Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* ethtool support for e1000 */
   5
   6#include <linux/netdevice.h>
   7#include <linux/interrupt.h>
   8#include <linux/ethtool.h>
   9#include <linux/pci.h>
  10#include <linux/slab.h>
  11#include <linux/delay.h>
  12#include <linux/vmalloc.h>
  13#include <linux/pm_runtime.h>
  14
  15#include "e1000.h"
  16
  17enum { NETDEV_STATS, E1000_STATS };
  18
  19struct e1000_stats {
  20	char stat_string[ETH_GSTRING_LEN];
  21	int type;
  22	int sizeof_stat;
  23	int stat_offset;
  24};
  25
  26static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
  27#define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
  28	"s0ix-enabled",
  29};
  30
  31#define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
  32
  33#define E1000_STAT(str, m) { \
  34		.stat_string = str, \
  35		.type = E1000_STATS, \
  36		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  37		.stat_offset = offsetof(struct e1000_adapter, m) }
  38#define E1000_NETDEV_STAT(str, m) { \
  39		.stat_string = str, \
  40		.type = NETDEV_STATS, \
  41		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  42		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  43
  44static const struct e1000_stats e1000_gstrings_stats[] = {
  45	E1000_STAT("rx_packets", stats.gprc),
  46	E1000_STAT("tx_packets", stats.gptc),
  47	E1000_STAT("rx_bytes", stats.gorc),
  48	E1000_STAT("tx_bytes", stats.gotc),
  49	E1000_STAT("rx_broadcast", stats.bprc),
  50	E1000_STAT("tx_broadcast", stats.bptc),
  51	E1000_STAT("rx_multicast", stats.mprc),
  52	E1000_STAT("tx_multicast", stats.mptc),
  53	E1000_NETDEV_STAT("rx_errors", rx_errors),
  54	E1000_NETDEV_STAT("tx_errors", tx_errors),
  55	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  56	E1000_STAT("multicast", stats.mprc),
  57	E1000_STAT("collisions", stats.colc),
  58	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  59	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  60	E1000_STAT("rx_crc_errors", stats.crcerrs),
  61	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  62	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  63	E1000_STAT("rx_missed_errors", stats.mpc),
  64	E1000_STAT("tx_aborted_errors", stats.ecol),
  65	E1000_STAT("tx_carrier_errors", stats.tncrs),
  66	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  67	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  68	E1000_STAT("tx_window_errors", stats.latecol),
  69	E1000_STAT("tx_abort_late_coll", stats.latecol),
  70	E1000_STAT("tx_deferred_ok", stats.dc),
  71	E1000_STAT("tx_single_coll_ok", stats.scc),
  72	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  73	E1000_STAT("tx_timeout_count", tx_timeout_count),
  74	E1000_STAT("tx_restart_queue", restart_queue),
  75	E1000_STAT("rx_long_length_errors", stats.roc),
  76	E1000_STAT("rx_short_length_errors", stats.ruc),
  77	E1000_STAT("rx_align_errors", stats.algnerrc),
  78	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  79	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  80	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  81	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  82	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  83	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  84	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  85	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  86	E1000_STAT("rx_header_split", rx_hdr_split),
  87	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  88	E1000_STAT("tx_smbus", stats.mgptc),
  89	E1000_STAT("rx_smbus", stats.mgprc),
  90	E1000_STAT("dropped_smbus", stats.mgpdc),
  91	E1000_STAT("rx_dma_failed", rx_dma_failed),
  92	E1000_STAT("tx_dma_failed", tx_dma_failed),
  93	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  94	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
  95	E1000_STAT("corr_ecc_errors", corr_errors),
  96	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  97	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  98};
  99
 100#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103	"Register test  (offline)", "Eeprom test    (offline)",
 104	"Interrupt test (offline)", "Loopback test  (offline)",
 105	"Link test   (on/offline)"
 106};
 107
 108#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 109
 110static int e1000_get_link_ksettings(struct net_device *netdev,
 111				    struct ethtool_link_ksettings *cmd)
 112{
 113	u32 speed, supported, advertising, lp_advertising, lpa_t;
 114	struct e1000_adapter *adapter = netdev_priv(netdev);
 115	struct e1000_hw *hw = &adapter->hw;
 
 116
 117	if (hw->phy.media_type == e1000_media_type_copper) {
 118		supported = (SUPPORTED_10baseT_Half |
 119			     SUPPORTED_10baseT_Full |
 120			     SUPPORTED_100baseT_Half |
 121			     SUPPORTED_100baseT_Full |
 122			     SUPPORTED_1000baseT_Full |
 123			     SUPPORTED_Asym_Pause |
 124			     SUPPORTED_Autoneg |
 125			     SUPPORTED_Pause |
 126			     SUPPORTED_TP);
 127		if (hw->phy.type == e1000_phy_ife)
 128			supported &= ~SUPPORTED_1000baseT_Full;
 129		advertising = ADVERTISED_TP;
 130
 131		if (hw->mac.autoneg == 1) {
 132			advertising |= ADVERTISED_Autoneg;
 133			/* the e1000 autoneg seems to match ethtool nicely */
 134			advertising |= hw->phy.autoneg_advertised;
 135		}
 136
 137		cmd->base.port = PORT_TP;
 138		cmd->base.phy_address = hw->phy.addr;
 139	} else {
 140		supported   = (SUPPORTED_1000baseT_Full |
 141			       SUPPORTED_FIBRE |
 142			       SUPPORTED_Autoneg);
 143
 144		advertising = (ADVERTISED_1000baseT_Full |
 145			       ADVERTISED_FIBRE |
 146			       ADVERTISED_Autoneg);
 147
 148		cmd->base.port = PORT_FIBRE;
 149	}
 150
 151	speed = SPEED_UNKNOWN;
 152	cmd->base.duplex = DUPLEX_UNKNOWN;
 153
 154	if (netif_running(netdev)) {
 155		if (netif_carrier_ok(netdev)) {
 156			speed = adapter->link_speed;
 157			cmd->base.duplex = adapter->link_duplex - 1;
 158		}
 159	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
 160		u32 status = er32(STATUS);
 161
 162		if (status & E1000_STATUS_LU) {
 163			if (status & E1000_STATUS_SPEED_1000)
 164				speed = SPEED_1000;
 165			else if (status & E1000_STATUS_SPEED_100)
 166				speed = SPEED_100;
 167			else
 168				speed = SPEED_10;
 169
 170			if (status & E1000_STATUS_FD)
 171				cmd->base.duplex = DUPLEX_FULL;
 172			else
 173				cmd->base.duplex = DUPLEX_HALF;
 174		}
 175	}
 176
 177	cmd->base.speed = speed;
 178	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 179			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 180
 181	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 182	if ((hw->phy.media_type == e1000_media_type_copper) &&
 183	    netif_carrier_ok(netdev))
 184		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
 185			ETH_TP_MDI_X : ETH_TP_MDI;
 186	else
 187		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 188
 189	if (hw->phy.mdix == AUTO_ALL_MODES)
 190		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 191	else
 192		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 193
 194	if (hw->phy.media_type != e1000_media_type_copper)
 195		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 196
 197	lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
 198	lp_advertising = lpa_t |
 199	mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
 200
 201	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 202						supported);
 203	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 204						advertising);
 205	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
 206						lp_advertising);
 207
 208	return 0;
 209}
 210
 211static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 212{
 213	struct e1000_mac_info *mac = &adapter->hw.mac;
 214
 215	mac->autoneg = 0;
 216
 217	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 218	 * for the switch() below to work
 219	 */
 220	if ((spd & 1) || (dplx & ~1))
 221		goto err_inval;
 222
 223	/* Fiber NICs only allow 1000 gbps Full duplex */
 224	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 225	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 226		goto err_inval;
 227	}
 228
 229	switch (spd + dplx) {
 230	case SPEED_10 + DUPLEX_HALF:
 231		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 232		break;
 233	case SPEED_10 + DUPLEX_FULL:
 234		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 235		break;
 236	case SPEED_100 + DUPLEX_HALF:
 237		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 238		break;
 239	case SPEED_100 + DUPLEX_FULL:
 240		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 241		break;
 242	case SPEED_1000 + DUPLEX_FULL:
 243		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 244			mac->autoneg = 1;
 245			adapter->hw.phy.autoneg_advertised =
 246				ADVERTISE_1000_FULL;
 247		} else {
 248			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 249		}
 250		break;
 251	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 252	default:
 253		goto err_inval;
 254	}
 255
 256	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 257	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 258
 259	return 0;
 260
 261err_inval:
 262	e_err("Unsupported Speed/Duplex configuration\n");
 263	return -EINVAL;
 264}
 265
 266static int e1000_set_link_ksettings(struct net_device *netdev,
 267				    const struct ethtool_link_ksettings *cmd)
 268{
 269	struct e1000_adapter *adapter = netdev_priv(netdev);
 270	struct e1000_hw *hw = &adapter->hw;
 271	int ret_val = 0;
 272	u32 advertising;
 273
 274	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 275						cmd->link_modes.advertising);
 276
 277	pm_runtime_get_sync(netdev->dev.parent);
 278
 279	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 280	 * cannot be changed
 281	 */
 282	if (hw->phy.ops.check_reset_block &&
 283	    hw->phy.ops.check_reset_block(hw)) {
 284		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 285		ret_val = -EINVAL;
 286		goto out;
 287	}
 288
 289	/* MDI setting is only allowed when autoneg enabled because
 290	 * some hardware doesn't allow MDI setting when speed or
 291	 * duplex is forced.
 292	 */
 293	if (cmd->base.eth_tp_mdix_ctrl) {
 294		if (hw->phy.media_type != e1000_media_type_copper) {
 295			ret_val = -EOPNOTSUPP;
 296			goto out;
 297		}
 298
 299		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 300		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 301			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 302			ret_val = -EINVAL;
 303			goto out;
 304		}
 305	}
 306
 307	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 308		usleep_range(1000, 2000);
 309
 310	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 311		hw->mac.autoneg = 1;
 312		if (hw->phy.media_type == e1000_media_type_fiber)
 313			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 314			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 315		else
 316			hw->phy.autoneg_advertised = advertising |
 317			    ADVERTISED_TP | ADVERTISED_Autoneg;
 318		advertising = hw->phy.autoneg_advertised;
 319		if (adapter->fc_autoneg)
 320			hw->fc.requested_mode = e1000_fc_default;
 321	} else {
 322		u32 speed = cmd->base.speed;
 323		/* calling this overrides forced MDI setting */
 324		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 325			ret_val = -EINVAL;
 326			goto out;
 327		}
 328	}
 329
 330	/* MDI-X => 2; MDI => 1; Auto => 3 */
 331	if (cmd->base.eth_tp_mdix_ctrl) {
 332		/* fix up the value for auto (3 => 0) as zero is mapped
 333		 * internally to auto
 334		 */
 335		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 336			hw->phy.mdix = AUTO_ALL_MODES;
 337		else
 338			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 339	}
 340
 341	/* reset the link */
 342	if (netif_running(adapter->netdev)) {
 343		e1000e_down(adapter, true);
 344		e1000e_up(adapter);
 345	} else {
 346		e1000e_reset(adapter);
 347	}
 348
 349out:
 350	pm_runtime_put_sync(netdev->dev.parent);
 351	clear_bit(__E1000_RESETTING, &adapter->state);
 352	return ret_val;
 353}
 354
 355static void e1000_get_pauseparam(struct net_device *netdev,
 356				 struct ethtool_pauseparam *pause)
 357{
 358	struct e1000_adapter *adapter = netdev_priv(netdev);
 359	struct e1000_hw *hw = &adapter->hw;
 360
 361	pause->autoneg =
 362	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 363
 364	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 365		pause->rx_pause = 1;
 366	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 367		pause->tx_pause = 1;
 368	} else if (hw->fc.current_mode == e1000_fc_full) {
 369		pause->rx_pause = 1;
 370		pause->tx_pause = 1;
 371	}
 372}
 373
 374static int e1000_set_pauseparam(struct net_device *netdev,
 375				struct ethtool_pauseparam *pause)
 376{
 377	struct e1000_adapter *adapter = netdev_priv(netdev);
 378	struct e1000_hw *hw = &adapter->hw;
 379	int retval = 0;
 380
 381	adapter->fc_autoneg = pause->autoneg;
 382
 383	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 384		usleep_range(1000, 2000);
 385
 386	pm_runtime_get_sync(netdev->dev.parent);
 387
 388	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 389		hw->fc.requested_mode = e1000_fc_default;
 390		if (netif_running(adapter->netdev)) {
 391			e1000e_down(adapter, true);
 392			e1000e_up(adapter);
 393		} else {
 394			e1000e_reset(adapter);
 395		}
 396	} else {
 397		if (pause->rx_pause && pause->tx_pause)
 398			hw->fc.requested_mode = e1000_fc_full;
 399		else if (pause->rx_pause && !pause->tx_pause)
 400			hw->fc.requested_mode = e1000_fc_rx_pause;
 401		else if (!pause->rx_pause && pause->tx_pause)
 402			hw->fc.requested_mode = e1000_fc_tx_pause;
 403		else if (!pause->rx_pause && !pause->tx_pause)
 404			hw->fc.requested_mode = e1000_fc_none;
 405
 406		hw->fc.current_mode = hw->fc.requested_mode;
 407
 408		if (hw->phy.media_type == e1000_media_type_fiber) {
 409			retval = hw->mac.ops.setup_link(hw);
 410			/* implicit goto out */
 411		} else {
 412			retval = e1000e_force_mac_fc(hw);
 413			if (retval)
 414				goto out;
 415			e1000e_set_fc_watermarks(hw);
 416		}
 417	}
 418
 419out:
 420	pm_runtime_put_sync(netdev->dev.parent);
 421	clear_bit(__E1000_RESETTING, &adapter->state);
 422	return retval;
 423}
 424
 425static u32 e1000_get_msglevel(struct net_device *netdev)
 426{
 427	struct e1000_adapter *adapter = netdev_priv(netdev);
 428	return adapter->msg_enable;
 429}
 430
 431static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 432{
 433	struct e1000_adapter *adapter = netdev_priv(netdev);
 434	adapter->msg_enable = data;
 435}
 436
 437static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 438{
 439#define E1000_REGS_LEN 32	/* overestimate */
 440	return E1000_REGS_LEN * sizeof(u32);
 441}
 442
 443static void e1000_get_regs(struct net_device *netdev,
 444			   struct ethtool_regs *regs, void *p)
 445{
 446	struct e1000_adapter *adapter = netdev_priv(netdev);
 447	struct e1000_hw *hw = &adapter->hw;
 448	u32 *regs_buff = p;
 449	u16 phy_data;
 450
 451	pm_runtime_get_sync(netdev->dev.parent);
 452
 453	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 454
 455	regs->version = (1u << 24) |
 456			(adapter->pdev->revision << 16) |
 457			adapter->pdev->device;
 458
 459	regs_buff[0] = er32(CTRL);
 460	regs_buff[1] = er32(STATUS);
 461
 462	regs_buff[2] = er32(RCTL);
 463	regs_buff[3] = er32(RDLEN(0));
 464	regs_buff[4] = er32(RDH(0));
 465	regs_buff[5] = er32(RDT(0));
 466	regs_buff[6] = er32(RDTR);
 467
 468	regs_buff[7] = er32(TCTL);
 469	regs_buff[8] = er32(TDLEN(0));
 470	regs_buff[9] = er32(TDH(0));
 471	regs_buff[10] = er32(TDT(0));
 472	regs_buff[11] = er32(TIDV);
 473
 474	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 475
 476	/* ethtool doesn't use anything past this point, so all this
 477	 * code is likely legacy junk for apps that may or may not exist
 478	 */
 479	if (hw->phy.type == e1000_phy_m88) {
 480		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 481		regs_buff[13] = (u32)phy_data; /* cable length */
 482		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 483		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 484		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 485		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 486		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 487		regs_buff[18] = regs_buff[13]; /* cable polarity */
 488		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 489		regs_buff[20] = regs_buff[17]; /* polarity correction */
 490		/* phy receive errors */
 491		regs_buff[22] = adapter->phy_stats.receive_errors;
 492		regs_buff[23] = regs_buff[13]; /* mdix mode */
 493	}
 494	regs_buff[21] = 0;	/* was idle_errors */
 495	e1e_rphy(hw, MII_STAT1000, &phy_data);
 496	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 497	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 498
 499	pm_runtime_put_sync(netdev->dev.parent);
 500}
 501
 502static int e1000_get_eeprom_len(struct net_device *netdev)
 503{
 504	struct e1000_adapter *adapter = netdev_priv(netdev);
 505	return adapter->hw.nvm.word_size * 2;
 506}
 507
 508static int e1000_get_eeprom(struct net_device *netdev,
 509			    struct ethtool_eeprom *eeprom, u8 *bytes)
 510{
 511	struct e1000_adapter *adapter = netdev_priv(netdev);
 512	struct e1000_hw *hw = &adapter->hw;
 513	u16 *eeprom_buff;
 514	int first_word;
 515	int last_word;
 516	int ret_val = 0;
 517	u16 i;
 518
 519	if (eeprom->len == 0)
 520		return -EINVAL;
 521
 522	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 523
 524	first_word = eeprom->offset >> 1;
 525	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 526
 527	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 528				    GFP_KERNEL);
 529	if (!eeprom_buff)
 530		return -ENOMEM;
 531
 532	pm_runtime_get_sync(netdev->dev.parent);
 533
 534	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 535		ret_val = e1000_read_nvm(hw, first_word,
 536					 last_word - first_word + 1,
 537					 eeprom_buff);
 538	} else {
 539		for (i = 0; i < last_word - first_word + 1; i++) {
 540			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 541						 &eeprom_buff[i]);
 542			if (ret_val)
 543				break;
 544		}
 545	}
 546
 547	pm_runtime_put_sync(netdev->dev.parent);
 548
 549	if (ret_val) {
 550		/* a read error occurred, throw away the result */
 551		memset(eeprom_buff, 0xff, sizeof(u16) *
 552		       (last_word - first_word + 1));
 553	} else {
 554		/* Device's eeprom is always little-endian, word addressable */
 555		for (i = 0; i < last_word - first_word + 1; i++)
 556			le16_to_cpus(&eeprom_buff[i]);
 557	}
 558
 559	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 560	kfree(eeprom_buff);
 561
 562	return ret_val;
 563}
 564
 565static int e1000_set_eeprom(struct net_device *netdev,
 566			    struct ethtool_eeprom *eeprom, u8 *bytes)
 567{
 568	struct e1000_adapter *adapter = netdev_priv(netdev);
 569	struct e1000_hw *hw = &adapter->hw;
 570	u16 *eeprom_buff;
 571	void *ptr;
 572	int max_len;
 573	int first_word;
 574	int last_word;
 575	int ret_val = 0;
 576	u16 i;
 577
 578	if (eeprom->len == 0)
 579		return -EOPNOTSUPP;
 580
 581	if (eeprom->magic !=
 582	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 583		return -EFAULT;
 584
 585	if (adapter->flags & FLAG_READ_ONLY_NVM)
 586		return -EINVAL;
 587
 588	max_len = hw->nvm.word_size * 2;
 589
 590	first_word = eeprom->offset >> 1;
 591	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 592	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 593	if (!eeprom_buff)
 594		return -ENOMEM;
 595
 596	ptr = (void *)eeprom_buff;
 597
 598	pm_runtime_get_sync(netdev->dev.parent);
 599
 600	if (eeprom->offset & 1) {
 601		/* need read/modify/write of first changed EEPROM word */
 602		/* only the second byte of the word is being modified */
 603		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 604		ptr++;
 605	}
 606	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 607		/* need read/modify/write of last changed EEPROM word */
 608		/* only the first byte of the word is being modified */
 609		ret_val = e1000_read_nvm(hw, last_word, 1,
 610					 &eeprom_buff[last_word - first_word]);
 611
 612	if (ret_val)
 613		goto out;
 614
 615	/* Device's eeprom is always little-endian, word addressable */
 616	for (i = 0; i < last_word - first_word + 1; i++)
 617		le16_to_cpus(&eeprom_buff[i]);
 618
 619	memcpy(ptr, bytes, eeprom->len);
 620
 621	for (i = 0; i < last_word - first_word + 1; i++)
 622		cpu_to_le16s(&eeprom_buff[i]);
 623
 624	ret_val = e1000_write_nvm(hw, first_word,
 625				  last_word - first_word + 1, eeprom_buff);
 626
 627	if (ret_val)
 628		goto out;
 629
 630	/* Update the checksum over the first part of the EEPROM if needed
 631	 * and flush shadow RAM for applicable controllers
 632	 */
 633	if ((first_word <= NVM_CHECKSUM_REG) ||
 634	    (hw->mac.type == e1000_82583) ||
 635	    (hw->mac.type == e1000_82574) ||
 636	    (hw->mac.type == e1000_82573))
 637		ret_val = e1000e_update_nvm_checksum(hw);
 638
 639out:
 640	pm_runtime_put_sync(netdev->dev.parent);
 641	kfree(eeprom_buff);
 642	return ret_val;
 643}
 644
 645static void e1000_get_drvinfo(struct net_device *netdev,
 646			      struct ethtool_drvinfo *drvinfo)
 647{
 648	struct e1000_adapter *adapter = netdev_priv(netdev);
 649
 650	strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 651
 652	/* EEPROM image version # is reported as firmware version # for
 653	 * PCI-E controllers
 654	 */
 655	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 656		 "%d.%d-%d",
 657		 FIELD_GET(0xF000, adapter->eeprom_vers),
 658		 FIELD_GET(0x0FF0, adapter->eeprom_vers),
 659		 (adapter->eeprom_vers & 0x000F));
 660
 661	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
 662		sizeof(drvinfo->bus_info));
 663}
 664
 665static void e1000_get_ringparam(struct net_device *netdev,
 666				struct ethtool_ringparam *ring,
 667				struct kernel_ethtool_ringparam *kernel_ring,
 668				struct netlink_ext_ack *extack)
 669{
 670	struct e1000_adapter *adapter = netdev_priv(netdev);
 671
 672	ring->rx_max_pending = E1000_MAX_RXD;
 673	ring->tx_max_pending = E1000_MAX_TXD;
 674	ring->rx_pending = adapter->rx_ring_count;
 675	ring->tx_pending = adapter->tx_ring_count;
 676}
 677
 678static int e1000_set_ringparam(struct net_device *netdev,
 679			       struct ethtool_ringparam *ring,
 680			       struct kernel_ethtool_ringparam *kernel_ring,
 681			       struct netlink_ext_ack *extack)
 682{
 683	struct e1000_adapter *adapter = netdev_priv(netdev);
 684	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 685	int err = 0, size = sizeof(struct e1000_ring);
 686	bool set_tx = false, set_rx = false;
 687	u16 new_rx_count, new_tx_count;
 688
 689	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 690		return -EINVAL;
 691
 692	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 693			       E1000_MAX_RXD);
 694	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 695
 696	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 697			       E1000_MAX_TXD);
 698	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 699
 700	if ((new_tx_count == adapter->tx_ring_count) &&
 701	    (new_rx_count == adapter->rx_ring_count))
 702		/* nothing to do */
 703		return 0;
 704
 705	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 706		usleep_range(1000, 2000);
 707
 708	if (!netif_running(adapter->netdev)) {
 709		/* Set counts now and allocate resources during open() */
 710		adapter->tx_ring->count = new_tx_count;
 711		adapter->rx_ring->count = new_rx_count;
 712		adapter->tx_ring_count = new_tx_count;
 713		adapter->rx_ring_count = new_rx_count;
 714		goto clear_reset;
 715	}
 716
 717	set_tx = (new_tx_count != adapter->tx_ring_count);
 718	set_rx = (new_rx_count != adapter->rx_ring_count);
 719
 720	/* Allocate temporary storage for ring updates */
 721	if (set_tx) {
 722		temp_tx = vmalloc(size);
 723		if (!temp_tx) {
 724			err = -ENOMEM;
 725			goto free_temp;
 726		}
 727	}
 728	if (set_rx) {
 729		temp_rx = vmalloc(size);
 730		if (!temp_rx) {
 731			err = -ENOMEM;
 732			goto free_temp;
 733		}
 734	}
 735
 736	pm_runtime_get_sync(netdev->dev.parent);
 737
 738	e1000e_down(adapter, true);
 739
 740	/* We can't just free everything and then setup again, because the
 741	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 742	 * structs.  First, attempt to allocate new resources...
 743	 */
 744	if (set_tx) {
 745		memcpy(temp_tx, adapter->tx_ring, size);
 746		temp_tx->count = new_tx_count;
 747		err = e1000e_setup_tx_resources(temp_tx);
 748		if (err)
 749			goto err_setup;
 750	}
 751	if (set_rx) {
 752		memcpy(temp_rx, adapter->rx_ring, size);
 753		temp_rx->count = new_rx_count;
 754		err = e1000e_setup_rx_resources(temp_rx);
 755		if (err)
 756			goto err_setup_rx;
 757	}
 758
 759	/* ...then free the old resources and copy back any new ring data */
 760	if (set_tx) {
 761		e1000e_free_tx_resources(adapter->tx_ring);
 762		memcpy(adapter->tx_ring, temp_tx, size);
 763		adapter->tx_ring_count = new_tx_count;
 764	}
 765	if (set_rx) {
 766		e1000e_free_rx_resources(adapter->rx_ring);
 767		memcpy(adapter->rx_ring, temp_rx, size);
 768		adapter->rx_ring_count = new_rx_count;
 769	}
 770
 771err_setup_rx:
 772	if (err && set_tx)
 773		e1000e_free_tx_resources(temp_tx);
 774err_setup:
 775	e1000e_up(adapter);
 776	pm_runtime_put_sync(netdev->dev.parent);
 777free_temp:
 778	vfree(temp_tx);
 779	vfree(temp_rx);
 780clear_reset:
 781	clear_bit(__E1000_RESETTING, &adapter->state);
 782	return err;
 783}
 784
 785static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 786			     int reg, int offset, u32 mask, u32 write)
 787{
 788	u32 pat, val;
 789	static const u32 test[] = {
 790		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 791	};
 792	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 793		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 794				      (test[pat] & write));
 795		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 796		if (val != (test[pat] & write & mask)) {
 797			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 798			      reg + (offset << 2), val,
 799			      (test[pat] & write & mask));
 800			*data = reg;
 801			return true;
 802		}
 803	}
 804	return false;
 805}
 806
 807static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 808			      int reg, u32 mask, u32 write)
 809{
 810	u32 val;
 811
 812	__ew32(&adapter->hw, reg, write & mask);
 813	val = __er32(&adapter->hw, reg);
 814	if ((write & mask) != (val & mask)) {
 815		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 816		      reg, (val & mask), (write & mask));
 817		*data = reg;
 818		return true;
 819	}
 820	return false;
 821}
 822
 823#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 824	do {                                                                   \
 825		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 826			return 1;                                              \
 827	} while (0)
 828#define REG_PATTERN_TEST(reg, mask, write)                                     \
 829	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 830
 831#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 832	do {                                                                   \
 833		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 834			return 1;                                              \
 835	} while (0)
 836
 837static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 838{
 839	struct e1000_hw *hw = &adapter->hw;
 840	struct e1000_mac_info *mac = &adapter->hw.mac;
 841	u32 value;
 842	u32 before;
 843	u32 after;
 844	u32 i;
 845	u32 toggle;
 846	u32 mask;
 847	u32 wlock_mac = 0;
 848
 849	/* The status register is Read Only, so a write should fail.
 850	 * Some bits that get toggled are ignored.  There are several bits
 851	 * on newer hardware that are r/w.
 852	 */
 853	switch (mac->type) {
 854	case e1000_82571:
 855	case e1000_82572:
 856	case e1000_80003es2lan:
 857		toggle = 0x7FFFF3FF;
 858		break;
 859	default:
 860		toggle = 0x7FFFF033;
 861		break;
 862	}
 863
 864	before = er32(STATUS);
 865	value = (er32(STATUS) & toggle);
 866	ew32(STATUS, toggle);
 867	after = er32(STATUS) & toggle;
 868	if (value != after) {
 869		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 870		      after, value);
 871		*data = 1;
 872		return 1;
 873	}
 874	/* restore previous status */
 875	ew32(STATUS, before);
 876
 877	if (!(adapter->flags & FLAG_IS_ICH)) {
 878		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 879		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 880		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 881		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 882	}
 883
 884	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 885	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 886	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 887	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 888	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 889	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 890	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 891	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 892	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 893	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 894
 895	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 896
 897	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 898	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 899	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 900
 901	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 902	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 903	if (!(adapter->flags & FLAG_IS_ICH))
 904		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 905	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 906	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 907	mask = 0x8003FFFF;
 908	switch (mac->type) {
 909	case e1000_ich10lan:
 910	case e1000_pchlan:
 911	case e1000_pch2lan:
 912	case e1000_pch_lpt:
 913	case e1000_pch_spt:
 914	case e1000_pch_cnp:
 915	case e1000_pch_tgp:
 916	case e1000_pch_adp:
 917	case e1000_pch_mtp:
 918	case e1000_pch_lnp:
 919	case e1000_pch_ptp:
 920	case e1000_pch_nvp:
 921		mask |= BIT(18);
 922		break;
 923	default:
 924		break;
 925	}
 926
 927	if (mac->type >= e1000_pch_lpt)
 928		wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
 
