Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include <linux/bitfield.h>
35#include "pci.h"
36
37DEFINE_MUTEX(pci_slot_mutex);
38
39const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41};
42EXPORT_SYMBOL_GPL(pci_power_names);
43
44#ifdef CONFIG_X86_32
45int isa_dma_bridge_buggy;
46EXPORT_SYMBOL(isa_dma_bridge_buggy);
47#endif
48
49int pci_pci_problems;
50EXPORT_SYMBOL(pci_pci_problems);
51
52unsigned int pci_pm_d3hot_delay;
53
54static void pci_pme_list_scan(struct work_struct *work);
55
56static LIST_HEAD(pci_pme_list);
57static DEFINE_MUTEX(pci_pme_list_mutex);
58static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59
60struct pci_pme_device {
61 struct list_head list;
62 struct pci_dev *dev;
63};
64
65#define PME_TIMEOUT 1000 /* How long between PME checks */
66
67/*
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
71 */
72#define PCI_RESET_WAIT 1000 /* msec */
73
74/*
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
78 * responsive.
79 */
80#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81
82static void pci_dev_d3_sleep(struct pci_dev *dev)
83{
84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 unsigned int upper;
86
87 if (delay_ms) {
88 /* Use a 20% upper bound, 1ms minimum */
89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 usleep_range(delay_ms * USEC_PER_MSEC,
91 (delay_ms + upper) * USEC_PER_MSEC);
92 }
93}
94
95bool pci_reset_supported(struct pci_dev *dev)
96{
97 return dev->reset_methods[0] != 0;
98}
99
100#ifdef CONFIG_PCI_DOMAINS
101int pci_domains_supported = 1;
102#endif
103
104#define DEFAULT_CARDBUS_IO_SIZE (256)
105#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106/* pci=cbmemsize=nnM,cbiosize=nn can override this */
107unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109
110#define DEFAULT_HOTPLUG_IO_SIZE (256)
111#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113/* hpiosize=nn can override this */
114unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
115/*
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
119 */
120unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122
123#define DEFAULT_HOTPLUG_BUS_SIZE 1
124unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125
126
127/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128#ifdef CONFIG_PCIE_BUS_TUNE_OFF
129enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130#elif defined CONFIG_PCIE_BUS_SAFE
131enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132#elif defined CONFIG_PCIE_BUS_PERFORMANCE
133enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134#elif defined CONFIG_PCIE_BUS_PEER2PEER
135enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136#else
137enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138#endif
139
140/*
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value. Arch can override either
143 * the dfl or actual value as it sees fit. Don't forget this is
144 * measured in 32-bit words, not bytes.
145 */
146u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147u8 pci_cache_line_size;
148
149/*
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
152 */
153unsigned int pcibios_max_latency = 255;
154
155/* If set, the PCIe ARI capability will not be used. */
156static bool pcie_ari_disabled;
157
158/* If set, the PCIe ATS capability will not be used. */
159static bool pcie_ats_disabled;
160
161/* If set, the PCI config space of each device is printed during boot. */
162bool pci_early_dump;
163
164bool pci_ats_disabled(void)
165{
166 return pcie_ats_disabled;
167}
168EXPORT_SYMBOL_GPL(pci_ats_disabled);
169
170/* Disable bridge_d3 for all PCIe ports */
171static bool pci_bridge_d3_disable;
172/* Force bridge_d3 for all PCIe ports */
173static bool pci_bridge_d3_force;
174
175static int __init pcie_port_pm_setup(char *str)
176{
177 if (!strcmp(str, "off"))
178 pci_bridge_d3_disable = true;
179 else if (!strcmp(str, "force"))
180 pci_bridge_d3_force = true;
181 return 1;
182}
183__setup("pcie_port_pm=", pcie_port_pm_setup);
184
185/**
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
188 *
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
191 */
192unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193{
194 struct pci_bus *tmp;
195 unsigned char max, n;
196
197 max = bus->busn_res.end;
198 list_for_each_entry(tmp, &bus->children, node) {
199 n = pci_bus_max_busnr(tmp);
200 if (n > max)
201 max = n;
202 }
203 return max;
204}
205EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206
207/**
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
210 *
211 * Returns error bits set in PCI_STATUS and clears them.
212 */
213int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214{
215 u16 status;
216 int ret;
217
218 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 if (ret != PCIBIOS_SUCCESSFUL)
220 return -EIO;
221
222 status &= PCI_STATUS_ERROR_BITS;
223 if (status)
224 pci_write_config_word(pdev, PCI_STATUS, status);
225
226 return status;
227}
228EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229
230#ifdef CONFIG_HAS_IOMEM
231static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 bool write_combine)
233{
234 struct resource *res = &pdev->resource[bar];
235 resource_size_t start = res->start;
236 resource_size_t size = resource_size(res);
237
238 /*
239 * Make sure the BAR is actually a memory resource, not an IO resource
240 */
241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 return NULL;
244 }
245
246 if (write_combine)
247 return ioremap_wc(start, size);
248
249 return ioremap(start, size);
250}
251
252void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253{
254 return __pci_ioremap_resource(pdev, bar, false);
255}
256EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257
258void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259{
260 return __pci_ioremap_resource(pdev, bar, true);
261}
262EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263#endif
264
265/**
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
270 *
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
273 * be of the form:
274 *
275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276 *
277 * A path for a device can be obtained using 'lspci -t'. Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
280 *
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
283 */
284static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 const char **endptr)
286{
287 int ret;
288 unsigned int seg, bus, slot, func;
289 char *wpath, *p;
290 char end;
291
292 *endptr = strchrnul(path, ';');
293
294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 if (!wpath)
296 return -ENOMEM;
297
298 while (1) {
299 p = strrchr(wpath, '/');
300 if (!p)
301 break;
302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 if (ret != 2) {
304 ret = -EINVAL;
305 goto free_and_exit;
306 }
307
308 if (dev->devfn != PCI_DEVFN(slot, func)) {
309 ret = 0;
310 goto free_and_exit;
311 }
312
313 /*
314 * Note: we don't need to get a reference to the upstream
315 * bridge because we hold a reference to the top level
316 * device which should hold a reference to the bridge,
317 * and so on.
318 */
319 dev = pci_upstream_bridge(dev);
320 if (!dev) {
321 ret = 0;
322 goto free_and_exit;
323 }
324
325 *p = 0;
326 }
327
328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 &func, &end);
330 if (ret != 4) {
331 seg = 0;
332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 if (ret != 3) {
334 ret = -EINVAL;
335 goto free_and_exit;
336 }
337 }
338
339 ret = (seg == pci_domain_nr(dev->bus) &&
340 bus == dev->bus->number &&
341 dev->devfn == PCI_DEVFN(slot, func));
342
343free_and_exit:
344 kfree(wpath);
345 return ret;
346}
347
348/**
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
353 *
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
356 *
357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359 *
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0. In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device. The path for a device can be determined
366 * through the use of 'lspci -t'.
367 *
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
374 *
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
377 */
378static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 const char **endptr)
380{
381 int ret;
382 int count;
383 unsigned short vendor, device, subsystem_vendor, subsystem_device;
384
385 if (strncmp(p, "pci:", 4) == 0) {
386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 p += 4;
388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 &subsystem_vendor, &subsystem_device, &count);
390 if (ret != 4) {
391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 if (ret != 2)
393 return -EINVAL;
394
395 subsystem_vendor = 0;
396 subsystem_device = 0;
397 }
398
399 p += count;
400
401 if ((!vendor || vendor == dev->vendor) &&
402 (!device || device == dev->device) &&
403 (!subsystem_vendor ||
404 subsystem_vendor == dev->subsystem_vendor) &&
405 (!subsystem_device ||
406 subsystem_device == dev->subsystem_device))
407 goto found;
408 } else {
409 /*
410 * PCI Bus, Device, Function IDs are specified
411 * (optionally, may include a path of devfns following it)
412 */
413 ret = pci_dev_str_match_path(dev, p, &p);
414 if (ret < 0)
415 return ret;
416 else if (ret)
417 goto found;
418 }
419
420 *endptr = p;
421 return 0;
422
423found:
424 *endptr = p;
425 return 1;
426}
427
428static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 u8 pos, int cap, int *ttl)
430{
431 u8 id;
432 u16 ent;
433
434 pci_bus_read_config_byte(bus, devfn, pos, &pos);
435
436 while ((*ttl)--) {
437 if (pos < 0x40)
438 break;
439 pos &= ~3;
440 pci_bus_read_config_word(bus, devfn, pos, &ent);
441
442 id = ent & 0xff;
443 if (id == 0xff)
444 break;
445 if (id == cap)
446 return pos;
447 pos = (ent >> 8);
448 }
449 return 0;
450}
451
452static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 u8 pos, int cap)
454{
455 int ttl = PCI_FIND_CAP_TTL;
456
457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458}
459
460u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461{
462 return __pci_find_next_cap(dev->bus, dev->devfn,
463 pos + PCI_CAP_LIST_NEXT, cap);
464}
465EXPORT_SYMBOL_GPL(pci_find_next_capability);
466
467static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 unsigned int devfn, u8 hdr_type)
469{
470 u16 status;
471
472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 if (!(status & PCI_STATUS_CAP_LIST))
474 return 0;
475
476 switch (hdr_type) {
477 case PCI_HEADER_TYPE_NORMAL:
478 case PCI_HEADER_TYPE_BRIDGE:
479 return PCI_CAPABILITY_LIST;
480 case PCI_HEADER_TYPE_CARDBUS:
481 return PCI_CB_CAPABILITY_LIST;
482 }
483
484 return 0;
485}
486
487/**
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
491 *
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it. Possible values for @cap include:
496 *
497 * %PCI_CAP_ID_PM Power Management
498 * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 * %PCI_CAP_ID_VPD Vital Product Data
500 * %PCI_CAP_ID_SLOTID Slot Identification
501 * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 * %PCI_CAP_ID_PCIX PCI-X
504 * %PCI_CAP_ID_EXP PCI Express
505 */
506u8 pci_find_capability(struct pci_dev *dev, int cap)
507{
508 u8 pos;
509
510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 if (pos)
512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513
514 return pos;
515}
516EXPORT_SYMBOL(pci_find_capability);
517
518/**
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
523 *
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
526 *
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
529 * support it.
530 */
531u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532{
533 u8 hdr_type, pos;
534
535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536
537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
538 if (pos)
539 pos = __pci_find_next_cap(bus, devfn, pos, cap);
540
541 return pos;
542}
543EXPORT_SYMBOL(pci_bus_find_capability);
544
545/**
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
550 *
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it. Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
555 */
556u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557{
558 u32 header;
559 int ttl;
560 u16 pos = PCI_CFG_SPACE_SIZE;
561
562 /* minimum 8 bytes per capability */
563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564
565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 return 0;
567
568 if (start)
569 pos = start;
570
571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 return 0;
573
574 /*
575 * If we have no capabilities, this is indicated by cap ID,
576 * cap version and next pointer all being 0.
577 */
578 if (header == 0)
579 return 0;
580
581 while (ttl-- > 0) {
582 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 return pos;
584
585 pos = PCI_EXT_CAP_NEXT(header);
586 if (pos < PCI_CFG_SPACE_SIZE)
587 break;
588
589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 break;
591 }
592
593 return 0;
594}
595EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596
597/**
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
601 *
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it. Possible values for @cap include:
605 *
606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 * %PCI_EXT_CAP_ID_VC Virtual Channel
608 * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 * %PCI_EXT_CAP_ID_PWR Power Budgeting
610 */
611u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612{
613 return pci_find_next_ext_capability(dev, 0, cap);
614}
615EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616
617/**
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
620 *
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622 * Number.
623 *
624 * Returns the DSN, or zero if the capability does not exist.
625 */
626u64 pci_get_dsn(struct pci_dev *dev)
627{
628 u32 dword;
629 u64 dsn;
630 int pos;
631
632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 if (!pos)
634 return 0;
635
636 /*
637 * The Device Serial Number is two dwords offset 4 bytes from the
638 * capability position. The specification says that the first dword is
639 * the lower half, and the second dword is the upper half.
640 */
641 pos += 4;
642 pci_read_config_dword(dev, pos, &dword);
643 dsn = (u64)dword;
644 pci_read_config_dword(dev, pos + 4, &dword);
645 dsn |= ((u64)dword) << 32;
646
647 return dsn;
648}
649EXPORT_SYMBOL_GPL(pci_get_dsn);
650
651static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652{
653 int rc, ttl = PCI_FIND_CAP_TTL;
654 u8 cap, mask;
655
656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 mask = HT_3BIT_CAP_MASK;
658 else
659 mask = HT_5BIT_CAP_MASK;
660
661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 PCI_CAP_ID_HT, &ttl);
663 while (pos) {
664 rc = pci_read_config_byte(dev, pos + 3, &cap);
665 if (rc != PCIBIOS_SUCCESSFUL)
666 return 0;
667
668 if ((cap & mask) == ht_cap)
669 return pos;
670
671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 pos + PCI_CAP_LIST_NEXT,
673 PCI_CAP_ID_HT, &ttl);
674 }
675
676 return 0;
677}
678
679/**
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
684 *
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
688 *
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
691 */
692u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693{
694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695}
696EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697
698/**
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
702 *
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
708 */
709u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710{
711 u8 pos;
712
713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 if (pos)
715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716
717 return pos;
718}
719EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720
721/**
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
726 *
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
730 */
731u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732{
733 u16 vsec = 0;
734 u32 header;
735 int ret;
736
737 if (vendor != dev->vendor)
738 return 0;
739
740 while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 PCI_EXT_CAP_ID_VNDR))) {
742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 if (ret != PCIBIOS_SUCCESSFUL)
744 continue;
745
746 if (PCI_VNDR_HEADER_ID(header) == cap)
747 return vsec;
748 }
749
750 return 0;
751}
752EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753
754/**
755 * pci_find_dvsec_capability - Find DVSEC for vendor
756 * @dev: PCI device to query
757 * @vendor: Vendor ID to match for the DVSEC
758 * @dvsec: Designated Vendor-specific capability ID
759 *
760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761 * offset in config space; otherwise return 0.
762 */
763u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764{
765 int pos;
766
767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 if (!pos)
769 return 0;
770
771 while (pos) {
772 u16 v, id;
773
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 if (vendor == v && dvsec == id)
777 return pos;
778
779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 }
781
782 return 0;
783}
784EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785
786/**
787 * pci_find_parent_resource - return resource region of parent bus of given
788 * region
789 * @dev: PCI device structure contains resources to be searched
790 * @res: child resource record for which parent is sought
791 *
792 * For given resource region of given device, return the resource region of
793 * parent bus the given region is contained in.
794 */
795struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 struct resource *res)
797{
798 const struct pci_bus *bus = dev->bus;
799 struct resource *r;
800
801 pci_bus_for_each_resource(bus, r) {
802 if (!r)
803 continue;
804 if (resource_contains(r, res)) {
805
806 /*
807 * If the window is prefetchable but the BAR is
808 * not, the allocator made a mistake.
809 */
810 if (r->flags & IORESOURCE_PREFETCH &&
811 !(res->flags & IORESOURCE_PREFETCH))
812 return NULL;
813
814 /*
815 * If we're below a transparent bridge, there may
816 * be both a positively-decoded aperture and a
817 * subtractively-decoded region that contain the BAR.
818 * We want the positively-decoded one, so this depends
819 * on pci_bus_for_each_resource() giving us those
820 * first.
821 */
822 return r;
823 }
824 }
825 return NULL;
826}
827EXPORT_SYMBOL(pci_find_parent_resource);
828
829/**
830 * pci_find_resource - Return matching PCI device resource
831 * @dev: PCI device to query
832 * @res: Resource to look for
833 *
834 * Goes over standard PCI resources (BARs) and checks if the given resource
835 * is partially or fully contained in any of them. In that case the
836 * matching resource is returned, %NULL otherwise.
837 */
838struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839{
840 int i;
841
842 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 struct resource *r = &dev->resource[i];
844
845 if (r->start && resource_contains(r, res))
846 return r;
847 }
848
849 return NULL;
850}
851EXPORT_SYMBOL(pci_find_resource);
852
853/**
854 * pci_resource_name - Return the name of the PCI resource
855 * @dev: PCI device to query
856 * @i: index of the resource
857 *
858 * Return the standard PCI resource (BAR) name according to their index.
859 */
860const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
861{
862 static const char * const bar_name[] = {
863 "BAR 0",
864 "BAR 1",
865 "BAR 2",
866 "BAR 3",
867 "BAR 4",
868 "BAR 5",
869 "ROM",
870#ifdef CONFIG_PCI_IOV
871 "VF BAR 0",
872 "VF BAR 1",
873 "VF BAR 2",
874 "VF BAR 3",
875 "VF BAR 4",
876 "VF BAR 5",
877#endif
878 "bridge window", /* "io" included in %pR */
879 "bridge window", /* "mem" included in %pR */
880 "bridge window", /* "mem pref" included in %pR */
881 };
882 static const char * const cardbus_name[] = {
883 "BAR 1",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888 "unknown",
889#ifdef CONFIG_PCI_IOV
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895 "unknown",
896#endif
897 "CardBus bridge window 0", /* I/O */
898 "CardBus bridge window 1", /* I/O */
899 "CardBus bridge window 0", /* mem */
900 "CardBus bridge window 1", /* mem */
901 };
902
903 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
904 i < ARRAY_SIZE(cardbus_name))
905 return cardbus_name[i];
906
907 if (i < ARRAY_SIZE(bar_name))
908 return bar_name[i];
909
910 return "unknown";
911}
912
913/**
914 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
915 * @dev: the PCI device to operate on
916 * @pos: config space offset of status word
917 * @mask: mask of bit(s) to care about in status word
918 *
919 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
920 */
921int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
922{
923 int i;
924
925 /* Wait for Transaction Pending bit clean */
926 for (i = 0; i < 4; i++) {
927 u16 status;
928 if (i)
929 msleep((1 << (i - 1)) * 100);
930
931 pci_read_config_word(dev, pos, &status);
932 if (!(status & mask))
933 return 1;
934 }
935
936 return 0;
937}
938
939static int pci_acs_enable;
940
941/**
942 * pci_request_acs - ask for ACS to be enabled if supported
943 */
944void pci_request_acs(void)
945{
946 pci_acs_enable = 1;
947}
948
949static const char *disable_acs_redir_param;
950
951/**
952 * pci_disable_acs_redir - disable ACS redirect capabilities
953 * @dev: the PCI device
954 *
955 * For only devices specified in the disable_acs_redir parameter.
956 */
957static void pci_disable_acs_redir(struct pci_dev *dev)
958{
959 int ret = 0;
960 const char *p;
961 int pos;
962 u16 ctrl;
963
964 if (!disable_acs_redir_param)
965 return;
966
967 p = disable_acs_redir_param;
968 while (*p) {
969 ret = pci_dev_str_match(dev, p, &p);
970 if (ret < 0) {
971 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
972 disable_acs_redir_param);
973
974 break;
975 } else if (ret == 1) {
976 /* Found a match */
977 break;
978 }
979
980 if (*p != ';' && *p != ',') {
981 /* End of param or invalid format */
982 break;
983 }
984 p++;
985 }
986
987 if (ret != 1)
988 return;
989
990 if (!pci_dev_specific_disable_acs_redir(dev))
991 return;
992
993 pos = dev->acs_cap;
994 if (!pos) {
995 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
996 return;
997 }
998
999 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1000
1001 /* P2P Request & Completion Redirect */
1002 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1003
1004 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1005
1006 pci_info(dev, "disabled ACS redirect\n");
1007}
1008
1009/**
1010 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1011 * @dev: the PCI device
1012 */
1013static void pci_std_enable_acs(struct pci_dev *dev)
1014{
1015 int pos;
1016 u16 cap;
1017 u16 ctrl;
1018
1019 pos = dev->acs_cap;
1020 if (!pos)
1021 return;
1022
1023 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1024 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1025
1026 /* Source Validation */
1027 ctrl |= (cap & PCI_ACS_SV);
1028
1029 /* P2P Request Redirect */
1030 ctrl |= (cap & PCI_ACS_RR);
1031
1032 /* P2P Completion Redirect */
1033 ctrl |= (cap & PCI_ACS_CR);
1034
1035 /* Upstream Forwarding */
1036 ctrl |= (cap & PCI_ACS_UF);
1037
1038 /* Enable Translation Blocking for external devices and noats */
1039 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1040 ctrl |= (cap & PCI_ACS_TB);
1041
1042 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1043}
1044
1045/**
1046 * pci_enable_acs - enable ACS if hardware support it
1047 * @dev: the PCI device
1048 */
1049static void pci_enable_acs(struct pci_dev *dev)
1050{
1051 if (!pci_acs_enable)
1052 goto disable_acs_redir;
1053
1054 if (!pci_dev_specific_enable_acs(dev))
1055 goto disable_acs_redir;
1056
1057 pci_std_enable_acs(dev);
1058
1059disable_acs_redir:
1060 /*
1061 * Note: pci_disable_acs_redir() must be called even if ACS was not
1062 * enabled by the kernel because it may have been enabled by
1063 * platform firmware. So if we are told to disable it, we should
1064 * always disable it after setting the kernel's default
1065 * preferences.
1066 */
1067 pci_disable_acs_redir(dev);
1068}
1069
1070/**
1071 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1072 * @dev: PCI device to have its BARs restored
1073 *
1074 * Restore the BAR values for a given device, so as to make it
1075 * accessible by its driver.
1076 */
1077static void pci_restore_bars(struct pci_dev *dev)
1078{
1079 int i;
1080
1081 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1082 pci_update_resource(dev, i);
1083}
1084
1085static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1086{
1087 if (pci_use_mid_pm())
1088 return true;
1089
1090 return acpi_pci_power_manageable(dev);
1091}
1092
1093static inline int platform_pci_set_power_state(struct pci_dev *dev,
1094 pci_power_t t)
1095{
1096 if (pci_use_mid_pm())
1097 return mid_pci_set_power_state(dev, t);
1098
1099 return acpi_pci_set_power_state(dev, t);
1100}
1101
1102static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1103{
1104 if (pci_use_mid_pm())
1105 return mid_pci_get_power_state(dev);
1106
1107 return acpi_pci_get_power_state(dev);
1108}
1109
1110static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1111{
1112 if (!pci_use_mid_pm())
1113 acpi_pci_refresh_power_state(dev);
1114}
1115
1116static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1117{
1118 if (pci_use_mid_pm())
1119 return PCI_POWER_ERROR;
1120
1121 return acpi_pci_choose_state(dev);
1122}
1123
1124static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1125{
1126 if (pci_use_mid_pm())
1127 return PCI_POWER_ERROR;
1128
1129 return acpi_pci_wakeup(dev, enable);
1130}
1131
1132static inline bool platform_pci_need_resume(struct pci_dev *dev)
1133{
1134 if (pci_use_mid_pm())
1135 return false;
1136
1137 return acpi_pci_need_resume(dev);
1138}
1139
1140static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1141{
1142 if (pci_use_mid_pm())
1143 return false;
1144
1145 return acpi_pci_bridge_d3(dev);
1146}
1147
1148/**
1149 * pci_update_current_state - Read power state of given device and cache it
1150 * @dev: PCI device to handle.
1151 * @state: State to cache in case the device doesn't have the PM capability
1152 *
1153 * The power state is read from the PMCSR register, which however is
1154 * inaccessible in D3cold. The platform firmware is therefore queried first
1155 * to detect accessibility of the register. In case the platform firmware
1156 * reports an incorrect state or the device isn't power manageable by the
1157 * platform at all, we try to detect D3cold by testing accessibility of the
1158 * vendor ID in config space.
1159 */
1160void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1161{
1162 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1163 dev->current_state = PCI_D3cold;
1164 } else if (dev->pm_cap) {
1165 u16 pmcsr;
1166
1167 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1168 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1169 dev->current_state = PCI_D3cold;
1170 return;
1171 }
1172 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1173 } else {
1174 dev->current_state = state;
1175 }
1176}
1177
1178/**
1179 * pci_refresh_power_state - Refresh the given device's power state data
1180 * @dev: Target PCI device.
1181 *
1182 * Ask the platform to refresh the devices power state information and invoke
1183 * pci_update_current_state() to update its current PCI power state.
1184 */
1185void pci_refresh_power_state(struct pci_dev *dev)
1186{
1187 platform_pci_refresh_power_state(dev);
1188 pci_update_current_state(dev, dev->current_state);
1189}
1190
1191/**
1192 * pci_platform_power_transition - Use platform to change device power state
1193 * @dev: PCI device to handle.
1194 * @state: State to put the device into.
1195 */
1196int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1197{
1198 int error;
1199
1200 error = platform_pci_set_power_state(dev, state);
1201 if (!error)
1202 pci_update_current_state(dev, state);
1203 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1204 dev->current_state = PCI_D0;
1205
1206 return error;
1207}
1208EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1209
1210static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1211{
1212 pm_request_resume(&pci_dev->dev);
1213 return 0;
1214}
1215
1216/**
1217 * pci_resume_bus - Walk given bus and runtime resume devices on it
1218 * @bus: Top bus of the subtree to walk.
1219 */
1220void pci_resume_bus(struct pci_bus *bus)
1221{
1222 if (bus)
1223 pci_walk_bus(bus, pci_resume_one, NULL);
1224}
1225
1226static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1227{
1228 int delay = 1;
1229 bool retrain = false;
1230 struct pci_dev *bridge;
1231
1232 if (pci_is_pcie(dev)) {
1233 bridge = pci_upstream_bridge(dev);
1234 if (bridge)
1235 retrain = true;
1236 }
1237
1238 /*
1239 * After reset, the device should not silently discard config
1240 * requests, but it may still indicate that it needs more time by
1241 * responding to them with CRS completions. The Root Port will
1242 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1243 * the read (except when CRS SV is enabled and the read was for the
1244 * Vendor ID; in that case it synthesizes 0x0001 data).
1245 *
1246 * Wait for the device to return a non-CRS completion. Read the
1247 * Command register instead of Vendor ID so we don't have to
1248 * contend with the CRS SV value.
1249 */
1250 for (;;) {
1251 u32 id;
1252
1253 pci_read_config_dword(dev, PCI_COMMAND, &id);
1254 if (!PCI_POSSIBLE_ERROR(id))
1255 break;
1256
1257 if (delay > timeout) {
1258 pci_warn(dev, "not ready %dms after %s; giving up\n",
1259 delay - 1, reset_type);
1260 return -ENOTTY;
1261 }
1262
1263 if (delay > PCI_RESET_WAIT) {
1264 if (retrain) {
1265 retrain = false;
1266 if (pcie_failed_link_retrain(bridge)) {
1267 delay = 1;
1268 continue;
1269 }
1270 }
1271 pci_info(dev, "not ready %dms after %s; waiting\n",
1272 delay - 1, reset_type);
1273 }
1274
1275 msleep(delay);
1276 delay *= 2;
1277 }
1278
1279 if (delay > PCI_RESET_WAIT)
1280 pci_info(dev, "ready %dms after %s\n", delay - 1,
1281 reset_type);
1282 else
1283 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1284 reset_type);
1285
1286 return 0;
1287}
1288
1289/**
1290 * pci_power_up - Put the given device into D0
1291 * @dev: PCI device to power up
1292 *
1293 * On success, return 0 or 1, depending on whether or not it is necessary to
1294 * restore the device's BARs subsequently (1 is returned in that case).
1295 *
1296 * On failure, return a negative error code. Always return failure if @dev
1297 * lacks a Power Management Capability, even if the platform was able to
1298 * put the device in D0 via non-PCI means.
1299 */
1300int pci_power_up(struct pci_dev *dev)
1301{
1302 bool need_restore;
1303 pci_power_t state;
1304 u16 pmcsr;
1305
1306 platform_pci_set_power_state(dev, PCI_D0);
1307
1308 if (!dev->pm_cap) {
1309 state = platform_pci_get_power_state(dev);
1310 if (state == PCI_UNKNOWN)
1311 dev->current_state = PCI_D0;
1312 else
1313 dev->current_state = state;
1314
1315 return -EIO;
1316 }
1317
1318 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1319 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1320 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1321 pci_power_name(dev->current_state));
1322 dev->current_state = PCI_D3cold;
1323 return -EIO;
1324 }
1325
1326 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1327
1328 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1329 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1330
1331 if (state == PCI_D0)
1332 goto end;
1333
1334 /*
1335 * Force the entire word to 0. This doesn't affect PME_Status, disables
1336 * PME_En, and sets PowerState to 0.
1337 */
1338 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1339
1340 /* Mandatory transition delays; see PCI PM 1.2. */
1341 if (state == PCI_D3hot)
1342 pci_dev_d3_sleep(dev);
1343 else if (state == PCI_D2)
1344 udelay(PCI_PM_D2_DELAY);
1345
1346end:
1347 dev->current_state = PCI_D0;
1348 if (need_restore)
1349 return 1;
1350
1351 return 0;
1352}
1353
1354/**
1355 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1356 * @dev: PCI device to power up
1357 * @locked: whether pci_bus_sem is held
1358 *
1359 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1360 * to confirm the state change, restore its BARs if they might be lost and
1361 * reconfigure ASPM in accordance with the new power state.
1362 *
1363 * If pci_restore_state() is going to be called right after a power state change
1364 * to D0, it is more efficient to use pci_power_up() directly instead of this
1365 * function.
1366 */
1367static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1368{
1369 u16 pmcsr;
1370 int ret;
1371
1372 ret = pci_power_up(dev);
1373 if (ret < 0) {
1374 if (dev->current_state == PCI_D0)
1375 return 0;
1376
1377 return ret;
1378 }
1379
1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1382 if (dev->current_state != PCI_D0) {
1383 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1384 pci_power_name(dev->current_state));
1385 } else if (ret > 0) {
1386 /*
1387 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1388 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1389 * from D3hot to D0 _may_ perform an internal reset, thereby
1390 * going to "D0 Uninitialized" rather than "D0 Initialized".
1391 * For example, at least some versions of the 3c905B and the
1392 * 3c556B exhibit this behaviour.
1393 *
1394 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1395 * devices in a D3hot state at boot. Consequently, we need to
1396 * restore at least the BARs so that the device will be
1397 * accessible to its driver.
1398 */
1399 pci_restore_bars(dev);
1400 }
1401
1402 if (dev->bus->self)
1403 pcie_aspm_pm_state_change(dev->bus->self, locked);
1404
1405 return 0;
1406}
1407
1408/**
1409 * __pci_dev_set_current_state - Set current state of a PCI device
1410 * @dev: Device to handle
1411 * @data: pointer to state to be set
1412 */
1413static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1414{
1415 pci_power_t state = *(pci_power_t *)data;
1416
1417 dev->current_state = state;
1418 return 0;
1419}
1420
1421/**
1422 * pci_bus_set_current_state - Walk given bus and set current state of devices
1423 * @bus: Top bus of the subtree to walk.
1424 * @state: state to be set
1425 */
1426void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1427{
1428 if (bus)
1429 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1430}
1431
1432static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1433{
1434 if (!bus)
1435 return;
1436
1437 if (locked)
1438 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1439 else
1440 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1441}
1442
1443/**
1444 * pci_set_low_power_state - Put a PCI device into a low-power state.
1445 * @dev: PCI device to handle.
1446 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1447 * @locked: whether pci_bus_sem is held
1448 *
1449 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1450 *
1451 * RETURN VALUE:
1452 * -EINVAL if the requested state is invalid.
1453 * -EIO if device does not support PCI PM or its PM capabilities register has a
1454 * wrong version, or device doesn't support the requested state.
1455 * 0 if device already is in the requested state.
1456 * 0 if device's power state has been successfully changed.
1457 */
1458static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1459{
1460 u16 pmcsr;
1461
1462 if (!dev->pm_cap)
1463 return -EIO;
1464
1465 /*
1466 * Validate transition: We can enter D0 from any state, but if
1467 * we're already in a low-power state, we can only go deeper. E.g.,
1468 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1469 * we'd have to go from D3 to D0, then to D1.
1470 */
1471 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1472 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1473 pci_power_name(dev->current_state),
1474 pci_power_name(state));
1475 return -EINVAL;
1476 }
1477
1478 /* Check if this device supports the desired state */
1479 if ((state == PCI_D1 && !dev->d1_support)
1480 || (state == PCI_D2 && !dev->d2_support))
1481 return -EIO;
1482
1483 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1484 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1485 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1486 pci_power_name(dev->current_state),
1487 pci_power_name(state));
1488 dev->current_state = PCI_D3cold;
1489 return -EIO;
1490 }
1491
1492 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1493 pmcsr |= state;
1494
1495 /* Enter specified state */
1496 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1497
1498 /* Mandatory power management transition delays; see PCI PM 1.2. */
1499 if (state == PCI_D3hot)
1500 pci_dev_d3_sleep(dev);
1501 else if (state == PCI_D2)
1502 udelay(PCI_PM_D2_DELAY);
1503
1504 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1505 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1506 if (dev->current_state != state)
1507 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1508 pci_power_name(dev->current_state),
1509 pci_power_name(state));
1510
1511 if (dev->bus->self)
1512 pcie_aspm_pm_state_change(dev->bus->self, locked);
1513
1514 return 0;
1515}
1516
1517static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1518{
1519 int error;
1520
1521 /* Bound the state we're entering */
1522 if (state > PCI_D3cold)
1523 state = PCI_D3cold;
1524 else if (state < PCI_D0)
1525 state = PCI_D0;
1526 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1527
1528 /*
1529 * If the device or the parent bridge do not support PCI
1530 * PM, ignore the request if we're doing anything other
1531 * than putting it into D0 (which would only happen on
1532 * boot).
1533 */
1534 return 0;
1535
1536 /* Check if we're already there */
1537 if (dev->current_state == state)
1538 return 0;
1539
1540 if (state == PCI_D0)
1541 return pci_set_full_power_state(dev, locked);
1542
1543 /*
1544 * This device is quirked not to be put into D3, so don't put it in
1545 * D3
1546 */
1547 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1548 return 0;
1549
1550 if (state == PCI_D3cold) {
1551 /*
1552 * To put the device in D3cold, put it into D3hot in the native
1553 * way, then put it into D3cold using platform ops.
1554 */
1555 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1556
1557 if (pci_platform_power_transition(dev, PCI_D3cold))
1558 return error;
1559
1560 /* Powering off a bridge may power off the whole hierarchy */
1561 if (dev->current_state == PCI_D3cold)
1562 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1563 } else {
1564 error = pci_set_low_power_state(dev, state, locked);
1565
1566 if (pci_platform_power_transition(dev, state))
1567 return error;
1568 }
1569
1570 return 0;
1571}
1572
1573/**
1574 * pci_set_power_state - Set the power state of a PCI device
1575 * @dev: PCI device to handle.
1576 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1577 *
1578 * Transition a device to a new power state, using the platform firmware and/or
1579 * the device's PCI PM registers.
1580 *
1581 * RETURN VALUE:
1582 * -EINVAL if the requested state is invalid.
1583 * -EIO if device does not support PCI PM or its PM capabilities register has a
1584 * wrong version, or device doesn't support the requested state.
1585 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1586 * 0 if device already is in the requested state.
1587 * 0 if the transition is to D3 but D3 is not supported.
1588 * 0 if device's power state has been successfully changed.
1589 */
1590int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1591{
1592 return __pci_set_power_state(dev, state, false);
1593}
1594EXPORT_SYMBOL(pci_set_power_state);
1595
1596int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1597{
1598 lockdep_assert_held(&pci_bus_sem);
1599
1600 return __pci_set_power_state(dev, state, true);
1601}
1602EXPORT_SYMBOL(pci_set_power_state_locked);
1603
1604#define PCI_EXP_SAVE_REGS 7
1605
1606static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1607 u16 cap, bool extended)
1608{
1609 struct pci_cap_saved_state *tmp;
1610
1611 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1612 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1613 return tmp;
1614 }
1615 return NULL;
1616}
1617
1618struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1619{
1620 return _pci_find_saved_cap(dev, cap, false);
1621}
1622
1623struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1624{
1625 return _pci_find_saved_cap(dev, cap, true);
1626}
1627
1628static int pci_save_pcie_state(struct pci_dev *dev)
1629{
1630 int i = 0;
1631 struct pci_cap_saved_state *save_state;
1632 u16 *cap;
1633
1634 if (!pci_is_pcie(dev))
1635 return 0;
1636
1637 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1638 if (!save_state) {
1639 pci_err(dev, "buffer not found in %s\n", __func__);
1640 return -ENOMEM;
1641 }
1642
1643 cap = (u16 *)&save_state->cap.data[0];
1644 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1645 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1646 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1647 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1648 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1649 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1650 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1651
1652 return 0;
1653}
1654
1655void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1656{
1657#ifdef CONFIG_PCIEASPM
1658 struct pci_dev *bridge;
1659 u32 ctl;
1660
1661 bridge = pci_upstream_bridge(dev);
1662 if (bridge && bridge->ltr_path) {
1663 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1664 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1665 pci_dbg(bridge, "re-enabling LTR\n");
1666 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1667 PCI_EXP_DEVCTL2_LTR_EN);
1668 }
1669 }
1670#endif
1671}
1672
1673static void pci_restore_pcie_state(struct pci_dev *dev)
1674{
1675 int i = 0;
1676 struct pci_cap_saved_state *save_state;
1677 u16 *cap;
1678
1679 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1680 if (!save_state)
1681 return;
1682
1683 /*
1684 * Downstream ports reset the LTR enable bit when link goes down.
1685 * Check and re-configure the bit here before restoring device.
1686 * PCIe r5.0, sec 7.5.3.16.
1687 */
1688 pci_bridge_reconfigure_ltr(dev);
1689
1690 cap = (u16 *)&save_state->cap.data[0];
1691 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1692 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1693 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1694 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1695 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1696 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1697 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1698}
1699
1700static int pci_save_pcix_state(struct pci_dev *dev)
1701{
1702 int pos;
1703 struct pci_cap_saved_state *save_state;
1704
1705 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706 if (!pos)
1707 return 0;
1708
1709 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1710 if (!save_state) {
1711 pci_err(dev, "buffer not found in %s\n", __func__);
1712 return -ENOMEM;
1713 }
1714
1715 pci_read_config_word(dev, pos + PCI_X_CMD,
1716 (u16 *)save_state->cap.data);
1717
1718 return 0;
1719}
1720
1721static void pci_restore_pcix_state(struct pci_dev *dev)
1722{
1723 int i = 0, pos;
1724 struct pci_cap_saved_state *save_state;
1725 u16 *cap;
1726
1727 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1728 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729 if (!save_state || !pos)
1730 return;
1731 cap = (u16 *)&save_state->cap.data[0];
1732
1733 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1734}
1735
1736static void pci_save_ltr_state(struct pci_dev *dev)
1737{
1738 int ltr;
1739 struct pci_cap_saved_state *save_state;
1740 u32 *cap;
1741
1742 if (!pci_is_pcie(dev))
1743 return;
1744
1745 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1746 if (!ltr)
1747 return;
1748
1749 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1750 if (!save_state) {
1751 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1752 return;
1753 }
1754
1755 /* Some broken devices only support dword access to LTR */
1756 cap = &save_state->cap.data[0];
1757 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1758}
1759
1760static void pci_restore_ltr_state(struct pci_dev *dev)
1761{
1762 struct pci_cap_saved_state *save_state;
1763 int ltr;
1764 u32 *cap;
1765
1766 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1767 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1768 if (!save_state || !ltr)
1769 return;
1770
1771 /* Some broken devices only support dword access to LTR */
1772 cap = &save_state->cap.data[0];
1773 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1774}
1775
1776/**
1777 * pci_save_state - save the PCI configuration space of a device before
1778 * suspending
1779 * @dev: PCI device that we're dealing with
1780 */
1781int pci_save_state(struct pci_dev *dev)
1782{
1783 int i;
1784 /* XXX: 100% dword access ok here? */
1785 for (i = 0; i < 16; i++) {
1786 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1787 pci_dbg(dev, "save config %#04x: %#010x\n",
1788 i * 4, dev->saved_config_space[i]);
1789 }
1790 dev->state_saved = true;
1791
1792 i = pci_save_pcie_state(dev);
1793 if (i != 0)
1794 return i;
1795
1796 i = pci_save_pcix_state(dev);
1797 if (i != 0)
1798 return i;
1799
1800 pci_save_ltr_state(dev);
1801 pci_save_dpc_state(dev);
1802 pci_save_aer_state(dev);
1803 pci_save_ptm_state(dev);
1804 return pci_save_vc_state(dev);
1805}
1806EXPORT_SYMBOL(pci_save_state);
1807
1808static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1809 u32 saved_val, int retry, bool force)
1810{
1811 u32 val;
1812
1813 pci_read_config_dword(pdev, offset, &val);
1814 if (!force && val == saved_val)
1815 return;
1816
1817 for (;;) {
1818 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1819 offset, val, saved_val);
1820 pci_write_config_dword(pdev, offset, saved_val);
1821 if (retry-- <= 0)
1822 return;
1823
1824 pci_read_config_dword(pdev, offset, &val);
1825 if (val == saved_val)
1826 return;
1827
1828 mdelay(1);
1829 }
1830}
1831
1832static void pci_restore_config_space_range(struct pci_dev *pdev,
1833 int start, int end, int retry,
1834 bool force)
1835{
1836 int index;
1837
1838 for (index = end; index >= start; index--)
1839 pci_restore_config_dword(pdev, 4 * index,
1840 pdev->saved_config_space[index],
1841 retry, force);
1842}
1843
1844static void pci_restore_config_space(struct pci_dev *pdev)
1845{
1846 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1847 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1848 /* Restore BARs before the command register. */
1849 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1850 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1851 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1852 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1853
1854 /*
1855 * Force rewriting of prefetch registers to avoid S3 resume
1856 * issues on Intel PCI bridges that occur when these
1857 * registers are not explicitly written.
1858 */
1859 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1860 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1861 } else {
1862 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1863 }
1864}
1865
1866static void pci_restore_rebar_state(struct pci_dev *pdev)
1867{
1868 unsigned int pos, nbars, i;
1869 u32 ctrl;
1870
1871 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1872 if (!pos)
1873 return;
1874
1875 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1876 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1877
1878 for (i = 0; i < nbars; i++, pos += 8) {
1879 struct resource *res;
1880 int bar_idx, size;
1881
1882 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1883 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1884 res = pdev->resource + bar_idx;
1885 size = pci_rebar_bytes_to_size(resource_size(res));
1886 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1887 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1888 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1889 }
1890}
1891
1892/**
1893 * pci_restore_state - Restore the saved state of a PCI device
1894 * @dev: PCI device that we're dealing with
1895 */
1896void pci_restore_state(struct pci_dev *dev)
1897{
1898 if (!dev->state_saved)
1899 return;
1900
1901 /*
1902 * Restore max latencies (in the LTR capability) before enabling
1903 * LTR itself (in the PCIe capability).
1904 */
1905 pci_restore_ltr_state(dev);
1906
1907 pci_restore_pcie_state(dev);
1908 pci_restore_pasid_state(dev);
1909 pci_restore_pri_state(dev);
1910 pci_restore_ats_state(dev);
1911 pci_restore_vc_state(dev);
1912 pci_restore_rebar_state(dev);
1913 pci_restore_dpc_state(dev);
1914 pci_restore_ptm_state(dev);
1915
1916 pci_aer_clear_status(dev);
1917 pci_restore_aer_state(dev);
1918
1919 pci_restore_config_space(dev);
1920
1921 pci_restore_pcix_state(dev);
1922 pci_restore_msi_state(dev);
1923
1924 /* Restore ACS and IOV configuration state */
1925 pci_enable_acs(dev);
1926 pci_restore_iov_state(dev);
1927
1928 dev->state_saved = false;
1929}
1930EXPORT_SYMBOL(pci_restore_state);
1931
1932struct pci_saved_state {
1933 u32 config_space[16];
1934 struct pci_cap_saved_data cap[];
1935};
1936
1937/**
1938 * pci_store_saved_state - Allocate and return an opaque struct containing
1939 * the device saved state.
1940 * @dev: PCI device that we're dealing with
1941 *
1942 * Return NULL if no state or error.
1943 */
1944struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1945{
1946 struct pci_saved_state *state;
1947 struct pci_cap_saved_state *tmp;
1948 struct pci_cap_saved_data *cap;
1949 size_t size;
1950
1951 if (!dev->state_saved)
1952 return NULL;
1953
1954 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1955
1956 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1957 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1958
1959 state = kzalloc(size, GFP_KERNEL);
1960 if (!state)
1961 return NULL;
1962
1963 memcpy(state->config_space, dev->saved_config_space,
1964 sizeof(state->config_space));
1965
1966 cap = state->cap;
1967 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1968 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1969 memcpy(cap, &tmp->cap, len);
1970 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1971 }
1972 /* Empty cap_save terminates list */
1973
1974 return state;
1975}
1976EXPORT_SYMBOL_GPL(pci_store_saved_state);
1977
1978/**
1979 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1980 * @dev: PCI device that we're dealing with
1981 * @state: Saved state returned from pci_store_saved_state()
1982 */
1983int pci_load_saved_state(struct pci_dev *dev,
1984 struct pci_saved_state *state)
1985{
1986 struct pci_cap_saved_data *cap;
1987
1988 dev->state_saved = false;
1989
1990 if (!state)
1991 return 0;
1992
1993 memcpy(dev->saved_config_space, state->config_space,
1994 sizeof(state->config_space));
1995
1996 cap = state->cap;
1997 while (cap->size) {
1998 struct pci_cap_saved_state *tmp;
1999
2000 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2001 if (!tmp || tmp->cap.size != cap->size)
2002 return -EINVAL;
2003
2004 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2005 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2006 sizeof(struct pci_cap_saved_data) + cap->size);
2007 }
2008
2009 dev->state_saved = true;
2010 return 0;
2011}
2012EXPORT_SYMBOL_GPL(pci_load_saved_state);
2013
2014/**
2015 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2016 * and free the memory allocated for it.
