434					 ent);
 435
 436			break;
 437		}
 438		break;
 439
 440	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
 441	/*
 442	 * direct the broadcast change event to the phy first and then let
 443	 * the phy redirect the broadcast change to the port object */
 444	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
 445	/*
 446	 * direct error counter event to the phy object since that is where
 447	 * we get the event notification.  This is a type 4 event. */
 448	case SCU_EVENT_TYPE_OSSP_EVENT:
 449		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 450		iphy = &ihost->phys[index];
 451		sci_phy_event_handler(iphy, ent);
 452		break;
 453
 454	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
 455	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
 456	case SCU_EVENT_TYPE_RNC_OPS_MISC:
 457		if (index < ihost->remote_node_entries) {
 458			idev = ihost->device_table[index];
 459
 460			if (idev != NULL)
 461				sci_remote_device_event_handler(idev, ent);
 462		} else
 463			dev_err(&ihost->pdev->dev,
 464				"%s: SCIC Controller 0x%p received event 0x%x "
 465				"for remote device object 0x%0x that doesn't "
 466				"exist.\n",
 467				__func__,
 468				ihost,
 469				ent,
 470				index);
 471
 472		break;
 473
 474	default:
 475		dev_warn(&ihost->pdev->dev,
 476			 "%s: SCIC Controller received unknown event code %x\n",
 477			 __func__,
 478			 ent);
 479		break;
 480	}
 481}
 482
 483static void sci_controller_process_completions(struct isci_host *ihost)
 484{
 485	u32 completion_count = 0;
 486	u32 ent;
 487	u32 get_index;
 488	u32 get_cycle;
 489	u32 event_get;
 490	u32 event_cycle;
 491
 492	dev_dbg(&ihost->pdev->dev,
 493		"%s: completion queue beginning get:0x%08x\n",
 494		__func__,
 495		ihost->completion_queue_get);
 496
 497	/* Get the component parts of the completion queue */
 498	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
 499	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
 500
 501	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
 502	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
 503
 504	while (
 505		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
 506		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
 507		) {
 508		completion_count++;
 509
 510		ent = ihost->completion_queue[get_index];
 511
 512		/* increment the get pointer and check for rollover to toggle the cycle bit */
 513		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
 514			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
 515		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
 516
 517		dev_dbg(&ihost->pdev->dev,
 518			"%s: completion queue entry:0x%08x\n",
 519			__func__,
 520			ent);
 521
 522		switch (SCU_GET_COMPLETION_TYPE(ent)) {
 523		case SCU_COMPLETION_TYPE_TASK:
 524			sci_controller_task_completion(ihost, ent);
 525			break;
 526
 527		case SCU_COMPLETION_TYPE_SDMA:
 528			sci_controller_sdma_completion(ihost, ent);
 529			break;
 530
 531		case SCU_COMPLETION_TYPE_UFI:
 532			sci_controller_unsolicited_frame(ihost, ent);
 533			break;
 534
 535		case SCU_COMPLETION_TYPE_EVENT:
 536			sci_controller_event_completion(ihost, ent);
 537			break;
 538
 539		case SCU_COMPLETION_TYPE_NOTIFY: {
 540			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
 541				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
 542			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
 543
 544			sci_controller_event_completion(ihost, ent);
 545			break;
 546		}
 547		default:
 548			dev_warn(&ihost->pdev->dev,
 549				 "%s: SCIC Controller received unknown "
 550				 "completion type %x\n",
 551				 __func__,
 552				 ent);
 553			break;
 554		}
 555	}
 556
 557	/* Update the get register if we completed one or more entries */
 558	if (completion_count > 0) {
 559		ihost->completion_queue_get =
 560			SMU_CQGR_GEN_BIT(ENABLE) |
 561			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
 562			event_cycle |
 563			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
 564			get_cycle |
 565			SMU_CQGR_GEN_VAL(POINTER, get_index);
 566
 567		writel(ihost->completion_queue_get,
 568		       &ihost->smu_registers->completion_queue_get);
 569
 570	}
 571
 572	dev_dbg(&ihost->pdev->dev,
 573		"%s: completion queue ending get:0x%08x\n",
 574		__func__,
 575		ihost->completion_queue_get);
 576
 577}
 578
 579static void sci_controller_error_handler(struct isci_host *ihost)
 580{
 581	u32 interrupt_status;
 582
 583	interrupt_status =
 584		readl(&ihost->smu_registers->interrupt_status);
 585
 586	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
 587	    sci_controller_completion_queue_has_entries(ihost)) {
 588
 589		sci_controller_process_completions(ihost);
 590		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
 591	} else {
 592		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
 593			interrupt_status);
 594
 595		sci_change_state(&ihost->sm, SCIC_FAILED);
 596
 597		return;
 598	}
 599
 600	/* If we dont process any completions I am not sure that we want to do this.
 601	 * We are in the middle of a hardware fault and should probably be reset.
 602	 */
 603	writel(0, &ihost->smu_registers->interrupt_mask);
 604}
 605
 606irqreturn_t isci_intx_isr(int vec, void *data)
 607{
 608	irqreturn_t ret = IRQ_NONE;
 609	struct isci_host *ihost = data;
 610
 611	if (sci_controller_isr(ihost)) {
 612		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
 613		tasklet_schedule(&ihost->completion_tasklet);
 614		ret = IRQ_HANDLED;
 615	} else if (sci_controller_error_isr(ihost)) {
 616		spin_lock(&ihost->scic_lock);
 617		sci_controller_error_handler(ihost);
 618		spin_unlock(&ihost->scic_lock);
 619		ret = IRQ_HANDLED;
 620	}
 621
 622	return ret;
 623}
 624
 625irqreturn_t isci_error_isr(int vec, void *data)
 626{
 627	struct isci_host *ihost = data;
 628
 629	if (sci_controller_error_isr(ihost))
 630		sci_controller_error_handler(ihost);
 631
 632	return IRQ_HANDLED;
 633}
 634
 635/**
 636 * isci_host_start_complete() - This function is called by the core library,
 637 *    through the ISCI Module, to indicate controller start status.
 638 * @ihost: This parameter specifies the ISCI host object
 639 * @completion_status: This parameter specifies the completion status from the
 640 *    core library.
 641 *
 642 */
 643static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
 644{
 645	if (completion_status != SCI_SUCCESS)
 646		dev_info(&ihost->pdev->dev,
 647			"controller start timed out, continuing...\n");
 648	clear_bit(IHOST_START_PENDING, &ihost->flags);
 649	wake_up(&ihost->eventq);
 650}
 651
 652int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
 653{
 654	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
 655	struct isci_host *ihost = ha->lldd_ha;
 656
 657	if (test_bit(IHOST_START_PENDING, &ihost->flags))
 658		return 0;
 659
 660	sas_drain_work(ha);
 661
 662	return 1;
 663}
 664
 665/**
 666 * sci_controller_get_suggested_start_timeout() - This method returns the
 667 *    suggested sci_controller_start() timeout amount.  The user is free to
 668 *    use any timeout value, but this method provides the suggested minimum
 669 *    start timeout value.  The returned value is based upon empirical
 670 *    information determined as a result of interoperability testing.
 671 * @ihost: the handle to the controller object for which to return the
 672 *    suggested start timeout.
 673 *
 674 * This method returns the number of milliseconds for the suggested start
 675 * operation timeout.
 676 */
 677static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
 678{
 679	/* Validate the user supplied parameters. */
 680	if (!ihost)
 681		return 0;
 682
 683	/*
 684	 * The suggested minimum timeout value for a controller start operation:
 685	 *
 686	 *     Signature FIS Timeout
 687	 *   + Phy Start Timeout
 688	 *   + Number of Phy Spin Up Intervals
 689	 *   ---------------------------------
 690	 *   Number of milliseconds for the controller start operation.
 691	 *
 692	 * NOTE: The number of phy spin up intervals will be equivalent
 693	 *       to the number of phys divided by the number phys allowed
 694	 *       per interval - 1 (once OEM parameters are supported).
 695	 *       Currently we assume only 1 phy per interval. */
 696
 697	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
 698		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
 699		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
 700}
 701
 702static void sci_controller_enable_interrupts(struct isci_host *ihost)
 703{
 704	set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
 705	writel(0, &ihost->smu_registers->interrupt_mask);
 706}
 707
 708void sci_controller_disable_interrupts(struct isci_host *ihost)
 709{
 710	clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
 711	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
 712	readl(&ihost->smu_registers->interrupt_mask); /* flush */
 713}
 714
 715static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
 716{
 717	u32 port_task_scheduler_value;
 718
 719	port_task_scheduler_value =
 720		readl(&ihost->scu_registers->peg0.ptsg.control);
 721	port_task_scheduler_value |=
 722		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
 723		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
 724	writel(port_task_scheduler_value,
 725	       &ihost->scu_registers->peg0.ptsg.control);
 726}
 727
 728static void sci_controller_assign_task_entries(struct isci_host *ihost)
 729{
 730	u32 task_assignment;
 731
 732	/*
 733	 * Assign all the TCs to function 0
 734	 * TODO: Do we actually need to read this register to write it back?
 735	 */
 736
 737	task_assignment =
 738		readl(&ihost->smu_registers->task_context_assignment[0]);
 739
 740	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
 741		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
 742		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
 743
 744	writel(task_assignment,
 745		&ihost->smu_registers->task_context_assignment[0]);
 746
 747}
 748
 749static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
 750{
 751	u32 index;
 752	u32 completion_queue_control_value;
 753	u32 completion_queue_get_value;
 754	u32 completion_queue_put_value;
 755
 756	ihost->completion_queue_get = 0;
 757
 758	completion_queue_control_value =
 759		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
 760		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
 761
 762	writel(completion_queue_control_value,
 763	       &ihost->smu_registers->completion_queue_control);
 764
 765
 766	/* Set the completion queue get pointer and enable the queue */
 767	completion_queue_get_value = (
 768		(SMU_CQGR_GEN_VAL(POINTER, 0))
 769		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
 770		| (SMU_CQGR_GEN_BIT(ENABLE))
 771		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
 772		);
 773
 774	writel(completion_queue_get_value,
 775	       &ihost->smu_registers->completion_queue_get);
 776
 777	/* Set the completion queue put pointer */
 778	completion_queue_put_value = (
 779		(SMU_CQPR_GEN_VAL(POINTER, 0))
 780		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
 781		);
 782
 783	writel(completion_queue_put_value,
 784	       &ihost->smu_registers->completion_queue_put);
 785
 786	/* Initialize the cycle bit of the completion queue entries */
 787	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
 788		/*
 789		 * If get.cycle_bit != completion_queue.cycle_bit
 790		 * its not a valid completion queue entry
 791		 * so at system start all entries are invalid */
 792		ihost->completion_queue[index] = 0x80000000;
 793	}
 794}
 795
 796static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
 797{
 798	u32 frame_queue_control_value;
 799	u32 frame_queue_get_value;
 800	u32 frame_queue_put_value;
 801
 802	/* Write the queue size */
 803	frame_queue_control_value =
 804		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
 805
 806	writel(frame_queue_control_value,
 807	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
 808
 809	/* Setup the get pointer for the unsolicited frame queue */
 810	frame_queue_get_value = (
 811		SCU_UFQGP_GEN_VAL(POINTER, 0)
 812		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
 813		);
 814
 815	writel(frame_queue_get_value,
 816	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
 817	/* Setup the put pointer for the unsolicited frame queue */
 818	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
 819	writel(frame_queue_put_value,
 820	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
 821}
 822
 823void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
 824{
 825	if (ihost->sm.current_state_id == SCIC_STARTING) {
 826		/*
 827		 * We move into the ready state, because some of the phys/ports
 828		 * may be up and operational.
 829		 */
 830		sci_change_state(&ihost->sm, SCIC_READY);
 831
 832		isci_host_start_complete(ihost, status);
 833	}
 834}
 835
 836static bool is_phy_starting(struct isci_phy *iphy)
 837{
 838	enum sci_phy_states state;
 839
 840	state = iphy->sm.current_state_id;
 841	switch (state) {
 842	case SCI_PHY_STARTING:
 843	case SCI_PHY_SUB_INITIAL:
 844	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 845	case SCI_PHY_SUB_AWAIT_IAF_UF:
 846	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 847	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 848	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 849	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 850	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 851	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 852	case SCI_PHY_SUB_FINAL:
 853		return true;
 854	default:
 855		return false;
 856	}
 857}
 858
 859bool is_controller_start_complete(struct isci_host *ihost)
 860{
 861	int i;
 862
 863	for (i = 0; i < SCI_MAX_PHYS; i++) {
 864		struct isci_phy *iphy = &ihost->phys[i];
 865		u32 state = iphy->sm.current_state_id;
 866
 867		/* in apc mode we need to check every phy, in
 868		 * mpc mode we only need to check phys that have
 869		 * been configured into a port
 870		 */
 871		if (is_port_config_apc(ihost))
 872			/* pass */;
 873		else if (!phy_get_non_dummy_port(iphy))
 874			continue;
 875
 876		/* The controller start operation is complete iff:
 877		 * - all links have been given an opportunity to start
 878		 * - have no indication of a connected device
 879		 * - have an indication of a connected device and it has
 880		 *   finished the link training process.
 881		 */
 882		if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
 883		    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
 884		    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
 885		    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
 886			return false;
 887	}
 888
 889	return true;
 890}
 891
 892/**
 893 * sci_controller_start_next_phy - start phy
 894 * @ihost: controller
 895 *
 896 * If all the phys have been started, then attempt to transition the
 897 * controller to the READY state and inform the user
 898 * (sci_cb_controller_start_complete()).
 899 */
 900static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
 901{
 902	struct sci_oem_params *oem = &ihost->oem_parameters;
 903	struct isci_phy *iphy;
 904	enum sci_status status;
 905
 906	status = SCI_SUCCESS;
 907
 908	if (ihost->phy_startup_timer_pending)
 909		return status;
 910
 911	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
 912		if (is_controller_start_complete(ihost)) {
 913			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
 914			sci_del_timer(&ihost->phy_timer);
 915			ihost->phy_startup_timer_pending = false;
 916		}
 917	} else {
 918		iphy = &ihost->phys[ihost->next_phy_to_start];
 919
 920		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
 921			if (phy_get_non_dummy_port(iphy) == NULL) {
 922				ihost->next_phy_to_start++;
 923
 924				/* Caution recursion ahead be forwarned
 925				 *
 926				 * The PHY was never added to a PORT in MPC mode
 927				 * so start the next phy in sequence This phy
 928				 * will never go link up and will not draw power
 929				 * the OEM parameters either configured the phy
 930				 * incorrectly for the PORT or it was never
 931				 * assigned to a PORT
 932				 */
 933				return sci_controller_start_next_phy(ihost);
 934			}
 935		}
 936
 937		status = sci_phy_start(iphy);
 938
 939		if (status == SCI_SUCCESS) {
 940			sci_mod_timer(&ihost->phy_timer,
 941				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
 942			ihost->phy_startup_timer_pending = true;
 943		} else {
 944			dev_warn(&ihost->pdev->dev,
 945				 "%s: Controller stop operation failed "
 946				 "to stop phy %d because of status "
 947				 "%d.\n",
 948				 __func__,
 949				 ihost->phys[ihost->next_phy_to_start].phy_index,
 950				 status);
 951		}
 952
 953		ihost->next_phy_to_start++;
 954	}
 955
 956	return status;
 957}
 958
 959static void phy_startup_timeout(struct timer_list *t)
 960{
 961	struct sci_timer *tmr = from_timer(tmr, t, timer);
 962	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
 963	unsigned long flags;
 964	enum sci_status status;
 965
 966	spin_lock_irqsave(&ihost->scic_lock, flags);
 967
 968	if (tmr->cancel)
 969		goto done;
 970
 971	ihost->phy_startup_timer_pending = false;
 972
 973	do {
 974		status = sci_controller_start_next_phy(ihost);
 975	} while (status != SCI_SUCCESS);
 976
 977done:
 978	spin_unlock_irqrestore(&ihost->scic_lock, flags);
 979}
 980
 981static u16 isci_tci_active(struct isci_host *ihost)
 982{
 983	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
 984}
 985
 986static enum sci_status sci_controller_start(struct isci_host *ihost,
 987					     u32 timeout)
 988{
 989	enum sci_status result;
 990	u16 index;
 991
 992	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
 993		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
 994			 __func__, ihost->sm.current_state_id);
 995		return SCI_FAILURE_INVALID_STATE;
 996	}
 997
 998	/* Build the TCi free pool */
 999	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000	ihost->tci_head = 0;
1001	ihost->tci_tail = 0;
1002	for (index = 0; index < ihost->task_context_entries; index++)
1003		isci_tci_free(ihost, index);
1004
1005	/* Build the RNi free pool */
1006	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007					 ihost->remote_node_entries);
1008
1009	/*
1010	 * Before anything else lets make sure we will not be
1011	 * interrupted by the hardware.
1012	 */
1013	sci_controller_disable_interrupts(ihost);
1014
1015	/* Enable the port task scheduler */
1016	sci_controller_enable_port_task_scheduler(ihost);
1017
1018	/* Assign all the task entries to ihost physical function */
1019	sci_controller_assign_task_entries(ihost);
1020
1021	/* Now initialize the completion queue */
1022	sci_controller_initialize_completion_queue(ihost);
1023
1024	/* Initialize the unsolicited frame queue for use */
1025	sci_controller_initialize_unsolicited_frame_queue(ihost);
1026
1027	/* Start all of the ports on this controller */
1028	for (index = 0; index < ihost->logical_port_entries; index++) {
1029		struct isci_port *iport = &ihost->ports[index];
1030
1031		result = sci_port_start(iport);
1032		if (result)
1033			return result;
1034	}
1035
1036	sci_controller_start_next_phy(ihost);
1037
1038	sci_mod_timer(&ihost->timer, timeout);
1039
1040	sci_change_state(&ihost->sm, SCIC_STARTING);
1041
1042	return SCI_SUCCESS;
1043}
1044
1045void isci_host_start(struct Scsi_Host *shost)
1046{
1047	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049
1050	set_bit(IHOST_START_PENDING, &ihost->flags);
1051
1052	spin_lock_irq(&ihost->scic_lock);
1053	sci_controller_start(ihost, tmo);
1054	sci_controller_enable_interrupts(ihost);
1055	spin_unlock_irq(&ihost->scic_lock);
1056}
1057
1058static void isci_host_stop_complete(struct isci_host *ihost)
1059{
1060	sci_controller_disable_interrupts(ihost);
1061	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1062	wake_up(&ihost->eventq);
1063}
1064
1065static void sci_controller_completion_handler(struct isci_host *ihost)
1066{
1067	/* Empty out the completion queue */
1068	if (sci_controller_completion_queue_has_entries(ihost))
1069		sci_controller_process_completions(ihost);
1070
1071	/* Clear the interrupt and enable all interrupts again */
1072	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1073	/* Could we write the value of SMU_ISR_COMPLETION? */
1074	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1075	writel(0, &ihost->smu_registers->interrupt_mask);
1076}
1077
1078void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1079{
1080	if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1081	    !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1082		if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1083			/* Normal notification (task_done) */
1084			dev_dbg(&ihost->pdev->dev,
1085				"%s: Normal - ireq/task = %p/%p\n",
1086				__func__, ireq, task);
1087			task->lldd_task = NULL;
1088			task->task_done(task);
1089		} else {
1090			dev_dbg(&ihost->pdev->dev,
1091				"%s: Error - ireq/task = %p/%p\n",
1092				__func__, ireq, task);
1093			if (sas_protocol_ata(task->task_proto))
1094				task->lldd_task = NULL;
1095			sas_task_abort(task);
1096		}
1097	} else
1098		task->lldd_task = NULL;
1099
1100	if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1101		wake_up_all(&ihost->eventq);
1102
1103	if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1104		isci_free_tag(ihost, ireq->io_tag);
1105}
1106/**
1107 * isci_host_completion_routine() - This function is the delayed service
1108 *    routine that calls the sci core library's completion handler. It's
1109 *    scheduled as a tasklet from the interrupt service routine when interrupts
1110 *    in use, or set as the timeout function in polled mode.