 929
 930	for (i = 0; i < mac->rar_entry_count; i++) {
 931		if (mac->type >= e1000_pch_lpt) {
 932			/* Cannot test write-protected SHRAL[n] registers */
 933			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 934				continue;
 935
 936			/* SHRAH[9] different than the others */
 937			if (i == 10)
 938				mask |= BIT(30);
 939			else
 940				mask &= ~BIT(30);
 941		}
 942		if (mac->type == e1000_pch2lan) {
 943			/* SHRAH[0,1,2] different than previous */
 944			if (i == 1)
 945				mask &= 0xFFF4FFFF;
 946			/* SHRAH[3] different than SHRAH[0,1,2] */
 947			if (i == 4)
 948				mask |= BIT(30);
 949			/* RAR[1-6] owned by management engine - skipping */
 950			if (i > 0)
 951				i += 6;
 952		}
 953
 954		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 955				       0xFFFFFFFF);
 956		/* reset index to actual value */
 957		if ((mac->type == e1000_pch2lan) && (i > 6))
 958			i -= 6;
 959	}
 960
 961	for (i = 0; i < mac->mta_reg_count; i++)
 962		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 963
 964	*data = 0;
 965
 966	return 0;
 967}
 968
 969static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 970{
 971	u16 temp;
 972	u16 checksum = 0;
 973	u16 i;
 974
 975	*data = 0;
 976	/* Read and add up the contents of the EEPROM */
 977	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 978		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 979			*data = 1;
 980			return *data;
 981		}
 982		checksum += temp;
 983	}
 984
 985	/* If Checksum is not Correct return error else test passed */
 986	if ((checksum != (u16)NVM_SUM) && !(*data))
 987		*data = 2;
 988
 989	return *data;
 990}
 991
 992static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 993{
 994	struct net_device *netdev = (struct net_device *)data;
 995	struct e1000_adapter *adapter = netdev_priv(netdev);
 996	struct e1000_hw *hw = &adapter->hw;
 997
 998	adapter->test_icr |= er32(ICR);
 999
1000	return IRQ_HANDLED;
1001}
1002
1003static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1004{
1005	struct net_device *netdev = adapter->netdev;
1006	struct e1000_hw *hw = &adapter->hw;
1007	u32 mask;
1008	u32 shared_int = 1;
1009	u32 irq = adapter->pdev->irq;
1010	int i;
1011	int ret_val = 0;
1012	int int_mode = E1000E_INT_MODE_LEGACY;
1013
1014	*data = 0;
1015
1016	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1017	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1018		int_mode = adapter->int_mode;
1019		e1000e_reset_interrupt_capability(adapter);
1020		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1021		e1000e_set_interrupt_capability(adapter);
1022	}
1023	/* Hook up test interrupt handler just for this test */
1024	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1025			 netdev)) {
1026		shared_int = 0;
1027	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1028			       netdev)) {
1029		*data = 1;
1030		ret_val = -1;
1031		goto out;
1032	}
1033	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1034
1035	/* Disable all the interrupts */
1036	ew32(IMC, 0xFFFFFFFF);
1037	e1e_flush();
1038	usleep_range(10000, 11000);
1039
1040	/* Test each interrupt */
1041	for (i = 0; i < 10; i++) {
1042		/* Interrupt to test */
1043		mask = BIT(i);
1044
1045		if (adapter->flags & FLAG_IS_ICH) {
1046			switch (mask) {
1047			case E1000_ICR_RXSEQ:
1048				continue;
1049			case 0x00000100:
1050				if (adapter->hw.mac.type == e1000_ich8lan ||
1051				    adapter->hw.mac.type == e1000_ich9lan)
1052					continue;
1053				break;
1054			default:
1055				break;
1056			}
1057		}
1058
1059		if (!shared_int) {
1060			/* Disable the interrupt to be reported in
1061			 * the cause register and then force the same
1062			 * interrupt and see if one gets posted.  If
1063			 * an interrupt was posted to the bus, the
1064			 * test failed.
1065			 */
1066			adapter->test_icr = 0;
1067			ew32(IMC, mask);
1068			ew32(ICS, mask);
1069			e1e_flush();
1070			usleep_range(10000, 11000);
1071
1072			if (adapter->test_icr & mask) {
1073				*data = 3;
1074				break;
1075			}
1076		}
1077
1078		/* Enable the interrupt to be reported in
1079		 * the cause register and then force the same
1080		 * interrupt and see if one gets posted.  If
1081		 * an interrupt was not posted to the bus, the
1082		 * test failed.
1083		 */
1084		adapter->test_icr = 0;
1085		ew32(IMS, mask);
1086		ew32(ICS, mask);
1087		e1e_flush();
1088		usleep_range(10000, 11000);
1089
1090		if (!(adapter->test_icr & mask)) {
1091			*data = 4;
1092			break;
1093		}
1094
1095		if (!shared_int) {
1096			/* Disable the other interrupts to be reported in
1097			 * the cause register and then force the other
1098			 * interrupts and see if any get posted.  If
1099			 * an interrupt was posted to the bus, the
1100			 * test failed.
1101			 */
1102			adapter->test_icr = 0;
1103			ew32(IMC, ~mask & 0x00007FFF);
1104			ew32(ICS, ~mask & 0x00007FFF);
1105			e1e_flush();
1106			usleep_range(10000, 11000);
1107
1108			if (adapter->test_icr) {
1109				*data = 5;
1110				break;
1111			}
1112		}
1113	}
1114
1115	/* Disable all the interrupts */
1116	ew32(IMC, 0xFFFFFFFF);
1117	e1e_flush();
1118	usleep_range(10000, 11000);
1119
1120	/* Unhook test interrupt handler */
1121	free_irq(irq, netdev);
1122
1123out:
1124	if (int_mode == E1000E_INT_MODE_MSIX) {
1125		e1000e_reset_interrupt_capability(adapter);
1126		adapter->int_mode = int_mode;
1127		e1000e_set_interrupt_capability(adapter);
1128	}
1129
1130	return ret_val;
1131}
1132
1133static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1134{
1135	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1136	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1137	struct pci_dev *pdev = adapter->pdev;
1138	struct e1000_buffer *buffer_info;
1139	int i;
1140
1141	if (tx_ring->desc && tx_ring->buffer_info) {
1142		for (i = 0; i < tx_ring->count; i++) {
1143			buffer_info = &tx_ring->buffer_info[i];
1144
1145			if (buffer_info->dma)
1146				dma_unmap_single(&pdev->dev,
1147						 buffer_info->dma,
1148						 buffer_info->length,
1149						 DMA_TO_DEVICE);
1150			dev_kfree_skb(buffer_info->skb);
1151		}
1152	}
1153
1154	if (rx_ring->desc && rx_ring->buffer_info) {
1155		for (i = 0; i < rx_ring->count; i++) {
1156			buffer_info = &rx_ring->buffer_info[i];
1157
1158			if (buffer_info->dma)
1159				dma_unmap_single(&pdev->dev,
1160						 buffer_info->dma,
1161						 2048, DMA_FROM_DEVICE);
1162			dev_kfree_skb(buffer_info->skb);
1163		}
1164	}
1165
1166	if (tx_ring->desc) {
1167		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168				  tx_ring->dma);
1169		tx_ring->desc = NULL;
1170	}
1171	if (rx_ring->desc) {
1172		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173				  rx_ring->dma);
1174		rx_ring->desc = NULL;
1175	}
1176
1177	kfree(tx_ring->buffer_info);
1178	tx_ring->buffer_info = NULL;
1179	kfree(rx_ring->buffer_info);
1180	rx_ring->buffer_info = NULL;
1181}
1182
1183static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184{
1185	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187	struct pci_dev *pdev = adapter->pdev;
1188	struct e1000_hw *hw = &adapter->hw;
1189	u32 rctl;
1190	int i;
1191	int ret_val;
1192
1193	/* Setup Tx descriptor ring and Tx buffers */
1194
1195	if (!tx_ring->count)
1196		tx_ring->count = E1000_DEFAULT_TXD;
1197
1198	tx_ring->buffer_info = kcalloc(tx_ring->count,
1199				       sizeof(struct e1000_buffer), GFP_KERNEL);
1200	if (!tx_ring->buffer_info) {
1201		ret_val = 1;
1202		goto err_nomem;
1203	}
1204
1205	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206	tx_ring->size = ALIGN(tx_ring->size, 4096);
1207	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208					   &tx_ring->dma, GFP_KERNEL);
1209	if (!tx_ring->desc) {
1210		ret_val = 2;
1211		goto err_nomem;
1212	}
1213	tx_ring->next_to_use = 0;
1214	tx_ring->next_to_clean = 0;
1215
1216	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219	ew32(TDH(0), 0);
1220	ew32(TDT(0), 0);
1221	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224
1225	for (i = 0; i < tx_ring->count; i++) {
1226		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227		struct sk_buff *skb;
1228		unsigned int skb_size = 1024;
1229
1230		skb = alloc_skb(skb_size, GFP_KERNEL);
1231		if (!skb) {
1232			ret_val = 3;
1233			goto err_nomem;
1234		}
1235		skb_put(skb, skb_size);
1236		tx_ring->buffer_info[i].skb = skb;
1237		tx_ring->buffer_info[i].length = skb->len;
1238		tx_ring->buffer_info[i].dma =
1239		    dma_map_single(&pdev->dev, skb->data, skb->len,
1240				   DMA_TO_DEVICE);
1241		if (dma_mapping_error(&pdev->dev,
1242				      tx_ring->buffer_info[i].dma)) {
1243			ret_val = 4;
1244			goto err_nomem;
1245		}
1246		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247		tx_desc->lower.data = cpu_to_le32(skb->len);
1248		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249						   E1000_TXD_CMD_IFCS |
1250						   E1000_TXD_CMD_RS);
1251		tx_desc->upper.data = 0;
1252	}
1253
1254	/* Setup Rx descriptor ring and Rx buffers */
1255
1256	if (!rx_ring->count)
1257		rx_ring->count = E1000_DEFAULT_RXD;
1258
1259	rx_ring->buffer_info = kcalloc(rx_ring->count,
1260				       sizeof(struct e1000_buffer), GFP_KERNEL);
1261	if (!rx_ring->buffer_info) {
1262		ret_val = 5;
1263		goto err_nomem;
1264	}
1265
1266	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268					   &rx_ring->dma, GFP_KERNEL);
1269	if (!rx_ring->desc) {
1270		ret_val = 6;
1271		goto err_nomem;
1272	}
1273	rx_ring->next_to_use = 0;
1274	rx_ring->next_to_clean = 0;
1275
1276	rctl = er32(RCTL);
1277	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281	ew32(RDLEN(0), rx_ring->size);
1282	ew32(RDH(0), 0);
1283	ew32(RDT(0), 0);
1284	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289	ew32(RCTL, rctl);
1290
1291	for (i = 0; i < rx_ring->count; i++) {
1292		union e1000_rx_desc_extended *rx_desc;
1293		struct sk_buff *skb;
1294
1295		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296		if (!skb) {
1297			ret_val = 7;
1298			goto err_nomem;
1299		}
1300		skb_reserve(skb, NET_IP_ALIGN);
1301		rx_ring->buffer_info[i].skb = skb;
1302		rx_ring->buffer_info[i].dma =
1303		    dma_map_single(&pdev->dev, skb->data, 2048,
1304				   DMA_FROM_DEVICE);
1305		if (dma_mapping_error(&pdev->dev,
1306				      rx_ring->buffer_info[i].dma)) {
1307			ret_val = 8;
1308			goto err_nomem;
1309		}
1310		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311		rx_desc->read.buffer_addr =
1312		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1313		memset(skb->data, 0x00, skb->len);
1314	}
1315
1316	return 0;
1317
1318err_nomem:
1319	e1000_free_desc_rings(adapter);
1320	return ret_val;
1321}
1322
1323static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324{
1325	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326	e1e_wphy(&adapter->hw, 29, 0x001F);
1327	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328	e1e_wphy(&adapter->hw, 29, 0x001A);
1329	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330}
1331
1332static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333{
1334	struct e1000_hw *hw = &adapter->hw;
1335	u32 ctrl_reg = 0;
1336	u16 phy_reg = 0;
1337	s32 ret_val = 0;
1338
1339	hw->mac.autoneg = 0;
1340
1341	if (hw->phy.type == e1000_phy_ife) {
1342		/* force 100, set loopback */
1343		e1e_wphy(hw, MII_BMCR, 0x6100);
1344
1345		/* Now set up the MAC to the same speed/duplex as the PHY. */
1346		ctrl_reg = er32(CTRL);
1347		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1352
1353		ew32(CTRL, ctrl_reg);
1354		e1e_flush();
1355		usleep_range(500, 1000);
1356
1357		return 0;
1358	}
1359
1360	/* Specific PHY configuration for loopback */
1361	switch (hw->phy.type) {
1362	case e1000_phy_m88:
1363		/* Auto-MDI/MDIX Off */
1364		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365		/* reset to update Auto-MDI/MDIX */
1366		e1e_wphy(hw, MII_BMCR, 0x9140);
1367		/* autoneg off */
1368		e1e_wphy(hw, MII_BMCR, 0x8140);
1369		break;
1370	case e1000_phy_gg82563:
1371		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372		break;
1373	case e1000_phy_bm:
1374		/* Set Default MAC Interface speed to 1GB */
1375		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376		phy_reg &= ~0x0007;
1377		phy_reg |= 0x006;
1378		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379		/* Assert SW reset for above settings to take effect */
1380		hw->phy.ops.commit(hw);
1381		usleep_range(1000, 2000);
1382		/* Force Full Duplex */
1383		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385		/* Set Link Up (in force link) */
1386		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388		/* Force Link */
1389		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391		/* Set Early Link Enable */
1392		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394		break;
1395	case e1000_phy_82577:
1396	case e1000_phy_82578:
1397		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1398		ret_val = hw->phy.ops.acquire(hw);
1399		if (ret_val) {
1400			e_err("Cannot setup 1Gbps loopback.\n");
1401			return ret_val;
1402		}
1403		e1000_configure_k1_ich8lan(hw, false);
1404		hw->phy.ops.release(hw);
1405		break;
1406	case e1000_phy_82579:
1407		/* Disable PHY energy detect power down */
1408		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410		/* Disable full chip energy detect */
1411		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413		/* Enable loopback on the PHY */
1414		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415		break;
1416	default:
1417		break;
1418	}
1419
1420	/* force 1000, set loopback */
1421	e1e_wphy(hw, MII_BMCR, 0x4140);
1422	msleep(250);
1423
1424	/* Now set up the MAC to the same speed/duplex as the PHY. */
1425	ctrl_reg = er32(CTRL);
1426	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1431
1432	if (adapter->flags & FLAG_IS_ICH)
1433		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1434
1435	if (hw->phy.media_type == e1000_media_type_copper &&
1436	    hw->phy.type == e1000_phy_m88) {
1437		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1438	} else {
1439		/* Set the ILOS bit on the fiber Nic if half duplex link is
1440		 * detected.
1441		 */
1442		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444	}
1445
1446	ew32(CTRL, ctrl_reg);
1447
1448	/* Disable the receiver on the PHY so when a cable is plugged in, the
1449	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450	 */
1451	if (hw->phy.type == e1000_phy_m88)
1452		e1000_phy_disable_receiver(adapter);
1453
1454	usleep_range(500, 1000);
1455
1456	return 0;
1457}
1458
1459static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460{
1461	struct e1000_hw *hw = &adapter->hw;
1462	u32 ctrl = er32(CTRL);
1463	int link;
1464
1465	/* special requirements for 82571/82572 fiber adapters */
1466
1467	/* jump through hoops to make sure link is up because serdes
1468	 * link is hardwired up
1469	 */
1470	ctrl |= E1000_CTRL_SLU;
1471	ew32(CTRL, ctrl);
1472
1473	/* disable autoneg */
1474	ctrl = er32(TXCW);
1475	ctrl &= ~BIT(31);
1476	ew32(TXCW, ctrl);
1477
1478	link = (er32(STATUS) & E1000_STATUS_LU);
1479
1480	if (!link) {
1481		/* set invert loss of signal */
1482		ctrl = er32(CTRL);
1483		ctrl |= E1000_CTRL_ILOS;
1484		ew32(CTRL, ctrl);
1485	}
1486
1487	/* special write to serdes control register to enable SerDes analog
1488	 * loopback
1489	 */
1490	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491	e1e_flush();
1492	usleep_range(10000, 11000);
1493
1494	return 0;
1495}
1496
1497/* only call this for fiber/serdes connections to es2lan */
1498static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499{
1500	struct e1000_hw *hw = &adapter->hw;
1501	u32 ctrlext = er32(CTRL_EXT);
1502	u32 ctrl = er32(CTRL);