2017 * @dev: PCI device that we're dealing with
2018 * @state: Pointer to saved state returned from pci_store_saved_state()
2019 */
2020int pci_load_and_free_saved_state(struct pci_dev *dev,
2021 struct pci_saved_state **state)
2022{
2023 int ret = pci_load_saved_state(dev, *state);
2024 kfree(*state);
2025 *state = NULL;
2026 return ret;
2027}
2028EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2029
2030int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2031{
2032 return pci_enable_resources(dev, bars);
2033}
2034
2035static int do_pci_enable_device(struct pci_dev *dev, int bars)
2036{
2037 int err;
2038 struct pci_dev *bridge;
2039 u16 cmd;
2040 u8 pin;
2041
2042 err = pci_set_power_state(dev, PCI_D0);
2043 if (err < 0 && err != -EIO)
2044 return err;
2045
2046 bridge = pci_upstream_bridge(dev);
2047 if (bridge)
2048 pcie_aspm_powersave_config_link(bridge);
2049
2050 err = pcibios_enable_device(dev, bars);
2051 if (err < 0)
2052 return err;
2053 pci_fixup_device(pci_fixup_enable, dev);
2054
2055 if (dev->msi_enabled || dev->msix_enabled)
2056 return 0;
2057
2058 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2059 if (pin) {
2060 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2061 if (cmd & PCI_COMMAND_INTX_DISABLE)
2062 pci_write_config_word(dev, PCI_COMMAND,
2063 cmd & ~PCI_COMMAND_INTX_DISABLE);
2064 }
2065
2066 return 0;
2067}
2068
2069/**
2070 * pci_reenable_device - Resume abandoned device
2071 * @dev: PCI device to be resumed
2072 *
2073 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2074 * to be called by normal code, write proper resume handler and use it instead.
2075 */
2076int pci_reenable_device(struct pci_dev *dev)
2077{
2078 if (pci_is_enabled(dev))
2079 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2080 return 0;
2081}
2082EXPORT_SYMBOL(pci_reenable_device);
2083
2084static void pci_enable_bridge(struct pci_dev *dev)
2085{
2086 struct pci_dev *bridge;
2087 int retval;
2088
2089 bridge = pci_upstream_bridge(dev);
2090 if (bridge)
2091 pci_enable_bridge(bridge);
2092
2093 if (pci_is_enabled(dev)) {
2094 if (!dev->is_busmaster)
2095 pci_set_master(dev);
2096 return;
2097 }
2098
2099 retval = pci_enable_device(dev);
2100 if (retval)
2101 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2102 retval);
2103 pci_set_master(dev);
2104}
2105
2106static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2107{
2108 struct pci_dev *bridge;
2109 int err;
2110 int i, bars = 0;
2111
2112 /*
2113 * Power state could be unknown at this point, either due to a fresh
2114 * boot or a device removal call. So get the current power state
2115 * so that things like MSI message writing will behave as expected
2116 * (e.g. if the device really is in D0 at enable time).
2117 */
2118 pci_update_current_state(dev, dev->current_state);
2119
2120 if (atomic_inc_return(&dev->enable_cnt) > 1)
2121 return 0; /* already enabled */
2122
2123 bridge = pci_upstream_bridge(dev);
2124 if (bridge)
2125 pci_enable_bridge(bridge);
2126
2127 /* only skip sriov related */
2128 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2129 if (dev->resource[i].flags & flags)
2130 bars |= (1 << i);
2131 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2132 if (dev->resource[i].flags & flags)
2133 bars |= (1 << i);
2134
2135 err = do_pci_enable_device(dev, bars);
2136 if (err < 0)
2137 atomic_dec(&dev->enable_cnt);
2138 return err;
2139}
2140
2141/**
2142 * pci_enable_device_io - Initialize a device for use with IO space
2143 * @dev: PCI device to be initialized
2144 *
2145 * Initialize device before it's used by a driver. Ask low-level code
2146 * to enable I/O resources. Wake up the device if it was suspended.
2147 * Beware, this function can fail.
2148 */
2149int pci_enable_device_io(struct pci_dev *dev)
2150{
2151 return pci_enable_device_flags(dev, IORESOURCE_IO);
2152}
2153EXPORT_SYMBOL(pci_enable_device_io);
2154
2155/**
2156 * pci_enable_device_mem - Initialize a device for use with Memory space
2157 * @dev: PCI device to be initialized
2158 *
2159 * Initialize device before it's used by a driver. Ask low-level code
2160 * to enable Memory resources. Wake up the device if it was suspended.
2161 * Beware, this function can fail.
2162 */
2163int pci_enable_device_mem(struct pci_dev *dev)
2164{
2165 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2166}
2167EXPORT_SYMBOL(pci_enable_device_mem);
2168
2169/**
2170 * pci_enable_device - Initialize device before it's used by a driver.
2171 * @dev: PCI device to be initialized
2172 *
2173 * Initialize device before it's used by a driver. Ask low-level code
2174 * to enable I/O and memory. Wake up the device if it was suspended.
2175 * Beware, this function can fail.
2176 *
2177 * Note we don't actually enable the device many times if we call
2178 * this function repeatedly (we just increment the count).
2179 */
2180int pci_enable_device(struct pci_dev *dev)
2181{
2182 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2183}
2184EXPORT_SYMBOL(pci_enable_device);
2185
2186/*
2187 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2188 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2189 * there's no need to track it separately. pci_devres is initialized
2190 * when a device is enabled using managed PCI device enable interface.
2191 */
2192struct pci_devres {
2193 unsigned int enabled:1;
2194 unsigned int pinned:1;
2195 unsigned int orig_intx:1;
2196 unsigned int restore_intx:1;
2197 unsigned int mwi:1;
2198 u32 region_mask;
2199};
2200
2201static void pcim_release(struct device *gendev, void *res)
2202{
2203 struct pci_dev *dev = to_pci_dev(gendev);
2204 struct pci_devres *this = res;
2205 int i;
2206
2207 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2208 if (this->region_mask & (1 << i))
2209 pci_release_region(dev, i);
2210
2211 if (this->mwi)
2212 pci_clear_mwi(dev);
2213
2214 if (this->restore_intx)
2215 pci_intx(dev, this->orig_intx);
2216
2217 if (this->enabled && !this->pinned)
2218 pci_disable_device(dev);
2219}
2220
2221static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2222{
2223 struct pci_devres *dr, *new_dr;
2224
2225 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2226 if (dr)
2227 return dr;
2228
2229 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2230 if (!new_dr)
2231 return NULL;
2232 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2233}
2234
2235static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2236{
2237 if (pci_is_managed(pdev))
2238 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2239 return NULL;
2240}
2241
2242/**
2243 * pcim_enable_device - Managed pci_enable_device()
2244 * @pdev: PCI device to be initialized
2245 *
2246 * Managed pci_enable_device().
2247 */
2248int pcim_enable_device(struct pci_dev *pdev)
2249{
2250 struct pci_devres *dr;
2251 int rc;
2252
2253 dr = get_pci_dr(pdev);
2254 if (unlikely(!dr))
2255 return -ENOMEM;
2256 if (dr->enabled)
2257 return 0;
2258
2259 rc = pci_enable_device(pdev);
2260 if (!rc) {
2261 pdev->is_managed = 1;
2262 dr->enabled = 1;
2263 }
2264 return rc;
2265}
2266EXPORT_SYMBOL(pcim_enable_device);
2267
2268/**
2269 * pcim_pin_device - Pin managed PCI device
2270 * @pdev: PCI device to pin
2271 *
2272 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2273 * driver detach. @pdev must have been enabled with
2274 * pcim_enable_device().
2275 */
2276void pcim_pin_device(struct pci_dev *pdev)
2277{
2278 struct pci_devres *dr;
2279
2280 dr = find_pci_dr(pdev);
2281 WARN_ON(!dr || !dr->enabled);
2282 if (dr)
2283 dr->pinned = 1;
2284}
2285EXPORT_SYMBOL(pcim_pin_device);
2286
2287/*
2288 * pcibios_device_add - provide arch specific hooks when adding device dev
2289 * @dev: the PCI device being added
2290 *
2291 * Permits the platform to provide architecture specific functionality when
2292 * devices are added. This is the default implementation. Architecture
2293 * implementations can override this.
2294 */
2295int __weak pcibios_device_add(struct pci_dev *dev)
2296{
2297 return 0;
2298}
2299
2300/**
2301 * pcibios_release_device - provide arch specific hooks when releasing
2302 * device dev
2303 * @dev: the PCI device being released
2304 *
2305 * Permits the platform to provide architecture specific functionality when
2306 * devices are released. This is the default implementation. Architecture
2307 * implementations can override this.
2308 */
2309void __weak pcibios_release_device(struct pci_dev *dev) {}
2310
2311/**
2312 * pcibios_disable_device - disable arch specific PCI resources for device dev
2313 * @dev: the PCI device to disable
2314 *
2315 * Disables architecture specific PCI resources for the device. This
2316 * is the default implementation. Architecture implementations can
2317 * override this.
2318 */
2319void __weak pcibios_disable_device(struct pci_dev *dev) {}
2320
2321/**
2322 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2323 * @irq: ISA IRQ to penalize
2324 * @active: IRQ active or not
2325 *
2326 * Permits the platform to provide architecture-specific functionality when
2327 * penalizing ISA IRQs. This is the default implementation. Architecture
2328 * implementations can override this.
2329 */
2330void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2331
2332static void do_pci_disable_device(struct pci_dev *dev)
2333{
2334 u16 pci_command;
2335
2336 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2337 if (pci_command & PCI_COMMAND_MASTER) {
2338 pci_command &= ~PCI_COMMAND_MASTER;
2339 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2340 }
2341
2342 pcibios_disable_device(dev);
2343}
2344
2345/**
2346 * pci_disable_enabled_device - Disable device without updating enable_cnt
2347 * @dev: PCI device to disable
2348 *
2349 * NOTE: This function is a backend of PCI power management routines and is
2350 * not supposed to be called drivers.
2351 */
2352void pci_disable_enabled_device(struct pci_dev *dev)
2353{
2354 if (pci_is_enabled(dev))
2355 do_pci_disable_device(dev);
2356}
2357
2358/**
2359 * pci_disable_device - Disable PCI device after use
2360 * @dev: PCI device to be disabled
2361 *
2362 * Signal to the system that the PCI device is not in use by the system
2363 * anymore. This only involves disabling PCI bus-mastering, if active.
2364 *
2365 * Note we don't actually disable the device until all callers of
2366 * pci_enable_device() have called pci_disable_device().
2367 */
2368void pci_disable_device(struct pci_dev *dev)
2369{
2370 struct pci_devres *dr;
2371
2372 dr = find_pci_dr(dev);
2373 if (dr)
2374 dr->enabled = 0;
2375
2376 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2377 "disabling already-disabled device");
2378
2379 if (atomic_dec_return(&dev->enable_cnt) != 0)
2380 return;
2381
2382 do_pci_disable_device(dev);
2383
2384 dev->is_busmaster = 0;
2385}
2386EXPORT_SYMBOL(pci_disable_device);
2387
2388/**
2389 * pcibios_set_pcie_reset_state - set reset state for device dev
2390 * @dev: the PCIe device reset
2391 * @state: Reset state to enter into
2392 *
2393 * Set the PCIe reset state for the device. This is the default
2394 * implementation. Architecture implementations can override this.
2395 */
2396int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2397 enum pcie_reset_state state)
2398{
2399 return -EINVAL;
2400}
2401
2402/**
2403 * pci_set_pcie_reset_state - set reset state for device dev
2404 * @dev: the PCIe device reset
2405 * @state: Reset state to enter into
2406 *
2407 * Sets the PCI reset state for the device.
2408 */
2409int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2410{
2411 return pcibios_set_pcie_reset_state(dev, state);
2412}
2413EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2414
2415#ifdef CONFIG_PCIEAER
2416void pcie_clear_device_status(struct pci_dev *dev)
2417{
2418 u16 sta;
2419
2420 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2421 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2422}
2423#endif
2424
2425/**
2426 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2427 * @dev: PCIe root port or event collector.
2428 */
2429void pcie_clear_root_pme_status(struct pci_dev *dev)
2430{
2431 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2432}
2433
2434/**
2435 * pci_check_pme_status - Check if given device has generated PME.
2436 * @dev: Device to check.
2437 *
2438 * Check the PME status of the device and if set, clear it and clear PME enable
2439 * (if set). Return 'true' if PME status and PME enable were both set or
2440 * 'false' otherwise.
2441 */
2442bool pci_check_pme_status(struct pci_dev *dev)
2443{
2444 int pmcsr_pos;
2445 u16 pmcsr;
2446 bool ret = false;
2447
2448 if (!dev->pm_cap)
2449 return false;
2450
2451 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2452 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2453 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2454 return false;
2455
2456 /* Clear PME status. */
2457 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2458 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2459 /* Disable PME to avoid interrupt flood. */
2460 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2461 ret = true;
2462 }
2463
2464 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2465
2466 return ret;
2467}
2468
2469/**
2470 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2471 * @dev: Device to handle.
2472 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2473 *
2474 * Check if @dev has generated PME and queue a resume request for it in that
2475 * case.
2476 */
2477static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2478{
2479 if (pme_poll_reset && dev->pme_poll)
2480 dev->pme_poll = false;
2481
2482 if (pci_check_pme_status(dev)) {
2483 pci_wakeup_event(dev);
2484 pm_request_resume(&dev->dev);
2485 }
2486 return 0;
2487}
2488
2489/**
2490 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2491 * @bus: Top bus of the subtree to walk.
2492 */
2493void pci_pme_wakeup_bus(struct pci_bus *bus)
2494{
2495 if (bus)
2496 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2497}
2498
2499
2500/**
2501 * pci_pme_capable - check the capability of PCI device to generate PME#
2502 * @dev: PCI device to handle.
2503 * @state: PCI state from which device will issue PME#.
2504 */
2505bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2506{
2507 if (!dev->pm_cap)
2508 return false;
2509
2510 return !!(dev->pme_support & (1 << state));
2511}
2512EXPORT_SYMBOL(pci_pme_capable);
2513
2514static void pci_pme_list_scan(struct work_struct *work)
2515{
2516 struct pci_pme_device *pme_dev, *n;
2517
2518 mutex_lock(&pci_pme_list_mutex);
2519 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2520 struct pci_dev *pdev = pme_dev->dev;
2521
2522 if (pdev->pme_poll) {
2523 struct pci_dev *bridge = pdev->bus->self;
2524 struct device *dev = &pdev->dev;
2525 struct device *bdev = bridge ? &bridge->dev : NULL;
2526 int bref = 0;
2527
2528 /*
2529 * If we have a bridge, it should be in an active/D0
2530 * state or the configuration space of subordinate
2531 * devices may not be accessible or stable over the
2532 * course of the call.
2533 */
2534 if (bdev) {
2535 bref = pm_runtime_get_if_active(bdev, true);
2536 if (!bref)
2537 continue;
2538
2539 if (bridge->current_state != PCI_D0)
2540 goto put_bridge;
2541 }
2542
2543 /*
2544 * The device itself should be suspended but config
2545 * space must be accessible, therefore it cannot be in
2546 * D3cold.
2547 */
2548 if (pm_runtime_suspended(dev) &&
2549 pdev->current_state != PCI_D3cold)
2550 pci_pme_wakeup(pdev, NULL);
2551
2552put_bridge:
2553 if (bref > 0)
2554 pm_runtime_put(bdev);
2555 } else {
2556 list_del(&pme_dev->list);
2557 kfree(pme_dev);
2558 }
2559 }
2560 if (!list_empty(&pci_pme_list))
2561 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2562 msecs_to_jiffies(PME_TIMEOUT));
2563 mutex_unlock(&pci_pme_list_mutex);
2564}
2565
2566static void __pci_pme_active(struct pci_dev *dev, bool enable)
2567{
2568 u16 pmcsr;
2569
2570 if (!dev->pme_support)
2571 return;
2572
2573 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2574 /* Clear PME_Status by writing 1 to it and enable PME# */
2575 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2576 if (!enable)
2577 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2578
2579 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2580}
2581
2582/**
2583 * pci_pme_restore - Restore PME configuration after config space restore.
2584 * @dev: PCI device to update.
2585 */
2586void pci_pme_restore(struct pci_dev *dev)
2587{
2588 u16 pmcsr;
2589
2590 if (!dev->pme_support)
2591 return;
2592
2593 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2594 if (dev->wakeup_prepared) {
2595 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2596 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2597 } else {
2598 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2599 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2600 }
2601 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2602}
2603
2604/**
2605 * pci_pme_active - enable or disable PCI device's PME# function
2606 * @dev: PCI device to handle.
2607 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2608 *
2609 * The caller must verify that the device is capable of generating PME# before
2610 * calling this function with @enable equal to 'true'.
2611 */
2612void pci_pme_active(struct pci_dev *dev, bool enable)
2613{
2614 __pci_pme_active(dev, enable);
2615
2616 /*
2617 * PCI (as opposed to PCIe) PME requires that the device have
2618 * its PME# line hooked up correctly. Not all hardware vendors
2619 * do this, so the PME never gets delivered and the device
2620 * remains asleep. The easiest way around this is to
2621 * periodically walk the list of suspended devices and check
2622 * whether any have their PME flag set. The assumption is that
2623 * we'll wake up often enough anyway that this won't be a huge
2624 * hit, and the power savings from the devices will still be a
2625 * win.
2626 *
2627 * Although PCIe uses in-band PME message instead of PME# line
2628 * to report PME, PME does not work for some PCIe devices in
2629 * reality. For example, there are devices that set their PME
2630 * status bits, but don't really bother to send a PME message;
2631 * there are PCI Express Root Ports that don't bother to
2632 * trigger interrupts when they receive PME messages from the
2633 * devices below. So PME poll is used for PCIe devices too.
2634 */
2635
2636 if (dev->pme_poll) {
2637 struct pci_pme_device *pme_dev;
2638 if (enable) {
2639 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2640 GFP_KERNEL);
2641 if (!pme_dev) {
2642 pci_warn(dev, "can't enable PME#\n");
2643 return;
2644 }
2645 pme_dev->dev = dev;
2646 mutex_lock(&pci_pme_list_mutex);
2647 list_add(&pme_dev->list, &pci_pme_list);
2648 if (list_is_singular(&pci_pme_list))
2649 queue_delayed_work(system_freezable_wq,
2650 &pci_pme_work,
2651 msecs_to_jiffies(PME_TIMEOUT));
2652 mutex_unlock(&pci_pme_list_mutex);
2653 } else {
2654 mutex_lock(&pci_pme_list_mutex);
2655 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2656 if (pme_dev->dev == dev) {
2657 list_del(&pme_dev->list);
2658 kfree(pme_dev);
2659 break;
2660 }
2661 }
2662 mutex_unlock(&pci_pme_list_mutex);
2663 }
2664 }
2665
2666 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2667}
2668EXPORT_SYMBOL(pci_pme_active);
2669
2670/**
2671 * __pci_enable_wake - enable PCI device as wakeup event source
2672 * @dev: PCI device affected
2673 * @state: PCI state from which device will issue wakeup events
2674 * @enable: True to enable event generation; false to disable
2675 *
2676 * This enables the device as a wakeup event source, or disables it.
2677 * When such events involves platform-specific hooks, those hooks are
2678 * called automatically by this routine.
2679 *
2680 * Devices with legacy power management (no standard PCI PM capabilities)
2681 * always require such platform hooks.
2682 *
2683 * RETURN VALUE:
2684 * 0 is returned on success
2685 * -EINVAL is returned if device is not supposed to wake up the system
2686 * Error code depending on the platform is returned if both the platform and
2687 * the native mechanism fail to enable the generation of wake-up events
2688 */
2689static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2690{
2691 int ret = 0;
2692
2693 /*
2694 * Bridges that are not power-manageable directly only signal
2695 * wakeup on behalf of subordinate devices which is set up
2696 * elsewhere, so skip them. However, bridges that are
2697 * power-manageable may signal wakeup for themselves (for example,
2698 * on a hotplug event) and they need to be covered here.
2699 */
2700 if (!pci_power_manageable(dev))
2701 return 0;
2702
2703 /* Don't do the same thing twice in a row for one device. */
2704 if (!!enable == !!dev->wakeup_prepared)
2705 return 0;
2706
2707 /*
2708 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2709 * Anderson we should be doing PME# wake enable followed by ACPI wake
2710 * enable. To disable wake-up we call the platform first, for symmetry.
2711 */
2712
2713 if (enable) {
2714 int error;
2715
2716 /*
2717 * Enable PME signaling if the device can signal PME from
2718 * D3cold regardless of whether or not it can signal PME from
2719 * the current target state, because that will allow it to
2720 * signal PME when the hierarchy above it goes into D3cold and
2721 * the device itself ends up in D3cold as a result of that.
2722 */
2723 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2724 pci_pme_active(dev, true);
2725 else
2726 ret = 1;
2727 error = platform_pci_set_wakeup(dev, true);
2728 if (ret)
2729 ret = error;
2730 if (!ret)
2731 dev->wakeup_prepared = true;
2732 } else {
2733 platform_pci_set_wakeup(dev, false);
2734 pci_pme_active(dev, false);
2735 dev->wakeup_prepared = false;
2736 }
2737
2738 return ret;
2739}
2740
2741/**
2742 * pci_enable_wake - change wakeup settings for a PCI device
2743 * @pci_dev: Target device
2744 * @state: PCI state from which device will issue wakeup events
2745 * @enable: Whether or not to enable event generation
2746 *
2747 * If @enable is set, check device_may_wakeup() for the device before calling
2748 * __pci_enable_wake() for it.
2749 */
2750int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2751{
2752 if (enable && !device_may_wakeup(&pci_dev->dev))
2753 return -EINVAL;
2754
2755 return __pci_enable_wake(pci_dev, state, enable);
2756}
2757EXPORT_SYMBOL(pci_enable_wake);
2758
2759/**
2760 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2761 * @dev: PCI device to prepare
2762 * @enable: True to enable wake-up event generation; false to disable
2763 *
2764 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2765 * and this function allows them to set that up cleanly - pci_enable_wake()
2766 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2767 * ordering constraints.
2768 *
2769 * This function only returns error code if the device is not allowed to wake
2770 * up the system from sleep or it is not capable of generating PME# from both
2771 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2772 */
2773int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2774{
2775 return pci_pme_capable(dev, PCI_D3cold) ?
2776 pci_enable_wake(dev, PCI_D3cold, enable) :
2777 pci_enable_wake(dev, PCI_D3hot, enable);
2778}
2779EXPORT_SYMBOL(pci_wake_from_d3);
2780
2781/**
2782 * pci_target_state - find an appropriate low power state for a given PCI dev
2783 * @dev: PCI device
2784 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2785 *
2786 * Use underlying platform code to find a supported low power state for @dev.
2787 * If the platform can't manage @dev, return the deepest state from which it
2788 * can generate wake events, based on any available PME info.
2789 */
2790static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2791{
2792 if (platform_pci_power_manageable(dev)) {
2793 /*
2794 * Call the platform to find the target state for the device.
2795 */
2796 pci_power_t state = platform_pci_choose_state(dev);
2797
2798 switch (state) {
2799 case PCI_POWER_ERROR:
2800 case PCI_UNKNOWN:
2801 return PCI_D3hot;
2802
2803 case PCI_D1:
2804 case PCI_D2:
2805 if (pci_no_d1d2(dev))
2806 return PCI_D3hot;
2807 }
2808
2809 return state;
2810 }
2811
2812 /*
2813 * If the device is in D3cold even though it's not power-manageable by
2814 * the platform, it may have been powered down by non-standard means.
2815 * Best to let it slumber.
2816 */
2817 if (dev->current_state == PCI_D3cold)
2818 return PCI_D3cold;
2819 else if (!dev->pm_cap)
2820 return PCI_D0;
2821
2822 if (wakeup && dev->pme_support) {
2823 pci_power_t state = PCI_D3hot;
2824
2825 /*
2826 * Find the deepest state from which the device can generate
2827 * PME#.
2828 */
2829 while (state && !(dev->pme_support & (1 << state)))
2830 state--;
2831
2832 if (state)
2833 return state;
2834 else if (dev->pme_support & 1)
2835 return PCI_D0;
2836 }
2837
2838 return PCI_D3hot;
2839}
2840
2841/**
2842 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2843 * into a sleep state
2844 * @dev: Device to handle.
2845 *
2846 * Choose the power state appropriate for the device depending on whether
2847 * it can wake up the system and/or is power manageable by the platform
2848 * (PCI_D3hot is the default) and put the device into that state.
2849 */
2850int pci_prepare_to_sleep(struct pci_dev *dev)
2851{
2852 bool wakeup = device_may_wakeup(&dev->dev);
2853 pci_power_t target_state = pci_target_state(dev, wakeup);
2854 int error;
2855
2856 if (target_state == PCI_POWER_ERROR)
2857 return -EIO;
2858
2859 pci_enable_wake(dev, target_state, wakeup);
2860
2861 error = pci_set_power_state(dev, target_state);
2862
2863 if (error)
2864 pci_enable_wake(dev, target_state, false);
2865
2866 return error;
2867}
2868EXPORT_SYMBOL(pci_prepare_to_sleep);
2869
2870/**
2871 * pci_back_from_sleep - turn PCI device on during system-wide transition
2872 * into working state
2873 * @dev: Device to handle.
2874 *
2875 * Disable device's system wake-up capability and put it into D0.
2876 */
2877int pci_back_from_sleep(struct pci_dev *dev)
2878{
2879 int ret = pci_set_power_state(dev, PCI_D0);
2880
2881 if (ret)
2882 return ret;
2883
2884 pci_enable_wake(dev, PCI_D0, false);
2885 return 0;
2886}
2887EXPORT_SYMBOL(pci_back_from_sleep);
2888
2889/**
2890 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2891 * @dev: PCI device being suspended.
2892 *
2893 * Prepare @dev to generate wake-up events at run time and put it into a low
2894 * power state.
2895 */
2896int pci_finish_runtime_suspend(struct pci_dev *dev)
2897{
2898 pci_power_t target_state;
2899 int error;
2900
2901 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2902 if (target_state == PCI_POWER_ERROR)
2903 return -EIO;
2904
2905 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2906
2907 error = pci_set_power_state(dev, target_state);
2908
2909 if (error)
2910 pci_enable_wake(dev, target_state, false);
2911
2912 return error;
2913}
2914
2915/**
2916 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2917 * @dev: Device to check.
2918 *
2919 * Return true if the device itself is capable of generating wake-up events
2920 * (through the platform or using the native PCIe PME) or if the device supports
2921 * PME and one of its upstream bridges can generate wake-up events.
2922 */
2923bool pci_dev_run_wake(struct pci_dev *dev)
2924{
2925 struct pci_bus *bus = dev->bus;
2926
2927 if (!dev->pme_support)
2928 return false;
2929
2930 /* PME-capable in principle, but not from the target power state */
2931 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2932 return false;
2933
2934 if (device_can_wakeup(&dev->dev))
2935 return true;
2936
2937 while (bus->parent) {
2938 struct pci_dev *bridge = bus->self;
2939
2940 if (device_can_wakeup(&bridge->dev))
2941 return true;
2942
2943 bus = bus->parent;
2944 }
2945
2946 /* We have reached the root bus. */
2947 if (bus->bridge)
2948 return device_can_wakeup(bus->bridge);
2949
2950 return false;
2951}
2952EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2953
2954/**
2955 * pci_dev_need_resume - Check if it is necessary to resume the device.
2956 * @pci_dev: Device to check.
2957 *
2958 * Return 'true' if the device is not runtime-suspended or it has to be
2959 * reconfigured due to wakeup settings difference between system and runtime
2960 * suspend, or the current power state of it is not suitable for the upcoming
2961 * (system-wide) transition.
2962 */
2963bool pci_dev_need_resume(struct pci_dev *pci_dev)
2964{
2965 struct device *dev = &pci_dev->dev;
2966 pci_power_t target_state;
2967
2968 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2969 return true;
2970
2971 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2972
2973 /*
2974 * If the earlier platform check has not triggered, D3cold is just power
2975 * removal on top of D3hot, so no need to resume the device in that
2976 * case.
2977 */
2978 return target_state != pci_dev->current_state &&
2979 target_state != PCI_D3cold &&
2980 pci_dev->current_state != PCI_D3hot;
2981}
2982
2983/**
2984 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2985 * @pci_dev: Device to check.
2986 *
2987 * If the device is suspended and it is not configured for system wakeup,
2988 * disable PME for it to prevent it from waking up the system unnecessarily.
2989 *
2990 * Note that if the device's power state is D3cold and the platform check in
2991 * pci_dev_need_resume() has not triggered, the device's configuration need not
2992 * be changed.
2993 */
2994void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2995{
2996 struct device *dev = &pci_dev->dev;
2997
2998 spin_lock_irq(&dev->power.lock);
2999
3000 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
3001 pci_dev->current_state < PCI_D3cold)
3002 __pci_pme_active(pci_dev, false);
3003
3004 spin_unlock_irq(&dev->power.lock);
3005}
3006
3007/**
3008 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
3009 * @pci_dev: Device to handle.
3010 *
3011 * If the device is runtime suspended and wakeup-capable, enable PME for it as
3012 * it might have been disabled during the prepare phase of system suspend if
3013 * the device was not configured for system wakeup.
3014 */
3015void pci_dev_complete_resume(struct pci_dev *pci_dev)
3016{
3017 struct device *dev = &pci_dev->dev;
3018
3019 if (!pci_dev_run_wake(pci_dev))
3020 return;
3021
3022 spin_lock_irq(&dev->power.lock);
3023
3024 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
3025 __pci_pme_active(pci_dev, true);
3026
3027 spin_unlock_irq(&dev->power.lock);
3028}
3029
3030/**
3031 * pci_choose_state - Choose the power state of a PCI device.
3032 * @dev: Target PCI device.
3033 * @state: Target state for the whole system.
3034 *
3035 * Returns PCI power state suitable for @dev and @state.
3036 */
3037pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
3038{
3039 if (state.event == PM_EVENT_ON)
3040 return PCI_D0;
3041
3042 return pci_target_state(dev, false);
3043}
3044EXPORT_SYMBOL(pci_choose_state);
3045
3046void pci_config_pm_runtime_get(struct pci_dev *pdev)
3047{
3048 struct device *dev = &pdev->dev;
3049 struct device *parent = dev->parent;
3050
3051 if (parent)
3052 pm_runtime_get_sync(parent);
3053 pm_runtime_get_noresume(dev);
3054 /*
3055 * pdev->current_state is set to PCI_D3cold during suspending,
3056 * so wait until suspending completes
3057 */
3058 pm_runtime_barrier(dev);
3059 /*
3060 * Only need to resume devices in D3cold, because config
3061 * registers are still accessible for devices suspended but
3062 * not in D3cold.
3063 */
3064 if (pdev->current_state == PCI_D3cold)
3065 pm_runtime_resume(dev);
3066}
3067
3068void pci_config_pm_runtime_put(struct pci_dev *pdev)
3069{
3070 struct device *dev = &pdev->dev;
3071 struct device *parent = dev->parent;
3072
3073 pm_runtime_put(dev);
3074 if (parent)
3075 pm_runtime_put_sync(parent);
3076}
3077
3078static const struct dmi_system_id bridge_d3_blacklist[] = {
3079#ifdef CONFIG_X86
3080 {
3081 /*
3082 * Gigabyte X299 root port is not marked as hotplug capable
3083 * which allows Linux to power manage it. However, this
3084 * confuses the BIOS SMI handler so don't power manage root
3085 * ports on that system.
3086 */
3087 .ident = "X299 DESIGNARE EX-CF",
3088 .matches = {
3089 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3090 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3091 },
3092 },
3093 {
3094 /*
3095 * Downstream device is not accessible after putting a root port
3096 * into D3cold and back into D0 on Elo Continental Z2 board
3097 */
3098 .ident = "Elo Continental Z2",
3099 .matches = {
3100 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3101 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3102 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3103 },
3104 },
3105#endif
3106 { }
3107};
3108
3109/**
3110 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3111 * @bridge: Bridge to check
3112 *
3113 * This function checks if it is possible to move the bridge to D3.
3114 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3115 */
3116bool pci_bridge_d3_possible(struct pci_dev *bridge)
3117{
3118 if (!pci_is_pcie(bridge))
3119 return false;
3120
3121 switch (pci_pcie_type(bridge)) {
3122 case PCI_EXP_TYPE_ROOT_PORT:
3123 case PCI_EXP_TYPE_UPSTREAM:
3124 case PCI_EXP_TYPE_DOWNSTREAM:
3125 if (pci_bridge_d3_disable)
3126 return false;
3127
3128 /*
3129 * Hotplug ports handled by firmware in System Management Mode
3130 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3131 */
3132 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3133 return false;
3134
3135 if (pci_bridge_d3_force)
3136 return true;
3137
3138 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3139 if (bridge->is_thunderbolt)
3140 return true;
3141
3142 /* Platform might know better if the bridge supports D3 */
3143 if (platform_pci_bridge_d3(bridge))
3144 return true;
3145
3146 /*
3147 * Hotplug ports handled natively by the OS were not validated
3148 * by vendors for runtime D3 at least until 2018 because there
3149 * was no OS support.
3150 */
3151 if (bridge->is_hotplug_bridge)
3152 return false;
3153
3154 if (dmi_check_system(bridge_d3_blacklist))
3155 return false;
3156
3157 /*
3158 * It should be safe to put PCIe ports from 2015 or newer
3159 * to D3.
3160 */
3161 if (dmi_get_bios_year() >= 2015)
3162 return true;
3163 break;
3164 }
3165
3166 return false;
3167}
3168
3169static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3170{
3171 bool *d3cold_ok = data;
3172
3173 if (/* The device needs to be allowed to go D3cold ... */
3174 dev->no_d3cold || !dev->d3cold_allowed ||
3175
3176 /* ... and if it is wakeup capable to do so from D3cold. */
3177 (device_may_wakeup(&dev->dev) &&
3178 !pci_pme_capable(dev, PCI_D3cold)) ||
3179
3180 /* If it is a bridge it must be allowed to go to D3. */
3181 !pci_power_manageable(dev))
3182
3183 *d3cold_ok = false;
3184
3185 return !*d3cold_ok;
3186}
3187
3188/*
3189 * pci_bridge_d3_update - Update bridge D3 capabilities
3190 * @dev: PCI device which is changed
3191 *
3192 * Update upstream bridge PM capabilities accordingly depending on if the
3193 * device PM configuration was changed or the device is being removed. The
3194 * change is also propagated upstream.
3195 */
3196void pci_bridge_d3_update(struct pci_dev *dev)
3197{
3198 bool remove = !device_is_registered(&dev->dev);
3199 struct pci_dev *bridge;
3200 bool d3cold_ok = true;
3201
3202 bridge = pci_upstream_bridge(dev);
3203 if (!bridge || !pci_bridge_d3_possible(bridge))
3204 return;
3205
3206 /*
3207 * If D3 is currently allowed for the bridge, removing one of its
3208 * children won't change that.
3209 */
3210 if (remove && bridge->bridge_d3)
3211 return;
3212
3213 /*
3214 * If D3 is currently allowed for the bridge and a child is added or
3215 * changed, disallowance of D3 can only be caused by that child, so
3216 * we only need to check that single device, not any of its siblings.
3217 *
3218 * If D3 is currently not allowed for the bridge, checking the device
3219 * first may allow us to skip checking its siblings.
3220 */
3221 if (!remove)
3222 pci_dev_check_d3cold(dev, &d3cold_ok);
3223
3224 /*
3225 * If D3 is currently not allowed for the bridge, this may be caused
3226 * either by the device being changed/removed or any of its siblings,
3227 * so we need to go through all children to find out if one of them
3228 * continues to block D3.
3229 */
3230 if (d3cold_ok && !bridge->bridge_d3)
3231 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3232 &d3cold_ok);
3233
3234 if (bridge->bridge_d3 != d3cold_ok) {
3235 bridge->bridge_d3 = d3cold_ok;
3236 /* Propagate change to upstream bridges */
3237 pci_bridge_d3_update(bridge);
3238 }
3239}
3240
3241/**
3242 * pci_d3cold_enable - Enable D3cold for device
3243 * @dev: PCI device to handle
3244 *
3245 * This function can be used in drivers to enable D3cold from the device
3246 * they handle. It also updates upstream PCI bridge PM capabilities
3247 * accordingly.
3248 */
3249void pci_d3cold_enable(struct pci_dev *dev)
3250{
3251 if (dev->no_d3cold) {
3252 dev->no_d3cold = false;
3253 pci_bridge_d3_update(dev);
3254 }
3255}
3256EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3257
3258/**
3259 * pci_d3cold_disable - Disable D3cold for device
3260 * @dev: PCI device to handle
3261 *
3262 * This function can be used in drivers to disable D3cold from the device
3263 * they handle. It also updates upstream PCI bridge PM capabilities
3264 * accordingly.
3265 */
3266void pci_d3cold_disable(struct pci_dev *dev)
3267{
3268 if (!dev->no_d3cold) {
3269 dev->no_d3cold = true;
3270 pci_bridge_d3_update(dev);
3271 }
3272}
3273EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3274
3275/**
3276 * pci_pm_init - Initialize PM functions of given PCI device
3277 * @dev: PCI device to handle.
3278 */
3279void pci_pm_init(struct pci_dev *dev)
3280{
3281 int pm;
3282 u16 status;
3283 u16 pmc;
3284
3285 pm_runtime_forbid(&dev->dev);
3286 pm_runtime_set_active(&dev->dev);
3287 pm_runtime_enable(&dev->dev);
3288 device_enable_async_suspend(&dev->dev);
3289 dev->wakeup_prepared = false;
3290
3291 dev->pm_cap = 0;
3292 dev->pme_support = 0;
3293
3294 /* find PCI PM capability in list */
3295 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3296 if (!pm)
3297 return;
3298 /* Check device's ability to generate PME# */
3299 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3300
3301 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3302 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3303 pmc & PCI_PM_CAP_VER_MASK);
3304 return;
3305 }
3306
3307 dev->pm_cap = pm;
3308 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3309 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3310 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3311 dev->d3cold_allowed = true;
3312
3313 dev->d1_support = false;
3314 dev->d2_support = false;
3315 if (!pci_no_d1d2(dev)) {
3316 if (pmc & PCI_PM_CAP_D1)
3317 dev->d1_support = true;
3318 if (pmc & PCI_PM_CAP_D2)
3319 dev->d2_support = true;
3320
3321 if (dev->d1_support || dev->d2_support)
3322 pci_info(dev, "supports%s%s\n",
3323 dev->d1_support ? " D1" : "",
3324 dev->d2_support ? " D2" : "");
3325 }
3326
3327 pmc &= PCI_PM_CAP_PME_MASK;
3328 if (pmc) {
3329 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3330 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3331 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3332 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3333 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3334 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3335 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3336 dev->pme_poll = true;
3337 /*
3338 * Make device's PM flags reflect the wake-up capability, but
3339 * let the user space enable it to wake up the system as needed.
3340 */
3341 device_set_wakeup_capable(&dev->dev, true);
3342 /* Disable the PME# generation functionality */
3343 pci_pme_active(dev, false);
3344 }
3345
3346 pci_read_config_word(dev, PCI_STATUS, &status);
3347 if (status & PCI_STATUS_IMM_READY)
3348 dev->imm_ready = 1;
3349}
3350
3351static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3352{
3353 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3354
3355 switch (prop) {
3356 case PCI_EA_P_MEM:
3357 case PCI_EA_P_VF_MEM:
3358 flags |= IORESOURCE_MEM;
3359 break;
3360 case PCI_EA_P_MEM_PREFETCH:
3361 case PCI_EA_P_VF_MEM_PREFETCH:
3362 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3363 break;
3364 case PCI_EA_P_IO:
3365 flags |= IORESOURCE_IO;
3366 break;
3367 default:
3368 return 0;
3369 }
3370
3371 return flags;
3372}
3373
3374static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3375 u8 prop)
3376{
3377 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3378 return &dev->resource[bei];
3379#ifdef CONFIG_PCI_IOV
3380 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3381 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3382 return &dev->resource[PCI_IOV_RESOURCES +
3383 bei - PCI_EA_BEI_VF_BAR0];
3384#endif
3385 else if (bei == PCI_EA_BEI_ROM)
3386 return &dev->resource[PCI_ROM_RESOURCE];
3387 else
3388 return NULL;
3389}
3390
3391/* Read an Enhanced Allocation (EA) entry */
3392static int pci_ea_read(struct pci_dev *dev, int offset)
3393{
3394 struct resource *res;
3395 const char *res_name;
3396 int ent_size, ent_offset = offset;
3397 resource_size_t start, end;
3398 unsigned long flags;
3399 u32 dw0, bei, base, max_offset;
3400 u8 prop;
3401 bool support_64 = (sizeof(resource_size_t) >= 8);
3402
3403 pci_read_config_dword(dev, ent_offset, &dw0);
3404 ent_offset += 4;
3405
3406 /* Entry size field indicates DWORDs after 1st */
3407 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3408
3409 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3410 goto out;
3411
3412 bei = FIELD_GET(PCI_EA_BEI, dw0);
3413 prop = FIELD_GET(PCI_EA_PP, dw0);
3414
3415 /*
3416 * If the Property is in the reserved range, try the Secondary
3417 * Property instead.
3418 */
3419 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3420 prop = FIELD_GET(PCI_EA_SP, dw0);
3421 if (prop > PCI_EA_P_BRIDGE_IO)
3422 goto out;
3423
3424 res = pci_ea_get_resource(dev, bei, prop);
3425 res_name = pci_resource_name(dev, bei);
3426 if (!res) {
3427 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3428 goto out;
3429 }
3430
3431 flags = pci_ea_flags(dev, prop);
3432 if (!flags) {
3433 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3434 goto out;
3435 }
3436
3437 /* Read Base */
3438 pci_read_config_dword(dev, ent_offset, &base);
3439 start = (base & PCI_EA_FIELD_MASK);
3440 ent_offset += 4;
3441
3442 /* Read MaxOffset */
3443 pci_read_config_dword(dev, ent_offset, &max_offset);
3444 ent_offset += 4;
3445
3446 /* Read Base MSBs (if 64-bit entry) */
3447 if (base & PCI_EA_IS_64) {
3448 u32 base_upper;
3449
3450 pci_read_config_dword(dev, ent_offset, &base_upper);
3451 ent_offset += 4;
3452
3453 flags |= IORESOURCE_MEM_64;
3454
3455 /* entry starts above 32-bit boundary, can't use */
3456 if (!support_64 && base_upper)
3457 goto out;
3458
3459 if (support_64)
3460 start |= ((u64)base_upper << 32);
3461 }
3462
3463 end = start + (max_offset | 0x03);
3464
3465 /* Read MaxOffset MSBs (if 64-bit entry) */
3466 if (max_offset & PCI_EA_IS_64) {
3467 u32 max_offset_upper;
3468
3469 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3470 ent_offset += 4;
3471
3472 flags |= IORESOURCE_MEM_64;
3473
3474 /* entry too big, can't use */
3475 if (!support_64 && max_offset_upper)
3476 goto out;
3477
3478 if (support_64)
3479 end += ((u64)max_offset_upper << 32);
3480 }
3481
3482 if (end < start) {
3483 pci_err(dev, "EA Entry crosses address boundary\n");
3484 goto out;
3485 }
3486
3487 if (ent_size != ent_offset - offset) {
3488 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3489 ent_size, ent_offset - offset);
3490 goto out;
3491 }
3492
3493 res->name = pci_name(dev);
3494 res->start = start;
3495 res->end = end;
3496 res->flags = flags;
3497
3498 if (bei <= PCI_EA_BEI_BAR5)
3499 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3500 res_name, res, prop);
3501 else if (bei == PCI_EA_BEI_ROM)
3502 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3503 res_name, res, prop);
3504 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3505 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3506 res_name, res, prop);
3507 else
3508 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3509 bei, res, prop);
3510
3511out:
3512 return offset + ent_size;
3513}
3514
3515/* Enhanced Allocation Initialization */
3516void pci_ea_init(struct pci_dev *dev)
3517{
3518 int ea;
3519 u8 num_ent;
3520 int offset;
3521 int i;
3522
3523 /* find PCI EA capability in list */
3524 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3525 if (!ea)
3526 return;
3527
3528 /* determine the number of entries */
3529 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3530 &num_ent);
3531 num_ent &= PCI_EA_NUM_ENT_MASK;
3532
3533 offset = ea + PCI_EA_FIRST_ENT;
3534
3535 /* Skip DWORD 2 for type 1 functions */
3536 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3537 offset += 4;
3538
3539 /* parse each EA entry */
3540 for (i = 0; i < num_ent; ++i)
3541 offset = pci_ea_read(dev, offset);
3542}
3543
3544static void pci_add_saved_cap(struct pci_dev *pci_dev,
3545 struct pci_cap_saved_state *new_cap)
3546{
3547 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3548}
3549
3550/**
3551 * _pci_add_cap_save_buffer - allocate buffer for saving given
3552 * capability registers
3553 * @dev: the PCI device
3554 * @cap: the capability to allocate the buffer for
3555 * @extended: Standard or Extended capability ID
3556 * @size: requested size of the buffer
3557 */
3558static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3559 bool extended, unsigned int size)
3560{
3561 int pos;
3562 struct pci_cap_saved_state *save_state;
3563
3564 if (extended)
3565 pos = pci_find_ext_capability(dev, cap);
3566 else
3567 pos = pci_find_capability(dev, cap);
3568
3569 if (!pos)
3570 return 0;
3571
3572 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3573 if (!save_state)
3574 return -ENOMEM;
3575
3576 save_state->cap.cap_nr = cap;
3577 save_state->cap.cap_extended = extended;
3578 save_state->cap.size = size;
3579 pci_add_saved_cap(dev, save_state);
3580
3581 return 0;
3582}
3583
3584int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3585{
3586 return _pci_add_cap_save_buffer(dev, cap, false, size);
3587}
3588
3589int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3590{
3591 return _pci_add_cap_save_buffer(dev, cap, true, size);
3592}
3593
3594/**
3595 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3596 * @dev: the PCI device
3597 */
3598void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3599{
3600 int error;
3601
3602 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3603 PCI_EXP_SAVE_REGS * sizeof(u16));
3604 if (error)
3605 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3606
3607 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3608 if (error)
3609 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3610
3611 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3612 2 * sizeof(u16));
3613 if (error)
3614 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3615
3616 pci_allocate_vc_save_buffers(dev);
3617}
3618
3619void pci_free_cap_save_buffers(struct pci_dev *dev)
3620{
3621 struct pci_cap_saved_state *tmp;
3622 struct hlist_node *n;
3623
3624 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3625 kfree(tmp);
3626}
3627
3628/**
3629 * pci_configure_ari - enable or disable ARI forwarding
3630 * @dev: the PCI device
3631 *
3632 * If @dev and its upstream bridge both support ARI, enable ARI in the
3633 * bridge. Otherwise, disable ARI in the bridge.
3634 */
3635void pci_configure_ari(struct pci_dev *dev)
3636{
3637 u32 cap;
3638 struct pci_dev *bridge;
3639
3640 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3641 return;
3642
3643 bridge = dev->bus->self;
3644 if (!bridge)
3645 return;
3646
3647 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3648 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3649 return;
3650
3651 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3652 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3653 PCI_EXP_DEVCTL2_ARI);
3654 bridge->ari_enabled = 1;
3655 } else {
3656 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3657 PCI_EXP_DEVCTL2_ARI);
3658 bridge->ari_enabled = 0;
3659 }
3660}
3661
3662static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3663{
3664 int pos;
3665 u16 cap, ctrl;
3666
3667 pos = pdev->acs_cap;
3668 if (!pos)
3669 return false;
3670
3671 /*
3672 * Except for egress control, capabilities are either required
3673 * or only required if controllable. Features missing from the
3674 * capability field can therefore be assumed as hard-wired enabled.
