Loading...
1/*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 * -----<snip>-----
9 * Copyright 2001 MontaVista Software Inc.
10 * Author: MontaVista Software, Inc.
11 * ahennessy@mvista.com
12 * Copyright (C) 2000-2001 Toshiba Corporation
13 * static const char *version =
14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 * -----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25#define DRV_VERSION "1.39"
26static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
27#define MODNAME "tc35815"
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/fcntl.h>
33#include <linux/interrupt.h>
34#include <linux/ioport.h>
35#include <linux/in.h>
36#include <linux/if_vlan.h>
37#include <linux/slab.h>
38#include <linux/string.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/netdevice.h>
42#include <linux/etherdevice.h>
43#include <linux/skbuff.h>
44#include <linux/delay.h>
45#include <linux/pci.h>
46#include <linux/phy.h>
47#include <linux/workqueue.h>
48#include <linux/platform_device.h>
49#include <linux/prefetch.h>
50#include <asm/io.h>
51#include <asm/byteorder.h>
52
53enum tc35815_chiptype {
54 TC35815CF = 0,
55 TC35815_NWU,
56 TC35815_TX4939,
57};
58
59/* indexed by tc35815_chiptype, above */
60static const struct {
61 const char *name;
62} chip_info[] = {
63 { "TOSHIBA TC35815CF 10/100BaseTX" },
64 { "TOSHIBA TC35815 with Wake on LAN" },
65 { "TOSHIBA TC35815/TX4939" },
66};
67
68static const struct pci_device_id tc35815_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 {0,}
73};
74MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76/* see MODULE_PARM_DESC */
77static struct tc35815_options {
78 int speed;
79 int duplex;
80} options;
81
82/*
83 * Registers
84 */
85struct tc35815_regs {
86 __u32 DMA_Ctl; /* 0x00 */
87 __u32 TxFrmPtr;
88 __u32 TxThrsh;
89 __u32 TxPollCtr;
90 __u32 BLFrmPtr;
91 __u32 RxFragSize;
92 __u32 Int_En;
93 __u32 FDA_Bas;
94 __u32 FDA_Lim; /* 0x20 */
95 __u32 Int_Src;
96 __u32 unused0[2];
97 __u32 PauseCnt;
98 __u32 RemPauCnt;
99 __u32 TxCtlFrmStat;
100 __u32 unused1;
101 __u32 MAC_Ctl; /* 0x40 */
102 __u32 CAM_Ctl;
103 __u32 Tx_Ctl;
104 __u32 Tx_Stat;
105 __u32 Rx_Ctl;
106 __u32 Rx_Stat;
107 __u32 MD_Data;
108 __u32 MD_CA;
109 __u32 CAM_Adr; /* 0x60 */
110 __u32 CAM_Data;
111 __u32 CAM_Ena;
112 __u32 PROM_Ctl;
113 __u32 PROM_Data;
114 __u32 Algn_Cnt;
115 __u32 CRC_Cnt;
116 __u32 Miss_Cnt;
117};
118
119/*
120 * Bit assignments
121 */
122/* DMA_Ctl bit assign ------------------------------------------------------- */
123#define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
124#define DMA_RxAlign_1 0x00400000
125#define DMA_RxAlign_2 0x00800000
126#define DMA_RxAlign_3 0x00c00000
127#define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
128#define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
129#define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
130#define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
131#define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
132#define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
133#define DMA_TestMode 0x00002000 /* 1:Test Mode */
134#define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
135#define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
136
137/* RxFragSize bit assign ---------------------------------------------------- */
138#define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
139#define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
140
141/* MAC_Ctl bit assign ------------------------------------------------------- */
142#define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
143#define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
144#define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
145#define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
146#define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
147#define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
148#define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
149#define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
150#define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
151#define MAC_Reset 0x00000004 /* 1:Software Reset */
152#define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
153#define MAC_HaltReq 0x00000001 /* 1:Halt request */
154
155/* PROM_Ctl bit assign ------------------------------------------------------ */
156#define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
157#define PROM_Read 0x00004000 /*10:Read operation */
158#define PROM_Write 0x00002000 /*01:Write operation */
159#define PROM_Erase 0x00006000 /*11:Erase operation */
160 /*00:Enable or Disable Writting, */
161 /* as specified in PROM_Addr. */
162#define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
163 /*00xxxx: disable */
164
165/* CAM_Ctl bit assign ------------------------------------------------------- */
166#define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
167#define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
168 /* accept other */
169#define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
170#define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
171#define CAM_StationAcc 0x00000001 /* 1:unicast accept */
172
173/* CAM_Ena bit assign ------------------------------------------------------- */
174#define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
175#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
176#define CAM_Ena_Bit(index) (1 << (index))
177#define CAM_ENTRY_DESTINATION 0
178#define CAM_ENTRY_SOURCE 1
179#define CAM_ENTRY_MACCTL 20
180
181/* Tx_Ctl bit assign -------------------------------------------------------- */
182#define Tx_En 0x00000001 /* 1:Transmit enable */
183#define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
184#define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
185#define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
186#define Tx_FBack 0x00000010 /* 1:Fast Back-off */
187#define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
188#define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
189#define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
190#define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
191#define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
192#define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
193#define Tx_EnComp 0x00004000 /* 1:Enable Completion */
194
195/* Tx_Stat bit assign ------------------------------------------------------- */
196#define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
197#define Tx_ExColl 0x00000010 /* Excessive Collision */
198#define Tx_TXDefer 0x00000020 /* Transmit Defered */
199#define Tx_Paused 0x00000040 /* Transmit Paused */
200#define Tx_IntTx 0x00000080 /* Interrupt on Tx */
201#define Tx_Under 0x00000100 /* Underrun */
202#define Tx_Defer 0x00000200 /* Deferral */
203#define Tx_NCarr 0x00000400 /* No Carrier */
204#define Tx_10Stat 0x00000800 /* 10Mbps Status */
205#define Tx_LateColl 0x00001000 /* Late Collision */
206#define Tx_TxPar 0x00002000 /* Tx Parity Error */
207#define Tx_Comp 0x00004000 /* Completion */
208#define Tx_Halted 0x00008000 /* Tx Halted */
209#define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
210
211/* Rx_Ctl bit assign -------------------------------------------------------- */
212#define Rx_EnGood 0x00004000 /* 1:Enable Good */
213#define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
214#define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
215#define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
216#define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
217#define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
218#define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
219#define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
220#define Rx_ShortEn 0x00000008 /* 1:Short Enable */
221#define Rx_LongEn 0x00000004 /* 1:Long Enable */
222#define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
223#define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
224
225/* Rx_Stat bit assign ------------------------------------------------------- */
226#define Rx_Halted 0x00008000 /* Rx Halted */
227#define Rx_Good 0x00004000 /* Rx Good */
228#define Rx_RxPar 0x00002000 /* Rx Parity Error */
229#define Rx_TypePkt 0x00001000 /* Rx Type Packet */
230#define Rx_LongErr 0x00000800 /* Rx Long Error */
231#define Rx_Over 0x00000400 /* Rx Overflow */
232#define Rx_CRCErr 0x00000200 /* Rx CRC Error */
233#define Rx_Align 0x00000100 /* Rx Alignment Error */
234#define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
235#define Rx_IntRx 0x00000040 /* Rx Interrupt */
236#define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
237#define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
238
239#define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
240
241/* Int_En bit assign -------------------------------------------------------- */
242#define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
243#define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
244#define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
245#define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
246#define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
247#define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
248#define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
249#define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
250#define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
251#define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
252#define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
253#define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
254 /* Exhausted Enable */
255
256/* Int_Src bit assign ------------------------------------------------------- */
257#define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
258#define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
259#define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
260#define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
261#define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
262#define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
263#define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
264#define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
265#define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
266#define Int_SWInt 0x00000020 /* 1:Software request & Clear */
267#define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
268#define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
269#define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
270#define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
271#define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
272
273/* MD_CA bit assign --------------------------------------------------------- */
274#define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
275#define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
276#define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
277
278
279/*
280 * Descriptors
281 */
282
283/* Frame descriptor */
284struct FDesc {
285 volatile __u32 FDNext;
286 volatile __u32 FDSystem;
287 volatile __u32 FDStat;
288 volatile __u32 FDCtl;
289};
290
291/* Buffer descriptor */
292struct BDesc {
293 volatile __u32 BuffData;
294 volatile __u32 BDCtl;
295};
296
297#define FD_ALIGN 16
298
299/* Frame Descriptor bit assign ---------------------------------------------- */
300#define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
301#define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
302#define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
303#define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
304#define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
305#define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
306#define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
307#define FD_FrmOpt_Packing 0x04000000 /* Rx only */
308#define FD_CownsFD 0x80000000 /* FD Controller owner bit */
309#define FD_Next_EOL 0x00000001 /* FD EOL indicator */
310#define FD_BDCnt_SHIFT 16
311
312/* Buffer Descriptor bit assign --------------------------------------------- */
313#define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
314#define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
315#define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
316#define BD_CownsBD 0x80000000 /* BD Controller owner bit */
317#define BD_RxBDID_SHIFT 16
318#define BD_RxBDSeqN_SHIFT 24
319
320
321/* Some useful constants. */
322
323#define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 Tx_En) /* maybe 0x7b01 */
326/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327#define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329#define INT_EN_CMD (Int_NRAbtEn | \
330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
332 Int_STargAbtEn | \
333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
334#define DMA_CTL_CMD DMA_BURST_SIZE
335#define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
336
337/* Tuning parameters */
338#define DMA_BURST_SIZE 32
339#define TX_THRESHOLD 1024
340/* used threshold with packet max byte for low pci transfer ability.*/
341#define TX_THRESHOLD_MAX 1536
342/* setting threshold max value when overrun error occurred this count. */
343#define TX_THRESHOLD_KEEP_LIMIT 10
344
345/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346#define FD_PAGE_NUM 4
347#define RX_BUF_NUM 128 /* < 256 */
348#define RX_FD_NUM 256 /* >= 32 */
349#define TX_FD_NUM 128
350#if RX_CTL_CMD & Rx_LongEn
351#define RX_BUF_SIZE PAGE_SIZE
352#elif RX_CTL_CMD & Rx_StripCRC
353#define RX_BUF_SIZE \
354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355#else
356#define RX_BUF_SIZE \
357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358#endif
359#define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
360#define NAPI_WEIGHT 16
361
362struct TxFD {
363 struct FDesc fd;
364 struct BDesc bd;
365 struct BDesc unused;
366};
367
368struct RxFD {
369 struct FDesc fd;
370 struct BDesc bd[]; /* variable length */
371};
372
373struct FrFD {
374 struct FDesc fd;
375 struct BDesc bd[RX_BUF_NUM];
376};
377
378
379#define tc_readl(addr) ioread32(addr)
380#define tc_writel(d, addr) iowrite32(d, addr)
381
382#define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
383
384/* Information that need to be kept for each controller. */
385struct tc35815_local {
386 struct pci_dev *pci_dev;
387
388 struct net_device *dev;
389 struct napi_struct napi;
390
391 /* statistics */
392 struct {
393 int max_tx_qlen;
394 int tx_ints;
395 int rx_ints;
396 int tx_underrun;
397 } lstats;
398
399 /* Tx control lock. This protects the transmit buffer ring
400 * state along with the "tx full" state of the driver. This
401 * means all netif_queue flow control actions are protected
402 * by this lock as well.
403 */
404 spinlock_t lock;
405 spinlock_t rx_lock;
406
407 struct mii_bus *mii_bus;
408 int duplex;
409 int speed;
410 int link;
411 struct work_struct restart_work;
412
413 /*
414 * Transmitting: Batch Mode.
415 * 1 BD in 1 TxFD.
416 * Receiving: Non-Packing Mode.
417 * 1 circular FD for Free Buffer List.
418 * RX_BUF_NUM BD in Free Buffer FD.
419 * One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 */
421 void *fd_buf; /* for TxFD, RxFD, FrFD */
422 dma_addr_t fd_buf_dma;
423 struct TxFD *tfd_base;
424 unsigned int tfd_start;
425 unsigned int tfd_end;
426 struct RxFD *rfd_base;
427 struct RxFD *rfd_limit;
428 struct RxFD *rfd_cur;
429 struct FrFD *fbl_ptr;
430 unsigned int fbl_count;
431 struct {
432 struct sk_buff *skb;
433 dma_addr_t skb_dma;
434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 u32 msg_enable;
436 enum tc35815_chiptype chiptype;
437};
438
439static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440{
441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442}
443#ifdef DEBUG
444static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445{
446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447}
448#endif
449static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 struct pci_dev *hwdev,
451 dma_addr_t *dma_handle)
452{
453 struct sk_buff *skb;
454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455 if (!skb)
456 return NULL;
457 *dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
458 DMA_FROM_DEVICE);
459 if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
460 dev_kfree_skb_any(skb);
461 return NULL;
462 }
463 skb_reserve(skb, 2); /* make IP header 4byte aligned */
464 return skb;
465}
466
467static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468{
469 dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
470 DMA_FROM_DEVICE);
471 dev_kfree_skb_any(skb);
472}
473
474/* Index to functions, as function prototypes. */
475
476static int tc35815_open(struct net_device *dev);
477static netdev_tx_t tc35815_send_packet(struct sk_buff *skb,
478 struct net_device *dev);
479static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
480static int tc35815_rx(struct net_device *dev, int limit);
481static int tc35815_poll(struct napi_struct *napi, int budget);
482static void tc35815_txdone(struct net_device *dev);
483static int tc35815_close(struct net_device *dev);
484static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
485static void tc35815_set_multicast_list(struct net_device *dev);
486static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
487#ifdef CONFIG_NET_POLL_CONTROLLER
488static void tc35815_poll_controller(struct net_device *dev);
489#endif
490static const struct ethtool_ops tc35815_ethtool_ops;
491
492/* Example routines you must write ;->. */
493static void tc35815_chip_reset(struct net_device *dev);
494static void tc35815_chip_init(struct net_device *dev);
495
496#ifdef DEBUG
497static void panic_queues(struct net_device *dev);
498#endif
499
500static void tc35815_restart_work(struct work_struct *work);
501
502static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503{
504 struct net_device *dev = bus->priv;
505 struct tc35815_regs __iomem *tr =
506 (struct tc35815_regs __iomem *)dev->base_addr;
507 unsigned long timeout = jiffies + HZ;
508
509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 udelay(12); /* it takes 32 x 400ns at least */
511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 if (time_after(jiffies, timeout))
513 return -EIO;
514 cpu_relax();
515 }
516 return tc_readl(&tr->MD_Data) & 0xffff;
517}
518
519static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520{
521 struct net_device *dev = bus->priv;
522 struct tc35815_regs __iomem *tr =
523 (struct tc35815_regs __iomem *)dev->base_addr;
524 unsigned long timeout = jiffies + HZ;
525
526 tc_writel(val, &tr->MD_Data);
527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 &tr->MD_CA);
529 udelay(12); /* it takes 32 x 400ns at least */
530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 if (time_after(jiffies, timeout))
532 return -EIO;
533 cpu_relax();
534 }
535 return 0;
536}
537
538static void tc_handle_link_change(struct net_device *dev)
539{
540 struct tc35815_local *lp = netdev_priv(dev);
541 struct phy_device *phydev = dev->phydev;
542 unsigned long flags;
543 int status_change = 0;
544
545 spin_lock_irqsave(&lp->lock, flags);
546 if (phydev->link &&
547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 struct tc35815_regs __iomem *tr =
549 (struct tc35815_regs __iomem *)dev->base_addr;
550 u32 reg;
551
552 reg = tc_readl(&tr->MAC_Ctl);
553 reg |= MAC_HaltReq;
554 tc_writel(reg, &tr->MAC_Ctl);
555 if (phydev->duplex == DUPLEX_FULL)
556 reg |= MAC_FullDup;
557 else
558 reg &= ~MAC_FullDup;
559 tc_writel(reg, &tr->MAC_Ctl);
560 reg &= ~MAC_HaltReq;
561 tc_writel(reg, &tr->MAC_Ctl);
562
563 /*
564 * TX4939 PCFG.SPEEDn bit will be changed on
565 * NETDEV_CHANGE event.
566 */
567 /*
568 * WORKAROUND: enable LostCrS only if half duplex
569 * operation.