1503
1504	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1505	 * on mac_type 80003es2lan)
1506	 */
1507	adapter->tx_fifo_head = ctrlext;
1508
1509	/* clear the serdes mode bits, putting the device into mac loopback */
1510	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511	ew32(CTRL_EXT, ctrlext);
1512
1513	/* force speed to 1000/FD, link up */
1514	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517	ew32(CTRL, ctrl);
1518
1519	/* set mac loopback */
1520	ctrl = er32(RCTL);
1521	ctrl |= E1000_RCTL_LBM_MAC;
1522	ew32(RCTL, ctrl);
1523
1524	/* set testing mode parameters (no need to reset later) */
1525#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527	ew32(KMRNCTRLSTA,
1528	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529
1530	return 0;
1531}
1532
1533static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534{
1535	struct e1000_hw *hw = &adapter->hw;
1536	u32 rctl, fext_nvm11, tarc0;
1537
1538	if (hw->mac.type >= e1000_pch_spt) {
1539		fext_nvm11 = er32(FEXTNVM11);
1540		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541		ew32(FEXTNVM11, fext_nvm11);
1542		tarc0 = er32(TARC(0));
1543		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1544		tarc0 &= 0xcfffffff;
1545		/* set bit 29 (value of MULR requests is now 2) */
1546		tarc0 |= 0x20000000;
1547		ew32(TARC(0), tarc0);
1548	}
1549	if (hw->phy.media_type == e1000_media_type_fiber ||
1550	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1551		switch (hw->mac.type) {
1552		case e1000_80003es2lan:
1553			return e1000_set_es2lan_mac_loopback(adapter);
1554		case e1000_82571:
1555		case e1000_82572:
1556			return e1000_set_82571_fiber_loopback(adapter);
1557		default:
1558			rctl = er32(RCTL);
1559			rctl |= E1000_RCTL_LBM_TCVR;
1560			ew32(RCTL, rctl);
1561			return 0;
1562		}
1563	} else if (hw->phy.media_type == e1000_media_type_copper) {
1564		return e1000_integrated_phy_loopback(adapter);
1565	}
1566
1567	return 7;
1568}
1569
1570static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571{
1572	struct e1000_hw *hw = &adapter->hw;
1573	u32 rctl, fext_nvm11, tarc0;
1574	u16 phy_reg;
1575
1576	rctl = er32(RCTL);
1577	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578	ew32(RCTL, rctl);
1579
1580	switch (hw->mac.type) {
1581	case e1000_pch_spt:
1582	case e1000_pch_cnp:
1583	case e1000_pch_tgp:
1584	case e1000_pch_adp:
1585	case e1000_pch_mtp:
1586	case e1000_pch_lnp:
1587	case e1000_pch_ptp:
1588	case e1000_pch_nvp:
1589		fext_nvm11 = er32(FEXTNVM11);
1590		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1591		ew32(FEXTNVM11, fext_nvm11);
1592		tarc0 = er32(TARC(0));
1593		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1594		/* set bit 29 (value of MULR requests is now 0) */
1595		tarc0 &= 0xcfffffff;
1596		ew32(TARC(0), tarc0);
1597		fallthrough;
1598	case e1000_80003es2lan:
1599		if (hw->phy.media_type == e1000_media_type_fiber ||
1600		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1601			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1602			ew32(CTRL_EXT, adapter->tx_fifo_head);
1603			adapter->tx_fifo_head = 0;
1604		}
1605		fallthrough;
1606	case e1000_82571:
1607	case e1000_82572:
1608		if (hw->phy.media_type == e1000_media_type_fiber ||
1609		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1610			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1611			e1e_flush();
1612			usleep_range(10000, 11000);
1613			break;
1614		}
1615		fallthrough;
1616	default:
1617		hw->mac.autoneg = 1;
1618		if (hw->phy.type == e1000_phy_gg82563)
1619			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1620		e1e_rphy(hw, MII_BMCR, &phy_reg);
1621		if (phy_reg & BMCR_LOOPBACK) {
1622			phy_reg &= ~BMCR_LOOPBACK;
1623			e1e_wphy(hw, MII_BMCR, phy_reg);
1624			if (hw->phy.ops.commit)
1625				hw->phy.ops.commit(hw);
1626		}
1627		break;
1628	}
1629}
1630
1631static void e1000_create_lbtest_frame(struct sk_buff *skb,
1632				      unsigned int frame_size)
1633{
1634	memset(skb->data, 0xFF, frame_size);
1635	frame_size &= ~1;
1636	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1637	skb->data[frame_size / 2 + 10] = 0xBE;
1638	skb->data[frame_size / 2 + 12] = 0xAF;
1639}
1640
1641static int e1000_check_lbtest_frame(struct sk_buff *skb,
1642				    unsigned int frame_size)
1643{
1644	frame_size &= ~1;
1645	if (*(skb->data + 3) == 0xFF)
1646		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1647		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1648			return 0;
1649	return 13;
1650}
1651
1652static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1653{
1654	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1655	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1656	struct pci_dev *pdev = adapter->pdev;
1657	struct e1000_hw *hw = &adapter->hw;
1658	struct e1000_buffer *buffer_info;
1659	int i, j, k, l;
1660	int lc;
1661	int good_cnt;
1662	int ret_val = 0;
1663	unsigned long time;
1664
1665	ew32(RDT(0), rx_ring->count - 1);
1666
1667	/* Calculate the loop count based on the largest descriptor ring
1668	 * The idea is to wrap the largest ring a number of times using 64
1669	 * send/receive pairs during each loop
1670	 */
1671
1672	if (rx_ring->count <= tx_ring->count)
1673		lc = ((tx_ring->count / 64) * 2) + 1;
1674	else
1675		lc = ((rx_ring->count / 64) * 2) + 1;
1676
1677	k = 0;
1678	l = 0;
1679	/* loop count loop */
1680	for (j = 0; j <= lc; j++) {
1681		/* send the packets */
1682		for (i = 0; i < 64; i++) {
1683			buffer_info = &tx_ring->buffer_info[k];
1684
1685			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1686			dma_sync_single_for_device(&pdev->dev,
1687						   buffer_info->dma,
1688						   buffer_info->length,
1689						   DMA_TO_DEVICE);
1690			k++;
1691			if (k == tx_ring->count)
1692				k = 0;
1693		}
1694		ew32(TDT(0), k);
1695		e1e_flush();
1696		msleep(200);
1697		time = jiffies;	/* set the start time for the receive */
1698		good_cnt = 0;
1699		/* receive the sent packets */
1700		do {
1701			buffer_info = &rx_ring->buffer_info[l];
1702
1703			dma_sync_single_for_cpu(&pdev->dev,
1704						buffer_info->dma, 2048,
1705						DMA_FROM_DEVICE);
1706
1707			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1708							   1024);
1709			if (!ret_val)
1710				good_cnt++;
1711			l++;
1712			if (l == rx_ring->count)
1713				l = 0;
1714			/* time + 20 msecs (200 msecs on 2.4) is more than
1715			 * enough time to complete the receives, if it's
1716			 * exceeded, break and error off
1717			 */
1718		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1719		if (good_cnt != 64) {
1720			ret_val = 13;	/* ret_val is the same as mis-compare */
1721			break;
1722		}
1723		if (time_after(jiffies, time + 20)) {
1724			ret_val = 14;	/* error code for time out error */
1725			break;
1726		}
1727	}
1728	return ret_val;
1729}
1730
1731static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1732{
1733	struct e1000_hw *hw = &adapter->hw;
1734
1735	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1736	if (hw->phy.ops.check_reset_block &&
1737	    hw->phy.ops.check_reset_block(hw)) {
1738		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1739		*data = 0;
1740		goto out;
1741	}
1742
1743	*data = e1000_setup_desc_rings(adapter);
1744	if (*data)
1745		goto out;
1746
1747	*data = e1000_setup_loopback_test(adapter);
1748	if (*data)
1749		goto err_loopback;
1750
1751	*data = e1000_run_loopback_test(adapter);
1752	e1000_loopback_cleanup(adapter);
1753
1754err_loopback:
1755	e1000_free_desc_rings(adapter);
1756out:
1757	return *data;
1758}
1759
1760static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1761{
1762	struct e1000_hw *hw = &adapter->hw;
1763
1764	*data = 0;
1765	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1766		int i = 0;
1767
1768		hw->mac.serdes_has_link = false;
1769
1770		/* On some blade server designs, link establishment
1771		 * could take as long as 2-3 minutes
1772		 */
1773		do {
1774			hw->mac.ops.check_for_link(hw);
1775			if (hw->mac.serdes_has_link)
1776				return *data;
1777			msleep(20);
1778		} while (i++ < 3750);
1779
1780		*data = 1;
1781	} else {
1782		hw->mac.ops.check_for_link(hw);
1783		if (hw->mac.autoneg)
1784			/* On some Phy/switch combinations, link establishment
1785			 * can take a few seconds more than expected.
1786			 */
1787			msleep_interruptible(5000);
1788
1789		if (!(er32(STATUS) & E1000_STATUS_LU))
1790			*data = 1;
1791	}
1792	return *data;
1793}
1794
1795static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1796				 int sset)
1797{
1798	switch (sset) {
1799	case ETH_SS_TEST:
1800		return E1000_TEST_LEN;
1801	case ETH_SS_STATS:
1802		return E1000_STATS_LEN;
1803	case ETH_SS_PRIV_FLAGS:
1804		return E1000E_PRIV_FLAGS_STR_LEN;
1805	default:
1806		return -EOPNOTSUPP;
1807	}
1808}
1809
1810static void e1000_diag_test(struct net_device *netdev,
1811			    struct ethtool_test *eth_test, u64 *data)
1812{
1813	struct e1000_adapter *adapter = netdev_priv(netdev);
1814	u16 autoneg_advertised;
1815	u8 forced_speed_duplex;
1816	u8 autoneg;
1817	bool if_running = netif_running(netdev);
1818
1819	pm_runtime_get_sync(netdev->dev.parent);
1820
1821	set_bit(__E1000_TESTING, &adapter->state);
1822
1823	if (!if_running) {
1824		/* Get control of and reset hardware */
1825		if (adapter->flags & FLAG_HAS_AMT)
1826			e1000e_get_hw_control(adapter);
1827
1828		e1000e_power_up_phy(adapter);
1829
1830		adapter->hw.phy.autoneg_wait_to_complete = 1;
1831		e1000e_reset(adapter);
1832		adapter->hw.phy.autoneg_wait_to_complete = 0;
1833	}
1834
1835	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1836		/* Offline tests */
1837
1838		/* save speed, duplex, autoneg settings */
1839		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1840		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1841		autoneg = adapter->hw.mac.autoneg;
1842
1843		e_info("offline testing starting\n");
1844
1845		if (if_running)
1846			/* indicate we're in test mode */
1847			e1000e_close(netdev);
1848
1849		if (e1000_reg_test(adapter, &data[0]))
1850			eth_test->flags |= ETH_TEST_FL_FAILED;
1851
1852		e1000e_reset(adapter);
1853		if (e1000_eeprom_test(adapter, &data[1]))
1854			eth_test->flags |= ETH_TEST_FL_FAILED;
1855
1856		e1000e_reset(adapter);
1857		if (e1000_intr_test(adapter, &data[2]))
1858			eth_test->flags |= ETH_TEST_FL_FAILED;
1859
1860		e1000e_reset(adapter);
1861		if (e1000_loopback_test(adapter, &data[3]))
1862			eth_test->flags |= ETH_TEST_FL_FAILED;
1863
1864		/* force this routine to wait until autoneg complete/timeout */
1865		adapter->hw.phy.autoneg_wait_to_complete = 1;
1866		e1000e_reset(adapter);
1867		adapter->hw.phy.autoneg_wait_to_complete = 0;
1868
1869		if (e1000_link_test(adapter, &data[4]))
1870			eth_test->flags |= ETH_TEST_FL_FAILED;
1871
1872		/* restore speed, duplex, autoneg settings */
1873		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1874		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1875		adapter->hw.mac.autoneg = autoneg;
1876		e1000e_reset(adapter);
1877
1878		clear_bit(__E1000_TESTING, &adapter->state);
1879		if (if_running)
1880			e1000e_open(netdev);
1881	} else {
1882		/* Online tests */
1883
1884		e_info("online testing starting\n");
1885
1886		/* register, eeprom, intr and loopback tests not run online */
1887		data[0] = 0;
1888		data[1] = 0;
1889		data[2] = 0;
1890		data[3] = 0;
1891
1892		if (e1000_link_test(adapter, &data[4]))
1893			eth_test->flags |= ETH_TEST_FL_FAILED;
1894
1895		clear_bit(__E1000_TESTING, &adapter->state);
1896	}
1897
1898	if (!if_running) {
1899		e1000e_reset(adapter);
1900
1901		if (adapter->flags & FLAG_HAS_AMT)
1902			e1000e_release_hw_control(adapter);
1903	}
1904
1905	msleep_interruptible(4 * 1000);
1906
1907	pm_runtime_put_sync(netdev->dev.parent);
1908}
1909
1910static void e1000_get_wol(struct net_device *netdev,
1911			  struct ethtool_wolinfo *wol)
1912{
1913	struct e1000_adapter *adapter = netdev_priv(netdev);
1914
1915	wol->supported = 0;
1916	wol->wolopts = 0;
1917
1918	if (!(adapter->flags & FLAG_HAS_WOL) ||
1919	    !device_can_wakeup(&adapter->pdev->dev))
1920		return;
1921
1922	wol->supported = WAKE_UCAST | WAKE_MCAST |
1923	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1924
1925	/* apply any specific unsupported masks here */
1926	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1927		wol->supported &= ~WAKE_UCAST;
1928
1929		if (adapter->wol & E1000_WUFC_EX)
1930			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1931	}
1932
1933	if (adapter->wol & E1000_WUFC_EX)
1934		wol->wolopts |= WAKE_UCAST;
1935	if (adapter->wol & E1000_WUFC_MC)
1936		wol->wolopts |= WAKE_MCAST;
1937	if (adapter->wol & E1000_WUFC_BC)
1938		wol->wolopts |= WAKE_BCAST;
1939	if (adapter->wol & E1000_WUFC_MAG)
1940		wol->wolopts |= WAKE_MAGIC;
1941	if (adapter->wol & E1000_WUFC_LNKC)
1942		wol->wolopts |= WAKE_PHY;
1943}
1944
1945static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1946{
1947	struct e1000_adapter *adapter = netdev_priv(netdev);
1948
1949	if (!(adapter->flags & FLAG_HAS_WOL) ||
1950	    !device_can_wakeup(&adapter->pdev->dev) ||
1951	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1952			      WAKE_MAGIC | WAKE_PHY)))
1953		return -EOPNOTSUPP;
1954
1955	/* these settings will always override what we currently have */
1956	adapter->wol = 0;
1957
1958	if (wol->wolopts & WAKE_UCAST)
1959		adapter->wol |= E1000_WUFC_EX;
1960	if (wol->wolopts & WAKE_MCAST)
1961		adapter->wol |= E1000_WUFC_MC;
1962	if (wol->wolopts & WAKE_BCAST)
1963		adapter->wol |= E1000_WUFC_BC;
1964	if (wol->wolopts & WAKE_MAGIC)
1965		adapter->wol |= E1000_WUFC_MAG;
1966	if (wol->wolopts & WAKE_PHY)
1967		adapter->wol |= E1000_WUFC_LNKC;
1968
1969	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1970
1971	return 0;
1972}
1973
1974static int e1000_set_phys_id(struct net_device *netdev,
1975			     enum ethtool_phys_id_state state)
1976{
1977	struct e1000_adapter *adapter = netdev_priv(netdev);
1978	struct e1000_hw *hw = &adapter->hw;
1979
1980	switch (state) {
1981	case ETHTOOL_ID_ACTIVE:
1982		pm_runtime_get_sync(netdev->dev.parent);
1983
1984		if (!hw->mac.ops.blink_led)
1985			return 2;	/* cycle on/off twice per second */
1986
1987		hw->mac.ops.blink_led(hw);
1988		break;
1989
1990	case ETHTOOL_ID_INACTIVE:
1991		if (hw->phy.type == e1000_phy_ife)
1992			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1993		hw->mac.ops.led_off(hw);
1994		hw->mac.ops.cleanup_led(hw);
1995		pm_runtime_put_sync(netdev->dev.parent);
1996		break;
1997
1998	case ETHTOOL_ID_ON:
1999		hw->mac.ops.led_on(hw);
2000		break;
2001
2002	case ETHTOOL_ID_OFF:
2003		hw->mac.ops.led_off(hw);
2004		break;
2005	}
2006
2007	return 0;
2008}
2009
2010static int e1000_get_coalesce(struct net_device *netdev,
2011			      struct ethtool_coalesce *ec,
2012			      struct kernel_ethtool_coalesce *kernel_coal,
2013			      struct netlink_ext_ack *extack)
2014{
2015	struct e1000_adapter *adapter = netdev_priv(netdev);
2016
2017	if (adapter->itr_setting <= 4)
2018		ec->rx_coalesce_usecs = adapter->itr_setting;
2019	else
2020		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2021
2022	return 0;
2023}
2024
2025static int e1000_set_coalesce(struct net_device *netdev,
2026			      struct ethtool_coalesce *ec,
2027			      struct kernel_ethtool_coalesce *kernel_coal,
2028			      struct netlink_ext_ack *extack)
2029{
2030	struct e1000_adapter *adapter = netdev_priv(netdev);
2031
2032	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2033	    ((ec->rx_coalesce_usecs > 4) &&
2034	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2035	    (ec->rx_coalesce_usecs == 2))
2036		return -EINVAL;
2037
2038	if (ec->rx_coalesce_usecs == 4) {