1111 * @data: This parameter specifies the ISCI host object
1112 *
1113 */
1114void isci_host_completion_routine(unsigned long data)
1115{
1116	struct isci_host *ihost = (struct isci_host *)data;
1117	u16 active;
1118
1119	spin_lock_irq(&ihost->scic_lock);
1120	sci_controller_completion_handler(ihost);
1121	spin_unlock_irq(&ihost->scic_lock);
1122
1123	/*
1124	 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1125	 * issued for hardware issue workaround
1126	 */
1127	active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1128
1129	/*
1130	 * the coalesence timeout doubles at each encoding step, so
1131	 * update it based on the ilog2 value of the outstanding requests
1132	 */
1133	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1134	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1135	       &ihost->smu_registers->interrupt_coalesce_control);
1136}
1137
1138/**
1139 * sci_controller_stop() - This method will stop an individual controller
1140 *    object.This method will invoke the associated user callback upon
1141 *    completion.  The completion callback is called when the following
1142 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1143 *    controller has been quiesced. This method will ensure that all IO
1144 *    requests are quiesced, phys are stopped, and all additional operation by
1145 *    the hardware is halted.
1146 * @ihost: the handle to the controller object to stop.
1147 * @timeout: This parameter specifies the number of milliseconds in which the
1148 *    stop operation should complete.
1149 *
1150 * The controller must be in the STARTED or STOPPED state. Indicate if the
1151 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1152 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1153 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1154 * controller is not either in the STARTED or STOPPED states.
1155 */
1156static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1157{
1158	if (ihost->sm.current_state_id != SCIC_READY) {
1159		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1160			 __func__, ihost->sm.current_state_id);
1161		return SCI_FAILURE_INVALID_STATE;
1162	}
1163
1164	sci_mod_timer(&ihost->timer, timeout);
1165	sci_change_state(&ihost->sm, SCIC_STOPPING);
1166	return SCI_SUCCESS;
1167}
1168
1169/**
1170 * sci_controller_reset() - This method will reset the supplied core
1171 *    controller regardless of the state of said controller.  This operation is
1172 *    considered destructive.  In other words, all current operations are wiped
1173 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1174 *    requests are not aborted or completed at the actual remote device.
1175 * @ihost: the handle to the controller object to reset.
1176 *
1177 * Indicate if the controller reset method succeeded or failed in some way.
1178 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1179 * the controller reset operation is unable to complete.
1180 */
1181static enum sci_status sci_controller_reset(struct isci_host *ihost)
1182{
1183	switch (ihost->sm.current_state_id) {
1184	case SCIC_RESET:
1185	case SCIC_READY:
1186	case SCIC_STOPPING:
1187	case SCIC_FAILED:
1188		/*
1189		 * The reset operation is not a graceful cleanup, just
1190		 * perform the state transition.
1191		 */
1192		sci_change_state(&ihost->sm, SCIC_RESETTING);
1193		return SCI_SUCCESS;
1194	default:
1195		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1196			 __func__, ihost->sm.current_state_id);
1197		return SCI_FAILURE_INVALID_STATE;
1198	}
1199}
1200
1201static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1202{
1203	u32 index;
1204	enum sci_status status;
1205	enum sci_status phy_status;
1206
1207	status = SCI_SUCCESS;
1208
1209	for (index = 0; index < SCI_MAX_PHYS; index++) {
1210		phy_status = sci_phy_stop(&ihost->phys[index]);
1211
1212		if (phy_status != SCI_SUCCESS &&
1213		    phy_status != SCI_FAILURE_INVALID_STATE) {
1214			status = SCI_FAILURE;
1215
1216			dev_warn(&ihost->pdev->dev,
1217				 "%s: Controller stop operation failed to stop "
1218				 "phy %d because of status %d.\n",
1219				 __func__,
1220				 ihost->phys[index].phy_index, phy_status);
1221		}
1222	}
1223
1224	return status;
1225}
1226
1227
1228/**
1229 * isci_host_deinit - shutdown frame reception and dma
1230 * @ihost: host to take down
1231 *
1232 * This is called in either the driver shutdown or the suspend path.  In
1233 * the shutdown case libsas went through port teardown and normal device
1234 * removal (i.e. physical links stayed up to service scsi_device removal
1235 * commands).  In the suspend case we disable the hardware without
1236 * notifying libsas of the link down events since we want libsas to
1237 * remember the domain across the suspend/resume cycle
1238 */
1239void isci_host_deinit(struct isci_host *ihost)
1240{
1241	int i;
1242
1243	/* disable output data selects */
1244	for (i = 0; i < isci_gpio_count(ihost); i++)
1245		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1246
1247	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1248
1249	spin_lock_irq(&ihost->scic_lock);
1250	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1251	spin_unlock_irq(&ihost->scic_lock);
1252
1253	wait_for_stop(ihost);
1254
1255	/* phy stop is after controller stop to allow port and device to
1256	 * go idle before shutting down the phys, but the expectation is
1257	 * that i/o has been shut off well before we reach this
1258	 * function.
1259	 */
1260	sci_controller_stop_phys(ihost);
1261
1262	/* disable sgpio: where the above wait should give time for the
1263	 * enclosure to sample the gpios going inactive
1264	 */
1265	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1266
1267	spin_lock_irq(&ihost->scic_lock);
1268	sci_controller_reset(ihost);
1269	spin_unlock_irq(&ihost->scic_lock);
1270
1271	/* Cancel any/all outstanding port timers */
1272	for (i = 0; i < ihost->logical_port_entries; i++) {
1273		struct isci_port *iport = &ihost->ports[i];
1274		del_timer_sync(&iport->timer.timer);
1275	}
1276
1277	/* Cancel any/all outstanding phy timers */
1278	for (i = 0; i < SCI_MAX_PHYS; i++) {
1279		struct isci_phy *iphy = &ihost->phys[i];
1280		del_timer_sync(&iphy->sata_timer.timer);
1281	}
1282
1283	del_timer_sync(&ihost->port_agent.timer.timer);
1284
1285	del_timer_sync(&ihost->power_control.timer.timer);
1286
1287	del_timer_sync(&ihost->timer.timer);
1288
1289	del_timer_sync(&ihost->phy_timer.timer);
1290}
1291
1292static void __iomem *scu_base(struct isci_host *isci_host)
1293{
1294	struct pci_dev *pdev = isci_host->pdev;
1295	int id = isci_host->id;
1296
1297	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1298}
1299
1300static void __iomem *smu_base(struct isci_host *isci_host)
1301{
1302	struct pci_dev *pdev = isci_host->pdev;
1303	int id = isci_host->id;
1304
1305	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1306}
1307
1308static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1309{
1310	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1311
1312	sci_change_state(&ihost->sm, SCIC_RESET);
1313}
1314
1315static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1316{
1317	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1318
1319	sci_del_timer(&ihost->timer);
1320}
1321
1322#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1323#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1324#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1325#define INTERRUPT_COALESCE_NUMBER_MAX                        256
1326#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1327#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1328
1329/**
1330 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1331 *    configure the interrupt coalescence.
1332 * @ihost: This parameter represents the handle to the controller object
1333 *    for which its interrupt coalesce register is overridden.
1334 * @coalesce_number: Used to control the number of entries in the Completion
1335 *    Queue before an interrupt is generated. If the number of entries exceed
1336 *    this number, an interrupt will be generated. The valid range of the input
1337 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1338 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1339 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1340 *    interrupt coalescing timeout.
1341 *
1342 * Indicate if the user successfully set the interrupt coalesce parameters.
1343 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1344 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1345 */
1346static enum sci_status
1347sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1348					 u32 coalesce_number,
1349					 u32 coalesce_timeout)
1350{
1351	u8 timeout_encode = 0;
1352	u32 min = 0;
1353	u32 max = 0;
1354
1355	/* Check if the input parameters fall in the range. */
1356	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1357		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1358
1359	/*
1360	 *  Defined encoding for interrupt coalescing timeout:
1361	 *              Value   Min      Max     Units
1362	 *              -----   ---      ---     -----
1363	 *              0       -        -       Disabled
1364	 *              1       13.3     20.0    ns
1365	 *              2       26.7     40.0
1366	 *              3       53.3     80.0
1367	 *              4       106.7    160.0
1368	 *              5       213.3    320.0
1369	 *              6       426.7    640.0
1370	 *              7       853.3    1280.0
1371	 *              8       1.7      2.6     us
1372	 *              9       3.4      5.1
1373	 *              10      6.8      10.2
1374	 *              11      13.7     20.5
1375	 *              12      27.3     41.0
1376	 *              13      54.6     81.9
1377	 *              14      109.2    163.8
1378	 *              15      218.5    327.7
1379	 *              16      436.9    655.4
1380	 *              17      873.8    1310.7
1381	 *              18      1.7      2.6     ms
1382	 *              19      3.5      5.2
1383	 *              20      7.0      10.5
1384	 *              21      14.0     21.0
1385	 *              22      28.0     41.9
1386	 *              23      55.9     83.9
1387	 *              24      111.8    167.8
1388	 *              25      223.7    335.5
1389	 *              26      447.4    671.1
1390	 *              27      894.8    1342.2
1391	 *              28      1.8      2.7     s
1392	 *              Others Undefined */
1393
1394	/*
1395	 * Use the table above to decide the encode of interrupt coalescing timeout
1396	 * value for register writing. */
1397	if (coalesce_timeout == 0)
1398		timeout_encode = 0;
1399	else{
1400		/* make the timeout value in unit of (10 ns). */
1401		coalesce_timeout = coalesce_timeout * 100;
1402		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1403		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1404
1405		/* get the encode of timeout for register writing. */
1406		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1407		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1408		      timeout_encode++) {
1409			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1410				break;
1411			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1412				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1413				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1414					break;
1415				else{
1416					timeout_encode++;
1417					break;
1418				}
1419			} else {
1420				max = max * 2;
1421				min = min * 2;
1422			}
1423		}
1424
1425		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1426			/* the value is out of range. */
1427			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1428	}
1429
1430	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1431	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1432	       &ihost->smu_registers->interrupt_coalesce_control);
1433
1434
1435	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1436	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1437
1438	return SCI_SUCCESS;
1439}
1440
1441
1442static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1443{
1444	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1445	u32 val;
1446
1447	/* enable clock gating for power control of the scu unit */
1448	val = readl(&ihost->smu_registers->clock_gating_control);
1449	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1450		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1451		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1452	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1453	writel(val, &ihost->smu_registers->clock_gating_control);
1454
1455	/* set the default interrupt coalescence number and timeout value. */
1456	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1457}
1458
1459static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1460{
1461	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1462
1463	/* disable interrupt coalescence. */
1464	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1465}
1466
1467static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1468{
1469	u32 index;
1470	enum sci_status port_status;
1471	enum sci_status status = SCI_SUCCESS;
1472
1473	for (index = 0; index < ihost->logical_port_entries; index++) {
1474		struct isci_port *iport = &ihost->ports[index];
1475
1476		port_status = sci_port_stop(iport);
1477
1478		if ((port_status != SCI_SUCCESS) &&
1479		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1480			status = SCI_FAILURE;
1481
1482			dev_warn(&ihost->pdev->dev,
1483				 "%s: Controller stop operation failed to "
1484				 "stop port %d because of status %d.\n",
1485				 __func__,
1486				 iport->logical_port_index,
1487				 port_status);
1488		}
1489	}
1490
1491	return status;
1492}
1493
1494static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1495{
1496	u32 index;
1497	enum sci_status status;
1498	enum sci_status device_status;
1499
1500	status = SCI_SUCCESS;
1501
1502	for (index = 0; index < ihost->remote_node_entries; index++) {
1503		if (ihost->device_table[index] != NULL) {
1504			/* / @todo What timeout value do we want to provide to this request? */
1505			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1506
1507			if ((device_status != SCI_SUCCESS) &&
1508			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1509				dev_warn(&ihost->pdev->dev,
1510					 "%s: Controller stop operation failed "
1511					 "to stop device 0x%p because of "
1512					 "status %d.\n",
1513					 __func__,
1514					 ihost->device_table[index], device_status);
1515			}
1516		}
1517	}
1518
1519	return status;
1520}
1521
1522static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1523{
1524	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1525
1526	sci_controller_stop_devices(ihost);
1527	sci_controller_stop_ports(ihost);
1528
1529	if (!sci_controller_has_remote_devices_stopping(ihost))
1530		isci_host_stop_complete(ihost);
1531}
1532
1533static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1534{
1535	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1536
1537	sci_del_timer(&ihost->timer);
1538}
1539
1540static void sci_controller_reset_hardware(struct isci_host *ihost)
1541{
1542	/* Disable interrupts so we dont take any spurious interrupts */
1543	sci_controller_disable_interrupts(ihost);
1544
1545	/* Reset the SCU */
1546	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1547
1548	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1549	udelay(1000);
1550
1551	/* The write to the CQGR clears the CQP */
1552	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1553
1554	/* The write to the UFQGP clears the UFQPR */
1555	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1556
1557	/* clear all interrupts */
1558	writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1559}
1560
1561static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1562{
1563	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1564
1565	sci_controller_reset_hardware(ihost);
1566	sci_change_state(&ihost->sm, SCIC_RESET);
1567}
1568
1569static const struct sci_base_state sci_controller_state_table[] = {
1570	[SCIC_INITIAL] = {
1571		.enter_state = sci_controller_initial_state_enter,
1572	},
1573	[SCIC_RESET] = {},
1574	[SCIC_INITIALIZING] = {},
1575	[SCIC_INITIALIZED] = {},
1576	[SCIC_STARTING] = {
1577		.exit_state  = sci_controller_starting_state_exit,
1578	},
1579	[SCIC_READY] = {
1580		.enter_state = sci_controller_ready_state_enter,
1581		.exit_state  = sci_controller_ready_state_exit,
1582	},
1583	[SCIC_RESETTING] = {
1584		.enter_state = sci_controller_resetting_state_enter,
1585	},
1586	[SCIC_STOPPING] = {
1587		.enter_state = sci_controller_stopping_state_enter,
1588		.exit_state = sci_controller_stopping_state_exit,
1589	},
1590	[SCIC_FAILED] = {}
1591};
1592
1593static void controller_timeout(struct timer_list *t)
1594{
1595	struct sci_timer *tmr = from_timer(tmr, t, timer);
1596	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1597	struct sci_base_state_machine *sm = &ihost->sm;
1598	unsigned long flags;
1599
1600	spin_lock_irqsave(&ihost->scic_lock, flags);
1601
1602	if (tmr->cancel)
1603		goto done;
1604
1605	if (sm->current_state_id == SCIC_STARTING)
1606		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1607	else if (sm->current_state_id == SCIC_STOPPING) {
1608		sci_change_state(sm, SCIC_FAILED);
1609		isci_host_stop_complete(ihost);
1610	} else	/* / @todo Now what do we want to do in this case? */
1611		dev_err(&ihost->pdev->dev,
1612			"%s: Controller timer fired when controller was not "
1613			"in a state being timed.\n",
1614			__func__);
1615
1616done:
1617	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1618}
1619
1620static enum sci_status sci_controller_construct(struct isci_host *ihost,
1621						void __iomem *scu_base,
1622						void __iomem *smu_base)
1623{
1624	u8 i;
1625
1626	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1627
1628	ihost->scu_registers = scu_base;
1629	ihost->smu_registers = smu_base;
1630
1631	sci_port_configuration_agent_construct(&ihost->port_agent);
1632
1633	/* Construct the ports for this controller */
1634	for (i = 0; i < SCI_MAX_PORTS; i++)
1635		sci_port_construct(&ihost->ports[i], i, ihost);
1636	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1637
1638	/* Construct the phys for this controller */
1639	for (i = 0; i < SCI_MAX_PHYS; i++) {
1640		/* Add all the PHYs to the dummy port */
1641		sci_phy_construct(&ihost->phys[i],
1642				  &ihost->ports[SCI_MAX_PORTS], i);
1643	}
1644
1645	ihost->invalid_phy_mask = 0;
1646
1647	sci_init_timer(&ihost->timer, controller_timeout);
1648
1649	return sci_controller_reset(ihost);
1650}
1651
1652int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1653{
1654	int i;
1655
1656	for (i = 0; i < SCI_MAX_PORTS; i++)
1657		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1658			return -EINVAL;
1659
1660	for (i = 0; i < SCI_MAX_PHYS; i++)
1661		if (oem->phys[i].sas_address.high == 0 &&
1662		    oem->phys[i].sas_address.low == 0)
1663			return -EINVAL;
1664
1665	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1666		for (i = 0; i < SCI_MAX_PHYS; i++)
1667			if (oem->ports[i].phy_mask != 0)
1668				return -EINVAL;
1669	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1670		u8 phy_mask = 0;
1671
1672		for (i = 0; i < SCI_MAX_PHYS; i++)
1673			phy_mask |= oem->ports[i].phy_mask;
1674
1675		if (phy_mask == 0)
1676			return -EINVAL;
1677	} else
1678		return -EINVAL;
1679
1680	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1681	    oem->controller.max_concurr_spin_up < 1)
1682		return -EINVAL;
1683
1684	if (oem->controller.do_enable_ssc) {
1685		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1686			return -EINVAL;
1687
1688		if (version >= ISCI_ROM_VER_1_1) {
1689			u8 test = oem->controller.ssc_sata_tx_spread_level;
1690
1691			switch (test) {
1692			case 0:
1693			case 2:
1694			case 3:
1695			case 6:
1696			case 7:
1697				break;
1698			default:
1699				return -EINVAL;
1700			}
1701
1702			test = oem->controller.ssc_sas_tx_spread_level;
1703			if (oem->controller.ssc_sas_tx_type == 0) {
1704				switch (test) {
1705				case 0:
1706				case 2:
1707				case 3:
1708					break;
1709				default:
1710					return -EINVAL;
1711				}
1712			} else if (oem->controller.ssc_sas_tx_type == 1) {
1713				switch (test) {
1714				case 0:
1715				case 3:
1716				case 6:
1717					break;
1718				default:
1719					return -EINVAL;
1720				}
1721			}
1722		}
1723	}
1724
1725	return 0;
1726}
1727
1728static u8 max_spin_up(struct isci_host *ihost)
1729{
1730	if (ihost->user_parameters.max_concurr_spinup)
1731		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1732			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1733	else
1734		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1735			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1736}
1737
1738static void power_control_timeout(struct timer_list *t)
1739{
1740	struct sci_timer *tmr = from_timer(tmr, t, timer);
1741	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1742	struct isci_phy *iphy;
1743	unsigned long flags;
1744	u8 i;
1745
1746	spin_lock_irqsave(&ihost->scic_lock, flags);
1747
1748	if (tmr->cancel)
1749		goto done;
1750
1751	ihost->power_control.phys_granted_power = 0;
1752
1753	if (ihost->power_control.phys_waiting == 0) {
1754		ihost->power_control.timer_started = false;
1755		goto done;
1756	}
1757
1758	for (i = 0; i < SCI_MAX_PHYS; i++) {
1759
1760		if (ihost->power_control.phys_waiting == 0)
1761			break;
1762
1763		iphy = ihost->power_control.requesters[i];
1764		if (iphy == NULL)
1765			continue;
1766
1767		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1768			break;
1769
1770		ihost->power_control.requesters[i] = NULL;
1771		ihost->power_control.phys_waiting--;
1772		ihost->power_control.phys_granted_power++;
1773		sci_phy_consume_power_handler(iphy);
1774
1775		if (iphy->protocol == SAS_PROTOCOL_SSP) {
1776			u8 j;
1777
1778			for (j = 0; j < SCI_MAX_PHYS; j++) {
1779				struct isci_phy *requester = ihost->power_control.requesters[j];
1780
1781				/*
1782				 * Search the power_control queue to see if there are other phys
1783				 * attached to the same remote device. If found, take all of
1784				 * them out of await_sas_power state.