3675 */
3676 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3677 acs_flags &= (cap | PCI_ACS_EC);
3678
3679 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3680 return (ctrl & acs_flags) == acs_flags;
3681}
3682
3683/**
3684 * pci_acs_enabled - test ACS against required flags for a given device
3685 * @pdev: device to test
3686 * @acs_flags: required PCI ACS flags
3687 *
3688 * Return true if the device supports the provided flags. Automatically
3689 * filters out flags that are not implemented on multifunction devices.
3690 *
3691 * Note that this interface checks the effective ACS capabilities of the
3692 * device rather than the actual capabilities. For instance, most single
3693 * function endpoints are not required to support ACS because they have no
3694 * opportunity for peer-to-peer access. We therefore return 'true'
3695 * regardless of whether the device exposes an ACS capability. This makes
3696 * it much easier for callers of this function to ignore the actual type
3697 * or topology of the device when testing ACS support.
3698 */
3699bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3700{
3701 int ret;
3702
3703 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3704 if (ret >= 0)
3705 return ret > 0;
3706
3707 /*
3708 * Conventional PCI and PCI-X devices never support ACS, either
3709 * effectively or actually. The shared bus topology implies that
3710 * any device on the bus can receive or snoop DMA.
3711 */
3712 if (!pci_is_pcie(pdev))
3713 return false;
3714
3715 switch (pci_pcie_type(pdev)) {
3716 /*
3717 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3718 * but since their primary interface is PCI/X, we conservatively
3719 * handle them as we would a non-PCIe device.
3720 */
3721 case PCI_EXP_TYPE_PCIE_BRIDGE:
3722 /*
3723 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3724 * applicable... must never implement an ACS Extended Capability...".
3725 * This seems arbitrary, but we take a conservative interpretation
3726 * of this statement.
3727 */
3728 case PCI_EXP_TYPE_PCI_BRIDGE:
3729 case PCI_EXP_TYPE_RC_EC:
3730 return false;
3731 /*
3732 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3733 * implement ACS in order to indicate their peer-to-peer capabilities,
3734 * regardless of whether they are single- or multi-function devices.
3735 */
3736 case PCI_EXP_TYPE_DOWNSTREAM:
3737 case PCI_EXP_TYPE_ROOT_PORT:
3738 return pci_acs_flags_enabled(pdev, acs_flags);
3739 /*
3740 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3741 * implemented by the remaining PCIe types to indicate peer-to-peer
3742 * capabilities, but only when they are part of a multifunction
3743 * device. The footnote for section 6.12 indicates the specific
3744 * PCIe types included here.
3745 */
3746 case PCI_EXP_TYPE_ENDPOINT:
3747 case PCI_EXP_TYPE_UPSTREAM:
3748 case PCI_EXP_TYPE_LEG_END:
3749 case PCI_EXP_TYPE_RC_END:
3750 if (!pdev->multifunction)
3751 break;
3752
3753 return pci_acs_flags_enabled(pdev, acs_flags);
3754 }
3755
3756 /*
3757 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3758 * to single function devices with the exception of downstream ports.
3759 */
3760 return true;
3761}
3762
3763/**
3764 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3765 * @start: starting downstream device
3766 * @end: ending upstream device or NULL to search to the root bus
3767 * @acs_flags: required flags
3768 *
3769 * Walk up a device tree from start to end testing PCI ACS support. If
3770 * any step along the way does not support the required flags, return false.
3771 */
3772bool pci_acs_path_enabled(struct pci_dev *start,
3773 struct pci_dev *end, u16 acs_flags)
3774{
3775 struct pci_dev *pdev, *parent = start;
3776
3777 do {
3778 pdev = parent;
3779
3780 if (!pci_acs_enabled(pdev, acs_flags))
3781 return false;
3782
3783 if (pci_is_root_bus(pdev->bus))
3784 return (end == NULL);
3785
3786 parent = pdev->bus->self;
3787 } while (pdev != end);
3788
3789 return true;
3790}
3791
3792/**
3793 * pci_acs_init - Initialize ACS if hardware supports it
3794 * @dev: the PCI device
3795 */
3796void pci_acs_init(struct pci_dev *dev)
3797{
3798 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3799
3800 /*
3801 * Attempt to enable ACS regardless of capability because some Root
3802 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3803 * the standard ACS capability but still support ACS via those
3804 * quirks.
3805 */
3806 pci_enable_acs(dev);
3807}
3808
3809/**
3810 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3811 * @pdev: PCI device
3812 * @bar: BAR to find
3813 *
3814 * Helper to find the position of the ctrl register for a BAR.
3815 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3816 * Returns -ENOENT if no ctrl register for the BAR could be found.
3817 */
3818static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3819{
3820 unsigned int pos, nbars, i;
3821 u32 ctrl;
3822
3823 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3824 if (!pos)
3825 return -ENOTSUPP;
3826
3827 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3828 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3829
3830 for (i = 0; i < nbars; i++, pos += 8) {
3831 int bar_idx;
3832
3833 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3834 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3835 if (bar_idx == bar)
3836 return pos;
3837 }
3838
3839 return -ENOENT;
3840}
3841
3842/**
3843 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3844 * @pdev: PCI device
3845 * @bar: BAR to query
3846 *
3847 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3848 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3849 */
3850u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3851{
3852 int pos;
3853 u32 cap;
3854
3855 pos = pci_rebar_find_pos(pdev, bar);
3856 if (pos < 0)
3857 return 0;
3858
3859 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3860 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3861
3862 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3863 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3864 bar == 0 && cap == 0x700)
3865 return 0x3f00;
3866
3867 return cap;
3868}
3869EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3870
3871/**
3872 * pci_rebar_get_current_size - get the current size of a BAR
3873 * @pdev: PCI device
3874 * @bar: BAR to set size to
3875 *
3876 * Read the size of a BAR from the resizable BAR config.
3877 * Returns size if found or negative error code.
3878 */
3879int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3880{
3881 int pos;
3882 u32 ctrl;
3883
3884 pos = pci_rebar_find_pos(pdev, bar);
3885 if (pos < 0)
3886 return pos;
3887
3888 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3889 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3890}
3891
3892/**
3893 * pci_rebar_set_size - set a new size for a BAR
3894 * @pdev: PCI device
3895 * @bar: BAR to set size to
3896 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3897 *
3898 * Set the new size of a BAR as defined in the spec.
3899 * Returns zero if resizing was successful, error code otherwise.
3900 */
3901int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3902{
3903 int pos;
3904 u32 ctrl;
3905
3906 pos = pci_rebar_find_pos(pdev, bar);
3907 if (pos < 0)
3908 return pos;
3909
3910 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3911 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3912 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3913 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3914 return 0;
3915}
3916
3917/**
3918 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3919 * @dev: the PCI device
3920 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3921 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3922 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3923 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3924 *
3925 * Return 0 if all upstream bridges support AtomicOp routing, egress
3926 * blocking is disabled on all upstream ports, and the root port supports
3927 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3928 * AtomicOp completion), or negative otherwise.
3929 */
3930int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3931{
3932 struct pci_bus *bus = dev->bus;
3933 struct pci_dev *bridge;
3934 u32 cap, ctl2;
3935
3936 /*
3937 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3938 * in Device Control 2 is reserved in VFs and the PF value applies
3939 * to all associated VFs.
3940 */
3941 if (dev->is_virtfn)
3942 return -EINVAL;
3943
3944 if (!pci_is_pcie(dev))
3945 return -EINVAL;
3946
3947 /*
3948 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3949 * AtomicOp requesters. For now, we only support endpoints as
3950 * requesters and root ports as completers. No endpoints as
3951 * completers, and no peer-to-peer.
3952 */
3953
3954 switch (pci_pcie_type(dev)) {
3955 case PCI_EXP_TYPE_ENDPOINT:
3956 case PCI_EXP_TYPE_LEG_END:
3957 case PCI_EXP_TYPE_RC_END:
3958 break;
3959 default:
3960 return -EINVAL;
3961 }
3962
3963 while (bus->parent) {
3964 bridge = bus->self;
3965
3966 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3967
3968 switch (pci_pcie_type(bridge)) {
3969 /* Ensure switch ports support AtomicOp routing */
3970 case PCI_EXP_TYPE_UPSTREAM:
3971 case PCI_EXP_TYPE_DOWNSTREAM:
3972 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3973 return -EINVAL;
3974 break;
3975
3976 /* Ensure root port supports all the sizes we care about */
3977 case PCI_EXP_TYPE_ROOT_PORT:
3978 if ((cap & cap_mask) != cap_mask)
3979 return -EINVAL;
3980 break;
3981 }
3982
3983 /* Ensure upstream ports don't block AtomicOps on egress */
3984 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3985 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3986 &ctl2);
3987 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3988 return -EINVAL;
3989 }
3990
3991 bus = bus->parent;
3992 }
3993
3994 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3995 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3996 return 0;
3997}
3998EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3999
4000/**
4001 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
4002 * @dev: the PCI device
4003 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
4004 *
4005 * Perform INTx swizzling for a device behind one level of bridge. This is
4006 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
4007 * behind bridges on add-in cards. For devices with ARI enabled, the slot
4008 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
4009 * the PCI Express Base Specification, Revision 2.1)
4010 */
4011u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
4012{
4013 int slot;
4014
4015 if (pci_ari_enabled(dev->bus))
4016 slot = 0;
4017 else
4018 slot = PCI_SLOT(dev->devfn);
4019
4020 return (((pin - 1) + slot) % 4) + 1;
4021}
4022
4023int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
4024{
4025 u8 pin;
4026
4027 pin = dev->pin;
4028 if (!pin)
4029 return -1;
4030
4031 while (!pci_is_root_bus(dev->bus)) {
4032 pin = pci_swizzle_interrupt_pin(dev, pin);
4033 dev = dev->bus->self;
4034 }
4035 *bridge = dev;
4036 return pin;
4037}
4038
4039/**
4040 * pci_common_swizzle - swizzle INTx all the way to root bridge
4041 * @dev: the PCI device
4042 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
4043 *
4044 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
4045 * bridges all the way up to a PCI root bus.
4046 */
4047u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
4048{
4049 u8 pin = *pinp;
4050
4051 while (!pci_is_root_bus(dev->bus)) {
4052 pin = pci_swizzle_interrupt_pin(dev, pin);
4053 dev = dev->bus->self;
4054 }
4055 *pinp = pin;
4056 return PCI_SLOT(dev->devfn);
4057}
4058EXPORT_SYMBOL_GPL(pci_common_swizzle);
4059
4060/**
4061 * pci_release_region - Release a PCI bar
4062 * @pdev: PCI device whose resources were previously reserved by
4063 * pci_request_region()
4064 * @bar: BAR to release
4065 *
4066 * Releases the PCI I/O and memory resources previously reserved by a
4067 * successful call to pci_request_region(). Call this function only
4068 * after all use of the PCI regions has ceased.
4069 */
4070void pci_release_region(struct pci_dev *pdev, int bar)
4071{
4072 struct pci_devres *dr;
4073
4074 if (pci_resource_len(pdev, bar) == 0)
4075 return;
4076 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4077 release_region(pci_resource_start(pdev, bar),
4078 pci_resource_len(pdev, bar));
4079 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4080 release_mem_region(pci_resource_start(pdev, bar),
4081 pci_resource_len(pdev, bar));
4082
4083 dr = find_pci_dr(pdev);
4084 if (dr)
4085 dr->region_mask &= ~(1 << bar);
4086}
4087EXPORT_SYMBOL(pci_release_region);
4088
4089/**
4090 * __pci_request_region - Reserved PCI I/O and memory resource
4091 * @pdev: PCI device whose resources are to be reserved
4092 * @bar: BAR to be reserved
4093 * @res_name: Name to be associated with resource.
4094 * @exclusive: whether the region access is exclusive or not
4095 *
4096 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4097 * being reserved by owner @res_name. Do not access any
4098 * address inside the PCI regions unless this call returns
4099 * successfully.
4100 *
4101 * If @exclusive is set, then the region is marked so that userspace
4102 * is explicitly not allowed to map the resource via /dev/mem or
4103 * sysfs MMIO access.
4104 *
4105 * Returns 0 on success, or %EBUSY on error. A warning
4106 * message is also printed on failure.
4107 */
4108static int __pci_request_region(struct pci_dev *pdev, int bar,
4109 const char *res_name, int exclusive)
4110{
4111 struct pci_devres *dr;
4112
4113 if (pci_resource_len(pdev, bar) == 0)
4114 return 0;
4115
4116 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4117 if (!request_region(pci_resource_start(pdev, bar),
4118 pci_resource_len(pdev, bar), res_name))
4119 goto err_out;
4120 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4121 if (!__request_mem_region(pci_resource_start(pdev, bar),
4122 pci_resource_len(pdev, bar), res_name,
4123 exclusive))
4124 goto err_out;
4125 }
4126
4127 dr = find_pci_dr(pdev);
4128 if (dr)
4129 dr->region_mask |= 1 << bar;
4130
4131 return 0;
4132
4133err_out:
4134 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4135 &pdev->resource[bar]);
4136 return -EBUSY;
4137}
4138
4139/**
4140 * pci_request_region - Reserve PCI I/O and memory resource
4141 * @pdev: PCI device whose resources are to be reserved
4142 * @bar: BAR to be reserved
4143 * @res_name: Name to be associated with resource
4144 *
4145 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4146 * being reserved by owner @res_name. Do not access any
4147 * address inside the PCI regions unless this call returns
4148 * successfully.
4149 *
4150 * Returns 0 on success, or %EBUSY on error. A warning
4151 * message is also printed on failure.
4152 */
4153int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4154{
4155 return __pci_request_region(pdev, bar, res_name, 0);
4156}
4157EXPORT_SYMBOL(pci_request_region);
4158
4159/**
4160 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4161 * @pdev: PCI device whose resources were previously reserved
4162 * @bars: Bitmask of BARs to be released
4163 *
4164 * Release selected PCI I/O and memory resources previously reserved.
4165 * Call this function only after all use of the PCI regions has ceased.
4166 */
4167void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4168{
4169 int i;
4170
4171 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4172 if (bars & (1 << i))
4173 pci_release_region(pdev, i);
4174}
4175EXPORT_SYMBOL(pci_release_selected_regions);
4176
4177static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4178 const char *res_name, int excl)
4179{
4180 int i;
4181
4182 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4183 if (bars & (1 << i))
4184 if (__pci_request_region(pdev, i, res_name, excl))
4185 goto err_out;
4186 return 0;
4187
4188err_out:
4189 while (--i >= 0)
4190 if (bars & (1 << i))
4191 pci_release_region(pdev, i);
4192
4193 return -EBUSY;
4194}
4195
4196
4197/**
4198 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4199 * @pdev: PCI device whose resources are to be reserved
4200 * @bars: Bitmask of BARs to be requested
4201 * @res_name: Name to be associated with resource
4202 */
4203int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4204 const char *res_name)
4205{
4206 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4207}
4208EXPORT_SYMBOL(pci_request_selected_regions);
4209
4210int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4211 const char *res_name)
4212{
4213 return __pci_request_selected_regions(pdev, bars, res_name,
4214 IORESOURCE_EXCLUSIVE);
4215}
4216EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4217
4218/**
4219 * pci_release_regions - Release reserved PCI I/O and memory resources
4220 * @pdev: PCI device whose resources were previously reserved by
4221 * pci_request_regions()
4222 *
4223 * Releases all PCI I/O and memory resources previously reserved by a
4224 * successful call to pci_request_regions(). Call this function only
4225 * after all use of the PCI regions has ceased.
4226 */
4227
4228void pci_release_regions(struct pci_dev *pdev)
4229{
4230 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4231}
4232EXPORT_SYMBOL(pci_release_regions);
4233
4234/**
4235 * pci_request_regions - Reserve PCI I/O and memory resources
4236 * @pdev: PCI device whose resources are to be reserved
4237 * @res_name: Name to be associated with resource.
4238 *
4239 * Mark all PCI regions associated with PCI device @pdev as
4240 * being reserved by owner @res_name. Do not access any
4241 * address inside the PCI regions unless this call returns
4242 * successfully.
4243 *
4244 * Returns 0 on success, or %EBUSY on error. A warning
4245 * message is also printed on failure.
4246 */
4247int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4248{
4249 return pci_request_selected_regions(pdev,
4250 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4251}
4252EXPORT_SYMBOL(pci_request_regions);
4253
4254/**
4255 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4256 * @pdev: PCI device whose resources are to be reserved
4257 * @res_name: Name to be associated with resource.
4258 *
4259 * Mark all PCI regions associated with PCI device @pdev as being reserved
4260 * by owner @res_name. Do not access any address inside the PCI regions
4261 * unless this call returns successfully.
4262 *
4263 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4264 * and the sysfs MMIO access will not be allowed.
4265 *
4266 * Returns 0 on success, or %EBUSY on error. A warning message is also
4267 * printed on failure.
4268 */
4269int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4270{
4271 return pci_request_selected_regions_exclusive(pdev,
4272 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4273}
4274EXPORT_SYMBOL(pci_request_regions_exclusive);
4275
4276/*
4277 * Record the PCI IO range (expressed as CPU physical address + size).
4278 * Return a negative value if an error has occurred, zero otherwise
4279 */
4280int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4281 resource_size_t size)
4282{
4283 int ret = 0;
4284#ifdef PCI_IOBASE
4285 struct logic_pio_hwaddr *range;
4286
4287 if (!size || addr + size < addr)
4288 return -EINVAL;
4289
4290 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4291 if (!range)
4292 return -ENOMEM;
4293
4294 range->fwnode = fwnode;
4295 range->size = size;
4296 range->hw_start = addr;
4297 range->flags = LOGIC_PIO_CPU_MMIO;
4298
4299 ret = logic_pio_register_range(range);
4300 if (ret)
4301 kfree(range);
4302
4303 /* Ignore duplicates due to deferred probing */
4304 if (ret == -EEXIST)
4305 ret = 0;
4306#endif
4307
4308 return ret;
4309}
4310
4311phys_addr_t pci_pio_to_address(unsigned long pio)
4312{
4313#ifdef PCI_IOBASE
4314 if (pio < MMIO_UPPER_LIMIT)
4315 return logic_pio_to_hwaddr(pio);
4316#endif
4317
4318 return (phys_addr_t) OF_BAD_ADDR;
4319}
4320EXPORT_SYMBOL_GPL(pci_pio_to_address);
4321
4322unsigned long __weak pci_address_to_pio(phys_addr_t address)
4323{
4324#ifdef PCI_IOBASE
4325 return logic_pio_trans_cpuaddr(address);
4326#else
4327 if (address > IO_SPACE_LIMIT)
4328 return (unsigned long)-1;
4329
4330 return (unsigned long) address;
4331#endif
4332}
4333
4334/**
4335 * pci_remap_iospace - Remap the memory mapped I/O space
4336 * @res: Resource describing the I/O space
4337 * @phys_addr: physical address of range to be mapped
4338 *
4339 * Remap the memory mapped I/O space described by the @res and the CPU
4340 * physical address @phys_addr into virtual address space. Only
4341 * architectures that have memory mapped IO functions defined (and the
4342 * PCI_IOBASE value defined) should call this function.
4343 */
4344#ifndef pci_remap_iospace
4345int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4346{
4347#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4348 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4349
4350 if (!(res->flags & IORESOURCE_IO))
4351 return -EINVAL;
4352
4353 if (res->end > IO_SPACE_LIMIT)
4354 return -EINVAL;
4355
4356 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4357 pgprot_device(PAGE_KERNEL));
4358#else
4359 /*
4360 * This architecture does not have memory mapped I/O space,
4361 * so this function should never be called
4362 */
4363 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4364 return -ENODEV;
4365#endif
4366}
4367EXPORT_SYMBOL(pci_remap_iospace);
4368#endif
4369
4370/**
4371 * pci_unmap_iospace - Unmap the memory mapped I/O space
4372 * @res: resource to be unmapped
4373 *
4374 * Unmap the CPU virtual address @res from virtual address space. Only
4375 * architectures that have memory mapped IO functions defined (and the
4376 * PCI_IOBASE value defined) should call this function.
4377 */
4378void pci_unmap_iospace(struct resource *res)
4379{
4380#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4381 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4382
4383 vunmap_range(vaddr, vaddr + resource_size(res));
4384#endif
4385}
4386EXPORT_SYMBOL(pci_unmap_iospace);
4387
4388static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4389{
4390 struct resource **res = ptr;
4391
4392 pci_unmap_iospace(*res);
4393}
4394
4395/**
4396 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4397 * @dev: Generic device to remap IO address for
4398 * @res: Resource describing the I/O space
4399 * @phys_addr: physical address of range to be mapped
4400 *
4401 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4402 * detach.
4403 */
4404int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4405 phys_addr_t phys_addr)
4406{
4407 const struct resource **ptr;
4408 int error;
4409
4410 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4411 if (!ptr)
4412 return -ENOMEM;
4413
4414 error = pci_remap_iospace(res, phys_addr);
4415 if (error) {
4416 devres_free(ptr);
4417 } else {
4418 *ptr = res;
4419 devres_add(dev, ptr);
4420 }
4421
4422 return error;
4423}
4424EXPORT_SYMBOL(devm_pci_remap_iospace);
4425
4426/**
4427 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4428 * @dev: Generic device to remap IO address for
4429 * @offset: Resource address to map
4430 * @size: Size of map
4431 *
4432 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4433 * detach.
4434 */
4435void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4436 resource_size_t offset,
4437 resource_size_t size)
4438{
4439 void __iomem **ptr, *addr;
4440
4441 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4442 if (!ptr)
4443 return NULL;
4444
4445 addr = pci_remap_cfgspace(offset, size);
4446 if (addr) {
4447 *ptr = addr;
4448 devres_add(dev, ptr);
4449 } else
4450 devres_free(ptr);
4451
4452 return addr;
4453}
4454EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4455
4456/**
4457 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4458 * @dev: generic device to handle the resource for
4459 * @res: configuration space resource to be handled
4460 *
4461 * Checks that a resource is a valid memory region, requests the memory
4462 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4463 * proper PCI configuration space memory attributes are guaranteed.
4464 *
4465 * All operations are managed and will be undone on driver detach.
4466 *
4467 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4468 * on failure. Usage example::
4469 *
4470 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4471 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4472 * if (IS_ERR(base))
4473 * return PTR_ERR(base);
4474 */
4475void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4476 struct resource *res)
4477{
4478 resource_size_t size;
4479 const char *name;
4480 void __iomem *dest_ptr;
4481
4482 BUG_ON(!dev);
4483
4484 if (!res || resource_type(res) != IORESOURCE_MEM) {
4485 dev_err(dev, "invalid resource\n");
4486 return IOMEM_ERR_PTR(-EINVAL);
4487 }
4488
4489 size = resource_size(res);
4490
4491 if (res->name)
4492 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4493 res->name);
4494 else
4495 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4496 if (!name)
4497 return IOMEM_ERR_PTR(-ENOMEM);
4498
4499 if (!devm_request_mem_region(dev, res->start, size, name)) {
4500 dev_err(dev, "can't request region for resource %pR\n", res);
4501 return IOMEM_ERR_PTR(-EBUSY);
4502 }
4503
4504 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4505 if (!dest_ptr) {
4506 dev_err(dev, "ioremap failed for resource %pR\n", res);
4507 devm_release_mem_region(dev, res->start, size);
4508 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4509 }
4510
4511 return dest_ptr;
4512}
4513EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4514
4515static void __pci_set_master(struct pci_dev *dev, bool enable)
4516{
4517 u16 old_cmd, cmd;
4518
4519 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4520 if (enable)
4521 cmd = old_cmd | PCI_COMMAND_MASTER;
4522 else
4523 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4524 if (cmd != old_cmd) {
4525 pci_dbg(dev, "%s bus mastering\n",
4526 enable ? "enabling" : "disabling");
4527 pci_write_config_word(dev, PCI_COMMAND, cmd);
4528 }
4529 dev->is_busmaster = enable;
4530}
4531
4532/**
4533 * pcibios_setup - process "pci=" kernel boot arguments
4534 * @str: string used to pass in "pci=" kernel boot arguments
4535 *
4536 * Process kernel boot arguments. This is the default implementation.
4537 * Architecture specific implementations can override this as necessary.
4538 */
4539char * __weak __init pcibios_setup(char *str)
4540{
4541 return str;
4542}
4543
4544/**
4545 * pcibios_set_master - enable PCI bus-mastering for device dev
4546 * @dev: the PCI device to enable
4547 *
4548 * Enables PCI bus-mastering for the device. This is the default
4549 * implementation. Architecture specific implementations can override
4550 * this if necessary.
4551 */
4552void __weak pcibios_set_master(struct pci_dev *dev)
4553{
4554 u8 lat;
4555
4556 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4557 if (pci_is_pcie(dev))
4558 return;
4559
4560 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4561 if (lat < 16)
4562 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4563 else if (lat > pcibios_max_latency)
4564 lat = pcibios_max_latency;
4565 else
4566 return;
4567
4568 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4569}
4570
4571/**
4572 * pci_set_master - enables bus-mastering for device dev
4573 * @dev: the PCI device to enable
4574 *
4575 * Enables bus-mastering on the device and calls pcibios_set_master()
4576 * to do the needed arch specific settings.
4577 */
4578void pci_set_master(struct pci_dev *dev)
4579{
4580 __pci_set_master(dev, true);
4581 pcibios_set_master(dev);
4582}
4583EXPORT_SYMBOL(pci_set_master);
4584
4585/**
4586 * pci_clear_master - disables bus-mastering for device dev
4587 * @dev: the PCI device to disable
4588 */
4589void pci_clear_master(struct pci_dev *dev)
4590{
4591 __pci_set_master(dev, false);
4592}
4593EXPORT_SYMBOL(pci_clear_master);
4594
4595/**
4596 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4597 * @dev: the PCI device for which MWI is to be enabled
4598 *
4599 * Helper function for pci_set_mwi.
4600 * Originally copied from drivers/net/acenic.c.
4601 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4602 *
4603 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4604 */
4605int pci_set_cacheline_size(struct pci_dev *dev)
4606{
4607 u8 cacheline_size;
4608
4609 if (!pci_cache_line_size)
4610 return -EINVAL;
4611
4612 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4613 equal to or multiple of the right value. */
4614 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4615 if (cacheline_size >= pci_cache_line_size &&
4616 (cacheline_size % pci_cache_line_size) == 0)
4617 return 0;
4618
4619 /* Write the correct value. */
4620 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4621 /* Read it back. */
4622 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4623 if (cacheline_size == pci_cache_line_size)
4624 return 0;
4625
4626 pci_dbg(dev, "cache line size of %d is not supported\n",
4627 pci_cache_line_size << 2);
4628
4629 return -EINVAL;
4630}
4631EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4632
4633/**
4634 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4635 * @dev: the PCI device for which MWI is enabled
4636 *
4637 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4638 *
4639 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4640 */
4641int pci_set_mwi(struct pci_dev *dev)
4642{
4643#ifdef PCI_DISABLE_MWI
4644 return 0;
4645#else
4646 int rc;
4647 u16 cmd;
4648
4649 rc = pci_set_cacheline_size(dev);
4650 if (rc)
4651 return rc;
4652
4653 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4654 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4655 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4656 cmd |= PCI_COMMAND_INVALIDATE;
4657 pci_write_config_word(dev, PCI_COMMAND, cmd);
4658 }
4659 return 0;
4660#endif
4661}
4662EXPORT_SYMBOL(pci_set_mwi);
4663
4664/**
4665 * pcim_set_mwi - a device-managed pci_set_mwi()
4666 * @dev: the PCI device for which MWI is enabled
4667 *
4668 * Managed pci_set_mwi().
4669 *
4670 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4671 */
4672int pcim_set_mwi(struct pci_dev *dev)
4673{
4674 struct pci_devres *dr;
4675
4676 dr = find_pci_dr(dev);
4677 if (!dr)
4678 return -ENOMEM;
4679
4680 dr->mwi = 1;
4681 return pci_set_mwi(dev);
4682}
4683EXPORT_SYMBOL(pcim_set_mwi);
4684
4685/**
4686 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4687 * @dev: the PCI device for which MWI is enabled
4688 *
4689 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4690 * Callers are not required to check the return value.
4691 *
4692 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4693 */
4694int pci_try_set_mwi(struct pci_dev *dev)
4695{
4696#ifdef PCI_DISABLE_MWI
4697 return 0;
4698#else
4699 return pci_set_mwi(dev);
4700#endif
4701}
4702EXPORT_SYMBOL(pci_try_set_mwi);
4703
4704/**
4705 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4706 * @dev: the PCI device to disable
4707 *
4708 * Disables PCI Memory-Write-Invalidate transaction on the device
4709 */
4710void pci_clear_mwi(struct pci_dev *dev)
4711{
4712#ifndef PCI_DISABLE_MWI
4713 u16 cmd;
4714
4715 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4716 if (cmd & PCI_COMMAND_INVALIDATE) {
4717 cmd &= ~PCI_COMMAND_INVALIDATE;
4718 pci_write_config_word(dev, PCI_COMMAND, cmd);
4719 }
4720#endif
4721}
4722EXPORT_SYMBOL(pci_clear_mwi);
4723
4724/**
4725 * pci_disable_parity - disable parity checking for device
4726 * @dev: the PCI device to operate on
4727 *
4728 * Disable parity checking for device @dev
4729 */
4730void pci_disable_parity(struct pci_dev *dev)
4731{
4732 u16 cmd;
4733
4734 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4735 if (cmd & PCI_COMMAND_PARITY) {
4736 cmd &= ~PCI_COMMAND_PARITY;
4737 pci_write_config_word(dev, PCI_COMMAND, cmd);
4738 }
4739}
4740
4741/**
4742 * pci_intx - enables/disables PCI INTx for device dev
4743 * @pdev: the PCI device to operate on
4744 * @enable: boolean: whether to enable or disable PCI INTx
4745 *
4746 * Enables/disables PCI INTx for device @pdev
4747 */
4748void pci_intx(struct pci_dev *pdev, int enable)
4749{
4750 u16 pci_command, new;
4751
4752 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4753
4754 if (enable)
4755 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4756 else
4757 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4758
4759 if (new != pci_command) {
4760 struct pci_devres *dr;
4761
4762 pci_write_config_word(pdev, PCI_COMMAND, new);
4763
4764 dr = find_pci_dr(pdev);
4765 if (dr && !dr->restore_intx) {
4766 dr->restore_intx = 1;
4767 dr->orig_intx = !enable;
4768 }
4769 }
4770}
4771EXPORT_SYMBOL_GPL(pci_intx);
4772
4773static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4774{
4775 struct pci_bus *bus = dev->bus;
4776 bool mask_updated = true;
4777 u32 cmd_status_dword;
4778 u16 origcmd, newcmd;
4779 unsigned long flags;
4780 bool irq_pending;
4781
4782 /*
4783 * We do a single dword read to retrieve both command and status.
4784 * Document assumptions that make this possible.
4785 */
4786 BUILD_BUG_ON(PCI_COMMAND % 4);
4787 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4788
4789 raw_spin_lock_irqsave(&pci_lock, flags);
4790
4791 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4792
4793 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4794
4795 /*
4796 * Check interrupt status register to see whether our device
4797 * triggered the interrupt (when masking) or the next IRQ is
4798 * already pending (when unmasking).
4799 */
4800 if (mask != irq_pending) {
4801 mask_updated = false;
4802 goto done;
4803 }
4804
4805 origcmd = cmd_status_dword;
4806 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4807 if (mask)
4808 newcmd |= PCI_COMMAND_INTX_DISABLE;
4809 if (newcmd != origcmd)
4810 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4811
4812done:
4813 raw_spin_unlock_irqrestore(&pci_lock, flags);
4814
4815 return mask_updated;
4816}
4817
4818/**
4819 * pci_check_and_mask_intx - mask INTx on pending interrupt
4820 * @dev: the PCI device to operate on
4821 *
4822 * Check if the device dev has its INTx line asserted, mask it and return
4823 * true in that case. False is returned if no interrupt was pending.
4824 */
4825bool pci_check_and_mask_intx(struct pci_dev *dev)
4826{
4827 return pci_check_and_set_intx_mask(dev, true);
4828}
4829EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4830
4831/**
4832 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4833 * @dev: the PCI device to operate on
4834 *
4835 * Check if the device dev has its INTx line asserted, unmask it if not and
4836 * return true. False is returned and the mask remains active if there was
4837 * still an interrupt pending.
4838 */
4839bool pci_check_and_unmask_intx(struct pci_dev *dev)
4840{
4841 return pci_check_and_set_intx_mask(dev, false);
4842}
4843EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4844
4845/**
4846 * pci_wait_for_pending_transaction - wait for pending transaction
4847 * @dev: the PCI device to operate on
4848 *
4849 * Return 0 if transaction is pending 1 otherwise.
4850 */
4851int pci_wait_for_pending_transaction(struct pci_dev *dev)
4852{
4853 if (!pci_is_pcie(dev))
4854 return 1;
4855
4856 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4857 PCI_EXP_DEVSTA_TRPND);
4858}
4859EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4860
4861/**
4862 * pcie_flr - initiate a PCIe function level reset
4863 * @dev: device to reset
4864 *
4865 * Initiate a function level reset unconditionally on @dev without
4866 * checking any flags and DEVCAP
4867 */
4868int pcie_flr(struct pci_dev *dev)
4869{
4870 if (!pci_wait_for_pending_transaction(dev))
4871 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4872
4873 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4874
4875 if (dev->imm_ready)
4876 return 0;
4877
4878 /*
4879 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4880 * 100ms, but may silently discard requests while the FLR is in
4881 * progress. Wait 100ms before trying to access the device.
4882 */
4883 msleep(100);
4884
4885 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4886}
4887EXPORT_SYMBOL_GPL(pcie_flr);
4888
4889/**
4890 * pcie_reset_flr - initiate a PCIe function level reset
4891 * @dev: device to reset
4892 * @probe: if true, return 0 if device can be reset this way
4893 *
4894 * Initiate a function level reset on @dev.
4895 */
4896int pcie_reset_flr(struct pci_dev *dev, bool probe)
4897{
4898 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4899 return -ENOTTY;
4900
4901 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4902 return -ENOTTY;
4903
4904 if (probe)
4905 return 0;
4906
4907 return pcie_flr(dev);
4908}
4909EXPORT_SYMBOL_GPL(pcie_reset_flr);
4910
4911static int pci_af_flr(struct pci_dev *dev, bool probe)
4912{
4913 int pos;
4914 u8 cap;
4915
4916 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4917 if (!pos)
4918 return -ENOTTY;
4919
4920 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4921 return -ENOTTY;
4922
4923 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4924 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4925 return -ENOTTY;
4926
4927 if (probe)
4928 return 0;
4929
4930 /*
4931 * Wait for Transaction Pending bit to clear. A word-aligned test
4932 * is used, so we use the control offset rather than status and shift
4933 * the test bit to match.
4934 */
4935 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4936 PCI_AF_STATUS_TP << 8))
4937 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4938
4939 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4940
4941 if (dev->imm_ready)
4942 return 0;
4943
4944 /*
4945 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4946 * updated 27 July 2006; a device must complete an FLR within
4947 * 100ms, but may silently discard requests while the FLR is in
4948 * progress. Wait 100ms before trying to access the device.
4949 */
4950 msleep(100);
4951
4952 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4953}
4954
4955/**
4956 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4957 * @dev: Device to reset.
4958 * @probe: if true, return 0 if the device can be reset this way.
4959 *
4960 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4961 * unset, it will be reinitialized internally when going from PCI_D3hot to
4962 * PCI_D0. If that's the case and the device is not in a low-power state
4963 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4964 *
4965 * NOTE: This causes the caller to sleep for twice the device power transition
4966 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4967 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4968 * Moreover, only devices in D0 can be reset by this function.
4969 */
4970static int pci_pm_reset(struct pci_dev *dev, bool probe)
4971{
4972 u16 csr;
4973
4974 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4975 return -ENOTTY;
4976
4977 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4978 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4979 return -ENOTTY;
4980
4981 if (probe)
4982 return 0;
4983
4984 if (dev->current_state != PCI_D0)
4985 return -EINVAL;
4986
4987 csr &= ~PCI_PM_CTRL_STATE_MASK;
4988 csr |= PCI_D3hot;
4989 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4990 pci_dev_d3_sleep(dev);
4991
4992 csr &= ~PCI_PM_CTRL_STATE_MASK;
4993 csr |= PCI_D0;
4994 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4995 pci_dev_d3_sleep(dev);
4996
4997 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4998}
4999
5000/**
5001 * pcie_wait_for_link_status - Wait for link status change
5002 * @pdev: Device whose link to wait for.
5003 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
5004 * @active: Waiting for active or inactive?
5005 *
5006 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
5007 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5008 */
5009static int pcie_wait_for_link_status(struct pci_dev *pdev,
5010 bool use_lt, bool active)
5011{
5012 u16 lnksta_mask, lnksta_match;
5013 unsigned long end_jiffies;
5014 u16 lnksta;
5015
5016 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
5017 lnksta_match = active ? lnksta_mask : 0;
5018
5019 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
5020 do {
5021 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5022 if ((lnksta & lnksta_mask) == lnksta_match)
5023 return 0;
5024 msleep(1);
5025 } while (time_before(jiffies, end_jiffies));
5026
5027 return -ETIMEDOUT;
5028}
5029
5030/**
5031 * pcie_retrain_link - Request a link retrain and wait for it to complete
5032 * @pdev: Device whose link to retrain.
5033 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
5034 *
5035 * Retrain completion status is retrieved from the Link Status Register
5036 * according to @use_lt. It is not verified whether the use of the DLLLA
5037 * bit is valid.
5038 *
5039 * Return 0 if successful, or -ETIMEDOUT if training has not completed
5040 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5041 */
5042int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
5043{
5044 int rc;
5045
5046 /*
5047 * Ensure the updated LNKCTL parameters are used during link
5048 * training by checking that there is no ongoing link training to
5049 * avoid LTSSM race as recommended in Implementation Note at the
5050 * end of PCIe r6.0.1 sec 7.5.3.7.
5051 */
5052 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5053 if (rc)
5054 return rc;
5055
5056 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5057 if (pdev->clear_retrain_link) {
5058 /*
5059 * Due to an erratum in some devices the Retrain Link bit
5060 * needs to be cleared again manually to allow the link
5061 * training to succeed.
5062 */
5063 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5064 }
5065
5066 return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5067}
5068
5069/**
5070 * pcie_wait_for_link_delay - Wait until link is active or inactive
5071 * @pdev: Bridge device
5072 * @active: waiting for active or inactive?
5073 * @delay: Delay to wait after link has become active (in ms)
5074 *
5075 * Use this to wait till link becomes active or inactive.
5076 */
5077static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5078 int delay)
5079{
5080 int rc;
5081
5082 /*
5083 * Some controllers might not implement link active reporting. In this
5084 * case, we wait for 1000 ms + any delay requested by the caller.
5085 */
5086 if (!pdev->link_active_reporting) {
5087 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5088 return true;
5089 }
5090
5091 /*
5092 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5093 * after which we should expect an link active if the reset was
5094 * successful. If so, software must wait a minimum 100ms before sending
5095 * configuration requests to devices downstream this port.
5096 *
5097 * If the link fails to activate, either the device was physically
5098 * removed or the link is permanently failed.
5099 */
5100 if (active)
5101 msleep(20);
5102 rc = pcie_wait_for_link_status(pdev, false, active);
5103 if (active) {
5104 if (rc)
5105 rc = pcie_failed_link_retrain(pdev);
5106 if (rc)
5107 return false;
5108
5109 msleep(delay);
5110 return true;
5111 }
5112
5113 if (rc)
5114 return false;
5115
5116 return true;
5117}
5118
5119/**
5120 * pcie_wait_for_link - Wait until link is active or inactive
5121 * @pdev: Bridge device
5122 * @active: waiting for active or inactive?
5123 *
5124 * Use this to wait till link becomes active or inactive.
5125 */
5126bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5127{
5128 return pcie_wait_for_link_delay(pdev, active, 100);
5129}
5130
5131/*
5132 * Find maximum D3cold delay required by all the devices on the bus. The
5133 * spec says 100 ms, but firmware can lower it and we allow drivers to
5134 * increase it as well.
5135 *
5136 * Called with @pci_bus_sem locked for reading.
5137 */
5138static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5139{
5140 const struct pci_dev *pdev;
5141 int min_delay = 100;
5142 int max_delay = 0;
5143
5144 list_for_each_entry(pdev, &bus->devices, bus_list) {
5145 if (pdev->d3cold_delay < min_delay)
5146 min_delay = pdev->d3cold_delay;
5147 if (pdev->d3cold_delay > max_delay)
5148 max_delay = pdev->d3cold_delay;
5149 }
5150
5151 return max(min_delay, max_delay);
5152}
5153
5154/**
5155 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5156 * @dev: PCI bridge
5157 * @reset_type: reset type in human-readable form
5158 *
5159 * Handle necessary delays before access to the devices on the secondary
5160 * side of the bridge are permitted after D3cold to D0 transition
5161 * or Conventional Reset.
5162 *
5163 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5164 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5165 * 4.3.2.
5166 *
5167 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5168 * failed to become accessible.
5169 */
5170int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5171{
5172 struct pci_dev *child;
5173 int delay;
5174
5175 if (pci_dev_is_disconnected(dev))
5176 return 0;
5177
5178 if (!pci_is_bridge(dev))
5179 return 0;
5180
5181 down_read(&pci_bus_sem);
5182
5183 /*
5184 * We only deal with devices that are present currently on the bus.
5185 * For any hot-added devices the access delay is handled in pciehp
5186 * board_added(). In case of ACPI hotplug the firmware is expected
5187 * to configure the devices before OS is notified.
5188 */
5189 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5190 up_read(&pci_bus_sem);
5191 return 0;
5192 }
5193
5194 /* Take d3cold_delay requirements into account */
5195 delay = pci_bus_max_d3cold_delay(dev->subordinate);
5196 if (!delay) {
5197 up_read(&pci_bus_sem);
5198 return 0;
5199 }
5200
5201 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5202 bus_list);
5203 up_read(&pci_bus_sem);
5204
5205 /*
5206 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5207 * accessing the device after reset (that is 1000 ms + 100 ms).
5208 */
5209 if (!pci_is_pcie(dev)) {
5210 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5211 msleep(1000 + delay);
5212 return 0;
5213 }
5214
5215 /*
5216 * For PCIe downstream and root ports that do not support speeds
5217 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5218 * speeds (gen3) we need to wait first for the data link layer to
5219 * become active.
5220 *
5221 * However, 100 ms is the minimum and the PCIe spec says the
5222 * software must allow at least 1s before it can determine that the
5223 * device that did not respond is a broken device. Also device can
5224 * take longer than that to respond if it indicates so through Request
5225 * Retry Status completions.
5226 *
5227 * Therefore we wait for 100 ms and check for the device presence
5228 * until the timeout expires.
5229 */
5230 if (!pcie_downstream_port(dev))
5231 return 0;
5232
5233 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5234 u16 status;
5235
5236 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5237 msleep(delay);
5238
5239 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5240 return 0;
5241
5242 /*
5243 * If the port supports active link reporting we now check
5244 * whether the link is active and if not bail out early with
5245 * the assumption that the device is not present anymore.
5246 */
5247 if (!dev->link_active_reporting)
5248 return -ENOTTY;
5249
5250 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5251 if (!(status & PCI_EXP_LNKSTA_DLLLA))
5252 return -ENOTTY;
5253
5254 return pci_dev_wait(child, reset_type,
5255 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5256 }
5257
5258 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5259 delay);
5260 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5261 /* Did not train, no need to wait any further */
5262 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5263 return -ENOTTY;
5264 }
5265
5266 return pci_dev_wait(child, reset_type,
5267 PCIE_RESET_READY_POLL_MS - delay);
5268}
5269
5270void pci_reset_secondary_bus(struct pci_dev *dev)
5271{
5272 u16 ctrl;
5273
5274 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5275 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5276 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5277
5278 /*
5279 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5280 * this to 2ms to ensure that we meet the minimum requirement.
5281 */
5282 msleep(2);
5283
5284 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5285 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5286}
5287
5288void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5289{
5290 pci_reset_secondary_bus(dev);
5291}
5292
5293/**
5294 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5295 * @dev: Bridge device
5296 *
5297 * Use the bridge control register to assert reset on the secondary bus.
5298 * Devices on the secondary bus are left in power-on state.
5299 */
5300int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5301{
5302 pcibios_reset_secondary_bus(dev);
5303
5304 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5305}
5306EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5307
5308static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5309{
5310 struct pci_dev *pdev;
5311
5312 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5313 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5314 return -ENOTTY;
5315
5316 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5317 if (pdev != dev)
5318 return -ENOTTY;
5319
5320 if (probe)
5321 return 0;
5322
5323 return pci_bridge_secondary_bus_reset(dev->bus->self);
5324}
5325
5326static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5327{
5328 int rc = -ENOTTY;
5329
5330 if (!hotplug || !try_module_get(hotplug->owner))
5331 return rc;
5332
5333 if (hotplug->ops->reset_slot)
5334 rc = hotplug->ops->reset_slot(hotplug, probe);
5335
5336 module_put(hotplug->owner);
5337
5338 return rc;
5339}
5340
5341static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5342{
5343 if (dev->multifunction || dev->subordinate || !dev->slot ||
5344 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5345 return -ENOTTY;
5346
5347 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5348}
5349
5350static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5351{
5352 int rc;
5353
5354 rc = pci_dev_reset_slot_function(dev, probe);
5355 if (rc != -ENOTTY)
5356 return rc;
5357 return pci_parent_bus_reset(dev, probe);
5358}
5359
5360void pci_dev_lock(struct pci_dev *dev)
5361{
5362 /* block PM suspend, driver probe, etc. */
5363 device_lock(&dev->dev);
5364 pci_cfg_access_lock(dev);
5365}
5366EXPORT_SYMBOL_GPL(pci_dev_lock);
5367
5368/* Return 1 on successful lock, 0 on contention */
5369int pci_dev_trylock(struct pci_dev *dev)
5370{
5371 if (device_trylock(&dev->dev)) {
5372 if (pci_cfg_access_trylock(dev))
5373 return 1;
5374 device_unlock(&dev->dev);
5375 }
5376
5377 return 0;
5378}
5379EXPORT_SYMBOL_GPL(pci_dev_trylock);
5380
5381void pci_dev_unlock(struct pci_dev *dev)
5382{
5383 pci_cfg_access_unlock(dev);
5384 device_unlock(&dev->dev);
5385}
5386EXPORT_SYMBOL_GPL(pci_dev_unlock);
5387
5388static void pci_dev_save_and_disable(struct pci_dev *dev)
5389{
5390 const struct pci_error_handlers *err_handler =
5391 dev->driver ? dev->driver->err_handler : NULL;
5392
5393 /*
5394 * dev->driver->err_handler->reset_prepare() is protected against
5395 * races with ->remove() by the device lock, which must be held by
5396 * the caller.