2039		adapter->itr_setting = 4;
2040		adapter->itr = adapter->itr_setting;
2041	} else if (ec->rx_coalesce_usecs <= 3) {
2042		adapter->itr = 20000;
2043		adapter->itr_setting = ec->rx_coalesce_usecs;
2044	} else {
2045		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2046		adapter->itr_setting = adapter->itr & ~3;
2047	}
2048
2049	pm_runtime_get_sync(netdev->dev.parent);
2050
2051	if (adapter->itr_setting != 0)
2052		e1000e_write_itr(adapter, adapter->itr);
2053	else
2054		e1000e_write_itr(adapter, 0);
2055
2056	pm_runtime_put_sync(netdev->dev.parent);
2057
2058	return 0;
2059}
2060
2061static int e1000_nway_reset(struct net_device *netdev)
2062{
2063	struct e1000_adapter *adapter = netdev_priv(netdev);
2064
2065	if (!netif_running(netdev))
2066		return -EAGAIN;
2067
2068	if (!adapter->hw.mac.autoneg)
2069		return -EINVAL;
2070
2071	pm_runtime_get_sync(netdev->dev.parent);
2072	e1000e_reinit_locked(adapter);
2073	pm_runtime_put_sync(netdev->dev.parent);
2074
2075	return 0;
2076}
2077
2078static void e1000_get_ethtool_stats(struct net_device *netdev,
2079				    struct ethtool_stats __always_unused *stats,
2080				    u64 *data)
2081{
2082	struct e1000_adapter *adapter = netdev_priv(netdev);
2083	struct rtnl_link_stats64 net_stats;
2084	int i;
2085	char *p = NULL;
2086
2087	pm_runtime_get_sync(netdev->dev.parent);
2088
2089	dev_get_stats(netdev, &net_stats);
2090
2091	pm_runtime_put_sync(netdev->dev.parent);
2092
2093	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2094		switch (e1000_gstrings_stats[i].type) {
2095		case NETDEV_STATS:
2096			p = (char *)&net_stats +
2097			    e1000_gstrings_stats[i].stat_offset;
2098			break;
2099		case E1000_STATS:
2100			p = (char *)adapter +
2101			    e1000_gstrings_stats[i].stat_offset;
2102			break;
2103		default:
2104			data[i] = 0;
2105			continue;
2106		}
2107
2108		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2109			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2110	}
2111}
2112
2113static void e1000_get_strings(struct net_device __always_unused *netdev,
2114			      u32 stringset, u8 *data)
2115{
2116	u8 *p = data;
2117	int i;
2118
2119	switch (stringset) {
2120	case ETH_SS_TEST:
2121		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2122		break;
2123	case ETH_SS_STATS:
2124		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2125			memcpy(p, e1000_gstrings_stats[i].stat_string,
2126			       ETH_GSTRING_LEN);
2127			p += ETH_GSTRING_LEN;
2128		}
2129		break;
2130	case ETH_SS_PRIV_FLAGS:
2131		memcpy(data, e1000e_priv_flags_strings,
2132		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2133		break;
2134	}
2135}
2136
2137static int e1000_get_rxnfc(struct net_device *netdev,
2138			   struct ethtool_rxnfc *info,
2139			   u32 __always_unused *rule_locs)
2140{
2141	info->data = 0;
2142
2143	switch (info->cmd) {
2144	case ETHTOOL_GRXFH: {
2145		struct e1000_adapter *adapter = netdev_priv(netdev);
2146		struct e1000_hw *hw = &adapter->hw;
2147		u32 mrqc;
2148
2149		pm_runtime_get_sync(netdev->dev.parent);
2150		mrqc = er32(MRQC);
2151		pm_runtime_put_sync(netdev->dev.parent);
2152
2153		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2154			return 0;
2155
2156		switch (info->flow_type) {
2157		case TCP_V4_FLOW:
2158			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2159				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2160			fallthrough;
2161		case UDP_V4_FLOW:
2162		case SCTP_V4_FLOW:
2163		case AH_ESP_V4_FLOW:
2164		case IPV4_FLOW:
2165			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2166				info->data |= RXH_IP_SRC | RXH_IP_DST;
2167			break;
2168		case TCP_V6_FLOW:
2169			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2170				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2171			fallthrough;
2172		case UDP_V6_FLOW:
2173		case SCTP_V6_FLOW:
2174		case AH_ESP_V6_FLOW:
2175		case IPV6_FLOW:
2176			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2177				info->data |= RXH_IP_SRC | RXH_IP_DST;
2178			break;
2179		default:
2180			break;
2181		}
2182		return 0;
2183	}
2184	default:
2185		return -EOPNOTSUPP;
2186	}
2187}
2188
2189static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2190{
2191	struct e1000_adapter *adapter = netdev_priv(netdev);
2192	struct e1000_hw *hw = &adapter->hw;
2193	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2194	u32 ret_val;
2195
2196	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2197		return -EOPNOTSUPP;
2198
2199	switch (hw->phy.type) {
2200	case e1000_phy_82579:
2201		cap_addr = I82579_EEE_CAPABILITY;
2202		lpa_addr = I82579_EEE_LP_ABILITY;
2203		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2204		break;
2205	case e1000_phy_i217:
2206		cap_addr = I217_EEE_CAPABILITY;
2207		lpa_addr = I217_EEE_LP_ABILITY;
2208		pcs_stat_addr = I217_EEE_PCS_STATUS;
2209		break;
2210	default:
2211		return -EOPNOTSUPP;
2212	}
2213
2214	pm_runtime_get_sync(netdev->dev.parent);
2215
2216	ret_val = hw->phy.ops.acquire(hw);
2217	if (ret_val) {
2218		pm_runtime_put_sync(netdev->dev.parent);
2219		return -EBUSY;
2220	}
2221
2222	/* EEE Capability */
2223	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2224	if (ret_val)
2225		goto release;
2226	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2227
2228	/* EEE Advertised */
2229	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2230
2231	/* EEE Link Partner Advertised */
2232	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2233	if (ret_val)
2234		goto release;
2235	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2236
2237	/* EEE PCS Status */
2238	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2239	if (ret_val)
2240		goto release;
2241	if (hw->phy.type == e1000_phy_82579)
2242		phy_data <<= 8;
2243
2244	/* Result of the EEE auto negotiation - there is no register that
2245	 * has the status of the EEE negotiation so do a best-guess based
2246	 * on whether Tx or Rx LPI indications have been received.
2247	 */
2248	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2249		edata->eee_active = true;
2250
2251	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2252	edata->tx_lpi_enabled = true;
2253	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2254
2255release:
2256	hw->phy.ops.release(hw);
2257	if (ret_val)
2258		ret_val = -ENODATA;
2259
2260	pm_runtime_put_sync(netdev->dev.parent);
2261
2262	return ret_val;
2263}
2264
2265static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2266{
2267	struct e1000_adapter *adapter = netdev_priv(netdev);
2268	struct e1000_hw *hw = &adapter->hw;
2269	struct ethtool_eee eee_curr;
2270	s32 ret_val;
2271
2272	ret_val = e1000e_get_eee(netdev, &eee_curr);
2273	if (ret_val)
2274		return ret_val;
2275
2276	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2277		e_err("Setting EEE tx-lpi is not supported\n");
2278		return -EINVAL;
2279	}
2280
2281	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2282		e_err("Setting EEE Tx LPI timer is not supported\n");
2283		return -EINVAL;
2284	}
2285
2286	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2287		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2288		return -EINVAL;
2289	}
2290
2291	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2292
2293	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2294
2295	pm_runtime_get_sync(netdev->dev.parent);
2296
2297	/* reset the link */
2298	if (netif_running(netdev))
2299		e1000e_reinit_locked(adapter);
2300	else
2301		e1000e_reset(adapter);
2302
2303	pm_runtime_put_sync(netdev->dev.parent);
2304
2305	return 0;
2306}
2307
2308static int e1000e_get_ts_info(struct net_device *netdev,
2309			      struct ethtool_ts_info *info)
2310{
2311	struct e1000_adapter *adapter = netdev_priv(netdev);
2312
2313	ethtool_op_get_ts_info(netdev, info);
2314
2315	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2316		return 0;
2317
2318	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2319				  SOF_TIMESTAMPING_RX_HARDWARE |
2320				  SOF_TIMESTAMPING_RAW_HARDWARE);
2321
2322	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2323
2324	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2325			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2326			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2327			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2328			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2329			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2330			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2331			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2332			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2333			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2334			    BIT(HWTSTAMP_FILTER_ALL));
2335
2336	if (adapter->ptp_clock)
2337		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2338
2339	return 0;
2340}
2341
2342static u32 e1000e_get_priv_flags(struct net_device *netdev)
2343{
2344	struct e1000_adapter *adapter = netdev_priv(netdev);
2345	u32 priv_flags = 0;
2346
2347	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2348		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2349
2350	return priv_flags;
2351}
2352
2353static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2354{
2355	struct e1000_adapter *adapter = netdev_priv(netdev);
2356	unsigned int flags2 = adapter->flags2;
2357
2358	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2359	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2360		struct e1000_hw *hw = &adapter->hw;
2361
2362		if (hw->mac.type < e1000_pch_cnp)
2363			return -EINVAL;
2364		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2365	}
2366
2367	if (flags2 != adapter->flags2)
2368		adapter->flags2 = flags2;
2369
2370	return 0;
2371}
2372
2373static const struct ethtool_ops e1000_ethtool_ops = {
2374	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2375	.get_drvinfo		= e1000_get_drvinfo,
2376	.get_regs_len		= e1000_get_regs_len,
2377	.get_regs		= e1000_get_regs,
2378	.get_wol		= e1000_get_wol,
2379	.set_wol		= e1000_set_wol,
2380	.get_msglevel		= e1000_get_msglevel,
2381	.set_msglevel		= e1000_set_msglevel,
2382	.nway_reset		= e1000_nway_reset,
2383	.get_link		= ethtool_op_get_link,
2384	.get_eeprom_len		= e1000_get_eeprom_len,
2385	.get_eeprom		= e1000_get_eeprom,
2386	.set_eeprom		= e1000_set_eeprom,
2387	.get_ringparam		= e1000_get_ringparam,
2388	.set_ringparam		= e1000_set_ringparam,
2389	.get_pauseparam		= e1000_get_pauseparam,
2390	.set_pauseparam		= e1000_set_pauseparam,
2391	.self_test		= e1000_diag_test,
2392	.get_strings		= e1000_get_strings,
2393	.set_phys_id		= e1000_set_phys_id,
2394	.get_ethtool_stats	= e1000_get_ethtool_stats,
2395	.get_sset_count		= e1000e_get_sset_count,
2396	.get_coalesce		= e1000_get_coalesce,
2397	.set_coalesce		= e1000_set_coalesce,
2398	.get_rxnfc		= e1000_get_rxnfc,
2399	.get_ts_info		= e1000e_get_ts_info,
2400	.get_eee		= e1000e_get_eee,
2401	.set_eee		= e1000e_set_eee,
2402	.get_link_ksettings	= e1000_get_link_ksettings,
2403	.set_link_ksettings	= e1000_set_link_ksettings,
2404	.get_priv_flags		= e1000e_get_priv_flags,
2405	.set_priv_flags		= e1000e_set_priv_flags,
2406};
2407
2408void e1000e_set_ethtool_ops(struct net_device *netdev)
2409{
2410	netdev->ethtool_ops = &e1000_ethtool_ops;
2411}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* ethtool support for e1000 */
   5
   6#include <linux/netdevice.h>
   7#include <linux/interrupt.h>
   8#include <linux/ethtool.h>
   9#include <linux/pci.h>
  10#include <linux/slab.h>
  11#include <linux/delay.h>
  12#include <linux/vmalloc.h>
  13#include <linux/pm_runtime.h>
  14
  15#include "e1000.h"
  16
  17enum { NETDEV_STATS, E1000_STATS };
  18
  19struct e1000_stats {
  20	char stat_string[ETH_GSTRING_LEN];
  21	int type;
  22	int sizeof_stat;
  23	int stat_offset;
  24};
  25
  26static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
  27#define E1000E_PRIV_FLAGS_S0IX_ENABLED	BIT(0)
  28	"s0ix-enabled",
  29};
  30
  31#define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
  32
  33#define E1000_STAT(str, m) { \
  34		.stat_string = str, \
  35		.type = E1000_STATS, \
  36		.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
  37		.stat_offset = offsetof(struct e1000_adapter, m) }
  38#define E1000_NETDEV_STAT(str, m) { \
  39		.stat_string = str, \
  40		.type = NETDEV_STATS, \
  41		.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
  42		.stat_offset = offsetof(struct rtnl_link_stats64, m) }
  43
  44static const struct e1000_stats e1000_gstrings_stats[] = {
  45	E1000_STAT("rx_packets", stats.gprc),
  46	E1000_STAT("tx_packets", stats.gptc),
  47	E1000_STAT("rx_bytes", stats.gorc),
  48	E1000_STAT("tx_bytes", stats.gotc),
  49	E1000_STAT("rx_broadcast", stats.bprc),
  50	E1000_STAT("tx_broadcast", stats.bptc),
  51	E1000_STAT("rx_multicast", stats.mprc),
  52	E1000_STAT("tx_multicast", stats.mptc),
  53	E1000_NETDEV_STAT("rx_errors", rx_errors),
  54	E1000_NETDEV_STAT("tx_errors", tx_errors),
  55	E1000_NETDEV_STAT("tx_dropped", tx_dropped),
  56	E1000_STAT("multicast", stats.mprc),
  57	E1000_STAT("collisions", stats.colc),
  58	E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
  59	E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
  60	E1000_STAT("rx_crc_errors", stats.crcerrs),
  61	E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
  62	E1000_STAT("rx_no_buffer_count", stats.rnbc),
  63	E1000_STAT("rx_missed_errors", stats.mpc),
  64	E1000_STAT("tx_aborted_errors", stats.ecol),
  65	E1000_STAT("tx_carrier_errors", stats.tncrs),
  66	E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
  67	E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
  68	E1000_STAT("tx_window_errors", stats.latecol),
  69	E1000_STAT("tx_abort_late_coll", stats.latecol),
  70	E1000_STAT("tx_deferred_ok", stats.dc),
  71	E1000_STAT("tx_single_coll_ok", stats.scc),
  72	E1000_STAT("tx_multi_coll_ok", stats.mcc),
  73	E1000_STAT("tx_timeout_count", tx_timeout_count),
  74	E1000_STAT("tx_restart_queue", restart_queue),
  75	E1000_STAT("rx_long_length_errors", stats.roc),
  76	E1000_STAT("rx_short_length_errors", stats.ruc),
  77	E1000_STAT("rx_align_errors", stats.algnerrc),
  78	E1000_STAT("tx_tcp_seg_good", stats.tsctc),
  79	E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
  80	E1000_STAT("rx_flow_control_xon", stats.xonrxc),
  81	E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
  82	E1000_STAT("tx_flow_control_xon", stats.xontxc),
  83	E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
  84	E1000_STAT("rx_csum_offload_good", hw_csum_good),
  85	E1000_STAT("rx_csum_offload_errors", hw_csum_err),
  86	E1000_STAT("rx_header_split", rx_hdr_split),
  87	E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
  88	E1000_STAT("tx_smbus", stats.mgptc),
  89	E1000_STAT("rx_smbus", stats.mgprc),
  90	E1000_STAT("dropped_smbus", stats.mgpdc),
  91	E1000_STAT("rx_dma_failed", rx_dma_failed),
  92	E1000_STAT("tx_dma_failed", tx_dma_failed),
  93	E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
  94	E1000_STAT("uncorr_ecc_errors", uncorr_errors),
  95	E1000_STAT("corr_ecc_errors", corr_errors),
  96	E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
  97	E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
  98};
  99
 100#define E1000_GLOBAL_STATS_LEN	ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103	"Register test  (offline)", "Eeprom test    (offline)",
 104	"Interrupt test (offline)", "Loopback test  (offline)",
 105	"Link test   (on/offline)"
 106};
 107
 108#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
 109
 110static int e1000_get_link_ksettings(struct net_device *netdev,
 111				    struct ethtool_link_ksettings *cmd)
 112{
 