1785				 */
1786				if (requester != NULL && requester != iphy) {
1787					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1788							  iphy->frame_rcvd.iaf.sas_addr,
1789							  sizeof(requester->frame_rcvd.iaf.sas_addr));
1790
1791					if (other == 0) {
1792						ihost->power_control.requesters[j] = NULL;
1793						ihost->power_control.phys_waiting--;
1794						sci_phy_consume_power_handler(requester);
1795					}
1796				}
1797			}
1798		}
1799	}
1800
1801	/*
1802	 * It doesn't matter if the power list is empty, we need to start the
1803	 * timer in case another phy becomes ready.
1804	 */
1805	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1806	ihost->power_control.timer_started = true;
1807
1808done:
1809	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1810}
1811
1812void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1813					       struct isci_phy *iphy)
1814{
1815	BUG_ON(iphy == NULL);
1816
1817	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1818		ihost->power_control.phys_granted_power++;
1819		sci_phy_consume_power_handler(iphy);
1820
1821		/*
1822		 * stop and start the power_control timer. When the timer fires, the
1823		 * no_of_phys_granted_power will be set to 0
1824		 */
1825		if (ihost->power_control.timer_started)
1826			sci_del_timer(&ihost->power_control.timer);
1827
1828		sci_mod_timer(&ihost->power_control.timer,
1829				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1830		ihost->power_control.timer_started = true;
1831
1832	} else {
1833		/*
1834		 * There are phys, attached to the same sas address as this phy, are
1835		 * already in READY state, this phy don't need wait.
1836		 */
1837		u8 i;
1838		struct isci_phy *current_phy;
1839
1840		for (i = 0; i < SCI_MAX_PHYS; i++) {
1841			u8 other;
1842			current_phy = &ihost->phys[i];
1843
1844			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1845				       iphy->frame_rcvd.iaf.sas_addr,
1846				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1847
1848			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1849			    current_phy->protocol == SAS_PROTOCOL_SSP &&
1850			    other == 0) {
1851				sci_phy_consume_power_handler(iphy);
1852				break;
1853			}
1854		}
1855
1856		if (i == SCI_MAX_PHYS) {
1857			/* Add the phy in the waiting list */
1858			ihost->power_control.requesters[iphy->phy_index] = iphy;
1859			ihost->power_control.phys_waiting++;
1860		}
1861	}
1862}
1863
1864void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1865					       struct isci_phy *iphy)
1866{
1867	BUG_ON(iphy == NULL);
1868
1869	if (ihost->power_control.requesters[iphy->phy_index])
1870		ihost->power_control.phys_waiting--;
1871
1872	ihost->power_control.requesters[iphy->phy_index] = NULL;
1873}
1874
1875static int is_long_cable(int phy, unsigned char selection_byte)
1876{
1877	return !!(selection_byte & (1 << phy));
1878}
1879
1880static int is_medium_cable(int phy, unsigned char selection_byte)
1881{
1882	return !!(selection_byte & (1 << (phy + 4)));
1883}
1884
1885static enum cable_selections decode_selection_byte(
1886	int phy,
1887	unsigned char selection_byte)
1888{
1889	return ((selection_byte & (1 << phy)) ? 1 : 0)
1890		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1891}
1892
1893static unsigned char *to_cable_select(struct isci_host *ihost)
1894{
1895	if (is_cable_select_overridden())
1896		return ((unsigned char *)&cable_selection_override)
1897			+ ihost->id;
1898	else
1899		return &ihost->oem_parameters.controller.cable_selection_mask;
1900}
1901
1902enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1903{
1904	return decode_selection_byte(phy, *to_cable_select(ihost));
1905}
1906
1907char *lookup_cable_names(enum cable_selections selection)
1908{
1909	static char *cable_names[] = {
1910		[short_cable]     = "short",
1911		[long_cable]      = "long",
1912		[medium_cable]    = "medium",
1913		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1914	};
1915	return (selection <= undefined_cable) ? cable_names[selection]
1916					      : cable_names[undefined_cable];
1917}
1918
1919#define AFE_REGISTER_WRITE_DELAY 10
1920
1921static void sci_controller_afe_initialization(struct isci_host *ihost)
1922{
1923	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1924	const struct sci_oem_params *oem = &ihost->oem_parameters;
1925	struct pci_dev *pdev = ihost->pdev;
1926	u32 afe_status;
1927	u32 phy_id;
1928	unsigned char cable_selection_mask = *to_cable_select(ihost);
1929
1930	/* Clear DFX Status registers */
1931	writel(0x0081000f, &afe->afe_dfx_master_control0);
1932	udelay(AFE_REGISTER_WRITE_DELAY);
1933
1934	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1935		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1936		 * Timer, PM Stagger Timer
1937		 */
1938		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1939		udelay(AFE_REGISTER_WRITE_DELAY);
1940	}
1941
1942	/* Configure bias currents to normal */
1943	if (is_a2(pdev))
1944		writel(0x00005A00, &afe->afe_bias_control);
1945	else if (is_b0(pdev) || is_c0(pdev))
1946		writel(0x00005F00, &afe->afe_bias_control);
1947	else if (is_c1(pdev))
1948		writel(0x00005500, &afe->afe_bias_control);
1949
1950	udelay(AFE_REGISTER_WRITE_DELAY);
1951
1952	/* Enable PLL */
1953	if (is_a2(pdev))
1954		writel(0x80040908, &afe->afe_pll_control0);
1955	else if (is_b0(pdev) || is_c0(pdev))
1956		writel(0x80040A08, &afe->afe_pll_control0);
1957	else if (is_c1(pdev)) {
1958		writel(0x80000B08, &afe->afe_pll_control0);
1959		udelay(AFE_REGISTER_WRITE_DELAY);
1960		writel(0x00000B08, &afe->afe_pll_control0);
1961		udelay(AFE_REGISTER_WRITE_DELAY);
1962		writel(0x80000B08, &afe->afe_pll_control0);
1963	}
1964
1965	udelay(AFE_REGISTER_WRITE_DELAY);
1966
1967	/* Wait for the PLL to lock */
1968	do {
1969		afe_status = readl(&afe->afe_common_block_status);
1970		udelay(AFE_REGISTER_WRITE_DELAY);
1971	} while ((afe_status & 0x00001000) == 0);
1972
1973	if (is_a2(pdev)) {
1974		/* Shorten SAS SNW lock time (RxLock timer value from 76
1975		 * us to 50 us)
1976		 */
1977		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1978		udelay(AFE_REGISTER_WRITE_DELAY);
1979	}
1980
1981	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1982		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1983		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1984		int cable_length_long =
1985			is_long_cable(phy_id, cable_selection_mask);
1986		int cable_length_medium =
1987			is_medium_cable(phy_id, cable_selection_mask);
1988
1989		if (is_a2(pdev)) {
1990			/* All defaults, except the Receive Word
1991			 * Alignament/Comma Detect Enable....(0xe800)
1992			 */
1993			writel(0x00004512, &xcvr->afe_xcvr_control0);
1994			udelay(AFE_REGISTER_WRITE_DELAY);
1995
1996			writel(0x0050100F, &xcvr->afe_xcvr_control1);
1997			udelay(AFE_REGISTER_WRITE_DELAY);
1998		} else if (is_b0(pdev)) {
1999			/* Configure transmitter SSC parameters */
2000			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2001			udelay(AFE_REGISTER_WRITE_DELAY);
2002		} else if (is_c0(pdev)) {
2003			/* Configure transmitter SSC parameters */
2004			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2005			udelay(AFE_REGISTER_WRITE_DELAY);
2006
2007			/* All defaults, except the Receive Word
2008			 * Alignament/Comma Detect Enable....(0xe800)
2009			 */
2010			writel(0x00014500, &xcvr->afe_xcvr_control0);
2011			udelay(AFE_REGISTER_WRITE_DELAY);
2012		} else if (is_c1(pdev)) {
2013			/* Configure transmitter SSC parameters */
2014			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2015			udelay(AFE_REGISTER_WRITE_DELAY);
2016
2017			/* All defaults, except the Receive Word
2018			 * Alignament/Comma Detect Enable....(0xe800)
2019			 */
2020			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2021			udelay(AFE_REGISTER_WRITE_DELAY);
2022		}
2023
2024		/* Power up TX and RX out from power down (PWRDNTX and
2025		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2026		 */
2027		if (is_a2(pdev))
2028			writel(0x000003F0, &xcvr->afe_channel_control);
2029		else if (is_b0(pdev)) {
2030			writel(0x000003D7, &xcvr->afe_channel_control);
2031			udelay(AFE_REGISTER_WRITE_DELAY);
2032
2033			writel(0x000003D4, &xcvr->afe_channel_control);
2034		} else if (is_c0(pdev)) {
2035			writel(0x000001E7, &xcvr->afe_channel_control);
2036			udelay(AFE_REGISTER_WRITE_DELAY);
2037
2038			writel(0x000001E4, &xcvr->afe_channel_control);
2039		} else if (is_c1(pdev)) {
2040			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2041			       &xcvr->afe_channel_control);
2042			udelay(AFE_REGISTER_WRITE_DELAY);
2043
2044			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2045			       &xcvr->afe_channel_control);
2046		}
2047		udelay(AFE_REGISTER_WRITE_DELAY);
2048
2049		if (is_a2(pdev)) {
2050			/* Enable TX equalization (0xe824) */
2051			writel(0x00040000, &xcvr->afe_tx_control);
2052			udelay(AFE_REGISTER_WRITE_DELAY);
2053		}
2054
2055		if (is_a2(pdev) || is_b0(pdev))
2056			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2057			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2058			 * Enabled) ....(0xe800)
2059			 */
2060			writel(0x00004100, &xcvr->afe_xcvr_control0);
2061		else if (is_c0(pdev))
2062			writel(0x00014100, &xcvr->afe_xcvr_control0);
2063		else if (is_c1(pdev))
2064			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2065		udelay(AFE_REGISTER_WRITE_DELAY);
2066
2067		/* Leave DFE/FFE on */
2068		if (is_a2(pdev))
2069			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2070		else if (is_b0(pdev)) {
2071			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072			udelay(AFE_REGISTER_WRITE_DELAY);
2073			/* Enable TX equalization (0xe824) */
2074			writel(0x00040000, &xcvr->afe_tx_control);
2075		} else if (is_c0(pdev)) {
2076			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2077			udelay(AFE_REGISTER_WRITE_DELAY);
2078
2079			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2080			udelay(AFE_REGISTER_WRITE_DELAY);
2081
2082			/* Enable TX equalization (0xe824) */
2083			writel(0x00040000, &xcvr->afe_tx_control);
2084		} else if (is_c1(pdev)) {
2085			writel(cable_length_long ? 0x01500C0C :
2086			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
2087			       &xcvr->afe_xcvr_control1);
2088			udelay(AFE_REGISTER_WRITE_DELAY);
2089
2090			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2091			udelay(AFE_REGISTER_WRITE_DELAY);
2092
2093			writel(cable_length_long ? 0x33091C1F :
2094			       cable_length_medium ? 0x3315181F : 0x2B17161F,
2095			       &xcvr->afe_rx_ssc_control0);
2096			udelay(AFE_REGISTER_WRITE_DELAY);
2097
2098			/* Enable TX equalization (0xe824) */
2099			writel(0x00040000, &xcvr->afe_tx_control);
2100		}
2101
2102		udelay(AFE_REGISTER_WRITE_DELAY);
2103
2104		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2105		udelay(AFE_REGISTER_WRITE_DELAY);
2106
2107		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2108		udelay(AFE_REGISTER_WRITE_DELAY);
2109
2110		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2111		udelay(AFE_REGISTER_WRITE_DELAY);
2112
2113		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2114		udelay(AFE_REGISTER_WRITE_DELAY);
2115	}
2116
2117	/* Transfer control to the PEs */
2118	writel(0x00010f00, &afe->afe_dfx_master_control0);
2119	udelay(AFE_REGISTER_WRITE_DELAY);
2120}
2121
2122static void sci_controller_initialize_power_control(struct isci_host *ihost)
2123{
2124	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2125
2126	memset(ihost->power_control.requesters, 0,
2127	       sizeof(ihost->power_control.requesters));
2128
2129	ihost->power_control.phys_waiting = 0;
2130	ihost->power_control.phys_granted_power = 0;
2131}
2132
2133static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2134{
2135	struct sci_base_state_machine *sm = &ihost->sm;
2136	enum sci_status result = SCI_FAILURE;
2137	unsigned long i, state, val;
2138
2139	if (ihost->sm.current_state_id != SCIC_RESET) {
2140		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2141			 __func__, ihost->sm.current_state_id);
2142		return SCI_FAILURE_INVALID_STATE;
2143	}
2144
2145	sci_change_state(sm, SCIC_INITIALIZING);
2146
2147	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2148
2149	ihost->next_phy_to_start = 0;
2150	ihost->phy_startup_timer_pending = false;
2151
2152	sci_controller_initialize_power_control(ihost);
2153
2154	/*
2155	 * There is nothing to do here for B0 since we do not have to
2156	 * program the AFE registers.
2157	 * / @todo The AFE settings are supposed to be correct for the B0 but
2158	 * /       presently they seem to be wrong. */
2159	sci_controller_afe_initialization(ihost);
2160
2161
2162	/* Take the hardware out of reset */
2163	writel(0, &ihost->smu_registers->soft_reset_control);
2164
2165	/*
2166	 * / @todo Provide meaningfull error code for hardware failure
2167	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2168	for (i = 100; i >= 1; i--) {
2169		u32 status;
2170
2171		/* Loop until the hardware reports success */
2172		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2173		status = readl(&ihost->smu_registers->control_status);
2174
2175		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2176			break;
2177	}
2178	if (i == 0)
2179		goto out;
2180
2181	/*
2182	 * Determine what are the actaul device capacities that the
2183	 * hardware will support */
2184	val = readl(&ihost->smu_registers->device_context_capacity);
2185
2186	/* Record the smaller of the two capacity values */
2187	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2188	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2189	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2190
2191	/*
2192	 * Make all PEs that are unassigned match up with the
2193	 * logical ports
2194	 */
2195	for (i = 0; i < ihost->logical_port_entries; i++) {
2196		struct scu_port_task_scheduler_group_registers __iomem
2197			*ptsg = &ihost->scu_registers->peg0.ptsg;
2198
2199		writel(i, &ptsg->protocol_engine[i]);
2200	}
2201
2202	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2203	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2204	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2205	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2206
2207	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2208	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2209	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2210
2211	/*
2212	 * Initialize the PHYs before the PORTs because the PHY registers
2213	 * are accessed during the port initialization.
2214	 */
2215	for (i = 0; i < SCI_MAX_PHYS; i++) {
2216		result = sci_phy_initialize(&ihost->phys[i],
2217					    &ihost->scu_registers->peg0.pe[i].tl,
2218					    &ihost->scu_registers->peg0.pe[i].ll);
2219		if (result != SCI_SUCCESS)
2220			goto out;
2221	}
2222
2223	for (i = 0; i < ihost->logical_port_entries; i++) {
2224		struct isci_port *iport = &ihost->ports[i];
2225
2226		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2227		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2228		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2229	}
2230
2231	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2232
2233 out:
2234	/* Advance the controller state machine */
2235	if (result == SCI_SUCCESS)
2236		state = SCIC_INITIALIZED;
2237	else
2238		state = SCIC_FAILED;
2239	sci_change_state(sm, state);
2240
2241	return result;
2242}
2243
2244static int sci_controller_dma_alloc(struct isci_host *ihost)
2245{
2246	struct device *dev = &ihost->pdev->dev;
2247	size_t size;
2248	int i;
2249
2250	/* detect re-initialization */
2251	if (ihost->completion_queue)
2252		return 0;
2253
2254	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2255	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2256						      GFP_KERNEL);
2257	if (!ihost->completion_queue)
2258		return -ENOMEM;
2259
2260	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2261	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2262							       GFP_KERNEL);
2263
2264	if (!ihost->remote_node_context_table)
2265		return -ENOMEM;
2266
2267	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2268	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2269							GFP_KERNEL);
2270	if (!ihost->task_context_table)
2271		return -ENOMEM;
2272
2273	size = SCI_UFI_TOTAL_SIZE;
2274	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2275	if (!ihost->ufi_buf)
2276		return -ENOMEM;
2277
2278	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2279		struct isci_request *ireq;
2280		dma_addr_t dma;
2281
2282		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2283		if (!ireq)
2284			return -ENOMEM;
2285
2286		ireq->tc = &ihost->task_context_table[i];
2287		ireq->owning_controller = ihost;
2288		ireq->request_daddr = dma;
2289		ireq->isci_host = ihost;
2290		ihost->reqs[i] = ireq;
2291	}
2292
2293	return 0;
2294}
2295
2296static int sci_controller_mem_init(struct isci_host *ihost)
2297{
2298	int err = sci_controller_dma_alloc(ihost);
2299
2300	if (err)
2301		return err;
2302
2303	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2304	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2305
2306	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2307	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2308
2309	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2310	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2311
2312	sci_unsolicited_frame_control_construct(ihost);
2313
2314	/*
2315	 * Inform the silicon as to the location of the UF headers and
2316	 * address table.