570 * (TX4939 does not have EnLCarr)
571 */
572 if (phydev->duplex == DUPLEX_HALF &&
573 lp->chiptype != TC35815_TX4939)
574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 &tr->Tx_Ctl);
576
577 lp->speed = phydev->speed;
578 lp->duplex = phydev->duplex;
579 status_change = 1;
580 }
581
582 if (phydev->link != lp->link) {
583 if (phydev->link) {
584 /* delayed promiscuous enabling */
585 if (dev->flags & IFF_PROMISC)
586 tc35815_set_multicast_list(dev);
587 } else {
588 lp->speed = 0;
589 lp->duplex = -1;
590 }
591 lp->link = phydev->link;
592
593 status_change = 1;
594 }
595 spin_unlock_irqrestore(&lp->lock, flags);
596
597 if (status_change && netif_msg_link(lp)) {
598 phy_print_status(phydev);
599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 dev->name,
601 phy_read(phydev, MII_BMCR),
602 phy_read(phydev, MII_BMSR),
603 phy_read(phydev, MII_LPA));
604 }
605}
606
607static int tc_mii_probe(struct net_device *dev)
608{
609 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
610 struct tc35815_local *lp = netdev_priv(dev);
611 struct phy_device *phydev;
612
613 phydev = phy_find_first(lp->mii_bus);
614 if (!phydev) {
615 printk(KERN_ERR "%s: no PHY found\n", dev->name);
616 return -ENODEV;
617 }
618
619 /* attach the mac to the phy */
620 phydev = phy_connect(dev, phydev_name(phydev),
621 &tc_handle_link_change,
622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623 if (IS_ERR(phydev)) {
624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625 return PTR_ERR(phydev);
626 }
627
628 phy_attached_info(phydev);
629
630 /* mask with MAC supported features */
631 phy_set_max_speed(phydev, SPEED_100);
632 if (options.speed == 10) {
633 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
634 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
635 } else if (options.speed == 100) {
636 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
637 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
638 }
639 if (options.duplex == 1) {
640 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
641 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
642 } else if (options.duplex == 2) {
643 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
644 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
645 }
646 linkmode_andnot(phydev->supported, phydev->supported, mask);
647 linkmode_copy(phydev->advertising, phydev->supported);
648
649 lp->link = 0;
650 lp->speed = 0;
651 lp->duplex = -1;
652
653 return 0;
654}
655
656static int tc_mii_init(struct net_device *dev)
657{
658 struct tc35815_local *lp = netdev_priv(dev);
659 int err;
660
661 lp->mii_bus = mdiobus_alloc();
662 if (lp->mii_bus == NULL) {
663 err = -ENOMEM;
664 goto err_out;
665 }
666
667 lp->mii_bus->name = "tc35815_mii_bus";
668 lp->mii_bus->read = tc_mdio_read;
669 lp->mii_bus->write = tc_mdio_write;
670 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", pci_dev_id(lp->pci_dev));
671 lp->mii_bus->priv = dev;
672 lp->mii_bus->parent = &lp->pci_dev->dev;
673 err = mdiobus_register(lp->mii_bus);
674 if (err)
675 goto err_out_free_mii_bus;
676 err = tc_mii_probe(dev);
677 if (err)
678 goto err_out_unregister_bus;
679 return 0;
680
681err_out_unregister_bus:
682 mdiobus_unregister(lp->mii_bus);
683err_out_free_mii_bus:
684 mdiobus_free(lp->mii_bus);
685err_out:
686 return err;
687}
688
689#ifdef CONFIG_CPU_TX49XX
690/*
691 * Find a platform_device providing a MAC address. The platform code
692 * should provide a "tc35815-mac" device with a MAC address in its
693 * platform_data.
694 */
695static int tc35815_mac_match(struct device *dev, const void *data)
696{
697 struct platform_device *plat_dev = to_platform_device(dev);
698 const struct pci_dev *pci_dev = data;
699 unsigned int id = pci_dev->irq;
700 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
701}
702
703static int tc35815_read_plat_dev_addr(struct net_device *dev)
704{
705 struct tc35815_local *lp = netdev_priv(dev);
706 struct device *pd = bus_find_device(&platform_bus_type, NULL,
707 lp->pci_dev, tc35815_mac_match);
708 if (pd) {
709 if (pd->platform_data)
710 eth_hw_addr_set(dev, pd->platform_data);
711 put_device(pd);
712 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
713 }
714 return -ENODEV;
715}
716#else
717static int tc35815_read_plat_dev_addr(struct net_device *dev)
718{
719 return -ENODEV;
720}
721#endif
722
723static int tc35815_init_dev_addr(struct net_device *dev)
724{
725 struct tc35815_regs __iomem *tr =
726 (struct tc35815_regs __iomem *)dev->base_addr;
727 u8 addr[ETH_ALEN];
728 int i;
729
730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731 ;
732 for (i = 0; i < 6; i += 2) {
733 unsigned short data;
734 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
735 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
736 ;
737 data = tc_readl(&tr->PROM_Data);
738 addr[i] = data & 0xff;
739 addr[i+1] = data >> 8;
740 }
741 eth_hw_addr_set(dev, addr);
742 if (!is_valid_ether_addr(dev->dev_addr))
743 return tc35815_read_plat_dev_addr(dev);
744 return 0;
745}
746
747static const struct net_device_ops tc35815_netdev_ops = {
748 .ndo_open = tc35815_open,
749 .ndo_stop = tc35815_close,
750 .ndo_start_xmit = tc35815_send_packet,
751 .ndo_get_stats = tc35815_get_stats,
752 .ndo_set_rx_mode = tc35815_set_multicast_list,
753 .ndo_tx_timeout = tc35815_tx_timeout,
754 .ndo_eth_ioctl = phy_do_ioctl_running,
755 .ndo_validate_addr = eth_validate_addr,
756 .ndo_set_mac_address = eth_mac_addr,
757#ifdef CONFIG_NET_POLL_CONTROLLER
758 .ndo_poll_controller = tc35815_poll_controller,
759#endif
760};
761
762static int tc35815_init_one(struct pci_dev *pdev,
763 const struct pci_device_id *ent)
764{
765 void __iomem *ioaddr = NULL;
766 struct net_device *dev;
767 struct tc35815_local *lp;
768 int rc;
769
770 static int printed_version;
771 if (!printed_version++) {
772 printk(version);
773 dev_printk(KERN_DEBUG, &pdev->dev,
774 "speed:%d duplex:%d\n",
775 options.speed, options.duplex);
776 }
777
778 if (!pdev->irq) {
779 dev_warn(&pdev->dev, "no IRQ assigned.\n");
780 return -ENODEV;
781 }
782
783 /* dev zeroed in alloc_etherdev */
784 dev = alloc_etherdev(sizeof(*lp));
785 if (dev == NULL)
786 return -ENOMEM;
787
788 SET_NETDEV_DEV(dev, &pdev->dev);
789 lp = netdev_priv(dev);
790 lp->dev = dev;
791
792 /* enable device (incl. PCI PM wakeup), and bus-mastering */
793 rc = pcim_enable_device(pdev);
794 if (rc)
795 goto err_out;
796 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
797 if (rc)
798 goto err_out;
799 pci_set_master(pdev);
800 ioaddr = pcim_iomap_table(pdev)[1];
801
802 /* Initialize the device structure. */
803 dev->netdev_ops = &tc35815_netdev_ops;
804 dev->ethtool_ops = &tc35815_ethtool_ops;
805 dev->watchdog_timeo = TC35815_TX_TIMEOUT;
806 netif_napi_add_weight(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
807
808 dev->irq = pdev->irq;
809 dev->base_addr = (unsigned long)ioaddr;
810
811 INIT_WORK(&lp->restart_work, tc35815_restart_work);
812 spin_lock_init(&lp->lock);
813 spin_lock_init(&lp->rx_lock);
814 lp->pci_dev = pdev;
815 lp->chiptype = ent->driver_data;
816
817 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
818 pci_set_drvdata(pdev, dev);
819
820 /* Soft reset the chip. */
821 tc35815_chip_reset(dev);
822
823 /* Retrieve the ethernet address. */
824 if (tc35815_init_dev_addr(dev)) {
825 dev_warn(&pdev->dev, "not valid ether addr\n");
826 eth_hw_addr_random(dev);
827 }
828
829 rc = register_netdev(dev);
830 if (rc)
831 goto err_out;
832
833 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
834 dev->name,
835 chip_info[ent->driver_data].name,
836 dev->base_addr,
837 dev->dev_addr,
838 dev->irq);
839
840 rc = tc_mii_init(dev);
841 if (rc)
842 goto err_out_unregister;
843
844 return 0;
845
846err_out_unregister:
847 unregister_netdev(dev);
848err_out:
849 free_netdev(dev);
850 return rc;
851}
852
853
854static void tc35815_remove_one(struct pci_dev *pdev)
855{
856 struct net_device *dev = pci_get_drvdata(pdev);
857 struct tc35815_local *lp = netdev_priv(dev);
858
859 phy_disconnect(dev->phydev);
860 mdiobus_unregister(lp->mii_bus);
861 mdiobus_free(lp->mii_bus);
862 unregister_netdev(dev);
863 free_netdev(dev);
864}
865
866static int
867tc35815_init_queues(struct net_device *dev)
868{
869 struct tc35815_local *lp = netdev_priv(dev);
870 int i;
871 unsigned long fd_addr;
872
873 if (!lp->fd_buf) {
874 BUG_ON(sizeof(struct FDesc) +
875 sizeof(struct BDesc) * RX_BUF_NUM +
876 sizeof(struct FDesc) * RX_FD_NUM +
877 sizeof(struct TxFD) * TX_FD_NUM >
878 PAGE_SIZE * FD_PAGE_NUM);
879
880 lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
881 PAGE_SIZE * FD_PAGE_NUM,
882 &lp->fd_buf_dma, GFP_ATOMIC);
883 if (!lp->fd_buf)
884 return -ENOMEM;
885 for (i = 0; i < RX_BUF_NUM; i++) {
886 lp->rx_skbs[i].skb =
887 alloc_rxbuf_skb(dev, lp->pci_dev,
888 &lp->rx_skbs[i].skb_dma);
889 if (!lp->rx_skbs[i].skb) {
890 while (--i >= 0) {
891 free_rxbuf_skb(lp->pci_dev,
892 lp->rx_skbs[i].skb,
893 lp->rx_skbs[i].skb_dma);
894 lp->rx_skbs[i].skb = NULL;
895 }
896 dma_free_coherent(&lp->pci_dev->dev,
897 PAGE_SIZE * FD_PAGE_NUM,
898 lp->fd_buf, lp->fd_buf_dma);
899 lp->fd_buf = NULL;
900 return -ENOMEM;
901 }
902 }
903 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
904 dev->name, lp->fd_buf);
905 printk("\n");
906 } else {
907 for (i = 0; i < FD_PAGE_NUM; i++)
908 clear_page((void *)((unsigned long)lp->fd_buf +
909 i * PAGE_SIZE));
910 }
911 fd_addr = (unsigned long)lp->fd_buf;
912
913 /* Free Descriptors (for Receive) */
914 lp->rfd_base = (struct RxFD *)fd_addr;
915 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
916 for (i = 0; i < RX_FD_NUM; i++)
917 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
918 lp->rfd_cur = lp->rfd_base;
919 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
920
921 /* Transmit Descriptors */
922 lp->tfd_base = (struct TxFD *)fd_addr;
923 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
924 for (i = 0; i < TX_FD_NUM; i++) {
925 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
926 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
927 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
928 }
929 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
930 lp->tfd_start = 0;
931 lp->tfd_end = 0;
932
933 /* Buffer List (for Receive) */
934 lp->fbl_ptr = (struct FrFD *)fd_addr;
935 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
936 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
937 /*
938 * move all allocated skbs to head of rx_skbs[] array.
939 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
940 * tc35815_rx() had failed.
941 */
942 lp->fbl_count = 0;
943 for (i = 0; i < RX_BUF_NUM; i++) {
944 if (lp->rx_skbs[i].skb) {
945 if (i != lp->fbl_count) {
946 lp->rx_skbs[lp->fbl_count].skb =
947 lp->rx_skbs[i].skb;
948 lp->rx_skbs[lp->fbl_count].skb_dma =
949 lp->rx_skbs[i].skb_dma;
950 }
951 lp->fbl_count++;
952 }
953 }
954 for (i = 0; i < RX_BUF_NUM; i++) {
955 if (i >= lp->fbl_count) {
956 lp->fbl_ptr->bd[i].BuffData = 0;
957 lp->fbl_ptr->bd[i].BDCtl = 0;
958 continue;
959 }
960 lp->fbl_ptr->bd[i].BuffData =
961 cpu_to_le32(lp->rx_skbs[i].skb_dma);
962 /* BDID is index of FrFD.bd[] */
963 lp->fbl_ptr->bd[i].BDCtl =
964 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
965 RX_BUF_SIZE);
966 }
967
968 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
969 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
970 return 0;
971}
972
973static void
974tc35815_clear_queues(struct net_device *dev)
975{
976 struct tc35815_local *lp = netdev_priv(dev);
977 int i;
978
979 for (i = 0; i < TX_FD_NUM; i++) {
980 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
981 struct sk_buff *skb =
982 fdsystem != 0xffffffff ?
983 lp->tx_skbs[fdsystem].skb : NULL;
984#ifdef DEBUG
985 if (lp->tx_skbs[i].skb != skb) {
986 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
987 panic_queues(dev);
988 }
989#else
990 BUG_ON(lp->tx_skbs[i].skb != skb);
991#endif
992 if (skb) {
993 dma_unmap_single(&lp->pci_dev->dev,
994 lp->tx_skbs[i].skb_dma, skb->len,
995 DMA_TO_DEVICE);
996 lp->tx_skbs[i].skb = NULL;
997 lp->tx_skbs[i].skb_dma = 0;
998 dev_kfree_skb_any(skb);
999 }
1000 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1001 }
1002
1003 tc35815_init_queues(dev);
1004}
1005
1006static void
1007tc35815_free_queues(struct net_device *dev)
1008{
1009 struct tc35815_local *lp = netdev_priv(dev);
1010 int i;
1011
1012 if (lp->tfd_base) {
1013 for (i = 0; i < TX_FD_NUM; i++) {
1014 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1015 struct sk_buff *skb =
1016 fdsystem != 0xffffffff ?
1017 lp->tx_skbs[fdsystem].skb : NULL;
1018#ifdef DEBUG
1019 if (lp->tx_skbs[i].skb != skb) {
1020 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1021 panic_queues(dev);
1022 }
1023#else
1024 BUG_ON(lp->tx_skbs[i].skb != skb);
1025#endif
1026 if (skb) {
1027 dma_unmap_single(&lp->pci_dev->dev,
1028 lp->tx_skbs[i].skb_dma,
1029 skb->len, DMA_TO_DEVICE);
1030 dev_kfree_skb(skb);
1031 lp->tx_skbs[i].skb = NULL;
1032 lp->tx_skbs[i].skb_dma = 0;
1033 }
1034 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1035 }
1036 }
1037
1038 lp->rfd_base = NULL;
1039 lp->rfd_limit = NULL;
1040 lp->rfd_cur = NULL;
1041 lp->fbl_ptr = NULL;
1042
1043 for (i = 0; i < RX_BUF_NUM; i++) {
1044 if (lp->rx_skbs[i].skb) {
1045 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1046 lp->rx_skbs[i].skb_dma);
1047 lp->rx_skbs[i].skb = NULL;
1048 }
1049 }
1050 if (lp->fd_buf) {
1051 dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
1052 lp->fd_buf, lp->fd_buf_dma);
1053 lp->fd_buf = NULL;
1054 }
1055}
1056
1057static void
1058dump_txfd(struct TxFD *fd)
1059{
1060 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1061 le32_to_cpu(fd->fd.FDNext),
1062 le32_to_cpu(fd->fd.FDSystem),
1063 le32_to_cpu(fd->fd.FDStat),
1064 le32_to_cpu(fd->fd.FDCtl));
1065 printk("BD: ");
1066 printk(" %08x %08x",
1067 le32_to_cpu(fd->bd.BuffData),
1068 le32_to_cpu(fd->bd.BDCtl));
1069 printk("\n");
1070}
1071
1072static int
1073dump_rxfd(struct RxFD *fd)
1074{
1075 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1076 if (bd_count > 8)
1077 bd_count = 8;
1078 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1079 le32_to_cpu(fd->fd.FDNext),
1080 le32_to_cpu(fd->fd.FDSystem),
1081 le32_to_cpu(fd->fd.FDStat),
1082 le32_to_cpu(fd->fd.FDCtl));
1083 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1084 return 0;
1085 printk("BD: ");
1086 for (i = 0; i < bd_count; i++)
1087 printk(" %08x %08x",
1088 le32_to_cpu(fd->bd[i].BuffData),
1089 le32_to_cpu(fd->bd[i].BDCtl));
1090 printk("\n");
1091 return bd_count;
1092}
1093
1094#ifdef DEBUG
1095static void
1096dump_frfd(struct FrFD *fd)
1097{
1098 int i;
1099 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1100 le32_to_cpu(fd->fd.FDNext),
1101 le32_to_cpu(fd->fd.FDSystem),
1102 le32_to_cpu(fd->fd.FDStat),
1103 le32_to_cpu(fd->fd.FDCtl));
1104 printk("BD: ");
1105 for (i = 0; i < RX_BUF_NUM; i++)
1106 printk(" %08x %08x",
1107 le32_to_cpu(fd->bd[i].BuffData),
1108 le32_to_cpu(fd->bd[i].BDCtl));
1109 printk("\n");
1110}
1111
1112static void
1113panic_queues(struct net_device *dev)
1114{
1115 struct tc35815_local *lp = netdev_priv(dev);
1116 int i;
1117
1118 printk("TxFD base %p, start %u, end %u\n",
1119 lp->tfd_base, lp->tfd_start, lp->tfd_end);
1120 printk("RxFD base %p limit %p cur %p\n",
1121 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1122 printk("FrFD %p\n", lp->fbl_ptr);
1123 for (i = 0; i < TX_FD_NUM; i++)
1124 dump_txfd(&lp->tfd_base[i]);
1125 for (i = 0; i < RX_FD_NUM; i++) {
1126 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1127 i += (bd_count + 1) / 2; /* skip BDs */
1128 }
1129 dump_frfd(lp->fbl_ptr);
1130 panic("%s: Illegal queue state.", dev->name);
1131}
1132#endif
1133
1134static void print_eth(const u8 *add)
1135{
1136 printk(KERN_DEBUG "print_eth(%p)\n", add);
1137 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1138 add + 6, add, add[12], add[13]);
1139}
1140
1141static int tc35815_tx_full(struct net_device *dev)
1142{
1143 struct tc35815_local *lp = netdev_priv(dev);
1144 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1145}
1146
1147static void tc35815_restart(struct net_device *dev)
1148{
1149 struct tc35815_local *lp = netdev_priv(dev);
1150 int ret;
1151
1152 if (dev->phydev) {
1153 ret = phy_init_hw(dev->phydev);
1154 if (ret)
1155 printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1156 }
1157
1158 spin_lock_bh(&lp->rx_lock);
1159 spin_lock_irq(&lp->lock);
1160 tc35815_chip_reset(dev);
1161 tc35815_clear_queues(dev);
1162 tc35815_chip_init(dev);
1163 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1164 tc35815_set_multicast_list(dev);
1165 spin_unlock_irq(&lp->lock);
1166 spin_unlock_bh(&lp->rx_lock);
1167
1168 netif_wake_queue(dev);
1169}
1170
1171static void tc35815_restart_work(struct work_struct *work)
1172{
1173 struct tc35815_local *lp =
1174 container_of(work, struct tc35815_local, restart_work);
1175 struct net_device *dev = lp->dev;
1176
1177 tc35815_restart(dev);
1178}
1179
1180static void tc35815_schedule_restart(struct net_device *dev)
1181{
1182 struct tc35815_local *lp = netdev_priv(dev);
1183 struct tc35815_regs __iomem *tr =
1184 (struct tc35815_regs __iomem *)dev->base_addr;
1185 unsigned long flags;
1186
1187 /* disable interrupts */
1188 spin_lock_irqsave(&lp->lock, flags);
1189 tc_writel(0, &tr->Int_En);
1190 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1191 schedule_work(&lp->restart_work);
1192 spin_unlock_irqrestore(&lp->lock, flags);
1193}
1194
1195static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1196{
1197 struct tc35815_regs __iomem *tr =
1198 (struct tc35815_regs __iomem *)dev->base_addr;
1199
1200 printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1201 dev->name, tc_readl(&tr->Tx_Stat));
1202
1203 /* Try to restart the adaptor. */
1204 tc35815_schedule_restart(dev);
1205 dev->stats.tx_errors++;
1206}
1207
1208/*
1209 * Open/initialize the controller. This is called (in the current kernel)
1210 * sometime after booting when the 'ifconfig' program is run.