 113	struct e1000_adapter *adapter = netdev_priv(netdev);
 114	struct e1000_hw *hw = &adapter->hw;
 115	u32 speed, supported, advertising;
 116
 117	if (hw->phy.media_type == e1000_media_type_copper) {
 118		supported = (SUPPORTED_10baseT_Half |
 119			     SUPPORTED_10baseT_Full |
 120			     SUPPORTED_100baseT_Half |
 121			     SUPPORTED_100baseT_Full |
 122			     SUPPORTED_1000baseT_Full |
 
 123			     SUPPORTED_Autoneg |
 
 124			     SUPPORTED_TP);
 125		if (hw->phy.type == e1000_phy_ife)
 126			supported &= ~SUPPORTED_1000baseT_Full;
 127		advertising = ADVERTISED_TP;
 128
 129		if (hw->mac.autoneg == 1) {
 130			advertising |= ADVERTISED_Autoneg;
 131			/* the e1000 autoneg seems to match ethtool nicely */
 132			advertising |= hw->phy.autoneg_advertised;
 133		}
 134
 135		cmd->base.port = PORT_TP;
 136		cmd->base.phy_address = hw->phy.addr;
 137	} else {
 138		supported   = (SUPPORTED_1000baseT_Full |
 139			       SUPPORTED_FIBRE |
 140			       SUPPORTED_Autoneg);
 141
 142		advertising = (ADVERTISED_1000baseT_Full |
 143			       ADVERTISED_FIBRE |
 144			       ADVERTISED_Autoneg);
 145
 146		cmd->base.port = PORT_FIBRE;
 147	}
 148
 149	speed = SPEED_UNKNOWN;
 150	cmd->base.duplex = DUPLEX_UNKNOWN;
 151
 152	if (netif_running(netdev)) {
 153		if (netif_carrier_ok(netdev)) {
 154			speed = adapter->link_speed;
 155			cmd->base.duplex = adapter->link_duplex - 1;
 156		}
 157	} else if (!pm_runtime_suspended(netdev->dev.parent)) {
 158		u32 status = er32(STATUS);
 159
 160		if (status & E1000_STATUS_LU) {
 161			if (status & E1000_STATUS_SPEED_1000)
 162				speed = SPEED_1000;
 163			else if (status & E1000_STATUS_SPEED_100)
 164				speed = SPEED_100;
 165			else
 166				speed = SPEED_10;
 167
 168			if (status & E1000_STATUS_FD)
 169				cmd->base.duplex = DUPLEX_FULL;
 170			else
 171				cmd->base.duplex = DUPLEX_HALF;
 172		}
 173	}
 174
 175	cmd->base.speed = speed;
 176	cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
 177			 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 178
 179	/* MDI-X => 2; MDI =>1; Invalid =>0 */
 180	if ((hw->phy.media_type == e1000_media_type_copper) &&
 181	    netif_carrier_ok(netdev))
 182		cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
 183			ETH_TP_MDI_X : ETH_TP_MDI;
 184	else
 185		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 186
 187	if (hw->phy.mdix == AUTO_ALL_MODES)
 188		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 189	else
 190		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
 191
 192	if (hw->phy.media_type != e1000_media_type_copper)
 193		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
 194
 
 
 
 
 195	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 196						supported);
 197	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 198						advertising);
 
 
 199
 200	return 0;
 201}
 202
 203static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
 204{
 205	struct e1000_mac_info *mac = &adapter->hw.mac;
 206
 207	mac->autoneg = 0;
 208
 209	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 210	 * for the switch() below to work
 211	 */
 212	if ((spd & 1) || (dplx & ~1))
 213		goto err_inval;
 214
 215	/* Fiber NICs only allow 1000 gbps Full duplex */
 216	if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
 217	    (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
 218		goto err_inval;
 219	}
 220
 221	switch (spd + dplx) {
 222	case SPEED_10 + DUPLEX_HALF:
 223		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 224		break;
 225	case SPEED_10 + DUPLEX_FULL:
 226		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 227		break;
 228	case SPEED_100 + DUPLEX_HALF:
 229		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 230		break;
 231	case SPEED_100 + DUPLEX_FULL:
 232		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 233		break;
 234	case SPEED_1000 + DUPLEX_FULL:
 235		if (adapter->hw.phy.media_type == e1000_media_type_copper) {
 236			mac->autoneg = 1;
 237			adapter->hw.phy.autoneg_advertised =
 238				ADVERTISE_1000_FULL;
 239		} else {
 240			mac->forced_speed_duplex = ADVERTISE_1000_FULL;
 241		}
 242		break;
 243	case SPEED_1000 + DUPLEX_HALF:	/* not supported */
 244	default:
 245		goto err_inval;
 246	}
 247
 248	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 249	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 250
 251	return 0;
 252
 253err_inval:
 254	e_err("Unsupported Speed/Duplex configuration\n");
 255	return -EINVAL;
 256}
 257
 258static int e1000_set_link_ksettings(struct net_device *netdev,
 259				    const struct ethtool_link_ksettings *cmd)
 260{
 261	struct e1000_adapter *adapter = netdev_priv(netdev);
 262	struct e1000_hw *hw = &adapter->hw;
 263	int ret_val = 0;
 264	u32 advertising;
 265
 266	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 267						cmd->link_modes.advertising);
 268
 269	pm_runtime_get_sync(netdev->dev.parent);
 270
 271	/* When SoL/IDER sessions are active, autoneg/speed/duplex
 272	 * cannot be changed
 273	 */
 274	if (hw->phy.ops.check_reset_block &&
 275	    hw->phy.ops.check_reset_block(hw)) {
 276		e_err("Cannot change link characteristics when SoL/IDER is active.\n");
 277		ret_val = -EINVAL;
 278		goto out;
 279	}
 280
 281	/* MDI setting is only allowed when autoneg enabled because
 282	 * some hardware doesn't allow MDI setting when speed or
 283	 * duplex is forced.
 284	 */
 285	if (cmd->base.eth_tp_mdix_ctrl) {
 286		if (hw->phy.media_type != e1000_media_type_copper) {
 287			ret_val = -EOPNOTSUPP;
 288			goto out;
 289		}
 290
 291		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 292		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
 293			e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 294			ret_val = -EINVAL;
 295			goto out;
 296		}
 297	}
 298
 299	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 300		usleep_range(1000, 2000);
 301
 302	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 303		hw->mac.autoneg = 1;
 304		if (hw->phy.media_type == e1000_media_type_fiber)
 305			hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
 306			    ADVERTISED_FIBRE | ADVERTISED_Autoneg;
 307		else
 308			hw->phy.autoneg_advertised = advertising |
 309			    ADVERTISED_TP | ADVERTISED_Autoneg;
 310		advertising = hw->phy.autoneg_advertised;
 311		if (adapter->fc_autoneg)
 312			hw->fc.requested_mode = e1000_fc_default;
 313	} else {
 314		u32 speed = cmd->base.speed;
 315		/* calling this overrides forced MDI setting */
 316		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 317			ret_val = -EINVAL;
 318			goto out;
 319		}
 320	}
 321
 322	/* MDI-X => 2; MDI => 1; Auto => 3 */
 323	if (cmd->base.eth_tp_mdix_ctrl) {
 324		/* fix up the value for auto (3 => 0) as zero is mapped
 325		 * internally to auto
 326		 */
 327		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 328			hw->phy.mdix = AUTO_ALL_MODES;
 329		else
 330			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
 331	}
 332
 333	/* reset the link */
 334	if (netif_running(adapter->netdev)) {
 335		e1000e_down(adapter, true);
 336		e1000e_up(adapter);
 337	} else {
 338		e1000e_reset(adapter);
 339	}
 340
 341out:
 342	pm_runtime_put_sync(netdev->dev.parent);
 343	clear_bit(__E1000_RESETTING, &adapter->state);
 344	return ret_val;
 345}
 346
 347static void e1000_get_pauseparam(struct net_device *netdev,
 348				 struct ethtool_pauseparam *pause)
 349{
 350	struct e1000_adapter *adapter = netdev_priv(netdev);
 351	struct e1000_hw *hw = &adapter->hw;
 352
 353	pause->autoneg =
 354	    (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 355
 356	if (hw->fc.current_mode == e1000_fc_rx_pause) {
 357		pause->rx_pause = 1;
 358	} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
 359		pause->tx_pause = 1;
 360	} else if (hw->fc.current_mode == e1000_fc_full) {
 361		pause->rx_pause = 1;
 362		pause->tx_pause = 1;
 363	}
 364}
 365
 366static int e1000_set_pauseparam(struct net_device *netdev,
 367				struct ethtool_pauseparam *pause)
 368{
 369	struct e1000_adapter *adapter = netdev_priv(netdev);
 370	struct e1000_hw *hw = &adapter->hw;
 371	int retval = 0;
 372
 373	adapter->fc_autoneg = pause->autoneg;
 374
 375	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 376		usleep_range(1000, 2000);
 377
 378	pm_runtime_get_sync(netdev->dev.parent);
 379
 380	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 381		hw->fc.requested_mode = e1000_fc_default;
 382		if (netif_running(adapter->netdev)) {
 383			e1000e_down(adapter, true);
 384			e1000e_up(adapter);
 385		} else {
 386			e1000e_reset(adapter);
 387		}
 388	} else {
 389		if (pause->rx_pause && pause->tx_pause)
 390			hw->fc.requested_mode = e1000_fc_full;
 391		else if (pause->rx_pause && !pause->tx_pause)
 392			hw->fc.requested_mode = e1000_fc_rx_pause;
 393		else if (!pause->rx_pause && pause->tx_pause)
 394			hw->fc.requested_mode = e1000_fc_tx_pause;
 395		else if (!pause->rx_pause && !pause->tx_pause)
 396			hw->fc.requested_mode = e1000_fc_none;
 397
 398		hw->fc.current_mode = hw->fc.requested_mode;
 399
 400		if (hw->phy.media_type == e1000_media_type_fiber) {
 401			retval = hw->mac.ops.setup_link(hw);
 402			/* implicit goto out */
 403		} else {
 404			retval = e1000e_force_mac_fc(hw);
 405			if (retval)
 406				goto out;
 407			e1000e_set_fc_watermarks(hw);
 408		}
 409	}
 410
 411out:
 412	pm_runtime_put_sync(netdev->dev.parent);
 413	clear_bit(__E1000_RESETTING, &adapter->state);
 414	return retval;
 415}
 416
 417static u32 e1000_get_msglevel(struct net_device *netdev)
 418{
 419	struct e1000_adapter *adapter = netdev_priv(netdev);
 420	return adapter->msg_enable;
 421}
 422
 423static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 424{
 425	struct e1000_adapter *adapter = netdev_priv(netdev);
 426	adapter->msg_enable = data;
 427}
 428
 429static int e1000_get_regs_len(struct net_device __always_unused *netdev)
 430{
 431#define E1000_REGS_LEN 32	/* overestimate */
 432	return E1000_REGS_LEN * sizeof(u32);
 433}
 434
 435static void e1000_get_regs(struct net_device *netdev,
 436			   struct ethtool_regs *regs, void *p)
 437{
 438	struct e1000_adapter *adapter = netdev_priv(netdev);
 439	struct e1000_hw *hw = &adapter->hw;
 440	u32 *regs_buff = p;
 441	u16 phy_data;
 442
 443	pm_runtime_get_sync(netdev->dev.parent);
 444
 445	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 446
 447	regs->version = (1u << 24) |
 448			(adapter->pdev->revision << 16) |
 449			adapter->pdev->device;
 450
 451	regs_buff[0] = er32(CTRL);
 452	regs_buff[1] = er32(STATUS);
 453
 454	regs_buff[2] = er32(RCTL);
 455	regs_buff[3] = er32(RDLEN(0));
 456	regs_buff[4] = er32(RDH(0));
 457	regs_buff[5] = er32(RDT(0));
 458	regs_buff[6] = er32(RDTR);
 459
 460	regs_buff[7] = er32(TCTL);
 461	regs_buff[8] = er32(TDLEN(0));
 462	regs_buff[9] = er32(TDH(0));
 463	regs_buff[10] = er32(TDT(0));
 464	regs_buff[11] = er32(TIDV);
 465
 466	regs_buff[12] = adapter->hw.phy.type;	/* PHY type (IGP=1, M88=0) */
 467
 468	/* ethtool doesn't use anything past this point, so all this
 469	 * code is likely legacy junk for apps that may or may not exist
 470	 */
 471	if (hw->phy.type == e1000_phy_m88) {
 472		e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 473		regs_buff[13] = (u32)phy_data; /* cable length */
 474		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 475		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 476		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 477		e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 478		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 479		regs_buff[18] = regs_buff[13]; /* cable polarity */
 480		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 481		regs_buff[20] = regs_buff[17]; /* polarity correction */
 482		/* phy receive errors */
 483		regs_buff[22] = adapter->phy_stats.receive_errors;
 484		regs_buff[23] = regs_buff[13]; /* mdix mode */
 485	}
 486	regs_buff[21] = 0;	/* was idle_errors */
 487	e1e_rphy(hw, MII_STAT1000, &phy_data);
 488	regs_buff[24] = (u32)phy_data;	/* phy local receiver status */
 489	regs_buff[25] = regs_buff[24];	/* phy remote receiver status */
 490
 491	pm_runtime_put_sync(netdev->dev.parent);
 492}
 493
 494static int e1000_get_eeprom_len(struct net_device *netdev)
 495{
 496	struct e1000_adapter *adapter = netdev_priv(netdev);
 497	return adapter->hw.nvm.word_size * 2;
 498}
 499
 500static int e1000_get_eeprom(struct net_device *netdev,
 501			    struct ethtool_eeprom *eeprom, u8 *bytes)
 502{
 503	struct e1000_adapter *adapter = netdev_priv(netdev);
 504	struct e1000_hw *hw = &adapter->hw;
 505	u16 *eeprom_buff;
 506	int first_word;
 507	int last_word;
 508	int ret_val = 0;
 509	u16 i;
 510
 511	if (eeprom->len == 0)
 512		return -EINVAL;
 513
 514	eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
 515
 516	first_word = eeprom->offset >> 1;
 517	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 518
 519	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 520				    GFP_KERNEL);
 521	if (!eeprom_buff)
 522		return -ENOMEM;
 523
 524	pm_runtime_get_sync(netdev->dev.parent);
 525
 526	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 527		ret_val = e1000_read_nvm(hw, first_word,
 528					 last_word - first_word + 1,
 529					 eeprom_buff);
 530	} else {
 531		for (i = 0; i < last_word - first_word + 1; i++) {
 532			ret_val = e1000_read_nvm(hw, first_word + i, 1,
 533						 &eeprom_buff[i]);
 534			if (ret_val)
 535				break;
 536		}
 537	}
 538
 539	pm_runtime_put_sync(netdev->dev.parent);
 540
 541	if (ret_val) {
 542		/* a read error occurred, throw away the result */
 543		memset(eeprom_buff, 0xff, sizeof(u16) *
 544		       (last_word - first_word + 1));
 545	} else {
 546		/* Device's eeprom is always little-endian, word addressable */
 547		for (i = 0; i < last_word - first_word + 1; i++)
 548			le16_to_cpus(&eeprom_buff[i]);
 549	}
 550
 551	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
 552	kfree(eeprom_buff);
 553
 554	return ret_val;
 555}
 556
 557static int e1000_set_eeprom(struct net_device *netdev,
 558			    struct ethtool_eeprom *eeprom, u8 *bytes)
 559{
 560	struct e1000_adapter *adapter = netdev_priv(netdev);
 561	struct e1000_hw *hw = &adapter->hw;
 562	u16 *eeprom_buff;
 563	void *ptr;
 564	int max_len;
 565	int first_word;
 566	int last_word;
 567	int ret_val = 0;
 568	u16 i;
 569
 570	if (eeprom->len == 0)
 571		return -EOPNOTSUPP;
 572
 573	if (eeprom->magic !=
 574	    (adapter->pdev->vendor | (adapter->pdev->device << 16)))
 575		return -EFAULT;
 576
 577	if (adapter->flags & FLAG_READ_ONLY_NVM)
 578		return -EINVAL;
 579
 580	max_len = hw->nvm.word_size * 2;
 581
 582	first_word = eeprom->offset >> 1;
 583	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 584	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 585	if (!eeprom_buff)
 586		return -ENOMEM;
 587
 588	ptr = (void *)eeprom_buff;
 589
 590	pm_runtime_get_sync(netdev->dev.parent);
 591
 592	if (eeprom->offset & 1) {
 593		/* need read/modify/write of first changed EEPROM word */
 594		/* only the second byte of the word is being modified */
 595		ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
 596		ptr++;
 597	}
 598	if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
 599		/* need read/modify/write of last changed EEPROM word */
 600		/* only the first byte of the word is being modified */
 601		ret_val = e1000_read_nvm(hw, last_word, 1,
 602					 &eeprom_buff[last_word - first_word]);
 603
 604	if (ret_val)
 605		goto out;
 606
 607	/* Device's eeprom is always little-endian, word addressable */
 608	for (i = 0; i < last_word - first_word + 1; i++)
 609		le16_to_cpus(&eeprom_buff[i]);
 610
 611	memcpy(ptr, bytes, eeprom->len);
 612
 613	for (i = 0; i < last_word - first_word + 1; i++)
 614		cpu_to_le16s(&eeprom_buff[i]);
 615
 616	ret_val = e1000_write_nvm(hw, first_word,
 617				  last_word - first_word + 1, eeprom_buff);
 618
 619	if (ret_val)
 620		goto out;
 621
 622	/* Update the checksum over the first part of the EEPROM if needed
 623	 * and flush shadow RAM for applicable controllers
 624	 */
 625	if ((first_word <= NVM_CHECKSUM_REG) ||
 626	    (hw->mac.type == e1000_82583) ||
 627	    (hw->mac.type == e1000_82574) ||
 628	    (hw->mac.type == e1000_82573))
 629		ret_val = e1000e_update_nvm_checksum(hw);
 630
 631out:
 632	pm_runtime_put_sync(netdev->dev.parent);
 633	kfree(eeprom_buff);
 634	return ret_val;
 635}
 636
 637static void e1000_get_drvinfo(struct net_device *netdev,
 638			      struct ethtool_drvinfo *drvinfo)
 639{
 640	struct e1000_adapter *adapter = netdev_priv(netdev);
 641
 642	strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
 643
 644	/* EEPROM image version # is reported as firmware version # for
 645	 * PCI-E controllers
 646	 */
 647	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
 648		 "%d.%d-%d",
 649		 (adapter->eeprom_vers & 0xF000) >> 12,
 650		 (adapter->eeprom_vers & 0x0FF0) >> 4,
 651		 (adapter->eeprom_vers & 0x000F));
 652
 653	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 654		sizeof(drvinfo->bus_info));
 655}
 656
 657static void e1000_get_ringparam(struct net_device *netdev,
 658				struct ethtool_ringparam *ring)
 