2317	 */
2318	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2319		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2320	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2321		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2322
2323	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2324		&ihost->scu_registers->sdma.uf_address_table_lower);
2325	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2326		&ihost->scu_registers->sdma.uf_address_table_upper);
2327
2328	return 0;
2329}
2330
2331/**
2332 * isci_host_init - (re-)initialize hardware and internal (private) state
2333 * @ihost: host to init
2334 *
2335 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2336 * one-time initialization objects like locks and waitqueues, are
2337 * not touched (they are initialized in isci_host_alloc)
2338 */
2339int isci_host_init(struct isci_host *ihost)
2340{
2341	int i, err;
2342	enum sci_status status;
2343
2344	spin_lock_irq(&ihost->scic_lock);
2345	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2346	spin_unlock_irq(&ihost->scic_lock);
2347	if (status != SCI_SUCCESS) {
2348		dev_err(&ihost->pdev->dev,
2349			"%s: sci_controller_construct failed - status = %x\n",
2350			__func__,
2351			status);
2352		return -ENODEV;
2353	}
2354
2355	spin_lock_irq(&ihost->scic_lock);
2356	status = sci_controller_initialize(ihost);
2357	spin_unlock_irq(&ihost->scic_lock);
2358	if (status != SCI_SUCCESS) {
2359		dev_warn(&ihost->pdev->dev,
2360			 "%s: sci_controller_initialize failed -"
2361			 " status = 0x%x\n",
2362			 __func__, status);
2363		return -ENODEV;
2364	}
2365
2366	err = sci_controller_mem_init(ihost);
2367	if (err)
2368		return err;
2369
2370	/* enable sgpio */
2371	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2372	for (i = 0; i < isci_gpio_count(ihost); i++)
2373		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2374	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2375
2376	return 0;
2377}
2378
2379void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2380			    struct isci_phy *iphy)
2381{
2382	switch (ihost->sm.current_state_id) {
2383	case SCIC_STARTING:
2384		sci_del_timer(&ihost->phy_timer);
2385		ihost->phy_startup_timer_pending = false;
2386		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2387						  iport, iphy);
2388		sci_controller_start_next_phy(ihost);
2389		break;
2390	case SCIC_READY:
2391		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2392						  iport, iphy);
2393		break;
2394	default:
2395		dev_dbg(&ihost->pdev->dev,
2396			"%s: SCIC Controller linkup event from phy %d in "
2397			"unexpected state %d\n", __func__, iphy->phy_index,
2398			ihost->sm.current_state_id);
2399	}
2400}
2401
2402void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2403			      struct isci_phy *iphy)
2404{
2405	switch (ihost->sm.current_state_id) {
2406	case SCIC_STARTING:
2407	case SCIC_READY:
2408		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2409						   iport, iphy);
2410		break;
2411	default:
2412		dev_dbg(&ihost->pdev->dev,
2413			"%s: SCIC Controller linkdown event from phy %d in "
2414			"unexpected state %d\n",
2415			__func__,
2416			iphy->phy_index,
2417			ihost->sm.current_state_id);
2418	}
2419}
2420
2421bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2422{
2423	u32 index;
2424
2425	for (index = 0; index < ihost->remote_node_entries; index++) {
2426		if ((ihost->device_table[index] != NULL) &&
2427		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2428			return true;
2429	}
2430
2431	return false;
2432}
2433
2434void sci_controller_remote_device_stopped(struct isci_host *ihost,
2435					  struct isci_remote_device *idev)
2436{
2437	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2438		dev_dbg(&ihost->pdev->dev,
2439			"SCIC Controller 0x%p remote device stopped event "
2440			"from device 0x%p in unexpected state %d\n",
2441			ihost, idev,
2442			ihost->sm.current_state_id);
2443		return;
2444	}
2445
2446	if (!sci_controller_has_remote_devices_stopping(ihost))
2447		isci_host_stop_complete(ihost);
2448}
2449
2450void sci_controller_post_request(struct isci_host *ihost, u32 request)
2451{
2452	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2453		__func__, ihost->id, request);
2454
2455	writel(request, &ihost->smu_registers->post_context_port);
2456}
2457
2458struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2459{
2460	u16 task_index;
2461	u16 task_sequence;
2462
2463	task_index = ISCI_TAG_TCI(io_tag);
2464
2465	if (task_index < ihost->task_context_entries) {
2466		struct isci_request *ireq = ihost->reqs[task_index];
2467
2468		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2469			task_sequence = ISCI_TAG_SEQ(io_tag);
2470
2471			if (task_sequence == ihost->io_request_sequence[task_index])
2472				return ireq;
2473		}
2474	}
2475
2476	return NULL;
2477}
2478
2479/**
2480 * sci_controller_allocate_remote_node_context()
2481 * This method allocates remote node index and the reserves the remote node
2482 *    context space for use. This method can fail if there are no more remote
2483 *    node index available.
2484 * @ihost: This is the controller object which contains the set of
2485 *    free remote node ids
2486 * @idev: This is the device object which is requesting the a remote node
2487 *    id
2488 * @node_id: This is the remote node id that is assinged to the device if one
2489 *    is available
2490 *
2491 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2492 * node index available.
2493 */
2494enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2495							    struct isci_remote_device *idev,
2496							    u16 *node_id)
2497{
2498	u16 node_index;
2499	u32 remote_node_count = sci_remote_device_node_count(idev);
2500
2501	node_index = sci_remote_node_table_allocate_remote_node(
2502		&ihost->available_remote_nodes, remote_node_count
2503		);
2504
2505	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2506		ihost->device_table[node_index] = idev;
2507
2508		*node_id = node_index;
2509
2510		return SCI_SUCCESS;
2511	}
2512
2513	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2514}
2515
2516void sci_controller_free_remote_node_context(struct isci_host *ihost,
2517					     struct isci_remote_device *idev,
2518					     u16 node_id)
2519{
2520	u32 remote_node_count = sci_remote_device_node_count(idev);
2521
2522	if (ihost->device_table[node_id] == idev) {
2523		ihost->device_table[node_id] = NULL;
2524
2525		sci_remote_node_table_release_remote_node_index(
2526			&ihost->available_remote_nodes, remote_node_count, node_id
2527			);
2528	}
2529}
2530
2531void sci_controller_copy_sata_response(void *response_buffer,
2532				       void *frame_header,
2533				       void *frame_buffer)
2534{
2535	/* XXX type safety? */
2536	memcpy(response_buffer, frame_header, sizeof(u32));
2537
2538	memcpy(response_buffer + sizeof(u32),
2539	       frame_buffer,
2540	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2541}
2542
2543void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2544{
2545	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2546		writel(ihost->uf_control.get,
2547			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2548}
2549
2550void isci_tci_free(struct isci_host *ihost, u16 tci)
2551{
2552	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2553
2554	ihost->tci_pool[tail] = tci;
2555	ihost->tci_tail = tail + 1;
2556}
2557
2558static u16 isci_tci_alloc(struct isci_host *ihost)
2559{
2560	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2561	u16 tci = ihost->tci_pool[head];
2562
2563	ihost->tci_head = head + 1;
2564	return tci;
2565}
2566
2567static u16 isci_tci_space(struct isci_host *ihost)
2568{
2569	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2570}
2571
2572u16 isci_alloc_tag(struct isci_host *ihost)
2573{
2574	if (isci_tci_space(ihost)) {
2575		u16 tci = isci_tci_alloc(ihost);
2576		u8 seq = ihost->io_request_sequence[tci];
2577
2578		return ISCI_TAG(seq, tci);
2579	}
2580
2581	return SCI_CONTROLLER_INVALID_IO_TAG;
2582}
2583
2584enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2585{
2586	u16 tci = ISCI_TAG_TCI(io_tag);
2587	u16 seq = ISCI_TAG_SEQ(io_tag);
2588
2589	/* prevent tail from passing head */
2590	if (isci_tci_active(ihost) == 0)
2591		return SCI_FAILURE_INVALID_IO_TAG;
2592
2593	if (seq == ihost->io_request_sequence[tci]) {
2594		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2595
2596		isci_tci_free(ihost, tci);
2597
2598		return SCI_SUCCESS;
2599	}
2600	return SCI_FAILURE_INVALID_IO_TAG;
2601}
2602
2603enum sci_status sci_controller_start_io(struct isci_host *ihost,
2604					struct isci_remote_device *idev,
2605					struct isci_request *ireq)
2606{
2607	enum sci_status status;
2608
2609	if (ihost->sm.current_state_id != SCIC_READY) {
2610		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2611			 __func__, ihost->sm.current_state_id);
2612		return SCI_FAILURE_INVALID_STATE;
2613	}
2614
2615	status = sci_remote_device_start_io(ihost, idev, ireq);
2616	if (status != SCI_SUCCESS)
2617		return status;
2618
2619	set_bit(IREQ_ACTIVE, &ireq->flags);
2620	sci_controller_post_request(ihost, ireq->post_context);
2621	return SCI_SUCCESS;
2622}
2623
2624enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2625						 struct isci_remote_device *idev,
2626						 struct isci_request *ireq)
2627{
2628	/* terminate an ongoing (i.e. started) core IO request.  This does not
2629	 * abort the IO request at the target, but rather removes the IO
2630	 * request from the host controller.
2631	 */
2632	enum sci_status status;
2633
2634	if (ihost->sm.current_state_id != SCIC_READY) {
2635		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2636			 __func__, ihost->sm.current_state_id);
2637		return SCI_FAILURE_INVALID_STATE;
2638	}
2639	status = sci_io_request_terminate(ireq);
2640
2641	dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2642		__func__, status, ireq, ireq->flags);
2643
2644	if ((status == SCI_SUCCESS) &&
2645	    !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2646	    !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2647		/* Utilize the original post context command and or in the
2648		 * POST_TC_ABORT request sub-type.
2649		 */
2650		sci_controller_post_request(
2651			ihost, ireq->post_context |
2652				SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2653	}
2654	return status;
2655}
2656
2657/**
2658 * sci_controller_complete_io() - This method will perform core specific
2659 *    completion operations for an IO request.  After this method is invoked,
2660 *    the user should consider the IO request as invalid until it is properly
2661 *    reused (i.e. re-constructed).
2662 * @ihost: The handle to the controller object for which to complete the
2663 *    IO request.
2664 * @idev: The handle to the remote device object for which to complete
2665 *    the IO request.
2666 * @ireq: the handle to the io request object to complete.
2667 */
2668enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669					   struct isci_remote_device *idev,
2670					   struct isci_request *ireq)
2671{
2672	enum sci_status status;
2673
2674	switch (ihost->sm.current_state_id) {
2675	case SCIC_STOPPING:
2676		/* XXX: Implement this function */
2677		return SCI_FAILURE;
2678	case SCIC_READY:
2679		status = sci_remote_device_complete_io(ihost, idev, ireq);
2680		if (status != SCI_SUCCESS)
2681			return status;
2682
2683		clear_bit(IREQ_ACTIVE, &ireq->flags);
2684		return SCI_SUCCESS;
2685	default:
2686		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2687			 __func__, ihost->sm.current_state_id);
2688		return SCI_FAILURE_INVALID_STATE;
2689	}
2690
2691}
2692
2693enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2694{
2695	struct isci_host *ihost = ireq->owning_controller;
2696
2697	if (ihost->sm.current_state_id != SCIC_READY) {
2698		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2699			 __func__, ihost->sm.current_state_id);
2700		return SCI_FAILURE_INVALID_STATE;
2701	}
2702
2703	set_bit(IREQ_ACTIVE, &ireq->flags);
2704	sci_controller_post_request(ihost, ireq->post_context);
2705	return SCI_SUCCESS;
2706}
2707
2708/**
2709 * sci_controller_start_task() - This method is called by the SCIC user to
2710 *    send/start a framework task management request.
2711 * @ihost: the handle to the controller object for which to start the task
2712 *    management request.
2713 * @idev: the handle to the remote device object for which to start
2714 *    the task management request.
2715 * @ireq: the handle to the task request object to start.
2716 */
2717enum sci_status sci_controller_start_task(struct isci_host *ihost,
2718					  struct isci_remote_device *idev,
2719					  struct isci_request *ireq)
2720{
2721	enum sci_status status;
2722
2723	if (ihost->sm.current_state_id != SCIC_READY) {
2724		dev_warn(&ihost->pdev->dev,
2725			 "%s: SCIC Controller starting task from invalid "
2726			 "state\n",
2727			 __func__);
2728		return SCI_FAILURE_INVALID_STATE;
2729	}
2730
2731	status = sci_remote_device_start_task(ihost, idev, ireq);
2732	switch (status) {
2733	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734		set_bit(IREQ_ACTIVE, &ireq->flags);
2735
2736		/*
2737		 * We will let framework know this task request started successfully,
2738		 * although core is still woring on starting the request (to post tc when
2739		 * RNC is resumed.)
2740		 */
2741		return SCI_SUCCESS;
2742	case SCI_SUCCESS:
2743		set_bit(IREQ_ACTIVE, &ireq->flags);
2744		sci_controller_post_request(ihost, ireq->post_context);
2745		break;
2746	default:
2747		break;
2748	}
2749
2750	return status;
2751}
2752
2753static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2754{
2755	int d;
2756
2757	/* no support for TX_GP_CFG */
2758	if (reg_index == 0)
2759		return -EINVAL;
2760
2761	for (d = 0; d < isci_gpio_count(ihost); d++) {
2762		u32 val = 0x444; /* all ODx.n clear */
2763		int i;
2764
2765		for (i = 0; i < 3; i++) {
2766			int bit;
2767
2768			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2769						       write_data, reg_index,
2770						       reg_count);
2771			if (bit < 0)
2772				break;
2773
2774			/* if od is set, clear the 'invert' bit */
2775			val &= ~(bit << ((i << 2) + 2));
2776		}
2777
2778		if (i < 3)
2779			break;
2780		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2781	}
2782
2783	/* unless reg_index is > 1, we should always be able to write at
2784	 * least one register
2785	 */
2786	return d > 0;
2787}
2788
2789int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2790		    u8 reg_count, u8 *write_data)
2791{
2792	struct isci_host *ihost = sas_ha->lldd_ha;
2793	int written;
2794
2795	switch (reg_type) {
2796	case SAS_GPIO_REG_TX_GP:
2797		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2798		break;
2799	default:
2800		written = -EINVAL;
2801	}
2802
2803	return written;
2804}
v5.14.15
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55#include <linux/circ_buf.h>
  56#include <linux/device.h>
  57#include <scsi/sas.h>
  58#include "host.h"
  59#include "isci.h"
  60#include "port.h"
  61#include "probe_roms.h"
  62#include "remote_device.h"
  63#include "request.h"
  64#include "scu_completion_codes.h"
  65#include "scu_event_codes.h"
  66#include "registers.h"
  67#include "scu_remote_node_context.h"
  68#include "scu_task_context.h"
  69
  70#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
  71
  72#define smu_max_ports(dcc_value) \
  73	(\
  74		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
  75		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
  76	)
  77
  78#define smu_max_task_contexts(dcc_value)	\
  79	(\
  80		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
  81		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
  82	)
  83
  84#define smu_max_rncs(dcc_value) \
  85	(\
  86		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
  87		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
  88	)
  89
  90#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
  91
  92/*
  93 * The number of milliseconds to wait while a given phy is consuming power
  94 * before allowing another set of phys to consume power. Ultimately, this will
  95 * be specified by OEM parameter.
  96 */
  97#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
  98
  99/*
 100 * NORMALIZE_PUT_POINTER() -
 101 *
 102 * This macro will normalize the completion queue put pointer so its value can
 103 * be used as an array inde
 104 */
 105#define NORMALIZE_PUT_POINTER(x) \
 106	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
 107
 108
 109/*
 110 * NORMALIZE_EVENT_POINTER() -
 111 *
 112 * This macro will normalize the completion queue event entry so its value can
 113 * be used as an index.
 114 */
 115#define NORMALIZE_EVENT_POINTER(x) \
 116	(\
 117		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
 118		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
 119	)
 120
 121/*
 122 * NORMALIZE_GET_POINTER() -
 123 *
 124 * This macro will normalize the completion queue get pointer so its value can
 125 * be used as an index into an array
 126 */
 127#define NORMALIZE_GET_POINTER(x) \
 128	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
 129
 130/*
 131 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
 132 *
 133 * This macro will normalize the completion queue cycle pointer so it matches
 134 * the completion queue cycle bit
 135 */
 136#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
 137	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
 138
 139/*
 140 * COMPLETION_QUEUE_CYCLE_BIT() -
 141 *
 142 * This macro will return the cycle bit of the completion queue entry
 143 */
 144#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
 145
 146/* Init the state machine and call the state entry function (if any) */
 147void sci_init_sm(struct sci_base_state_machine *sm,
 148		 const struct sci_base_state *state_table, u32 initial_state)
 149{
 150	sci_state_transition_t handler;
 151
 152	sm->initial_state_id    = initial_state;
 153	sm->previous_state_id   = initial_state;
 154	sm->current_state_id    = initial_state;
 155	sm->state_table         = state_table;
 156
 157	handler = sm->state_table[initial_state].enter_state;
 158	if (handler)
 159		handler(sm);
 160}
 161
 162/* Call the state exit fn, update the current state, call the state entry fn */
 163void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
 164{
 165	sci_state_transition_t handler;
 166
 167	handler = sm->state_table[sm->current_state_id].exit_state;
 168	if (handler)
 169		handler(sm);
 170
 171	sm->previous_state_id = sm->current_state_id;
 172	sm->current_state_id = next_state;
 173
 174	handler = sm->state_table[sm->current_state_id].enter_state;
 175	if (handler)
 176		handler(sm);
 177}
 178
 179static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
 180{
 181	u32 get_value = ihost->completion_queue_get;
 182	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
 183
 184	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
 185	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
 186		return true;
 187
 188	return false;
 189}
 190
 191static bool sci_controller_isr(struct isci_host *ihost)
 192{
 193	if (sci_controller_completion_queue_has_entries(ihost))
 194		return true;
 195
 196	/* we have a spurious interrupt it could be that we have already
 197	 * emptied the completion queue from a previous interrupt
 198	 * FIXME: really!?
 199	 */
 200	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
 201
 202	/* There is a race in the hardware that could cause us not to be
 203	 * notified of an interrupt completion if we do not take this
 204	 * step.  We will mask then unmask the interrupts so if there is
 205	 * another interrupt pending the clearing of the interrupt
 206	 * source we get the next interrupt message.
 207	 */
 208	spin_lock(&ihost->scic_lock);
 209	if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
 210		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
 211		writel(0, &ihost->smu_registers->interrupt_mask);
 212	}
 213	spin_unlock(&ihost->scic_lock);
 214
 215	return false;
 216}
 217
 218irqreturn_t isci_msix_isr(int vec, void *data)
 219{
 220	struct isci_host *ihost = data;
 221
 222	if (sci_controller_isr(ihost))
 223		tasklet_schedule(&ihost->completion_tasklet);
 224
 225	return IRQ_HANDLED;
 226}
 227
 228static bool sci_controller_error_isr(struct isci_host *ihost)
 229{
 230	u32 interrupt_status;
 231
 232	interrupt_status =
 233		readl(&ihost->smu_registers->interrupt_status);
 234	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
 235
 236	if (interrupt_status != 0) {
 237		/*
 238		 * There is an error interrupt pending so let it through and handle
 239		 * in the callback */
 240		return true;
 241	}
 242
 243	/*
 244	 * There is a race in the hardware that could cause us not to be notified
 245	 * of an interrupt completion if we do not take this step.  We will mask
 246	 * then unmask the error interrupts so if there was another interrupt
 247	 * pending we will be notified.