5397 */
5398 if (err_handler && err_handler->reset_prepare)
5399 err_handler->reset_prepare(dev);
5400
5401 /*
5402 * Wake-up device prior to save. PM registers default to D0 after
5403 * reset and a simple register restore doesn't reliably return
5404 * to a non-D0 state anyway.
5405 */
5406 pci_set_power_state(dev, PCI_D0);
5407
5408 pci_save_state(dev);
5409 /*
5410 * Disable the device by clearing the Command register, except for
5411 * INTx-disable which is set. This not only disables MMIO and I/O port
5412 * BARs, but also prevents the device from being Bus Master, preventing
5413 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5414 * compliant devices, INTx-disable prevents legacy interrupts.
5415 */
5416 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5417}
5418
5419static void pci_dev_restore(struct pci_dev *dev)
5420{
5421 const struct pci_error_handlers *err_handler =
5422 dev->driver ? dev->driver->err_handler : NULL;
5423
5424 pci_restore_state(dev);
5425
5426 /*
5427 * dev->driver->err_handler->reset_done() is protected against
5428 * races with ->remove() by the device lock, which must be held by
5429 * the caller.
5430 */
5431 if (err_handler && err_handler->reset_done)
5432 err_handler->reset_done(dev);
5433}
5434
5435/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5436static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5437 { },
5438 { pci_dev_specific_reset, .name = "device_specific" },
5439 { pci_dev_acpi_reset, .name = "acpi" },
5440 { pcie_reset_flr, .name = "flr" },
5441 { pci_af_flr, .name = "af_flr" },
5442 { pci_pm_reset, .name = "pm" },
5443 { pci_reset_bus_function, .name = "bus" },
5444};
5445
5446static ssize_t reset_method_show(struct device *dev,
5447 struct device_attribute *attr, char *buf)
5448{
5449 struct pci_dev *pdev = to_pci_dev(dev);
5450 ssize_t len = 0;
5451 int i, m;
5452
5453 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5454 m = pdev->reset_methods[i];
5455 if (!m)
5456 break;
5457
5458 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5459 pci_reset_fn_methods[m].name);
5460 }
5461
5462 if (len)
5463 len += sysfs_emit_at(buf, len, "\n");
5464
5465 return len;
5466}
5467
5468static int reset_method_lookup(const char *name)
5469{
5470 int m;
5471
5472 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5473 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5474 return m;
5475 }
5476
5477 return 0; /* not found */
5478}
5479
5480static ssize_t reset_method_store(struct device *dev,
5481 struct device_attribute *attr,
5482 const char *buf, size_t count)
5483{
5484 struct pci_dev *pdev = to_pci_dev(dev);
5485 char *options, *name;
5486 int m, n;
5487 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5488
5489 if (sysfs_streq(buf, "")) {
5490 pdev->reset_methods[0] = 0;
5491 pci_warn(pdev, "All device reset methods disabled by user");
5492 return count;
5493 }
5494
5495 if (sysfs_streq(buf, "default")) {
5496 pci_init_reset_methods(pdev);
5497 return count;
5498 }
5499
5500 options = kstrndup(buf, count, GFP_KERNEL);
5501 if (!options)
5502 return -ENOMEM;
5503
5504 n = 0;
5505 while ((name = strsep(&options, " ")) != NULL) {
5506 if (sysfs_streq(name, ""))
5507 continue;
5508
5509 name = strim(name);
5510
5511 m = reset_method_lookup(name);
5512 if (!m) {
5513 pci_err(pdev, "Invalid reset method '%s'", name);
5514 goto error;
5515 }
5516
5517 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5518 pci_err(pdev, "Unsupported reset method '%s'", name);
5519 goto error;
5520 }
5521
5522 if (n == PCI_NUM_RESET_METHODS - 1) {
5523 pci_err(pdev, "Too many reset methods\n");
5524 goto error;
5525 }
5526
5527 reset_methods[n++] = m;
5528 }
5529
5530 reset_methods[n] = 0;
5531
5532 /* Warn if dev-specific supported but not highest priority */
5533 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5534 reset_methods[0] != 1)
5535 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5536 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5537 kfree(options);
5538 return count;
5539
5540error:
5541 /* Leave previous methods unchanged */
5542 kfree(options);
5543 return -EINVAL;
5544}
5545static DEVICE_ATTR_RW(reset_method);
5546
5547static struct attribute *pci_dev_reset_method_attrs[] = {
5548 &dev_attr_reset_method.attr,
5549 NULL,
5550};
5551
5552static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5553 struct attribute *a, int n)
5554{
5555 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5556
5557 if (!pci_reset_supported(pdev))
5558 return 0;
5559
5560 return a->mode;
5561}
5562
5563const struct attribute_group pci_dev_reset_method_attr_group = {
5564 .attrs = pci_dev_reset_method_attrs,
5565 .is_visible = pci_dev_reset_method_attr_is_visible,
5566};
5567
5568/**
5569 * __pci_reset_function_locked - reset a PCI device function while holding
5570 * the @dev mutex lock.
5571 * @dev: PCI device to reset
5572 *
5573 * Some devices allow an individual function to be reset without affecting
5574 * other functions in the same device. The PCI device must be responsive
5575 * to PCI config space in order to use this function.
5576 *
5577 * The device function is presumed to be unused and the caller is holding
5578 * the device mutex lock when this function is called.
5579 *
5580 * Resetting the device will make the contents of PCI configuration space
5581 * random, so any caller of this must be prepared to reinitialise the
5582 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5583 * etc.
5584 *
5585 * Returns 0 if the device function was successfully reset or negative if the
5586 * device doesn't support resetting a single function.
5587 */
5588int __pci_reset_function_locked(struct pci_dev *dev)
5589{
5590 int i, m, rc;
5591
5592 might_sleep();
5593
5594 /*
5595 * A reset method returns -ENOTTY if it doesn't support this device and
5596 * we should try the next method.
5597 *
5598 * If it returns 0 (success), we're finished. If it returns any other
5599 * error, we're also finished: this indicates that further reset
5600 * mechanisms might be broken on the device.
5601 */
5602 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5603 m = dev->reset_methods[i];
5604 if (!m)
5605 return -ENOTTY;
5606
5607 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5608 if (!rc)
5609 return 0;
5610 if (rc != -ENOTTY)
5611 return rc;
5612 }
5613
5614 return -ENOTTY;
5615}
5616EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5617
5618/**
5619 * pci_init_reset_methods - check whether device can be safely reset
5620 * and store supported reset mechanisms.
5621 * @dev: PCI device to check for reset mechanisms
5622 *
5623 * Some devices allow an individual function to be reset without affecting
5624 * other functions in the same device. The PCI device must be in D0-D3hot
5625 * state.
5626 *
5627 * Stores reset mechanisms supported by device in reset_methods byte array
5628 * which is a member of struct pci_dev.
5629 */
5630void pci_init_reset_methods(struct pci_dev *dev)
5631{
5632 int m, i, rc;
5633
5634 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5635
5636 might_sleep();
5637
5638 i = 0;
5639 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5640 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5641 if (!rc)
5642 dev->reset_methods[i++] = m;
5643 else if (rc != -ENOTTY)
5644 break;
5645 }
5646
5647 dev->reset_methods[i] = 0;
5648}
5649
5650/**
5651 * pci_reset_function - quiesce and reset a PCI device function
5652 * @dev: PCI device to reset
5653 *
5654 * Some devices allow an individual function to be reset without affecting
5655 * other functions in the same device. The PCI device must be responsive
5656 * to PCI config space in order to use this function.
5657 *
5658 * This function does not just reset the PCI portion of a device, but
5659 * clears all the state associated with the device. This function differs
5660 * from __pci_reset_function_locked() in that it saves and restores device state
5661 * over the reset and takes the PCI device lock.
5662 *
5663 * Returns 0 if the device function was successfully reset or negative if the
5664 * device doesn't support resetting a single function.
5665 */
5666int pci_reset_function(struct pci_dev *dev)
5667{
5668 int rc;
5669
5670 if (!pci_reset_supported(dev))
5671 return -ENOTTY;
5672
5673 pci_dev_lock(dev);
5674 pci_dev_save_and_disable(dev);
5675
5676 rc = __pci_reset_function_locked(dev);
5677
5678 pci_dev_restore(dev);
5679 pci_dev_unlock(dev);
5680
5681 return rc;
5682}
5683EXPORT_SYMBOL_GPL(pci_reset_function);
5684
5685/**
5686 * pci_reset_function_locked - quiesce and reset a PCI device function
5687 * @dev: PCI device to reset
5688 *
5689 * Some devices allow an individual function to be reset without affecting
5690 * other functions in the same device. The PCI device must be responsive
5691 * to PCI config space in order to use this function.
5692 *
5693 * This function does not just reset the PCI portion of a device, but
5694 * clears all the state associated with the device. This function differs
5695 * from __pci_reset_function_locked() in that it saves and restores device state
5696 * over the reset. It also differs from pci_reset_function() in that it
5697 * requires the PCI device lock to be held.
5698 *
5699 * Returns 0 if the device function was successfully reset or negative if the
5700 * device doesn't support resetting a single function.
5701 */
5702int pci_reset_function_locked(struct pci_dev *dev)
5703{
5704 int rc;
5705
5706 if (!pci_reset_supported(dev))
5707 return -ENOTTY;
5708
5709 pci_dev_save_and_disable(dev);
5710
5711 rc = __pci_reset_function_locked(dev);
5712
5713 pci_dev_restore(dev);
5714
5715 return rc;
5716}
5717EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5718
5719/**
5720 * pci_try_reset_function - quiesce and reset a PCI device function
5721 * @dev: PCI device to reset
5722 *
5723 * Same as above, except return -EAGAIN if unable to lock device.
5724 */
5725int pci_try_reset_function(struct pci_dev *dev)
5726{
5727 int rc;
5728
5729 if (!pci_reset_supported(dev))
5730 return -ENOTTY;
5731
5732 if (!pci_dev_trylock(dev))
5733 return -EAGAIN;
5734
5735 pci_dev_save_and_disable(dev);
5736 rc = __pci_reset_function_locked(dev);
5737 pci_dev_restore(dev);
5738 pci_dev_unlock(dev);
5739
5740 return rc;
5741}
5742EXPORT_SYMBOL_GPL(pci_try_reset_function);
5743
5744/* Do any devices on or below this bus prevent a bus reset? */
5745static bool pci_bus_resettable(struct pci_bus *bus)
5746{
5747 struct pci_dev *dev;
5748
5749
5750 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5751 return false;
5752
5753 list_for_each_entry(dev, &bus->devices, bus_list) {
5754 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5755 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5756 return false;
5757 }
5758
5759 return true;
5760}
5761
5762/* Lock devices from the top of the tree down */
5763static void pci_bus_lock(struct pci_bus *bus)
5764{
5765 struct pci_dev *dev;
5766
5767 list_for_each_entry(dev, &bus->devices, bus_list) {
5768 pci_dev_lock(dev);
5769 if (dev->subordinate)
5770 pci_bus_lock(dev->subordinate);
5771 }
5772}
5773
5774/* Unlock devices from the bottom of the tree up */
5775static void pci_bus_unlock(struct pci_bus *bus)
5776{
5777 struct pci_dev *dev;
5778
5779 list_for_each_entry(dev, &bus->devices, bus_list) {
5780 if (dev->subordinate)
5781 pci_bus_unlock(dev->subordinate);
5782 pci_dev_unlock(dev);
5783 }
5784}
5785
5786/* Return 1 on successful lock, 0 on contention */
5787static int pci_bus_trylock(struct pci_bus *bus)
5788{
5789 struct pci_dev *dev;
5790
5791 list_for_each_entry(dev, &bus->devices, bus_list) {
5792 if (!pci_dev_trylock(dev))
5793 goto unlock;
5794 if (dev->subordinate) {
5795 if (!pci_bus_trylock(dev->subordinate)) {
5796 pci_dev_unlock(dev);
5797 goto unlock;
5798 }
5799 }
5800 }
5801 return 1;
5802
5803unlock:
5804 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5805 if (dev->subordinate)
5806 pci_bus_unlock(dev->subordinate);
5807 pci_dev_unlock(dev);
5808 }
5809 return 0;
5810}
5811
5812/* Do any devices on or below this slot prevent a bus reset? */
5813static bool pci_slot_resettable(struct pci_slot *slot)
5814{
5815 struct pci_dev *dev;
5816
5817 if (slot->bus->self &&
5818 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5819 return false;
5820
5821 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5822 if (!dev->slot || dev->slot != slot)
5823 continue;
5824 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5825 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5826 return false;
5827 }
5828
5829 return true;
5830}
5831
5832/* Lock devices from the top of the tree down */
5833static void pci_slot_lock(struct pci_slot *slot)
5834{
5835 struct pci_dev *dev;
5836
5837 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5838 if (!dev->slot || dev->slot != slot)
5839 continue;
5840 pci_dev_lock(dev);
5841 if (dev->subordinate)
5842 pci_bus_lock(dev->subordinate);
5843 }
5844}
5845
5846/* Unlock devices from the bottom of the tree up */
5847static void pci_slot_unlock(struct pci_slot *slot)
5848{
5849 struct pci_dev *dev;
5850
5851 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5852 if (!dev->slot || dev->slot != slot)
5853 continue;
5854 if (dev->subordinate)
5855 pci_bus_unlock(dev->subordinate);
5856 pci_dev_unlock(dev);
5857 }
5858}
5859
5860/* Return 1 on successful lock, 0 on contention */
5861static int pci_slot_trylock(struct pci_slot *slot)
5862{
5863 struct pci_dev *dev;
5864
5865 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5866 if (!dev->slot || dev->slot != slot)
5867 continue;
5868 if (!pci_dev_trylock(dev))
5869 goto unlock;
5870 if (dev->subordinate) {
5871 if (!pci_bus_trylock(dev->subordinate)) {
5872 pci_dev_unlock(dev);
5873 goto unlock;
5874 }
5875 }
5876 }
5877 return 1;
5878
5879unlock:
5880 list_for_each_entry_continue_reverse(dev,
5881 &slot->bus->devices, bus_list) {
5882 if (!dev->slot || dev->slot != slot)
5883 continue;
5884 if (dev->subordinate)
5885 pci_bus_unlock(dev->subordinate);
5886 pci_dev_unlock(dev);
5887 }
5888 return 0;
5889}
5890
5891/*
5892 * Save and disable devices from the top of the tree down while holding
5893 * the @dev mutex lock for the entire tree.
5894 */
5895static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5896{
5897 struct pci_dev *dev;
5898
5899 list_for_each_entry(dev, &bus->devices, bus_list) {
5900 pci_dev_save_and_disable(dev);
5901 if (dev->subordinate)
5902 pci_bus_save_and_disable_locked(dev->subordinate);
5903 }
5904}
5905
5906/*
5907 * Restore devices from top of the tree down while holding @dev mutex lock
5908 * for the entire tree. Parent bridges need to be restored before we can
5909 * get to subordinate devices.
5910 */
5911static void pci_bus_restore_locked(struct pci_bus *bus)
5912{
5913 struct pci_dev *dev;
5914
5915 list_for_each_entry(dev, &bus->devices, bus_list) {
5916 pci_dev_restore(dev);
5917 if (dev->subordinate)
5918 pci_bus_restore_locked(dev->subordinate);
5919 }
5920}
5921
5922/*
5923 * Save and disable devices from the top of the tree down while holding
5924 * the @dev mutex lock for the entire tree.
5925 */
5926static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5927{
5928 struct pci_dev *dev;
5929
5930 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5931 if (!dev->slot || dev->slot != slot)
5932 continue;
5933 pci_dev_save_and_disable(dev);
5934 if (dev->subordinate)
5935 pci_bus_save_and_disable_locked(dev->subordinate);
5936 }
5937}
5938
5939/*
5940 * Restore devices from top of the tree down while holding @dev mutex lock
5941 * for the entire tree. Parent bridges need to be restored before we can
5942 * get to subordinate devices.
5943 */
5944static void pci_slot_restore_locked(struct pci_slot *slot)
5945{
5946 struct pci_dev *dev;
5947
5948 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5949 if (!dev->slot || dev->slot != slot)
5950 continue;
5951 pci_dev_restore(dev);
5952 if (dev->subordinate)
5953 pci_bus_restore_locked(dev->subordinate);
5954 }
5955}
5956
5957static int pci_slot_reset(struct pci_slot *slot, bool probe)
5958{
5959 int rc;
5960
5961 if (!slot || !pci_slot_resettable(slot))
5962 return -ENOTTY;
5963
5964 if (!probe)
5965 pci_slot_lock(slot);
5966
5967 might_sleep();
5968
5969 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5970
5971 if (!probe)
5972 pci_slot_unlock(slot);
5973
5974 return rc;
5975}
5976
5977/**
5978 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5979 * @slot: PCI slot to probe
5980 *
5981 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5982 */
5983int pci_probe_reset_slot(struct pci_slot *slot)
5984{
5985 return pci_slot_reset(slot, PCI_RESET_PROBE);
5986}
5987EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5988
5989/**
5990 * __pci_reset_slot - Try to reset a PCI slot
5991 * @slot: PCI slot to reset
5992 *
5993 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5994 * independent of other slots. For instance, some slots may support slot power
5995 * control. In the case of a 1:1 bus to slot architecture, this function may
5996 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5997 * Generally a slot reset should be attempted before a bus reset. All of the
5998 * function of the slot and any subordinate buses behind the slot are reset
5999 * through this function. PCI config space of all devices in the slot and
6000 * behind the slot is saved before and restored after reset.
6001 *
6002 * Same as above except return -EAGAIN if the slot cannot be locked
6003 */
6004static int __pci_reset_slot(struct pci_slot *slot)
6005{
6006 int rc;
6007
6008 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
6009 if (rc)
6010 return rc;
6011
6012 if (pci_slot_trylock(slot)) {
6013 pci_slot_save_and_disable_locked(slot);
6014 might_sleep();
6015 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
6016 pci_slot_restore_locked(slot);
6017 pci_slot_unlock(slot);
6018 } else
6019 rc = -EAGAIN;
6020
6021 return rc;
6022}
6023
6024static int pci_bus_reset(struct pci_bus *bus, bool probe)
6025{
6026 int ret;
6027
6028 if (!bus->self || !pci_bus_resettable(bus))
6029 return -ENOTTY;
6030
6031 if (probe)
6032 return 0;
6033
6034 pci_bus_lock(bus);
6035
6036 might_sleep();
6037
6038 ret = pci_bridge_secondary_bus_reset(bus->self);
6039
6040 pci_bus_unlock(bus);
6041
6042 return ret;
6043}
6044
6045/**
6046 * pci_bus_error_reset - reset the bridge's subordinate bus
6047 * @bridge: The parent device that connects to the bus to reset
6048 *
6049 * This function will first try to reset the slots on this bus if the method is
6050 * available. If slot reset fails or is not available, this will fall back to a
6051 * secondary bus reset.
6052 */
6053int pci_bus_error_reset(struct pci_dev *bridge)
6054{
6055 struct pci_bus *bus = bridge->subordinate;
6056 struct pci_slot *slot;
6057
6058 if (!bus)
6059 return -ENOTTY;
6060
6061 mutex_lock(&pci_slot_mutex);
6062 if (list_empty(&bus->slots))
6063 goto bus_reset;
6064
6065 list_for_each_entry(slot, &bus->slots, list)
6066 if (pci_probe_reset_slot(slot))
6067 goto bus_reset;
6068
6069 list_for_each_entry(slot, &bus->slots, list)
6070 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6071 goto bus_reset;
6072
6073 mutex_unlock(&pci_slot_mutex);
6074 return 0;
6075bus_reset:
6076 mutex_unlock(&pci_slot_mutex);
6077 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6078}
6079
6080/**
6081 * pci_probe_reset_bus - probe whether a PCI bus can be reset
6082 * @bus: PCI bus to probe
6083 *
6084 * Return 0 if bus can be reset, negative if a bus reset is not supported.
6085 */
6086int pci_probe_reset_bus(struct pci_bus *bus)
6087{
6088 return pci_bus_reset(bus, PCI_RESET_PROBE);
6089}
6090EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6091
6092/**
6093 * __pci_reset_bus - Try to reset a PCI bus
6094 * @bus: top level PCI bus to reset
6095 *
6096 * Same as above except return -EAGAIN if the bus cannot be locked
6097 */
6098static int __pci_reset_bus(struct pci_bus *bus)
6099{
6100 int rc;
6101
6102 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6103 if (rc)
6104 return rc;
6105
6106 if (pci_bus_trylock(bus)) {
6107 pci_bus_save_and_disable_locked(bus);
6108 might_sleep();
6109 rc = pci_bridge_secondary_bus_reset(bus->self);
6110 pci_bus_restore_locked(bus);
6111 pci_bus_unlock(bus);
6112 } else
6113 rc = -EAGAIN;
6114
6115 return rc;
6116}
6117
6118/**
6119 * pci_reset_bus - Try to reset a PCI bus
6120 * @pdev: top level PCI device to reset via slot/bus
6121 *
6122 * Same as above except return -EAGAIN if the bus cannot be locked
6123 */
6124int pci_reset_bus(struct pci_dev *pdev)
6125{
6126 return (!pci_probe_reset_slot(pdev->slot)) ?
6127 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6128}
6129EXPORT_SYMBOL_GPL(pci_reset_bus);
6130
6131/**
6132 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6133 * @dev: PCI device to query
6134 *
6135 * Returns mmrbc: maximum designed memory read count in bytes or
6136 * appropriate error value.
6137 */
6138int pcix_get_max_mmrbc(struct pci_dev *dev)
6139{
6140 int cap;
6141 u32 stat;
6142
6143 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6144 if (!cap)
6145 return -EINVAL;
6146
6147 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6148 return -EINVAL;
6149
6150 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6151}
6152EXPORT_SYMBOL(pcix_get_max_mmrbc);
6153
6154/**
6155 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6156 * @dev: PCI device to query
6157 *
6158 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6159 * value.
6160 */
6161int pcix_get_mmrbc(struct pci_dev *dev)
6162{
6163 int cap;
6164 u16 cmd;
6165
6166 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6167 if (!cap)
6168 return -EINVAL;
6169
6170 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6171 return -EINVAL;
6172
6173 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6174}
6175EXPORT_SYMBOL(pcix_get_mmrbc);
6176
6177/**
6178 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6179 * @dev: PCI device to query
6180 * @mmrbc: maximum memory read count in bytes
6181 * valid values are 512, 1024, 2048, 4096
6182 *
6183 * If possible sets maximum memory read byte count, some bridges have errata
6184 * that prevent this.
6185 */
6186int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6187{
6188 int cap;
6189 u32 stat, v, o;
6190 u16 cmd;
6191
6192 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6193 return -EINVAL;
6194
6195 v = ffs(mmrbc) - 10;
6196
6197 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6198 if (!cap)
6199 return -EINVAL;
6200
6201 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6202 return -EINVAL;
6203
6204 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6205 return -E2BIG;
6206
6207 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6208 return -EINVAL;
6209
6210 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6211 if (o != v) {
6212 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6213 return -EIO;
6214
6215 cmd &= ~PCI_X_CMD_MAX_READ;
6216 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6217 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6218 return -EIO;
6219 }
6220 return 0;
6221}
6222EXPORT_SYMBOL(pcix_set_mmrbc);
6223
6224/**
6225 * pcie_get_readrq - get PCI Express read request size
6226 * @dev: PCI device to query
6227 *
6228 * Returns maximum memory read request in bytes or appropriate error value.
6229 */
6230int pcie_get_readrq(struct pci_dev *dev)
6231{
6232 u16 ctl;
6233
6234 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6235
6236 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6237}
6238EXPORT_SYMBOL(pcie_get_readrq);
6239
6240/**
6241 * pcie_set_readrq - set PCI Express maximum memory read request
6242 * @dev: PCI device to query
6243 * @rq: maximum memory read count in bytes
6244 * valid values are 128, 256, 512, 1024, 2048, 4096
6245 *
6246 * If possible sets maximum memory read request in bytes
6247 */
6248int pcie_set_readrq(struct pci_dev *dev, int rq)
6249{
6250 u16 v;
6251 int ret;
6252 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6253
6254 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6255 return -EINVAL;
6256
6257 /*
6258 * If using the "performance" PCIe config, we clamp the read rq
6259 * size to the max packet size to keep the host bridge from
6260 * generating requests larger than we can cope with.
6261 */
6262 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6263 int mps = pcie_get_mps(dev);
6264
6265 if (mps < rq)
6266 rq = mps;
6267 }
6268
6269 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6270
6271 if (bridge->no_inc_mrrs) {
6272 int max_mrrs = pcie_get_readrq(dev);
6273
6274 if (rq > max_mrrs) {
6275 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6276 return -EINVAL;
6277 }
6278 }
6279
6280 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6281 PCI_EXP_DEVCTL_READRQ, v);
6282
6283 return pcibios_err_to_errno(ret);
6284}
6285EXPORT_SYMBOL(pcie_set_readrq);
6286
6287/**
6288 * pcie_get_mps - get PCI Express maximum payload size
6289 * @dev: PCI device to query
6290 *
6291 * Returns maximum payload size in bytes
6292 */
6293int pcie_get_mps(struct pci_dev *dev)
6294{
6295 u16 ctl;
6296
6297 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6298
6299 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6300}
6301EXPORT_SYMBOL(pcie_get_mps);
6302
6303/**
6304 * pcie_set_mps - set PCI Express maximum payload size
6305 * @dev: PCI device to query
6306 * @mps: maximum payload size in bytes
6307 * valid values are 128, 256, 512, 1024, 2048, 4096
6308 *
6309 * If possible sets maximum payload size
6310 */
6311int pcie_set_mps(struct pci_dev *dev, int mps)
6312{
6313 u16 v;
6314 int ret;
6315
6316 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6317 return -EINVAL;
6318
6319 v = ffs(mps) - 8;
6320 if (v > dev->pcie_mpss)
6321 return -EINVAL;
6322 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6323
6324 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6325 PCI_EXP_DEVCTL_PAYLOAD, v);
6326
6327 return pcibios_err_to_errno(ret);
6328}
6329EXPORT_SYMBOL(pcie_set_mps);
6330
6331static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6332{
6333 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6334}
6335
6336int pcie_link_speed_mbps(struct pci_dev *pdev)
6337{
6338 u16 lnksta;
6339 int err;
6340
6341 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6342 if (err)
6343 return err;
6344
6345 switch (to_pcie_link_speed(lnksta)) {
6346 case PCIE_SPEED_2_5GT:
6347 return 2500;
6348 case PCIE_SPEED_5_0GT:
6349 return 5000;
6350 case PCIE_SPEED_8_0GT:
6351 return 8000;
6352 case PCIE_SPEED_16_0GT:
6353 return 16000;
6354 case PCIE_SPEED_32_0GT:
6355 return 32000;
6356 case PCIE_SPEED_64_0GT:
6357 return 64000;
6358 default:
6359 break;
6360 }
6361
6362 return -EINVAL;
6363}
6364EXPORT_SYMBOL(pcie_link_speed_mbps);
6365
6366/**
6367 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6368 * device and its bandwidth limitation
6369 * @dev: PCI device to query
6370 * @limiting_dev: storage for device causing the bandwidth limitation
6371 * @speed: storage for speed of limiting device
6372 * @width: storage for width of limiting device
6373 *
6374 * Walk up the PCI device chain and find the point where the minimum
6375 * bandwidth is available. Return the bandwidth available there and (if
6376 * limiting_dev, speed, and width pointers are supplied) information about
6377 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6378 * raw bandwidth.
6379 */
6380u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6381 enum pci_bus_speed *speed,
6382 enum pcie_link_width *width)
6383{
6384 u16 lnksta;
6385 enum pci_bus_speed next_speed;
6386 enum pcie_link_width next_width;
6387 u32 bw, next_bw;
6388
6389 if (speed)
6390 *speed = PCI_SPEED_UNKNOWN;
6391 if (width)
6392 *width = PCIE_LNK_WIDTH_UNKNOWN;
6393
6394 bw = 0;
6395
6396 while (dev) {
6397 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6398
6399 next_speed = to_pcie_link_speed(lnksta);
6400 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6401
6402 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6403
6404 /* Check if current device limits the total bandwidth */
6405 if (!bw || next_bw <= bw) {
6406 bw = next_bw;
6407
6408 if (limiting_dev)
6409 *limiting_dev = dev;
6410 if (speed)
6411 *speed = next_speed;
6412 if (width)
6413 *width = next_width;
6414 }
6415
6416 dev = pci_upstream_bridge(dev);
6417 }
6418
6419 return bw;
6420}
6421EXPORT_SYMBOL(pcie_bandwidth_available);
6422
6423/**
6424 * pcie_get_speed_cap - query for the PCI device's link speed capability
6425 * @dev: PCI device to query
6426 *
6427 * Query the PCI device speed capability. Return the maximum link speed
6428 * supported by the device.
6429 */
6430enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6431{
6432 u32 lnkcap2, lnkcap;
6433
6434 /*
6435 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6436 * implementation note there recommends using the Supported Link
6437 * Speeds Vector in Link Capabilities 2 when supported.
6438 *
6439 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6440 * should use the Supported Link Speeds field in Link Capabilities,
6441 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6442 */
6443 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6444
6445 /* PCIe r3.0-compliant */
6446 if (lnkcap2)
6447 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6448
6449 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6450 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6451 return PCIE_SPEED_5_0GT;
6452 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6453 return PCIE_SPEED_2_5GT;
6454
6455 return PCI_SPEED_UNKNOWN;
6456}
6457EXPORT_SYMBOL(pcie_get_speed_cap);
6458
6459/**
6460 * pcie_get_width_cap - query for the PCI device's link width capability
6461 * @dev: PCI device to query
6462 *
6463 * Query the PCI device width capability. Return the maximum link width
6464 * supported by the device.
6465 */
6466enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6467{
6468 u32 lnkcap;
6469
6470 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6471 if (lnkcap)
6472 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6473
6474 return PCIE_LNK_WIDTH_UNKNOWN;
6475}
6476EXPORT_SYMBOL(pcie_get_width_cap);
6477
6478/**
6479 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6480 * @dev: PCI device
6481 * @speed: storage for link speed
6482 * @width: storage for link width
6483 *
6484 * Calculate a PCI device's link bandwidth by querying for its link speed
6485 * and width, multiplying them, and applying encoding overhead. The result
6486 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6487 */
6488u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6489 enum pcie_link_width *width)
6490{
6491 *speed = pcie_get_speed_cap(dev);
6492 *width = pcie_get_width_cap(dev);
6493
6494 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6495 return 0;
6496
6497 return *width * PCIE_SPEED2MBS_ENC(*speed);
6498}
6499
6500/**
6501 * __pcie_print_link_status - Report the PCI device's link speed and width
6502 * @dev: PCI device to query
6503 * @verbose: Print info even when enough bandwidth is available
6504 *
6505 * If the available bandwidth at the device is less than the device is
6506 * capable of, report the device's maximum possible bandwidth and the
6507 * upstream link that limits its performance. If @verbose, always print
6508 * the available bandwidth, even if the device isn't constrained.
6509 */
6510void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6511{
6512 enum pcie_link_width width, width_cap;
6513 enum pci_bus_speed speed, speed_cap;
6514 struct pci_dev *limiting_dev = NULL;
6515 u32 bw_avail, bw_cap;
6516
6517 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6518 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6519
6520 if (bw_avail >= bw_cap && verbose)
6521 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6522 bw_cap / 1000, bw_cap % 1000,
6523 pci_speed_string(speed_cap), width_cap);
6524 else if (bw_avail < bw_cap)
6525 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6526 bw_avail / 1000, bw_avail % 1000,
6527 pci_speed_string(speed), width,
6528 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6529 bw_cap / 1000, bw_cap % 1000,
6530 pci_speed_string(speed_cap), width_cap);
6531}
6532
6533/**
6534 * pcie_print_link_status - Report the PCI device's link speed and width
6535 * @dev: PCI device to query
6536 *
6537 * Report the available bandwidth at the device.
6538 */
6539void pcie_print_link_status(struct pci_dev *dev)
6540{
6541 __pcie_print_link_status(dev, true);
6542}
6543EXPORT_SYMBOL(pcie_print_link_status);
6544
6545/**
6546 * pci_select_bars - Make BAR mask from the type of resource
6547 * @dev: the PCI device for which BAR mask is made
6548 * @flags: resource type mask to be selected
6549 *
6550 * This helper routine makes bar mask from the type of resource.
6551 */
6552int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6553{
6554 int i, bars = 0;
6555 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6556 if (pci_resource_flags(dev, i) & flags)
6557 bars |= (1 << i);
6558 return bars;
6559}
6560EXPORT_SYMBOL(pci_select_bars);
6561
6562/* Some architectures require additional programming to enable VGA */
6563static arch_set_vga_state_t arch_set_vga_state;
6564
6565void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6566{
6567 arch_set_vga_state = func; /* NULL disables */
6568}
6569
6570static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6571 unsigned int command_bits, u32 flags)
6572{
6573 if (arch_set_vga_state)
6574 return arch_set_vga_state(dev, decode, command_bits,
6575 flags);
6576 return 0;
6577}
6578
6579/**
6580 * pci_set_vga_state - set VGA decode state on device and parents if requested
6581 * @dev: the PCI device
6582 * @decode: true = enable decoding, false = disable decoding
6583 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6584 * @flags: traverse ancestors and change bridges
6585 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6586 */
6587int pci_set_vga_state(struct pci_dev *dev, bool decode,
6588 unsigned int command_bits, u32 flags)
6589{
6590 struct pci_bus *bus;
6591 struct pci_dev *bridge;
6592 u16 cmd;
6593 int rc;
6594
6595 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6596
6597 /* ARCH specific VGA enables */
6598 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6599 if (rc)
6600 return rc;
6601
6602 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6603 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6604 if (decode)
6605 cmd |= command_bits;
6606 else
6607 cmd &= ~command_bits;
6608 pci_write_config_word(dev, PCI_COMMAND, cmd);
6609 }
6610
6611 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6612 return 0;
6613
6614 bus = dev->bus;
6615 while (bus) {
6616 bridge = bus->self;
6617 if (bridge) {
6618 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6619 &cmd);
6620 if (decode)
6621 cmd |= PCI_BRIDGE_CTL_VGA;
6622 else
6623 cmd &= ~PCI_BRIDGE_CTL_VGA;
6624 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6625 cmd);
6626 }
6627 bus = bus->parent;
6628 }
6629 return 0;
6630}
6631
6632#ifdef CONFIG_ACPI
6633bool pci_pr3_present(struct pci_dev *pdev)
6634{
6635 struct acpi_device *adev;
6636
6637 if (acpi_disabled)
6638 return false;
6639
6640 adev = ACPI_COMPANION(&pdev->dev);
6641 if (!adev)
6642 return false;
6643
6644 return adev->power.flags.power_resources &&
6645 acpi_has_method(adev->handle, "_PR3");
6646}
6647EXPORT_SYMBOL_GPL(pci_pr3_present);
6648#endif
6649
6650/**
6651 * pci_add_dma_alias - Add a DMA devfn alias for a device
6652 * @dev: the PCI device for which alias is added
6653 * @devfn_from: alias slot and function
6654 * @nr_devfns: number of subsequent devfns to alias
6655 *
6656 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6657 * which is used to program permissible bus-devfn source addresses for DMA
6658 * requests in an IOMMU. These aliases factor into IOMMU group creation
6659 * and are useful for devices generating DMA requests beyond or different
6660 * from their logical bus-devfn. Examples include device quirks where the
6661 * device simply uses the wrong devfn, as well as non-transparent bridges
6662 * where the alias may be a proxy for devices in another domain.
6663 *
6664 * IOMMU group creation is performed during device discovery or addition,
6665 * prior to any potential DMA mapping and therefore prior to driver probing
6666 * (especially for userspace assigned devices where IOMMU group definition
6667 * cannot be left as a userspace activity). DMA aliases should therefore
6668 * be configured via quirks, such as the PCI fixup header quirk.
6669 */
6670void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6671 unsigned int nr_devfns)
6672{
6673 int devfn_to;
6674
6675 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6676 devfn_to = devfn_from + nr_devfns - 1;
6677
6678 if (!dev->dma_alias_mask)
6679 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6680 if (!dev->dma_alias_mask) {
6681 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6682 return;
6683 }
6684
6685 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6686
6687 if (nr_devfns == 1)
6688 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6689 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6690 else if (nr_devfns > 1)
6691 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6692 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6693 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6694}
6695
6696bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6697{
6698 return (dev1->dma_alias_mask &&
6699 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6700 (dev2->dma_alias_mask &&
6701 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6702 pci_real_dma_dev(dev1) == dev2 ||
6703 pci_real_dma_dev(dev2) == dev1;
6704}
6705
6706bool pci_device_is_present(struct pci_dev *pdev)
6707{
6708 u32 v;
6709
6710 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6711 pdev = pci_physfn(pdev);
6712 if (pci_dev_is_disconnected(pdev))
6713 return false;
6714 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6715}
6716EXPORT_SYMBOL_GPL(pci_device_is_present);
6717
6718void pci_ignore_hotplug(struct pci_dev *dev)
6719{
6720 struct pci_dev *bridge = dev->bus->self;
6721
6722 dev->ignore_hotplug = 1;
6723 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6724 if (bridge)
6725 bridge->ignore_hotplug = 1;
6726}
6727EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6728
6729/**
6730 * pci_real_dma_dev - Get PCI DMA device for PCI device
6731 * @dev: the PCI device that may have a PCI DMA alias
6732 *
6733 * Permits the platform to provide architecture-specific functionality to
6734 * devices needing to alias DMA to another PCI device on another PCI bus. If
6735 * the PCI device is on the same bus, it is recommended to use
6736 * pci_add_dma_alias(). This is the default implementation. Architecture
6737 * implementations can override this.
6738 */
6739struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6740{
6741 return dev;
6742}
6743
6744resource_size_t __weak pcibios_default_alignment(void)
6745{
6746 return 0;
6747}
6748
6749/*
6750 * Arches that don't want to expose struct resource to userland as-is in
6751 * sysfs and /proc can implement their own pci_resource_to_user().
6752 */
6753void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6754 const struct resource *rsrc,
6755 resource_size_t *start, resource_size_t *end)
6756{
6757 *start = rsrc->start;
6758 *end = rsrc->end;
6759}
6760
6761static char *resource_alignment_param;
6762static DEFINE_SPINLOCK(resource_alignment_lock);
6763
6764/**
6765 * pci_specified_resource_alignment - get resource alignment specified by user.
6766 * @dev: the PCI device to get
6767 * @resize: whether or not to change resources' size when reassigning alignment
6768 *
6769 * RETURNS: Resource alignment if it is specified.
6770 * Zero if it is not specified.
6771 */
6772static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6773 bool *resize)
6774{
6775 int align_order, count;
6776 resource_size_t align = pcibios_default_alignment();
6777 const char *p;
6778 int ret;
6779
6780 spin_lock(&resource_alignment_lock);
6781 p = resource_alignment_param;
6782 if (!p || !*p)
6783 goto out;
6784 if (pci_has_flag(PCI_PROBE_ONLY)) {
6785 align = 0;
6786 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6787 goto out;
6788 }
6789
6790 while (*p) {
6791 count = 0;
6792 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6793 p[count] == '@') {
6794 p += count + 1;
6795 if (align_order > 63) {
6796 pr_err("PCI: Invalid requested alignment (order %d)\n",
6797 align_order);
6798 align_order = PAGE_SHIFT;
6799 }
6800 } else {
6801 align_order = PAGE_SHIFT;
6802 }
6803
6804 ret = pci_dev_str_match(dev, p, &p);
6805 if (ret == 1) {
6806 *resize = true;
6807 align = 1ULL << align_order;
6808 break;
6809 } else if (ret < 0) {
6810 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6811 p);
6812 break;
6813 }
6814
6815 if (*p != ';' && *p != ',') {
6816 /* End of param or invalid format */
6817 break;
6818 }
6819 p++;
6820 }
6821out:
6822 spin_unlock(&resource_alignment_lock);
6823 return align;
6824}
6825
6826static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6827 resource_size_t align, bool resize)
6828{
6829 struct resource *r = &dev->resource[bar];
6830 const char *r_name = pci_resource_name(dev, bar);
6831 resource_size_t size;
6832
6833 if (!(r->flags & IORESOURCE_MEM))
6834 return;
6835
6836 if (r->flags & IORESOURCE_PCI_FIXED) {
6837 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6838 r_name, r, (unsigned long long)align);
6839 return;
6840 }
6841
6842 size = resource_size(r);
6843 if (size >= align)
6844 return;
6845
6846 /*
6847 * Increase the alignment of the resource. There are two ways we
6848 * can do this:
6849 *
6850 * 1) Increase the size of the resource. BARs are aligned on their
6851 * size, so when we reallocate space for this resource, we'll
6852 * allocate it with the larger alignment. This also prevents
6853 * assignment of any other BARs inside the alignment region, so
6854 * if we're requesting page alignment, this means no other BARs
6855 * will share the page.
6856 *
6857 * The disadvantage is that this makes the resource larger than
6858 * the hardware BAR, which may break drivers that compute things
6859 * based on the resource size, e.g., to find registers at a
6860 * fixed offset before the end of the BAR.
6861 *
6862 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6863 * set r->start to the desired alignment. By itself this
6864 * doesn't prevent other BARs being put inside the alignment
6865 * region, but if we realign *every* resource of every device in
6866 * the system, none of them will share an alignment region.
6867 *
6868 * When the user has requested alignment for only some devices via
6869 * the "pci=resource_alignment" argument, "resize" is true and we
6870 * use the first method. Otherwise we assume we're aligning all
6871 * devices and we use the second.
6872 */
6873
6874 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6875 r_name, r, (unsigned long long)align);
6876
6877 if (resize) {
6878 r->start = 0;
6879 r->end = align - 1;
6880 } else {
6881 r->flags &= ~IORESOURCE_SIZEALIGN;
6882 r->flags |= IORESOURCE_STARTALIGN;
6883 r->start = align;
6884 r->end = r->start + size - 1;
6885 }
6886 r->flags |= IORESOURCE_UNSET;
6887}
6888
6889/*
6890 * This function disables memory decoding and releases memory resources
6891 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6892 * It also rounds up size to specified alignment.
6893 * Later on, the kernel will assign page-aligned memory resource back
6894 * to the device.
6895 */
6896void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6897{
6898 int i;
6899 struct resource *r;
6900 resource_size_t align;
6901 u16 command;
6902 bool resize = false;
6903
6904 /*
6905 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6906 * 3.4.1.11. Their resources are allocated from the space
6907 * described by the VF BARx register in the PF's SR-IOV capability.
6908 * We can't influence their alignment here.
6909 */
6910 if (dev->is_virtfn)
6911 return;
6912
6913 /* check if specified PCI is target device to reassign */
6914 align = pci_specified_resource_alignment(dev, &resize);
6915 if (!align)
6916 return;
6917
6918 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6919 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6920 pci_warn(dev, "Can't reassign resources to host bridge\n");
6921 return;
6922 }
6923
6924 pci_read_config_word(dev, PCI_COMMAND, &command);
6925 command &= ~PCI_COMMAND_MEMORY;
6926 pci_write_config_word(dev, PCI_COMMAND, command);
6927
6928 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6929 pci_request_resource_alignment(dev, i, align, resize);
6930
6931 /*
6932 * Need to disable bridge's resource window,
6933 * to enable the kernel to reassign new resource
6934 * window later on.
6935 */
6936 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6937 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6938 r = &dev->resource[i];
6939 if (!(r->flags & IORESOURCE_MEM))
6940 continue;
6941 r->flags |= IORESOURCE_UNSET;
6942 r->end = resource_size(r) - 1;
6943 r->start = 0;
6944 }
6945 pci_disable_bridge_window(dev);
6946 }
6947}
6948
6949static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6950{
6951 size_t count = 0;
6952
6953 spin_lock(&resource_alignment_lock);
6954 if (resource_alignment_param)
6955 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6956 spin_unlock(&resource_alignment_lock);
6957
6958 return count;
6959}
6960
6961static ssize_t resource_alignment_store(const struct bus_type *bus,
6962 const char *buf, size_t count)
6963{
6964 char *param, *old, *end;
6965
6966 if (count >= (PAGE_SIZE - 1))
6967 return -EINVAL;
6968
6969 param = kstrndup(buf, count, GFP_KERNEL);
6970 if (!param)
6971 return -ENOMEM;
6972
6973 end = strchr(param, '\n');
6974 if (end)
6975 *end = '\0';
6976
6977 spin_lock(&resource_alignment_lock);
6978 old = resource_alignment_param;
6979 if (strlen(param)) {
6980 resource_alignment_param = param;
6981 } else {
6982 kfree(param);
6983 resource_alignment_param = NULL;
6984 }
6985 spin_unlock(&resource_alignment_lock);
6986
6987 kfree(old);
6988
6989 return count;
6990}
6991
6992static BUS_ATTR_RW(resource_alignment);
6993
6994static int __init pci_resource_alignment_sysfs_init(void)
6995{
6996 return bus_create_file(&pci_bus_type,
6997 &bus_attr_resource_alignment);
6998}
6999late_initcall(pci_resource_alignment_sysfs_init);
7000
7001static void pci_no_domains(void)
7002{
7003#ifdef CONFIG_PCI_DOMAINS
7004 pci_domains_supported = 0;
7005#endif
7006}
7007
7008#ifdef CONFIG_PCI_DOMAINS_GENERIC
7009static DEFINE_IDA(pci_domain_nr_static_ida);
7010static DEFINE_IDA(pci_domain_nr_dynamic_ida);
7011
7012static void of_pci_reserve_static_domain_nr(void)
7013{
7014 struct device_node *np;
7015 int domain_nr;
7016
7017 for_each_node_by_type(np, "pci") {
7018 domain_nr = of_get_pci_domain_nr(np);
7019 if (domain_nr < 0)
7020 continue;
7021 /*
7022 * Permanently allocate domain_nr in dynamic_ida
7023 * to prevent it from dynamic allocation.