 
 659{
 660	struct e1000_adapter *adapter = netdev_priv(netdev);
 661
 662	ring->rx_max_pending = E1000_MAX_RXD;
 663	ring->tx_max_pending = E1000_MAX_TXD;
 664	ring->rx_pending = adapter->rx_ring_count;
 665	ring->tx_pending = adapter->tx_ring_count;
 666}
 667
 668static int e1000_set_ringparam(struct net_device *netdev,
 669			       struct ethtool_ringparam *ring)
 
 
 670{
 671	struct e1000_adapter *adapter = netdev_priv(netdev);
 672	struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
 673	int err = 0, size = sizeof(struct e1000_ring);
 674	bool set_tx = false, set_rx = false;
 675	u16 new_rx_count, new_tx_count;
 676
 677	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 678		return -EINVAL;
 679
 680	new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
 681			       E1000_MAX_RXD);
 682	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
 683
 684	new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
 685			       E1000_MAX_TXD);
 686	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
 687
 688	if ((new_tx_count == adapter->tx_ring_count) &&
 689	    (new_rx_count == adapter->rx_ring_count))
 690		/* nothing to do */
 691		return 0;
 692
 693	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
 694		usleep_range(1000, 2000);
 695
 696	if (!netif_running(adapter->netdev)) {
 697		/* Set counts now and allocate resources during open() */
 698		adapter->tx_ring->count = new_tx_count;
 699		adapter->rx_ring->count = new_rx_count;
 700		adapter->tx_ring_count = new_tx_count;
 701		adapter->rx_ring_count = new_rx_count;
 702		goto clear_reset;
 703	}
 704
 705	set_tx = (new_tx_count != adapter->tx_ring_count);
 706	set_rx = (new_rx_count != adapter->rx_ring_count);
 707
 708	/* Allocate temporary storage for ring updates */
 709	if (set_tx) {
 710		temp_tx = vmalloc(size);
 711		if (!temp_tx) {
 712			err = -ENOMEM;
 713			goto free_temp;
 714		}
 715	}
 716	if (set_rx) {
 717		temp_rx = vmalloc(size);
 718		if (!temp_rx) {
 719			err = -ENOMEM;
 720			goto free_temp;
 721		}
 722	}
 723
 724	pm_runtime_get_sync(netdev->dev.parent);
 725
 726	e1000e_down(adapter, true);
 727
 728	/* We can't just free everything and then setup again, because the
 729	 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
 730	 * structs.  First, attempt to allocate new resources...
 731	 */
 732	if (set_tx) {
 733		memcpy(temp_tx, adapter->tx_ring, size);
 734		temp_tx->count = new_tx_count;
 735		err = e1000e_setup_tx_resources(temp_tx);
 736		if (err)
 737			goto err_setup;
 738	}
 739	if (set_rx) {
 740		memcpy(temp_rx, adapter->rx_ring, size);
 741		temp_rx->count = new_rx_count;
 742		err = e1000e_setup_rx_resources(temp_rx);
 743		if (err)
 744			goto err_setup_rx;
 745	}
 746
 747	/* ...then free the old resources and copy back any new ring data */
 748	if (set_tx) {
 749		e1000e_free_tx_resources(adapter->tx_ring);
 750		memcpy(adapter->tx_ring, temp_tx, size);
 751		adapter->tx_ring_count = new_tx_count;
 752	}
 753	if (set_rx) {
 754		e1000e_free_rx_resources(adapter->rx_ring);
 755		memcpy(adapter->rx_ring, temp_rx, size);
 756		adapter->rx_ring_count = new_rx_count;
 757	}
 758
 759err_setup_rx:
 760	if (err && set_tx)
 761		e1000e_free_tx_resources(temp_tx);
 762err_setup:
 763	e1000e_up(adapter);
 764	pm_runtime_put_sync(netdev->dev.parent);
 765free_temp:
 766	vfree(temp_tx);
 767	vfree(temp_rx);
 768clear_reset:
 769	clear_bit(__E1000_RESETTING, &adapter->state);
 770	return err;
 771}
 772
 773static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
 774			     int reg, int offset, u32 mask, u32 write)
 775{
 776	u32 pat, val;
 777	static const u32 test[] = {
 778		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 779	};
 780	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
 781		E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
 782				      (test[pat] & write));
 783		val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
 784		if (val != (test[pat] & write & mask)) {
 785			e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 786			      reg + (offset << 2), val,
 787			      (test[pat] & write & mask));
 788			*data = reg;
 789			return true;
 790		}
 791	}
 792	return false;
 793}
 794
 795static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
 796			      int reg, u32 mask, u32 write)
 797{
 798	u32 val;
 799
 800	__ew32(&adapter->hw, reg, write & mask);
 801	val = __er32(&adapter->hw, reg);
 802	if ((write & mask) != (val & mask)) {
 803		e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
 804		      reg, (val & mask), (write & mask));
 805		*data = reg;
 806		return true;
 807	}
 808	return false;
 809}
 810
 811#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
 812	do {                                                                   \
 813		if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
 814			return 1;                                              \
 815	} while (0)
 816#define REG_PATTERN_TEST(reg, mask, write)                                     \
 817	REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
 818
 819#define REG_SET_AND_CHECK(reg, mask, write)                                    \
 820	do {                                                                   \
 821		if (reg_set_and_check(adapter, data, reg, mask, write))        \
 822			return 1;                                              \
 823	} while (0)
 824
 825static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 826{
 827	struct e1000_hw *hw = &adapter->hw;
 828	struct e1000_mac_info *mac = &adapter->hw.mac;
 829	u32 value;
 830	u32 before;
 831	u32 after;
 832	u32 i;
 833	u32 toggle;
 834	u32 mask;
 835	u32 wlock_mac = 0;
 836
 837	/* The status register is Read Only, so a write should fail.
 838	 * Some bits that get toggled are ignored.  There are several bits
 839	 * on newer hardware that are r/w.
 840	 */
 841	switch (mac->type) {
 842	case e1000_82571:
 843	case e1000_82572:
 844	case e1000_80003es2lan:
 845		toggle = 0x7FFFF3FF;
 846		break;
 847	default:
 848		toggle = 0x7FFFF033;
 849		break;
 850	}
 851
 852	before = er32(STATUS);
 853	value = (er32(STATUS) & toggle);
 854	ew32(STATUS, toggle);
 855	after = er32(STATUS) & toggle;
 856	if (value != after) {
 857		e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
 858		      after, value);
 859		*data = 1;
 860		return 1;
 861	}
 862	/* restore previous status */
 863	ew32(STATUS, before);
 864
 865	if (!(adapter->flags & FLAG_IS_ICH)) {
 866		REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 867		REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
 868		REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
 869		REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
 870	}
 871
 872	REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
 873	REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 874	REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
 875	REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
 876	REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
 877	REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
 878	REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
 879	REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 880	REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
 881	REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
 882
 883	REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
 884
 885	before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
 886	REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
 887	REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
 888
 889	REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
 890	REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 891	if (!(adapter->flags & FLAG_IS_ICH))
 892		REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
 893	REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
 894	REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
 895	mask = 0x8003FFFF;
 896	switch (mac->type) {
 897	case e1000_ich10lan:
 898	case e1000_pchlan:
 899	case e1000_pch2lan:
 900	case e1000_pch_lpt:
 901	case e1000_pch_spt:
 902	case e1000_pch_cnp:
 903	case e1000_pch_tgp:
 904	case e1000_pch_adp:
 905	case e1000_pch_mtp:
 
 
 