 248	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
 249	writel(0xff, &ihost->smu_registers->interrupt_mask);
 250	writel(0, &ihost->smu_registers->interrupt_mask);
 251
 252	return false;
 253}
 254
 255static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
 256{
 257	u32 index = SCU_GET_COMPLETION_INDEX(ent);
 258	struct isci_request *ireq = ihost->reqs[index];
 259
 260	/* Make sure that we really want to process this IO request */
 261	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
 262	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
 263	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
 264		/* Yep this is a valid io request pass it along to the
 265		 * io request handler
 266		 */
 267		sci_io_request_tc_completion(ireq, ent);
 268}
 269
 270static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
 271{
 272	u32 index;
 273	struct isci_request *ireq;
 274	struct isci_remote_device *idev;
 275
 276	index = SCU_GET_COMPLETION_INDEX(ent);
 277
 278	switch (scu_get_command_request_type(ent)) {
 279	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
 280	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
 281		ireq = ihost->reqs[index];
 282		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
 283			 __func__, ent, ireq);
 284		/* @todo For a post TC operation we need to fail the IO
 285		 * request
 286		 */
 287		break;
 288	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
 289	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
 290	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
 291		idev = ihost->device_table[index];
 292		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
 293			 __func__, ent, idev);
 294		/* @todo For a port RNC operation we need to fail the
 295		 * device
 296		 */
 297		break;
 298	default:
 299		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
 300			 __func__, ent);
 301		break;
 302	}
 303}
 304
 305static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
 306{
 307	u32 index;
 308	u32 frame_index;
 309
 310	struct scu_unsolicited_frame_header *frame_header;
 311	struct isci_phy *iphy;
 312	struct isci_remote_device *idev;
 313
 314	enum sci_status result = SCI_FAILURE;
 315
 316	frame_index = SCU_GET_FRAME_INDEX(ent);
 317
 318	frame_header = ihost->uf_control.buffers.array[frame_index].header;
 319	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
 320
 321	if (SCU_GET_FRAME_ERROR(ent)) {
 322		/*
 323		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
 324		 * /       this cause a problem? We expect the phy initialization will
 325		 * /       fail if there is an error in the frame. */
 326		sci_controller_release_frame(ihost, frame_index);
 327		return;
 328	}
 329
 330	if (frame_header->is_address_frame) {
 331		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 332		iphy = &ihost->phys[index];
 333		result = sci_phy_frame_handler(iphy, frame_index);
 334	} else {
 335
 336		index = SCU_GET_COMPLETION_INDEX(ent);
 337
 338		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
 339			/*
 340			 * This is a signature fis or a frame from a direct attached SATA
 341			 * device that has not yet been created.  In either case forwared
 342			 * the frame to the PE and let it take care of the frame data. */
 343			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 344			iphy = &ihost->phys[index];
 345			result = sci_phy_frame_handler(iphy, frame_index);
 346		} else {
 347			if (index < ihost->remote_node_entries)
 348				idev = ihost->device_table[index];
 349			else
 350				idev = NULL;
 351
 352			if (idev != NULL)
 353				result = sci_remote_device_frame_handler(idev, frame_index);
 354			else
 355				sci_controller_release_frame(ihost, frame_index);
 356		}
 357	}
 358
 359	if (result != SCI_SUCCESS) {
 360		/*
 361		 * / @todo Is there any reason to report some additional error message
 362		 * /       when we get this failure notifiction? */
 363	}
 364}
 365
 366static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
 367{
 368	struct isci_remote_device *idev;
 369	struct isci_request *ireq;
 370	struct isci_phy *iphy;
 371	u32 index;
 372
 373	index = SCU_GET_COMPLETION_INDEX(ent);
 374
 375	switch (scu_get_event_type(ent)) {
 376	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
 377		/* / @todo The driver did something wrong and we need to fix the condtion. */
 378		dev_err(&ihost->pdev->dev,
 379			"%s: SCIC Controller 0x%p received SMU command error "
 380			"0x%x\n",
 381			__func__,
 382			ihost,
 383			ent);
 384		break;
 385
 386	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
 387	case SCU_EVENT_TYPE_SMU_ERROR:
 388	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
 389		/*
 390		 * / @todo This is a hardware failure and its likely that we want to
 391		 * /       reset the controller. */
 392		dev_err(&ihost->pdev->dev,
 393			"%s: SCIC Controller 0x%p received fatal controller "
 394			"event  0x%x\n",
 395			__func__,
 396			ihost,
 397			ent);
 398		break;
 399
 400	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
 401		ireq = ihost->reqs[index];
 402		sci_io_request_event_handler(ireq, ent);
 403		break;
 404
 405	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
 406		switch (scu_get_event_specifier(ent)) {
 407		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
 408		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
 409			ireq = ihost->reqs[index];
 410			if (ireq != NULL)
 411				sci_io_request_event_handler(ireq, ent);
 412			else
 413				dev_warn(&ihost->pdev->dev,
 414					 "%s: SCIC Controller 0x%p received "
 415					 "event 0x%x for io request object "
 416					 "that doesnt exist.\n",
 417					 __func__,
 418					 ihost,
 419					 ent);
 420
 421			break;
 422
 423		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
 424			idev = ihost->device_table[index];
 425			if (idev != NULL)
 426				sci_remote_device_event_handler(idev, ent);
 427			else
 428				dev_warn(&ihost->pdev->dev,
 429					 "%s: SCIC Controller 0x%p received "
 430					 "event 0x%x for remote device object "
 431					 "that doesnt exist.\n",
 432					 __func__,
 433					 ihost,
 434					 ent);
 435
 436			break;
 437		}
 438		break;
 439
 440	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
 441	/*
 442	 * direct the broadcast change event to the phy first and then let
 443	 * the phy redirect the broadcast change to the port object */
 444	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
 445	/*
 446	 * direct error counter event to the phy object since that is where
 447	 * we get the event notification.  This is a type 4 event. */
 448	case SCU_EVENT_TYPE_OSSP_EVENT:
 449		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 450		iphy = &ihost->phys[index];
 451		sci_phy_event_handler(iphy, ent);
 452		break;
 453
 454	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
 455	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
 456	case SCU_EVENT_TYPE_RNC_OPS_MISC:
 457		if (index < ihost->remote_node_entries) {
 458			idev = ihost->device_table[index];
 459
 460			if (idev != NULL)
 461				sci_remote_device_event_handler(idev, ent);
 462		} else
 463			dev_err(&ihost->pdev->dev,
 464				"%s: SCIC Controller 0x%p received event 0x%x "
 465				"for remote device object 0x%0x that doesnt "
 466				"exist.\n",
 467				__func__,
 468				ihost,
 469				ent,
 470				index);
 471
 472		break;
 473
 474	default:
 475		dev_warn(&ihost->pdev->dev,
 476			 "%s: SCIC Controller received unknown event code %x\n",
 477			 __func__,
 478			 ent);
 479		break;
 480	}
 481}
 482
 483static void sci_controller_process_completions(struct isci_host *ihost)
 484{
 485	u32 completion_count = 0;
 486	u32 ent;
 487	u32 get_index;
 488	u32 get_cycle;
 489	u32 event_get;
 490	u32 event_cycle;
 491
 492	dev_dbg(&ihost->pdev->dev,
 493		"%s: completion queue beginning get:0x%08x\n",
 494		__func__,
 495		ihost->completion_queue_get);
 496
 497	/* Get the component parts of the completion queue */
 498	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
 499	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
 500
 501	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
 502	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
 503
 504	while (
 505		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
 506		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
 507		) {
 508		completion_count++;
 509
 510		ent = ihost->completion_queue[get_index];
 511
 512		/* increment the get pointer and check for rollover to toggle the cycle bit */
 513		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
 514			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
 515		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
 516
 517		dev_dbg(&ihost->pdev->dev,
 518			"%s: completion queue entry:0x%08x\n",
 519			__func__,
 520			ent);
 521
 522		switch (SCU_GET_COMPLETION_TYPE(ent)) {
 523		case SCU_COMPLETION_TYPE_TASK:
 524			sci_controller_task_completion(ihost, ent);
 525			break;
 526
 527		case SCU_COMPLETION_TYPE_SDMA:
 528			sci_controller_sdma_completion(ihost, ent);
 529			break;
 530
 531		case SCU_COMPLETION_TYPE_UFI:
 532			sci_controller_unsolicited_frame(ihost, ent);
 533			break;
 534
 535		case SCU_COMPLETION_TYPE_EVENT:
 536			sci_controller_event_completion(ihost, ent);
 537			break;
 538
 539		case SCU_COMPLETION_TYPE_NOTIFY: {
 540			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
 541				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
 542			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
 543
 544			sci_controller_event_completion(ihost, ent);
 545			break;
 546		}
 547		default:
 548			dev_warn(&ihost->pdev->dev,
 549				 "%s: SCIC Controller received unknown "
 550				 "completion type %x\n",
 551				 __func__,
 552				 ent);
 553			break;
 554		}
 555	}
 556
 557	/* Update the get register if we completed one or more entries */
 558	if (completion_count > 0) {
 559		ihost->completion_queue_get =
 560			SMU_CQGR_GEN_BIT(ENABLE) |
 561			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
 562			event_cycle |
 563			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
 564			get_cycle |
 565			SMU_CQGR_GEN_VAL(POINTER, get_index);
 566
 567		writel(ihost->completion_queue_get,
 568		       &ihost->smu_registers->completion_queue_get);
 569
 570	}
 571
 572	dev_dbg(&ihost->pdev->dev,
 573		"%s: completion queue ending get:0x%08x\n",
 574		__func__,
 575		ihost->completion_queue_get);
 576
 577}
 578
 579static void sci_controller_error_handler(struct isci_host *ihost)
 580{
 581	u32 interrupt_status;
 582
 583	interrupt_status =
 584		readl(&ihost->smu_registers->interrupt_status);
 585
 586	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
 587	    sci_controller_completion_queue_has_entries(ihost)) {
 588
 589		sci_controller_process_completions(ihost);
 590		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
 591	} else {
 592		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
 593			interrupt_status);
 594
 595		sci_change_state(&ihost->sm, SCIC_FAILED);
 596
 597		return;
 598	}
 599
 600	/* If we dont process any completions I am not sure that we want to do this.
 601	 * We are in the middle of a hardware fault and should probably be reset.
 602	 */
 603	writel(0, &ihost->smu_registers->interrupt_mask);
 604}
 605
 606irqreturn_t isci_intx_isr(int vec, void *data)
 607{
 608	irqreturn_t ret = IRQ_NONE;
 609	struct isci_host *ihost = data;
 610
 611	if (sci_controller_isr(ihost)) {
 612		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
 613		tasklet_schedule(&ihost->completion_tasklet);
 614		ret = IRQ_HANDLED;
 615	} else if (sci_controller_error_isr(ihost)) {
 616		spin_lock(&ihost->scic_lock);
 617		sci_controller_error_handler(ihost);
 618		spin_unlock(&ihost->scic_lock);
 619		ret = IRQ_HANDLED;
 620	}
 621
 622	return ret;
 623}
 624
 625irqreturn_t isci_error_isr(int vec, void *data)
 626{
 627	struct isci_host *ihost = data;
 628
 629	if (sci_controller_error_isr(ihost))
 630		sci_controller_error_handler(ihost);
 631
 632	return IRQ_HANDLED;
 633}
 634
 635/**
 636 * isci_host_start_complete() - This function is called by the core library,
 637 *    through the ISCI Module, to indicate controller start status.
 638 * @ihost: This parameter specifies the ISCI host object
 639 * @completion_status: This parameter specifies the completion status from the
 640 *    core library.
 641 *
 642 */
 643static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
 644{
 645	if (completion_status != SCI_SUCCESS)
 646		dev_info(&ihost->pdev->dev,
 647			"controller start timed out, continuing...\n");
 648	clear_bit(IHOST_START_PENDING, &ihost->flags);
 649	wake_up(&ihost->eventq);
 650}
 651
 652int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
 653{
 654	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
 655	struct isci_host *ihost = ha->lldd_ha;
 656
 657	if (test_bit(IHOST_START_PENDING, &ihost->flags))
 658		return 0;
 659
 660	sas_drain_work(ha);
 661
 662	return 1;
 663}
 664
 665/**
 666 * sci_controller_get_suggested_start_timeout() - This method returns the
 667 *    suggested sci_controller_start() timeout amount.  The user is free to
 668 *    use any timeout value, but this method provides the suggested minimum
 669 *    start timeout value.  The returned value is based upon empirical
 670 *    information determined as a result of interoperability testing.
 671 * @ihost: the handle to the controller object for which to return the
 672 *    suggested start timeout.
 673 *
 674 * This method returns the number of milliseconds for the suggested start
 675 * operation timeout.
 676 */
 677static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
 678{
 679	/* Validate the user supplied parameters. */
 680	if (!ihost)
 681		return 0;
 682
 683	/*
 684	 * The suggested minimum timeout value for a controller start operation:
 685	 *
 686	 *     Signature FIS Timeout
 687	 *   + Phy Start Timeout
 688	 *   + Number of Phy Spin Up Intervals
 689	 *   ---------------------------------
 690	 *   Number of milliseconds for the controller start operation.
 691	 *
 692	 * NOTE: The number of phy spin up intervals will be equivalent
 693	 *       to the number of phys divided by the number phys allowed
 694	 *       per interval - 1 (once OEM parameters are supported).
 695	 *       Currently we assume only 1 phy per interval. */
 696
 697	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
 698		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
 699		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
 700}
 701
 702static void sci_controller_enable_interrupts(struct isci_host *ihost)
 703{
 704	set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
 705	writel(0, &ihost->smu_registers->interrupt_mask);
 706}
 707
 708void sci_controller_disable_interrupts(struct isci_host *ihost)
 709{
 710	clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
 711	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
 712	readl(&ihost->smu_registers->interrupt_mask); /* flush */
 713}
 714
 715static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
 716{
 717	u32 port_task_scheduler_value;
 718
 719	port_task_scheduler_value =
 720		readl(&ihost->scu_registers->peg0.ptsg.control);
 721	port_task_scheduler_value |=
 722		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
 723		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
 724	writel(port_task_scheduler_value,
 725	       &ihost->scu_registers->peg0.ptsg.control);
 726}
 727
 728static void sci_controller_assign_task_entries(struct isci_host *ihost)
 729{
 730	u32 task_assignment;
 731
 732	/*
 733	 * Assign all the TCs to function 0
 734	 * TODO: Do we actually need to read this register to write it back?
 735	 */
 736
 737	task_assignment =
 738		readl(&ihost->smu_registers->task_context_assignment[0]);
 739
 740	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
 741		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
 742		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
 743
 744	writel(task_assignment,
 745		&ihost->smu_registers->task_context_assignment[0]);
 746
 747}
 748
 749static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
 750{
 751	u32 index;
 752	u32 completion_queue_control_value;
 753	u32 completion_queue_get_value;
 754	u32 completion_queue_put_value;
 755
 756	ihost->completion_queue_get = 0;
 757
 758	completion_queue_control_value =
 759		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
 760		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
 761
 762	writel(completion_queue_control_value,
 763	       &ihost->smu_registers->completion_queue_control);
 764
 765
 766	/* Set the completion queue get pointer and enable the queue */
 767	completion_queue_get_value = (
 768		(SMU_CQGR_GEN_VAL(POINTER, 0))
 769		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
 770		| (SMU_CQGR_GEN_BIT(ENABLE))
 771		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
 772		);
 773
 774	writel(completion_queue_get_value,
 775	       &ihost->smu_registers->completion_queue_get);
 776
 777	/* Set the completion queue put pointer */
 778	completion_queue_put_value = (
 779		(SMU_CQPR_GEN_VAL(POINTER, 0))
 780		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
 781		);
 782
 783	writel(completion_queue_put_value,
 784	       &ihost->smu_registers->completion_queue_put);
 785
 786	/* Initialize the cycle bit of the completion queue entries */
 787	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
 788		/*
 789		 * If get.cycle_bit != completion_queue.cycle_bit
 790		 * its not a valid completion queue entry
 791		 * so at system start all entries are invalid */
 792		ihost->completion_queue[index] = 0x80000000;
 793	}
 794}
 795
 796static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
 797{
 798	u32 frame_queue_control_value;
 799	u32 frame_queue_get_value;
 800	u32 frame_queue_put_value;
 801
 802	/* Write the queue size */
 803	frame_queue_control_value =
 804		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
 805
 806	writel(frame_queue_control_value,
 807	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
 808
 809	/* Setup the get pointer for the unsolicited frame queue */
 810	frame_queue_get_value = (
 811		SCU_UFQGP_GEN_VAL(POINTER, 0)
 812		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
 813		);
 814
 815	writel(frame_queue_get_value,
 816	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
 817	/* Setup the put pointer for the unsolicited frame queue */
 818	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
 819	writel(frame_queue_put_value,
 820	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
 821}
 822
 823void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
 824{
 825	if (ihost->sm.current_state_id == SCIC_STARTING) {
 826		/*
 827		 * We move into the ready state, because some of the phys/ports
 828		 * may be up and operational.
 829		 */
 830		sci_change_state(&ihost->sm, SCIC_READY);
 831
 832		isci_host_start_complete(ihost, status);
 833	}
 834}
 835
 836static bool is_phy_starting(struct isci_phy *iphy)
 837{
 838	enum sci_phy_states state;
 839
 840	state = iphy->sm.current_state_id;
 841	switch (state) {
 842	case SCI_PHY_STARTING:
 843	case SCI_PHY_SUB_INITIAL:
 844	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 845	case SCI_PHY_SUB_AWAIT_IAF_UF:
 846	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 847	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 848	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 849	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 850	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 851	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 852	case SCI_PHY_SUB_FINAL:
 853		return true;
 854	default:
 855		return false;
 856	}
 857}
 858
 859bool is_controller_start_complete(struct isci_host *ihost)
 860{
 861	int i;
 862
 863	for (i = 0; i < SCI_MAX_PHYS; i++) {
 864		struct isci_phy *iphy = &ihost->phys[i];
 865		u32 state = iphy->sm.current_state_id;
 866
 867		/* in apc mode we need to check every phy, in
 868		 * mpc mode we only need to check phys that have
 869		 * been configured into a port
 870		 */
 871		if (is_port_config_apc(ihost))
 872			/* pass */;
 873		else if (!phy_get_non_dummy_port(iphy))
 874			continue;
 875
 876		/* The controller start operation is complete iff:
 877		 * - all links have been given an opportunity to start
 878		 * - have no indication of a connected device
 879		 * - have an indication of a connected device and it has
 880		 *   finished the link training process.
 881		 */
 882		if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
 883		    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
 884		    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
 885		    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
 886			return false;
 887	}
 888
 889	return true;
 890}
 891
 892/**
 893 * sci_controller_start_next_phy - start phy
 894 * @ihost: controller
 895 *
 896 * If all the phys have been started, then attempt to transition the
 897 * controller to the READY state and inform the user
 898 * (sci_cb_controller_start_complete()).