7024 */
7025 ida_alloc_range(&pci_domain_nr_dynamic_ida,
7026 domain_nr, domain_nr, GFP_KERNEL);
7027 }
7028}
7029
7030static int of_pci_bus_find_domain_nr(struct device *parent)
7031{
7032 static bool static_domains_reserved = false;
7033 int domain_nr;
7034
7035 /* On the first call scan device tree for static allocations. */
7036 if (!static_domains_reserved) {
7037 of_pci_reserve_static_domain_nr();
7038 static_domains_reserved = true;
7039 }
7040
7041 if (parent) {
7042 /*
7043 * If domain is in DT, allocate it in static IDA. This
7044 * prevents duplicate static allocations in case of errors
7045 * in DT.
7046 */
7047 domain_nr = of_get_pci_domain_nr(parent->of_node);
7048 if (domain_nr >= 0)
7049 return ida_alloc_range(&pci_domain_nr_static_ida,
7050 domain_nr, domain_nr,
7051 GFP_KERNEL);
7052 }
7053
7054 /*
7055 * If domain was not specified in DT, choose a free ID from dynamic
7056 * allocations. All domain numbers from DT are permanently in
7057 * dynamic allocations to prevent assigning them to other DT nodes
7058 * without static domain.
7059 */
7060 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
7061}
7062
7063static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7064{
7065 if (bus->domain_nr < 0)
7066 return;
7067
7068 /* Release domain from IDA where it was allocated. */
7069 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
7070 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
7071 else
7072 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7073}
7074
7075int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
7076{
7077 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
7078 acpi_pci_bus_find_domain_nr(bus);
7079}
7080
7081void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7082{
7083 if (!acpi_disabled)
7084 return;
7085 of_pci_bus_release_domain_nr(bus, parent);
7086}
7087#endif
7088
7089/**
7090 * pci_ext_cfg_avail - can we access extended PCI config space?
7091 *
7092 * Returns 1 if we can access PCI extended config space (offsets
7093 * greater than 0xff). This is the default implementation. Architecture
7094 * implementations can override this.
7095 */
7096int __weak pci_ext_cfg_avail(void)
7097{
7098 return 1;
7099}
7100
7101void __weak pci_fixup_cardbus(struct pci_bus *bus)
7102{
7103}
7104EXPORT_SYMBOL(pci_fixup_cardbus);
7105
7106static int __init pci_setup(char *str)
7107{
7108 while (str) {
7109 char *k = strchr(str, ',');
7110 if (k)
7111 *k++ = 0;
7112 if (*str && (str = pcibios_setup(str)) && *str) {
7113 if (!strcmp(str, "nomsi")) {
7114 pci_no_msi();
7115 } else if (!strncmp(str, "noats", 5)) {
7116 pr_info("PCIe: ATS is disabled\n");
7117 pcie_ats_disabled = true;
7118 } else if (!strcmp(str, "noaer")) {
7119 pci_no_aer();
7120 } else if (!strcmp(str, "earlydump")) {
7121 pci_early_dump = true;
7122 } else if (!strncmp(str, "realloc=", 8)) {
7123 pci_realloc_get_opt(str + 8);
7124 } else if (!strncmp(str, "realloc", 7)) {
7125 pci_realloc_get_opt("on");
7126 } else if (!strcmp(str, "nodomains")) {
7127 pci_no_domains();
7128 } else if (!strncmp(str, "noari", 5)) {
7129 pcie_ari_disabled = true;
7130 } else if (!strncmp(str, "cbiosize=", 9)) {
7131 pci_cardbus_io_size = memparse(str + 9, &str);
7132 } else if (!strncmp(str, "cbmemsize=", 10)) {
7133 pci_cardbus_mem_size = memparse(str + 10, &str);
7134 } else if (!strncmp(str, "resource_alignment=", 19)) {
7135 resource_alignment_param = str + 19;
7136 } else if (!strncmp(str, "ecrc=", 5)) {
7137 pcie_ecrc_get_policy(str + 5);
7138 } else if (!strncmp(str, "hpiosize=", 9)) {
7139 pci_hotplug_io_size = memparse(str + 9, &str);
7140 } else if (!strncmp(str, "hpmmiosize=", 11)) {
7141 pci_hotplug_mmio_size = memparse(str + 11, &str);
7142 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7143 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7144 } else if (!strncmp(str, "hpmemsize=", 10)) {
7145 pci_hotplug_mmio_size = memparse(str + 10, &str);
7146 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7147 } else if (!strncmp(str, "hpbussize=", 10)) {
7148 pci_hotplug_bus_size =
7149 simple_strtoul(str + 10, &str, 0);
7150 if (pci_hotplug_bus_size > 0xff)
7151 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7152 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7153 pcie_bus_config = PCIE_BUS_TUNE_OFF;
7154 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7155 pcie_bus_config = PCIE_BUS_SAFE;
7156 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7157 pcie_bus_config = PCIE_BUS_PERFORMANCE;
7158 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7159 pcie_bus_config = PCIE_BUS_PEER2PEER;
7160 } else if (!strncmp(str, "pcie_scan_all", 13)) {
7161 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7162 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7163 disable_acs_redir_param = str + 18;
7164 } else {
7165 pr_err("PCI: Unknown option `%s'\n", str);
7166 }
7167 }
7168 str = k;
7169 }
7170 return 0;
7171}
7172early_param("pci", pci_setup);
7173
7174/*
7175 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7176 * in pci_setup(), above, to point to data in the __initdata section which
7177 * will be freed after the init sequence is complete. We can't allocate memory
7178 * in pci_setup() because some architectures do not have any memory allocation
7179 * service available during an early_param() call. So we allocate memory and
7180 * copy the variable here before the init section is freed.
7181 *
7182 */
7183static int __init pci_realloc_setup_params(void)
7184{
7185 resource_alignment_param = kstrdup(resource_alignment_param,
7186 GFP_KERNEL);
7187 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7188
7189 return 0;
7190}
7191pure_initcall(pci_realloc_setup_params);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/pm_runtime.h>
30#include <linux/pci_hotplug.h>
31#include <linux/vmalloc.h>
32#include <asm/dma.h>
33#include <linux/aer.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43int isa_dma_bridge_buggy;
44EXPORT_SYMBOL(isa_dma_bridge_buggy);
45
46int pci_pci_problems;
47EXPORT_SYMBOL(pci_pci_problems);
48
49unsigned int pci_pm_d3hot_delay;
50
51static void pci_pme_list_scan(struct work_struct *work);
52
53static LIST_HEAD(pci_pme_list);
54static DEFINE_MUTEX(pci_pme_list_mutex);
55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56
57struct pci_pme_device {
58 struct list_head list;
59 struct pci_dev *dev;
60};
61
62#define PME_TIMEOUT 1000 /* How long between PME checks */
63
64static void pci_dev_d3_sleep(struct pci_dev *dev)
65{
66 unsigned int delay = dev->d3hot_delay;
67
68 if (delay < pci_pm_d3hot_delay)
69 delay = pci_pm_d3hot_delay;
70
71 if (delay)
72 msleep(delay);
73}
74
75#ifdef CONFIG_PCI_DOMAINS
76int pci_domains_supported = 1;
77#endif
78
79#define DEFAULT_CARDBUS_IO_SIZE (256)
80#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84
85#define DEFAULT_HOTPLUG_IO_SIZE (256)
86#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
88/* hpiosize=nn can override this */
89unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
90/*
91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93 * pci=hpmemsize=nnM overrides both
94 */
95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97
98#define DEFAULT_HOTPLUG_BUS_SIZE 1
99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100
101
102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105#elif defined CONFIG_PCIE_BUS_SAFE
106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109#elif defined CONFIG_PCIE_BUS_PEER2PEER
110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111#else
112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113#endif
114
115/*
116 * The default CLS is used if arch didn't set CLS explicitly and not
117 * all pci devices agree on the same value. Arch can override either
118 * the dfl or actual value as it sees fit. Don't forget this is
119 * measured in 32-bit words, not bytes.
120 */
121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122u8 pci_cache_line_size;
123
124/*
125 * If we set up a device for bus mastering, we need to check the latency
126 * timer as certain BIOSes forget to set it properly.
127 */
128unsigned int pcibios_max_latency = 255;
129
130/* If set, the PCIe ARI capability will not be used. */
131static bool pcie_ari_disabled;
132
133/* If set, the PCIe ATS capability will not be used. */
134static bool pcie_ats_disabled;
135
136/* If set, the PCI config space of each device is printed during boot. */
137bool pci_early_dump;
138
139bool pci_ats_disabled(void)
140{
141 return pcie_ats_disabled;
142}
143EXPORT_SYMBOL_GPL(pci_ats_disabled);
144
145/* Disable bridge_d3 for all PCIe ports */
146static bool pci_bridge_d3_disable;
147/* Force bridge_d3 for all PCIe ports */
148static bool pci_bridge_d3_force;
149
150static int __init pcie_port_pm_setup(char *str)
151{
152 if (!strcmp(str, "off"))
153 pci_bridge_d3_disable = true;
154 else if (!strcmp(str, "force"))
155 pci_bridge_d3_force = true;
156 return 1;
157}
158__setup("pcie_port_pm=", pcie_port_pm_setup);
159
160/* Time to wait after a reset for device to become responsive */
161#define PCIE_RESET_READY_POLL_MS 60000
162
163/**
164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165 * @bus: pointer to PCI bus structure to search
166 *
167 * Given a PCI bus, returns the highest PCI bus number present in the set
168 * including the given PCI bus and its list of child PCI buses.
169 */
170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171{
172 struct pci_bus *tmp;
173 unsigned char max, n;
174
175 max = bus->busn_res.end;
176 list_for_each_entry(tmp, &bus->children, node) {
177 n = pci_bus_max_busnr(tmp);
178 if (n > max)
179 max = n;
180 }
181 return max;
182}
183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184
185/**
186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187 * @pdev: the PCI device
188 *
189 * Returns error bits set in PCI_STATUS and clears them.
190 */
191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192{
193 u16 status;
194 int ret;
195
196 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 if (ret != PCIBIOS_SUCCESSFUL)
198 return -EIO;
199
200 status &= PCI_STATUS_ERROR_BITS;
201 if (status)
202 pci_write_config_word(pdev, PCI_STATUS, status);
203
204 return status;
205}
206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207
208#ifdef CONFIG_HAS_IOMEM
209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210{
211 struct resource *res = &pdev->resource[bar];
212
213 /*
214 * Make sure the BAR is actually a memory resource, not an IO resource
215 */
216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 return NULL;
219 }
220 return ioremap(res->start, resource_size(res));
221}
222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223
224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225{
226 /*
227 * Make sure the BAR is actually a memory resource, not an IO resource
228 */
229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 WARN_ON(1);
231 return NULL;
232 }
233 return ioremap_wc(pci_resource_start(pdev, bar),
234 pci_resource_len(pdev, bar));
235}
236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237#endif
238
239/**
240 * pci_dev_str_match_path - test if a path string matches a device
241 * @dev: the PCI device to test
242 * @path: string to match the device against
243 * @endptr: pointer to the string after the match
244 *
245 * Test if a string (typically from a kernel parameter) formatted as a
246 * path of device/function addresses matches a PCI device. The string must
247 * be of the form:
248 *
249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250 *
251 * A path for a device can be obtained using 'lspci -t'. Using a path
252 * is more robust against bus renumbering than using only a single bus,
253 * device and function address.
254 *
255 * Returns 1 if the string matches the device, 0 if it does not and
256 * a negative error code if it fails to parse the string.
257 */
258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 const char **endptr)
260{
261 int ret;
262 int seg, bus, slot, func;
263 char *wpath, *p;
264 char end;
265
266 *endptr = strchrnul(path, ';');
267
268 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
269 if (!wpath)
270 return -ENOMEM;
271
272 while (1) {
273 p = strrchr(wpath, '/');
274 if (!p)
275 break;
276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 if (ret != 2) {
278 ret = -EINVAL;
279 goto free_and_exit;
280 }
281
282 if (dev->devfn != PCI_DEVFN(slot, func)) {
283 ret = 0;
284 goto free_and_exit;
285 }
286
287 /*
288 * Note: we don't need to get a reference to the upstream
289 * bridge because we hold a reference to the top level
290 * device which should hold a reference to the bridge,
291 * and so on.
292 */
293 dev = pci_upstream_bridge(dev);
294 if (!dev) {
295 ret = 0;
296 goto free_and_exit;
297 }
298
299 *p = 0;
300 }
301
302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 &func, &end);
304 if (ret != 4) {
305 seg = 0;
306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 if (ret != 3) {
308 ret = -EINVAL;
309 goto free_and_exit;
310 }
311 }
312
313 ret = (seg == pci_domain_nr(dev->bus) &&
314 bus == dev->bus->number &&
315 dev->devfn == PCI_DEVFN(slot, func));
316
317free_and_exit:
318 kfree(wpath);
319 return ret;
320}
321
322/**
323 * pci_dev_str_match - test if a string matches a device
324 * @dev: the PCI device to test
325 * @p: string to match the device against
326 * @endptr: pointer to the string after the match
327 *
328 * Test if a string (typically from a kernel parameter) matches a specified
329 * PCI device. The string may be of one of the following formats:
330 *
331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333 *
334 * The first format specifies a PCI bus/device/function address which
335 * may change if new hardware is inserted, if motherboard firmware changes,
336 * or due to changes caused in kernel parameters. If the domain is
337 * left unspecified, it is taken to be 0. In order to be robust against
338 * bus renumbering issues, a path of PCI device/function numbers may be used
339 * to address the specific device. The path for a device can be determined
340 * through the use of 'lspci -t'.
341 *
342 * The second format matches devices using IDs in the configuration
343 * space which may match multiple devices in the system. A value of 0
344 * for any field will match all devices. (Note: this differs from
345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346 * legacy reasons and convenience so users don't have to specify
347 * FFFFFFFFs on the command line.)
348 *
349 * Returns 1 if the string matches the device, 0 if it does not and
350 * a negative error code if the string cannot be parsed.
351 */
352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 const char **endptr)
354{
355 int ret;
356 int count;
357 unsigned short vendor, device, subsystem_vendor, subsystem_device;
358
359 if (strncmp(p, "pci:", 4) == 0) {
360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 p += 4;
362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 &subsystem_vendor, &subsystem_device, &count);
364 if (ret != 4) {
365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 if (ret != 2)
367 return -EINVAL;
368
369 subsystem_vendor = 0;
370 subsystem_device = 0;
371 }
372
373 p += count;
374
375 if ((!vendor || vendor == dev->vendor) &&
376 (!device || device == dev->device) &&
377 (!subsystem_vendor ||
378 subsystem_vendor == dev->subsystem_vendor) &&
379 (!subsystem_device ||
380 subsystem_device == dev->subsystem_device))
381 goto found;
382 } else {
383 /*
384 * PCI Bus, Device, Function IDs are specified
385 * (optionally, may include a path of devfns following it)
386 */
387 ret = pci_dev_str_match_path(dev, p, &p);
388 if (ret < 0)
389 return ret;
390 else if (ret)
391 goto found;
392 }
393
394 *endptr = p;
395 return 0;
396
397found:
398 *endptr = p;
399 return 1;
400}
401
402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 u8 pos, int cap, int *ttl)
404{
405 u8 id;
406 u16 ent;
407
408 pci_bus_read_config_byte(bus, devfn, pos, &pos);
409
410 while ((*ttl)--) {
411 if (pos < 0x40)
412 break;
413 pos &= ~3;
414 pci_bus_read_config_word(bus, devfn, pos, &ent);
415
416 id = ent & 0xff;
417 if (id == 0xff)
418 break;
419 if (id == cap)
420 return pos;
421 pos = (ent >> 8);
422 }
423 return 0;
424}
425
426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap)
428{
429 int ttl = PCI_FIND_CAP_TTL;
430
431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432}
433
434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435{
436 return __pci_find_next_cap(dev->bus, dev->devfn,
437 pos + PCI_CAP_LIST_NEXT, cap);
438}
439EXPORT_SYMBOL_GPL(pci_find_next_capability);
440
441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 unsigned int devfn, u8 hdr_type)
443{
444 u16 status;
445
446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 if (!(status & PCI_STATUS_CAP_LIST))
448 return 0;
449
450 switch (hdr_type) {
451 case PCI_HEADER_TYPE_NORMAL:
452 case PCI_HEADER_TYPE_BRIDGE:
453 return PCI_CAPABILITY_LIST;
454 case PCI_HEADER_TYPE_CARDBUS:
455 return PCI_CB_CAPABILITY_LIST;
456 }
457
458 return 0;
459}
460
461/**
462 * pci_find_capability - query for devices' capabilities
463 * @dev: PCI device to query
464 * @cap: capability code
465 *
466 * Tell if a device supports a given PCI capability.
467 * Returns the address of the requested capability structure within the
468 * device's PCI configuration space or 0 in case the device does not
469 * support it. Possible values for @cap include:
470 *
471 * %PCI_CAP_ID_PM Power Management
472 * %PCI_CAP_ID_AGP Accelerated Graphics Port
473 * %PCI_CAP_ID_VPD Vital Product Data
474 * %PCI_CAP_ID_SLOTID Slot Identification
475 * %PCI_CAP_ID_MSI Message Signalled Interrupts
476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
477 * %PCI_CAP_ID_PCIX PCI-X
478 * %PCI_CAP_ID_EXP PCI Express
479 */
480u8 pci_find_capability(struct pci_dev *dev, int cap)
481{
482 u8 pos;
483
484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 if (pos)
486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487
488 return pos;
489}
490EXPORT_SYMBOL(pci_find_capability);
491
492/**
493 * pci_bus_find_capability - query for devices' capabilities
494 * @bus: the PCI bus to query
495 * @devfn: PCI device to query
496 * @cap: capability code
497 *
498 * Like pci_find_capability() but works for PCI devices that do not have a
499 * pci_dev structure set up yet.
500 *
501 * Returns the address of the requested capability structure within the
502 * device's PCI configuration space or 0 in case the device does not
503 * support it.
504 */
505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506{
507 u8 hdr_type, pos;
508
509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
510
511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 if (pos)
513 pos = __pci_find_next_cap(bus, devfn, pos, cap);
514
515 return pos;
516}
517EXPORT_SYMBOL(pci_bus_find_capability);
518
519/**
520 * pci_find_next_ext_capability - Find an extended capability
521 * @dev: PCI device to query
522 * @start: address at which to start looking (0 to start at beginning of list)
523 * @cap: capability code
524 *
525 * Returns the address of the next matching extended capability structure
526 * within the device's PCI configuration space or 0 if the device does
527 * not support it. Some capabilities can occur several times, e.g., the
528 * vendor-specific capability, and this provides a way to find them all.
529 */
530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
531{
532 u32 header;
533 int ttl;
534 u16 pos = PCI_CFG_SPACE_SIZE;
535
536 /* minimum 8 bytes per capability */
537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
538
539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
540 return 0;
541
542 if (start)
543 pos = start;
544
545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 return 0;
547
548 /*
549 * If we have no capabilities, this is indicated by cap ID,
550 * cap version and next pointer all being 0.
551 */
552 if (header == 0)
553 return 0;
554
555 while (ttl-- > 0) {
556 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
557 return pos;
558
559 pos = PCI_EXT_CAP_NEXT(header);
560 if (pos < PCI_CFG_SPACE_SIZE)
561 break;
562
563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 break;
565 }
566
567 return 0;
568}
569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
570
571/**
572 * pci_find_ext_capability - Find an extended capability
573 * @dev: PCI device to query
574 * @cap: capability code
575 *
576 * Returns the address of the requested extended capability structure
577 * within the device's PCI configuration space or 0 if the device does
578 * not support it. Possible values for @cap include:
579 *
580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
581 * %PCI_EXT_CAP_ID_VC Virtual Channel
582 * %PCI_EXT_CAP_ID_DSN Device Serial Number
583 * %PCI_EXT_CAP_ID_PWR Power Budgeting
584 */
585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
586{
587 return pci_find_next_ext_capability(dev, 0, cap);
588}
589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
590
591/**
592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
593 * @dev: PCI device to query
594 *
595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596 * Number.
597 *
598 * Returns the DSN, or zero if the capability does not exist.
599 */
600u64 pci_get_dsn(struct pci_dev *dev)
601{
602 u32 dword;
603 u64 dsn;
604 int pos;
605
606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 if (!pos)
608 return 0;
609
610 /*
611 * The Device Serial Number is two dwords offset 4 bytes from the
612 * capability position. The specification says that the first dword is
613 * the lower half, and the second dword is the upper half.
614 */
615 pos += 4;
616 pci_read_config_dword(dev, pos, &dword);
617 dsn = (u64)dword;
618 pci_read_config_dword(dev, pos + 4, &dword);
619 dsn |= ((u64)dword) << 32;
620
621 return dsn;
622}
623EXPORT_SYMBOL_GPL(pci_get_dsn);
624
625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
626{
627 int rc, ttl = PCI_FIND_CAP_TTL;
628 u8 cap, mask;
629
630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 mask = HT_3BIT_CAP_MASK;
632 else
633 mask = HT_5BIT_CAP_MASK;
634
635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 PCI_CAP_ID_HT, &ttl);
637 while (pos) {
638 rc = pci_read_config_byte(dev, pos + 3, &cap);
639 if (rc != PCIBIOS_SUCCESSFUL)
640 return 0;
641
642 if ((cap & mask) == ht_cap)
643 return pos;
644
645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 pos + PCI_CAP_LIST_NEXT,
647 PCI_CAP_ID_HT, &ttl);
648 }
649
650 return 0;
651}
652
653/**
654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655 * @dev: PCI device to query
656 * @pos: Position from which to continue searching
657 * @ht_cap: HyperTransport capability code
658 *
659 * To be used in conjunction with pci_find_ht_capability() to search for
660 * all capabilities matching @ht_cap. @pos should always be a value returned
661 * from pci_find_ht_capability().
662 *
663 * NB. To be 100% safe against broken PCI devices, the caller should take
664 * steps to avoid an infinite loop.
665 */
666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
667{
668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669}
670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671
672/**
673 * pci_find_ht_capability - query a device's HyperTransport capabilities
674 * @dev: PCI device to query
675 * @ht_cap: HyperTransport capability code
676 *
677 * Tell if a device supports a given HyperTransport capability.
678 * Returns an address within the device's PCI configuration space
679 * or 0 in case the device does not support the request capability.
680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681 * which has a HyperTransport capability matching @ht_cap.
682 */
683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684{
685 u8 pos;
686
687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 if (pos)
689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690
691 return pos;
692}
693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694
695/**
696 * pci_find_vsec_capability - Find a vendor-specific extended capability
697 * @dev: PCI device to query
698 * @vendor: Vendor ID for which capability is defined
699 * @cap: Vendor-specific capability ID
700 *
701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
702 * VSEC ID @cap. If found, return the capability offset in
703 * config space; otherwise return 0.
704 */
705u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
706{
707 u16 vsec = 0;
708 u32 header;
709
710 if (vendor != dev->vendor)
711 return 0;
712
713 while ((vsec = pci_find_next_ext_capability(dev, vsec,
714 PCI_EXT_CAP_ID_VNDR))) {
715 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
716 &header) == PCIBIOS_SUCCESSFUL &&
717 PCI_VNDR_HEADER_ID(header) == cap)
718 return vsec;
719 }
720
721 return 0;
722}
723EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
724
725/**
726 * pci_find_parent_resource - return resource region of parent bus of given
727 * region
728 * @dev: PCI device structure contains resources to be searched
729 * @res: child resource record for which parent is sought
730 *
731 * For given resource region of given device, return the resource region of
732 * parent bus the given region is contained in.
733 */
734struct resource *pci_find_parent_resource(const struct pci_dev *dev,
735 struct resource *res)
736{
737 const struct pci_bus *bus = dev->bus;
738 struct resource *r;
739 int i;
740
741 pci_bus_for_each_resource(bus, r, i) {
742 if (!r)
743 continue;
744 if (resource_contains(r, res)) {
745
746 /*
747 * If the window is prefetchable but the BAR is
748 * not, the allocator made a mistake.
749 */
750 if (r->flags & IORESOURCE_PREFETCH &&
751 !(res->flags & IORESOURCE_PREFETCH))
752 return NULL;
753
754 /*
755 * If we're below a transparent bridge, there may
756 * be both a positively-decoded aperture and a
757 * subtractively-decoded region that contain the BAR.
758 * We want the positively-decoded one, so this depends
759 * on pci_bus_for_each_resource() giving us those
760 * first.
761 */
762 return r;
763 }
764 }
765 return NULL;
766}
767EXPORT_SYMBOL(pci_find_parent_resource);
768
769/**
770 * pci_find_resource - Return matching PCI device resource
771 * @dev: PCI device to query
772 * @res: Resource to look for
773 *
774 * Goes over standard PCI resources (BARs) and checks if the given resource
775 * is partially or fully contained in any of them. In that case the
776 * matching resource is returned, %NULL otherwise.
777 */
778struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
779{
780 int i;
781
782 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
783 struct resource *r = &dev->resource[i];
784
785 if (r->start && resource_contains(r, res))
786 return r;
787 }
788
789 return NULL;
790}
791EXPORT_SYMBOL(pci_find_resource);
792
793/**
794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
795 * @dev: the PCI device to operate on
796 * @pos: config space offset of status word
797 * @mask: mask of bit(s) to care about in status word
798 *
799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
800 */
801int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
802{
803 int i;
804
805 /* Wait for Transaction Pending bit clean */
806 for (i = 0; i < 4; i++) {
807 u16 status;
808 if (i)
809 msleep((1 << (i - 1)) * 100);
810
811 pci_read_config_word(dev, pos, &status);
812 if (!(status & mask))
813 return 1;
814 }
815
816 return 0;
817}
818
819static int pci_acs_enable;
820
821/**
822 * pci_request_acs - ask for ACS to be enabled if supported
823 */
824void pci_request_acs(void)
825{
826 pci_acs_enable = 1;
827}
828
829static const char *disable_acs_redir_param;
830
831/**
832 * pci_disable_acs_redir - disable ACS redirect capabilities
833 * @dev: the PCI device
834 *
835 * For only devices specified in the disable_acs_redir parameter.
836 */
837static void pci_disable_acs_redir(struct pci_dev *dev)
838{
839 int ret = 0;
840 const char *p;
841 int pos;
842 u16 ctrl;
843
844 if (!disable_acs_redir_param)
845 return;
846
847 p = disable_acs_redir_param;
848 while (*p) {
849 ret = pci_dev_str_match(dev, p, &p);
850 if (ret < 0) {
851 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
852 disable_acs_redir_param);
853
854 break;
855 } else if (ret == 1) {
856 /* Found a match */
857 break;
858 }
859
860 if (*p != ';' && *p != ',') {
861 /* End of param or invalid format */
862 break;
863 }
864 p++;
865 }
866
867 if (ret != 1)
868 return;
869
870 if (!pci_dev_specific_disable_acs_redir(dev))
871 return;
872
873 pos = dev->acs_cap;
874 if (!pos) {
875 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
876 return;
877 }
878
879 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
880
881 /* P2P Request & Completion Redirect */
882 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
883
884 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
885
886 pci_info(dev, "disabled ACS redirect\n");
887}
888
889/**
890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
891 * @dev: the PCI device
892 */
893static void pci_std_enable_acs(struct pci_dev *dev)
894{
895 int pos;
896 u16 cap;
897 u16 ctrl;
898
899 pos = dev->acs_cap;
900 if (!pos)
901 return;
902
903 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
904 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
905
906 /* Source Validation */
907 ctrl |= (cap & PCI_ACS_SV);
908
909 /* P2P Request Redirect */
910 ctrl |= (cap & PCI_ACS_RR);
911
912 /* P2P Completion Redirect */
913 ctrl |= (cap & PCI_ACS_CR);
914
915 /* Upstream Forwarding */
916 ctrl |= (cap & PCI_ACS_UF);
917
918 /* Enable Translation Blocking for external devices */
919 if (dev->external_facing || dev->untrusted)
920 ctrl |= (cap & PCI_ACS_TB);
921
922 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
923}
924
925/**
926 * pci_enable_acs - enable ACS if hardware support it
927 * @dev: the PCI device
928 */
929static void pci_enable_acs(struct pci_dev *dev)
930{
931 if (!pci_acs_enable)
932 goto disable_acs_redir;
933
934 if (!pci_dev_specific_enable_acs(dev))
935 goto disable_acs_redir;
936
937 pci_std_enable_acs(dev);
938
939disable_acs_redir:
940 /*
941 * Note: pci_disable_acs_redir() must be called even if ACS was not
942 * enabled by the kernel because it may have been enabled by
943 * platform firmware. So if we are told to disable it, we should
944 * always disable it after setting the kernel's default
945 * preferences.
946 */
947 pci_disable_acs_redir(dev);
948}
949
950/**
951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
952 * @dev: PCI device to have its BARs restored
953 *
954 * Restore the BAR values for a given device, so as to make it
955 * accessible by its driver.
956 */
957static void pci_restore_bars(struct pci_dev *dev)
958{
959 int i;
960
961 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
962 pci_update_resource(dev, i);
963}
964
965static const struct pci_platform_pm_ops *pci_platform_pm;
966
967int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
968{
969 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
970 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
971 return -EINVAL;
972 pci_platform_pm = ops;
973 return 0;
974}
975
976static inline bool platform_pci_power_manageable(struct pci_dev *dev)
977{
978 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
979}
980
981static inline int platform_pci_set_power_state(struct pci_dev *dev,
982 pci_power_t t)
983{
984 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
985}
986
987static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
988{
989 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
990}
991
992static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
993{
994 if (pci_platform_pm && pci_platform_pm->refresh_state)
995 pci_platform_pm->refresh_state(dev);
996}
997
998static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
999{
1000 return pci_platform_pm ?
1001 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002}
1003
1004static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005{
1006 return pci_platform_pm ?
1007 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1008}
1009
1010static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011{
1012 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013}
1014
1015static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016{
1017 if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018 return pci_platform_pm->bridge_d3(dev);
1019 return false;
1020}
1021
1022/**
1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024 * given PCI device
1025 * @dev: PCI device to handle.
1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027 *
1028 * RETURN VALUE:
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1034 */
1035static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036{
1037 u16 pmcsr;
1038 bool need_restore = false;
1039
1040 /* Check if we're already there */
1041 if (dev->current_state == state)
1042 return 0;
1043
1044 if (!dev->pm_cap)
1045 return -EIO;
1046
1047 if (state < PCI_D0 || state > PCI_D3hot)
1048 return -EINVAL;
1049
1050 /*
1051 * Validate transition: We can enter D0 from any state, but if
1052 * we're already in a low-power state, we can only go deeper. E.g.,
1053 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054 * we'd have to go from D3 to D0, then to D1.
1055 */
1056 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057 && dev->current_state > state) {
1058 pci_err(dev, "invalid power transition (from %s to %s)\n",
1059 pci_power_name(dev->current_state),
1060 pci_power_name(state));
1061 return -EINVAL;
1062 }
1063
1064 /* Check if this device supports the desired state */
1065 if ((state == PCI_D1 && !dev->d1_support)
1066 || (state == PCI_D2 && !dev->d2_support))
1067 return -EIO;
1068
1069 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070 if (pmcsr == (u16) ~0) {
1071 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072 pci_power_name(dev->current_state),
1073 pci_power_name(state));
1074 return -EIO;
1075 }
1076
1077 /*
1078 * If we're (effectively) in D3, force entire word to 0.
1079 * This doesn't affect PME_Status, disables PME_En, and
1080 * sets PowerState to 0.
1081 */
1082 switch (dev->current_state) {
1083 case PCI_D0:
1084 case PCI_D1:
1085 case PCI_D2:
1086 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087 pmcsr |= state;
1088 break;
1089 case PCI_D3hot:
1090 case PCI_D3cold:
1091 case PCI_UNKNOWN: /* Boot-up */
1092 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094 need_restore = true;
1095 fallthrough; /* force to D0 */
1096 default:
1097 pmcsr = 0;
1098 break;
1099 }
1100
1101 /* Enter specified state */
1102 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103
1104 /*
1105 * Mandatory power management transition delays; see PCI PM 1.1
1106 * 5.6.1 table 18
1107 */
1108 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109 pci_dev_d3_sleep(dev);
1110 else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111 udelay(PCI_PM_D2_DELAY);
1112
1113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115 if (dev->current_state != state)
1116 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117 pci_power_name(dev->current_state),
1118 pci_power_name(state));
1119
1120 /*
1121 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123 * from D3hot to D0 _may_ perform an internal reset, thereby
1124 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125 * For example, at least some versions of the 3c905B and the
1126 * 3c556B exhibit this behaviour.
1127 *
1128 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129 * devices in a D3hot state at boot. Consequently, we need to
1130 * restore at least the BARs so that the device will be
1131 * accessible to its driver.
1132 */
1133 if (need_restore)
1134 pci_restore_bars(dev);
1135
1136 if (dev->bus->self)
1137 pcie_aspm_pm_state_change(dev->bus->self);
1138
1139 return 0;
1140}
1141
1142/**
1143 * pci_update_current_state - Read power state of given device and cache it
1144 * @dev: PCI device to handle.
1145 * @state: State to cache in case the device doesn't have the PM capability
1146 *
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold. The platform firmware is therefore queried first
1149 * to detect accessibility of the register. In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
1153 */
1154void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155{
1156 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157 !pci_device_is_present(dev)) {
1158 dev->current_state = PCI_D3cold;
1159 } else if (dev->pm_cap) {
1160 u16 pmcsr;
1161
1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164 } else {
1165 dev->current_state = state;
1166 }
1167}
1168
1169/**
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1172 *
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1175 */
1176void pci_refresh_power_state(struct pci_dev *dev)
1177{
1178 if (platform_pci_power_manageable(dev))
1179 platform_pci_refresh_power_state(dev);
1180
1181 pci_update_current_state(dev, dev->current_state);
1182}
1183
1184/**
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1188 */
1189int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190{
1191 int error;
1192
1193 if (platform_pci_power_manageable(dev)) {
1194 error = platform_pci_set_power_state(dev, state);
1195 if (!error)
1196 pci_update_current_state(dev, state);
1197 } else
1198 error = -ENODEV;
1199
1200 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201 dev->current_state = PCI_D0;
1202
1203 return error;
1204}
1205EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206
1207static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1208{
1209 pm_request_resume(&pci_dev->dev);
1210 return 0;
1211}
1212
1213/**
1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
1215 * @bus: Top bus of the subtree to walk.
1216 */
1217void pci_resume_bus(struct pci_bus *bus)
1218{
1219 if (bus)
1220 pci_walk_bus(bus, pci_resume_one, NULL);
1221}
1222
1223static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224{
1225 int delay = 1;
1226 u32 id;
1227
1228 /*
1229 * After reset, the device should not silently discard config
1230 * requests, but it may still indicate that it needs more time by
1231 * responding to them with CRS completions. The Root Port will
1232 * generally synthesize ~0 data to complete the read (except when
1233 * CRS SV is enabled and the read was for the Vendor ID; in that
1234 * case it synthesizes 0x0001 data).
1235 *
1236 * Wait for the device to return a non-CRS completion. Read the
1237 * Command register instead of Vendor ID so we don't have to
1238 * contend with the CRS SV value.
1239 */
1240 pci_read_config_dword(dev, PCI_COMMAND, &id);
1241 while (id == ~0) {
1242 if (delay > timeout) {
1243 pci_warn(dev, "not ready %dms after %s; giving up\n",
1244 delay - 1, reset_type);
1245 return -ENOTTY;
1246 }
1247
1248 if (delay > 1000)
1249 pci_info(dev, "not ready %dms after %s; waiting\n",
1250 delay - 1, reset_type);
1251
1252 msleep(delay);
1253 delay *= 2;
1254 pci_read_config_dword(dev, PCI_COMMAND, &id);
1255 }
1256
1257 if (delay > 1000)
1258 pci_info(dev, "ready %dms after %s\n", delay - 1,
1259 reset_type);
1260
1261 return 0;
1262}
1263
1264/**
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
1267 */
1268int pci_power_up(struct pci_dev *dev)
1269{
1270 pci_platform_power_transition(dev, PCI_D0);
1271
1272 /*
1273 * Mandatory power management transition delays are handled in
1274 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275 * corresponding bridge.
1276 */
1277 if (dev->runtime_d3cold) {
1278 /*
1279 * When powering on a bridge from D3cold, the whole hierarchy
1280 * may be powered on into D0uninitialized state, resume them to
1281 * give them a chance to suspend again
1282 */
1283 pci_resume_bus(dev->subordinate);
1284 }
1285
1286 return pci_raw_set_power_state(dev, PCI_D0);
1287}
1288
1289/**
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1293 */
1294static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295{
1296 pci_power_t state = *(pci_power_t *)data;
1297
1298 dev->current_state = state;
1299 return 0;
1300}
1301
1302/**
1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1306 */
1307void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308{
1309 if (bus)
1310 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311}
1312
1313/**
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317 *
1318 * Transition a device to a new power state, using the platform firmware and/or
1319 * the device's PCI PM registers.
1320 *
1321 * RETURN VALUE:
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326 * 0 if device already is in the requested state.
1327 * 0 if the transition is to D3 but D3 is not supported.
1328 * 0 if device's power state has been successfully changed.
1329 */
1330int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331{
1332 int error;
1333
1334 /* Bound the state we're entering */
1335 if (state > PCI_D3cold)
1336 state = PCI_D3cold;
1337 else if (state < PCI_D0)
1338 state = PCI_D0;
1339 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340
1341 /*
1342 * If the device or the parent bridge do not support PCI
1343 * PM, ignore the request if we're doing anything other
1344 * than putting it into D0 (which would only happen on
1345 * boot).
1346 */
1347 return 0;
1348
1349 /* Check if we're already there */
1350 if (dev->current_state == state)
1351 return 0;
1352
1353 if (state == PCI_D0)
1354 return pci_power_up(dev);
1355
1356 /*
1357 * This device is quirked not to be put into D3, so don't put it in
1358 * D3
1359 */
1360 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361 return 0;
1362
1363 /*
1364 * To put device in D3cold, we put device into D3hot in native
1365 * way, then put device into D3cold with platform ops
1366 */
1367 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368 PCI_D3hot : state);
1369
1370 if (pci_platform_power_transition(dev, state))
1371 return error;
1372
1373 /* Powering off a bridge may power off the whole hierarchy */
1374 if (state == PCI_D3cold)
1375 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1376
1377 return 0;
1378}
1379EXPORT_SYMBOL(pci_set_power_state);
1380
1381/**
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
1385 * that is passed to suspend() function.
1386 *
1387 * Returns PCI power state suitable for given device and given system
1388 * message.
1389 */
1390pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391{
1392 pci_power_t ret;
1393
1394 if (!dev->pm_cap)
1395 return PCI_D0;
1396
1397 ret = platform_pci_choose_state(dev);
1398 if (ret != PCI_POWER_ERROR)
1399 return ret;
1400
1401 switch (state.event) {
1402 case PM_EVENT_ON:
1403 return PCI_D0;
1404 case PM_EVENT_FREEZE:
1405 case PM_EVENT_PRETHAW:
1406 /* REVISIT both freeze and pre-thaw "should" use D0 */
1407 case PM_EVENT_SUSPEND:
1408 case PM_EVENT_HIBERNATE:
1409 return PCI_D3hot;
1410 default:
1411 pci_info(dev, "unrecognized suspend event %d\n",
1412 state.event);
1413 BUG();
1414 }
1415 return PCI_D0;
1416}
1417EXPORT_SYMBOL(pci_choose_state);
1418
1419#define PCI_EXP_SAVE_REGS 7
1420
1421static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422 u16 cap, bool extended)
1423{
1424 struct pci_cap_saved_state *tmp;
1425
1426 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428 return tmp;
1429 }
1430 return NULL;
1431}
1432
1433struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434{
1435 return _pci_find_saved_cap(dev, cap, false);
1436}
1437
1438struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439{
1440 return _pci_find_saved_cap(dev, cap, true);
1441}
1442
1443static int pci_save_pcie_state(struct pci_dev *dev)
1444{
1445 int i = 0;
1446 struct pci_cap_saved_state *save_state;
1447 u16 *cap;
1448
1449 if (!pci_is_pcie(dev))
1450 return 0;
1451
1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 if (!save_state) {
1454 pci_err(dev, "buffer not found in %s\n", __func__);
1455 return -ENOMEM;
1456 }
1457
1458 cap = (u16 *)&save_state->cap.data[0];
1459 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466
1467 return 0;
1468}
1469
1470static void pci_restore_pcie_state(struct pci_dev *dev)
1471{
1472 int i = 0;
1473 struct pci_cap_saved_state *save_state;
1474 u16 *cap;
1475
1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477 if (!save_state)
1478 return;
1479
1480 cap = (u16 *)&save_state->cap.data[0];
1481 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488}
1489
1490static int pci_save_pcix_state(struct pci_dev *dev)
1491{
1492 int pos;
1493 struct pci_cap_saved_state *save_state;
1494
1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496 if (!pos)
1497 return 0;
1498
1499 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500 if (!save_state) {
1501 pci_err(dev, "buffer not found in %s\n", __func__);
1502 return -ENOMEM;
1503 }
1504
1505 pci_read_config_word(dev, pos + PCI_X_CMD,
1506 (u16 *)save_state->cap.data);
1507
1508 return 0;
1509}
1510
1511static void pci_restore_pcix_state(struct pci_dev *dev)
1512{
1513 int i = 0, pos;
1514 struct pci_cap_saved_state *save_state;
1515 u16 *cap;
1516
1517 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519 if (!save_state || !pos)
1520 return;
1521 cap = (u16 *)&save_state->cap.data[0];
1522
1523 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524}
1525
1526static void pci_save_ltr_state(struct pci_dev *dev)
1527{
1528 int ltr;
1529 struct pci_cap_saved_state *save_state;
1530 u16 *cap;
1531
1532 if (!pci_is_pcie(dev))
1533 return;
1534
1535 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536 if (!ltr)
1537 return;
1538
1539 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540 if (!save_state) {
1541 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542 return;
1543 }
1544
1545 cap = (u16 *)&save_state->cap.data[0];
1546 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548}
1549
1550static void pci_restore_ltr_state(struct pci_dev *dev)
1551{
1552 struct pci_cap_saved_state *save_state;
1553 int ltr;
1554 u16 *cap;
1555
1556 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558 if (!save_state || !ltr)
1559 return;
1560
1561 cap = (u16 *)&save_state->cap.data[0];
1562 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564}
1565
1566/**
1567 * pci_save_state - save the PCI configuration space of a device before
1568 * suspending
1569 * @dev: PCI device that we're dealing with
1570 */
1571int pci_save_state(struct pci_dev *dev)
1572{
1573 int i;
1574 /* XXX: 100% dword access ok here? */
1575 for (i = 0; i < 16; i++) {
1576 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578 i * 4, dev->saved_config_space[i]);
1579 }
1580 dev->state_saved = true;
1581
1582 i = pci_save_pcie_state(dev);
1583 if (i != 0)
1584 return i;
1585
1586 i = pci_save_pcix_state(dev);
1587 if (i != 0)
1588 return i;
1589
1590 pci_save_ltr_state(dev);
1591 pci_save_dpc_state(dev);
1592 pci_save_aer_state(dev);
1593 pci_save_ptm_state(dev);
1594 return pci_save_vc_state(dev);
1595}
1596EXPORT_SYMBOL(pci_save_state);
1597
1598static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599 u32 saved_val, int retry, bool force)
1600{
1601 u32 val;
1602
1603 pci_read_config_dword(pdev, offset, &val);
1604 if (!force && val == saved_val)
1605 return;
1606
1607 for (;;) {
1608 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609 offset, val, saved_val);
1610 pci_write_config_dword(pdev, offset, saved_val);
1611 if (retry-- <= 0)
1612 return;
1613
1614 pci_read_config_dword(pdev, offset, &val);
1615 if (val == saved_val)
1616 return;
1617
1618 mdelay(1);
1619 }
1620}
1621
1622static void pci_restore_config_space_range(struct pci_dev *pdev,
1623 int start, int end, int retry,
1624 bool force)
1625{
1626 int index;
1627
1628 for (index = end; index >= start; index--)
1629 pci_restore_config_dword(pdev, 4 * index,
1630 pdev->saved_config_space[index],
1631 retry, force);
1632}
1633
1634static void pci_restore_config_space(struct pci_dev *pdev)
1635{
1636 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638 /* Restore BARs before the command register. */
1639 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643
1644 /*
1645 * Force rewriting of prefetch registers to avoid S3 resume
1646 * issues on Intel PCI bridges that occur when these
1647 * registers are not explicitly written.
1648 */
1649 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651 } else {
1652 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653 }
1654}
1655
1656static void pci_restore_rebar_state(struct pci_dev *pdev)
1657{
1658 unsigned int pos, nbars, i;
1659 u32 ctrl;
1660
1661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662 if (!pos)
1663 return;
1664
1665 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667 PCI_REBAR_CTRL_NBAR_SHIFT;
1668
1669 for (i = 0; i < nbars; i++, pos += 8) {
1670 struct resource *res;
1671 int bar_idx, size;
1672
1673 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675 res = pdev->resource + bar_idx;
1676 size = pci_rebar_bytes_to_size(resource_size(res));
1677 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680 }
1681}
1682
1683/**
1684 * pci_restore_state - Restore the saved state of a PCI device
1685 * @dev: PCI device that we're dealing with
1686 */
1687void pci_restore_state(struct pci_dev *dev)
1688{
1689 if (!dev->state_saved)
1690 return;
1691
1692 /*
1693 * Restore max latencies (in the LTR capability) before enabling
1694 * LTR itself (in the PCIe capability).
1695 */
1696 pci_restore_ltr_state(dev);
1697
1698 pci_restore_pcie_state(dev);
1699 pci_restore_pasid_state(dev);
1700 pci_restore_pri_state(dev);
1701 pci_restore_ats_state(dev);
1702 pci_restore_vc_state(dev);
1703 pci_restore_rebar_state(dev);
1704 pci_restore_dpc_state(dev);
1705 pci_restore_ptm_state(dev);
1706
1707 pci_aer_clear_status(dev);
1708 pci_restore_aer_state(dev);
1709
1710 pci_restore_config_space(dev);
1711
1712 pci_restore_pcix_state(dev);
1713 pci_restore_msi_state(dev);
1714
1715 /* Restore ACS and IOV configuration state */
1716 pci_enable_acs(dev);
1717 pci_restore_iov_state(dev);
1718
1719 dev->state_saved = false;
1720}
1721EXPORT_SYMBOL(pci_restore_state);
1722
1723struct pci_saved_state {
1724 u32 config_space[16];
1725 struct pci_cap_saved_data cap[];
1726};
1727
1728/**
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 * the device saved state.
1731 * @dev: PCI device that we're dealing with
1732 *
1733 * Return NULL if no state or error.