1211 *
1212 * This routine should set everything up anew at each open, even
1213 * registers that "should" only need to be set once at boot, so that
1214 * there is non-reboot way to recover if something goes wrong.
1215 */
1216static int
1217tc35815_open(struct net_device *dev)
1218{
1219 struct tc35815_local *lp = netdev_priv(dev);
1220
1221 /*
1222 * This is used if the interrupt line can turned off (shared).
1223 * See 3c503.c for an example of selecting the IRQ at config-time.
1224 */
1225 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1226 dev->name, dev))
1227 return -EAGAIN;
1228
1229 tc35815_chip_reset(dev);
1230
1231 if (tc35815_init_queues(dev) != 0) {
1232 free_irq(dev->irq, dev);
1233 return -EAGAIN;
1234 }
1235
1236 napi_enable(&lp->napi);
1237
1238 /* Reset the hardware here. Don't forget to set the station address. */
1239 spin_lock_irq(&lp->lock);
1240 tc35815_chip_init(dev);
1241 spin_unlock_irq(&lp->lock);
1242
1243 netif_carrier_off(dev);
1244 /* schedule a link state check */
1245 phy_start(dev->phydev);
1246
1247 /* We are now ready to accept transmit requeusts from
1248 * the queueing layer of the networking.
1249 */
1250 netif_start_queue(dev);
1251
1252 return 0;
1253}
1254
1255/* This will only be invoked if your driver is _not_ in XOFF state.
1256 * What this means is that you need not check it, and that this
1257 * invariant will hold if you make sure that the netif_*_queue()
1258 * calls are done at the proper times.
1259 */
1260static netdev_tx_t
1261tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1262{
1263 struct tc35815_local *lp = netdev_priv(dev);
1264 struct TxFD *txfd;
1265 unsigned long flags;
1266
1267 /* If some error occurs while trying to transmit this
1268 * packet, you should return '1' from this function.
1269 * In such a case you _may not_ do anything to the
1270 * SKB, it is still owned by the network queueing
1271 * layer when an error is returned. This means you
1272 * may not modify any SKB fields, you may not free
1273 * the SKB, etc.
1274 */
1275
1276 /* This is the most common case for modern hardware.
1277 * The spinlock protects this code from the TX complete
1278 * hardware interrupt handler. Queue flow control is
1279 * thus managed under this lock as well.
1280 */
1281 spin_lock_irqsave(&lp->lock, flags);
1282
1283 /* failsafe... (handle txdone now if half of FDs are used) */
1284 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1285 TX_FD_NUM / 2)
1286 tc35815_txdone(dev);
1287
1288 if (netif_msg_pktdata(lp))
1289 print_eth(skb->data);
1290#ifdef DEBUG
1291 if (lp->tx_skbs[lp->tfd_start].skb) {
1292 printk("%s: tx_skbs conflict.\n", dev->name);
1293 panic_queues(dev);
1294 }
1295#else
1296 BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1297#endif
1298 lp->tx_skbs[lp->tfd_start].skb = skb;
1299 lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
1300 skb->data,
1301 skb->len,
1302 DMA_TO_DEVICE);
1303
1304 /*add to ring */
1305 txfd = &lp->tfd_base[lp->tfd_start];
1306 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1307 txfd->bd.BDCtl = cpu_to_le32(skb->len);
1308 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1309 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1310
1311 if (lp->tfd_start == lp->tfd_end) {
1312 struct tc35815_regs __iomem *tr =
1313 (struct tc35815_regs __iomem *)dev->base_addr;
1314 /* Start DMA Transmitter. */
1315 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1316 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1317 if (netif_msg_tx_queued(lp)) {
1318 printk("%s: starting TxFD.\n", dev->name);
1319 dump_txfd(txfd);
1320 }
1321 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1322 } else {
1323 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1324 if (netif_msg_tx_queued(lp)) {
1325 printk("%s: queueing TxFD.\n", dev->name);
1326 dump_txfd(txfd);
1327 }
1328 }
1329 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1330
1331 /* If we just used up the very last entry in the
1332 * TX ring on this device, tell the queueing
1333 * layer to send no more.
1334 */
1335 if (tc35815_tx_full(dev)) {
1336 if (netif_msg_tx_queued(lp))
1337 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1338 netif_stop_queue(dev);
1339 }
1340
1341 /* When the TX completion hw interrupt arrives, this
1342 * is when the transmit statistics are updated.
1343 */
1344
1345 spin_unlock_irqrestore(&lp->lock, flags);
1346 return NETDEV_TX_OK;
1347}
1348
1349#define FATAL_ERROR_INT \
1350 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1351static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1352{
1353 static int count;
1354 printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1355 dev->name, status);
1356 if (status & Int_IntPCI)
1357 printk(" IntPCI");
1358 if (status & Int_DmParErr)
1359 printk(" DmParErr");
1360 if (status & Int_IntNRAbt)
1361 printk(" IntNRAbt");
1362 printk("\n");
1363 if (count++ > 100)
1364 panic("%s: Too many fatal errors.", dev->name);
1365 printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1366 /* Try to restart the adaptor. */
1367 tc35815_schedule_restart(dev);
1368}
1369
1370static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1371{
1372 struct tc35815_local *lp = netdev_priv(dev);
1373 int ret = -1;
1374
1375 /* Fatal errors... */
1376 if (status & FATAL_ERROR_INT) {
1377 tc35815_fatal_error_interrupt(dev, status);
1378 return 0;
1379 }
1380 /* recoverable errors */
1381 if (status & Int_IntFDAEx) {
1382 if (netif_msg_rx_err(lp))
1383 dev_warn(&dev->dev,
1384 "Free Descriptor Area Exhausted (%#x).\n",
1385 status);
1386 dev->stats.rx_dropped++;
1387 ret = 0;
1388 }
1389 if (status & Int_IntBLEx) {
1390 if (netif_msg_rx_err(lp))
1391 dev_warn(&dev->dev,
1392 "Buffer List Exhausted (%#x).\n",
1393 status);
1394 dev->stats.rx_dropped++;
1395 ret = 0;
1396 }
1397 if (status & Int_IntExBD) {
1398 if (netif_msg_rx_err(lp))
1399 dev_warn(&dev->dev,
1400 "Excessive Buffer Descriptors (%#x).\n",
1401 status);
1402 dev->stats.rx_length_errors++;
1403 ret = 0;
1404 }
1405
1406 /* normal notification */
1407 if (status & Int_IntMacRx) {
1408 /* Got a packet(s). */
1409 ret = tc35815_rx(dev, limit);
1410 lp->lstats.rx_ints++;
1411 }
1412 if (status & Int_IntMacTx) {
1413 /* Transmit complete. */
1414 lp->lstats.tx_ints++;
1415 spin_lock_irq(&lp->lock);
1416 tc35815_txdone(dev);
1417 spin_unlock_irq(&lp->lock);
1418 if (ret < 0)
1419 ret = 0;
1420 }
1421 return ret;
1422}
1423
1424/*
1425 * The typical workload of the driver:
1426 * Handle the network interface interrupts.
1427 */
1428static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1429{
1430 struct net_device *dev = dev_id;
1431 struct tc35815_local *lp = netdev_priv(dev);
1432 struct tc35815_regs __iomem *tr =
1433 (struct tc35815_regs __iomem *)dev->base_addr;
1434 u32 dmactl = tc_readl(&tr->DMA_Ctl);
1435
1436 if (!(dmactl & DMA_IntMask)) {
1437 if (napi_schedule_prep(&lp->napi)) {
1438 /* disable interrupts */
1439 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1440 __napi_schedule(&lp->napi);
1441 }
1442 (void)tc_readl(&tr->Int_Src); /* flush */
1443 return IRQ_HANDLED;
1444 }
1445 return IRQ_NONE;
1446}
1447
1448#ifdef CONFIG_NET_POLL_CONTROLLER
1449static void tc35815_poll_controller(struct net_device *dev)
1450{
1451 disable_irq(dev->irq);
1452 tc35815_interrupt(dev->irq, dev);
1453 enable_irq(dev->irq);
1454}
1455#endif
1456
1457/* We have a good packet(s), get it/them out of the buffers. */
1458static int
1459tc35815_rx(struct net_device *dev, int limit)
1460{
1461 struct tc35815_local *lp = netdev_priv(dev);
1462 unsigned int fdctl;
1463 int i;
1464 int received = 0;
1465
1466 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1467 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1468 int pkt_len = fdctl & FD_FDLength_MASK;
1469 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1470#ifdef DEBUG
1471 struct RxFD *next_rfd;
1472#endif
1473#if (RX_CTL_CMD & Rx_StripCRC) == 0
1474 pkt_len -= ETH_FCS_LEN;
1475#endif
1476
1477 if (netif_msg_rx_status(lp))
1478 dump_rxfd(lp->rfd_cur);
1479 if (status & Rx_Good) {
1480 struct sk_buff *skb;
1481 unsigned char *data;
1482 int cur_bd;
1483
1484 if (--limit < 0)
1485 break;
1486 BUG_ON(bd_count > 1);
1487 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1488 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1489#ifdef DEBUG
1490 if (cur_bd >= RX_BUF_NUM) {
1491 printk("%s: invalid BDID.\n", dev->name);
1492 panic_queues(dev);
1493 }
1494 BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1495 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1496 if (!lp->rx_skbs[cur_bd].skb) {
1497 printk("%s: NULL skb.\n", dev->name);
1498 panic_queues(dev);
1499 }
1500#else
1501 BUG_ON(cur_bd >= RX_BUF_NUM);
1502#endif
1503 skb = lp->rx_skbs[cur_bd].skb;
1504 prefetch(skb->data);
1505 lp->rx_skbs[cur_bd].skb = NULL;
1506 dma_unmap_single(&lp->pci_dev->dev,
1507 lp->rx_skbs[cur_bd].skb_dma,
1508 RX_BUF_SIZE, DMA_FROM_DEVICE);
1509 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1510 memmove(skb->data, skb->data - NET_IP_ALIGN,
1511 pkt_len);
1512 data = skb_put(skb, pkt_len);
1513 if (netif_msg_pktdata(lp))
1514 print_eth(data);
1515 skb->protocol = eth_type_trans(skb, dev);
1516 netif_receive_skb(skb);
1517 received++;
1518 dev->stats.rx_packets++;
1519 dev->stats.rx_bytes += pkt_len;
1520 } else {
1521 dev->stats.rx_errors++;
1522 if (netif_msg_rx_err(lp))
1523 dev_info(&dev->dev, "Rx error (status %x)\n",
1524 status & Rx_Stat_Mask);
1525 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1526 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1527 status &= ~(Rx_LongErr|Rx_CRCErr);
1528 status |= Rx_Over;
1529 }
1530 if (status & Rx_LongErr)
1531 dev->stats.rx_length_errors++;
1532 if (status & Rx_Over)
1533 dev->stats.rx_fifo_errors++;
1534 if (status & Rx_CRCErr)
1535 dev->stats.rx_crc_errors++;
1536 if (status & Rx_Align)
1537 dev->stats.rx_frame_errors++;
1538 }
1539
1540 if (bd_count > 0) {
1541 /* put Free Buffer back to controller */
1542 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1543 unsigned char id =
1544 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1545#ifdef DEBUG
1546 if (id >= RX_BUF_NUM) {
1547 printk("%s: invalid BDID.\n", dev->name);
1548 panic_queues(dev);
1549 }
1550#else
1551 BUG_ON(id >= RX_BUF_NUM);
1552#endif
1553 /* free old buffers */
1554 lp->fbl_count--;
1555 while (lp->fbl_count < RX_BUF_NUM)
1556 {
1557 unsigned char curid =
1558 (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1559 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1560#ifdef DEBUG
1561 bdctl = le32_to_cpu(bd->BDCtl);
1562 if (bdctl & BD_CownsBD) {
1563 printk("%s: Freeing invalid BD.\n",
1564 dev->name);
1565 panic_queues(dev);
1566 }
1567#endif
1568 /* pass BD to controller */
1569 if (!lp->rx_skbs[curid].skb) {
1570 lp->rx_skbs[curid].skb =
1571 alloc_rxbuf_skb(dev,
1572 lp->pci_dev,
1573 &lp->rx_skbs[curid].skb_dma);
1574 if (!lp->rx_skbs[curid].skb)
1575 break; /* try on next reception */
1576 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1577 }
1578 /* Note: BDLength was modified by chip. */
1579 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1580 (curid << BD_RxBDID_SHIFT) |
1581 RX_BUF_SIZE);
1582 lp->fbl_count++;
1583 }
1584 }
1585
1586 /* put RxFD back to controller */
1587#ifdef DEBUG
1588 next_rfd = fd_bus_to_virt(lp,
1589 le32_to_cpu(lp->rfd_cur->fd.FDNext));
1590 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1591 printk("%s: RxFD FDNext invalid.\n", dev->name);
1592 panic_queues(dev);
1593 }
1594#endif
1595 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1596 /* pass FD to controller */
1597#ifdef DEBUG
1598 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1599#else
1600 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1601#endif
1602 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1603 lp->rfd_cur++;
1604 }
1605 if (lp->rfd_cur > lp->rfd_limit)
1606 lp->rfd_cur = lp->rfd_base;
1607#ifdef DEBUG
1608 if (lp->rfd_cur != next_rfd)
1609 printk("rfd_cur = %p, next_rfd %p\n",
1610 lp->rfd_cur, next_rfd);
1611#endif
1612 }
1613
1614 return received;
1615}
1616
1617static int tc35815_poll(struct napi_struct *napi, int budget)
1618{
1619 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1620 struct net_device *dev = lp->dev;
1621 struct tc35815_regs __iomem *tr =
1622 (struct tc35815_regs __iomem *)dev->base_addr;
1623 int received = 0, handled;
1624 u32 status;
1625
1626 if (budget <= 0)
1627 return received;
1628
1629 spin_lock(&lp->rx_lock);
1630 status = tc_readl(&tr->Int_Src);
1631 do {
1632 /* BLEx, FDAEx will be cleared later */
1633 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1634 &tr->Int_Src); /* write to clear */
1635
1636 handled = tc35815_do_interrupt(dev, status, budget - received);
1637 if (status & (Int_BLEx | Int_FDAEx))
1638 tc_writel(status & (Int_BLEx | Int_FDAEx),
1639 &tr->Int_Src);
1640 if (handled >= 0) {
1641 received += handled;
1642 if (received >= budget)
1643 break;
1644 }
1645 status = tc_readl(&tr->Int_Src);
1646 } while (status);
1647 spin_unlock(&lp->rx_lock);
1648
1649 if (received < budget) {
1650 napi_complete_done(napi, received);
1651 /* enable interrupts */
1652 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1653 }
1654 return received;
1655}
1656
1657#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1658
1659static void
1660tc35815_check_tx_stat(struct net_device *dev, int status)
1661{
1662 struct tc35815_local *lp = netdev_priv(dev);
1663 const char *msg = NULL;
1664
1665 /* count collisions */
1666 if (status & Tx_ExColl)
1667 dev->stats.collisions += 16;
1668 if (status & Tx_TxColl_MASK)
1669 dev->stats.collisions += status & Tx_TxColl_MASK;
1670
1671 /* TX4939 does not have NCarr */
1672 if (lp->chiptype == TC35815_TX4939)
1673 status &= ~Tx_NCarr;
1674 /* WORKAROUND: ignore LostCrS in full duplex operation */
1675 if (!lp->link || lp->duplex == DUPLEX_FULL)
1676 status &= ~Tx_NCarr;
1677
1678 if (!(status & TX_STA_ERR)) {
1679 /* no error. */
1680 dev->stats.tx_packets++;
1681 return;
1682 }
1683
1684 dev->stats.tx_errors++;
1685 if (status & Tx_ExColl) {
1686 dev->stats.tx_aborted_errors++;
1687 msg = "Excessive Collision.";
1688 }
1689 if (status & Tx_Under) {
1690 dev->stats.tx_fifo_errors++;
1691 msg = "Tx FIFO Underrun.";
1692 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1693 lp->lstats.tx_underrun++;
1694 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1695 struct tc35815_regs __iomem *tr =
1696 (struct tc35815_regs __iomem *)dev->base_addr;
1697 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1698 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1699 }
1700 }
1701 }
1702 if (status & Tx_Defer) {
1703 dev->stats.tx_fifo_errors++;
1704 msg = "Excessive Deferral.";
1705 }
1706 if (status & Tx_NCarr) {
1707 dev->stats.tx_carrier_errors++;
1708 msg = "Lost Carrier Sense.";
1709 }
1710 if (status & Tx_LateColl) {
1711 dev->stats.tx_aborted_errors++;
1712 msg = "Late Collision.";
1713 }
1714 if (status & Tx_TxPar) {
1715 dev->stats.tx_fifo_errors++;
1716 msg = "Transmit Parity Error.";
1717 }
1718 if (status & Tx_SQErr) {
1719 dev->stats.tx_heartbeat_errors++;
1720 msg = "Signal Quality Error.";
1721 }
1722 if (msg && netif_msg_tx_err(lp))
1723 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1724}
1725
1726/* This handles TX complete events posted by the device
1727 * via interrupts.