 906		mask |= BIT(18);
 907		break;
 908	default:
 909		break;
 910	}
 911
 912	if (mac->type >= e1000_pch_lpt)
 913		wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
 914		    E1000_FWSM_WLOCK_MAC_SHIFT;
 915
 916	for (i = 0; i < mac->rar_entry_count; i++) {
 917		if (mac->type >= e1000_pch_lpt) {
 918			/* Cannot test write-protected SHRAL[n] registers */
 919			if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
 920				continue;
 921
 922			/* SHRAH[9] different than the others */
 923			if (i == 10)
 924				mask |= BIT(30);
 925			else
 926				mask &= ~BIT(30);
 927		}
 928		if (mac->type == e1000_pch2lan) {
 929			/* SHRAH[0,1,2] different than previous */
 930			if (i == 1)
 931				mask &= 0xFFF4FFFF;
 932			/* SHRAH[3] different than SHRAH[0,1,2] */
 933			if (i == 4)
 934				mask |= BIT(30);
 935			/* RAR[1-6] owned by management engine - skipping */
 936			if (i > 0)
 937				i += 6;
 938		}
 939
 940		REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
 941				       0xFFFFFFFF);
 942		/* reset index to actual value */
 943		if ((mac->type == e1000_pch2lan) && (i > 6))
 944			i -= 6;
 945	}
 946
 947	for (i = 0; i < mac->mta_reg_count; i++)
 948		REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
 949
 950	*data = 0;
 951
 952	return 0;
 953}
 954
 955static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 956{
 957	u16 temp;
 958	u16 checksum = 0;
 959	u16 i;
 960
 961	*data = 0;
 962	/* Read and add up the contents of the EEPROM */
 963	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 964		if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
 965			*data = 1;
 966			return *data;
 967		}
 968		checksum += temp;
 969	}
 970
 971	/* If Checksum is not Correct return error else test passed */
 972	if ((checksum != (u16)NVM_SUM) && !(*data))
 973		*data = 2;
 974
 975	return *data;
 976}
 977
 978static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
 979{
 980	struct net_device *netdev = (struct net_device *)data;
 981	struct e1000_adapter *adapter = netdev_priv(netdev);
 982	struct e1000_hw *hw = &adapter->hw;
 983
 984	adapter->test_icr |= er32(ICR);
 985
 986	return IRQ_HANDLED;
 987}
 988
 989static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 990{
 991	struct net_device *netdev = adapter->netdev;
 992	struct e1000_hw *hw = &adapter->hw;
 993	u32 mask;
 994	u32 shared_int = 1;
 995	u32 irq = adapter->pdev->irq;
 996	int i;
 997	int ret_val = 0;
 998	int int_mode = E1000E_INT_MODE_LEGACY;
 999
1000	*data = 0;
1001
1002	/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1003	if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1004		int_mode = adapter->int_mode;
1005		e1000e_reset_interrupt_capability(adapter);
1006		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1007		e1000e_set_interrupt_capability(adapter);
1008	}
1009	/* Hook up test interrupt handler just for this test */
1010	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1011			 netdev)) {
1012		shared_int = 0;
1013	} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1014			       netdev)) {
1015		*data = 1;
1016		ret_val = -1;
1017		goto out;
1018	}
1019	e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1020
1021	/* Disable all the interrupts */
1022	ew32(IMC, 0xFFFFFFFF);
1023	e1e_flush();
1024	usleep_range(10000, 11000);
1025
1026	/* Test each interrupt */
1027	for (i = 0; i < 10; i++) {
1028		/* Interrupt to test */
1029		mask = BIT(i);
1030
1031		if (adapter->flags & FLAG_IS_ICH) {
1032			switch (mask) {
1033			case E1000_ICR_RXSEQ:
1034				continue;
1035			case 0x00000100:
1036				if (adapter->hw.mac.type == e1000_ich8lan ||
1037				    adapter->hw.mac.type == e1000_ich9lan)
1038					continue;
1039				break;
1040			default:
1041				break;
1042			}
1043		}
1044
1045		if (!shared_int) {
1046			/* Disable the interrupt to be reported in
1047			 * the cause register and then force the same
1048			 * interrupt and see if one gets posted.  If
1049			 * an interrupt was posted to the bus, the
1050			 * test failed.
1051			 */
1052			adapter->test_icr = 0;
1053			ew32(IMC, mask);
1054			ew32(ICS, mask);
1055			e1e_flush();
1056			usleep_range(10000, 11000);
1057
1058			if (adapter->test_icr & mask) {
1059				*data = 3;
1060				break;
1061			}
1062		}
1063
1064		/* Enable the interrupt to be reported in
1065		 * the cause register and then force the same
1066		 * interrupt and see if one gets posted.  If
1067		 * an interrupt was not posted to the bus, the
1068		 * test failed.
1069		 */
1070		adapter->test_icr = 0;
1071		ew32(IMS, mask);
1072		ew32(ICS, mask);
1073		e1e_flush();
1074		usleep_range(10000, 11000);
1075
1076		if (!(adapter->test_icr & mask)) {
1077			*data = 4;
1078			break;
1079		}
1080
1081		if (!shared_int) {
1082			/* Disable the other interrupts to be reported in
1083			 * the cause register and then force the other
1084			 * interrupts and see if any get posted.  If
1085			 * an interrupt was posted to the bus, the
1086			 * test failed.
1087			 */
1088			adapter->test_icr = 0;
1089			ew32(IMC, ~mask & 0x00007FFF);
1090			ew32(ICS, ~mask & 0x00007FFF);
1091			e1e_flush();
1092			usleep_range(10000, 11000);
1093
1094			if (adapter->test_icr) {
1095				*data = 5;
1096				break;
1097			}
1098		}
1099	}
1100
1101	/* Disable all the interrupts */
1102	ew32(IMC, 0xFFFFFFFF);
1103	e1e_flush();
1104	usleep_range(10000, 11000);
1105
1106	/* Unhook test interrupt handler */
1107	free_irq(irq, netdev);
1108
1109out:
1110	if (int_mode == E1000E_INT_MODE_MSIX) {
1111		e1000e_reset_interrupt_capability(adapter);
1112		adapter->int_mode = int_mode;
1113		e1000e_set_interrupt_capability(adapter);
1114	}
1115
1116	return ret_val;
1117}
1118
1119static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1120{
1121	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1122	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1123	struct pci_dev *pdev = adapter->pdev;
1124	struct e1000_buffer *buffer_info;
1125	int i;
1126
1127	if (tx_ring->desc && tx_ring->buffer_info) {
1128		for (i = 0; i < tx_ring->count; i++) {
1129			buffer_info = &tx_ring->buffer_info[i];
1130
1131			if (buffer_info->dma)
1132				dma_unmap_single(&pdev->dev,
1133						 buffer_info->dma,
1134						 buffer_info->length,
1135						 DMA_TO_DEVICE);
1136			dev_kfree_skb(buffer_info->skb);
1137		}
1138	}
1139
1140	if (rx_ring->desc && rx_ring->buffer_info) {
1141		for (i = 0; i < rx_ring->count; i++) {
1142			buffer_info = &rx_ring->buffer_info[i];
1143
1144			if (buffer_info->dma)
1145				dma_unmap_single(&pdev->dev,
1146						 buffer_info->dma,
1147						 2048, DMA_FROM_DEVICE);
1148			dev_kfree_skb(buffer_info->skb);
1149		}
1150	}
1151
1152	if (tx_ring->desc) {
1153		dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1154				  tx_ring->dma);
1155		tx_ring->desc = NULL;
1156	}
1157	if (rx_ring->desc) {
1158		dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1159				  rx_ring->dma);
1160		rx_ring->desc = NULL;
1161	}
1162
1163	kfree(tx_ring->buffer_info);
1164	tx_ring->buffer_info = NULL;
1165	kfree(rx_ring->buffer_info);
1166	rx_ring->buffer_info = NULL;
1167}
1168
1169static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1170{
1171	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1172	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1173	struct pci_dev *pdev = adapter->pdev;
1174	struct e1000_hw *hw = &adapter->hw;
1175	u32 rctl;
1176	int i;
1177	int ret_val;
1178
1179	/* Setup Tx descriptor ring and Tx buffers */
1180
1181	if (!tx_ring->count)
1182		tx_ring->count = E1000_DEFAULT_TXD;
1183
1184	tx_ring->buffer_info = kcalloc(tx_ring->count,
1185				       sizeof(struct e1000_buffer), GFP_KERNEL);
1186	if (!tx_ring->buffer_info) {
1187		ret_val = 1;
1188		goto err_nomem;
1189	}
1190
1191	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1192	tx_ring->size = ALIGN(tx_ring->size, 4096);
1193	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1194					   &tx_ring->dma, GFP_KERNEL);
1195	if (!tx_ring->desc) {
1196		ret_val = 2;
1197		goto err_nomem;
1198	}
1199	tx_ring->next_to_use = 0;
1200	tx_ring->next_to_clean = 0;
1201
1202	ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1203	ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1204	ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1205	ew32(TDH(0), 0);
1206	ew32(TDT(0), 0);
1207	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1208	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1209	     E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1210
1211	for (i = 0; i < tx_ring->count; i++) {
1212		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1213		struct sk_buff *skb;
1214		unsigned int skb_size = 1024;
1215
1216		skb = alloc_skb(skb_size, GFP_KERNEL);
1217		if (!skb) {
1218			ret_val = 3;
1219			goto err_nomem;
1220		}
1221		skb_put(skb, skb_size);
1222		tx_ring->buffer_info[i].skb = skb;
1223		tx_ring->buffer_info[i].length = skb->len;
1224		tx_ring->buffer_info[i].dma =
1225		    dma_map_single(&pdev->dev, skb->data, skb->len,
1226				   DMA_TO_DEVICE);
1227		if (dma_mapping_error(&pdev->dev,
1228				      tx_ring->buffer_info[i].dma)) {
1229			ret_val = 4;
1230			goto err_nomem;
1231		}
1232		tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1233		tx_desc->lower.data = cpu_to_le32(skb->len);
1234		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1235						   E1000_TXD_CMD_IFCS |
1236						   E1000_TXD_CMD_RS);
1237		tx_desc->upper.data = 0;
1238	}
1239
1240	/* Setup Rx descriptor ring and Rx buffers */
1241
1242	if (!rx_ring->count)
1243		rx_ring->count = E1000_DEFAULT_RXD;
1244
1245	rx_ring->buffer_info = kcalloc(rx_ring->count,
1246				       sizeof(struct e1000_buffer), GFP_KERNEL);
1247	if (!rx_ring->buffer_info) {
1248		ret_val = 5;
1249		goto err_nomem;
1250	}
1251
1252	rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1253	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1254					   &rx_ring->dma, GFP_KERNEL);
1255	if (!rx_ring->desc) {
1256		ret_val = 6;
1257		goto err_nomem;
1258	}
1259	rx_ring->next_to_use = 0;
1260	rx_ring->next_to_clean = 0;
1261
1262	rctl = er32(RCTL);
1263	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1264		ew32(RCTL, rctl & ~E1000_RCTL_EN);
1265	ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1266	ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1267	ew32(RDLEN(0), rx_ring->size);
1268	ew32(RDH(0), 0);
1269	ew32(RDT(0), 0);
1270	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1271	    E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1272	    E1000_RCTL_SBP | E1000_RCTL_SECRC |
1273	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1274	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1275	ew32(RCTL, rctl);
1276
1277	for (i = 0; i < rx_ring->count; i++) {
1278		union e1000_rx_desc_extended *rx_desc;
1279		struct sk_buff *skb;
1280
1281		skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1282		if (!skb) {
1283			ret_val = 7;
1284			goto err_nomem;
1285		}
1286		skb_reserve(skb, NET_IP_ALIGN);
1287		rx_ring->buffer_info[i].skb = skb;
1288		rx_ring->buffer_info[i].dma =
1289		    dma_map_single(&pdev->dev, skb->data, 2048,
1290				   DMA_FROM_DEVICE);
1291		if (dma_mapping_error(&pdev->dev,
1292				      rx_ring->buffer_info[i].dma)) {
1293			ret_val = 8;
1294			goto err_nomem;
1295		}
1296		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1297		rx_desc->read.buffer_addr =
1298		    cpu_to_le64(rx_ring->buffer_info[i].dma);
1299		memset(skb->data, 0x00, skb->len);
1300	}
1301
1302	return 0;
1303
1304err_nomem:
1305	e1000_free_desc_rings(adapter);
1306	return ret_val;
1307}
1308
1309static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1310{
1311	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1312	e1e_wphy(&adapter->hw, 29, 0x001F);
1313	e1e_wphy(&adapter->hw, 30, 0x8FFC);
1314	e1e_wphy(&adapter->hw, 29, 0x001A);
1315	e1e_wphy(&adapter->hw, 30, 0x8FF0);
1316}
1317
1318static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1319{
1320	struct e1000_hw *hw = &adapter->hw;
1321	u32 ctrl_reg = 0;
1322	u16 phy_reg = 0;
1323	s32 ret_val = 0;
1324
1325	hw->mac.autoneg = 0;
1326
1327	if (hw->phy.type == e1000_phy_ife) {
1328		/* force 100, set loopback */
1329		e1e_wphy(hw, MII_BMCR, 0x6100);
1330
1331		/* Now set up the MAC to the same speed/duplex as the PHY. */
1332		ctrl_reg = er32(CTRL);
1333		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1334		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1335			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1336			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1337			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1338
1339		ew32(CTRL, ctrl_reg);
1340		e1e_flush();
1341		usleep_range(500, 1000);
1342
1343		return 0;
1344	}
1345
1346	/* Specific PHY configuration for loopback */
1347	switch (hw->phy.type) {
1348	case e1000_phy_m88:
1349		/* Auto-MDI/MDIX Off */
1350		e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1351		/* reset to update Auto-MDI/MDIX */
1352		e1e_wphy(hw, MII_BMCR, 0x9140);
1353		/* autoneg off */
1354		e1e_wphy(hw, MII_BMCR, 0x8140);
1355		break;
1356	case e1000_phy_gg82563:
1357		e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1358		break;
1359	case e1000_phy_bm:
1360		/* Set Default MAC Interface speed to 1GB */
1361		e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1362		phy_reg &= ~0x0007;
1363		phy_reg |= 0x006;
1364		e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1365		/* Assert SW reset for above settings to take effect */
1366		hw->phy.ops.commit(hw);
1367		usleep_range(1000, 2000);
1368		/* Force Full Duplex */
1369		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1370		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1371		/* Set Link Up (in force link) */
1372		e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1373		e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1374		/* Force Link */
1375		e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1376		e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1377		/* Set Early Link Enable */
1378		e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1379		e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1380		break;
1381	case e1000_phy_82577:
1382	case e1000_phy_82578:
1383		/* Workaround: K1 must be disabled for stable 1Gbps operation */
1384		ret_val = hw->phy.ops.acquire(hw);
1385		if (ret_val) {
1386			e_err("Cannot setup 1Gbps loopback.\n");
1387			return ret_val;
1388		}
1389		e1000_configure_k1_ich8lan(hw, false);
1390		hw->phy.ops.release(hw);
1391		break;
1392	case e1000_phy_82579:
1393		/* Disable PHY energy detect power down */
1394		e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1395		e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1396		/* Disable full chip energy detect */
1397		e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1398		e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1399		/* Enable loopback on the PHY */
1400		e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1401		break;
1402	default:
1403		break;
1404	}
1405
1406	/* force 1000, set loopback */
1407	e1e_wphy(hw, MII_BMCR, 0x4140);
1408	msleep(250);
1409
1410	/* Now set up the MAC to the same speed/duplex as the PHY. */
1411	ctrl_reg = er32(CTRL);
1412	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1413	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1414		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1415		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1416		     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1417
1418	if (adapter->flags & FLAG_IS_ICH)
1419		ctrl_reg |= E1000_CTRL_SLU;	/* Set Link Up */
1420
1421	if (hw->phy.media_type == e1000_media_type_copper &&
1422	    hw->phy.type == e1000_phy_m88) {
1423		ctrl_reg |= E1000_CTRL_ILOS;	/* Invert Loss of Signal */
1424	} else {
1425		/* Set the ILOS bit on the fiber Nic if half duplex link is
1426		 * detected.
1427		 */
1428		if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1429			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1430	}
1431
1432	ew32(CTRL, ctrl_reg);
1433
1434	/* Disable the receiver on the PHY so when a cable is plugged in, the
1435	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1436	 */
1437	if (hw->phy.type == e1000_phy_m88)
1438		e1000_phy_disable_receiver(adapter);
1439
1440	usleep_range(500, 1000);
1441
1442	return 0;
1443}
1444
1445static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1446{
1447	struct e1000_hw *hw = &adapter->hw;
1448	u32 ctrl = er32(CTRL);
1449	int link;
1450
1451	/* special requirements for 82571/82572 fiber adapters */
1452
1453	/* jump through hoops to make sure link is up because serdes
1454	 * link is hardwired up
1455	 */
1456	ctrl |= E1000_CTRL_SLU;
1457	ew32(CTRL, ctrl);
1458
1459	/* disable autoneg */
1460	ctrl = er32(TXCW);
1461	ctrl &= ~BIT(31);
1462	ew32(TXCW, ctrl);
1463
1464	link = (er32(STATUS) & E1000_STATUS_LU);
1465
1466	if (!link) {
1467		/* set invert loss of signal */
1468		ctrl = er32(CTRL);
1469		ctrl |= E1000_CTRL_ILOS;
1470		ew32(CTRL, ctrl);
1471	}
1472
1473	/* special write to serdes control register to enable SerDes analog
1474	 * loopback
1475	 */
1476	ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1477	e1e_flush();
1478	usleep_range(10000, 11000);
1479
1480	return 0;
1481}
1482
1483/* only call this for fiber/serdes connections to es2lan */
1484static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1485{
1486	struct e1000_hw *hw = &adapter->hw;
1487	u32 ctrlext = er32(CTRL_EXT);
1488	u32 ctrl = er32(CTRL);
1489
1490	/* save CTRL_EXT to restore later, reuse an empty variable (unused
1491	 * on mac_type 80003es2lan)
1492	 */
1493	adapter->tx_fifo_head = ctrlext;
1494
1495	/* clear the serdes mode bits, putting the device into mac loopback */
1496	ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1497	ew32(CTRL_EXT, ctrlext);
1498
1499	/* force speed to 1000/FD, link up */
1500	ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1501	ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1502		 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1503	ew32(CTRL, ctrl);
1504
1505	/* set mac loopback */
1506	ctrl = er32(RCTL);
1507	ctrl |= E1000_RCTL_LBM_MAC;
1508	ew32(RCTL, ctrl);
1509
1510	/* set testing mode parameters (no need to reset later) */
1511#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1512#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1513	ew32(KMRNCTRLSTA,
1514	     (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1515
1516	return 0;
1517}
1518
1519static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1520{
1521	struct e1000_hw *hw = &adapter->hw;
1522	u32 rctl, fext_nvm11, tarc0;
1523
1524	if (hw->mac.type >= e1000_pch_spt) {
1525		fext_nvm11 = er32(FEXTNVM11);
1526		fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1527		ew32(FEXTNVM11, fext_nvm11);
1528		tarc0 = er32(TARC(0));
1529		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1530		tarc0 &= 0xcfffffff;
1531		/* set bit 29 (value of MULR requests is now 2) */
1532		tarc0 |= 0x20000000;
1533		ew32(TARC(0), tarc0);
1534	}
1535	if (hw->phy.media_type == e1000_media_type_fiber ||
1536	    hw->phy.media_type == e1000_media_type_internal_serdes) {
1537		switch (hw->mac.type) {
1538		case e1000_80003es2lan:
1539			return e1000_set_es2lan_mac_loopback(adapter);
1540		case e1000_82571:
1541		case e1000_82572:
1542			return e1000_set_82571_fiber_loopback(adapter);
1543		default:
1544			rctl = er32(RCTL);
1545			rctl |= E1000_RCTL_LBM_TCVR;
1546			ew32(RCTL, rctl);
1547			return 0;
1548		}
1549	} else if (hw->phy.media_type == e1000_media_type_copper) {
1550		return e1000_integrated_phy_loopback(adapter);
1551	}
1552
1553	return 7;
1554}
1555
1556static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1557{
1558	struct e1000_hw *hw = &adapter->hw;
1559	u32 rctl, fext_nvm11, tarc0;
1560	u16 phy_reg;
1561
1562	rctl = er32(RCTL);
1563	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1564	ew32(RCTL, rctl);
1565
1566	switch (hw->mac.type) {
1567	case e1000_pch_spt:
1568	case e1000_pch_cnp:
1569	case e1000_pch_tgp:
1570	case e1000_pch_adp:
1571	case e1000_pch_mtp:
 
 
 