1734 */
1735struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736{
1737 struct pci_saved_state *state;
1738 struct pci_cap_saved_state *tmp;
1739 struct pci_cap_saved_data *cap;
1740 size_t size;
1741
1742 if (!dev->state_saved)
1743 return NULL;
1744
1745 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746
1747 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749
1750 state = kzalloc(size, GFP_KERNEL);
1751 if (!state)
1752 return NULL;
1753
1754 memcpy(state->config_space, dev->saved_config_space,
1755 sizeof(state->config_space));
1756
1757 cap = state->cap;
1758 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760 memcpy(cap, &tmp->cap, len);
1761 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762 }
1763 /* Empty cap_save terminates list */
1764
1765 return state;
1766}
1767EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768
1769/**
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1773 */
1774int pci_load_saved_state(struct pci_dev *dev,
1775 struct pci_saved_state *state)
1776{
1777 struct pci_cap_saved_data *cap;
1778
1779 dev->state_saved = false;
1780
1781 if (!state)
1782 return 0;
1783
1784 memcpy(dev->saved_config_space, state->config_space,
1785 sizeof(state->config_space));
1786
1787 cap = state->cap;
1788 while (cap->size) {
1789 struct pci_cap_saved_state *tmp;
1790
1791 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792 if (!tmp || tmp->cap.size != cap->size)
1793 return -EINVAL;
1794
1795 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797 sizeof(struct pci_cap_saved_data) + cap->size);
1798 }
1799
1800 dev->state_saved = true;
1801 return 0;
1802}
1803EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804
1805/**
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 * and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1810 */
1811int pci_load_and_free_saved_state(struct pci_dev *dev,
1812 struct pci_saved_state **state)
1813{
1814 int ret = pci_load_saved_state(dev, *state);
1815 kfree(*state);
1816 *state = NULL;
1817 return ret;
1818}
1819EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820
1821int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822{
1823 return pci_enable_resources(dev, bars);
1824}
1825
1826static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827{
1828 int err;
1829 struct pci_dev *bridge;
1830 u16 cmd;
1831 u8 pin;
1832
1833 err = pci_set_power_state(dev, PCI_D0);
1834 if (err < 0 && err != -EIO)
1835 return err;
1836
1837 bridge = pci_upstream_bridge(dev);
1838 if (bridge)
1839 pcie_aspm_powersave_config_link(bridge);
1840
1841 err = pcibios_enable_device(dev, bars);
1842 if (err < 0)
1843 return err;
1844 pci_fixup_device(pci_fixup_enable, dev);
1845
1846 if (dev->msi_enabled || dev->msix_enabled)
1847 return 0;
1848
1849 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850 if (pin) {
1851 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852 if (cmd & PCI_COMMAND_INTX_DISABLE)
1853 pci_write_config_word(dev, PCI_COMMAND,
1854 cmd & ~PCI_COMMAND_INTX_DISABLE);
1855 }
1856
1857 return 0;
1858}
1859
1860/**
1861 * pci_reenable_device - Resume abandoned device
1862 * @dev: PCI device to be resumed
1863 *
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
1866 */
1867int pci_reenable_device(struct pci_dev *dev)
1868{
1869 if (pci_is_enabled(dev))
1870 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871 return 0;
1872}
1873EXPORT_SYMBOL(pci_reenable_device);
1874
1875static void pci_enable_bridge(struct pci_dev *dev)
1876{
1877 struct pci_dev *bridge;
1878 int retval;
1879
1880 bridge = pci_upstream_bridge(dev);
1881 if (bridge)
1882 pci_enable_bridge(bridge);
1883
1884 if (pci_is_enabled(dev)) {
1885 if (!dev->is_busmaster)
1886 pci_set_master(dev);
1887 return;
1888 }
1889
1890 retval = pci_enable_device(dev);
1891 if (retval)
1892 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893 retval);
1894 pci_set_master(dev);
1895}
1896
1897static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898{
1899 struct pci_dev *bridge;
1900 int err;
1901 int i, bars = 0;
1902
1903 /*
1904 * Power state could be unknown at this point, either due to a fresh
1905 * boot or a device removal call. So get the current power state
1906 * so that things like MSI message writing will behave as expected
1907 * (e.g. if the device really is in D0 at enable time).
1908 */
1909 pci_update_current_state(dev, dev->current_state);
1910
1911 if (atomic_inc_return(&dev->enable_cnt) > 1)
1912 return 0; /* already enabled */
1913
1914 bridge = pci_upstream_bridge(dev);
1915 if (bridge)
1916 pci_enable_bridge(bridge);
1917
1918 /* only skip sriov related */
1919 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1920 if (dev->resource[i].flags & flags)
1921 bars |= (1 << i);
1922 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1923 if (dev->resource[i].flags & flags)
1924 bars |= (1 << i);
1925
1926 err = do_pci_enable_device(dev, bars);
1927 if (err < 0)
1928 atomic_dec(&dev->enable_cnt);
1929 return err;
1930}
1931
1932/**
1933 * pci_enable_device_io - Initialize a device for use with IO space
1934 * @dev: PCI device to be initialized
1935 *
1936 * Initialize device before it's used by a driver. Ask low-level code
1937 * to enable I/O resources. Wake up the device if it was suspended.
1938 * Beware, this function can fail.
1939 */
1940int pci_enable_device_io(struct pci_dev *dev)
1941{
1942 return pci_enable_device_flags(dev, IORESOURCE_IO);
1943}
1944EXPORT_SYMBOL(pci_enable_device_io);
1945
1946/**
1947 * pci_enable_device_mem - Initialize a device for use with Memory space
1948 * @dev: PCI device to be initialized
1949 *
1950 * Initialize device before it's used by a driver. Ask low-level code
1951 * to enable Memory resources. Wake up the device if it was suspended.
1952 * Beware, this function can fail.
1953 */
1954int pci_enable_device_mem(struct pci_dev *dev)
1955{
1956 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1957}
1958EXPORT_SYMBOL(pci_enable_device_mem);
1959
1960/**
1961 * pci_enable_device - Initialize device before it's used by a driver.
1962 * @dev: PCI device to be initialized
1963 *
1964 * Initialize device before it's used by a driver. Ask low-level code
1965 * to enable I/O and memory. Wake up the device if it was suspended.
1966 * Beware, this function can fail.
1967 *
1968 * Note we don't actually enable the device many times if we call
1969 * this function repeatedly (we just increment the count).
1970 */
1971int pci_enable_device(struct pci_dev *dev)
1972{
1973 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1974}
1975EXPORT_SYMBOL(pci_enable_device);
1976
1977/*
1978 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1979 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1980 * there's no need to track it separately. pci_devres is initialized
1981 * when a device is enabled using managed PCI device enable interface.
1982 */
1983struct pci_devres {
1984 unsigned int enabled:1;
1985 unsigned int pinned:1;
1986 unsigned int orig_intx:1;
1987 unsigned int restore_intx:1;
1988 unsigned int mwi:1;
1989 u32 region_mask;
1990};
1991
1992static void pcim_release(struct device *gendev, void *res)
1993{
1994 struct pci_dev *dev = to_pci_dev(gendev);
1995 struct pci_devres *this = res;
1996 int i;
1997
1998 if (dev->msi_enabled)
1999 pci_disable_msi(dev);
2000 if (dev->msix_enabled)
2001 pci_disable_msix(dev);
2002
2003 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2004 if (this->region_mask & (1 << i))
2005 pci_release_region(dev, i);
2006
2007 if (this->mwi)
2008 pci_clear_mwi(dev);
2009
2010 if (this->restore_intx)
2011 pci_intx(dev, this->orig_intx);
2012
2013 if (this->enabled && !this->pinned)
2014 pci_disable_device(dev);
2015}
2016
2017static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2018{
2019 struct pci_devres *dr, *new_dr;
2020
2021 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2022 if (dr)
2023 return dr;
2024
2025 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2026 if (!new_dr)
2027 return NULL;
2028 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2029}
2030
2031static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2032{
2033 if (pci_is_managed(pdev))
2034 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2035 return NULL;
2036}
2037
2038/**
2039 * pcim_enable_device - Managed pci_enable_device()
2040 * @pdev: PCI device to be initialized
2041 *
2042 * Managed pci_enable_device().
2043 */
2044int pcim_enable_device(struct pci_dev *pdev)
2045{
2046 struct pci_devres *dr;
2047 int rc;
2048
2049 dr = get_pci_dr(pdev);
2050 if (unlikely(!dr))
2051 return -ENOMEM;
2052 if (dr->enabled)
2053 return 0;
2054
2055 rc = pci_enable_device(pdev);
2056 if (!rc) {
2057 pdev->is_managed = 1;
2058 dr->enabled = 1;
2059 }
2060 return rc;
2061}
2062EXPORT_SYMBOL(pcim_enable_device);
2063
2064/**
2065 * pcim_pin_device - Pin managed PCI device
2066 * @pdev: PCI device to pin
2067 *
2068 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2069 * driver detach. @pdev must have been enabled with
2070 * pcim_enable_device().
2071 */
2072void pcim_pin_device(struct pci_dev *pdev)
2073{
2074 struct pci_devres *dr;
2075
2076 dr = find_pci_dr(pdev);
2077 WARN_ON(!dr || !dr->enabled);
2078 if (dr)
2079 dr->pinned = 1;
2080}
2081EXPORT_SYMBOL(pcim_pin_device);
2082
2083/*
2084 * pcibios_add_device - provide arch specific hooks when adding device dev
2085 * @dev: the PCI device being added
2086 *
2087 * Permits the platform to provide architecture specific functionality when
2088 * devices are added. This is the default implementation. Architecture
2089 * implementations can override this.
2090 */
2091int __weak pcibios_add_device(struct pci_dev *dev)
2092{
2093 return 0;
2094}
2095
2096/**
2097 * pcibios_release_device - provide arch specific hooks when releasing
2098 * device dev
2099 * @dev: the PCI device being released
2100 *
2101 * Permits the platform to provide architecture specific functionality when
2102 * devices are released. This is the default implementation. Architecture
2103 * implementations can override this.
2104 */
2105void __weak pcibios_release_device(struct pci_dev *dev) {}
2106
2107/**
2108 * pcibios_disable_device - disable arch specific PCI resources for device dev
2109 * @dev: the PCI device to disable
2110 *
2111 * Disables architecture specific PCI resources for the device. This
2112 * is the default implementation. Architecture implementations can
2113 * override this.
2114 */
2115void __weak pcibios_disable_device(struct pci_dev *dev) {}
2116
2117/**
2118 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2119 * @irq: ISA IRQ to penalize
2120 * @active: IRQ active or not
2121 *
2122 * Permits the platform to provide architecture-specific functionality when
2123 * penalizing ISA IRQs. This is the default implementation. Architecture
2124 * implementations can override this.
2125 */
2126void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2127
2128static void do_pci_disable_device(struct pci_dev *dev)
2129{
2130 u16 pci_command;
2131
2132 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2133 if (pci_command & PCI_COMMAND_MASTER) {
2134 pci_command &= ~PCI_COMMAND_MASTER;
2135 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2136 }
2137
2138 pcibios_disable_device(dev);
2139}
2140
2141/**
2142 * pci_disable_enabled_device - Disable device without updating enable_cnt
2143 * @dev: PCI device to disable
2144 *
2145 * NOTE: This function is a backend of PCI power management routines and is
2146 * not supposed to be called drivers.
2147 */
2148void pci_disable_enabled_device(struct pci_dev *dev)
2149{
2150 if (pci_is_enabled(dev))
2151 do_pci_disable_device(dev);
2152}
2153
2154/**
2155 * pci_disable_device - Disable PCI device after use
2156 * @dev: PCI device to be disabled
2157 *
2158 * Signal to the system that the PCI device is not in use by the system
2159 * anymore. This only involves disabling PCI bus-mastering, if active.
2160 *
2161 * Note we don't actually disable the device until all callers of
2162 * pci_enable_device() have called pci_disable_device().
2163 */
2164void pci_disable_device(struct pci_dev *dev)
2165{
2166 struct pci_devres *dr;
2167
2168 dr = find_pci_dr(dev);
2169 if (dr)
2170 dr->enabled = 0;
2171
2172 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2173 "disabling already-disabled device");
2174
2175 if (atomic_dec_return(&dev->enable_cnt) != 0)
2176 return;
2177
2178 do_pci_disable_device(dev);
2179
2180 dev->is_busmaster = 0;
2181}
2182EXPORT_SYMBOL(pci_disable_device);
2183
2184/**
2185 * pcibios_set_pcie_reset_state - set reset state for device dev
2186 * @dev: the PCIe device reset
2187 * @state: Reset state to enter into
2188 *
2189 * Set the PCIe reset state for the device. This is the default
2190 * implementation. Architecture implementations can override this.
2191 */
2192int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2193 enum pcie_reset_state state)
2194{
2195 return -EINVAL;
2196}
2197
2198/**
2199 * pci_set_pcie_reset_state - set reset state for device dev
2200 * @dev: the PCIe device reset
2201 * @state: Reset state to enter into
2202 *
2203 * Sets the PCI reset state for the device.
2204 */
2205int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2206{
2207 return pcibios_set_pcie_reset_state(dev, state);
2208}
2209EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2210
2211void pcie_clear_device_status(struct pci_dev *dev)
2212{
2213 u16 sta;
2214
2215 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2216 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2217}
2218
2219/**
2220 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2221 * @dev: PCIe root port or event collector.
2222 */
2223void pcie_clear_root_pme_status(struct pci_dev *dev)
2224{
2225 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2226}
2227
2228/**
2229 * pci_check_pme_status - Check if given device has generated PME.
2230 * @dev: Device to check.
2231 *
2232 * Check the PME status of the device and if set, clear it and clear PME enable
2233 * (if set). Return 'true' if PME status and PME enable were both set or
2234 * 'false' otherwise.
2235 */
2236bool pci_check_pme_status(struct pci_dev *dev)
2237{
2238 int pmcsr_pos;
2239 u16 pmcsr;
2240 bool ret = false;
2241
2242 if (!dev->pm_cap)
2243 return false;
2244
2245 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2246 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2247 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2248 return false;
2249
2250 /* Clear PME status. */
2251 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2252 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2253 /* Disable PME to avoid interrupt flood. */
2254 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2255 ret = true;
2256 }
2257
2258 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2259
2260 return ret;
2261}
2262
2263/**
2264 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2265 * @dev: Device to handle.
2266 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2267 *
2268 * Check if @dev has generated PME and queue a resume request for it in that
2269 * case.
2270 */
2271static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2272{
2273 if (pme_poll_reset && dev->pme_poll)
2274 dev->pme_poll = false;
2275
2276 if (pci_check_pme_status(dev)) {
2277 pci_wakeup_event(dev);
2278 pm_request_resume(&dev->dev);
2279 }
2280 return 0;
2281}
2282
2283/**
2284 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2285 * @bus: Top bus of the subtree to walk.
2286 */
2287void pci_pme_wakeup_bus(struct pci_bus *bus)
2288{
2289 if (bus)
2290 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2291}
2292
2293
2294/**
2295 * pci_pme_capable - check the capability of PCI device to generate PME#
2296 * @dev: PCI device to handle.
2297 * @state: PCI state from which device will issue PME#.
2298 */
2299bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2300{
2301 if (!dev->pm_cap)
2302 return false;
2303
2304 return !!(dev->pme_support & (1 << state));
2305}
2306EXPORT_SYMBOL(pci_pme_capable);
2307
2308static void pci_pme_list_scan(struct work_struct *work)
2309{
2310 struct pci_pme_device *pme_dev, *n;
2311
2312 mutex_lock(&pci_pme_list_mutex);
2313 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2314 if (pme_dev->dev->pme_poll) {
2315 struct pci_dev *bridge;
2316
2317 bridge = pme_dev->dev->bus->self;
2318 /*
2319 * If bridge is in low power state, the
2320 * configuration space of subordinate devices
2321 * may be not accessible
2322 */
2323 if (bridge && bridge->current_state != PCI_D0)
2324 continue;
2325 /*
2326 * If the device is in D3cold it should not be
2327 * polled either.
2328 */
2329 if (pme_dev->dev->current_state == PCI_D3cold)
2330 continue;
2331
2332 pci_pme_wakeup(pme_dev->dev, NULL);
2333 } else {
2334 list_del(&pme_dev->list);
2335 kfree(pme_dev);
2336 }
2337 }
2338 if (!list_empty(&pci_pme_list))
2339 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2340 msecs_to_jiffies(PME_TIMEOUT));
2341 mutex_unlock(&pci_pme_list_mutex);
2342}
2343
2344static void __pci_pme_active(struct pci_dev *dev, bool enable)
2345{
2346 u16 pmcsr;
2347
2348 if (!dev->pme_support)
2349 return;
2350
2351 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2352 /* Clear PME_Status by writing 1 to it and enable PME# */
2353 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2354 if (!enable)
2355 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2356
2357 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358}
2359
2360/**
2361 * pci_pme_restore - Restore PME configuration after config space restore.
2362 * @dev: PCI device to update.
2363 */
2364void pci_pme_restore(struct pci_dev *dev)
2365{
2366 u16 pmcsr;
2367
2368 if (!dev->pme_support)
2369 return;
2370
2371 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2372 if (dev->wakeup_prepared) {
2373 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2374 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2375 } else {
2376 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2377 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2378 }
2379 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2380}
2381
2382/**
2383 * pci_pme_active - enable or disable PCI device's PME# function
2384 * @dev: PCI device to handle.
2385 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2386 *
2387 * The caller must verify that the device is capable of generating PME# before
2388 * calling this function with @enable equal to 'true'.
2389 */
2390void pci_pme_active(struct pci_dev *dev, bool enable)
2391{
2392 __pci_pme_active(dev, enable);
2393
2394 /*
2395 * PCI (as opposed to PCIe) PME requires that the device have
2396 * its PME# line hooked up correctly. Not all hardware vendors
2397 * do this, so the PME never gets delivered and the device
2398 * remains asleep. The easiest way around this is to
2399 * periodically walk the list of suspended devices and check
2400 * whether any have their PME flag set. The assumption is that
2401 * we'll wake up often enough anyway that this won't be a huge
2402 * hit, and the power savings from the devices will still be a
2403 * win.
2404 *
2405 * Although PCIe uses in-band PME message instead of PME# line
2406 * to report PME, PME does not work for some PCIe devices in
2407 * reality. For example, there are devices that set their PME
2408 * status bits, but don't really bother to send a PME message;
2409 * there are PCI Express Root Ports that don't bother to
2410 * trigger interrupts when they receive PME messages from the
2411 * devices below. So PME poll is used for PCIe devices too.
2412 */
2413
2414 if (dev->pme_poll) {
2415 struct pci_pme_device *pme_dev;
2416 if (enable) {
2417 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2418 GFP_KERNEL);
2419 if (!pme_dev) {
2420 pci_warn(dev, "can't enable PME#\n");
2421 return;
2422 }
2423 pme_dev->dev = dev;
2424 mutex_lock(&pci_pme_list_mutex);
2425 list_add(&pme_dev->list, &pci_pme_list);
2426 if (list_is_singular(&pci_pme_list))
2427 queue_delayed_work(system_freezable_wq,
2428 &pci_pme_work,
2429 msecs_to_jiffies(PME_TIMEOUT));
2430 mutex_unlock(&pci_pme_list_mutex);
2431 } else {
2432 mutex_lock(&pci_pme_list_mutex);
2433 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2434 if (pme_dev->dev == dev) {
2435 list_del(&pme_dev->list);
2436 kfree(pme_dev);
2437 break;
2438 }
2439 }
2440 mutex_unlock(&pci_pme_list_mutex);
2441 }
2442 }
2443
2444 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2445}
2446EXPORT_SYMBOL(pci_pme_active);
2447
2448/**
2449 * __pci_enable_wake - enable PCI device as wakeup event source
2450 * @dev: PCI device affected
2451 * @state: PCI state from which device will issue wakeup events
2452 * @enable: True to enable event generation; false to disable
2453 *
2454 * This enables the device as a wakeup event source, or disables it.
2455 * When such events involves platform-specific hooks, those hooks are
2456 * called automatically by this routine.
2457 *
2458 * Devices with legacy power management (no standard PCI PM capabilities)
2459 * always require such platform hooks.
2460 *
2461 * RETURN VALUE:
2462 * 0 is returned on success
2463 * -EINVAL is returned if device is not supposed to wake up the system
2464 * Error code depending on the platform is returned if both the platform and
2465 * the native mechanism fail to enable the generation of wake-up events
2466 */
2467static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2468{
2469 int ret = 0;
2470
2471 /*
2472 * Bridges that are not power-manageable directly only signal
2473 * wakeup on behalf of subordinate devices which is set up
2474 * elsewhere, so skip them. However, bridges that are
2475 * power-manageable may signal wakeup for themselves (for example,
2476 * on a hotplug event) and they need to be covered here.
2477 */
2478 if (!pci_power_manageable(dev))
2479 return 0;
2480
2481 /* Don't do the same thing twice in a row for one device. */
2482 if (!!enable == !!dev->wakeup_prepared)
2483 return 0;
2484
2485 /*
2486 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2487 * Anderson we should be doing PME# wake enable followed by ACPI wake
2488 * enable. To disable wake-up we call the platform first, for symmetry.
2489 */
2490
2491 if (enable) {
2492 int error;
2493
2494 /*
2495 * Enable PME signaling if the device can signal PME from
2496 * D3cold regardless of whether or not it can signal PME from
2497 * the current target state, because that will allow it to
2498 * signal PME when the hierarchy above it goes into D3cold and
2499 * the device itself ends up in D3cold as a result of that.
2500 */
2501 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2502 pci_pme_active(dev, true);
2503 else
2504 ret = 1;
2505 error = platform_pci_set_wakeup(dev, true);
2506 if (ret)
2507 ret = error;
2508 if (!ret)
2509 dev->wakeup_prepared = true;
2510 } else {
2511 platform_pci_set_wakeup(dev, false);
2512 pci_pme_active(dev, false);
2513 dev->wakeup_prepared = false;
2514 }
2515
2516 return ret;
2517}
2518
2519/**
2520 * pci_enable_wake - change wakeup settings for a PCI device
2521 * @pci_dev: Target device
2522 * @state: PCI state from which device will issue wakeup events
2523 * @enable: Whether or not to enable event generation
2524 *
2525 * If @enable is set, check device_may_wakeup() for the device before calling
2526 * __pci_enable_wake() for it.
2527 */
2528int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2529{
2530 if (enable && !device_may_wakeup(&pci_dev->dev))
2531 return -EINVAL;
2532
2533 return __pci_enable_wake(pci_dev, state, enable);
2534}
2535EXPORT_SYMBOL(pci_enable_wake);
2536
2537/**
2538 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2539 * @dev: PCI device to prepare
2540 * @enable: True to enable wake-up event generation; false to disable
2541 *
2542 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2543 * and this function allows them to set that up cleanly - pci_enable_wake()
2544 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2545 * ordering constraints.
2546 *
2547 * This function only returns error code if the device is not allowed to wake
2548 * up the system from sleep or it is not capable of generating PME# from both
2549 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2550 */
2551int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2552{
2553 return pci_pme_capable(dev, PCI_D3cold) ?
2554 pci_enable_wake(dev, PCI_D3cold, enable) :
2555 pci_enable_wake(dev, PCI_D3hot, enable);
2556}
2557EXPORT_SYMBOL(pci_wake_from_d3);
2558
2559/**
2560 * pci_target_state - find an appropriate low power state for a given PCI dev
2561 * @dev: PCI device
2562 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2563 *
2564 * Use underlying platform code to find a supported low power state for @dev.
2565 * If the platform can't manage @dev, return the deepest state from which it
2566 * can generate wake events, based on any available PME info.
2567 */
2568static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2569{
2570 pci_power_t target_state = PCI_D3hot;
2571
2572 if (platform_pci_power_manageable(dev)) {
2573 /*
2574 * Call the platform to find the target state for the device.
2575 */
2576 pci_power_t state = platform_pci_choose_state(dev);
2577
2578 switch (state) {
2579 case PCI_POWER_ERROR:
2580 case PCI_UNKNOWN:
2581 break;
2582 case PCI_D1:
2583 case PCI_D2:
2584 if (pci_no_d1d2(dev))
2585 break;
2586 fallthrough;
2587 default:
2588 target_state = state;
2589 }
2590
2591 return target_state;
2592 }
2593
2594 if (!dev->pm_cap)
2595 target_state = PCI_D0;
2596
2597 /*
2598 * If the device is in D3cold even though it's not power-manageable by
2599 * the platform, it may have been powered down by non-standard means.
2600 * Best to let it slumber.
2601 */
2602 if (dev->current_state == PCI_D3cold)
2603 target_state = PCI_D3cold;
2604
2605 if (wakeup && dev->pme_support) {
2606 pci_power_t state = target_state;
2607
2608 /*
2609 * Find the deepest state from which the device can generate
2610 * PME#.
2611 */
2612 while (state && !(dev->pme_support & (1 << state)))
2613 state--;
2614
2615 if (state)
2616 return state;
2617 else if (dev->pme_support & 1)
2618 return PCI_D0;
2619 }
2620
2621 return target_state;
2622}
2623
2624/**
2625 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2626 * into a sleep state
2627 * @dev: Device to handle.
2628 *
2629 * Choose the power state appropriate for the device depending on whether
2630 * it can wake up the system and/or is power manageable by the platform
2631 * (PCI_D3hot is the default) and put the device into that state.
2632 */
2633int pci_prepare_to_sleep(struct pci_dev *dev)
2634{
2635 bool wakeup = device_may_wakeup(&dev->dev);
2636 pci_power_t target_state = pci_target_state(dev, wakeup);
2637 int error;
2638
2639 if (target_state == PCI_POWER_ERROR)
2640 return -EIO;
2641
2642 /*
2643 * There are systems (for example, Intel mobile chips since Coffee
2644 * Lake) where the power drawn while suspended can be significantly
2645 * reduced by disabling PTM on PCIe root ports as this allows the
2646 * port to enter a lower-power PM state and the SoC to reach a
2647 * lower-power idle state as a whole.
2648 */
2649 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2650 pci_disable_ptm(dev);
2651
2652 pci_enable_wake(dev, target_state, wakeup);
2653
2654 error = pci_set_power_state(dev, target_state);
2655
2656 if (error) {
2657 pci_enable_wake(dev, target_state, false);
2658 pci_restore_ptm_state(dev);
2659 }
2660
2661 return error;
2662}
2663EXPORT_SYMBOL(pci_prepare_to_sleep);
2664
2665/**
2666 * pci_back_from_sleep - turn PCI device on during system-wide transition
2667 * into working state
2668 * @dev: Device to handle.
2669 *
2670 * Disable device's system wake-up capability and put it into D0.
2671 */
2672int pci_back_from_sleep(struct pci_dev *dev)
2673{
2674 pci_enable_wake(dev, PCI_D0, false);
2675 return pci_set_power_state(dev, PCI_D0);
2676}
2677EXPORT_SYMBOL(pci_back_from_sleep);
2678
2679/**
2680 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2681 * @dev: PCI device being suspended.
2682 *
2683 * Prepare @dev to generate wake-up events at run time and put it into a low
2684 * power state.
2685 */
2686int pci_finish_runtime_suspend(struct pci_dev *dev)
2687{
2688 pci_power_t target_state;
2689 int error;
2690
2691 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2692 if (target_state == PCI_POWER_ERROR)
2693 return -EIO;
2694
2695 dev->runtime_d3cold = target_state == PCI_D3cold;
2696
2697 /*
2698 * There are systems (for example, Intel mobile chips since Coffee
2699 * Lake) where the power drawn while suspended can be significantly
2700 * reduced by disabling PTM on PCIe root ports as this allows the
2701 * port to enter a lower-power PM state and the SoC to reach a
2702 * lower-power idle state as a whole.
2703 */
2704 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2705 pci_disable_ptm(dev);
2706
2707 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2708
2709 error = pci_set_power_state(dev, target_state);
2710
2711 if (error) {
2712 pci_enable_wake(dev, target_state, false);
2713 pci_restore_ptm_state(dev);
2714 dev->runtime_d3cold = false;
2715 }
2716
2717 return error;
2718}
2719
2720/**
2721 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2722 * @dev: Device to check.
2723 *
2724 * Return true if the device itself is capable of generating wake-up events
2725 * (through the platform or using the native PCIe PME) or if the device supports
2726 * PME and one of its upstream bridges can generate wake-up events.
2727 */
2728bool pci_dev_run_wake(struct pci_dev *dev)
2729{
2730 struct pci_bus *bus = dev->bus;
2731
2732 if (!dev->pme_support)
2733 return false;
2734
2735 /* PME-capable in principle, but not from the target power state */
2736 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2737 return false;
2738
2739 if (device_can_wakeup(&dev->dev))
2740 return true;
2741
2742 while (bus->parent) {
2743 struct pci_dev *bridge = bus->self;
2744
2745 if (device_can_wakeup(&bridge->dev))
2746 return true;
2747
2748 bus = bus->parent;
2749 }
2750
2751 /* We have reached the root bus. */
2752 if (bus->bridge)
2753 return device_can_wakeup(bus->bridge);
2754
2755 return false;
2756}
2757EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2758
2759/**
2760 * pci_dev_need_resume - Check if it is necessary to resume the device.
2761 * @pci_dev: Device to check.
2762 *
2763 * Return 'true' if the device is not runtime-suspended or it has to be
2764 * reconfigured due to wakeup settings difference between system and runtime
2765 * suspend, or the current power state of it is not suitable for the upcoming
2766 * (system-wide) transition.
2767 */
2768bool pci_dev_need_resume(struct pci_dev *pci_dev)
2769{
2770 struct device *dev = &pci_dev->dev;
2771 pci_power_t target_state;
2772
2773 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2774 return true;
2775
2776 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2777
2778 /*
2779 * If the earlier platform check has not triggered, D3cold is just power
2780 * removal on top of D3hot, so no need to resume the device in that
2781 * case.
2782 */
2783 return target_state != pci_dev->current_state &&
2784 target_state != PCI_D3cold &&
2785 pci_dev->current_state != PCI_D3hot;
2786}
2787
2788/**
2789 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2790 * @pci_dev: Device to check.
2791 *
2792 * If the device is suspended and it is not configured for system wakeup,
2793 * disable PME for it to prevent it from waking up the system unnecessarily.
2794 *
2795 * Note that if the device's power state is D3cold and the platform check in
2796 * pci_dev_need_resume() has not triggered, the device's configuration need not
2797 * be changed.
2798 */
2799void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2800{
2801 struct device *dev = &pci_dev->dev;
2802
2803 spin_lock_irq(&dev->power.lock);
2804
2805 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2806 pci_dev->current_state < PCI_D3cold)
2807 __pci_pme_active(pci_dev, false);
2808
2809 spin_unlock_irq(&dev->power.lock);
2810}
2811
2812/**
2813 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2814 * @pci_dev: Device to handle.
2815 *
2816 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2817 * it might have been disabled during the prepare phase of system suspend if
2818 * the device was not configured for system wakeup.
2819 */
2820void pci_dev_complete_resume(struct pci_dev *pci_dev)
2821{
2822 struct device *dev = &pci_dev->dev;
2823
2824 if (!pci_dev_run_wake(pci_dev))
2825 return;
2826
2827 spin_lock_irq(&dev->power.lock);
2828
2829 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2830 __pci_pme_active(pci_dev, true);
2831
2832 spin_unlock_irq(&dev->power.lock);
2833}
2834
2835void pci_config_pm_runtime_get(struct pci_dev *pdev)
2836{
2837 struct device *dev = &pdev->dev;
2838 struct device *parent = dev->parent;
2839
2840 if (parent)
2841 pm_runtime_get_sync(parent);
2842 pm_runtime_get_noresume(dev);
2843 /*
2844 * pdev->current_state is set to PCI_D3cold during suspending,
2845 * so wait until suspending completes
2846 */
2847 pm_runtime_barrier(dev);
2848 /*
2849 * Only need to resume devices in D3cold, because config
2850 * registers are still accessible for devices suspended but
2851 * not in D3cold.
2852 */
2853 if (pdev->current_state == PCI_D3cold)
2854 pm_runtime_resume(dev);
2855}
2856
2857void pci_config_pm_runtime_put(struct pci_dev *pdev)
2858{
2859 struct device *dev = &pdev->dev;
2860 struct device *parent = dev->parent;
2861
2862 pm_runtime_put(dev);
2863 if (parent)
2864 pm_runtime_put_sync(parent);
2865}
2866
2867static const struct dmi_system_id bridge_d3_blacklist[] = {
2868#ifdef CONFIG_X86
2869 {
2870 /*
2871 * Gigabyte X299 root port is not marked as hotplug capable
2872 * which allows Linux to power manage it. However, this
2873 * confuses the BIOS SMI handler so don't power manage root
2874 * ports on that system.
2875 */
2876 .ident = "X299 DESIGNARE EX-CF",
2877 .matches = {
2878 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2879 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2880 },
2881 },
2882#endif
2883 { }
2884};
2885
2886/**
2887 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2888 * @bridge: Bridge to check
2889 *
2890 * This function checks if it is possible to move the bridge to D3.
2891 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2892 */
2893bool pci_bridge_d3_possible(struct pci_dev *bridge)
2894{
2895 if (!pci_is_pcie(bridge))
2896 return false;
2897
2898 switch (pci_pcie_type(bridge)) {
2899 case PCI_EXP_TYPE_ROOT_PORT:
2900 case PCI_EXP_TYPE_UPSTREAM:
2901 case PCI_EXP_TYPE_DOWNSTREAM:
2902 if (pci_bridge_d3_disable)
2903 return false;
2904
2905 /*
2906 * Hotplug ports handled by firmware in System Management Mode
2907 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2908 */
2909 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2910 return false;
2911
2912 if (pci_bridge_d3_force)
2913 return true;
2914
2915 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2916 if (bridge->is_thunderbolt)
2917 return true;
2918
2919 /* Platform might know better if the bridge supports D3 */
2920 if (platform_pci_bridge_d3(bridge))
2921 return true;
2922
2923 /*
2924 * Hotplug ports handled natively by the OS were not validated
2925 * by vendors for runtime D3 at least until 2018 because there
2926 * was no OS support.
2927 */
2928 if (bridge->is_hotplug_bridge)
2929 return false;
2930
2931 if (dmi_check_system(bridge_d3_blacklist))
2932 return false;
2933
2934 /*
2935 * It should be safe to put PCIe ports from 2015 or newer
2936 * to D3.
2937 */
2938 if (dmi_get_bios_year() >= 2015)
2939 return true;
2940 break;
2941 }
2942
2943 return false;
2944}
2945
2946static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2947{
2948 bool *d3cold_ok = data;
2949
2950 if (/* The device needs to be allowed to go D3cold ... */
2951 dev->no_d3cold || !dev->d3cold_allowed ||
2952
2953 /* ... and if it is wakeup capable to do so from D3cold. */
2954 (device_may_wakeup(&dev->dev) &&
2955 !pci_pme_capable(dev, PCI_D3cold)) ||
2956
2957 /* If it is a bridge it must be allowed to go to D3. */
2958 !pci_power_manageable(dev))
2959
2960 *d3cold_ok = false;
2961
2962 return !*d3cold_ok;
2963}
2964
2965/*
2966 * pci_bridge_d3_update - Update bridge D3 capabilities
2967 * @dev: PCI device which is changed
2968 *
2969 * Update upstream bridge PM capabilities accordingly depending on if the
2970 * device PM configuration was changed or the device is being removed. The
2971 * change is also propagated upstream.
2972 */
2973void pci_bridge_d3_update(struct pci_dev *dev)
2974{
2975 bool remove = !device_is_registered(&dev->dev);
2976 struct pci_dev *bridge;
2977 bool d3cold_ok = true;
2978
2979 bridge = pci_upstream_bridge(dev);
2980 if (!bridge || !pci_bridge_d3_possible(bridge))
2981 return;
2982
2983 /*
2984 * If D3 is currently allowed for the bridge, removing one of its
2985 * children won't change that.
2986 */
2987 if (remove && bridge->bridge_d3)
2988 return;
2989
2990 /*
2991 * If D3 is currently allowed for the bridge and a child is added or
2992 * changed, disallowance of D3 can only be caused by that child, so
2993 * we only need to check that single device, not any of its siblings.
2994 *
2995 * If D3 is currently not allowed for the bridge, checking the device
2996 * first may allow us to skip checking its siblings.
2997 */
2998 if (!remove)
2999 pci_dev_check_d3cold(dev, &d3cold_ok);
3000
3001 /*
3002 * If D3 is currently not allowed for the bridge, this may be caused
3003 * either by the device being changed/removed or any of its siblings,
3004 * so we need to go through all children to find out if one of them
3005 * continues to block D3.
3006 */
3007 if (d3cold_ok && !bridge->bridge_d3)
3008 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3009 &d3cold_ok);
3010
3011 if (bridge->bridge_d3 != d3cold_ok) {
3012 bridge->bridge_d3 = d3cold_ok;
3013 /* Propagate change to upstream bridges */
3014 pci_bridge_d3_update(bridge);
3015 }
3016}
3017
3018/**
3019 * pci_d3cold_enable - Enable D3cold for device
3020 * @dev: PCI device to handle
3021 *
3022 * This function can be used in drivers to enable D3cold from the device
3023 * they handle. It also updates upstream PCI bridge PM capabilities
3024 * accordingly.
3025 */
3026void pci_d3cold_enable(struct pci_dev *dev)
3027{
3028 if (dev->no_d3cold) {
3029 dev->no_d3cold = false;
3030 pci_bridge_d3_update(dev);
3031 }
3032}
3033EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3034
3035/**
3036 * pci_d3cold_disable - Disable D3cold for device
3037 * @dev: PCI device to handle
3038 *
3039 * This function can be used in drivers to disable D3cold from the device
3040 * they handle. It also updates upstream PCI bridge PM capabilities
3041 * accordingly.
3042 */
3043void pci_d3cold_disable(struct pci_dev *dev)
3044{
3045 if (!dev->no_d3cold) {
3046 dev->no_d3cold = true;
3047 pci_bridge_d3_update(dev);
3048 }
3049}
3050EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3051
3052/**
3053 * pci_pm_init - Initialize PM functions of given PCI device
3054 * @dev: PCI device to handle.
3055 */
3056void pci_pm_init(struct pci_dev *dev)
3057{
3058 int pm;
3059 u16 status;
3060 u16 pmc;
3061
3062 pm_runtime_forbid(&dev->dev);
3063 pm_runtime_set_active(&dev->dev);
3064 pm_runtime_enable(&dev->dev);
3065 device_enable_async_suspend(&dev->dev);
3066 dev->wakeup_prepared = false;
3067
3068 dev->pm_cap = 0;
3069 dev->pme_support = 0;
3070
3071 /* find PCI PM capability in list */
3072 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3073 if (!pm)
3074 return;
3075 /* Check device's ability to generate PME# */
3076 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3077
3078 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3079 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3080 pmc & PCI_PM_CAP_VER_MASK);
3081 return;
3082 }
3083
3084 dev->pm_cap = pm;
3085 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3086 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3087 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3088 dev->d3cold_allowed = true;
3089
3090 dev->d1_support = false;
3091 dev->d2_support = false;
3092 if (!pci_no_d1d2(dev)) {
3093 if (pmc & PCI_PM_CAP_D1)
3094 dev->d1_support = true;
3095 if (pmc & PCI_PM_CAP_D2)
3096 dev->d2_support = true;
3097
3098 if (dev->d1_support || dev->d2_support)
3099 pci_info(dev, "supports%s%s\n",
3100 dev->d1_support ? " D1" : "",
3101 dev->d2_support ? " D2" : "");
3102 }
3103
3104 pmc &= PCI_PM_CAP_PME_MASK;
3105 if (pmc) {
3106 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3107 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3108 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3109 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3110 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3111 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3112 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3113 dev->pme_poll = true;
3114 /*
3115 * Make device's PM flags reflect the wake-up capability, but
3116 * let the user space enable it to wake up the system as needed.
3117 */
3118 device_set_wakeup_capable(&dev->dev, true);
3119 /* Disable the PME# generation functionality */
3120 pci_pme_active(dev, false);
3121 }
3122
3123 pci_read_config_word(dev, PCI_STATUS, &status);
3124 if (status & PCI_STATUS_IMM_READY)
3125 dev->imm_ready = 1;
3126}
3127
3128static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3129{
3130 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3131
3132 switch (prop) {
3133 case PCI_EA_P_MEM:
3134 case PCI_EA_P_VF_MEM:
3135 flags |= IORESOURCE_MEM;
3136 break;
3137 case PCI_EA_P_MEM_PREFETCH:
3138 case PCI_EA_P_VF_MEM_PREFETCH:
3139 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3140 break;
3141 case PCI_EA_P_IO:
3142 flags |= IORESOURCE_IO;
3143 break;
3144 default:
3145 return 0;
3146 }
3147
3148 return flags;
3149}
3150
3151static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3152 u8 prop)
3153{
3154 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3155 return &dev->resource[bei];
3156#ifdef CONFIG_PCI_IOV
3157 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3158 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3159 return &dev->resource[PCI_IOV_RESOURCES +
3160 bei - PCI_EA_BEI_VF_BAR0];
3161#endif
3162 else if (bei == PCI_EA_BEI_ROM)
3163 return &dev->resource[PCI_ROM_RESOURCE];
3164 else
3165 return NULL;
3166}
3167
3168/* Read an Enhanced Allocation (EA) entry */
3169static int pci_ea_read(struct pci_dev *dev, int offset)
3170{
3171 struct resource *res;
3172 int ent_size, ent_offset = offset;
3173 resource_size_t start, end;
3174 unsigned long flags;
3175 u32 dw0, bei, base, max_offset;
3176 u8 prop;
3177 bool support_64 = (sizeof(resource_size_t) >= 8);
3178
3179 pci_read_config_dword(dev, ent_offset, &dw0);
3180 ent_offset += 4;
3181
3182 /* Entry size field indicates DWORDs after 1st */
3183 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3184
3185 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3186 goto out;
3187
3188 bei = (dw0 & PCI_EA_BEI) >> 4;
3189 prop = (dw0 & PCI_EA_PP) >> 8;
3190
3191 /*
3192 * If the Property is in the reserved range, try the Secondary
3193 * Property instead.
3194 */
3195 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3196 prop = (dw0 & PCI_EA_SP) >> 16;
3197 if (prop > PCI_EA_P_BRIDGE_IO)
3198 goto out;
3199
3200 res = pci_ea_get_resource(dev, bei, prop);
3201 if (!res) {
3202 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3203 goto out;
3204 }
3205
3206 flags = pci_ea_flags(dev, prop);
3207 if (!flags) {
3208 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3209 goto out;
3210 }
3211
3212 /* Read Base */
3213 pci_read_config_dword(dev, ent_offset, &base);
3214 start = (base & PCI_EA_FIELD_MASK);
3215 ent_offset += 4;
3216
3217 /* Read MaxOffset */
3218 pci_read_config_dword(dev, ent_offset, &max_offset);
3219 ent_offset += 4;
3220
3221 /* Read Base MSBs (if 64-bit entry) */
3222 if (base & PCI_EA_IS_64) {
3223 u32 base_upper;
3224
3225 pci_read_config_dword(dev, ent_offset, &base_upper);
3226 ent_offset += 4;
3227
3228 flags |= IORESOURCE_MEM_64;
3229
3230 /* entry starts above 32-bit boundary, can't use */
3231 if (!support_64 && base_upper)
3232 goto out;
3233
3234 if (support_64)
3235 start |= ((u64)base_upper << 32);
3236 }
3237
3238 end = start + (max_offset | 0x03);
3239
3240 /* Read MaxOffset MSBs (if 64-bit entry) */
3241 if (max_offset & PCI_EA_IS_64) {
3242 u32 max_offset_upper;
3243
3244 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3245 ent_offset += 4;
3246
3247 flags |= IORESOURCE_MEM_64;
3248
3249 /* entry too big, can't use */
3250 if (!support_64 && max_offset_upper)
3251 goto out;
3252
3253 if (support_64)
3254 end += ((u64)max_offset_upper << 32);
3255 }
3256
3257 if (end < start) {
3258 pci_err(dev, "EA Entry crosses address boundary\n");
3259 goto out;
3260 }
3261
3262 if (ent_size != ent_offset - offset) {
3263 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3264 ent_size, ent_offset - offset);
3265 goto out;
3266 }
3267
3268 res->name = pci_name(dev);
3269 res->start = start;
3270 res->end = end;
3271 res->flags = flags;
3272
3273 if (bei <= PCI_EA_BEI_BAR5)
3274 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3275 bei, res, prop);
3276 else if (bei == PCI_EA_BEI_ROM)
3277 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3278 res, prop);
3279 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3280 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3281 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3282 else
3283 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3284 bei, res, prop);
3285
3286out:
3287 return offset + ent_size;
3288}
3289
3290/* Enhanced Allocation Initialization */
3291void pci_ea_init(struct pci_dev *dev)
3292{
3293 int ea;
3294 u8 num_ent;
3295 int offset;
3296 int i;
3297
3298 /* find PCI EA capability in list */
3299 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3300 if (!ea)
3301 return;
3302
3303 /* determine the number of entries */
3304 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3305 &num_ent);
3306 num_ent &= PCI_EA_NUM_ENT_MASK;
3307
3308 offset = ea + PCI_EA_FIRST_ENT;
3309
3310 /* Skip DWORD 2 for type 1 functions */
3311 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3312 offset += 4;
3313
3314 /* parse each EA entry */
3315 for (i = 0; i < num_ent; ++i)
3316 offset = pci_ea_read(dev, offset);
3317}
3318
3319static void pci_add_saved_cap(struct pci_dev *pci_dev,
3320 struct pci_cap_saved_state *new_cap)
3321{
3322 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3323}
3324
3325/**
3326 * _pci_add_cap_save_buffer - allocate buffer for saving given
3327 * capability registers
3328 * @dev: the PCI device
3329 * @cap: the capability to allocate the buffer for
3330 * @extended: Standard or Extended capability ID
3331 * @size: requested size of the buffer
3332 */
3333static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3334 bool extended, unsigned int size)
3335{
3336 int pos;
3337 struct pci_cap_saved_state *save_state;
3338
3339 if (extended)
3340 pos = pci_find_ext_capability(dev, cap);
3341 else
3342 pos = pci_find_capability(dev, cap);
3343
3344 if (!pos)
3345 return 0;
3346
3347 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3348 if (!save_state)
3349 return -ENOMEM;
3350
3351 save_state->cap.cap_nr = cap;
3352 save_state->cap.cap_extended = extended;
3353 save_state->cap.size = size;
3354 pci_add_saved_cap(dev, save_state);
3355
3356 return 0;
3357}
3358
3359int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3360{
3361 return _pci_add_cap_save_buffer(dev, cap, false, size);
3362}
3363
3364int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3365{
3366 return _pci_add_cap_save_buffer(dev, cap, true, size);
3367}
3368
3369/**
3370 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3371 * @dev: the PCI device
3372 */
3373void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3374{
3375 int error;
3376
3377 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3378 PCI_EXP_SAVE_REGS * sizeof(u16));
3379 if (error)
3380 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3381
3382 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3383 if (error)
3384 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3385
3386 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3387 2 * sizeof(u16));
3388 if (error)
3389 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3390
3391 pci_allocate_vc_save_buffers(dev);
3392}
3393
3394void pci_free_cap_save_buffers(struct pci_dev *dev)
3395{
3396 struct pci_cap_saved_state *tmp;
3397 struct hlist_node *n;
3398
3399 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3400 kfree(tmp);
3401}
3402
3403/**
3404 * pci_configure_ari - enable or disable ARI forwarding
3405 * @dev: the PCI device
3406 *
3407 * If @dev and its upstream bridge both support ARI, enable ARI in the
3408 * bridge. Otherwise, disable ARI in the bridge.