1728 */
1729static void
1730tc35815_txdone(struct net_device *dev)
1731{
1732 struct tc35815_local *lp = netdev_priv(dev);
1733 struct TxFD *txfd;
1734 unsigned int fdctl;
1735
1736 txfd = &lp->tfd_base[lp->tfd_end];
1737 while (lp->tfd_start != lp->tfd_end &&
1738 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1739 int status = le32_to_cpu(txfd->fd.FDStat);
1740 struct sk_buff *skb;
1741 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1742 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1743
1744 if (netif_msg_tx_done(lp)) {
1745 printk("%s: complete TxFD.\n", dev->name);
1746 dump_txfd(txfd);
1747 }
1748 tc35815_check_tx_stat(dev, status);
1749
1750 skb = fdsystem != 0xffffffff ?
1751 lp->tx_skbs[fdsystem].skb : NULL;
1752#ifdef DEBUG
1753 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1754 printk("%s: tx_skbs mismatch.\n", dev->name);
1755 panic_queues(dev);
1756 }
1757#else
1758 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1759#endif
1760 if (skb) {
1761 dev->stats.tx_bytes += skb->len;
1762 dma_unmap_single(&lp->pci_dev->dev,
1763 lp->tx_skbs[lp->tfd_end].skb_dma,
1764 skb->len, DMA_TO_DEVICE);
1765 lp->tx_skbs[lp->tfd_end].skb = NULL;
1766 lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1767 dev_kfree_skb_any(skb);
1768 }
1769 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1770
1771 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1772 txfd = &lp->tfd_base[lp->tfd_end];
1773#ifdef DEBUG
1774 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1775 printk("%s: TxFD FDNext invalid.\n", dev->name);
1776 panic_queues(dev);
1777 }
1778#endif
1779 if (fdnext & FD_Next_EOL) {
1780 /* DMA Transmitter has been stopping... */
1781 if (lp->tfd_end != lp->tfd_start) {
1782 struct tc35815_regs __iomem *tr =
1783 (struct tc35815_regs __iomem *)dev->base_addr;
1784 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1785 struct TxFD *txhead = &lp->tfd_base[head];
1786 int qlen = (lp->tfd_start + TX_FD_NUM
1787 - lp->tfd_end) % TX_FD_NUM;
1788
1789#ifdef DEBUG
1790 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1791 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1792 panic_queues(dev);
1793 }
1794#endif
1795 /* log max queue length */
1796 if (lp->lstats.max_tx_qlen < qlen)
1797 lp->lstats.max_tx_qlen = qlen;
1798
1799
1800 /* start DMA Transmitter again */
1801 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1802 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1803 if (netif_msg_tx_queued(lp)) {
1804 printk("%s: start TxFD on queue.\n",
1805 dev->name);
1806 dump_txfd(txfd);
1807 }
1808 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1809 }
1810 break;
1811 }
1812 }
1813
1814 /* If we had stopped the queue due to a "tx full"
1815 * condition, and space has now been made available,
1816 * wake up the queue.
1817 */
1818 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1819 netif_wake_queue(dev);
1820}
1821
1822/* The inverse routine to tc35815_open(). */
1823static int
1824tc35815_close(struct net_device *dev)
1825{
1826 struct tc35815_local *lp = netdev_priv(dev);
1827
1828 netif_stop_queue(dev);
1829 napi_disable(&lp->napi);
1830 if (dev->phydev)
1831 phy_stop(dev->phydev);
1832 cancel_work_sync(&lp->restart_work);
1833
1834 /* Flush the Tx and disable Rx here. */
1835 tc35815_chip_reset(dev);
1836 free_irq(dev->irq, dev);
1837
1838 tc35815_free_queues(dev);
1839
1840 return 0;
1841
1842}
1843
1844/*
1845 * Get the current statistics.
1846 * This may be called with the card open or closed.
1847 */
1848static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1849{
1850 struct tc35815_regs __iomem *tr =
1851 (struct tc35815_regs __iomem *)dev->base_addr;
1852 if (netif_running(dev))
1853 /* Update the statistics from the device registers. */
1854 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1855
1856 return &dev->stats;
1857}
1858
1859static void tc35815_set_cam_entry(struct net_device *dev, int index,
1860 const unsigned char *addr)
1861{
1862 struct tc35815_local *lp = netdev_priv(dev);
1863 struct tc35815_regs __iomem *tr =
1864 (struct tc35815_regs __iomem *)dev->base_addr;
1865 int cam_index = index * 6;
1866 u32 cam_data;
1867 u32 saved_addr;
1868
1869 saved_addr = tc_readl(&tr->CAM_Adr);
1870
1871 if (netif_msg_hw(lp))
1872 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1873 dev->name, index, addr);
1874 if (index & 1) {
1875 /* read modify write */
1876 tc_writel(cam_index - 2, &tr->CAM_Adr);
1877 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1878 cam_data |= addr[0] << 8 | addr[1];
1879 tc_writel(cam_data, &tr->CAM_Data);
1880 /* write whole word */
1881 tc_writel(cam_index + 2, &tr->CAM_Adr);
1882 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1883 tc_writel(cam_data, &tr->CAM_Data);
1884 } else {
1885 /* write whole word */
1886 tc_writel(cam_index, &tr->CAM_Adr);
1887 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1888 tc_writel(cam_data, &tr->CAM_Data);
1889 /* read modify write */
1890 tc_writel(cam_index + 4, &tr->CAM_Adr);
1891 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1892 cam_data |= addr[4] << 24 | (addr[5] << 16);
1893 tc_writel(cam_data, &tr->CAM_Data);
1894 }
1895
1896 tc_writel(saved_addr, &tr->CAM_Adr);
1897}
1898
1899
1900/*
1901 * Set or clear the multicast filter for this adaptor.
1902 * num_addrs == -1 Promiscuous mode, receive all packets
1903 * num_addrs == 0 Normal mode, clear multicast list
1904 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1905 * and do best-effort filtering.
1906 */
1907static void
1908tc35815_set_multicast_list(struct net_device *dev)
1909{
1910 struct tc35815_regs __iomem *tr =
1911 (struct tc35815_regs __iomem *)dev->base_addr;
1912
1913 if (dev->flags & IFF_PROMISC) {
1914 /* With some (all?) 100MHalf HUB, controller will hang
1915 * if we enabled promiscuous mode before linkup...
1916 */
1917 struct tc35815_local *lp = netdev_priv(dev);
1918
1919 if (!lp->link)
1920 return;
1921 /* Enable promiscuous mode */
1922 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1923 } else if ((dev->flags & IFF_ALLMULTI) ||
1924 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1925 /* CAM 0, 1, 20 are reserved. */
1926 /* Disable promiscuous mode, use normal mode. */
1927 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1928 } else if (!netdev_mc_empty(dev)) {
1929 struct netdev_hw_addr *ha;
1930 int i;
1931 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1932
1933 tc_writel(0, &tr->CAM_Ctl);
1934 /* Walk the address list, and load the filter */
1935 i = 0;
1936 netdev_for_each_mc_addr(ha, dev) {
1937 /* entry 0,1 is reserved. */
1938 tc35815_set_cam_entry(dev, i + 2, ha->addr);
1939 ena_bits |= CAM_Ena_Bit(i + 2);
1940 i++;
1941 }
1942 tc_writel(ena_bits, &tr->CAM_Ena);
1943 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1944 } else {
1945 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1946 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1947 }
1948}
1949
1950static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1951{
1952 struct tc35815_local *lp = netdev_priv(dev);
1953
1954 strscpy(info->driver, MODNAME, sizeof(info->driver));
1955 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1956 strscpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1957}
1958
1959static u32 tc35815_get_msglevel(struct net_device *dev)
1960{
1961 struct tc35815_local *lp = netdev_priv(dev);
1962 return lp->msg_enable;
1963}
1964
1965static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1966{
1967 struct tc35815_local *lp = netdev_priv(dev);
1968 lp->msg_enable = datum;
1969}
1970
1971static int tc35815_get_sset_count(struct net_device *dev, int sset)
1972{
1973 struct tc35815_local *lp = netdev_priv(dev);
1974
1975 switch (sset) {
1976 case ETH_SS_STATS:
1977 return sizeof(lp->lstats) / sizeof(int);
1978 default:
1979 return -EOPNOTSUPP;
1980 }
1981}
1982
1983static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1984{
1985 struct tc35815_local *lp = netdev_priv(dev);
1986 data[0] = lp->lstats.max_tx_qlen;
1987 data[1] = lp->lstats.tx_ints;
1988 data[2] = lp->lstats.rx_ints;
1989 data[3] = lp->lstats.tx_underrun;
1990}
1991
1992static struct {
1993 const char str[ETH_GSTRING_LEN];
1994} ethtool_stats_keys[] = {
1995 { "max_tx_qlen" },
1996 { "tx_ints" },
1997 { "rx_ints" },
1998 { "tx_underrun" },
1999};
2000
2001static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2002{
2003 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2004}
2005
2006static const struct ethtool_ops tc35815_ethtool_ops = {
2007 .get_drvinfo = tc35815_get_drvinfo,
2008 .get_link = ethtool_op_get_link,
2009 .get_msglevel = tc35815_get_msglevel,
2010 .set_msglevel = tc35815_set_msglevel,
2011 .get_strings = tc35815_get_strings,
2012 .get_sset_count = tc35815_get_sset_count,
2013 .get_ethtool_stats = tc35815_get_ethtool_stats,
2014 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2015 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2016};
2017
2018static void tc35815_chip_reset(struct net_device *dev)
2019{
2020 struct tc35815_regs __iomem *tr =
2021 (struct tc35815_regs __iomem *)dev->base_addr;
2022 int i;
2023 /* reset the controller */
2024 tc_writel(MAC_Reset, &tr->MAC_Ctl);
2025 udelay(4); /* 3200ns */
2026 i = 0;
2027 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2028 if (i++ > 100) {
2029 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2030 break;
2031 }
2032 mdelay(1);
2033 }
2034 tc_writel(0, &tr->MAC_Ctl);
2035
2036 /* initialize registers to default value */
2037 tc_writel(0, &tr->DMA_Ctl);
2038 tc_writel(0, &tr->TxThrsh);
2039 tc_writel(0, &tr->TxPollCtr);
2040 tc_writel(0, &tr->RxFragSize);
2041 tc_writel(0, &tr->Int_En);
2042 tc_writel(0, &tr->FDA_Bas);
2043 tc_writel(0, &tr->FDA_Lim);
2044 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2045 tc_writel(0, &tr->CAM_Ctl);
2046 tc_writel(0, &tr->Tx_Ctl);
2047 tc_writel(0, &tr->Rx_Ctl);
2048 tc_writel(0, &tr->CAM_Ena);
2049 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2050
2051 /* initialize internal SRAM */
2052 tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2053 for (i = 0; i < 0x1000; i += 4) {
2054 tc_writel(i, &tr->CAM_Adr);
2055 tc_writel(0, &tr->CAM_Data);
2056 }
2057 tc_writel(0, &tr->DMA_Ctl);
2058}
2059
2060static void tc35815_chip_init(struct net_device *dev)
2061{
2062 struct tc35815_local *lp = netdev_priv(dev);
2063 struct tc35815_regs __iomem *tr =
2064 (struct tc35815_regs __iomem *)dev->base_addr;
2065 unsigned long txctl = TX_CTL_CMD;
2066
2067 /* load station address to CAM */
2068 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2069
2070 /* Enable CAM (broadcast and unicast) */
2071 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2072 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2073
2074 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2075 if (HAVE_DMA_RXALIGN(lp))
2076 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2077 else
2078 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2079 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2080 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2081 tc_writel(INT_EN_CMD, &tr->Int_En);
2082
2083 /* set queues */
2084 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2085 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2086 &tr->FDA_Lim);
2087 /*
2088 * Activation method:
2089 * First, enable the MAC Transmitter and the DMA Receive circuits.
2090 * Then enable the DMA Transmitter and the MAC Receive circuits.
2091 */
2092 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2093 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2094
2095 /* start MAC transmitter */
2096 /* TX4939 does not have EnLCarr */
2097 if (lp->chiptype == TC35815_TX4939)
2098 txctl &= ~Tx_EnLCarr;
2099 /* WORKAROUND: ignore LostCrS in full duplex operation */
2100 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2101 txctl &= ~Tx_EnLCarr;
2102 tc_writel(txctl, &tr->Tx_Ctl);
2103}
2104
2105#ifdef CONFIG_PM
2106static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2107{
2108 struct net_device *dev = pci_get_drvdata(pdev);
2109 struct tc35815_local *lp = netdev_priv(dev);
2110 unsigned long flags;
2111
2112 pci_save_state(pdev);
2113 if (!netif_running(dev))
2114 return 0;
2115 netif_device_detach(dev);
2116 if (dev->phydev)
2117 phy_stop(dev->phydev);
2118 spin_lock_irqsave(&lp->lock, flags);
2119 tc35815_chip_reset(dev);
2120 spin_unlock_irqrestore(&lp->lock, flags);
2121 pci_set_power_state(pdev, PCI_D3hot);
2122 return 0;
2123}
2124
2125static int tc35815_resume(struct pci_dev *pdev)
2126{
2127 struct net_device *dev = pci_get_drvdata(pdev);
2128
2129 pci_restore_state(pdev);
2130 if (!netif_running(dev))
2131 return 0;
2132 pci_set_power_state(pdev, PCI_D0);
2133 tc35815_restart(dev);
2134 netif_carrier_off(dev);
2135 if (dev->phydev)
2136 phy_start(dev->phydev);
2137 netif_device_attach(dev);
2138 return 0;
2139}
2140#endif /* CONFIG_PM */
2141
2142static struct pci_driver tc35815_pci_driver = {
2143 .name = MODNAME,
2144 .id_table = tc35815_pci_tbl,
2145 .probe = tc35815_init_one,
2146 .remove = tc35815_remove_one,
2147#ifdef CONFIG_PM
2148 .suspend = tc35815_suspend,
2149 .resume = tc35815_resume,
2150#endif
2151};
2152
2153module_param_named(speed, options.speed, int, 0);
2154MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2155module_param_named(duplex, options.duplex, int, 0);
2156MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2157
2158module_pci_driver(tc35815_pci_driver);
2159MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2160MODULE_LICENSE("GPL");
1/*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 * -----<snip>-----
9 * Copyright 2001 MontaVista Software Inc.