 899 */
 900static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
 901{
 902	struct sci_oem_params *oem = &ihost->oem_parameters;
 903	struct isci_phy *iphy;
 904	enum sci_status status;
 905
 906	status = SCI_SUCCESS;
 907
 908	if (ihost->phy_startup_timer_pending)
 909		return status;
 910
 911	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
 912		if (is_controller_start_complete(ihost)) {
 913			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
 914			sci_del_timer(&ihost->phy_timer);
 915			ihost->phy_startup_timer_pending = false;
 916		}
 917	} else {
 918		iphy = &ihost->phys[ihost->next_phy_to_start];
 919
 920		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
 921			if (phy_get_non_dummy_port(iphy) == NULL) {
 922				ihost->next_phy_to_start++;
 923
 924				/* Caution recursion ahead be forwarned
 925				 *
 926				 * The PHY was never added to a PORT in MPC mode
 927				 * so start the next phy in sequence This phy
 928				 * will never go link up and will not draw power
 929				 * the OEM parameters either configured the phy
 930				 * incorrectly for the PORT or it was never
 931				 * assigned to a PORT
 932				 */
 933				return sci_controller_start_next_phy(ihost);
 934			}
 935		}
 936
 937		status = sci_phy_start(iphy);
 938
 939		if (status == SCI_SUCCESS) {
 940			sci_mod_timer(&ihost->phy_timer,
 941				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
 942			ihost->phy_startup_timer_pending = true;
 943		} else {
 944			dev_warn(&ihost->pdev->dev,
 945				 "%s: Controller stop operation failed "
 946				 "to stop phy %d because of status "
 947				 "%d.\n",
 948				 __func__,
 949				 ihost->phys[ihost->next_phy_to_start].phy_index,
 950				 status);
 951		}
 952
 953		ihost->next_phy_to_start++;
 954	}
 955
 956	return status;
 957}
 958
 959static void phy_startup_timeout(struct timer_list *t)
 960{
 961	struct sci_timer *tmr = from_timer(tmr, t, timer);
 962	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
 963	unsigned long flags;
 964	enum sci_status status;
 965
 966	spin_lock_irqsave(&ihost->scic_lock, flags);
 967
 968	if (tmr->cancel)
 969		goto done;
 970
 971	ihost->phy_startup_timer_pending = false;
 972
 973	do {
 974		status = sci_controller_start_next_phy(ihost);
 975	} while (status != SCI_SUCCESS);
 976
 977done:
 978	spin_unlock_irqrestore(&ihost->scic_lock, flags);
 979}
 980
 981static u16 isci_tci_active(struct isci_host *ihost)
 982{
 983	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
 984}
 985
 986static enum sci_status sci_controller_start(struct isci_host *ihost,
 987					     u32 timeout)
 988{
 989	enum sci_status result;
 990	u16 index;
 991
 992	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
 993		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
 994			 __func__, ihost->sm.current_state_id);
 995		return SCI_FAILURE_INVALID_STATE;
 996	}
 997
 998	/* Build the TCi free pool */
 999	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000	ihost->tci_head = 0;
1001	ihost->tci_tail = 0;
1002	for (index = 0; index < ihost->task_context_entries; index++)
1003		isci_tci_free(ihost, index);
1004
1005	/* Build the RNi free pool */
1006	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007					 ihost->remote_node_entries);
1008
1009	/*
1010	 * Before anything else lets make sure we will not be
1011	 * interrupted by the hardware.
1012	 */
1013	sci_controller_disable_interrupts(ihost);
1014
1015	/* Enable the port task scheduler */
1016	sci_controller_enable_port_task_scheduler(ihost);
1017
1018	/* Assign all the task entries to ihost physical function */
1019	sci_controller_assign_task_entries(ihost);
1020
1021	/* Now initialize the completion queue */
1022	sci_controller_initialize_completion_queue(ihost);
1023
1024	/* Initialize the unsolicited frame queue for use */
1025	sci_controller_initialize_unsolicited_frame_queue(ihost);
1026
1027	/* Start all of the ports on this controller */
1028	for (index = 0; index < ihost->logical_port_entries; index++) {
1029		struct isci_port *iport = &ihost->ports[index];
1030
1031		result = sci_port_start(iport);
1032		if (result)
1033			return result;
1034	}
1035
1036	sci_controller_start_next_phy(ihost);
1037
1038	sci_mod_timer(&ihost->timer, timeout);
1039
1040	sci_change_state(&ihost->sm, SCIC_STARTING);
1041
1042	return SCI_SUCCESS;
1043}
1044
1045void isci_host_start(struct Scsi_Host *shost)
1046{
1047	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049
1050	set_bit(IHOST_START_PENDING, &ihost->flags);
1051
1052	spin_lock_irq(&ihost->scic_lock);
1053	sci_controller_start(ihost, tmo);
1054	sci_controller_enable_interrupts(ihost);
1055	spin_unlock_irq(&ihost->scic_lock);
1056}
1057
1058static void isci_host_stop_complete(struct isci_host *ihost)
1059{
1060	sci_controller_disable_interrupts(ihost);
1061	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1062	wake_up(&ihost->eventq);
1063}
1064
1065static void sci_controller_completion_handler(struct isci_host *ihost)
1066{
1067	/* Empty out the completion queue */
1068	if (sci_controller_completion_queue_has_entries(ihost))
1069		sci_controller_process_completions(ihost);
1070
1071	/* Clear the interrupt and enable all interrupts again */
1072	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1073	/* Could we write the value of SMU_ISR_COMPLETION? */
1074	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1075	writel(0, &ihost->smu_registers->interrupt_mask);
1076}
1077
1078void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1079{
1080	if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1081	    !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1082		if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1083			/* Normal notification (task_done) */
1084			dev_dbg(&ihost->pdev->dev,
1085				"%s: Normal - ireq/task = %p/%p\n",
1086				__func__, ireq, task);
1087			task->lldd_task = NULL;
1088			task->task_done(task);
1089		} else {
1090			dev_dbg(&ihost->pdev->dev,
1091				"%s: Error - ireq/task = %p/%p\n",
1092				__func__, ireq, task);
1093			if (sas_protocol_ata(task->task_proto))
1094				task->lldd_task = NULL;
1095			sas_task_abort(task);
1096		}
1097	} else
1098		task->lldd_task = NULL;
1099
1100	if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1101		wake_up_all(&ihost->eventq);
1102
1103	if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1104		isci_free_tag(ihost, ireq->io_tag);
1105}
1106/**
1107 * isci_host_completion_routine() - This function is the delayed service
1108 *    routine that calls the sci core library's completion handler. It's
1109 *    scheduled as a tasklet from the interrupt service routine when interrupts
1110 *    in use, or set as the timeout function in polled mode.
1111 * @data: This parameter specifies the ISCI host object
1112 *
1113 */
1114void isci_host_completion_routine(unsigned long data)
1115{
1116	struct isci_host *ihost = (struct isci_host *)data;
1117	u16 active;
1118
1119	spin_lock_irq(&ihost->scic_lock);
1120	sci_controller_completion_handler(ihost);
1121	spin_unlock_irq(&ihost->scic_lock);
1122
1123	/*
1124	 * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1125	 * issued for hardware issue workaround
1126	 */
1127	active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1128
1129	/*
1130	 * the coalesence timeout doubles at each encoding step, so
1131	 * update it based on the ilog2 value of the outstanding requests
1132	 */
1133	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1134	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1135	       &ihost->smu_registers->interrupt_coalesce_control);
1136}
1137
1138/**
1139 * sci_controller_stop() - This method will stop an individual controller
1140 *    object.This method will invoke the associated user callback upon
1141 *    completion.  The completion callback is called when the following
1142 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1143 *    controller has been quiesced. This method will ensure that all IO
1144 *    requests are quiesced, phys are stopped, and all additional operation by
1145 *    the hardware is halted.
1146 * @ihost: the handle to the controller object to stop.
1147 * @timeout: This parameter specifies the number of milliseconds in which the
1148 *    stop operation should complete.
1149 *
1150 * The controller must be in the STARTED or STOPPED state. Indicate if the
1151 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1152 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1153 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1154 * controller is not either in the STARTED or STOPPED states.
1155 */
1156static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1157{
1158	if (ihost->sm.current_state_id != SCIC_READY) {
1159		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1160			 __func__, ihost->sm.current_state_id);
1161		return SCI_FAILURE_INVALID_STATE;
1162	}
1163
1164	sci_mod_timer(&ihost->timer, timeout);
1165	sci_change_state(&ihost->sm, SCIC_STOPPING);
1166	return SCI_SUCCESS;
1167}
1168
1169/**
1170 * sci_controller_reset() - This method will reset the supplied core
1171 *    controller regardless of the state of said controller.  This operation is
1172 *    considered destructive.  In other words, all current operations are wiped
1173 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1174 *    requests are not aborted or completed at the actual remote device.
1175 * @ihost: the handle to the controller object to reset.
1176 *
1177 * Indicate if the controller reset method succeeded or failed in some way.
1178 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1179 * the controller reset operation is unable to complete.
1180 */
1181static enum sci_status sci_controller_reset(struct isci_host *ihost)
1182{
1183	switch (ihost->sm.current_state_id) {
1184	case SCIC_RESET:
1185	case SCIC_READY:
1186	case SCIC_STOPPING:
1187	case SCIC_FAILED:
1188		/*
1189		 * The reset operation is not a graceful cleanup, just
1190		 * perform the state transition.
1191		 */
1192		sci_change_state(&ihost->sm, SCIC_RESETTING);
1193		return SCI_SUCCESS;
1194	default:
1195		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1196			 __func__, ihost->sm.current_state_id);
1197		return SCI_FAILURE_INVALID_STATE;
1198	}
1199}
1200
1201static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1202{
1203	u32 index;
1204	enum sci_status status;
1205	enum sci_status phy_status;
1206
1207	status = SCI_SUCCESS;
1208
1209	for (index = 0; index < SCI_MAX_PHYS; index++) {
1210		phy_status = sci_phy_stop(&ihost->phys[index]);
1211
1212		if (phy_status != SCI_SUCCESS &&
1213		    phy_status != SCI_FAILURE_INVALID_STATE) {
1214			status = SCI_FAILURE;
1215
1216			dev_warn(&ihost->pdev->dev,
1217				 "%s: Controller stop operation failed to stop "
1218				 "phy %d because of status %d.\n",
1219				 __func__,
1220				 ihost->phys[index].phy_index, phy_status);
1221		}
1222	}
1223
1224	return status;
1225}
1226
1227
1228/**
1229 * isci_host_deinit - shutdown frame reception and dma
1230 * @ihost: host to take down
1231 *
1232 * This is called in either the driver shutdown or the suspend path.  In
1233 * the shutdown case libsas went through port teardown and normal device
1234 * removal (i.e. physical links stayed up to service scsi_device removal
1235 * commands).  In the suspend case we disable the hardware without
1236 * notifying libsas of the link down events since we want libsas to
1237 * remember the domain across the suspend/resume cycle
1238 */
1239void isci_host_deinit(struct isci_host *ihost)
1240{
1241	int i;
1242
1243	/* disable output data selects */
1244	for (i = 0; i < isci_gpio_count(ihost); i++)
1245		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1246
1247	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1248
1249	spin_lock_irq(&ihost->scic_lock);
1250	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1251	spin_unlock_irq(&ihost->scic_lock);
1252
1253	wait_for_stop(ihost);
1254
1255	/* phy stop is after controller stop to allow port and device to
1256	 * go idle before shutting down the phys, but the expectation is
1257	 * that i/o has been shut off well before we reach this
1258	 * function.
1259	 */
1260	sci_controller_stop_phys(ihost);
1261
1262	/* disable sgpio: where the above wait should give time for the
1263	 * enclosure to sample the gpios going inactive
1264	 */
1265	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1266
1267	spin_lock_irq(&ihost->scic_lock);
1268	sci_controller_reset(ihost);
1269	spin_unlock_irq(&ihost->scic_lock);
1270
1271	/* Cancel any/all outstanding port timers */
1272	for (i = 0; i < ihost->logical_port_entries; i++) {
1273		struct isci_port *iport = &ihost->ports[i];
1274		del_timer_sync(&iport->timer.timer);
1275	}
1276
1277	/* Cancel any/all outstanding phy timers */
1278	for (i = 0; i < SCI_MAX_PHYS; i++) {
1279		struct isci_phy *iphy = &ihost->phys[i];
1280		del_timer_sync(&iphy->sata_timer.timer);
1281	}
1282
1283	del_timer_sync(&ihost->port_agent.timer.timer);
1284
1285	del_timer_sync(&ihost->power_control.timer.timer);
1286
1287	del_timer_sync(&ihost->timer.timer);
1288
1289	del_timer_sync(&ihost->phy_timer.timer);
1290}
1291
1292static void __iomem *scu_base(struct isci_host *isci_host)
1293{
1294	struct pci_dev *pdev = isci_host->pdev;
1295	int id = isci_host->id;
1296
1297	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1298}
1299
1300static void __iomem *smu_base(struct isci_host *isci_host)
1301{
1302	struct pci_dev *pdev = isci_host->pdev;
1303	int id = isci_host->id;
1304
1305	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1306}
1307
1308static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1309{
1310	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1311
1312	sci_change_state(&ihost->sm, SCIC_RESET);
1313}
1314
1315static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1316{
1317	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1318
1319	sci_del_timer(&ihost->timer);
1320}
1321
1322#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1323#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1324#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1325#define INTERRUPT_COALESCE_NUMBER_MAX                        256
1326#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1327#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1328
1329/**
1330 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1331 *    configure the interrupt coalescence.
1332 * @ihost: This parameter represents the handle to the controller object
1333 *    for which its interrupt coalesce register is overridden.
1334 * @coalesce_number: Used to control the number of entries in the Completion
1335 *    Queue before an interrupt is generated. If the number of entries exceed
1336 *    this number, an interrupt will be generated. The valid range of the input
1337 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1338 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1339 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1340 *    interrupt coalescing timeout.
1341 *
1342 * Indicate if the user successfully set the interrupt coalesce parameters.