3409 */
3410void pci_configure_ari(struct pci_dev *dev)
3411{
3412 u32 cap;
3413 struct pci_dev *bridge;
3414
3415 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3416 return;
3417
3418 bridge = dev->bus->self;
3419 if (!bridge)
3420 return;
3421
3422 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3423 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3424 return;
3425
3426 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3427 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3428 PCI_EXP_DEVCTL2_ARI);
3429 bridge->ari_enabled = 1;
3430 } else {
3431 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3432 PCI_EXP_DEVCTL2_ARI);
3433 bridge->ari_enabled = 0;
3434 }
3435}
3436
3437static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3438{
3439 int pos;
3440 u16 cap, ctrl;
3441
3442 pos = pdev->acs_cap;
3443 if (!pos)
3444 return false;
3445
3446 /*
3447 * Except for egress control, capabilities are either required
3448 * or only required if controllable. Features missing from the
3449 * capability field can therefore be assumed as hard-wired enabled.
3450 */
3451 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3452 acs_flags &= (cap | PCI_ACS_EC);
3453
3454 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3455 return (ctrl & acs_flags) == acs_flags;
3456}
3457
3458/**
3459 * pci_acs_enabled - test ACS against required flags for a given device
3460 * @pdev: device to test
3461 * @acs_flags: required PCI ACS flags
3462 *
3463 * Return true if the device supports the provided flags. Automatically
3464 * filters out flags that are not implemented on multifunction devices.
3465 *
3466 * Note that this interface checks the effective ACS capabilities of the
3467 * device rather than the actual capabilities. For instance, most single
3468 * function endpoints are not required to support ACS because they have no
3469 * opportunity for peer-to-peer access. We therefore return 'true'
3470 * regardless of whether the device exposes an ACS capability. This makes
3471 * it much easier for callers of this function to ignore the actual type
3472 * or topology of the device when testing ACS support.
3473 */
3474bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3475{
3476 int ret;
3477
3478 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3479 if (ret >= 0)
3480 return ret > 0;
3481
3482 /*
3483 * Conventional PCI and PCI-X devices never support ACS, either
3484 * effectively or actually. The shared bus topology implies that
3485 * any device on the bus can receive or snoop DMA.
3486 */
3487 if (!pci_is_pcie(pdev))
3488 return false;
3489
3490 switch (pci_pcie_type(pdev)) {
3491 /*
3492 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3493 * but since their primary interface is PCI/X, we conservatively
3494 * handle them as we would a non-PCIe device.
3495 */
3496 case PCI_EXP_TYPE_PCIE_BRIDGE:
3497 /*
3498 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3499 * applicable... must never implement an ACS Extended Capability...".
3500 * This seems arbitrary, but we take a conservative interpretation
3501 * of this statement.
3502 */
3503 case PCI_EXP_TYPE_PCI_BRIDGE:
3504 case PCI_EXP_TYPE_RC_EC:
3505 return false;
3506 /*
3507 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3508 * implement ACS in order to indicate their peer-to-peer capabilities,
3509 * regardless of whether they are single- or multi-function devices.
3510 */
3511 case PCI_EXP_TYPE_DOWNSTREAM:
3512 case PCI_EXP_TYPE_ROOT_PORT:
3513 return pci_acs_flags_enabled(pdev, acs_flags);
3514 /*
3515 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3516 * implemented by the remaining PCIe types to indicate peer-to-peer
3517 * capabilities, but only when they are part of a multifunction
3518 * device. The footnote for section 6.12 indicates the specific
3519 * PCIe types included here.
3520 */
3521 case PCI_EXP_TYPE_ENDPOINT:
3522 case PCI_EXP_TYPE_UPSTREAM:
3523 case PCI_EXP_TYPE_LEG_END:
3524 case PCI_EXP_TYPE_RC_END:
3525 if (!pdev->multifunction)
3526 break;
3527
3528 return pci_acs_flags_enabled(pdev, acs_flags);
3529 }
3530
3531 /*
3532 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3533 * to single function devices with the exception of downstream ports.
3534 */
3535 return true;
3536}
3537
3538/**
3539 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3540 * @start: starting downstream device
3541 * @end: ending upstream device or NULL to search to the root bus
3542 * @acs_flags: required flags
3543 *
3544 * Walk up a device tree from start to end testing PCI ACS support. If
3545 * any step along the way does not support the required flags, return false.
3546 */
3547bool pci_acs_path_enabled(struct pci_dev *start,
3548 struct pci_dev *end, u16 acs_flags)
3549{
3550 struct pci_dev *pdev, *parent = start;
3551
3552 do {
3553 pdev = parent;
3554
3555 if (!pci_acs_enabled(pdev, acs_flags))
3556 return false;
3557
3558 if (pci_is_root_bus(pdev->bus))
3559 return (end == NULL);
3560
3561 parent = pdev->bus->self;
3562 } while (pdev != end);
3563
3564 return true;
3565}
3566
3567/**
3568 * pci_acs_init - Initialize ACS if hardware supports it
3569 * @dev: the PCI device
3570 */
3571void pci_acs_init(struct pci_dev *dev)
3572{
3573 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3574
3575 /*
3576 * Attempt to enable ACS regardless of capability because some Root
3577 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3578 * the standard ACS capability but still support ACS via those
3579 * quirks.
3580 */
3581 pci_enable_acs(dev);
3582}
3583
3584/**
3585 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3586 * @pdev: PCI device
3587 * @bar: BAR to find
3588 *
3589 * Helper to find the position of the ctrl register for a BAR.
3590 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3591 * Returns -ENOENT if no ctrl register for the BAR could be found.
3592 */
3593static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3594{
3595 unsigned int pos, nbars, i;
3596 u32 ctrl;
3597
3598 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3599 if (!pos)
3600 return -ENOTSUPP;
3601
3602 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3603 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3604 PCI_REBAR_CTRL_NBAR_SHIFT;
3605
3606 for (i = 0; i < nbars; i++, pos += 8) {
3607 int bar_idx;
3608
3609 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3610 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3611 if (bar_idx == bar)
3612 return pos;
3613 }
3614
3615 return -ENOENT;
3616}
3617
3618/**
3619 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3620 * @pdev: PCI device
3621 * @bar: BAR to query
3622 *
3623 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3624 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3625 */
3626u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3627{
3628 int pos;
3629 u32 cap;
3630
3631 pos = pci_rebar_find_pos(pdev, bar);
3632 if (pos < 0)
3633 return 0;
3634
3635 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3636 cap &= PCI_REBAR_CAP_SIZES;
3637
3638 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3639 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3640 bar == 0 && cap == 0x7000)
3641 cap = 0x3f000;
3642
3643 return cap >> 4;
3644}
3645EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3646
3647/**
3648 * pci_rebar_get_current_size - get the current size of a BAR
3649 * @pdev: PCI device
3650 * @bar: BAR to set size to
3651 *
3652 * Read the size of a BAR from the resizable BAR config.
3653 * Returns size if found or negative error code.
3654 */
3655int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3656{
3657 int pos;
3658 u32 ctrl;
3659
3660 pos = pci_rebar_find_pos(pdev, bar);
3661 if (pos < 0)
3662 return pos;
3663
3664 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3665 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3666}
3667
3668/**
3669 * pci_rebar_set_size - set a new size for a BAR
3670 * @pdev: PCI device
3671 * @bar: BAR to set size to
3672 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3673 *
3674 * Set the new size of a BAR as defined in the spec.
3675 * Returns zero if resizing was successful, error code otherwise.
3676 */
3677int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3678{
3679 int pos;
3680 u32 ctrl;
3681
3682 pos = pci_rebar_find_pos(pdev, bar);
3683 if (pos < 0)
3684 return pos;
3685
3686 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3687 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3688 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3689 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3690 return 0;
3691}
3692
3693/**
3694 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3695 * @dev: the PCI device
3696 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3697 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3698 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3699 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3700 *
3701 * Return 0 if all upstream bridges support AtomicOp routing, egress
3702 * blocking is disabled on all upstream ports, and the root port supports
3703 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3704 * AtomicOp completion), or negative otherwise.
3705 */
3706int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3707{
3708 struct pci_bus *bus = dev->bus;
3709 struct pci_dev *bridge;
3710 u32 cap, ctl2;
3711
3712 if (!pci_is_pcie(dev))
3713 return -EINVAL;
3714
3715 /*
3716 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3717 * AtomicOp requesters. For now, we only support endpoints as
3718 * requesters and root ports as completers. No endpoints as
3719 * completers, and no peer-to-peer.
3720 */
3721
3722 switch (pci_pcie_type(dev)) {
3723 case PCI_EXP_TYPE_ENDPOINT:
3724 case PCI_EXP_TYPE_LEG_END:
3725 case PCI_EXP_TYPE_RC_END:
3726 break;
3727 default:
3728 return -EINVAL;
3729 }
3730
3731 while (bus->parent) {
3732 bridge = bus->self;
3733
3734 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3735
3736 switch (pci_pcie_type(bridge)) {
3737 /* Ensure switch ports support AtomicOp routing */
3738 case PCI_EXP_TYPE_UPSTREAM:
3739 case PCI_EXP_TYPE_DOWNSTREAM:
3740 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3741 return -EINVAL;
3742 break;
3743
3744 /* Ensure root port supports all the sizes we care about */
3745 case PCI_EXP_TYPE_ROOT_PORT:
3746 if ((cap & cap_mask) != cap_mask)
3747 return -EINVAL;
3748 break;
3749 }
3750
3751 /* Ensure upstream ports don't block AtomicOps on egress */
3752 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3753 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3754 &ctl2);
3755 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3756 return -EINVAL;
3757 }
3758
3759 bus = bus->parent;
3760 }
3761
3762 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3763 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3764 return 0;
3765}
3766EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3767
3768/**
3769 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3770 * @dev: the PCI device
3771 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3772 *
3773 * Perform INTx swizzling for a device behind one level of bridge. This is
3774 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3775 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3776 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3777 * the PCI Express Base Specification, Revision 2.1)
3778 */
3779u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3780{
3781 int slot;
3782
3783 if (pci_ari_enabled(dev->bus))
3784 slot = 0;
3785 else
3786 slot = PCI_SLOT(dev->devfn);
3787
3788 return (((pin - 1) + slot) % 4) + 1;
3789}
3790
3791int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3792{
3793 u8 pin;
3794
3795 pin = dev->pin;
3796 if (!pin)
3797 return -1;
3798
3799 while (!pci_is_root_bus(dev->bus)) {
3800 pin = pci_swizzle_interrupt_pin(dev, pin);
3801 dev = dev->bus->self;
3802 }
3803 *bridge = dev;
3804 return pin;
3805}
3806
3807/**
3808 * pci_common_swizzle - swizzle INTx all the way to root bridge
3809 * @dev: the PCI device
3810 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3811 *
3812 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3813 * bridges all the way up to a PCI root bus.
3814 */
3815u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3816{
3817 u8 pin = *pinp;
3818
3819 while (!pci_is_root_bus(dev->bus)) {
3820 pin = pci_swizzle_interrupt_pin(dev, pin);
3821 dev = dev->bus->self;
3822 }
3823 *pinp = pin;
3824 return PCI_SLOT(dev->devfn);
3825}
3826EXPORT_SYMBOL_GPL(pci_common_swizzle);
3827
3828/**
3829 * pci_release_region - Release a PCI bar
3830 * @pdev: PCI device whose resources were previously reserved by
3831 * pci_request_region()
3832 * @bar: BAR to release
3833 *
3834 * Releases the PCI I/O and memory resources previously reserved by a
3835 * successful call to pci_request_region(). Call this function only
3836 * after all use of the PCI regions has ceased.
3837 */
3838void pci_release_region(struct pci_dev *pdev, int bar)
3839{
3840 struct pci_devres *dr;
3841
3842 if (pci_resource_len(pdev, bar) == 0)
3843 return;
3844 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3845 release_region(pci_resource_start(pdev, bar),
3846 pci_resource_len(pdev, bar));
3847 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3848 release_mem_region(pci_resource_start(pdev, bar),
3849 pci_resource_len(pdev, bar));
3850
3851 dr = find_pci_dr(pdev);
3852 if (dr)
3853 dr->region_mask &= ~(1 << bar);
3854}
3855EXPORT_SYMBOL(pci_release_region);
3856
3857/**
3858 * __pci_request_region - Reserved PCI I/O and memory resource
3859 * @pdev: PCI device whose resources are to be reserved
3860 * @bar: BAR to be reserved
3861 * @res_name: Name to be associated with resource.
3862 * @exclusive: whether the region access is exclusive or not
3863 *
3864 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3865 * being reserved by owner @res_name. Do not access any
3866 * address inside the PCI regions unless this call returns
3867 * successfully.
3868 *
3869 * If @exclusive is set, then the region is marked so that userspace
3870 * is explicitly not allowed to map the resource via /dev/mem or
3871 * sysfs MMIO access.
3872 *
3873 * Returns 0 on success, or %EBUSY on error. A warning
3874 * message is also printed on failure.
3875 */
3876static int __pci_request_region(struct pci_dev *pdev, int bar,
3877 const char *res_name, int exclusive)
3878{
3879 struct pci_devres *dr;
3880
3881 if (pci_resource_len(pdev, bar) == 0)
3882 return 0;
3883
3884 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3885 if (!request_region(pci_resource_start(pdev, bar),
3886 pci_resource_len(pdev, bar), res_name))
3887 goto err_out;
3888 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3889 if (!__request_mem_region(pci_resource_start(pdev, bar),
3890 pci_resource_len(pdev, bar), res_name,
3891 exclusive))
3892 goto err_out;
3893 }
3894
3895 dr = find_pci_dr(pdev);
3896 if (dr)
3897 dr->region_mask |= 1 << bar;
3898
3899 return 0;
3900
3901err_out:
3902 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3903 &pdev->resource[bar]);
3904 return -EBUSY;
3905}
3906
3907/**
3908 * pci_request_region - Reserve PCI I/O and memory resource
3909 * @pdev: PCI device whose resources are to be reserved
3910 * @bar: BAR to be reserved
3911 * @res_name: Name to be associated with resource
3912 *
3913 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3914 * being reserved by owner @res_name. Do not access any
3915 * address inside the PCI regions unless this call returns
3916 * successfully.
3917 *
3918 * Returns 0 on success, or %EBUSY on error. A warning
3919 * message is also printed on failure.
3920 */
3921int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3922{
3923 return __pci_request_region(pdev, bar, res_name, 0);
3924}
3925EXPORT_SYMBOL(pci_request_region);
3926
3927/**
3928 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3929 * @pdev: PCI device whose resources were previously reserved
3930 * @bars: Bitmask of BARs to be released
3931 *
3932 * Release selected PCI I/O and memory resources previously reserved.
3933 * Call this function only after all use of the PCI regions has ceased.
3934 */
3935void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3936{
3937 int i;
3938
3939 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3940 if (bars & (1 << i))
3941 pci_release_region(pdev, i);
3942}
3943EXPORT_SYMBOL(pci_release_selected_regions);
3944
3945static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3946 const char *res_name, int excl)
3947{
3948 int i;
3949
3950 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3951 if (bars & (1 << i))
3952 if (__pci_request_region(pdev, i, res_name, excl))
3953 goto err_out;
3954 return 0;
3955
3956err_out:
3957 while (--i >= 0)
3958 if (bars & (1 << i))
3959 pci_release_region(pdev, i);
3960
3961 return -EBUSY;
3962}
3963
3964
3965/**
3966 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3967 * @pdev: PCI device whose resources are to be reserved
3968 * @bars: Bitmask of BARs to be requested
3969 * @res_name: Name to be associated with resource
3970 */
3971int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3972 const char *res_name)
3973{
3974 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3975}
3976EXPORT_SYMBOL(pci_request_selected_regions);
3977
3978int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3979 const char *res_name)
3980{
3981 return __pci_request_selected_regions(pdev, bars, res_name,
3982 IORESOURCE_EXCLUSIVE);
3983}
3984EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3985
3986/**
3987 * pci_release_regions - Release reserved PCI I/O and memory resources
3988 * @pdev: PCI device whose resources were previously reserved by
3989 * pci_request_regions()
3990 *
3991 * Releases all PCI I/O and memory resources previously reserved by a
3992 * successful call to pci_request_regions(). Call this function only
3993 * after all use of the PCI regions has ceased.
3994 */
3995
3996void pci_release_regions(struct pci_dev *pdev)
3997{
3998 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3999}
4000EXPORT_SYMBOL(pci_release_regions);
4001
4002/**
4003 * pci_request_regions - Reserve PCI I/O and memory resources
4004 * @pdev: PCI device whose resources are to be reserved
4005 * @res_name: Name to be associated with resource.
4006 *
4007 * Mark all PCI regions associated with PCI device @pdev as
4008 * being reserved by owner @res_name. Do not access any
4009 * address inside the PCI regions unless this call returns
4010 * successfully.
4011 *
4012 * Returns 0 on success, or %EBUSY on error. A warning
4013 * message is also printed on failure.
4014 */
4015int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4016{
4017 return pci_request_selected_regions(pdev,
4018 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4019}
4020EXPORT_SYMBOL(pci_request_regions);
4021
4022/**
4023 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4024 * @pdev: PCI device whose resources are to be reserved
4025 * @res_name: Name to be associated with resource.
4026 *
4027 * Mark all PCI regions associated with PCI device @pdev as being reserved
4028 * by owner @res_name. Do not access any address inside the PCI regions
4029 * unless this call returns successfully.
4030 *
4031 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4032 * and the sysfs MMIO access will not be allowed.
4033 *
4034 * Returns 0 on success, or %EBUSY on error. A warning message is also
4035 * printed on failure.
4036 */
4037int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4038{
4039 return pci_request_selected_regions_exclusive(pdev,
4040 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4041}
4042EXPORT_SYMBOL(pci_request_regions_exclusive);
4043
4044/*
4045 * Record the PCI IO range (expressed as CPU physical address + size).
4046 * Return a negative value if an error has occurred, zero otherwise
4047 */
4048int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4049 resource_size_t size)
4050{
4051 int ret = 0;
4052#ifdef PCI_IOBASE
4053 struct logic_pio_hwaddr *range;
4054
4055 if (!size || addr + size < addr)
4056 return -EINVAL;
4057
4058 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4059 if (!range)
4060 return -ENOMEM;
4061
4062 range->fwnode = fwnode;
4063 range->size = size;
4064 range->hw_start = addr;
4065 range->flags = LOGIC_PIO_CPU_MMIO;
4066
4067 ret = logic_pio_register_range(range);
4068 if (ret)
4069 kfree(range);
4070
4071 /* Ignore duplicates due to deferred probing */
4072 if (ret == -EEXIST)
4073 ret = 0;
4074#endif
4075
4076 return ret;
4077}
4078
4079phys_addr_t pci_pio_to_address(unsigned long pio)
4080{
4081 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4082
4083#ifdef PCI_IOBASE
4084 if (pio >= MMIO_UPPER_LIMIT)
4085 return address;
4086
4087 address = logic_pio_to_hwaddr(pio);
4088#endif
4089
4090 return address;
4091}
4092EXPORT_SYMBOL_GPL(pci_pio_to_address);
4093
4094unsigned long __weak pci_address_to_pio(phys_addr_t address)
4095{
4096#ifdef PCI_IOBASE
4097 return logic_pio_trans_cpuaddr(address);
4098#else
4099 if (address > IO_SPACE_LIMIT)
4100 return (unsigned long)-1;
4101
4102 return (unsigned long) address;
4103#endif
4104}
4105
4106/**
4107 * pci_remap_iospace - Remap the memory mapped I/O space
4108 * @res: Resource describing the I/O space
4109 * @phys_addr: physical address of range to be mapped
4110 *
4111 * Remap the memory mapped I/O space described by the @res and the CPU
4112 * physical address @phys_addr into virtual address space. Only
4113 * architectures that have memory mapped IO functions defined (and the
4114 * PCI_IOBASE value defined) should call this function.
4115 */
4116int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4117{
4118#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4119 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4120
4121 if (!(res->flags & IORESOURCE_IO))
4122 return -EINVAL;
4123
4124 if (res->end > IO_SPACE_LIMIT)
4125 return -EINVAL;
4126
4127 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4128 pgprot_device(PAGE_KERNEL));
4129#else
4130 /*
4131 * This architecture does not have memory mapped I/O space,
4132 * so this function should never be called
4133 */
4134 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4135 return -ENODEV;
4136#endif
4137}
4138EXPORT_SYMBOL(pci_remap_iospace);
4139
4140/**
4141 * pci_unmap_iospace - Unmap the memory mapped I/O space
4142 * @res: resource to be unmapped
4143 *
4144 * Unmap the CPU virtual address @res from virtual address space. Only
4145 * architectures that have memory mapped IO functions defined (and the
4146 * PCI_IOBASE value defined) should call this function.
4147 */
4148void pci_unmap_iospace(struct resource *res)
4149{
4150#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4151 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4152
4153 vunmap_range(vaddr, vaddr + resource_size(res));
4154#endif
4155}
4156EXPORT_SYMBOL(pci_unmap_iospace);
4157
4158static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4159{
4160 struct resource **res = ptr;
4161
4162 pci_unmap_iospace(*res);
4163}
4164
4165/**
4166 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4167 * @dev: Generic device to remap IO address for
4168 * @res: Resource describing the I/O space
4169 * @phys_addr: physical address of range to be mapped
4170 *
4171 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4172 * detach.
4173 */
4174int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4175 phys_addr_t phys_addr)
4176{
4177 const struct resource **ptr;
4178 int error;
4179
4180 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4181 if (!ptr)
4182 return -ENOMEM;
4183
4184 error = pci_remap_iospace(res, phys_addr);
4185 if (error) {
4186 devres_free(ptr);
4187 } else {
4188 *ptr = res;
4189 devres_add(dev, ptr);
4190 }
4191
4192 return error;
4193}
4194EXPORT_SYMBOL(devm_pci_remap_iospace);
4195
4196/**
4197 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4198 * @dev: Generic device to remap IO address for
4199 * @offset: Resource address to map
4200 * @size: Size of map
4201 *
4202 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4203 * detach.
4204 */
4205void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4206 resource_size_t offset,
4207 resource_size_t size)
4208{
4209 void __iomem **ptr, *addr;
4210
4211 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4212 if (!ptr)
4213 return NULL;
4214
4215 addr = pci_remap_cfgspace(offset, size);
4216 if (addr) {
4217 *ptr = addr;
4218 devres_add(dev, ptr);
4219 } else
4220 devres_free(ptr);
4221
4222 return addr;
4223}
4224EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4225
4226/**
4227 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4228 * @dev: generic device to handle the resource for
4229 * @res: configuration space resource to be handled
4230 *
4231 * Checks that a resource is a valid memory region, requests the memory
4232 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4233 * proper PCI configuration space memory attributes are guaranteed.
4234 *
4235 * All operations are managed and will be undone on driver detach.
4236 *
4237 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4238 * on failure. Usage example::
4239 *
4240 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4241 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4242 * if (IS_ERR(base))
4243 * return PTR_ERR(base);
4244 */
4245void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4246 struct resource *res)
4247{
4248 resource_size_t size;
4249 const char *name;
4250 void __iomem *dest_ptr;
4251
4252 BUG_ON(!dev);
4253
4254 if (!res || resource_type(res) != IORESOURCE_MEM) {
4255 dev_err(dev, "invalid resource\n");
4256 return IOMEM_ERR_PTR(-EINVAL);
4257 }
4258
4259 size = resource_size(res);
4260
4261 if (res->name)
4262 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4263 res->name);
4264 else
4265 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4266 if (!name)
4267 return IOMEM_ERR_PTR(-ENOMEM);
4268
4269 if (!devm_request_mem_region(dev, res->start, size, name)) {
4270 dev_err(dev, "can't request region for resource %pR\n", res);
4271 return IOMEM_ERR_PTR(-EBUSY);
4272 }
4273
4274 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4275 if (!dest_ptr) {
4276 dev_err(dev, "ioremap failed for resource %pR\n", res);
4277 devm_release_mem_region(dev, res->start, size);
4278 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4279 }
4280
4281 return dest_ptr;
4282}
4283EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4284
4285static void __pci_set_master(struct pci_dev *dev, bool enable)
4286{
4287 u16 old_cmd, cmd;
4288
4289 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4290 if (enable)
4291 cmd = old_cmd | PCI_COMMAND_MASTER;
4292 else
4293 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4294 if (cmd != old_cmd) {
4295 pci_dbg(dev, "%s bus mastering\n",
4296 enable ? "enabling" : "disabling");
4297 pci_write_config_word(dev, PCI_COMMAND, cmd);
4298 }
4299 dev->is_busmaster = enable;
4300}
4301
4302/**
4303 * pcibios_setup - process "pci=" kernel boot arguments
4304 * @str: string used to pass in "pci=" kernel boot arguments
4305 *
4306 * Process kernel boot arguments. This is the default implementation.
4307 * Architecture specific implementations can override this as necessary.
4308 */
4309char * __weak __init pcibios_setup(char *str)
4310{
4311 return str;
4312}
4313
4314/**
4315 * pcibios_set_master - enable PCI bus-mastering for device dev
4316 * @dev: the PCI device to enable
4317 *
4318 * Enables PCI bus-mastering for the device. This is the default
4319 * implementation. Architecture specific implementations can override
4320 * this if necessary.
4321 */
4322void __weak pcibios_set_master(struct pci_dev *dev)
4323{
4324 u8 lat;
4325
4326 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4327 if (pci_is_pcie(dev))
4328 return;
4329
4330 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4331 if (lat < 16)
4332 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4333 else if (lat > pcibios_max_latency)
4334 lat = pcibios_max_latency;
4335 else
4336 return;
4337
4338 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4339}
4340
4341/**
4342 * pci_set_master - enables bus-mastering for device dev
4343 * @dev: the PCI device to enable
4344 *
4345 * Enables bus-mastering on the device and calls pcibios_set_master()
4346 * to do the needed arch specific settings.
4347 */
4348void pci_set_master(struct pci_dev *dev)
4349{
4350 __pci_set_master(dev, true);
4351 pcibios_set_master(dev);
4352}
4353EXPORT_SYMBOL(pci_set_master);
4354
4355/**
4356 * pci_clear_master - disables bus-mastering for device dev
4357 * @dev: the PCI device to disable
4358 */
4359void pci_clear_master(struct pci_dev *dev)
4360{
4361 __pci_set_master(dev, false);
4362}
4363EXPORT_SYMBOL(pci_clear_master);
4364
4365/**
4366 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4367 * @dev: the PCI device for which MWI is to be enabled
4368 *
4369 * Helper function for pci_set_mwi.
4370 * Originally copied from drivers/net/acenic.c.
4371 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4372 *
4373 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4374 */
4375int pci_set_cacheline_size(struct pci_dev *dev)
4376{
4377 u8 cacheline_size;
4378
4379 if (!pci_cache_line_size)
4380 return -EINVAL;
4381
4382 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4383 equal to or multiple of the right value. */
4384 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4385 if (cacheline_size >= pci_cache_line_size &&
4386 (cacheline_size % pci_cache_line_size) == 0)
4387 return 0;
4388
4389 /* Write the correct value. */
4390 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4391 /* Read it back. */
4392 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4393 if (cacheline_size == pci_cache_line_size)
4394 return 0;
4395
4396 pci_dbg(dev, "cache line size of %d is not supported\n",
4397 pci_cache_line_size << 2);
4398
4399 return -EINVAL;
4400}
4401EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4402
4403/**
4404 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4405 * @dev: the PCI device for which MWI is enabled
4406 *
4407 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4408 *
4409 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4410 */
4411int pci_set_mwi(struct pci_dev *dev)
4412{
4413#ifdef PCI_DISABLE_MWI
4414 return 0;
4415#else
4416 int rc;
4417 u16 cmd;
4418
4419 rc = pci_set_cacheline_size(dev);
4420 if (rc)
4421 return rc;
4422
4423 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4424 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4425 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4426 cmd |= PCI_COMMAND_INVALIDATE;
4427 pci_write_config_word(dev, PCI_COMMAND, cmd);
4428 }
4429 return 0;
4430#endif
4431}
4432EXPORT_SYMBOL(pci_set_mwi);
4433
4434/**
4435 * pcim_set_mwi - a device-managed pci_set_mwi()
4436 * @dev: the PCI device for which MWI is enabled
4437 *
4438 * Managed pci_set_mwi().
4439 *
4440 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4441 */
4442int pcim_set_mwi(struct pci_dev *dev)
4443{
4444 struct pci_devres *dr;
4445
4446 dr = find_pci_dr(dev);
4447 if (!dr)
4448 return -ENOMEM;
4449
4450 dr->mwi = 1;
4451 return pci_set_mwi(dev);
4452}
4453EXPORT_SYMBOL(pcim_set_mwi);
4454
4455/**
4456 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4457 * @dev: the PCI device for which MWI is enabled
4458 *
4459 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4460 * Callers are not required to check the return value.
4461 *
4462 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4463 */
4464int pci_try_set_mwi(struct pci_dev *dev)
4465{
4466#ifdef PCI_DISABLE_MWI
4467 return 0;
4468#else
4469 return pci_set_mwi(dev);
4470#endif
4471}
4472EXPORT_SYMBOL(pci_try_set_mwi);
4473
4474/**
4475 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4476 * @dev: the PCI device to disable
4477 *
4478 * Disables PCI Memory-Write-Invalidate transaction on the device
4479 */
4480void pci_clear_mwi(struct pci_dev *dev)
4481{
4482#ifndef PCI_DISABLE_MWI
4483 u16 cmd;
4484
4485 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4486 if (cmd & PCI_COMMAND_INVALIDATE) {
4487 cmd &= ~PCI_COMMAND_INVALIDATE;
4488 pci_write_config_word(dev, PCI_COMMAND, cmd);
4489 }
4490#endif
4491}
4492EXPORT_SYMBOL(pci_clear_mwi);
4493
4494/**
4495 * pci_disable_parity - disable parity checking for device
4496 * @dev: the PCI device to operate on
4497 *
4498 * Disable parity checking for device @dev
4499 */
4500void pci_disable_parity(struct pci_dev *dev)
4501{
4502 u16 cmd;
4503
4504 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4505 if (cmd & PCI_COMMAND_PARITY) {
4506 cmd &= ~PCI_COMMAND_PARITY;
4507 pci_write_config_word(dev, PCI_COMMAND, cmd);
4508 }
4509}
4510
4511/**
4512 * pci_intx - enables/disables PCI INTx for device dev
4513 * @pdev: the PCI device to operate on
4514 * @enable: boolean: whether to enable or disable PCI INTx
4515 *
4516 * Enables/disables PCI INTx for device @pdev
4517 */
4518void pci_intx(struct pci_dev *pdev, int enable)
4519{
4520 u16 pci_command, new;
4521
4522 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4523
4524 if (enable)
4525 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4526 else
4527 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4528
4529 if (new != pci_command) {
4530 struct pci_devres *dr;
4531
4532 pci_write_config_word(pdev, PCI_COMMAND, new);
4533
4534 dr = find_pci_dr(pdev);
4535 if (dr && !dr->restore_intx) {
4536 dr->restore_intx = 1;
4537 dr->orig_intx = !enable;
4538 }
4539 }
4540}
4541EXPORT_SYMBOL_GPL(pci_intx);
4542
4543static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4544{
4545 struct pci_bus *bus = dev->bus;
4546 bool mask_updated = true;
4547 u32 cmd_status_dword;
4548 u16 origcmd, newcmd;
4549 unsigned long flags;
4550 bool irq_pending;
4551
4552 /*
4553 * We do a single dword read to retrieve both command and status.
4554 * Document assumptions that make this possible.
4555 */
4556 BUILD_BUG_ON(PCI_COMMAND % 4);
4557 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4558
4559 raw_spin_lock_irqsave(&pci_lock, flags);
4560
4561 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4562
4563 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4564
4565 /*
4566 * Check interrupt status register to see whether our device
4567 * triggered the interrupt (when masking) or the next IRQ is
4568 * already pending (when unmasking).
4569 */
4570 if (mask != irq_pending) {
4571 mask_updated = false;
4572 goto done;
4573 }
4574
4575 origcmd = cmd_status_dword;
4576 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4577 if (mask)
4578 newcmd |= PCI_COMMAND_INTX_DISABLE;
4579 if (newcmd != origcmd)
4580 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4581
4582done:
4583 raw_spin_unlock_irqrestore(&pci_lock, flags);
4584
4585 return mask_updated;
4586}
4587
4588/**
4589 * pci_check_and_mask_intx - mask INTx on pending interrupt
4590 * @dev: the PCI device to operate on
4591 *
4592 * Check if the device dev has its INTx line asserted, mask it and return
4593 * true in that case. False is returned if no interrupt was pending.
4594 */
4595bool pci_check_and_mask_intx(struct pci_dev *dev)
4596{
4597 return pci_check_and_set_intx_mask(dev, true);
4598}
4599EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4600
4601/**
4602 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4603 * @dev: the PCI device to operate on
4604 *
4605 * Check if the device dev has its INTx line asserted, unmask it if not and
4606 * return true. False is returned and the mask remains active if there was
4607 * still an interrupt pending.
4608 */
4609bool pci_check_and_unmask_intx(struct pci_dev *dev)
4610{
4611 return pci_check_and_set_intx_mask(dev, false);
4612}
4613EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4614
4615/**
4616 * pci_wait_for_pending_transaction - wait for pending transaction
4617 * @dev: the PCI device to operate on
4618 *
4619 * Return 0 if transaction is pending 1 otherwise.
4620 */
4621int pci_wait_for_pending_transaction(struct pci_dev *dev)
4622{
4623 if (!pci_is_pcie(dev))
4624 return 1;
4625
4626 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4627 PCI_EXP_DEVSTA_TRPND);
4628}
4629EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4630
4631/**
4632 * pcie_has_flr - check if a device supports function level resets
4633 * @dev: device to check
4634 *
4635 * Returns true if the device advertises support for PCIe function level
4636 * resets.
4637 */
4638bool pcie_has_flr(struct pci_dev *dev)
4639{
4640 u32 cap;
4641
4642 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4643 return false;
4644
4645 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4646 return cap & PCI_EXP_DEVCAP_FLR;
4647}
4648EXPORT_SYMBOL_GPL(pcie_has_flr);
4649
4650/**
4651 * pcie_flr - initiate a PCIe function level reset
4652 * @dev: device to reset
4653 *
4654 * Initiate a function level reset on @dev. The caller should ensure the
4655 * device supports FLR before calling this function, e.g. by using the
4656 * pcie_has_flr() helper.
4657 */
4658int pcie_flr(struct pci_dev *dev)
4659{
4660 if (!pci_wait_for_pending_transaction(dev))
4661 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4662
4663 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4664
4665 if (dev->imm_ready)
4666 return 0;
4667
4668 /*
4669 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4670 * 100ms, but may silently discard requests while the FLR is in
4671 * progress. Wait 100ms before trying to access the device.
4672 */
4673 msleep(100);
4674
4675 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4676}
4677EXPORT_SYMBOL_GPL(pcie_flr);
4678
4679static int pci_af_flr(struct pci_dev *dev, int probe)
4680{
4681 int pos;
4682 u8 cap;
4683
4684 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4685 if (!pos)
4686 return -ENOTTY;
4687
4688 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4689 return -ENOTTY;
4690
4691 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4692 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4693 return -ENOTTY;
4694
4695 if (probe)
4696 return 0;
4697
4698 /*
4699 * Wait for Transaction Pending bit to clear. A word-aligned test
4700 * is used, so we use the control offset rather than status and shift
4701 * the test bit to match.
4702 */
4703 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4704 PCI_AF_STATUS_TP << 8))
4705 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4706
4707 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4708
4709 if (dev->imm_ready)
4710 return 0;
4711
4712 /*
4713 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4714 * updated 27 July 2006; a device must complete an FLR within
4715 * 100ms, but may silently discard requests while the FLR is in
4716 * progress. Wait 100ms before trying to access the device.
4717 */
4718 msleep(100);
4719
4720 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4721}
4722
4723/**
4724 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4725 * @dev: Device to reset.
4726 * @probe: If set, only check if the device can be reset this way.
4727 *
4728 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4729 * unset, it will be reinitialized internally when going from PCI_D3hot to
4730 * PCI_D0. If that's the case and the device is not in a low-power state
4731 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4732 *
4733 * NOTE: This causes the caller to sleep for twice the device power transition
4734 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4735 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4736 * Moreover, only devices in D0 can be reset by this function.
4737 */
4738static int pci_pm_reset(struct pci_dev *dev, int probe)
4739{
4740 u16 csr;
4741
4742 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4743 return -ENOTTY;
4744
4745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4746 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4747 return -ENOTTY;
4748
4749 if (probe)
4750 return 0;
4751
4752 if (dev->current_state != PCI_D0)
4753 return -EINVAL;
4754
4755 csr &= ~PCI_PM_CTRL_STATE_MASK;
4756 csr |= PCI_D3hot;
4757 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4758 pci_dev_d3_sleep(dev);
4759
4760 csr &= ~PCI_PM_CTRL_STATE_MASK;
4761 csr |= PCI_D0;
4762 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4763 pci_dev_d3_sleep(dev);
4764
4765 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4766}
4767
4768/**
4769 * pcie_wait_for_link_delay - Wait until link is active or inactive
4770 * @pdev: Bridge device
4771 * @active: waiting for active or inactive?
4772 * @delay: Delay to wait after link has become active (in ms)
4773 *
4774 * Use this to wait till link becomes active or inactive.
4775 */
4776static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4777 int delay)
4778{
4779 int timeout = 1000;
4780 bool ret;
4781 u16 lnk_status;
4782
4783 /*
4784 * Some controllers might not implement link active reporting. In this
4785 * case, we wait for 1000 ms + any delay requested by the caller.
4786 */
4787 if (!pdev->link_active_reporting) {
4788 msleep(timeout + delay);
4789 return true;
4790 }
4791
4792 /*
4793 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4794 * after which we should expect an link active if the reset was
4795 * successful. If so, software must wait a minimum 100ms before sending
4796 * configuration requests to devices downstream this port.
4797 *
4798 * If the link fails to activate, either the device was physically
4799 * removed or the link is permanently failed.
4800 */
4801 if (active)
4802 msleep(20);
4803 for (;;) {
4804 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4805 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4806 if (ret == active)
4807 break;
4808 if (timeout <= 0)
4809 break;
4810 msleep(10);
4811 timeout -= 10;
4812 }
4813 if (active && ret)
4814 msleep(delay);
4815
4816 return ret == active;
4817}
4818
4819/**
4820 * pcie_wait_for_link - Wait until link is active or inactive
4821 * @pdev: Bridge device
4822 * @active: waiting for active or inactive?
4823 *
4824 * Use this to wait till link becomes active or inactive.
4825 */
4826bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4827{
4828 return pcie_wait_for_link_delay(pdev, active, 100);
4829}
4830
4831/*
4832 * Find maximum D3cold delay required by all the devices on the bus. The
4833 * spec says 100 ms, but firmware can lower it and we allow drivers to
4834 * increase it as well.
4835 *
4836 * Called with @pci_bus_sem locked for reading.
4837 */
4838static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4839{
4840 const struct pci_dev *pdev;
4841 int min_delay = 100;
4842 int max_delay = 0;
4843
4844 list_for_each_entry(pdev, &bus->devices, bus_list) {
4845 if (pdev->d3cold_delay < min_delay)
4846 min_delay = pdev->d3cold_delay;
4847 if (pdev->d3cold_delay > max_delay)
4848 max_delay = pdev->d3cold_delay;
4849 }
4850
4851 return max(min_delay, max_delay);
4852}
4853
4854/**
4855 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4856 * @dev: PCI bridge
4857 *
4858 * Handle necessary delays before access to the devices on the secondary
4859 * side of the bridge are permitted after D3cold to D0 transition.
4860 *
4861 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4862 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4863 * 4.3.2.
4864 */
4865void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4866{
4867 struct pci_dev *child;
4868 int delay;
4869
4870 if (pci_dev_is_disconnected(dev))
4871 return;
4872
4873 if (!pci_is_bridge(dev) || !dev->bridge_d3)
4874 return;
4875
4876 down_read(&pci_bus_sem);
4877
4878 /*
4879 * We only deal with devices that are present currently on the bus.
4880 * For any hot-added devices the access delay is handled in pciehp
4881 * board_added(). In case of ACPI hotplug the firmware is expected
4882 * to configure the devices before OS is notified.
4883 */
4884 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4885 up_read(&pci_bus_sem);
4886 return;
4887 }
4888
4889 /* Take d3cold_delay requirements into account */
4890 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4891 if (!delay) {
4892 up_read(&pci_bus_sem);
4893 return;
4894 }
4895
4896 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4897 bus_list);
4898 up_read(&pci_bus_sem);
4899
4900 /*
4901 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4902 * accessing the device after reset (that is 1000 ms + 100 ms). In
4903 * practice this should not be needed because we don't do power
4904 * management for them (see pci_bridge_d3_possible()).
4905 */
4906 if (!pci_is_pcie(dev)) {
4907 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4908 msleep(1000 + delay);
4909 return;
4910 }
4911
4912 /*
4913 * For PCIe downstream and root ports that do not support speeds
4914 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4915 * speeds (gen3) we need to wait first for the data link layer to
4916 * become active.
4917 *
4918 * However, 100 ms is the minimum and the PCIe spec says the
4919 * software must allow at least 1s before it can determine that the
4920 * device that did not respond is a broken device. There is
4921 * evidence that 100 ms is not always enough, for example certain
4922 * Titan Ridge xHCI controller does not always respond to
4923 * configuration requests if we only wait for 100 ms (see
4924 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4925 *
4926 * Therefore we wait for 100 ms and check for the device presence.
4927 * If it is still not present give it an additional 100 ms.
4928 */
4929 if (!pcie_downstream_port(dev))
4930 return;
4931
4932 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4933 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4934 msleep(delay);
4935 } else {
4936 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4937 delay);
4938 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4939 /* Did not train, no need to wait any further */
4940 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4941 return;
4942 }
4943 }
4944
4945 if (!pci_device_is_present(child)) {
4946 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4947 msleep(delay);
4948 }
4949}
4950
4951void pci_reset_secondary_bus(struct pci_dev *dev)
4952{
4953 u16 ctrl;
4954
4955 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4956 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4957 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4958
4959 /*
4960 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4961 * this to 2ms to ensure that we meet the minimum requirement.
4962 */
4963 msleep(2);
4964
4965 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4966 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4967
4968 /*
4969 * Trhfa for conventional PCI is 2^25 clock cycles.
4970 * Assuming a minimum 33MHz clock this results in a 1s
4971 * delay before we can consider subordinate devices to
4972 * be re-initialized. PCIe has some ways to shorten this,
4973 * but we don't make use of them yet.
4974 */
4975 ssleep(1);
4976}
4977
4978void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4979{
4980 pci_reset_secondary_bus(dev);
4981}
4982
4983/**
4984 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4985 * @dev: Bridge device
4986 *
4987 * Use the bridge control register to assert reset on the secondary bus.
4988 * Devices on the secondary bus are left in power-on state.
4989 */
4990int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4991{
4992 pcibios_reset_secondary_bus(dev);
4993
4994 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4995}
4996EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4997
4998static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4999{
5000 struct pci_dev *pdev;
5001
5002 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5003 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5004 return -ENOTTY;
5005
5006 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5007 if (pdev != dev)
5008 return -ENOTTY;
5009
5010 if (probe)
5011 return 0;
5012
5013 return pci_bridge_secondary_bus_reset(dev->bus->self);
5014}
5015
5016static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5017{
5018 int rc = -ENOTTY;
5019
5020 if (!hotplug || !try_module_get(hotplug->owner))
5021 return rc;
5022
5023 if (hotplug->ops->reset_slot)
5024 rc = hotplug->ops->reset_slot(hotplug, probe);
5025
5026 module_put(hotplug->owner);
5027
5028 return rc;
5029}
5030
5031static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5032{
5033 if (dev->multifunction || dev->subordinate || !dev->slot ||
5034 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5035 return -ENOTTY;
5036
5037 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5038}
5039
5040static int pci_reset_bus_function(struct pci_dev *dev, int probe)
5041{
5042 int rc;
5043
5044 rc = pci_dev_reset_slot_function(dev, probe);
5045 if (rc != -ENOTTY)
5046 return rc;
5047 return pci_parent_bus_reset(dev, probe);
5048}
5049
5050static void pci_dev_lock(struct pci_dev *dev)
5051{
5052 pci_cfg_access_lock(dev);
5053 /* block PM suspend, driver probe, etc. */
5054 device_lock(&dev->dev);
5055}
5056
5057/* Return 1 on successful lock, 0 on contention */
5058int pci_dev_trylock(struct pci_dev *dev)
5059{
5060 if (pci_cfg_access_trylock(dev)) {
5061 if (device_trylock(&dev->dev))
5062 return 1;
5063 pci_cfg_access_unlock(dev);
5064 }
5065
5066 return 0;
5067}
5068EXPORT_SYMBOL_GPL(pci_dev_trylock);
5069
5070void pci_dev_unlock(struct pci_dev *dev)
5071{
5072 device_unlock(&dev->dev);
5073 pci_cfg_access_unlock(dev);
5074}
5075EXPORT_SYMBOL_GPL(pci_dev_unlock);
5076
5077static void pci_dev_save_and_disable(struct pci_dev *dev)
5078{
5079 const struct pci_error_handlers *err_handler =
5080 dev->driver ? dev->driver->err_handler : NULL;
5081
5082 /*
5083 * dev->driver->err_handler->reset_prepare() is protected against
5084 * races with ->remove() by the device lock, which must be held by
5085 * the caller.
5086 */
5087 if (err_handler && err_handler->reset_prepare)
5088 err_handler->reset_prepare(dev);
5089
5090 /*
5091 * Wake-up device prior to save. PM registers default to D0 after
5092 * reset and a simple register restore doesn't reliably return
5093 * to a non-D0 state anyway.