10 * Author: MontaVista Software, Inc.
11 * ahennessy@mvista.com
12 * Copyright (C) 2000-2001 Toshiba Corporation
13 * static const char *version =
14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 * -----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25#define DRV_VERSION "1.39"
26static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
27#define MODNAME "tc35815"
28
29#include <linux/module.h>
30#include <linux/kernel.h>
31#include <linux/types.h>
32#include <linux/fcntl.h>
33#include <linux/interrupt.h>
34#include <linux/ioport.h>
35#include <linux/in.h>
36#include <linux/if_vlan.h>
37#include <linux/slab.h>
38#include <linux/string.h>
39#include <linux/spinlock.h>
40#include <linux/errno.h>
41#include <linux/netdevice.h>
42#include <linux/etherdevice.h>
43#include <linux/skbuff.h>
44#include <linux/delay.h>
45#include <linux/pci.h>
46#include <linux/phy.h>
47#include <linux/workqueue.h>
48#include <linux/platform_device.h>
49#include <linux/prefetch.h>
50#include <asm/io.h>
51#include <asm/byteorder.h>
52
53enum tc35815_chiptype {
54 TC35815CF = 0,
55 TC35815_NWU,
56 TC35815_TX4939,
57};
58
59/* indexed by tc35815_chiptype, above */
60static const struct {
61 const char *name;
62} chip_info[] = {
63 { "TOSHIBA TC35815CF 10/100BaseTX" },
64 { "TOSHIBA TC35815 with Wake on LAN" },
65 { "TOSHIBA TC35815/TX4939" },
66};
67
68static const struct pci_device_id tc35815_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 {0,}
73};
74MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76/* see MODULE_PARM_DESC */
77static struct tc35815_options {
78 int speed;
79 int duplex;
80} options;
81
82/*
83 * Registers
84 */
85struct tc35815_regs {
86 __u32 DMA_Ctl; /* 0x00 */
87 __u32 TxFrmPtr;
88 __u32 TxThrsh;
89 __u32 TxPollCtr;
90 __u32 BLFrmPtr;
91 __u32 RxFragSize;
92 __u32 Int_En;
93 __u32 FDA_Bas;
94 __u32 FDA_Lim; /* 0x20 */
95 __u32 Int_Src;
96 __u32 unused0[2];
97 __u32 PauseCnt;
98 __u32 RemPauCnt;
99 __u32 TxCtlFrmStat;
100 __u32 unused1;
101 __u32 MAC_Ctl; /* 0x40 */
102 __u32 CAM_Ctl;
103 __u32 Tx_Ctl;
104 __u32 Tx_Stat;
105 __u32 Rx_Ctl;
106 __u32 Rx_Stat;
107 __u32 MD_Data;
108 __u32 MD_CA;
109 __u32 CAM_Adr; /* 0x60 */
110 __u32 CAM_Data;
111 __u32 CAM_Ena;
112 __u32 PROM_Ctl;
113 __u32 PROM_Data;
114 __u32 Algn_Cnt;
115 __u32 CRC_Cnt;
116 __u32 Miss_Cnt;
117};
118
119/*
120 * Bit assignments
121 */
122/* DMA_Ctl bit assign ------------------------------------------------------- */
123#define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
124#define DMA_RxAlign_1 0x00400000
125#define DMA_RxAlign_2 0x00800000
126#define DMA_RxAlign_3 0x00c00000
127#define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
128#define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
129#define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
130#define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
131#define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
132#define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
133#define DMA_TestMode 0x00002000 /* 1:Test Mode */
134#define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
135#define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
136
137/* RxFragSize bit assign ---------------------------------------------------- */
138#define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
139#define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
140
141/* MAC_Ctl bit assign ------------------------------------------------------- */
142#define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
143#define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
144#define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
145#define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
146#define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
147#define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
148#define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
149#define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
150#define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
151#define MAC_Reset 0x00000004 /* 1:Software Reset */
152#define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
153#define MAC_HaltReq 0x00000001 /* 1:Halt request */
154
155/* PROM_Ctl bit assign ------------------------------------------------------ */
156#define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
157#define PROM_Read 0x00004000 /*10:Read operation */
158#define PROM_Write 0x00002000 /*01:Write operation */
159#define PROM_Erase 0x00006000 /*11:Erase operation */
160 /*00:Enable or Disable Writting, */
161 /* as specified in PROM_Addr. */
162#define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
163 /*00xxxx: disable */
164
165/* CAM_Ctl bit assign ------------------------------------------------------- */
166#define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
167#define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
168 /* accept other */
169#define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
170#define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
171#define CAM_StationAcc 0x00000001 /* 1:unicast accept */
172
173/* CAM_Ena bit assign ------------------------------------------------------- */
174#define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
175#define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
176#define CAM_Ena_Bit(index) (1 << (index))
177#define CAM_ENTRY_DESTINATION 0
178#define CAM_ENTRY_SOURCE 1
179#define CAM_ENTRY_MACCTL 20
180
181/* Tx_Ctl bit assign -------------------------------------------------------- */
182#define Tx_En 0x00000001 /* 1:Transmit enable */
183#define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
184#define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
185#define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
186#define Tx_FBack 0x00000010 /* 1:Fast Back-off */
187#define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
188#define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
189#define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
190#define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
191#define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
192#define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
193#define Tx_EnComp 0x00004000 /* 1:Enable Completion */
194
195/* Tx_Stat bit assign ------------------------------------------------------- */
196#define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
197#define Tx_ExColl 0x00000010 /* Excessive Collision */
198#define Tx_TXDefer 0x00000020 /* Transmit Defered */
199#define Tx_Paused 0x00000040 /* Transmit Paused */
200#define Tx_IntTx 0x00000080 /* Interrupt on Tx */
201#define Tx_Under 0x00000100 /* Underrun */
202#define Tx_Defer 0x00000200 /* Deferral */
203#define Tx_NCarr 0x00000400 /* No Carrier */
204#define Tx_10Stat 0x00000800 /* 10Mbps Status */
205#define Tx_LateColl 0x00001000 /* Late Collision */
206#define Tx_TxPar 0x00002000 /* Tx Parity Error */
207#define Tx_Comp 0x00004000 /* Completion */
208#define Tx_Halted 0x00008000 /* Tx Halted */
209#define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
210
211/* Rx_Ctl bit assign -------------------------------------------------------- */
212#define Rx_EnGood 0x00004000 /* 1:Enable Good */
213#define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
214#define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
215#define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
216#define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
217#define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
218#define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
219#define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
220#define Rx_ShortEn 0x00000008 /* 1:Short Enable */
221#define Rx_LongEn 0x00000004 /* 1:Long Enable */
222#define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
223#define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
224
225/* Rx_Stat bit assign ------------------------------------------------------- */
226#define Rx_Halted 0x00008000 /* Rx Halted */
227#define Rx_Good 0x00004000 /* Rx Good */
228#define Rx_RxPar 0x00002000 /* Rx Parity Error */
229#define Rx_TypePkt 0x00001000 /* Rx Type Packet */
230#define Rx_LongErr 0x00000800 /* Rx Long Error */
231#define Rx_Over 0x00000400 /* Rx Overflow */
232#define Rx_CRCErr 0x00000200 /* Rx CRC Error */
233#define Rx_Align 0x00000100 /* Rx Alignment Error */
234#define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
235#define Rx_IntRx 0x00000040 /* Rx Interrupt */
236#define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
237#define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
238
239#define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
240
241/* Int_En bit assign -------------------------------------------------------- */
242#define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
243#define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
244#define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
245#define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
246#define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
247#define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
248#define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
249#define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
250#define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
251#define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
252#define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
253#define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
254 /* Exhausted Enable */
255
256/* Int_Src bit assign ------------------------------------------------------- */
257#define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
258#define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
259#define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
260#define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
261#define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
262#define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
263#define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
264#define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
265#define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
266#define Int_SWInt 0x00000020 /* 1:Software request & Clear */
267#define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
268#define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
269#define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
270#define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
271#define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
272
273/* MD_CA bit assign --------------------------------------------------------- */
274#define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
275#define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
276#define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
277
278
279/*
280 * Descriptors
281 */
282
283/* Frame descriptor */
284struct FDesc {
285 volatile __u32 FDNext;
286 volatile __u32 FDSystem;
287 volatile __u32 FDStat;
288 volatile __u32 FDCtl;
289};
290
291/* Buffer descriptor */
292struct BDesc {
293 volatile __u32 BuffData;
294 volatile __u32 BDCtl;
295};
296
297#define FD_ALIGN 16
298
299/* Frame Descriptor bit assign ---------------------------------------------- */
300#define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
301#define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
302#define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
303#define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
304#define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
305#define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
306#define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
307#define FD_FrmOpt_Packing 0x04000000 /* Rx only */
308#define FD_CownsFD 0x80000000 /* FD Controller owner bit */
309#define FD_Next_EOL 0x00000001 /* FD EOL indicator */
310#define FD_BDCnt_SHIFT 16
311
312/* Buffer Descriptor bit assign --------------------------------------------- */
313#define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
314#define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
315#define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
316#define BD_CownsBD 0x80000000 /* BD Controller owner bit */
317#define BD_RxBDID_SHIFT 16
318#define BD_RxBDSeqN_SHIFT 24
319
320
321/* Some useful constants. */
322
323#define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 Tx_En) /* maybe 0x7b01 */
326/* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327#define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329#define INT_EN_CMD (Int_NRAbtEn | \
330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
332 Int_STargAbtEn | \
333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
334#define DMA_CTL_CMD DMA_BURST_SIZE
335#define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
336
337/* Tuning parameters */
338#define DMA_BURST_SIZE 32
339#define TX_THRESHOLD 1024
340/* used threshold with packet max byte for low pci transfer ability.*/
341#define TX_THRESHOLD_MAX 1536
342/* setting threshold max value when overrun error occurred this count. */
343#define TX_THRESHOLD_KEEP_LIMIT 10
344
345/* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346#define FD_PAGE_NUM 4
347#define RX_BUF_NUM 128 /* < 256 */
348#define RX_FD_NUM 256 /* >= 32 */
349#define TX_FD_NUM 128
350#if RX_CTL_CMD & Rx_LongEn
351#define RX_BUF_SIZE PAGE_SIZE
352#elif RX_CTL_CMD & Rx_StripCRC
353#define RX_BUF_SIZE \
354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355#else
356#define RX_BUF_SIZE \
357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358#endif
359#define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
360#define NAPI_WEIGHT 16
361
362struct TxFD {
363 struct FDesc fd;
364 struct BDesc bd;
365 struct BDesc unused;
366};
367
368struct RxFD {
369 struct FDesc fd;
370 struct BDesc bd[]; /* variable length */
371};
372
373struct FrFD {
374 struct FDesc fd;
375 struct BDesc bd[RX_BUF_NUM];
376};
377
378
379#define tc_readl(addr) ioread32(addr)
380#define tc_writel(d, addr) iowrite32(d, addr)
381
382#define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
383
384/* Information that need to be kept for each controller. */
385struct tc35815_local {
386 struct pci_dev *pci_dev;
387
388 struct net_device *dev;
389 struct napi_struct napi;
390
391 /* statistics */
392 struct {
393 int max_tx_qlen;
394 int tx_ints;
395 int rx_ints;
396 int tx_underrun;
397 } lstats;
398
399 /* Tx control lock. This protects the transmit buffer ring
400 * state along with the "tx full" state of the driver. This
401 * means all netif_queue flow control actions are protected
402 * by this lock as well.
403 */
404 spinlock_t lock;
405 spinlock_t rx_lock;
406
407 struct mii_bus *mii_bus;
408 int duplex;
409 int speed;
410 int link;
411 struct work_struct restart_work;
412
413 /*
414 * Transmitting: Batch Mode.
415 * 1 BD in 1 TxFD.
416 * Receiving: Non-Packing Mode.
417 * 1 circular FD for Free Buffer List.
418 * RX_BUF_NUM BD in Free Buffer FD.
419 * One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 */
421 void *fd_buf; /* for TxFD, RxFD, FrFD */
422 dma_addr_t fd_buf_dma;
423 struct TxFD *tfd_base;
424 unsigned int tfd_start;
425 unsigned int tfd_end;
426 struct RxFD *rfd_base;
427 struct RxFD *rfd_limit;
428 struct RxFD *rfd_cur;
429 struct FrFD *fbl_ptr;
430 unsigned int fbl_count;
431 struct {
432 struct sk_buff *skb;
433 dma_addr_t skb_dma;
434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 u32 msg_enable;
436 enum tc35815_chiptype chiptype;
437};
438
439static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440{
441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442}
443#ifdef DEBUG
444static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445{
446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447}
448#endif
449static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 struct pci_dev *hwdev,
451 dma_addr_t *dma_handle)
452{
453 struct sk_buff *skb;
454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455 if (!skb)
456 return NULL;
457 *dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
458 DMA_FROM_DEVICE);
459 if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
460 dev_kfree_skb_any(skb);
461 return NULL;
462 }
463 skb_reserve(skb, 2); /* make IP header 4byte aligned */
464 return skb;
465}
466
467static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468{
469 dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
470 DMA_FROM_DEVICE);
471 dev_kfree_skb_any(skb);
472}
473
474/* Index to functions, as function prototypes. */
475
476static int tc35815_open(struct net_device *dev);
477static netdev_tx_t tc35815_send_packet(struct sk_buff *skb,
478 struct net_device *dev);
479static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
480static int tc35815_rx(struct net_device *dev, int limit);
481static int tc35815_poll(struct napi_struct *napi, int budget);
482static void tc35815_txdone(struct net_device *dev);
483static int tc35815_close(struct net_device *dev);
484static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
485static void tc35815_set_multicast_list(struct net_device *dev);
486static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
487#ifdef CONFIG_NET_POLL_CONTROLLER
488static void tc35815_poll_controller(struct net_device *dev);
489#endif
490static const struct ethtool_ops tc35815_ethtool_ops;
491
492/* Example routines you must write ;->. */
493static void tc35815_chip_reset(struct net_device *dev);
494static void tc35815_chip_init(struct net_device *dev);
495
496#ifdef DEBUG
497static void panic_queues(struct net_device *dev);
498#endif
499
500static void tc35815_restart_work(struct work_struct *work);
501
502static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503{
504 struct net_device *dev = bus->priv;
505 struct tc35815_regs __iomem *tr =
506 (struct tc35815_regs __iomem *)dev->base_addr;
507 unsigned long timeout = jiffies + HZ;
508
509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 udelay(12); /* it takes 32 x 400ns at least */
511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 if (time_after(jiffies, timeout))
513 return -EIO;
514 cpu_relax();
515 }
516 return tc_readl(&tr->MD_Data) & 0xffff;
517}
518
519static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520{
521 struct net_device *dev = bus->priv;
522 struct tc35815_regs __iomem *tr =
523 (struct tc35815_regs __iomem *)dev->base_addr;
524 unsigned long timeout = jiffies + HZ;
525
526 tc_writel(val, &tr->MD_Data);
527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 &tr->MD_CA);
529 udelay(12); /* it takes 32 x 400ns at least */
530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 if (time_after(jiffies, timeout))
532 return -EIO;
533 cpu_relax();
534 }
535 return 0;
536}
537
538static void tc_handle_link_change(struct net_device *dev)
539{
540 struct tc35815_local *lp = netdev_priv(dev);
541 struct phy_device *phydev = dev->phydev;
542 unsigned long flags;
543 int status_change = 0;
544
545 spin_lock_irqsave(&lp->lock, flags);
546 if (phydev->link &&
547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 struct tc35815_regs __iomem *tr =
549 (struct tc35815_regs __iomem *)dev->base_addr;
550 u32 reg;
551
552 reg = tc_readl(&tr->MAC_Ctl);
553 reg |= MAC_HaltReq;
554 tc_writel(reg, &tr->MAC_Ctl);
555 if (phydev->duplex == DUPLEX_FULL)
556 reg |= MAC_FullDup;
557 else
558 reg &= ~MAC_FullDup;
559 tc_writel(reg, &tr->MAC_Ctl);
560 reg &= ~MAC_HaltReq;
561 tc_writel(reg, &tr->MAC_Ctl);
562
563 /*
564 * TX4939 PCFG.SPEEDn bit will be changed on
565 * NETDEV_CHANGE event.
566 */
567 /*
568 * WORKAROUND: enable LostCrS only if half duplex
569 * operation.