1343 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1344 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1345 */
1346static enum sci_status
1347sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1348					 u32 coalesce_number,
1349					 u32 coalesce_timeout)
1350{
1351	u8 timeout_encode = 0;
1352	u32 min = 0;
1353	u32 max = 0;
1354
1355	/* Check if the input parameters fall in the range. */
1356	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1357		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1358
1359	/*
1360	 *  Defined encoding for interrupt coalescing timeout:
1361	 *              Value   Min      Max     Units
1362	 *              -----   ---      ---     -----
1363	 *              0       -        -       Disabled
1364	 *              1       13.3     20.0    ns
1365	 *              2       26.7     40.0
1366	 *              3       53.3     80.0
1367	 *              4       106.7    160.0
1368	 *              5       213.3    320.0
1369	 *              6       426.7    640.0
1370	 *              7       853.3    1280.0
1371	 *              8       1.7      2.6     us
1372	 *              9       3.4      5.1
1373	 *              10      6.8      10.2
1374	 *              11      13.7     20.5
1375	 *              12      27.3     41.0
1376	 *              13      54.6     81.9
1377	 *              14      109.2    163.8
1378	 *              15      218.5    327.7
1379	 *              16      436.9    655.4
1380	 *              17      873.8    1310.7
1381	 *              18      1.7      2.6     ms
1382	 *              19      3.5      5.2
1383	 *              20      7.0      10.5
1384	 *              21      14.0     21.0
1385	 *              22      28.0     41.9
1386	 *              23      55.9     83.9
1387	 *              24      111.8    167.8
1388	 *              25      223.7    335.5
1389	 *              26      447.4    671.1
1390	 *              27      894.8    1342.2
1391	 *              28      1.8      2.7     s
1392	 *              Others Undefined */
1393
1394	/*
1395	 * Use the table above to decide the encode of interrupt coalescing timeout
1396	 * value for register writing. */
1397	if (coalesce_timeout == 0)
1398		timeout_encode = 0;
1399	else{
1400		/* make the timeout value in unit of (10 ns). */
1401		coalesce_timeout = coalesce_timeout * 100;
1402		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1403		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1404
1405		/* get the encode of timeout for register writing. */
1406		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1407		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1408		      timeout_encode++) {
1409			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1410				break;
1411			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1412				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1413				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1414					break;
1415				else{
1416					timeout_encode++;
1417					break;
1418				}
1419			} else {
1420				max = max * 2;
1421				min = min * 2;
1422			}
1423		}
1424
1425		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1426			/* the value is out of range. */
1427			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1428	}
1429
1430	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1431	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1432	       &ihost->smu_registers->interrupt_coalesce_control);
1433
1434
1435	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1436	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1437
1438	return SCI_SUCCESS;
1439}
1440
1441
1442static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1443{
1444	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1445	u32 val;
1446
1447	/* enable clock gating for power control of the scu unit */
1448	val = readl(&ihost->smu_registers->clock_gating_control);
1449	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1450		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1451		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1452	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1453	writel(val, &ihost->smu_registers->clock_gating_control);
1454
1455	/* set the default interrupt coalescence number and timeout value. */
1456	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1457}
1458
1459static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1460{
1461	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1462
1463	/* disable interrupt coalescence. */
1464	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1465}
1466
1467static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1468{
1469	u32 index;
1470	enum sci_status port_status;
1471	enum sci_status status = SCI_SUCCESS;
1472
1473	for (index = 0; index < ihost->logical_port_entries; index++) {
1474		struct isci_port *iport = &ihost->ports[index];
1475
1476		port_status = sci_port_stop(iport);
1477
1478		if ((port_status != SCI_SUCCESS) &&
1479		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1480			status = SCI_FAILURE;
1481
1482			dev_warn(&ihost->pdev->dev,
1483				 "%s: Controller stop operation failed to "
1484				 "stop port %d because of status %d.\n",
1485				 __func__,
1486				 iport->logical_port_index,
1487				 port_status);
1488		}
1489	}
1490
1491	return status;
1492}
1493
1494static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1495{
1496	u32 index;
1497	enum sci_status status;
1498	enum sci_status device_status;
1499
1500	status = SCI_SUCCESS;
1501
1502	for (index = 0; index < ihost->remote_node_entries; index++) {
1503		if (ihost->device_table[index] != NULL) {
1504			/* / @todo What timeout value do we want to provide to this request? */
1505			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1506
1507			if ((device_status != SCI_SUCCESS) &&
1508			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1509				dev_warn(&ihost->pdev->dev,
1510					 "%s: Controller stop operation failed "
1511					 "to stop device 0x%p because of "
1512					 "status %d.\n",
1513					 __func__,
1514					 ihost->device_table[index], device_status);
1515			}
1516		}
1517	}
1518
1519	return status;
1520}
1521
1522static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1523{
1524	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1525
1526	sci_controller_stop_devices(ihost);
1527	sci_controller_stop_ports(ihost);
1528
1529	if (!sci_controller_has_remote_devices_stopping(ihost))
1530		isci_host_stop_complete(ihost);
1531}
1532
1533static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1534{
1535	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1536
1537	sci_del_timer(&ihost->timer);
1538}
1539
1540static void sci_controller_reset_hardware(struct isci_host *ihost)
1541{
1542	/* Disable interrupts so we dont take any spurious interrupts */
1543	sci_controller_disable_interrupts(ihost);
1544
1545	/* Reset the SCU */
1546	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1547
1548	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1549	udelay(1000);
1550
1551	/* The write to the CQGR clears the CQP */
1552	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1553
1554	/* The write to the UFQGP clears the UFQPR */
1555	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1556
1557	/* clear all interrupts */
1558	writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1559}
1560
1561static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1562{
1563	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1564
1565	sci_controller_reset_hardware(ihost);
1566	sci_change_state(&ihost->sm, SCIC_RESET);
1567}
1568
1569static const struct sci_base_state sci_controller_state_table[] = {
1570	[SCIC_INITIAL] = {
1571		.enter_state = sci_controller_initial_state_enter,
1572	},
1573	[SCIC_RESET] = {},
1574	[SCIC_INITIALIZING] = {},
1575	[SCIC_INITIALIZED] = {},
1576	[SCIC_STARTING] = {
1577		.exit_state  = sci_controller_starting_state_exit,
1578	},
1579	[SCIC_READY] = {
1580		.enter_state = sci_controller_ready_state_enter,
1581		.exit_state  = sci_controller_ready_state_exit,
1582	},
1583	[SCIC_RESETTING] = {
1584		.enter_state = sci_controller_resetting_state_enter,
1585	},
1586	[SCIC_STOPPING] = {
1587		.enter_state = sci_controller_stopping_state_enter,
1588		.exit_state = sci_controller_stopping_state_exit,
1589	},
1590	[SCIC_FAILED] = {}
1591};
1592
1593static void controller_timeout(struct timer_list *t)
1594{
1595	struct sci_timer *tmr = from_timer(tmr, t, timer);
1596	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1597	struct sci_base_state_machine *sm = &ihost->sm;
1598	unsigned long flags;
1599
1600	spin_lock_irqsave(&ihost->scic_lock, flags);
1601
1602	if (tmr->cancel)
1603		goto done;
1604
1605	if (sm->current_state_id == SCIC_STARTING)
1606		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1607	else if (sm->current_state_id == SCIC_STOPPING) {
1608		sci_change_state(sm, SCIC_FAILED);
1609		isci_host_stop_complete(ihost);
1610	} else	/* / @todo Now what do we want to do in this case? */
1611		dev_err(&ihost->pdev->dev,
1612			"%s: Controller timer fired when controller was not "
1613			"in a state being timed.\n",
1614			__func__);
1615
1616done:
1617	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1618}
1619
1620static enum sci_status sci_controller_construct(struct isci_host *ihost,
1621						void __iomem *scu_base,
1622						void __iomem *smu_base)
1623{
1624	u8 i;
1625
1626	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1627
1628	ihost->scu_registers = scu_base;
1629	ihost->smu_registers = smu_base;
1630
1631	sci_port_configuration_agent_construct(&ihost->port_agent);
1632
1633	/* Construct the ports for this controller */
1634	for (i = 0; i < SCI_MAX_PORTS; i++)
1635		sci_port_construct(&ihost->ports[i], i, ihost);
1636	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1637
1638	/* Construct the phys for this controller */
1639	for (i = 0; i < SCI_MAX_PHYS; i++) {
1640		/* Add all the PHYs to the dummy port */
1641		sci_phy_construct(&ihost->phys[i],
1642				  &ihost->ports[SCI_MAX_PORTS], i);
1643	}
1644
1645	ihost->invalid_phy_mask = 0;
1646
1647	sci_init_timer(&ihost->timer, controller_timeout);
1648
1649	return sci_controller_reset(ihost);
1650}
1651
1652int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1653{
1654	int i;
1655
1656	for (i = 0; i < SCI_MAX_PORTS; i++)
1657		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1658			return -EINVAL;
1659
1660	for (i = 0; i < SCI_MAX_PHYS; i++)
1661		if (oem->phys[i].sas_address.high == 0 &&
1662		    oem->phys[i].sas_address.low == 0)
1663			return -EINVAL;
1664
1665	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1666		for (i = 0; i < SCI_MAX_PHYS; i++)
1667			if (oem->ports[i].phy_mask != 0)
1668				return -EINVAL;
1669	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1670		u8 phy_mask = 0;
1671
1672		for (i = 0; i < SCI_MAX_PHYS; i++)
1673			phy_mask |= oem->ports[i].phy_mask;
1674
1675		if (phy_mask == 0)
1676			return -EINVAL;
1677	} else
1678		return -EINVAL;
1679
1680	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1681	    oem->controller.max_concurr_spin_up < 1)
1682		return -EINVAL;
1683
1684	if (oem->controller.do_enable_ssc) {
1685		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1686			return -EINVAL;
1687
1688		if (version >= ISCI_ROM_VER_1_1) {
1689			u8 test = oem->controller.ssc_sata_tx_spread_level;
1690
1691			switch (test) {
1692			case 0:
1693			case 2:
1694			case 3:
1695			case 6:
1696			case 7:
1697				break;
1698			default:
1699				return -EINVAL;
1700			}
1701
1702			test = oem->controller.ssc_sas_tx_spread_level;
1703			if (oem->controller.ssc_sas_tx_type == 0) {
1704				switch (test) {
1705				case 0:
1706				case 2:
1707				case 3:
1708					break;
1709				default:
1710					return -EINVAL;
1711				}
1712			} else if (oem->controller.ssc_sas_tx_type == 1) {
1713				switch (test) {
1714				case 0:
1715				case 3:
1716				case 6:
1717					break;
1718				default:
1719					return -EINVAL;
1720				}
1721			}
1722		}
1723	}
1724
1725	return 0;
1726}
1727
1728static u8 max_spin_up(struct isci_host *ihost)
1729{
1730	if (ihost->user_parameters.max_concurr_spinup)
1731		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1732			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1733	else
1734		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1735			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1736}
1737
1738static void power_control_timeout(struct timer_list *t)
1739{
1740	struct sci_timer *tmr = from_timer(tmr, t, timer);
1741	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1742	struct isci_phy *iphy;
1743	unsigned long flags;
1744	u8 i;
1745
1746	spin_lock_irqsave(&ihost->scic_lock, flags);
1747
1748	if (tmr->cancel)
1749		goto done;
1750
1751	ihost->power_control.phys_granted_power = 0;
1752
1753	if (ihost->power_control.phys_waiting == 0) {
1754		ihost->power_control.timer_started = false;
1755		goto done;
1756	}
1757
1758	for (i = 0; i < SCI_MAX_PHYS; i++) {
1759
1760		if (ihost->power_control.phys_waiting == 0)
1761			break;
1762
1763		iphy = ihost->power_control.requesters[i];
1764		if (iphy == NULL)
1765			continue;
1766
1767		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1768			break;
1769
1770		ihost->power_control.requesters[i] = NULL;
1771		ihost->power_control.phys_waiting--;
1772		ihost->power_control.phys_granted_power++;
1773		sci_phy_consume_power_handler(iphy);
1774
1775		if (iphy->protocol == SAS_PROTOCOL_SSP) {
1776			u8 j;
1777
1778			for (j = 0; j < SCI_MAX_PHYS; j++) {
1779				struct isci_phy *requester = ihost->power_control.requesters[j];
1780
1781				/*
1782				 * Search the power_control queue to see if there are other phys
1783				 * attached to the same remote device. If found, take all of
1784				 * them out of await_sas_power state.
1785				 */
1786				if (requester != NULL && requester != iphy) {
1787					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1788							  iphy->frame_rcvd.iaf.sas_addr,
1789							  sizeof(requester->frame_rcvd.iaf.sas_addr));
1790
1791					if (other == 0) {
1792						ihost->power_control.requesters[j] = NULL;
1793						ihost->power_control.phys_waiting--;
1794						sci_phy_consume_power_handler(requester);
1795					}
1796				}
1797			}
1798		}
1799	}
1800
1801	/*
1802	 * It doesn't matter if the power list is empty, we need to start the
1803	 * timer in case another phy becomes ready.
1804	 */
1805	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1806	ihost->power_control.timer_started = true;
1807
1808done:
1809	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1810}
1811
1812void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1813					       struct isci_phy *iphy)
1814{
1815	BUG_ON(iphy == NULL);
1816
1817	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1818		ihost->power_control.phys_granted_power++;
1819		sci_phy_consume_power_handler(iphy);
1820
1821		/*
1822		 * stop and start the power_control timer. When the timer fires, the
1823		 * no_of_phys_granted_power will be set to 0
1824		 */
1825		if (ihost->power_control.timer_started)
1826			sci_del_timer(&ihost->power_control.timer);
1827
1828		sci_mod_timer(&ihost->power_control.timer,
1829				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1830		ihost->power_control.timer_started = true;
1831
1832	} else {
1833		/*
1834		 * There are phys, attached to the same sas address as this phy, are
1835		 * already in READY state, this phy don't need wait.
1836		 */
1837		u8 i;
1838		struct isci_phy *current_phy;
1839
1840		for (i = 0; i < SCI_MAX_PHYS; i++) {
1841			u8 other;
1842			current_phy = &ihost->phys[i];
1843
1844			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1845				       iphy->frame_rcvd.iaf.sas_addr,
1846				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1847
1848			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1849			    current_phy->protocol == SAS_PROTOCOL_SSP &&
1850			    other == 0) {
1851				sci_phy_consume_power_handler(iphy);
1852				break;
1853			}
1854		}
1855
1856		if (i == SCI_MAX_PHYS) {
1857			/* Add the phy in the waiting list */
1858			ihost->power_control.requesters[iphy->phy_index] = iphy;
1859			ihost->power_control.phys_waiting++;
1860		}
1861	}
1862}
1863
1864void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1865					       struct isci_phy *iphy)
1866{
1867	BUG_ON(iphy == NULL);
1868
1869	if (ihost->power_control.requesters[iphy->phy_index])
1870		ihost->power_control.phys_waiting--;
1871
1872	ihost->power_control.requesters[iphy->phy_index] = NULL;
1873}
1874
1875static int is_long_cable(int phy, unsigned char selection_byte)
1876{
1877	return !!(selection_byte & (1 << phy));
1878}
1879
1880static int is_medium_cable(int phy, unsigned char selection_byte)
1881{
1882	return !!(selection_byte & (1 << (phy + 4)));
1883}
1884
1885static enum cable_selections decode_selection_byte(
1886	int phy,
1887	unsigned char selection_byte)
1888{
1889	return ((selection_byte & (1 << phy)) ? 1 : 0)
1890		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1891}
1892
1893static unsigned char *to_cable_select(struct isci_host *ihost)
1894{
1895	if (is_cable_select_overridden())
1896		return ((unsigned char *)&cable_selection_override)
1897			+ ihost->id;
1898	else
1899		return &ihost->oem_parameters.controller.cable_selection_mask;
1900}
1901
1902enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1903{
1904	return decode_selection_byte(phy, *to_cable_select(ihost));
1905}
1906
1907char *lookup_cable_names(enum cable_selections selection)
1908{
1909	static char *cable_names[] = {
1910		[short_cable]     = "short",
1911		[long_cable]      = "long",
1912		[medium_cable]    = "medium",
1913		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1914	};
1915	return (selection <= undefined_cable) ? cable_names[selection]
1916					      : cable_names[undefined_cable];
1917}
1918
1919#define AFE_REGISTER_WRITE_DELAY 10
1920
1921static void sci_controller_afe_initialization(struct isci_host *ihost)
1922{
1923	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1924	const struct sci_oem_params *oem = &ihost->oem_parameters;
1925	struct pci_dev *pdev = ihost->pdev;
1926	u32 afe_status;
1927	u32 phy_id;
1928	unsigned char cable_selection_mask = *to_cable_select(ihost);
1929
1930	/* Clear DFX Status registers */
1931	writel(0x0081000f, &afe->afe_dfx_master_control0);
1932	udelay(AFE_REGISTER_WRITE_DELAY);
1933
1934	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1935		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1936		 * Timer, PM Stagger Timer
1937		 */
1938		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1939		udelay(AFE_REGISTER_WRITE_DELAY);
1940	}
1941
1942	/* Configure bias currents to normal */
1943	if (is_a2(pdev))
1944		writel(0x00005A00, &afe->afe_bias_control);
1945	else if (is_b0(pdev) || is_c0(pdev))
1946		writel(0x00005F00, &afe->afe_bias_control);
1947	else if (is_c1(pdev))
1948		writel(0x00005500, &afe->afe_bias_control);
1949
1950	udelay(AFE_REGISTER_WRITE_DELAY);
1951
1952	/* Enable PLL */
1953	if (is_a2(pdev))
1954		writel(0x80040908, &afe->afe_pll_control0);
1955	else if (is_b0(pdev) || is_c0(pdev))
1956		writel(0x80040A08, &afe->afe_pll_control0);
1957	else if (is_c1(pdev)) {
1958		writel(0x80000B08, &afe->afe_pll_control0);
1959		udelay(AFE_REGISTER_WRITE_DELAY);
1960		writel(0x00000B08, &afe->afe_pll_control0);
1961		udelay(AFE_REGISTER_WRITE_DELAY);
1962		writel(0x80000B08, &afe->afe_pll_control0);
1963	}
1964
1965	udelay(AFE_REGISTER_WRITE_DELAY);
1966
1967	/* Wait for the PLL to lock */
1968	do {
1969		afe_status = readl(&afe->afe_common_block_status);
1970		udelay(AFE_REGISTER_WRITE_DELAY);
1971	} while ((afe_status & 0x00001000) == 0);
1972
1973	if (is_a2(pdev)) {
1974		/* Shorten SAS SNW lock time (RxLock timer value from 76
1975		 * us to 50 us)
1976		 */
1977		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1978		udelay(AFE_REGISTER_WRITE_DELAY);
1979	}
1980
1981	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1982		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1983		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1984		int cable_length_long =
1985			is_long_cable(phy_id, cable_selection_mask);
1986		int cable_length_medium =
1987			is_medium_cable(phy_id, cable_selection_mask);
1988
1989		if (is_a2(pdev)) {
1990			/* All defaults, except the Receive Word
1991			 * Alignament/Comma Detect Enable....(0xe800)
1992			 */
1993			writel(0x00004512, &xcvr->afe_xcvr_control0);
1994			udelay(AFE_REGISTER_WRITE_DELAY);
1995
1996			writel(0x0050100F, &xcvr->afe_xcvr_control1);
1997			udelay(AFE_REGISTER_WRITE_DELAY);
1998		} else if (is_b0(pdev)) {
1999			/* Configure transmitter SSC parameters */
2000			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2001			udelay(AFE_REGISTER_WRITE_DELAY);
2002		} else if (is_c0(pdev)) {
2003			/* Configure transmitter SSC parameters */
2004			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2005			udelay(AFE_REGISTER_WRITE_DELAY);
2006
2007			/* All defaults, except the Receive Word
2008			 * Alignament/Comma Detect Enable....(0xe800)
2009			 */
2010			writel(0x00014500, &xcvr->afe_xcvr_control0);
2011			udelay(AFE_REGISTER_WRITE_DELAY);
2012		} else if (is_c1(pdev)) {
2013			/* Configure transmitter SSC parameters */
2014			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2015			udelay(AFE_REGISTER_WRITE_DELAY);
2016
2017			/* All defaults, except the Receive Word
2018			 * Alignament/Comma Detect Enable....(0xe800)
2019			 */
2020			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2021			udelay(AFE_REGISTER_WRITE_DELAY);
2022		}
2023
2024		/* Power up TX and RX out from power down (PWRDNTX and
2025		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2026		 */
2027		if (is_a2(pdev))
2028			writel(0x000003F0, &xcvr->afe_channel_control);
2029		else if (is_b0(pdev)) {
2030			writel(0x000003D7, &xcvr->afe_channel_control);
2031			udelay(AFE_REGISTER_WRITE_DELAY);
2032
2033			writel(0x000003D4, &xcvr->afe_channel_control);
2034		} else if (is_c0(pdev)) {
2035			writel(0x000001E7, &xcvr->afe_channel_control);
2036			udelay(AFE_REGISTER_WRITE_DELAY);
2037
2038			writel(0x000001E4, &xcvr->afe_channel_control);
2039		} else if (is_c1(pdev)) {
2040			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2041			       &xcvr->afe_channel_control);
2042			udelay(AFE_REGISTER_WRITE_DELAY);
2043
2044			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2045			       &xcvr->afe_channel_control);
2046		}
2047		udelay(AFE_REGISTER_WRITE_DELAY);
2048
2049		if (is_a2(pdev)) {
2050			/* Enable TX equalization (0xe824) */
2051			writel(0x00040000, &xcvr->afe_tx_control);
2052			udelay(AFE_REGISTER_WRITE_DELAY);
2053		}
2054
2055		if (is_a2(pdev) || is_b0(pdev))
2056			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2057			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2058			 * Enabled) ....(0xe800)
2059			 */
2060			writel(0x00004100, &xcvr->afe_xcvr_control0);
2061		else if (is_c0(pdev))
2062			writel(0x00014100, &xcvr->afe_xcvr_control0);
2063		else if (is_c1(pdev))
2064			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2065		udelay(AFE_REGISTER_WRITE_DELAY);
2066
2067		/* Leave DFE/FFE on */
2068		if (is_a2(pdev))
2069			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2070		else if (is_b0(pdev)) {
2071			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072			udelay(AFE_REGISTER_WRITE_DELAY);
2073			/* Enable TX equalization (0xe824) */
2074			writel(0x00040000, &xcvr->afe_tx_control);
2075		} else if (is_c0(pdev)) {
2076			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2077			udelay(AFE_REGISTER_WRITE_DELAY);
2078
2079			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2080			udelay(AFE_REGISTER_WRITE_DELAY);
2081
2082			/* Enable TX equalization (0xe824) */
2083			writel(0x00040000, &xcvr->afe_tx_control);
2084		} else if (is_c1(pdev)) {
2085			writel(cable_length_long ? 0x01500C0C :
2086			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
2087			       &xcvr->afe_xcvr_control1);
2088			udelay(AFE_REGISTER_WRITE_DELAY);
2089
2090			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2091			udelay(AFE_REGISTER_WRITE_DELAY);
2092
2093			writel(cable_length_long ? 0x33091C1F :
2094			       cable_length_medium ? 0x3315181F : 0x2B17161F,
2095			       &xcvr->afe_rx_ssc_control0);
2096			udelay(AFE_REGISTER_WRITE_DELAY);
2097
2098			/* Enable TX equalization (0xe824) */
2099			writel(0x00040000, &xcvr->afe_tx_control);
2100		}
2101
2102		udelay(AFE_REGISTER_WRITE_DELAY);
2103
2104		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2105		udelay(AFE_REGISTER_WRITE_DELAY);
2106
2107		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2108		udelay(AFE_REGISTER_WRITE_DELAY);
2109
2110		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2111		udelay(AFE_REGISTER_WRITE_DELAY);
2112
2113		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2114		udelay(AFE_REGISTER_WRITE_DELAY);
2115	}
2116
2117	/* Transfer control to the PEs */
2118	writel(0x00010f00, &afe->afe_dfx_master_control0);
2119	udelay(AFE_REGISTER_WRITE_DELAY);
2120}
2121
2122static void sci_controller_initialize_power_control(struct isci_host *ihost)
2123{
2124	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2125
2126	memset(ihost->power_control.requesters, 0,
2127	       sizeof(ihost->power_control.requesters));
2128
2129	ihost->power_control.phys_waiting = 0;
2130	ihost->power_control.phys_granted_power = 0;
2131}
2132
2133static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2134{
2135	struct sci_base_state_machine *sm = &ihost->sm;
2136	enum sci_status result = SCI_FAILURE;
2137	unsigned long i, state, val;
2138
2139	if (ihost->sm.current_state_id != SCIC_RESET) {
2140		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2141			 __func__, ihost->sm.current_state_id);
2142		return SCI_FAILURE_INVALID_STATE;
2143	}
2144
2145	sci_change_state(sm, SCIC_INITIALIZING);
2146
2147	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2148
2149	ihost->next_phy_to_start = 0;
2150	ihost->phy_startup_timer_pending = false;
2151
2152	sci_controller_initialize_power_control(ihost);
2153
2154	/*
2155	 * There is nothing to do here for B0 since we do not have to
2156	 * program the AFE registers.