5094 */
5095 pci_set_power_state(dev, PCI_D0);
5096
5097 pci_save_state(dev);
5098 /*
5099 * Disable the device by clearing the Command register, except for
5100 * INTx-disable which is set. This not only disables MMIO and I/O port
5101 * BARs, but also prevents the device from being Bus Master, preventing
5102 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5103 * compliant devices, INTx-disable prevents legacy interrupts.
5104 */
5105 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5106}
5107
5108static void pci_dev_restore(struct pci_dev *dev)
5109{
5110 const struct pci_error_handlers *err_handler =
5111 dev->driver ? dev->driver->err_handler : NULL;
5112
5113 pci_restore_state(dev);
5114
5115 /*
5116 * dev->driver->err_handler->reset_done() is protected against
5117 * races with ->remove() by the device lock, which must be held by
5118 * the caller.
5119 */
5120 if (err_handler && err_handler->reset_done)
5121 err_handler->reset_done(dev);
5122}
5123
5124/**
5125 * __pci_reset_function_locked - reset a PCI device function while holding
5126 * the @dev mutex lock.
5127 * @dev: PCI device to reset
5128 *
5129 * Some devices allow an individual function to be reset without affecting
5130 * other functions in the same device. The PCI device must be responsive
5131 * to PCI config space in order to use this function.
5132 *
5133 * The device function is presumed to be unused and the caller is holding
5134 * the device mutex lock when this function is called.
5135 *
5136 * Resetting the device will make the contents of PCI configuration space
5137 * random, so any caller of this must be prepared to reinitialise the
5138 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5139 * etc.
5140 *
5141 * Returns 0 if the device function was successfully reset or negative if the
5142 * device doesn't support resetting a single function.
5143 */
5144int __pci_reset_function_locked(struct pci_dev *dev)
5145{
5146 int rc;
5147
5148 might_sleep();
5149
5150 /*
5151 * A reset method returns -ENOTTY if it doesn't support this device
5152 * and we should try the next method.
5153 *
5154 * If it returns 0 (success), we're finished. If it returns any
5155 * other error, we're also finished: this indicates that further
5156 * reset mechanisms might be broken on the device.
5157 */
5158 rc = pci_dev_specific_reset(dev, 0);
5159 if (rc != -ENOTTY)
5160 return rc;
5161 if (pcie_has_flr(dev)) {
5162 rc = pcie_flr(dev);
5163 if (rc != -ENOTTY)
5164 return rc;
5165 }
5166 rc = pci_af_flr(dev, 0);
5167 if (rc != -ENOTTY)
5168 return rc;
5169 rc = pci_pm_reset(dev, 0);
5170 if (rc != -ENOTTY)
5171 return rc;
5172 return pci_reset_bus_function(dev, 0);
5173}
5174EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5175
5176/**
5177 * pci_probe_reset_function - check whether the device can be safely reset
5178 * @dev: PCI device to reset
5179 *
5180 * Some devices allow an individual function to be reset without affecting
5181 * other functions in the same device. The PCI device must be responsive
5182 * to PCI config space in order to use this function.
5183 *
5184 * Returns 0 if the device function can be reset or negative if the
5185 * device doesn't support resetting a single function.
5186 */
5187int pci_probe_reset_function(struct pci_dev *dev)
5188{
5189 int rc;
5190
5191 might_sleep();
5192
5193 rc = pci_dev_specific_reset(dev, 1);
5194 if (rc != -ENOTTY)
5195 return rc;
5196 if (pcie_has_flr(dev))
5197 return 0;
5198 rc = pci_af_flr(dev, 1);
5199 if (rc != -ENOTTY)
5200 return rc;
5201 rc = pci_pm_reset(dev, 1);
5202 if (rc != -ENOTTY)
5203 return rc;
5204
5205 return pci_reset_bus_function(dev, 1);
5206}
5207
5208/**
5209 * pci_reset_function - quiesce and reset a PCI device function
5210 * @dev: PCI device to reset
5211 *
5212 * Some devices allow an individual function to be reset without affecting
5213 * other functions in the same device. The PCI device must be responsive
5214 * to PCI config space in order to use this function.
5215 *
5216 * This function does not just reset the PCI portion of a device, but
5217 * clears all the state associated with the device. This function differs
5218 * from __pci_reset_function_locked() in that it saves and restores device state
5219 * over the reset and takes the PCI device lock.
5220 *
5221 * Returns 0 if the device function was successfully reset or negative if the
5222 * device doesn't support resetting a single function.
5223 */
5224int pci_reset_function(struct pci_dev *dev)
5225{
5226 int rc;
5227
5228 if (!dev->reset_fn)
5229 return -ENOTTY;
5230
5231 pci_dev_lock(dev);
5232 pci_dev_save_and_disable(dev);
5233
5234 rc = __pci_reset_function_locked(dev);
5235
5236 pci_dev_restore(dev);
5237 pci_dev_unlock(dev);
5238
5239 return rc;
5240}
5241EXPORT_SYMBOL_GPL(pci_reset_function);
5242
5243/**
5244 * pci_reset_function_locked - quiesce and reset a PCI device function
5245 * @dev: PCI device to reset
5246 *
5247 * Some devices allow an individual function to be reset without affecting
5248 * other functions in the same device. The PCI device must be responsive
5249 * to PCI config space in order to use this function.
5250 *
5251 * This function does not just reset the PCI portion of a device, but
5252 * clears all the state associated with the device. This function differs
5253 * from __pci_reset_function_locked() in that it saves and restores device state
5254 * over the reset. It also differs from pci_reset_function() in that it
5255 * requires the PCI device lock to be held.
5256 *
5257 * Returns 0 if the device function was successfully reset or negative if the
5258 * device doesn't support resetting a single function.
5259 */
5260int pci_reset_function_locked(struct pci_dev *dev)
5261{
5262 int rc;
5263
5264 if (!dev->reset_fn)
5265 return -ENOTTY;
5266
5267 pci_dev_save_and_disable(dev);
5268
5269 rc = __pci_reset_function_locked(dev);
5270
5271 pci_dev_restore(dev);
5272
5273 return rc;
5274}
5275EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5276
5277/**
5278 * pci_try_reset_function - quiesce and reset a PCI device function
5279 * @dev: PCI device to reset
5280 *
5281 * Same as above, except return -EAGAIN if unable to lock device.
5282 */
5283int pci_try_reset_function(struct pci_dev *dev)
5284{
5285 int rc;
5286
5287 if (!dev->reset_fn)
5288 return -ENOTTY;
5289
5290 if (!pci_dev_trylock(dev))
5291 return -EAGAIN;
5292
5293 pci_dev_save_and_disable(dev);
5294 rc = __pci_reset_function_locked(dev);
5295 pci_dev_restore(dev);
5296 pci_dev_unlock(dev);
5297
5298 return rc;
5299}
5300EXPORT_SYMBOL_GPL(pci_try_reset_function);
5301
5302/* Do any devices on or below this bus prevent a bus reset? */
5303static bool pci_bus_resetable(struct pci_bus *bus)
5304{
5305 struct pci_dev *dev;
5306
5307
5308 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5309 return false;
5310
5311 list_for_each_entry(dev, &bus->devices, bus_list) {
5312 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5313 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5314 return false;
5315 }
5316
5317 return true;
5318}
5319
5320/* Lock devices from the top of the tree down */
5321static void pci_bus_lock(struct pci_bus *bus)
5322{
5323 struct pci_dev *dev;
5324
5325 list_for_each_entry(dev, &bus->devices, bus_list) {
5326 pci_dev_lock(dev);
5327 if (dev->subordinate)
5328 pci_bus_lock(dev->subordinate);
5329 }
5330}
5331
5332/* Unlock devices from the bottom of the tree up */
5333static void pci_bus_unlock(struct pci_bus *bus)
5334{
5335 struct pci_dev *dev;
5336
5337 list_for_each_entry(dev, &bus->devices, bus_list) {
5338 if (dev->subordinate)
5339 pci_bus_unlock(dev->subordinate);
5340 pci_dev_unlock(dev);
5341 }
5342}
5343
5344/* Return 1 on successful lock, 0 on contention */
5345static int pci_bus_trylock(struct pci_bus *bus)
5346{
5347 struct pci_dev *dev;
5348
5349 list_for_each_entry(dev, &bus->devices, bus_list) {
5350 if (!pci_dev_trylock(dev))
5351 goto unlock;
5352 if (dev->subordinate) {
5353 if (!pci_bus_trylock(dev->subordinate)) {
5354 pci_dev_unlock(dev);
5355 goto unlock;
5356 }
5357 }
5358 }
5359 return 1;
5360
5361unlock:
5362 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5363 if (dev->subordinate)
5364 pci_bus_unlock(dev->subordinate);
5365 pci_dev_unlock(dev);
5366 }
5367 return 0;
5368}
5369
5370/* Do any devices on or below this slot prevent a bus reset? */
5371static bool pci_slot_resetable(struct pci_slot *slot)
5372{
5373 struct pci_dev *dev;
5374
5375 if (slot->bus->self &&
5376 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5377 return false;
5378
5379 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5380 if (!dev->slot || dev->slot != slot)
5381 continue;
5382 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5383 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5384 return false;
5385 }
5386
5387 return true;
5388}
5389
5390/* Lock devices from the top of the tree down */
5391static void pci_slot_lock(struct pci_slot *slot)
5392{
5393 struct pci_dev *dev;
5394
5395 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5396 if (!dev->slot || dev->slot != slot)
5397 continue;
5398 pci_dev_lock(dev);
5399 if (dev->subordinate)
5400 pci_bus_lock(dev->subordinate);
5401 }
5402}
5403
5404/* Unlock devices from the bottom of the tree up */
5405static void pci_slot_unlock(struct pci_slot *slot)
5406{
5407 struct pci_dev *dev;
5408
5409 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5410 if (!dev->slot || dev->slot != slot)
5411 continue;
5412 if (dev->subordinate)
5413 pci_bus_unlock(dev->subordinate);
5414 pci_dev_unlock(dev);
5415 }
5416}
5417
5418/* Return 1 on successful lock, 0 on contention */
5419static int pci_slot_trylock(struct pci_slot *slot)
5420{
5421 struct pci_dev *dev;
5422
5423 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5424 if (!dev->slot || dev->slot != slot)
5425 continue;
5426 if (!pci_dev_trylock(dev))
5427 goto unlock;
5428 if (dev->subordinate) {
5429 if (!pci_bus_trylock(dev->subordinate)) {
5430 pci_dev_unlock(dev);
5431 goto unlock;
5432 }
5433 }
5434 }
5435 return 1;
5436
5437unlock:
5438 list_for_each_entry_continue_reverse(dev,
5439 &slot->bus->devices, bus_list) {
5440 if (!dev->slot || dev->slot != slot)
5441 continue;
5442 if (dev->subordinate)
5443 pci_bus_unlock(dev->subordinate);
5444 pci_dev_unlock(dev);
5445 }
5446 return 0;
5447}
5448
5449/*
5450 * Save and disable devices from the top of the tree down while holding
5451 * the @dev mutex lock for the entire tree.
5452 */
5453static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5454{
5455 struct pci_dev *dev;
5456
5457 list_for_each_entry(dev, &bus->devices, bus_list) {
5458 pci_dev_save_and_disable(dev);
5459 if (dev->subordinate)
5460 pci_bus_save_and_disable_locked(dev->subordinate);
5461 }
5462}
5463
5464/*
5465 * Restore devices from top of the tree down while holding @dev mutex lock
5466 * for the entire tree. Parent bridges need to be restored before we can
5467 * get to subordinate devices.
5468 */
5469static void pci_bus_restore_locked(struct pci_bus *bus)
5470{
5471 struct pci_dev *dev;
5472
5473 list_for_each_entry(dev, &bus->devices, bus_list) {
5474 pci_dev_restore(dev);
5475 if (dev->subordinate)
5476 pci_bus_restore_locked(dev->subordinate);
5477 }
5478}
5479
5480/*
5481 * Save and disable devices from the top of the tree down while holding
5482 * the @dev mutex lock for the entire tree.
5483 */
5484static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5485{
5486 struct pci_dev *dev;
5487
5488 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5489 if (!dev->slot || dev->slot != slot)
5490 continue;
5491 pci_dev_save_and_disable(dev);
5492 if (dev->subordinate)
5493 pci_bus_save_and_disable_locked(dev->subordinate);
5494 }
5495}
5496
5497/*
5498 * Restore devices from top of the tree down while holding @dev mutex lock
5499 * for the entire tree. Parent bridges need to be restored before we can
5500 * get to subordinate devices.
5501 */
5502static void pci_slot_restore_locked(struct pci_slot *slot)
5503{
5504 struct pci_dev *dev;
5505
5506 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5507 if (!dev->slot || dev->slot != slot)
5508 continue;
5509 pci_dev_restore(dev);
5510 if (dev->subordinate)
5511 pci_bus_restore_locked(dev->subordinate);
5512 }
5513}
5514
5515static int pci_slot_reset(struct pci_slot *slot, int probe)
5516{
5517 int rc;
5518
5519 if (!slot || !pci_slot_resetable(slot))
5520 return -ENOTTY;
5521
5522 if (!probe)
5523 pci_slot_lock(slot);
5524
5525 might_sleep();
5526
5527 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5528
5529 if (!probe)
5530 pci_slot_unlock(slot);
5531
5532 return rc;
5533}
5534
5535/**
5536 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5537 * @slot: PCI slot to probe
5538 *
5539 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5540 */
5541int pci_probe_reset_slot(struct pci_slot *slot)
5542{
5543 return pci_slot_reset(slot, 1);
5544}
5545EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5546
5547/**
5548 * __pci_reset_slot - Try to reset a PCI slot
5549 * @slot: PCI slot to reset
5550 *
5551 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5552 * independent of other slots. For instance, some slots may support slot power
5553 * control. In the case of a 1:1 bus to slot architecture, this function may
5554 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5555 * Generally a slot reset should be attempted before a bus reset. All of the
5556 * function of the slot and any subordinate buses behind the slot are reset
5557 * through this function. PCI config space of all devices in the slot and
5558 * behind the slot is saved before and restored after reset.
5559 *
5560 * Same as above except return -EAGAIN if the slot cannot be locked
5561 */
5562static int __pci_reset_slot(struct pci_slot *slot)
5563{
5564 int rc;
5565
5566 rc = pci_slot_reset(slot, 1);
5567 if (rc)
5568 return rc;
5569
5570 if (pci_slot_trylock(slot)) {
5571 pci_slot_save_and_disable_locked(slot);
5572 might_sleep();
5573 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5574 pci_slot_restore_locked(slot);
5575 pci_slot_unlock(slot);
5576 } else
5577 rc = -EAGAIN;
5578
5579 return rc;
5580}
5581
5582static int pci_bus_reset(struct pci_bus *bus, int probe)
5583{
5584 int ret;
5585
5586 if (!bus->self || !pci_bus_resetable(bus))
5587 return -ENOTTY;
5588
5589 if (probe)
5590 return 0;
5591
5592 pci_bus_lock(bus);
5593
5594 might_sleep();
5595
5596 ret = pci_bridge_secondary_bus_reset(bus->self);
5597
5598 pci_bus_unlock(bus);
5599
5600 return ret;
5601}
5602
5603/**
5604 * pci_bus_error_reset - reset the bridge's subordinate bus
5605 * @bridge: The parent device that connects to the bus to reset
5606 *
5607 * This function will first try to reset the slots on this bus if the method is
5608 * available. If slot reset fails or is not available, this will fall back to a
5609 * secondary bus reset.
5610 */
5611int pci_bus_error_reset(struct pci_dev *bridge)
5612{
5613 struct pci_bus *bus = bridge->subordinate;
5614 struct pci_slot *slot;
5615
5616 if (!bus)
5617 return -ENOTTY;
5618
5619 mutex_lock(&pci_slot_mutex);
5620 if (list_empty(&bus->slots))
5621 goto bus_reset;
5622
5623 list_for_each_entry(slot, &bus->slots, list)
5624 if (pci_probe_reset_slot(slot))
5625 goto bus_reset;
5626
5627 list_for_each_entry(slot, &bus->slots, list)
5628 if (pci_slot_reset(slot, 0))
5629 goto bus_reset;
5630
5631 mutex_unlock(&pci_slot_mutex);
5632 return 0;
5633bus_reset:
5634 mutex_unlock(&pci_slot_mutex);
5635 return pci_bus_reset(bridge->subordinate, 0);
5636}
5637
5638/**
5639 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5640 * @bus: PCI bus to probe
5641 *
5642 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5643 */
5644int pci_probe_reset_bus(struct pci_bus *bus)
5645{
5646 return pci_bus_reset(bus, 1);
5647}
5648EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5649
5650/**
5651 * __pci_reset_bus - Try to reset a PCI bus
5652 * @bus: top level PCI bus to reset
5653 *
5654 * Same as above except return -EAGAIN if the bus cannot be locked
5655 */
5656static int __pci_reset_bus(struct pci_bus *bus)
5657{
5658 int rc;
5659
5660 rc = pci_bus_reset(bus, 1);
5661 if (rc)
5662 return rc;
5663
5664 if (pci_bus_trylock(bus)) {
5665 pci_bus_save_and_disable_locked(bus);
5666 might_sleep();
5667 rc = pci_bridge_secondary_bus_reset(bus->self);
5668 pci_bus_restore_locked(bus);
5669 pci_bus_unlock(bus);
5670 } else
5671 rc = -EAGAIN;
5672
5673 return rc;
5674}
5675
5676/**
5677 * pci_reset_bus - Try to reset a PCI bus
5678 * @pdev: top level PCI device to reset via slot/bus
5679 *
5680 * Same as above except return -EAGAIN if the bus cannot be locked
5681 */
5682int pci_reset_bus(struct pci_dev *pdev)
5683{
5684 return (!pci_probe_reset_slot(pdev->slot)) ?
5685 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5686}
5687EXPORT_SYMBOL_GPL(pci_reset_bus);
5688
5689/**
5690 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5691 * @dev: PCI device to query
5692 *
5693 * Returns mmrbc: maximum designed memory read count in bytes or
5694 * appropriate error value.
5695 */
5696int pcix_get_max_mmrbc(struct pci_dev *dev)
5697{
5698 int cap;
5699 u32 stat;
5700
5701 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5702 if (!cap)
5703 return -EINVAL;
5704
5705 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5706 return -EINVAL;
5707
5708 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5709}
5710EXPORT_SYMBOL(pcix_get_max_mmrbc);
5711
5712/**
5713 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5714 * @dev: PCI device to query
5715 *
5716 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5717 * value.
5718 */
5719int pcix_get_mmrbc(struct pci_dev *dev)
5720{
5721 int cap;
5722 u16 cmd;
5723
5724 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5725 if (!cap)
5726 return -EINVAL;
5727
5728 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5729 return -EINVAL;
5730
5731 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5732}
5733EXPORT_SYMBOL(pcix_get_mmrbc);
5734
5735/**
5736 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5737 * @dev: PCI device to query
5738 * @mmrbc: maximum memory read count in bytes
5739 * valid values are 512, 1024, 2048, 4096
5740 *
5741 * If possible sets maximum memory read byte count, some bridges have errata
5742 * that prevent this.
5743 */
5744int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5745{
5746 int cap;
5747 u32 stat, v, o;
5748 u16 cmd;
5749
5750 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5751 return -EINVAL;
5752
5753 v = ffs(mmrbc) - 10;
5754
5755 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5756 if (!cap)
5757 return -EINVAL;
5758
5759 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5760 return -EINVAL;
5761
5762 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5763 return -E2BIG;
5764
5765 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5766 return -EINVAL;
5767
5768 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5769 if (o != v) {
5770 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5771 return -EIO;
5772
5773 cmd &= ~PCI_X_CMD_MAX_READ;
5774 cmd |= v << 2;
5775 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5776 return -EIO;
5777 }
5778 return 0;
5779}
5780EXPORT_SYMBOL(pcix_set_mmrbc);
5781
5782/**
5783 * pcie_get_readrq - get PCI Express read request size
5784 * @dev: PCI device to query
5785 *
5786 * Returns maximum memory read request in bytes or appropriate error value.
5787 */
5788int pcie_get_readrq(struct pci_dev *dev)
5789{
5790 u16 ctl;
5791
5792 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5793
5794 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5795}
5796EXPORT_SYMBOL(pcie_get_readrq);
5797
5798/**
5799 * pcie_set_readrq - set PCI Express maximum memory read request
5800 * @dev: PCI device to query
5801 * @rq: maximum memory read count in bytes
5802 * valid values are 128, 256, 512, 1024, 2048, 4096
5803 *
5804 * If possible sets maximum memory read request in bytes
5805 */
5806int pcie_set_readrq(struct pci_dev *dev, int rq)
5807{
5808 u16 v;
5809 int ret;
5810
5811 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5812 return -EINVAL;
5813
5814 /*
5815 * If using the "performance" PCIe config, we clamp the read rq
5816 * size to the max packet size to keep the host bridge from
5817 * generating requests larger than we can cope with.
5818 */
5819 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5820 int mps = pcie_get_mps(dev);
5821
5822 if (mps < rq)
5823 rq = mps;
5824 }
5825
5826 v = (ffs(rq) - 8) << 12;
5827
5828 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5829 PCI_EXP_DEVCTL_READRQ, v);
5830
5831 return pcibios_err_to_errno(ret);
5832}
5833EXPORT_SYMBOL(pcie_set_readrq);
5834
5835/**
5836 * pcie_get_mps - get PCI Express maximum payload size
5837 * @dev: PCI device to query
5838 *
5839 * Returns maximum payload size in bytes
5840 */
5841int pcie_get_mps(struct pci_dev *dev)
5842{
5843 u16 ctl;
5844
5845 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5846
5847 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5848}
5849EXPORT_SYMBOL(pcie_get_mps);
5850
5851/**
5852 * pcie_set_mps - set PCI Express maximum payload size
5853 * @dev: PCI device to query
5854 * @mps: maximum payload size in bytes
5855 * valid values are 128, 256, 512, 1024, 2048, 4096
5856 *
5857 * If possible sets maximum payload size
5858 */
5859int pcie_set_mps(struct pci_dev *dev, int mps)
5860{
5861 u16 v;
5862 int ret;
5863
5864 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5865 return -EINVAL;
5866
5867 v = ffs(mps) - 8;
5868 if (v > dev->pcie_mpss)
5869 return -EINVAL;
5870 v <<= 5;
5871
5872 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5873 PCI_EXP_DEVCTL_PAYLOAD, v);
5874
5875 return pcibios_err_to_errno(ret);
5876}
5877EXPORT_SYMBOL(pcie_set_mps);
5878
5879/**
5880 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5881 * device and its bandwidth limitation
5882 * @dev: PCI device to query
5883 * @limiting_dev: storage for device causing the bandwidth limitation
5884 * @speed: storage for speed of limiting device
5885 * @width: storage for width of limiting device
5886 *
5887 * Walk up the PCI device chain and find the point where the minimum
5888 * bandwidth is available. Return the bandwidth available there and (if
5889 * limiting_dev, speed, and width pointers are supplied) information about
5890 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5891 * raw bandwidth.
5892 */
5893u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5894 enum pci_bus_speed *speed,
5895 enum pcie_link_width *width)
5896{
5897 u16 lnksta;
5898 enum pci_bus_speed next_speed;
5899 enum pcie_link_width next_width;
5900 u32 bw, next_bw;
5901
5902 if (speed)
5903 *speed = PCI_SPEED_UNKNOWN;
5904 if (width)
5905 *width = PCIE_LNK_WIDTH_UNKNOWN;
5906
5907 bw = 0;
5908
5909 while (dev) {
5910 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5911
5912 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5913 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5914 PCI_EXP_LNKSTA_NLW_SHIFT;
5915
5916 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5917
5918 /* Check if current device limits the total bandwidth */
5919 if (!bw || next_bw <= bw) {
5920 bw = next_bw;
5921
5922 if (limiting_dev)
5923 *limiting_dev = dev;
5924 if (speed)
5925 *speed = next_speed;
5926 if (width)
5927 *width = next_width;
5928 }
5929
5930 dev = pci_upstream_bridge(dev);
5931 }
5932
5933 return bw;
5934}
5935EXPORT_SYMBOL(pcie_bandwidth_available);
5936
5937/**
5938 * pcie_get_speed_cap - query for the PCI device's link speed capability
5939 * @dev: PCI device to query
5940 *
5941 * Query the PCI device speed capability. Return the maximum link speed
5942 * supported by the device.
5943 */
5944enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5945{
5946 u32 lnkcap2, lnkcap;
5947
5948 /*
5949 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5950 * implementation note there recommends using the Supported Link
5951 * Speeds Vector in Link Capabilities 2 when supported.
5952 *
5953 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5954 * should use the Supported Link Speeds field in Link Capabilities,
5955 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5956 */
5957 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5958
5959 /* PCIe r3.0-compliant */
5960 if (lnkcap2)
5961 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5962
5963 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5964 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5965 return PCIE_SPEED_5_0GT;
5966 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5967 return PCIE_SPEED_2_5GT;
5968
5969 return PCI_SPEED_UNKNOWN;
5970}
5971EXPORT_SYMBOL(pcie_get_speed_cap);
5972
5973/**
5974 * pcie_get_width_cap - query for the PCI device's link width capability
5975 * @dev: PCI device to query
5976 *
5977 * Query the PCI device width capability. Return the maximum link width
5978 * supported by the device.
5979 */
5980enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5981{
5982 u32 lnkcap;
5983
5984 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5985 if (lnkcap)
5986 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5987
5988 return PCIE_LNK_WIDTH_UNKNOWN;
5989}
5990EXPORT_SYMBOL(pcie_get_width_cap);
5991
5992/**
5993 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5994 * @dev: PCI device
5995 * @speed: storage for link speed
5996 * @width: storage for link width
5997 *
5998 * Calculate a PCI device's link bandwidth by querying for its link speed
5999 * and width, multiplying them, and applying encoding overhead. The result
6000 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6001 */
6002u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6003 enum pcie_link_width *width)
6004{
6005 *speed = pcie_get_speed_cap(dev);
6006 *width = pcie_get_width_cap(dev);
6007
6008 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6009 return 0;
6010
6011 return *width * PCIE_SPEED2MBS_ENC(*speed);
6012}
6013
6014/**
6015 * __pcie_print_link_status - Report the PCI device's link speed and width
6016 * @dev: PCI device to query
6017 * @verbose: Print info even when enough bandwidth is available
6018 *
6019 * If the available bandwidth at the device is less than the device is
6020 * capable of, report the device's maximum possible bandwidth and the
6021 * upstream link that limits its performance. If @verbose, always print
6022 * the available bandwidth, even if the device isn't constrained.
6023 */
6024void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6025{
6026 enum pcie_link_width width, width_cap;
6027 enum pci_bus_speed speed, speed_cap;
6028 struct pci_dev *limiting_dev = NULL;
6029 u32 bw_avail, bw_cap;
6030
6031 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6032 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6033
6034 if (bw_avail >= bw_cap && verbose)
6035 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6036 bw_cap / 1000, bw_cap % 1000,
6037 pci_speed_string(speed_cap), width_cap);
6038 else if (bw_avail < bw_cap)
6039 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6040 bw_avail / 1000, bw_avail % 1000,
6041 pci_speed_string(speed), width,
6042 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6043 bw_cap / 1000, bw_cap % 1000,
6044 pci_speed_string(speed_cap), width_cap);
6045}
6046
6047/**
6048 * pcie_print_link_status - Report the PCI device's link speed and width
6049 * @dev: PCI device to query
6050 *
6051 * Report the available bandwidth at the device.
6052 */
6053void pcie_print_link_status(struct pci_dev *dev)
6054{
6055 __pcie_print_link_status(dev, true);
6056}
6057EXPORT_SYMBOL(pcie_print_link_status);
6058
6059/**
6060 * pci_select_bars - Make BAR mask from the type of resource
6061 * @dev: the PCI device for which BAR mask is made
6062 * @flags: resource type mask to be selected
6063 *
6064 * This helper routine makes bar mask from the type of resource.
6065 */
6066int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6067{
6068 int i, bars = 0;
6069 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6070 if (pci_resource_flags(dev, i) & flags)
6071 bars |= (1 << i);
6072 return bars;
6073}
6074EXPORT_SYMBOL(pci_select_bars);
6075
6076/* Some architectures require additional programming to enable VGA */
6077static arch_set_vga_state_t arch_set_vga_state;
6078
6079void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6080{
6081 arch_set_vga_state = func; /* NULL disables */
6082}
6083
6084static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6085 unsigned int command_bits, u32 flags)
6086{
6087 if (arch_set_vga_state)
6088 return arch_set_vga_state(dev, decode, command_bits,
6089 flags);
6090 return 0;
6091}
6092
6093/**
6094 * pci_set_vga_state - set VGA decode state on device and parents if requested
6095 * @dev: the PCI device
6096 * @decode: true = enable decoding, false = disable decoding
6097 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6098 * @flags: traverse ancestors and change bridges
6099 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6100 */
6101int pci_set_vga_state(struct pci_dev *dev, bool decode,
6102 unsigned int command_bits, u32 flags)
6103{
6104 struct pci_bus *bus;
6105 struct pci_dev *bridge;
6106 u16 cmd;
6107 int rc;
6108
6109 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6110
6111 /* ARCH specific VGA enables */
6112 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6113 if (rc)
6114 return rc;
6115
6116 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6117 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6118 if (decode)
6119 cmd |= command_bits;
6120 else
6121 cmd &= ~command_bits;
6122 pci_write_config_word(dev, PCI_COMMAND, cmd);
6123 }
6124
6125 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6126 return 0;
6127
6128 bus = dev->bus;
6129 while (bus) {
6130 bridge = bus->self;
6131 if (bridge) {
6132 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6133 &cmd);
6134 if (decode)
6135 cmd |= PCI_BRIDGE_CTL_VGA;
6136 else
6137 cmd &= ~PCI_BRIDGE_CTL_VGA;
6138 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6139 cmd);
6140 }
6141 bus = bus->parent;
6142 }
6143 return 0;
6144}
6145
6146#ifdef CONFIG_ACPI
6147bool pci_pr3_present(struct pci_dev *pdev)
6148{
6149 struct acpi_device *adev;
6150
6151 if (acpi_disabled)
6152 return false;
6153
6154 adev = ACPI_COMPANION(&pdev->dev);
6155 if (!adev)
6156 return false;
6157
6158 return adev->power.flags.power_resources &&
6159 acpi_has_method(adev->handle, "_PR3");
6160}
6161EXPORT_SYMBOL_GPL(pci_pr3_present);
6162#endif
6163
6164/**
6165 * pci_add_dma_alias - Add a DMA devfn alias for a device
6166 * @dev: the PCI device for which alias is added
6167 * @devfn_from: alias slot and function
6168 * @nr_devfns: number of subsequent devfns to alias
6169 *
6170 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6171 * which is used to program permissible bus-devfn source addresses for DMA
6172 * requests in an IOMMU. These aliases factor into IOMMU group creation
6173 * and are useful for devices generating DMA requests beyond or different
6174 * from their logical bus-devfn. Examples include device quirks where the
6175 * device simply uses the wrong devfn, as well as non-transparent bridges
6176 * where the alias may be a proxy for devices in another domain.
6177 *
6178 * IOMMU group creation is performed during device discovery or addition,
6179 * prior to any potential DMA mapping and therefore prior to driver probing
6180 * (especially for userspace assigned devices where IOMMU group definition
6181 * cannot be left as a userspace activity). DMA aliases should therefore
6182 * be configured via quirks, such as the PCI fixup header quirk.
6183 */
6184void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6185{
6186 int devfn_to;
6187
6188 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6189 devfn_to = devfn_from + nr_devfns - 1;
6190
6191 if (!dev->dma_alias_mask)
6192 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6193 if (!dev->dma_alias_mask) {
6194 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6195 return;
6196 }
6197
6198 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6199
6200 if (nr_devfns == 1)
6201 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6202 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6203 else if (nr_devfns > 1)
6204 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6205 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6206 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6207}
6208
6209bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6210{
6211 return (dev1->dma_alias_mask &&
6212 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6213 (dev2->dma_alias_mask &&
6214 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6215 pci_real_dma_dev(dev1) == dev2 ||
6216 pci_real_dma_dev(dev2) == dev1;
6217}
6218
6219bool pci_device_is_present(struct pci_dev *pdev)
6220{
6221 u32 v;
6222
6223 if (pci_dev_is_disconnected(pdev))
6224 return false;
6225 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6226}
6227EXPORT_SYMBOL_GPL(pci_device_is_present);
6228
6229void pci_ignore_hotplug(struct pci_dev *dev)
6230{
6231 struct pci_dev *bridge = dev->bus->self;
6232
6233 dev->ignore_hotplug = 1;
6234 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6235 if (bridge)
6236 bridge->ignore_hotplug = 1;
6237}
6238EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6239
6240/**
6241 * pci_real_dma_dev - Get PCI DMA device for PCI device
6242 * @dev: the PCI device that may have a PCI DMA alias
6243 *
6244 * Permits the platform to provide architecture-specific functionality to
6245 * devices needing to alias DMA to another PCI device on another PCI bus. If
6246 * the PCI device is on the same bus, it is recommended to use
6247 * pci_add_dma_alias(). This is the default implementation. Architecture
6248 * implementations can override this.
6249 */
6250struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6251{
6252 return dev;
6253}
6254
6255resource_size_t __weak pcibios_default_alignment(void)
6256{
6257 return 0;
6258}
6259
6260/*
6261 * Arches that don't want to expose struct resource to userland as-is in
6262 * sysfs and /proc can implement their own pci_resource_to_user().
6263 */
6264void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6265 const struct resource *rsrc,
6266 resource_size_t *start, resource_size_t *end)
6267{
6268 *start = rsrc->start;
6269 *end = rsrc->end;
6270}
6271
6272static char *resource_alignment_param;
6273static DEFINE_SPINLOCK(resource_alignment_lock);
6274
6275/**
6276 * pci_specified_resource_alignment - get resource alignment specified by user.
6277 * @dev: the PCI device to get
6278 * @resize: whether or not to change resources' size when reassigning alignment
6279 *
6280 * RETURNS: Resource alignment if it is specified.
6281 * Zero if it is not specified.
6282 */
6283static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6284 bool *resize)
6285{
6286 int align_order, count;
6287 resource_size_t align = pcibios_default_alignment();
6288 const char *p;
6289 int ret;
6290
6291 spin_lock(&resource_alignment_lock);
6292 p = resource_alignment_param;
6293 if (!p || !*p)
6294 goto out;
6295 if (pci_has_flag(PCI_PROBE_ONLY)) {
6296 align = 0;
6297 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6298 goto out;
6299 }
6300
6301 while (*p) {
6302 count = 0;
6303 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6304 p[count] == '@') {
6305 p += count + 1;
6306 if (align_order > 63) {
6307 pr_err("PCI: Invalid requested alignment (order %d)\n",
6308 align_order);
6309 align_order = PAGE_SHIFT;
6310 }
6311 } else {
6312 align_order = PAGE_SHIFT;
6313 }
6314
6315 ret = pci_dev_str_match(dev, p, &p);
6316 if (ret == 1) {
6317 *resize = true;
6318 align = 1ULL << align_order;
6319 break;
6320 } else if (ret < 0) {
6321 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6322 p);
6323 break;
6324 }
6325
6326 if (*p != ';' && *p != ',') {
6327 /* End of param or invalid format */
6328 break;
6329 }
6330 p++;
6331 }
6332out:
6333 spin_unlock(&resource_alignment_lock);
6334 return align;
6335}
6336
6337static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6338 resource_size_t align, bool resize)
6339{
6340 struct resource *r = &dev->resource[bar];
6341 resource_size_t size;
6342
6343 if (!(r->flags & IORESOURCE_MEM))
6344 return;
6345
6346 if (r->flags & IORESOURCE_PCI_FIXED) {
6347 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6348 bar, r, (unsigned long long)align);
6349 return;
6350 }
6351
6352 size = resource_size(r);
6353 if (size >= align)
6354 return;
6355
6356 /*
6357 * Increase the alignment of the resource. There are two ways we
6358 * can do this:
6359 *
6360 * 1) Increase the size of the resource. BARs are aligned on their
6361 * size, so when we reallocate space for this resource, we'll
6362 * allocate it with the larger alignment. This also prevents
6363 * assignment of any other BARs inside the alignment region, so
6364 * if we're requesting page alignment, this means no other BARs
6365 * will share the page.
6366 *
6367 * The disadvantage is that this makes the resource larger than
6368 * the hardware BAR, which may break drivers that compute things
6369 * based on the resource size, e.g., to find registers at a
6370 * fixed offset before the end of the BAR.
6371 *
6372 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6373 * set r->start to the desired alignment. By itself this
6374 * doesn't prevent other BARs being put inside the alignment
6375 * region, but if we realign *every* resource of every device in
6376 * the system, none of them will share an alignment region.
6377 *
6378 * When the user has requested alignment for only some devices via
6379 * the "pci=resource_alignment" argument, "resize" is true and we
6380 * use the first method. Otherwise we assume we're aligning all
6381 * devices and we use the second.
6382 */
6383
6384 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6385 bar, r, (unsigned long long)align);
6386
6387 if (resize) {
6388 r->start = 0;
6389 r->end = align - 1;
6390 } else {
6391 r->flags &= ~IORESOURCE_SIZEALIGN;
6392 r->flags |= IORESOURCE_STARTALIGN;
6393 r->start = align;
6394 r->end = r->start + size - 1;
6395 }
6396 r->flags |= IORESOURCE_UNSET;
6397}
6398
6399/*
6400 * This function disables memory decoding and releases memory resources
6401 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6402 * It also rounds up size to specified alignment.
6403 * Later on, the kernel will assign page-aligned memory resource back
6404 * to the device.
6405 */
6406void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6407{
6408 int i;
6409 struct resource *r;
6410 resource_size_t align;
6411 u16 command;
6412 bool resize = false;
6413
6414 /*
6415 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6416 * 3.4.1.11. Their resources are allocated from the space
6417 * described by the VF BARx register in the PF's SR-IOV capability.
6418 * We can't influence their alignment here.
6419 */
6420 if (dev->is_virtfn)
6421 return;
6422
6423 /* check if specified PCI is target device to reassign */
6424 align = pci_specified_resource_alignment(dev, &resize);
6425 if (!align)
6426 return;
6427
6428 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6429 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6430 pci_warn(dev, "Can't reassign resources to host bridge\n");
6431 return;
6432 }
6433
6434 pci_read_config_word(dev, PCI_COMMAND, &command);
6435 command &= ~PCI_COMMAND_MEMORY;
6436 pci_write_config_word(dev, PCI_COMMAND, command);
6437
6438 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6439 pci_request_resource_alignment(dev, i, align, resize);
6440
6441 /*
6442 * Need to disable bridge's resource window,
6443 * to enable the kernel to reassign new resource
6444 * window later on.
6445 */
6446 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6447 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6448 r = &dev->resource[i];
6449 if (!(r->flags & IORESOURCE_MEM))
6450 continue;
6451 r->flags |= IORESOURCE_UNSET;
6452 r->end = resource_size(r) - 1;
6453 r->start = 0;
6454 }
6455 pci_disable_bridge_window(dev);
6456 }
6457}
6458
6459static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6460{
6461 size_t count = 0;
6462
6463 spin_lock(&resource_alignment_lock);
6464 if (resource_alignment_param)
6465 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6466 spin_unlock(&resource_alignment_lock);
6467
6468 return count;
6469}
6470
6471static ssize_t resource_alignment_store(struct bus_type *bus,
6472 const char *buf, size_t count)
6473{
6474 char *param, *old, *end;
6475
6476 if (count >= (PAGE_SIZE - 1))
6477 return -EINVAL;
6478
6479 param = kstrndup(buf, count, GFP_KERNEL);
6480 if (!param)
6481 return -ENOMEM;
6482
6483 end = strchr(param, '\n');
6484 if (end)
6485 *end = '\0';
6486
6487 spin_lock(&resource_alignment_lock);
6488 old = resource_alignment_param;
6489 if (strlen(param)) {
6490 resource_alignment_param = param;
6491 } else {
6492 kfree(param);
6493 resource_alignment_param = NULL;
6494 }
6495 spin_unlock(&resource_alignment_lock);
6496
6497 kfree(old);
6498
6499 return count;
6500}
6501
6502static BUS_ATTR_RW(resource_alignment);
6503
6504static int __init pci_resource_alignment_sysfs_init(void)
6505{
6506 return bus_create_file(&pci_bus_type,
6507 &bus_attr_resource_alignment);
6508}
6509late_initcall(pci_resource_alignment_sysfs_init);
6510
6511static void pci_no_domains(void)
6512{
6513#ifdef CONFIG_PCI_DOMAINS
6514 pci_domains_supported = 0;
6515#endif
6516}
6517
6518#ifdef CONFIG_PCI_DOMAINS_GENERIC
6519static atomic_t __domain_nr = ATOMIC_INIT(-1);
6520
6521static int pci_get_new_domain_nr(void)
6522{
6523 return atomic_inc_return(&__domain_nr);
6524}
6525
6526static int of_pci_bus_find_domain_nr(struct device *parent)
6527{
6528 static int use_dt_domains = -1;
6529 int domain = -1;
6530
6531 if (parent)
6532 domain = of_get_pci_domain_nr(parent->of_node);
6533
6534 /*
6535 * Check DT domain and use_dt_domains values.
6536 *
6537 * If DT domain property is valid (domain >= 0) and
6538 * use_dt_domains != 0, the DT assignment is valid since this means
6539 * we have not previously allocated a domain number by using
6540 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6541 * 1, to indicate that we have just assigned a domain number from
6542 * DT.
6543 *
6544 * If DT domain property value is not valid (ie domain < 0), and we
6545 * have not previously assigned a domain number from DT
6546 * (use_dt_domains != 1) we should assign a domain number by
6547 * using the:
6548 *
6549 * pci_get_new_domain_nr()
6550 *
6551 * API and update the use_dt_domains value to keep track of method we
6552 * are using to assign domain numbers (use_dt_domains = 0).
6553 *
6554 * All other combinations imply we have a platform that is trying
6555 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6556 * which is a recipe for domain mishandling and it is prevented by
6557 * invalidating the domain value (domain = -1) and printing a
6558 * corresponding error.
6559 */
6560 if (domain >= 0 && use_dt_domains) {
6561 use_dt_domains = 1;
6562 } else if (domain < 0 && use_dt_domains != 1) {
6563 use_dt_domains = 0;
6564 domain = pci_get_new_domain_nr();
6565 } else {
6566 if (parent)
6567 pr_err("Node %pOF has ", parent->of_node);
6568 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6569 domain = -1;
6570 }
6571
6572 return domain;
6573}
6574
6575int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6576{
6577 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6578 acpi_pci_bus_find_domain_nr(bus);
6579}
6580#endif
6581
6582/**
6583 * pci_ext_cfg_avail - can we access extended PCI config space?
6584 *
6585 * Returns 1 if we can access PCI extended config space (offsets
6586 * greater than 0xff). This is the default implementation. Architecture
6587 * implementations can override this.
6588 */
6589int __weak pci_ext_cfg_avail(void)
6590{
6591 return 1;
6592}
6593
6594void __weak pci_fixup_cardbus(struct pci_bus *bus)
6595{
6596}
6597EXPORT_SYMBOL(pci_fixup_cardbus);
6598
6599static int __init pci_setup(char *str)
6600{
6601 while (str) {
6602 char *k = strchr(str, ',');
6603 if (k)
6604 *k++ = 0;
6605 if (*str && (str = pcibios_setup(str)) && *str) {
6606 if (!strcmp(str, "nomsi")) {
6607 pci_no_msi();
6608 } else if (!strncmp(str, "noats", 5)) {
6609 pr_info("PCIe: ATS is disabled\n");
6610 pcie_ats_disabled = true;
6611 } else if (!strcmp(str, "noaer")) {
6612 pci_no_aer();
6613 } else if (!strcmp(str, "earlydump")) {
6614 pci_early_dump = true;
6615 } else if (!strncmp(str, "realloc=", 8)) {
6616 pci_realloc_get_opt(str + 8);
6617 } else if (!strncmp(str, "realloc", 7)) {
6618 pci_realloc_get_opt("on");
6619 } else if (!strcmp(str, "nodomains")) {
6620 pci_no_domains();
6621 } else if (!strncmp(str, "noari", 5)) {
6622 pcie_ari_disabled = true;
6623 } else if (!strncmp(str, "cbiosize=", 9)) {
6624 pci_cardbus_io_size = memparse(str + 9, &str);
6625 } else if (!strncmp(str, "cbmemsize=", 10)) {
6626 pci_cardbus_mem_size = memparse(str + 10, &str);
6627 } else if (!strncmp(str, "resource_alignment=", 19)) {
6628 resource_alignment_param = str + 19;
6629 } else if (!strncmp(str, "ecrc=", 5)) {
6630 pcie_ecrc_get_policy(str + 5);
6631 } else if (!strncmp(str, "hpiosize=", 9)) {
6632 pci_hotplug_io_size = memparse(str + 9, &str);
6633 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6634 pci_hotplug_mmio_size = memparse(str + 11, &str);
6635 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6636 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6637 } else if (!strncmp(str, "hpmemsize=", 10)) {
6638 pci_hotplug_mmio_size = memparse(str + 10, &str);
6639 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6640 } else if (!strncmp(str, "hpbussize=", 10)) {
6641 pci_hotplug_bus_size =
6642 simple_strtoul(str + 10, &str, 0);
6643 if (pci_hotplug_bus_size > 0xff)
6644 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6645 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6646 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6647 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6648 pcie_bus_config = PCIE_BUS_SAFE;
6649 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6650 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6651 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6652 pcie_bus_config = PCIE_BUS_PEER2PEER;
6653 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6654 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6655 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6656 disable_acs_redir_param = str + 18;
6657 } else {
6658 pr_err("PCI: Unknown option `%s'\n", str);
6659 }
6660 }
6661 str = k;
6662 }
6663 return 0;
6664}
6665early_param("pci", pci_setup);
6666
6667/*
6668 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6669 * in pci_setup(), above, to point to data in the __initdata section which
6670 * will be freed after the init sequence is complete. We can't allocate memory
6671 * in pci_setup() because some architectures do not have any memory allocation
6672 * service available during an early_param() call. So we allocate memory and
6673 * copy the variable here before the init section is freed.
6674 *
6675 */
6676static int __init pci_realloc_setup_params(void)
6677{
6678 resource_alignment_param = kstrdup(resource_alignment_param,
6679 GFP_KERNEL);
6680 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6681
6682 return 0;
6683}
6684pure_initcall(pci_realloc_setup_params);