570 * (TX4939 does not have EnLCarr)
571 */
572 if (phydev->duplex == DUPLEX_HALF &&
573 lp->chiptype != TC35815_TX4939)
574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 &tr->Tx_Ctl);
576
577 lp->speed = phydev->speed;
578 lp->duplex = phydev->duplex;
579 status_change = 1;
580 }
581
582 if (phydev->link != lp->link) {
583 if (phydev->link) {
584 /* delayed promiscuous enabling */
585 if (dev->flags & IFF_PROMISC)
586 tc35815_set_multicast_list(dev);
587 } else {
588 lp->speed = 0;
589 lp->duplex = -1;
590 }
591 lp->link = phydev->link;
592
593 status_change = 1;
594 }
595 spin_unlock_irqrestore(&lp->lock, flags);
596
597 if (status_change && netif_msg_link(lp)) {
598 phy_print_status(phydev);
599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 dev->name,
601 phy_read(phydev, MII_BMCR),
602 phy_read(phydev, MII_BMSR),
603 phy_read(phydev, MII_LPA));
604 }
605}
606
607static int tc_mii_probe(struct net_device *dev)
608{
609 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
610 struct tc35815_local *lp = netdev_priv(dev);
611 struct phy_device *phydev;
612
613 phydev = phy_find_first(lp->mii_bus);
614 if (!phydev) {
615 printk(KERN_ERR "%s: no PHY found\n", dev->name);
616 return -ENODEV;
617 }
618
619 /* attach the mac to the phy */
620 phydev = phy_connect(dev, phydev_name(phydev),
621 &tc_handle_link_change,
622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623 if (IS_ERR(phydev)) {
624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625 return PTR_ERR(phydev);
626 }
627
628 phy_attached_info(phydev);
629
630 /* mask with MAC supported features */
631 phy_set_max_speed(phydev, SPEED_100);
632 if (options.speed == 10) {
633 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
634 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
635 } else if (options.speed == 100) {
636 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
637 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
638 }
639 if (options.duplex == 1) {
640 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
641 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
642 } else if (options.duplex == 2) {
643 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
644 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
645 }
646 linkmode_andnot(phydev->supported, phydev->supported, mask);
647 linkmode_copy(phydev->advertising, phydev->supported);
648
649 lp->link = 0;
650 lp->speed = 0;
651 lp->duplex = -1;
652
653 return 0;
654}
655
656static int tc_mii_init(struct net_device *dev)
657{
658 struct tc35815_local *lp = netdev_priv(dev);
659 int err;
660
661 lp->mii_bus = mdiobus_alloc();
662 if (lp->mii_bus == NULL) {
663 err = -ENOMEM;
664 goto err_out;
665 }
666
667 lp->mii_bus->name = "tc35815_mii_bus";
668 lp->mii_bus->read = tc_mdio_read;
669 lp->mii_bus->write = tc_mdio_write;
670 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
671 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
672 lp->mii_bus->priv = dev;
673 lp->mii_bus->parent = &lp->pci_dev->dev;
674 err = mdiobus_register(lp->mii_bus);
675 if (err)
676 goto err_out_free_mii_bus;
677 err = tc_mii_probe(dev);
678 if (err)
679 goto err_out_unregister_bus;
680 return 0;
681
682err_out_unregister_bus:
683 mdiobus_unregister(lp->mii_bus);
684err_out_free_mii_bus:
685 mdiobus_free(lp->mii_bus);
686err_out:
687 return err;
688}
689
690#ifdef CONFIG_CPU_TX49XX
691/*
692 * Find a platform_device providing a MAC address. The platform code
693 * should provide a "tc35815-mac" device with a MAC address in its
694 * platform_data.
695 */
696static int tc35815_mac_match(struct device *dev, const void *data)
697{
698 struct platform_device *plat_dev = to_platform_device(dev);
699 const struct pci_dev *pci_dev = data;
700 unsigned int id = pci_dev->irq;
701 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
702}
703
704static int tc35815_read_plat_dev_addr(struct net_device *dev)
705{
706 struct tc35815_local *lp = netdev_priv(dev);
707 struct device *pd = bus_find_device(&platform_bus_type, NULL,
708 lp->pci_dev, tc35815_mac_match);
709 if (pd) {
710 if (pd->platform_data)
711 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
712 put_device(pd);
713 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
714 }
715 return -ENODEV;
716}
717#else
718static int tc35815_read_plat_dev_addr(struct net_device *dev)
719{
720 return -ENODEV;
721}
722#endif
723
724static int tc35815_init_dev_addr(struct net_device *dev)
725{
726 struct tc35815_regs __iomem *tr =
727 (struct tc35815_regs __iomem *)dev->base_addr;
728 int i;
729
730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731 ;
732 for (i = 0; i < 6; i += 2) {
733 unsigned short data;
734 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
735 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
736 ;
737 data = tc_readl(&tr->PROM_Data);
738 dev->dev_addr[i] = data & 0xff;
739 dev->dev_addr[i+1] = data >> 8;
740 }
741 if (!is_valid_ether_addr(dev->dev_addr))
742 return tc35815_read_plat_dev_addr(dev);
743 return 0;
744}
745
746static const struct net_device_ops tc35815_netdev_ops = {
747 .ndo_open = tc35815_open,
748 .ndo_stop = tc35815_close,
749 .ndo_start_xmit = tc35815_send_packet,
750 .ndo_get_stats = tc35815_get_stats,
751 .ndo_set_rx_mode = tc35815_set_multicast_list,
752 .ndo_tx_timeout = tc35815_tx_timeout,
753 .ndo_do_ioctl = phy_do_ioctl_running,
754 .ndo_validate_addr = eth_validate_addr,
755 .ndo_set_mac_address = eth_mac_addr,
756#ifdef CONFIG_NET_POLL_CONTROLLER
757 .ndo_poll_controller = tc35815_poll_controller,
758#endif
759};
760
761static int tc35815_init_one(struct pci_dev *pdev,
762 const struct pci_device_id *ent)
763{
764 void __iomem *ioaddr = NULL;
765 struct net_device *dev;
766 struct tc35815_local *lp;
767 int rc;
768
769 static int printed_version;
770 if (!printed_version++) {
771 printk(version);
772 dev_printk(KERN_DEBUG, &pdev->dev,
773 "speed:%d duplex:%d\n",
774 options.speed, options.duplex);
775 }
776
777 if (!pdev->irq) {
778 dev_warn(&pdev->dev, "no IRQ assigned.\n");
779 return -ENODEV;
780 }
781
782 /* dev zeroed in alloc_etherdev */
783 dev = alloc_etherdev(sizeof(*lp));
784 if (dev == NULL)
785 return -ENOMEM;
786
787 SET_NETDEV_DEV(dev, &pdev->dev);
788 lp = netdev_priv(dev);
789 lp->dev = dev;
790
791 /* enable device (incl. PCI PM wakeup), and bus-mastering */
792 rc = pcim_enable_device(pdev);
793 if (rc)
794 goto err_out;
795 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
796 if (rc)
797 goto err_out;
798 pci_set_master(pdev);
799 ioaddr = pcim_iomap_table(pdev)[1];
800
801 /* Initialize the device structure. */
802 dev->netdev_ops = &tc35815_netdev_ops;
803 dev->ethtool_ops = &tc35815_ethtool_ops;
804 dev->watchdog_timeo = TC35815_TX_TIMEOUT;
805 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
806
807 dev->irq = pdev->irq;
808 dev->base_addr = (unsigned long)ioaddr;
809
810 INIT_WORK(&lp->restart_work, tc35815_restart_work);
811 spin_lock_init(&lp->lock);
812 spin_lock_init(&lp->rx_lock);
813 lp->pci_dev = pdev;
814 lp->chiptype = ent->driver_data;
815
816 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
817 pci_set_drvdata(pdev, dev);
818
819 /* Soft reset the chip. */
820 tc35815_chip_reset(dev);
821
822 /* Retrieve the ethernet address. */
823 if (tc35815_init_dev_addr(dev)) {
824 dev_warn(&pdev->dev, "not valid ether addr\n");
825 eth_hw_addr_random(dev);
826 }
827
828 rc = register_netdev(dev);
829 if (rc)
830 goto err_out;
831
832 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
833 dev->name,
834 chip_info[ent->driver_data].name,
835 dev->base_addr,
836 dev->dev_addr,
837 dev->irq);
838
839 rc = tc_mii_init(dev);
840 if (rc)
841 goto err_out_unregister;
842
843 return 0;
844
845err_out_unregister:
846 unregister_netdev(dev);
847err_out:
848 free_netdev(dev);
849 return rc;
850}
851
852
853static void tc35815_remove_one(struct pci_dev *pdev)
854{
855 struct net_device *dev = pci_get_drvdata(pdev);
856 struct tc35815_local *lp = netdev_priv(dev);
857
858 phy_disconnect(dev->phydev);
859 mdiobus_unregister(lp->mii_bus);
860 mdiobus_free(lp->mii_bus);
861 unregister_netdev(dev);
862 free_netdev(dev);
863}
864
865static int
866tc35815_init_queues(struct net_device *dev)
867{
868 struct tc35815_local *lp = netdev_priv(dev);
869 int i;
870 unsigned long fd_addr;
871
872 if (!lp->fd_buf) {
873 BUG_ON(sizeof(struct FDesc) +
874 sizeof(struct BDesc) * RX_BUF_NUM +
875 sizeof(struct FDesc) * RX_FD_NUM +
876 sizeof(struct TxFD) * TX_FD_NUM >
877 PAGE_SIZE * FD_PAGE_NUM);
878
879 lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
880 PAGE_SIZE * FD_PAGE_NUM,
881 &lp->fd_buf_dma, GFP_ATOMIC);
882 if (!lp->fd_buf)
883 return -ENOMEM;
884 for (i = 0; i < RX_BUF_NUM; i++) {
885 lp->rx_skbs[i].skb =
886 alloc_rxbuf_skb(dev, lp->pci_dev,
887 &lp->rx_skbs[i].skb_dma);
888 if (!lp->rx_skbs[i].skb) {
889 while (--i >= 0) {
890 free_rxbuf_skb(lp->pci_dev,
891 lp->rx_skbs[i].skb,
892 lp->rx_skbs[i].skb_dma);
893 lp->rx_skbs[i].skb = NULL;
894 }
895 dma_free_coherent(&lp->pci_dev->dev,
896 PAGE_SIZE * FD_PAGE_NUM,
897 lp->fd_buf, lp->fd_buf_dma);
898 lp->fd_buf = NULL;
899 return -ENOMEM;
900 }
901 }
902 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
903 dev->name, lp->fd_buf);
904 printk("\n");
905 } else {
906 for (i = 0; i < FD_PAGE_NUM; i++)
907 clear_page((void *)((unsigned long)lp->fd_buf +
908 i * PAGE_SIZE));
909 }
910 fd_addr = (unsigned long)lp->fd_buf;
911
912 /* Free Descriptors (for Receive) */
913 lp->rfd_base = (struct RxFD *)fd_addr;
914 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
915 for (i = 0; i < RX_FD_NUM; i++)
916 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
917 lp->rfd_cur = lp->rfd_base;
918 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
919
920 /* Transmit Descriptors */
921 lp->tfd_base = (struct TxFD *)fd_addr;
922 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
923 for (i = 0; i < TX_FD_NUM; i++) {
924 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
925 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
926 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
927 }
928 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
929 lp->tfd_start = 0;
930 lp->tfd_end = 0;
931
932 /* Buffer List (for Receive) */
933 lp->fbl_ptr = (struct FrFD *)fd_addr;
934 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
935 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
936 /*
937 * move all allocated skbs to head of rx_skbs[] array.
938 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
939 * tc35815_rx() had failed.
940 */
941 lp->fbl_count = 0;
942 for (i = 0; i < RX_BUF_NUM; i++) {
943 if (lp->rx_skbs[i].skb) {
944 if (i != lp->fbl_count) {
945 lp->rx_skbs[lp->fbl_count].skb =
946 lp->rx_skbs[i].skb;
947 lp->rx_skbs[lp->fbl_count].skb_dma =
948 lp->rx_skbs[i].skb_dma;
949 }
950 lp->fbl_count++;
951 }
952 }
953 for (i = 0; i < RX_BUF_NUM; i++) {
954 if (i >= lp->fbl_count) {
955 lp->fbl_ptr->bd[i].BuffData = 0;
956 lp->fbl_ptr->bd[i].BDCtl = 0;
957 continue;
958 }
959 lp->fbl_ptr->bd[i].BuffData =
960 cpu_to_le32(lp->rx_skbs[i].skb_dma);
961 /* BDID is index of FrFD.bd[] */
962 lp->fbl_ptr->bd[i].BDCtl =
963 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
964 RX_BUF_SIZE);
965 }
966
967 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
968 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
969 return 0;
970}
971
972static void
973tc35815_clear_queues(struct net_device *dev)
974{
975 struct tc35815_local *lp = netdev_priv(dev);
976 int i;
977
978 for (i = 0; i < TX_FD_NUM; i++) {
979 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
980 struct sk_buff *skb =
981 fdsystem != 0xffffffff ?
982 lp->tx_skbs[fdsystem].skb : NULL;
983#ifdef DEBUG
984 if (lp->tx_skbs[i].skb != skb) {
985 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
986 panic_queues(dev);
987 }
988#else
989 BUG_ON(lp->tx_skbs[i].skb != skb);
990#endif
991 if (skb) {
992 dma_unmap_single(&lp->pci_dev->dev,
993 lp->tx_skbs[i].skb_dma, skb->len,
994 DMA_TO_DEVICE);
995 lp->tx_skbs[i].skb = NULL;
996 lp->tx_skbs[i].skb_dma = 0;
997 dev_kfree_skb_any(skb);
998 }
999 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1000 }
1001
1002 tc35815_init_queues(dev);
1003}
1004
1005static void
1006tc35815_free_queues(struct net_device *dev)
1007{
1008 struct tc35815_local *lp = netdev_priv(dev);
1009 int i;
1010
1011 if (lp->tfd_base) {
1012 for (i = 0; i < TX_FD_NUM; i++) {
1013 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1014 struct sk_buff *skb =
1015 fdsystem != 0xffffffff ?
1016 lp->tx_skbs[fdsystem].skb : NULL;
1017#ifdef DEBUG
1018 if (lp->tx_skbs[i].skb != skb) {
1019 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1020 panic_queues(dev);
1021 }
1022#else
1023 BUG_ON(lp->tx_skbs[i].skb != skb);
1024#endif
1025 if (skb) {
1026 dma_unmap_single(&lp->pci_dev->dev,
1027 lp->tx_skbs[i].skb_dma,
1028 skb->len, DMA_TO_DEVICE);
1029 dev_kfree_skb(skb);
1030 lp->tx_skbs[i].skb = NULL;
1031 lp->tx_skbs[i].skb_dma = 0;
1032 }
1033 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1034 }
1035 }
1036
1037 lp->rfd_base = NULL;
1038 lp->rfd_limit = NULL;
1039 lp->rfd_cur = NULL;
1040 lp->fbl_ptr = NULL;
1041
1042 for (i = 0; i < RX_BUF_NUM; i++) {
1043 if (lp->rx_skbs[i].skb) {
1044 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1045 lp->rx_skbs[i].skb_dma);
1046 lp->rx_skbs[i].skb = NULL;
1047 }
1048 }
1049 if (lp->fd_buf) {
1050 dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
1051 lp->fd_buf, lp->fd_buf_dma);
1052 lp->fd_buf = NULL;
1053 }
1054}
1055
1056static void
1057dump_txfd(struct TxFD *fd)
1058{
1059 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1060 le32_to_cpu(fd->fd.FDNext),
1061 le32_to_cpu(fd->fd.FDSystem),
1062 le32_to_cpu(fd->fd.FDStat),
1063 le32_to_cpu(fd->fd.FDCtl));
1064 printk("BD: ");
1065 printk(" %08x %08x",
1066 le32_to_cpu(fd->bd.BuffData),
1067 le32_to_cpu(fd->bd.BDCtl));
1068 printk("\n");
1069}
1070
1071static int
1072dump_rxfd(struct RxFD *fd)
1073{
1074 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1075 if (bd_count > 8)
1076 bd_count = 8;
1077 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1078 le32_to_cpu(fd->fd.FDNext),
1079 le32_to_cpu(fd->fd.FDSystem),
1080 le32_to_cpu(fd->fd.FDStat),
1081 le32_to_cpu(fd->fd.FDCtl));
1082 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1083 return 0;
1084 printk("BD: ");
1085 for (i = 0; i < bd_count; i++)
1086 printk(" %08x %08x",
1087 le32_to_cpu(fd->bd[i].BuffData),
1088 le32_to_cpu(fd->bd[i].BDCtl));
1089 printk("\n");
1090 return bd_count;
1091}
1092
1093#ifdef DEBUG
1094static void
1095dump_frfd(struct FrFD *fd)
1096{
1097 int i;
1098 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1099 le32_to_cpu(fd->fd.FDNext),
1100 le32_to_cpu(fd->fd.FDSystem),
1101 le32_to_cpu(fd->fd.FDStat),
1102 le32_to_cpu(fd->fd.FDCtl));
1103 printk("BD: ");
1104 for (i = 0; i < RX_BUF_NUM; i++)
1105 printk(" %08x %08x",
1106 le32_to_cpu(fd->bd[i].BuffData),
1107 le32_to_cpu(fd->bd[i].BDCtl));
1108 printk("\n");
1109}
1110
1111static void
1112panic_queues(struct net_device *dev)
1113{
1114 struct tc35815_local *lp = netdev_priv(dev);
1115 int i;
1116
1117 printk("TxFD base %p, start %u, end %u\n",
1118 lp->tfd_base, lp->tfd_start, lp->tfd_end);
1119 printk("RxFD base %p limit %p cur %p\n",
1120 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1121 printk("FrFD %p\n", lp->fbl_ptr);
1122 for (i = 0; i < TX_FD_NUM; i++)
1123 dump_txfd(&lp->tfd_base[i]);
1124 for (i = 0; i < RX_FD_NUM; i++) {
1125 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1126 i += (bd_count + 1) / 2; /* skip BDs */
1127 }
1128 dump_frfd(lp->fbl_ptr);
1129 panic("%s: Illegal queue state.", dev->name);
1130}
1131#endif
1132
1133static void print_eth(const u8 *add)
1134{
1135 printk(KERN_DEBUG "print_eth(%p)\n", add);
1136 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1137 add + 6, add, add[12], add[13]);
1138}
1139
1140static int tc35815_tx_full(struct net_device *dev)
1141{
1142 struct tc35815_local *lp = netdev_priv(dev);
1143 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1144}
1145
1146static void tc35815_restart(struct net_device *dev)
1147{
1148 struct tc35815_local *lp = netdev_priv(dev);
1149 int ret;
1150
1151 if (dev->phydev) {
1152 ret = phy_init_hw(dev->phydev);
1153 if (ret)
1154 printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1155 }
1156
1157 spin_lock_bh(&lp->rx_lock);
1158 spin_lock_irq(&lp->lock);
1159 tc35815_chip_reset(dev);
1160 tc35815_clear_queues(dev);
1161 tc35815_chip_init(dev);
1162 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1163 tc35815_set_multicast_list(dev);
1164 spin_unlock_irq(&lp->lock);
1165 spin_unlock_bh(&lp->rx_lock);
1166
1167 netif_wake_queue(dev);
1168}
1169
1170static void tc35815_restart_work(struct work_struct *work)
1171{
1172 struct tc35815_local *lp =
1173 container_of(work, struct tc35815_local, restart_work);
1174 struct net_device *dev = lp->dev;
1175
1176 tc35815_restart(dev);
1177}
1178
1179static void tc35815_schedule_restart(struct net_device *dev)
1180{
1181 struct tc35815_local *lp = netdev_priv(dev);
1182 struct tc35815_regs __iomem *tr =
1183 (struct tc35815_regs __iomem *)dev->base_addr;
1184 unsigned long flags;
1185
1186 /* disable interrupts */
1187 spin_lock_irqsave(&lp->lock, flags);
1188 tc_writel(0, &tr->Int_En);
1189 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1190 schedule_work(&lp->restart_work);
1191 spin_unlock_irqrestore(&lp->lock, flags);
1192}
1193
1194static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1195{
1196 struct tc35815_regs __iomem *tr =
1197 (struct tc35815_regs __iomem *)dev->base_addr;
1198
1199 printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1200 dev->name, tc_readl(&tr->Tx_Stat));
1201
1202 /* Try to restart the adaptor. */
1203 tc35815_schedule_restart(dev);
1204 dev->stats.tx_errors++;
1205}
1206
1207/*
1208 * Open/initialize the controller. This is called (in the current kernel)
1209 * sometime after booting when the 'ifconfig' program is run.