2157	 * / @todo The AFE settings are supposed to be correct for the B0 but
2158	 * /       presently they seem to be wrong. */
2159	sci_controller_afe_initialization(ihost);
2160
2161
2162	/* Take the hardware out of reset */
2163	writel(0, &ihost->smu_registers->soft_reset_control);
2164
2165	/*
2166	 * / @todo Provide meaningfull error code for hardware failure
2167	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2168	for (i = 100; i >= 1; i--) {
2169		u32 status;
2170
2171		/* Loop until the hardware reports success */
2172		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2173		status = readl(&ihost->smu_registers->control_status);
2174
2175		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2176			break;
2177	}
2178	if (i == 0)
2179		goto out;
2180
2181	/*
2182	 * Determine what are the actaul device capacities that the
2183	 * hardware will support */
2184	val = readl(&ihost->smu_registers->device_context_capacity);
2185
2186	/* Record the smaller of the two capacity values */
2187	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2188	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2189	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2190
2191	/*
2192	 * Make all PEs that are unassigned match up with the
2193	 * logical ports
2194	 */
2195	for (i = 0; i < ihost->logical_port_entries; i++) {
2196		struct scu_port_task_scheduler_group_registers __iomem
2197			*ptsg = &ihost->scu_registers->peg0.ptsg;
2198
2199		writel(i, &ptsg->protocol_engine[i]);
2200	}
2201
2202	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2203	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2204	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2205	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2206
2207	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2208	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2209	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2210
2211	/*
2212	 * Initialize the PHYs before the PORTs because the PHY registers
2213	 * are accessed during the port initialization.
2214	 */
2215	for (i = 0; i < SCI_MAX_PHYS; i++) {
2216		result = sci_phy_initialize(&ihost->phys[i],
2217					    &ihost->scu_registers->peg0.pe[i].tl,
2218					    &ihost->scu_registers->peg0.pe[i].ll);
2219		if (result != SCI_SUCCESS)
2220			goto out;
2221	}
2222
2223	for (i = 0; i < ihost->logical_port_entries; i++) {
2224		struct isci_port *iport = &ihost->ports[i];
2225
2226		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2227		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2228		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2229	}
2230
2231	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2232
2233 out:
2234	/* Advance the controller state machine */
2235	if (result == SCI_SUCCESS)
2236		state = SCIC_INITIALIZED;
2237	else
2238		state = SCIC_FAILED;
2239	sci_change_state(sm, state);
2240
2241	return result;
2242}
2243
2244static int sci_controller_dma_alloc(struct isci_host *ihost)
2245{
2246	struct device *dev = &ihost->pdev->dev;
2247	size_t size;
2248	int i;
2249
2250	/* detect re-initialization */
2251	if (ihost->completion_queue)
2252		return 0;
2253
2254	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2255	ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2256						      GFP_KERNEL);
2257	if (!ihost->completion_queue)
2258		return -ENOMEM;
2259
2260	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2261	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2262							       GFP_KERNEL);
2263
2264	if (!ihost->remote_node_context_table)
2265		return -ENOMEM;
2266
2267	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2268	ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2269							GFP_KERNEL);
2270	if (!ihost->task_context_table)
2271		return -ENOMEM;
2272
2273	size = SCI_UFI_TOTAL_SIZE;
2274	ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2275	if (!ihost->ufi_buf)
2276		return -ENOMEM;
2277
2278	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2279		struct isci_request *ireq;
2280		dma_addr_t dma;
2281
2282		ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2283		if (!ireq)
2284			return -ENOMEM;
2285
2286		ireq->tc = &ihost->task_context_table[i];
2287		ireq->owning_controller = ihost;
2288		ireq->request_daddr = dma;
2289		ireq->isci_host = ihost;
2290		ihost->reqs[i] = ireq;
2291	}
2292
2293	return 0;
2294}
2295
2296static int sci_controller_mem_init(struct isci_host *ihost)
2297{
2298	int err = sci_controller_dma_alloc(ihost);
2299
2300	if (err)
2301		return err;
2302
2303	writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2304	writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2305
2306	writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2307	writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2308
2309	writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2310	writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2311
2312	sci_unsolicited_frame_control_construct(ihost);
2313
2314	/*
2315	 * Inform the silicon as to the location of the UF headers and
2316	 * address table.
2317	 */
2318	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2319		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2320	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2321		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2322
2323	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2324		&ihost->scu_registers->sdma.uf_address_table_lower);
2325	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2326		&ihost->scu_registers->sdma.uf_address_table_upper);
2327
2328	return 0;
2329}
2330
2331/**
2332 * isci_host_init - (re-)initialize hardware and internal (private) state
2333 * @ihost: host to init
2334 *
2335 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2336 * one-time initialization objects like locks and waitqueues, are
2337 * not touched (they are initialized in isci_host_alloc)
2338 */
2339int isci_host_init(struct isci_host *ihost)
2340{
2341	int i, err;
2342	enum sci_status status;
2343
2344	spin_lock_irq(&ihost->scic_lock);
2345	status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2346	spin_unlock_irq(&ihost->scic_lock);
2347	if (status != SCI_SUCCESS) {
2348		dev_err(&ihost->pdev->dev,
2349			"%s: sci_controller_construct failed - status = %x\n",
2350			__func__,
2351			status);
2352		return -ENODEV;
2353	}
2354
2355	spin_lock_irq(&ihost->scic_lock);
2356	status = sci_controller_initialize(ihost);
2357	spin_unlock_irq(&ihost->scic_lock);
2358	if (status != SCI_SUCCESS) {
2359		dev_warn(&ihost->pdev->dev,
2360			 "%s: sci_controller_initialize failed -"
2361			 " status = 0x%x\n",
2362			 __func__, status);
2363		return -ENODEV;
2364	}
2365
2366	err = sci_controller_mem_init(ihost);
2367	if (err)
2368		return err;
2369
2370	/* enable sgpio */
2371	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2372	for (i = 0; i < isci_gpio_count(ihost); i++)
2373		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2374	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2375
2376	return 0;
2377}
2378
2379void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2380			    struct isci_phy *iphy)
2381{
2382	switch (ihost->sm.current_state_id) {
2383	case SCIC_STARTING:
2384		sci_del_timer(&ihost->phy_timer);
2385		ihost->phy_startup_timer_pending = false;
2386		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2387						  iport, iphy);
2388		sci_controller_start_next_phy(ihost);
2389		break;
2390	case SCIC_READY:
2391		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2392						  iport, iphy);
2393		break;
2394	default:
2395		dev_dbg(&ihost->pdev->dev,
2396			"%s: SCIC Controller linkup event from phy %d in "
2397			"unexpected state %d\n", __func__, iphy->phy_index,
2398			ihost->sm.current_state_id);
2399	}
2400}
2401
2402void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2403			      struct isci_phy *iphy)
2404{
2405	switch (ihost->sm.current_state_id) {
2406	case SCIC_STARTING:
2407	case SCIC_READY:
2408		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2409						   iport, iphy);
2410		break;
2411	default:
2412		dev_dbg(&ihost->pdev->dev,
2413			"%s: SCIC Controller linkdown event from phy %d in "
2414			"unexpected state %d\n",
2415			__func__,
2416			iphy->phy_index,
2417			ihost->sm.current_state_id);
2418	}
2419}
2420
2421bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2422{
2423	u32 index;
2424
2425	for (index = 0; index < ihost->remote_node_entries; index++) {
2426		if ((ihost->device_table[index] != NULL) &&
2427		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2428			return true;
2429	}
2430
2431	return false;
2432}
2433
2434void sci_controller_remote_device_stopped(struct isci_host *ihost,
2435					  struct isci_remote_device *idev)
2436{
2437	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2438		dev_dbg(&ihost->pdev->dev,
2439			"SCIC Controller 0x%p remote device stopped event "
2440			"from device 0x%p in unexpected state %d\n",
2441			ihost, idev,
2442			ihost->sm.current_state_id);
2443		return;
2444	}
2445
2446	if (!sci_controller_has_remote_devices_stopping(ihost))
2447		isci_host_stop_complete(ihost);
2448}
2449
2450void sci_controller_post_request(struct isci_host *ihost, u32 request)
2451{
2452	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2453		__func__, ihost->id, request);
2454
2455	writel(request, &ihost->smu_registers->post_context_port);
2456}
2457
2458struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2459{
2460	u16 task_index;
2461	u16 task_sequence;
2462
2463	task_index = ISCI_TAG_TCI(io_tag);
2464
2465	if (task_index < ihost->task_context_entries) {
2466		struct isci_request *ireq = ihost->reqs[task_index];
2467
2468		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2469			task_sequence = ISCI_TAG_SEQ(io_tag);
2470
2471			if (task_sequence == ihost->io_request_sequence[task_index])
2472				return ireq;
2473		}
2474	}
2475
2476	return NULL;
2477}
2478
2479/**
2480 * sci_controller_allocate_remote_node_context()
2481 * This method allocates remote node index and the reserves the remote node
2482 *    context space for use. This method can fail if there are no more remote
2483 *    node index available.
2484 * @ihost: This is the controller object which contains the set of
2485 *    free remote node ids
2486 * @idev: This is the device object which is requesting the a remote node
2487 *    id
2488 * @node_id: This is the remote node id that is assinged to the device if one
2489 *    is available
2490 *
2491 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2492 * node index available.
2493 */
2494enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2495							    struct isci_remote_device *idev,
2496							    u16 *node_id)
2497{
2498	u16 node_index;
2499	u32 remote_node_count = sci_remote_device_node_count(idev);
2500
2501	node_index = sci_remote_node_table_allocate_remote_node(
2502		&ihost->available_remote_nodes, remote_node_count
2503		);
2504
2505	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2506		ihost->device_table[node_index] = idev;
2507
2508		*node_id = node_index;
2509
2510		return SCI_SUCCESS;
2511	}
2512
2513	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2514}
2515
2516void sci_controller_free_remote_node_context(struct isci_host *ihost,
2517					     struct isci_remote_device *idev,
2518					     u16 node_id)
2519{
2520	u32 remote_node_count = sci_remote_device_node_count(idev);
2521
2522	if (ihost->device_table[node_id] == idev) {
2523		ihost->device_table[node_id] = NULL;
2524
2525		sci_remote_node_table_release_remote_node_index(
2526			&ihost->available_remote_nodes, remote_node_count, node_id
2527			);
2528	}
2529}
2530
2531void sci_controller_copy_sata_response(void *response_buffer,
2532				       void *frame_header,
2533				       void *frame_buffer)
2534{
2535	/* XXX type safety? */
2536	memcpy(response_buffer, frame_header, sizeof(u32));
2537
2538	memcpy(response_buffer + sizeof(u32),
2539	       frame_buffer,
2540	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2541}
2542
2543void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2544{
2545	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2546		writel(ihost->uf_control.get,
2547			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2548}
2549
2550void isci_tci_free(struct isci_host *ihost, u16 tci)
2551{
2552	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2553
2554	ihost->tci_pool[tail] = tci;
2555	ihost->tci_tail = tail + 1;
2556}
2557
2558static u16 isci_tci_alloc(struct isci_host *ihost)
2559{
2560	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2561	u16 tci = ihost->tci_pool[head];
2562
2563	ihost->tci_head = head + 1;
2564	return tci;
2565}
2566
2567static u16 isci_tci_space(struct isci_host *ihost)
2568{
2569	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2570}
2571
2572u16 isci_alloc_tag(struct isci_host *ihost)
2573{
2574	if (isci_tci_space(ihost)) {
2575		u16 tci = isci_tci_alloc(ihost);
2576		u8 seq = ihost->io_request_sequence[tci];
2577
2578		return ISCI_TAG(seq, tci);
2579	}
2580
2581	return SCI_CONTROLLER_INVALID_IO_TAG;
2582}
2583
2584enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2585{
2586	u16 tci = ISCI_TAG_TCI(io_tag);
2587	u16 seq = ISCI_TAG_SEQ(io_tag);
2588
2589	/* prevent tail from passing head */
2590	if (isci_tci_active(ihost) == 0)
2591		return SCI_FAILURE_INVALID_IO_TAG;
2592
2593	if (seq == ihost->io_request_sequence[tci]) {
2594		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2595
2596		isci_tci_free(ihost, tci);
2597
2598		return SCI_SUCCESS;
2599	}
2600	return SCI_FAILURE_INVALID_IO_TAG;
2601}
2602
2603enum sci_status sci_controller_start_io(struct isci_host *ihost,
2604					struct isci_remote_device *idev,
2605					struct isci_request *ireq)
2606{
2607	enum sci_status status;
2608
2609	if (ihost->sm.current_state_id != SCIC_READY) {
2610		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2611			 __func__, ihost->sm.current_state_id);
2612		return SCI_FAILURE_INVALID_STATE;
2613	}
2614
2615	status = sci_remote_device_start_io(ihost, idev, ireq);
2616	if (status != SCI_SUCCESS)
2617		return status;
2618
2619	set_bit(IREQ_ACTIVE, &ireq->flags);
2620	sci_controller_post_request(ihost, ireq->post_context);
2621	return SCI_SUCCESS;
2622}
2623
2624enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2625						 struct isci_remote_device *idev,
2626						 struct isci_request *ireq)
2627{
2628	/* terminate an ongoing (i.e. started) core IO request.  This does not
2629	 * abort the IO request at the target, but rather removes the IO
2630	 * request from the host controller.
2631	 */
2632	enum sci_status status;
2633
2634	if (ihost->sm.current_state_id != SCIC_READY) {
2635		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2636			 __func__, ihost->sm.current_state_id);
2637		return SCI_FAILURE_INVALID_STATE;
2638	}
2639	status = sci_io_request_terminate(ireq);
2640
2641	dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2642		__func__, status, ireq, ireq->flags);
2643
2644	if ((status == SCI_SUCCESS) &&
2645	    !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2646	    !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2647		/* Utilize the original post context command and or in the
2648		 * POST_TC_ABORT request sub-type.
2649		 */
2650		sci_controller_post_request(
2651			ihost, ireq->post_context |
2652				SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2653	}
2654	return status;
2655}
2656
2657/**
2658 * sci_controller_complete_io() - This method will perform core specific
2659 *    completion operations for an IO request.  After this method is invoked,
2660 *    the user should consider the IO request as invalid until it is properly
2661 *    reused (i.e. re-constructed).
2662 * @ihost: The handle to the controller object for which to complete the
2663 *    IO request.
2664 * @idev: The handle to the remote device object for which to complete
2665 *    the IO request.
2666 * @ireq: the handle to the io request object to complete.
2667 */
2668enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669					   struct isci_remote_device *idev,
2670					   struct isci_request *ireq)
2671{
2672	enum sci_status status;
2673
2674	switch (ihost->sm.current_state_id) {
2675	case SCIC_STOPPING:
2676		/* XXX: Implement this function */
2677		return SCI_FAILURE;
2678	case SCIC_READY:
2679		status = sci_remote_device_complete_io(ihost, idev, ireq);
2680		if (status != SCI_SUCCESS)
2681			return status;
2682
2683		clear_bit(IREQ_ACTIVE, &ireq->flags);
2684		return SCI_SUCCESS;
2685	default:
2686		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2687			 __func__, ihost->sm.current_state_id);
2688		return SCI_FAILURE_INVALID_STATE;
2689	}
2690
2691}
2692
2693enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2694{
2695	struct isci_host *ihost = ireq->owning_controller;
2696
2697	if (ihost->sm.current_state_id != SCIC_READY) {
2698		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2699			 __func__, ihost->sm.current_state_id);
2700		return SCI_FAILURE_INVALID_STATE;
2701	}
2702
2703	set_bit(IREQ_ACTIVE, &ireq->flags);
2704	sci_controller_post_request(ihost, ireq->post_context);
2705	return SCI_SUCCESS;
2706}
2707
2708/**
2709 * sci_controller_start_task() - This method is called by the SCIC user to
2710 *    send/start a framework task management request.
2711 * @ihost: the handle to the controller object for which to start the task
2712 *    management request.
2713 * @idev: the handle to the remote device object for which to start
2714 *    the task management request.
2715 * @ireq: the handle to the task request object to start.
2716 */
2717enum sci_status sci_controller_start_task(struct isci_host *ihost,
2718					  struct isci_remote_device *idev,
2719					  struct isci_request *ireq)
2720{
2721	enum sci_status status;
2722
2723	if (ihost->sm.current_state_id != SCIC_READY) {
2724		dev_warn(&ihost->pdev->dev,
2725			 "%s: SCIC Controller starting task from invalid "
2726			 "state\n",
2727			 __func__);
2728		return SCI_FAILURE_INVALID_STATE;
2729	}
2730
2731	status = sci_remote_device_start_task(ihost, idev, ireq);
2732	switch (status) {
2733	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734		set_bit(IREQ_ACTIVE, &ireq->flags);
2735
2736		/*
2737		 * We will let framework know this task request started successfully,
2738		 * although core is still woring on starting the request (to post tc when
2739		 * RNC is resumed.)
2740		 */
2741		return SCI_SUCCESS;
2742	case SCI_SUCCESS:
2743		set_bit(IREQ_ACTIVE, &ireq->flags);
2744		sci_controller_post_request(ihost, ireq->post_context);
2745		break;
2746	default:
2747		break;
2748	}
2749
2750	return status;
2751}
2752
2753static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2754{
2755	int d;
2756
2757	/* no support for TX_GP_CFG */
2758	if (reg_index == 0)
2759		return -EINVAL;
2760
2761	for (d = 0; d < isci_gpio_count(ihost); d++) {
2762		u32 val = 0x444; /* all ODx.n clear */
2763		int i;
2764
2765		for (i = 0; i < 3; i++) {
2766			int bit;
2767
2768			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2769						       write_data, reg_index,
2770						       reg_count);
2771			if (bit < 0)
2772				break;
2773
2774			/* if od is set, clear the 'invert' bit */
2775			val &= ~(bit << ((i << 2) + 2));
2776		}
2777
2778		if (i < 3)
2779			break;
2780		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2781	}
2782
2783	/* unless reg_index is > 1, we should always be able to write at
2784	 * least one register
2785	 */
2786	return d > 0;
2787}
2788
2789int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2790		    u8 reg_count, u8 *write_data)
2791{
2792	struct isci_host *ihost = sas_ha->lldd_ha;
2793	int written;
2794
2795	switch (reg_type) {
2796	case SAS_GPIO_REG_TX_GP:
2797		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2798		break;
2799	default:
2800		written = -EINVAL;
2801	}
2802
2803	return written;
2804}