1210 *
1211 * This routine should set everything up anew at each open, even
1212 * registers that "should" only need to be set once at boot, so that
1213 * there is non-reboot way to recover if something goes wrong.
1214 */
1215static int
1216tc35815_open(struct net_device *dev)
1217{
1218 struct tc35815_local *lp = netdev_priv(dev);
1219
1220 /*
1221 * This is used if the interrupt line can turned off (shared).
1222 * See 3c503.c for an example of selecting the IRQ at config-time.
1223 */
1224 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1225 dev->name, dev))
1226 return -EAGAIN;
1227
1228 tc35815_chip_reset(dev);
1229
1230 if (tc35815_init_queues(dev) != 0) {
1231 free_irq(dev->irq, dev);
1232 return -EAGAIN;
1233 }
1234
1235 napi_enable(&lp->napi);
1236
1237 /* Reset the hardware here. Don't forget to set the station address. */
1238 spin_lock_irq(&lp->lock);
1239 tc35815_chip_init(dev);
1240 spin_unlock_irq(&lp->lock);
1241
1242 netif_carrier_off(dev);
1243 /* schedule a link state check */
1244 phy_start(dev->phydev);
1245
1246 /* We are now ready to accept transmit requeusts from
1247 * the queueing layer of the networking.
1248 */
1249 netif_start_queue(dev);
1250
1251 return 0;
1252}
1253
1254/* This will only be invoked if your driver is _not_ in XOFF state.
1255 * What this means is that you need not check it, and that this
1256 * invariant will hold if you make sure that the netif_*_queue()
1257 * calls are done at the proper times.
1258 */
1259static netdev_tx_t
1260tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1261{
1262 struct tc35815_local *lp = netdev_priv(dev);
1263 struct TxFD *txfd;
1264 unsigned long flags;
1265
1266 /* If some error occurs while trying to transmit this
1267 * packet, you should return '1' from this function.
1268 * In such a case you _may not_ do anything to the
1269 * SKB, it is still owned by the network queueing
1270 * layer when an error is returned. This means you
1271 * may not modify any SKB fields, you may not free
1272 * the SKB, etc.
1273 */
1274
1275 /* This is the most common case for modern hardware.
1276 * The spinlock protects this code from the TX complete
1277 * hardware interrupt handler. Queue flow control is
1278 * thus managed under this lock as well.
1279 */
1280 spin_lock_irqsave(&lp->lock, flags);
1281
1282 /* failsafe... (handle txdone now if half of FDs are used) */
1283 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1284 TX_FD_NUM / 2)
1285 tc35815_txdone(dev);
1286
1287 if (netif_msg_pktdata(lp))
1288 print_eth(skb->data);
1289#ifdef DEBUG
1290 if (lp->tx_skbs[lp->tfd_start].skb) {
1291 printk("%s: tx_skbs conflict.\n", dev->name);
1292 panic_queues(dev);
1293 }
1294#else
1295 BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1296#endif
1297 lp->tx_skbs[lp->tfd_start].skb = skb;
1298 lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
1299 skb->data,
1300 skb->len,
1301 DMA_TO_DEVICE);
1302
1303 /*add to ring */
1304 txfd = &lp->tfd_base[lp->tfd_start];
1305 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1306 txfd->bd.BDCtl = cpu_to_le32(skb->len);
1307 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1308 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1309
1310 if (lp->tfd_start == lp->tfd_end) {
1311 struct tc35815_regs __iomem *tr =
1312 (struct tc35815_regs __iomem *)dev->base_addr;
1313 /* Start DMA Transmitter. */
1314 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1315 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1316 if (netif_msg_tx_queued(lp)) {
1317 printk("%s: starting TxFD.\n", dev->name);
1318 dump_txfd(txfd);
1319 }
1320 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1321 } else {
1322 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1323 if (netif_msg_tx_queued(lp)) {
1324 printk("%s: queueing TxFD.\n", dev->name);
1325 dump_txfd(txfd);
1326 }
1327 }
1328 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1329
1330 /* If we just used up the very last entry in the
1331 * TX ring on this device, tell the queueing
1332 * layer to send no more.
1333 */
1334 if (tc35815_tx_full(dev)) {
1335 if (netif_msg_tx_queued(lp))
1336 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1337 netif_stop_queue(dev);
1338 }
1339
1340 /* When the TX completion hw interrupt arrives, this
1341 * is when the transmit statistics are updated.
1342 */
1343
1344 spin_unlock_irqrestore(&lp->lock, flags);
1345 return NETDEV_TX_OK;
1346}
1347
1348#define FATAL_ERROR_INT \
1349 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1350static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1351{
1352 static int count;
1353 printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1354 dev->name, status);
1355 if (status & Int_IntPCI)
1356 printk(" IntPCI");
1357 if (status & Int_DmParErr)
1358 printk(" DmParErr");
1359 if (status & Int_IntNRAbt)
1360 printk(" IntNRAbt");
1361 printk("\n");
1362 if (count++ > 100)
1363 panic("%s: Too many fatal errors.", dev->name);
1364 printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1365 /* Try to restart the adaptor. */
1366 tc35815_schedule_restart(dev);
1367}
1368
1369static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1370{
1371 struct tc35815_local *lp = netdev_priv(dev);
1372 int ret = -1;
1373
1374 /* Fatal errors... */
1375 if (status & FATAL_ERROR_INT) {
1376 tc35815_fatal_error_interrupt(dev, status);
1377 return 0;
1378 }
1379 /* recoverable errors */
1380 if (status & Int_IntFDAEx) {
1381 if (netif_msg_rx_err(lp))
1382 dev_warn(&dev->dev,
1383 "Free Descriptor Area Exhausted (%#x).\n",
1384 status);
1385 dev->stats.rx_dropped++;
1386 ret = 0;
1387 }
1388 if (status & Int_IntBLEx) {
1389 if (netif_msg_rx_err(lp))
1390 dev_warn(&dev->dev,
1391 "Buffer List Exhausted (%#x).\n",
1392 status);
1393 dev->stats.rx_dropped++;
1394 ret = 0;
1395 }
1396 if (status & Int_IntExBD) {
1397 if (netif_msg_rx_err(lp))
1398 dev_warn(&dev->dev,
1399 "Excessive Buffer Descriptors (%#x).\n",
1400 status);
1401 dev->stats.rx_length_errors++;
1402 ret = 0;
1403 }
1404
1405 /* normal notification */
1406 if (status & Int_IntMacRx) {
1407 /* Got a packet(s). */
1408 ret = tc35815_rx(dev, limit);
1409 lp->lstats.rx_ints++;
1410 }
1411 if (status & Int_IntMacTx) {
1412 /* Transmit complete. */
1413 lp->lstats.tx_ints++;
1414 spin_lock_irq(&lp->lock);
1415 tc35815_txdone(dev);
1416 spin_unlock_irq(&lp->lock);
1417 if (ret < 0)
1418 ret = 0;
1419 }
1420 return ret;
1421}
1422
1423/*
1424 * The typical workload of the driver:
1425 * Handle the network interface interrupts.
1426 */
1427static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1428{
1429 struct net_device *dev = dev_id;
1430 struct tc35815_local *lp = netdev_priv(dev);
1431 struct tc35815_regs __iomem *tr =
1432 (struct tc35815_regs __iomem *)dev->base_addr;
1433 u32 dmactl = tc_readl(&tr->DMA_Ctl);
1434
1435 if (!(dmactl & DMA_IntMask)) {
1436 /* disable interrupts */
1437 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1438 if (napi_schedule_prep(&lp->napi))
1439 __napi_schedule(&lp->napi);
1440 else {
1441 printk(KERN_ERR "%s: interrupt taken in poll\n",
1442 dev->name);
1443 BUG();
1444 }
1445 (void)tc_readl(&tr->Int_Src); /* flush */
1446 return IRQ_HANDLED;
1447 }
1448 return IRQ_NONE;
1449}
1450
1451#ifdef CONFIG_NET_POLL_CONTROLLER
1452static void tc35815_poll_controller(struct net_device *dev)
1453{
1454 disable_irq(dev->irq);
1455 tc35815_interrupt(dev->irq, dev);
1456 enable_irq(dev->irq);
1457}
1458#endif
1459
1460/* We have a good packet(s), get it/them out of the buffers. */
1461static int
1462tc35815_rx(struct net_device *dev, int limit)
1463{
1464 struct tc35815_local *lp = netdev_priv(dev);
1465 unsigned int fdctl;
1466 int i;
1467 int received = 0;
1468
1469 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1470 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1471 int pkt_len = fdctl & FD_FDLength_MASK;
1472 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1473#ifdef DEBUG
1474 struct RxFD *next_rfd;
1475#endif
1476#if (RX_CTL_CMD & Rx_StripCRC) == 0
1477 pkt_len -= ETH_FCS_LEN;
1478#endif
1479
1480 if (netif_msg_rx_status(lp))
1481 dump_rxfd(lp->rfd_cur);
1482 if (status & Rx_Good) {
1483 struct sk_buff *skb;
1484 unsigned char *data;
1485 int cur_bd;
1486
1487 if (--limit < 0)
1488 break;
1489 BUG_ON(bd_count > 1);
1490 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1491 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1492#ifdef DEBUG
1493 if (cur_bd >= RX_BUF_NUM) {
1494 printk("%s: invalid BDID.\n", dev->name);
1495 panic_queues(dev);
1496 }
1497 BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1498 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1499 if (!lp->rx_skbs[cur_bd].skb) {
1500 printk("%s: NULL skb.\n", dev->name);
1501 panic_queues(dev);
1502 }
1503#else
1504 BUG_ON(cur_bd >= RX_BUF_NUM);
1505#endif
1506 skb = lp->rx_skbs[cur_bd].skb;
1507 prefetch(skb->data);
1508 lp->rx_skbs[cur_bd].skb = NULL;
1509 dma_unmap_single(&lp->pci_dev->dev,
1510 lp->rx_skbs[cur_bd].skb_dma,
1511 RX_BUF_SIZE, DMA_FROM_DEVICE);
1512 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1513 memmove(skb->data, skb->data - NET_IP_ALIGN,
1514 pkt_len);
1515 data = skb_put(skb, pkt_len);
1516 if (netif_msg_pktdata(lp))
1517 print_eth(data);
1518 skb->protocol = eth_type_trans(skb, dev);
1519 netif_receive_skb(skb);
1520 received++;
1521 dev->stats.rx_packets++;
1522 dev->stats.rx_bytes += pkt_len;
1523 } else {
1524 dev->stats.rx_errors++;
1525 if (netif_msg_rx_err(lp))
1526 dev_info(&dev->dev, "Rx error (status %x)\n",
1527 status & Rx_Stat_Mask);
1528 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1529 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1530 status &= ~(Rx_LongErr|Rx_CRCErr);
1531 status |= Rx_Over;
1532 }
1533 if (status & Rx_LongErr)
1534 dev->stats.rx_length_errors++;
1535 if (status & Rx_Over)
1536 dev->stats.rx_fifo_errors++;
1537 if (status & Rx_CRCErr)
1538 dev->stats.rx_crc_errors++;
1539 if (status & Rx_Align)
1540 dev->stats.rx_frame_errors++;
1541 }
1542
1543 if (bd_count > 0) {
1544 /* put Free Buffer back to controller */
1545 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1546 unsigned char id =
1547 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1548#ifdef DEBUG
1549 if (id >= RX_BUF_NUM) {
1550 printk("%s: invalid BDID.\n", dev->name);
1551 panic_queues(dev);
1552 }
1553#else
1554 BUG_ON(id >= RX_BUF_NUM);
1555#endif
1556 /* free old buffers */
1557 lp->fbl_count--;
1558 while (lp->fbl_count < RX_BUF_NUM)
1559 {
1560 unsigned char curid =
1561 (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1562 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1563#ifdef DEBUG
1564 bdctl = le32_to_cpu(bd->BDCtl);
1565 if (bdctl & BD_CownsBD) {
1566 printk("%s: Freeing invalid BD.\n",
1567 dev->name);
1568 panic_queues(dev);
1569 }
1570#endif
1571 /* pass BD to controller */
1572 if (!lp->rx_skbs[curid].skb) {
1573 lp->rx_skbs[curid].skb =
1574 alloc_rxbuf_skb(dev,
1575 lp->pci_dev,
1576 &lp->rx_skbs[curid].skb_dma);
1577 if (!lp->rx_skbs[curid].skb)
1578 break; /* try on next reception */
1579 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1580 }
1581 /* Note: BDLength was modified by chip. */
1582 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1583 (curid << BD_RxBDID_SHIFT) |
1584 RX_BUF_SIZE);
1585 lp->fbl_count++;
1586 }
1587 }
1588
1589 /* put RxFD back to controller */
1590#ifdef DEBUG
1591 next_rfd = fd_bus_to_virt(lp,
1592 le32_to_cpu(lp->rfd_cur->fd.FDNext));
1593 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1594 printk("%s: RxFD FDNext invalid.\n", dev->name);
1595 panic_queues(dev);
1596 }
1597#endif
1598 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1599 /* pass FD to controller */
1600#ifdef DEBUG
1601 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1602#else
1603 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1604#endif
1605 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1606 lp->rfd_cur++;
1607 }
1608 if (lp->rfd_cur > lp->rfd_limit)
1609 lp->rfd_cur = lp->rfd_base;
1610#ifdef DEBUG
1611 if (lp->rfd_cur != next_rfd)
1612 printk("rfd_cur = %p, next_rfd %p\n",
1613 lp->rfd_cur, next_rfd);
1614#endif
1615 }
1616
1617 return received;
1618}
1619
1620static int tc35815_poll(struct napi_struct *napi, int budget)
1621{
1622 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1623 struct net_device *dev = lp->dev;
1624 struct tc35815_regs __iomem *tr =
1625 (struct tc35815_regs __iomem *)dev->base_addr;
1626 int received = 0, handled;
1627 u32 status;
1628
1629 if (budget <= 0)
1630 return received;
1631
1632 spin_lock(&lp->rx_lock);
1633 status = tc_readl(&tr->Int_Src);
1634 do {
1635 /* BLEx, FDAEx will be cleared later */
1636 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1637 &tr->Int_Src); /* write to clear */
1638
1639 handled = tc35815_do_interrupt(dev, status, budget - received);
1640 if (status & (Int_BLEx | Int_FDAEx))
1641 tc_writel(status & (Int_BLEx | Int_FDAEx),
1642 &tr->Int_Src);
1643 if (handled >= 0) {
1644 received += handled;
1645 if (received >= budget)
1646 break;
1647 }
1648 status = tc_readl(&tr->Int_Src);
1649 } while (status);
1650 spin_unlock(&lp->rx_lock);
1651
1652 if (received < budget) {
1653 napi_complete_done(napi, received);
1654 /* enable interrupts */
1655 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1656 }
1657 return received;
1658}
1659
1660#define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1661
1662static void
1663tc35815_check_tx_stat(struct net_device *dev, int status)
1664{
1665 struct tc35815_local *lp = netdev_priv(dev);
1666 const char *msg = NULL;
1667
1668 /* count collisions */
1669 if (status & Tx_ExColl)
1670 dev->stats.collisions += 16;
1671 if (status & Tx_TxColl_MASK)
1672 dev->stats.collisions += status & Tx_TxColl_MASK;
1673
1674 /* TX4939 does not have NCarr */
1675 if (lp->chiptype == TC35815_TX4939)
1676 status &= ~Tx_NCarr;
1677 /* WORKAROUND: ignore LostCrS in full duplex operation */
1678 if (!lp->link || lp->duplex == DUPLEX_FULL)
1679 status &= ~Tx_NCarr;
1680
1681 if (!(status & TX_STA_ERR)) {
1682 /* no error. */
1683 dev->stats.tx_packets++;
1684 return;
1685 }
1686
1687 dev->stats.tx_errors++;
1688 if (status & Tx_ExColl) {
1689 dev->stats.tx_aborted_errors++;
1690 msg = "Excessive Collision.";
1691 }
1692 if (status & Tx_Under) {
1693 dev->stats.tx_fifo_errors++;
1694 msg = "Tx FIFO Underrun.";
1695 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1696 lp->lstats.tx_underrun++;
1697 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1698 struct tc35815_regs __iomem *tr =
1699 (struct tc35815_regs __iomem *)dev->base_addr;
1700 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1701 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1702 }
1703 }
1704 }
1705 if (status & Tx_Defer) {
1706 dev->stats.tx_fifo_errors++;
1707 msg = "Excessive Deferral.";
1708 }
1709 if (status & Tx_NCarr) {
1710 dev->stats.tx_carrier_errors++;
1711 msg = "Lost Carrier Sense.";
1712 }
1713 if (status & Tx_LateColl) {
1714 dev->stats.tx_aborted_errors++;
1715 msg = "Late Collision.";
1716 }
1717 if (status & Tx_TxPar) {
1718 dev->stats.tx_fifo_errors++;
1719 msg = "Transmit Parity Error.";
1720 }
1721 if (status & Tx_SQErr) {
1722 dev->stats.tx_heartbeat_errors++;
1723 msg = "Signal Quality Error.";
1724 }
1725 if (msg && netif_msg_tx_err(lp))
1726 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1727}
1728
1729/* This handles TX complete events posted by the device
1730 * via interrupts.
1731 */
1732static void
1733tc35815_txdone(struct net_device *dev)
1734{
1735 struct tc35815_local *lp = netdev_priv(dev);
1736 struct TxFD *txfd;
1737 unsigned int fdctl;
1738
1739 txfd = &lp->tfd_base[lp->tfd_end];
1740 while (lp->tfd_start != lp->tfd_end &&
1741 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1742 int status = le32_to_cpu(txfd->fd.FDStat);
1743 struct sk_buff *skb;
1744 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1745 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1746
1747 if (netif_msg_tx_done(lp)) {
1748 printk("%s: complete TxFD.\n", dev->name);
1749 dump_txfd(txfd);
1750 }
1751 tc35815_check_tx_stat(dev, status);
1752
1753 skb = fdsystem != 0xffffffff ?
1754 lp->tx_skbs[fdsystem].skb : NULL;
1755#ifdef DEBUG
1756 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1757 printk("%s: tx_skbs mismatch.\n", dev->name);
1758 panic_queues(dev);
1759 }
1760#else
1761 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1762#endif
1763 if (skb) {
1764 dev->stats.tx_bytes += skb->len;
1765 dma_unmap_single(&lp->pci_dev->dev,
1766 lp->tx_skbs[lp->tfd_end].skb_dma,
1767 skb->len, DMA_TO_DEVICE);
1768 lp->tx_skbs[lp->tfd_end].skb = NULL;
1769 lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1770 dev_kfree_skb_any(skb);
1771 }
1772 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1773
1774 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1775 txfd = &lp->tfd_base[lp->tfd_end];
1776#ifdef DEBUG
1777 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1778 printk("%s: TxFD FDNext invalid.\n", dev->name);
1779 panic_queues(dev);
1780 }
1781#endif
1782 if (fdnext & FD_Next_EOL) {
1783 /* DMA Transmitter has been stopping... */
1784 if (lp->tfd_end != lp->tfd_start) {
1785 struct tc35815_regs __iomem *tr =
1786 (struct tc35815_regs __iomem *)dev->base_addr;
1787 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1788 struct TxFD *txhead = &lp->tfd_base[head];
1789 int qlen = (lp->tfd_start + TX_FD_NUM
1790 - lp->tfd_end) % TX_FD_NUM;
1791
1792#ifdef DEBUG
1793 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1794 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1795 panic_queues(dev);
1796 }
1797#endif
1798 /* log max queue length */
1799 if (lp->lstats.max_tx_qlen < qlen)
1800 lp->lstats.max_tx_qlen = qlen;
1801
1802
1803 /* start DMA Transmitter again */
1804 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1805 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1806 if (netif_msg_tx_queued(lp)) {
1807 printk("%s: start TxFD on queue.\n",
1808 dev->name);
1809 dump_txfd(txfd);
1810 }
1811 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1812 }
1813 break;
1814 }
1815 }
1816
1817 /* If we had stopped the queue due to a "tx full"
1818 * condition, and space has now been made available,
1819 * wake up the queue.
1820 */
1821 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1822 netif_wake_queue(dev);
1823}
1824
1825/* The inverse routine to tc35815_open(). */
1826static int
1827tc35815_close(struct net_device *dev)
1828{
1829 struct tc35815_local *lp = netdev_priv(dev);
1830
1831 netif_stop_queue(dev);
1832 napi_disable(&lp->napi);
1833 if (dev->phydev)
1834 phy_stop(dev->phydev);
1835 cancel_work_sync(&lp->restart_work);
1836
1837 /* Flush the Tx and disable Rx here. */
1838 tc35815_chip_reset(dev);
1839 free_irq(dev->irq, dev);
1840
1841 tc35815_free_queues(dev);
1842
1843 return 0;
1844
1845}
1846
1847/*
1848 * Get the current statistics.
1849 * This may be called with the card open or closed.
1850 */
1851static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1852{
1853 struct tc35815_regs __iomem *tr =
1854 (struct tc35815_regs __iomem *)dev->base_addr;
1855 if (netif_running(dev))
1856 /* Update the statistics from the device registers. */
1857 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1858
1859 return &dev->stats;
1860}
1861
1862static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1863{
1864 struct tc35815_local *lp = netdev_priv(dev);
1865 struct tc35815_regs __iomem *tr =
1866 (struct tc35815_regs __iomem *)dev->base_addr;
1867 int cam_index = index * 6;
1868 u32 cam_data;
1869 u32 saved_addr;
1870
1871 saved_addr = tc_readl(&tr->CAM_Adr);
1872
1873 if (netif_msg_hw(lp))
1874 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1875 dev->name, index, addr);
1876 if (index & 1) {
1877 /* read modify write */
1878 tc_writel(cam_index - 2, &tr->CAM_Adr);
1879 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1880 cam_data |= addr[0] << 8 | addr[1];
1881 tc_writel(cam_data, &tr->CAM_Data);
1882 /* write whole word */
1883 tc_writel(cam_index + 2, &tr->CAM_Adr);
1884 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1885 tc_writel(cam_data, &tr->CAM_Data);
1886 } else {
1887 /* write whole word */
1888 tc_writel(cam_index, &tr->CAM_Adr);
1889 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1890 tc_writel(cam_data, &tr->CAM_Data);
1891 /* read modify write */
1892 tc_writel(cam_index + 4, &tr->CAM_Adr);
1893 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1894 cam_data |= addr[4] << 24 | (addr[5] << 16);
1895 tc_writel(cam_data, &tr->CAM_Data);
1896 }
1897
1898 tc_writel(saved_addr, &tr->CAM_Adr);
1899}
1900
1901
1902/*
1903 * Set or clear the multicast filter for this adaptor.
1904 * num_addrs == -1 Promiscuous mode, receive all packets
1905 * num_addrs == 0 Normal mode, clear multicast list
1906 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1907 * and do best-effort filtering.
1908 */
1909static void
1910tc35815_set_multicast_list(struct net_device *dev)
1911{
1912 struct tc35815_regs __iomem *tr =
1913 (struct tc35815_regs __iomem *)dev->base_addr;
1914
1915 if (dev->flags & IFF_PROMISC) {
1916 /* With some (all?) 100MHalf HUB, controller will hang
1917 * if we enabled promiscuous mode before linkup...
1918 */
1919 struct tc35815_local *lp = netdev_priv(dev);
1920
1921 if (!lp->link)
1922 return;
1923 /* Enable promiscuous mode */
1924 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1925 } else if ((dev->flags & IFF_ALLMULTI) ||
1926 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1927 /* CAM 0, 1, 20 are reserved. */
1928 /* Disable promiscuous mode, use normal mode. */
1929 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1930 } else if (!netdev_mc_empty(dev)) {
1931 struct netdev_hw_addr *ha;
1932 int i;
1933 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1934
1935 tc_writel(0, &tr->CAM_Ctl);
1936 /* Walk the address list, and load the filter */
1937 i = 0;
1938 netdev_for_each_mc_addr(ha, dev) {
1939 /* entry 0,1 is reserved. */
1940 tc35815_set_cam_entry(dev, i + 2, ha->addr);
1941 ena_bits |= CAM_Ena_Bit(i + 2);
1942 i++;
1943 }
1944 tc_writel(ena_bits, &tr->CAM_Ena);
1945 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1946 } else {
1947 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1948 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1949 }
1950}
1951
1952static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1953{
1954 struct tc35815_local *lp = netdev_priv(dev);
1955
1956 strlcpy(info->driver, MODNAME, sizeof(info->driver));
1957 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1958 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1959}
1960
1961static u32 tc35815_get_msglevel(struct net_device *dev)
1962{
1963 struct tc35815_local *lp = netdev_priv(dev);
1964 return lp->msg_enable;
1965}
1966
1967static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1968{
1969 struct tc35815_local *lp = netdev_priv(dev);
1970 lp->msg_enable = datum;
1971}
1972
1973static int tc35815_get_sset_count(struct net_device *dev, int sset)
1974{
1975 struct tc35815_local *lp = netdev_priv(dev);
1976
1977 switch (sset) {
1978 case ETH_SS_STATS:
1979 return sizeof(lp->lstats) / sizeof(int);
1980 default:
1981 return -EOPNOTSUPP;
1982 }
1983}
1984
1985static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1986{
1987 struct tc35815_local *lp = netdev_priv(dev);
1988 data[0] = lp->lstats.max_tx_qlen;
1989 data[1] = lp->lstats.tx_ints;
1990 data[2] = lp->lstats.rx_ints;
1991 data[3] = lp->lstats.tx_underrun;
1992}
1993
1994static struct {
1995 const char str[ETH_GSTRING_LEN];
1996} ethtool_stats_keys[] = {
1997 { "max_tx_qlen" },
1998 { "tx_ints" },
1999 { "rx_ints" },
2000 { "tx_underrun" },
2001};
2002
2003static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2004{
2005 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2006}
2007
2008static const struct ethtool_ops tc35815_ethtool_ops = {
2009 .get_drvinfo = tc35815_get_drvinfo,
2010 .get_link = ethtool_op_get_link,
2011 .get_msglevel = tc35815_get_msglevel,
2012 .set_msglevel = tc35815_set_msglevel,
2013 .get_strings = tc35815_get_strings,
2014 .get_sset_count = tc35815_get_sset_count,
2015 .get_ethtool_stats = tc35815_get_ethtool_stats,
2016 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2017 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2018};
2019
2020static void tc35815_chip_reset(struct net_device *dev)
2021{
2022 struct tc35815_regs __iomem *tr =
2023 (struct tc35815_regs __iomem *)dev->base_addr;
2024 int i;
2025 /* reset the controller */
2026 tc_writel(MAC_Reset, &tr->MAC_Ctl);
2027 udelay(4); /* 3200ns */
2028 i = 0;
2029 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2030 if (i++ > 100) {
2031 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2032 break;
2033 }
2034 mdelay(1);
2035 }
2036 tc_writel(0, &tr->MAC_Ctl);
2037
2038 /* initialize registers to default value */
2039 tc_writel(0, &tr->DMA_Ctl);
2040 tc_writel(0, &tr->TxThrsh);
2041 tc_writel(0, &tr->TxPollCtr);
2042 tc_writel(0, &tr->RxFragSize);
2043 tc_writel(0, &tr->Int_En);
2044 tc_writel(0, &tr->FDA_Bas);
2045 tc_writel(0, &tr->FDA_Lim);
2046 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2047 tc_writel(0, &tr->CAM_Ctl);
2048 tc_writel(0, &tr->Tx_Ctl);
2049 tc_writel(0, &tr->Rx_Ctl);
2050 tc_writel(0, &tr->CAM_Ena);
2051 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2052
2053 /* initialize internal SRAM */
2054 tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2055 for (i = 0; i < 0x1000; i += 4) {
2056 tc_writel(i, &tr->CAM_Adr);
2057 tc_writel(0, &tr->CAM_Data);
2058 }
2059 tc_writel(0, &tr->DMA_Ctl);
2060}
2061
2062static void tc35815_chip_init(struct net_device *dev)
2063{
2064 struct tc35815_local *lp = netdev_priv(dev);
2065 struct tc35815_regs __iomem *tr =
2066 (struct tc35815_regs __iomem *)dev->base_addr;
2067 unsigned long txctl = TX_CTL_CMD;
2068
2069 /* load station address to CAM */
2070 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2071
2072 /* Enable CAM (broadcast and unicast) */
2073 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2074 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2075
2076 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2077 if (HAVE_DMA_RXALIGN(lp))
2078 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2079 else
2080 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2081 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2082 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2083 tc_writel(INT_EN_CMD, &tr->Int_En);
2084
2085 /* set queues */
2086 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2087 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2088 &tr->FDA_Lim);
2089 /*
2090 * Activation method:
2091 * First, enable the MAC Transmitter and the DMA Receive circuits.
2092 * Then enable the DMA Transmitter and the MAC Receive circuits.
2093 */
2094 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2095 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2096
2097 /* start MAC transmitter */
2098 /* TX4939 does not have EnLCarr */
2099 if (lp->chiptype == TC35815_TX4939)
2100 txctl &= ~Tx_EnLCarr;
2101 /* WORKAROUND: ignore LostCrS in full duplex operation */
2102 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2103 txctl &= ~Tx_EnLCarr;
2104 tc_writel(txctl, &tr->Tx_Ctl);
2105}
2106
2107#ifdef CONFIG_PM
2108static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2109{
2110 struct net_device *dev = pci_get_drvdata(pdev);
2111 struct tc35815_local *lp = netdev_priv(dev);
2112 unsigned long flags;
2113
2114 pci_save_state(pdev);
2115 if (!netif_running(dev))
2116 return 0;
2117 netif_device_detach(dev);
2118 if (dev->phydev)
2119 phy_stop(dev->phydev);
2120 spin_lock_irqsave(&lp->lock, flags);
2121 tc35815_chip_reset(dev);
2122 spin_unlock_irqrestore(&lp->lock, flags);
2123 pci_set_power_state(pdev, PCI_D3hot);
2124 return 0;
2125}
2126
2127static int tc35815_resume(struct pci_dev *pdev)
2128{
2129 struct net_device *dev = pci_get_drvdata(pdev);
2130
2131 pci_restore_state(pdev);
2132 if (!netif_running(dev))
2133 return 0;
2134 pci_set_power_state(pdev, PCI_D0);
2135 tc35815_restart(dev);
2136 netif_carrier_off(dev);
2137 if (dev->phydev)
2138 phy_start(dev->phydev);
2139 netif_device_attach(dev);
2140 return 0;
2141}
2142#endif /* CONFIG_PM */
2143
2144static struct pci_driver tc35815_pci_driver = {
2145 .name = MODNAME,
2146 .id_table = tc35815_pci_tbl,
2147 .probe = tc35815_init_one,
2148 .remove = tc35815_remove_one,
2149#ifdef CONFIG_PM
2150 .suspend = tc35815_suspend,
2151 .resume = tc35815_resume,
2152#endif
2153};
2154
2155module_param_named(speed, options.speed, int, 0);
2156MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2157module_param_named(duplex, options.duplex, int, 0);
2158MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2159
2160module_pci_driver(tc35815_pci_driver);
2161MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2162MODULE_LICENSE("GPL");