1572		fext_nvm11 = er32(FEXTNVM11);
1573		fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1574		ew32(FEXTNVM11, fext_nvm11);
1575		tarc0 = er32(TARC(0));
1576		/* clear bits 28 & 29 (control of MULR concurrent requests) */
1577		/* set bit 29 (value of MULR requests is now 0) */
1578		tarc0 &= 0xcfffffff;
1579		ew32(TARC(0), tarc0);
1580		fallthrough;
1581	case e1000_80003es2lan:
1582		if (hw->phy.media_type == e1000_media_type_fiber ||
1583		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1584			/* restore CTRL_EXT, stealing space from tx_fifo_head */
1585			ew32(CTRL_EXT, adapter->tx_fifo_head);
1586			adapter->tx_fifo_head = 0;
1587		}
1588		fallthrough;
1589	case e1000_82571:
1590	case e1000_82572:
1591		if (hw->phy.media_type == e1000_media_type_fiber ||
1592		    hw->phy.media_type == e1000_media_type_internal_serdes) {
1593			ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1594			e1e_flush();
1595			usleep_range(10000, 11000);
1596			break;
1597		}
1598		fallthrough;
1599	default:
1600		hw->mac.autoneg = 1;
1601		if (hw->phy.type == e1000_phy_gg82563)
1602			e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1603		e1e_rphy(hw, MII_BMCR, &phy_reg);
1604		if (phy_reg & BMCR_LOOPBACK) {
1605			phy_reg &= ~BMCR_LOOPBACK;
1606			e1e_wphy(hw, MII_BMCR, phy_reg);
1607			if (hw->phy.ops.commit)
1608				hw->phy.ops.commit(hw);
1609		}
1610		break;
1611	}
1612}
1613
1614static void e1000_create_lbtest_frame(struct sk_buff *skb,
1615				      unsigned int frame_size)
1616{
1617	memset(skb->data, 0xFF, frame_size);
1618	frame_size &= ~1;
1619	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1620	skb->data[frame_size / 2 + 10] = 0xBE;
1621	skb->data[frame_size / 2 + 12] = 0xAF;
1622}
1623
1624static int e1000_check_lbtest_frame(struct sk_buff *skb,
1625				    unsigned int frame_size)
1626{
1627	frame_size &= ~1;
1628	if (*(skb->data + 3) == 0xFF)
1629		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1630		    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1631			return 0;
1632	return 13;
1633}
1634
1635static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1636{
1637	struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1638	struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1639	struct pci_dev *pdev = adapter->pdev;
1640	struct e1000_hw *hw = &adapter->hw;
1641	struct e1000_buffer *buffer_info;
1642	int i, j, k, l;
1643	int lc;
1644	int good_cnt;
1645	int ret_val = 0;
1646	unsigned long time;
1647
1648	ew32(RDT(0), rx_ring->count - 1);
1649
1650	/* Calculate the loop count based on the largest descriptor ring
1651	 * The idea is to wrap the largest ring a number of times using 64
1652	 * send/receive pairs during each loop
1653	 */
1654
1655	if (rx_ring->count <= tx_ring->count)
1656		lc = ((tx_ring->count / 64) * 2) + 1;
1657	else
1658		lc = ((rx_ring->count / 64) * 2) + 1;
1659
1660	k = 0;
1661	l = 0;
1662	/* loop count loop */
1663	for (j = 0; j <= lc; j++) {
1664		/* send the packets */
1665		for (i = 0; i < 64; i++) {
1666			buffer_info = &tx_ring->buffer_info[k];
1667
1668			e1000_create_lbtest_frame(buffer_info->skb, 1024);
1669			dma_sync_single_for_device(&pdev->dev,
1670						   buffer_info->dma,
1671						   buffer_info->length,
1672						   DMA_TO_DEVICE);
1673			k++;
1674			if (k == tx_ring->count)
1675				k = 0;
1676		}
1677		ew32(TDT(0), k);
1678		e1e_flush();
1679		msleep(200);
1680		time = jiffies;	/* set the start time for the receive */
1681		good_cnt = 0;
1682		/* receive the sent packets */
1683		do {
1684			buffer_info = &rx_ring->buffer_info[l];
1685
1686			dma_sync_single_for_cpu(&pdev->dev,
1687						buffer_info->dma, 2048,
1688						DMA_FROM_DEVICE);
1689
1690			ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1691							   1024);
1692			if (!ret_val)
1693				good_cnt++;
1694			l++;
1695			if (l == rx_ring->count)
1696				l = 0;
1697			/* time + 20 msecs (200 msecs on 2.4) is more than
1698			 * enough time to complete the receives, if it's
1699			 * exceeded, break and error off
1700			 */
1701		} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1702		if (good_cnt != 64) {
1703			ret_val = 13;	/* ret_val is the same as mis-compare */
1704			break;
1705		}
1706		if (time_after(jiffies, time + 20)) {
1707			ret_val = 14;	/* error code for time out error */
1708			break;
1709		}
1710	}
1711	return ret_val;
1712}
1713
1714static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1715{
1716	struct e1000_hw *hw = &adapter->hw;
1717
1718	/* PHY loopback cannot be performed if SoL/IDER sessions are active */
1719	if (hw->phy.ops.check_reset_block &&
1720	    hw->phy.ops.check_reset_block(hw)) {
1721		e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1722		*data = 0;
1723		goto out;
1724	}
1725
1726	*data = e1000_setup_desc_rings(adapter);
1727	if (*data)
1728		goto out;
1729
1730	*data = e1000_setup_loopback_test(adapter);
1731	if (*data)
1732		goto err_loopback;
1733
1734	*data = e1000_run_loopback_test(adapter);
1735	e1000_loopback_cleanup(adapter);
1736
1737err_loopback:
1738	e1000_free_desc_rings(adapter);
1739out:
1740	return *data;
1741}
1742
1743static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1744{
1745	struct e1000_hw *hw = &adapter->hw;
1746
1747	*data = 0;
1748	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1749		int i = 0;
1750
1751		hw->mac.serdes_has_link = false;
1752
1753		/* On some blade server designs, link establishment
1754		 * could take as long as 2-3 minutes
1755		 */
1756		do {
1757			hw->mac.ops.check_for_link(hw);
1758			if (hw->mac.serdes_has_link)
1759				return *data;
1760			msleep(20);
1761		} while (i++ < 3750);
1762
1763		*data = 1;
1764	} else {
1765		hw->mac.ops.check_for_link(hw);
1766		if (hw->mac.autoneg)
1767			/* On some Phy/switch combinations, link establishment
1768			 * can take a few seconds more than expected.
1769			 */
1770			msleep_interruptible(5000);
1771
1772		if (!(er32(STATUS) & E1000_STATUS_LU))
1773			*data = 1;
1774	}
1775	return *data;
1776}
1777
1778static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1779				 int sset)
1780{
1781	switch (sset) {
1782	case ETH_SS_TEST:
1783		return E1000_TEST_LEN;
1784	case ETH_SS_STATS:
1785		return E1000_STATS_LEN;
1786	case ETH_SS_PRIV_FLAGS:
1787		return E1000E_PRIV_FLAGS_STR_LEN;
1788	default:
1789		return -EOPNOTSUPP;
1790	}
1791}
1792
1793static void e1000_diag_test(struct net_device *netdev,
1794			    struct ethtool_test *eth_test, u64 *data)
1795{
1796	struct e1000_adapter *adapter = netdev_priv(netdev);
1797	u16 autoneg_advertised;
1798	u8 forced_speed_duplex;
1799	u8 autoneg;
1800	bool if_running = netif_running(netdev);
1801
1802	pm_runtime_get_sync(netdev->dev.parent);
1803
1804	set_bit(__E1000_TESTING, &adapter->state);
1805
1806	if (!if_running) {
1807		/* Get control of and reset hardware */
1808		if (adapter->flags & FLAG_HAS_AMT)
1809			e1000e_get_hw_control(adapter);
1810
1811		e1000e_power_up_phy(adapter);
1812
1813		adapter->hw.phy.autoneg_wait_to_complete = 1;
1814		e1000e_reset(adapter);
1815		adapter->hw.phy.autoneg_wait_to_complete = 0;
1816	}
1817
1818	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1819		/* Offline tests */
1820
1821		/* save speed, duplex, autoneg settings */
1822		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1823		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1824		autoneg = adapter->hw.mac.autoneg;
1825
1826		e_info("offline testing starting\n");
1827
1828		if (if_running)
1829			/* indicate we're in test mode */
1830			e1000e_close(netdev);
1831
1832		if (e1000_reg_test(adapter, &data[0]))
1833			eth_test->flags |= ETH_TEST_FL_FAILED;
1834
1835		e1000e_reset(adapter);
1836		if (e1000_eeprom_test(adapter, &data[1]))
1837			eth_test->flags |= ETH_TEST_FL_FAILED;
1838
1839		e1000e_reset(adapter);
1840		if (e1000_intr_test(adapter, &data[2]))
1841			eth_test->flags |= ETH_TEST_FL_FAILED;
1842
1843		e1000e_reset(adapter);
1844		if (e1000_loopback_test(adapter, &data[3]))
1845			eth_test->flags |= ETH_TEST_FL_FAILED;
1846
1847		/* force this routine to wait until autoneg complete/timeout */
1848		adapter->hw.phy.autoneg_wait_to_complete = 1;
1849		e1000e_reset(adapter);
1850		adapter->hw.phy.autoneg_wait_to_complete = 0;
1851
1852		if (e1000_link_test(adapter, &data[4]))
1853			eth_test->flags |= ETH_TEST_FL_FAILED;
1854
1855		/* restore speed, duplex, autoneg settings */
1856		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1857		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1858		adapter->hw.mac.autoneg = autoneg;
1859		e1000e_reset(adapter);
1860
1861		clear_bit(__E1000_TESTING, &adapter->state);
1862		if (if_running)
1863			e1000e_open(netdev);
1864	} else {
1865		/* Online tests */
1866
1867		e_info("online testing starting\n");
1868
1869		/* register, eeprom, intr and loopback tests not run online */
1870		data[0] = 0;
1871		data[1] = 0;
1872		data[2] = 0;
1873		data[3] = 0;
1874
1875		if (e1000_link_test(adapter, &data[4]))
1876			eth_test->flags |= ETH_TEST_FL_FAILED;
1877
1878		clear_bit(__E1000_TESTING, &adapter->state);
1879	}
1880
1881	if (!if_running) {
1882		e1000e_reset(adapter);
1883
1884		if (adapter->flags & FLAG_HAS_AMT)
1885			e1000e_release_hw_control(adapter);
1886	}
1887
1888	msleep_interruptible(4 * 1000);
1889
1890	pm_runtime_put_sync(netdev->dev.parent);
1891}
1892
1893static void e1000_get_wol(struct net_device *netdev,
1894			  struct ethtool_wolinfo *wol)
1895{
1896	struct e1000_adapter *adapter = netdev_priv(netdev);
1897
1898	wol->supported = 0;
1899	wol->wolopts = 0;
1900
1901	if (!(adapter->flags & FLAG_HAS_WOL) ||
1902	    !device_can_wakeup(&adapter->pdev->dev))
1903		return;
1904
1905	wol->supported = WAKE_UCAST | WAKE_MCAST |
1906	    WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1907
1908	/* apply any specific unsupported masks here */
1909	if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1910		wol->supported &= ~WAKE_UCAST;
1911
1912		if (adapter->wol & E1000_WUFC_EX)
1913			e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1914	}
1915
1916	if (adapter->wol & E1000_WUFC_EX)
1917		wol->wolopts |= WAKE_UCAST;
1918	if (adapter->wol & E1000_WUFC_MC)
1919		wol->wolopts |= WAKE_MCAST;
1920	if (adapter->wol & E1000_WUFC_BC)
1921		wol->wolopts |= WAKE_BCAST;
1922	if (adapter->wol & E1000_WUFC_MAG)
1923		wol->wolopts |= WAKE_MAGIC;
1924	if (adapter->wol & E1000_WUFC_LNKC)
1925		wol->wolopts |= WAKE_PHY;
1926}
1927
1928static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1929{
1930	struct e1000_adapter *adapter = netdev_priv(netdev);
1931
1932	if (!(adapter->flags & FLAG_HAS_WOL) ||
1933	    !device_can_wakeup(&adapter->pdev->dev) ||
1934	    (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1935			      WAKE_MAGIC | WAKE_PHY)))
1936		return -EOPNOTSUPP;
1937
1938	/* these settings will always override what we currently have */
1939	adapter->wol = 0;
1940
1941	if (wol->wolopts & WAKE_UCAST)
1942		adapter->wol |= E1000_WUFC_EX;
1943	if (wol->wolopts & WAKE_MCAST)
1944		adapter->wol |= E1000_WUFC_MC;
1945	if (wol->wolopts & WAKE_BCAST)
1946		adapter->wol |= E1000_WUFC_BC;
1947	if (wol->wolopts & WAKE_MAGIC)
1948		adapter->wol |= E1000_WUFC_MAG;
1949	if (wol->wolopts & WAKE_PHY)
1950		adapter->wol |= E1000_WUFC_LNKC;
1951
1952	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1953
1954	return 0;
1955}
1956
1957static int e1000_set_phys_id(struct net_device *netdev,
1958			     enum ethtool_phys_id_state state)
1959{
1960	struct e1000_adapter *adapter = netdev_priv(netdev);
1961	struct e1000_hw *hw = &adapter->hw;
1962
1963	switch (state) {
1964	case ETHTOOL_ID_ACTIVE:
1965		pm_runtime_get_sync(netdev->dev.parent);
1966
1967		if (!hw->mac.ops.blink_led)
1968			return 2;	/* cycle on/off twice per second */
1969
1970		hw->mac.ops.blink_led(hw);
1971		break;
1972
1973	case ETHTOOL_ID_INACTIVE:
1974		if (hw->phy.type == e1000_phy_ife)
1975			e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1976		hw->mac.ops.led_off(hw);
1977		hw->mac.ops.cleanup_led(hw);
1978		pm_runtime_put_sync(netdev->dev.parent);
1979		break;
1980
1981	case ETHTOOL_ID_ON:
1982		hw->mac.ops.led_on(hw);
1983		break;
1984
1985	case ETHTOOL_ID_OFF:
1986		hw->mac.ops.led_off(hw);
1987		break;
1988	}
1989
1990	return 0;
1991}
1992
1993static int e1000_get_coalesce(struct net_device *netdev,
1994			      struct ethtool_coalesce *ec)
 
 
1995{
1996	struct e1000_adapter *adapter = netdev_priv(netdev);
1997
1998	if (adapter->itr_setting <= 4)
1999		ec->rx_coalesce_usecs = adapter->itr_setting;
2000	else
2001		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2002
2003	return 0;
2004}
2005
2006static int e1000_set_coalesce(struct net_device *netdev,
2007			      struct ethtool_coalesce *ec)
 
 
2008{
2009	struct e1000_adapter *adapter = netdev_priv(netdev);
2010
2011	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2012	    ((ec->rx_coalesce_usecs > 4) &&
2013	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2014	    (ec->rx_coalesce_usecs == 2))
2015		return -EINVAL;
2016
2017	if (ec->rx_coalesce_usecs == 4) {
2018		adapter->itr_setting = 4;
2019		adapter->itr = adapter->itr_setting;
2020	} else if (ec->rx_coalesce_usecs <= 3) {
2021		adapter->itr = 20000;
2022		adapter->itr_setting = ec->rx_coalesce_usecs;
2023	} else {
2024		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2025		adapter->itr_setting = adapter->itr & ~3;
2026	}
2027
2028	pm_runtime_get_sync(netdev->dev.parent);
2029
2030	if (adapter->itr_setting != 0)
2031		e1000e_write_itr(adapter, adapter->itr);
2032	else
2033		e1000e_write_itr(adapter, 0);
2034
2035	pm_runtime_put_sync(netdev->dev.parent);
2036
2037	return 0;
2038}
2039
2040static int e1000_nway_reset(struct net_device *netdev)
2041{
2042	struct e1000_adapter *adapter = netdev_priv(netdev);
2043
2044	if (!netif_running(netdev))
2045		return -EAGAIN;
2046
2047	if (!adapter->hw.mac.autoneg)
2048		return -EINVAL;
2049
2050	pm_runtime_get_sync(netdev->dev.parent);
2051	e1000e_reinit_locked(adapter);
2052	pm_runtime_put_sync(netdev->dev.parent);
2053
2054	return 0;
2055}
2056
2057static void e1000_get_ethtool_stats(struct net_device *netdev,
2058				    struct ethtool_stats __always_unused *stats,
2059				    u64 *data)
2060{
2061	struct e1000_adapter *adapter = netdev_priv(netdev);
2062	struct rtnl_link_stats64 net_stats;
2063	int i;
2064	char *p = NULL;
2065
2066	pm_runtime_get_sync(netdev->dev.parent);
2067
2068	dev_get_stats(netdev, &net_stats);
2069
2070	pm_runtime_put_sync(netdev->dev.parent);
2071
2072	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2073		switch (e1000_gstrings_stats[i].type) {
2074		case NETDEV_STATS:
2075			p = (char *)&net_stats +
2076			    e1000_gstrings_stats[i].stat_offset;
2077			break;
2078		case E1000_STATS:
2079			p = (char *)adapter +
2080			    e1000_gstrings_stats[i].stat_offset;
2081			break;
2082		default:
2083			data[i] = 0;
2084			continue;
2085		}
2086
2087		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2088			   sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2089	}
2090}
2091
2092static void e1000_get_strings(struct net_device __always_unused *netdev,
2093			      u32 stringset, u8 *data)
2094{
2095	u8 *p = data;
2096	int i;
2097
2098	switch (stringset) {
2099	case ETH_SS_TEST:
2100		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2101		break;
2102	case ETH_SS_STATS:
2103		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2104			memcpy(p, e1000_gstrings_stats[i].stat_string,
2105			       ETH_GSTRING_LEN);
2106			p += ETH_GSTRING_LEN;
2107		}
2108		break;
2109	case ETH_SS_PRIV_FLAGS:
2110		memcpy(data, e1000e_priv_flags_strings,
2111		       E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2112		break;
2113	}
2114}
2115
2116static int e1000_get_rxnfc(struct net_device *netdev,
2117			   struct ethtool_rxnfc *info,
2118			   u32 __always_unused *rule_locs)
2119{
2120	info->data = 0;
2121
2122	switch (info->cmd) {
2123	case ETHTOOL_GRXFH: {
2124		struct e1000_adapter *adapter = netdev_priv(netdev);
2125		struct e1000_hw *hw = &adapter->hw;
2126		u32 mrqc;
2127
2128		pm_runtime_get_sync(netdev->dev.parent);
2129		mrqc = er32(MRQC);
2130		pm_runtime_put_sync(netdev->dev.parent);
2131
2132		if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2133			return 0;
2134
2135		switch (info->flow_type) {
2136		case TCP_V4_FLOW:
2137			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2138				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2139			fallthrough;
2140		case UDP_V4_FLOW:
2141		case SCTP_V4_FLOW:
2142		case AH_ESP_V4_FLOW:
2143		case IPV4_FLOW:
2144			if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2145				info->data |= RXH_IP_SRC | RXH_IP_DST;
2146			break;
2147		case TCP_V6_FLOW:
2148			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2149				info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2150			fallthrough;
2151		case UDP_V6_FLOW:
2152		case SCTP_V6_FLOW:
2153		case AH_ESP_V6_FLOW:
2154		case IPV6_FLOW:
2155			if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2156				info->data |= RXH_IP_SRC | RXH_IP_DST;
2157			break;
2158		default:
2159			break;
2160		}
2161		return 0;
2162	}
2163	default:
2164		return -EOPNOTSUPP;
2165	}
2166}
2167
2168static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2169{
2170	struct e1000_adapter *adapter = netdev_priv(netdev);
2171	struct e1000_hw *hw = &adapter->hw;
2172	u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2173	u32 ret_val;
2174
2175	if (!(adapter->flags2 & FLAG2_HAS_EEE))
2176		return -EOPNOTSUPP;
2177
2178	switch (hw->phy.type) {
2179	case e1000_phy_82579:
2180		cap_addr = I82579_EEE_CAPABILITY;
2181		lpa_addr = I82579_EEE_LP_ABILITY;
2182		pcs_stat_addr = I82579_EEE_PCS_STATUS;
2183		break;
2184	case e1000_phy_i217:
2185		cap_addr = I217_EEE_CAPABILITY;
2186		lpa_addr = I217_EEE_LP_ABILITY;
2187		pcs_stat_addr = I217_EEE_PCS_STATUS;
2188		break;
2189	default:
2190		return -EOPNOTSUPP;
2191	}
2192
2193	pm_runtime_get_sync(netdev->dev.parent);
2194
2195	ret_val = hw->phy.ops.acquire(hw);
2196	if (ret_val) {
2197		pm_runtime_put_sync(netdev->dev.parent);
2198		return -EBUSY;
2199	}
2200
2201	/* EEE Capability */
2202	ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2203	if (ret_val)
2204		goto release;
2205	edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2206
2207	/* EEE Advertised */
2208	edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2209
2210	/* EEE Link Partner Advertised */
2211	ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2212	if (ret_val)
2213		goto release;
2214	edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2215
2216	/* EEE PCS Status */
2217	ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2218	if (ret_val)
2219		goto release;
2220	if (hw->phy.type == e1000_phy_82579)
2221		phy_data <<= 8;
2222
2223	/* Result of the EEE auto negotiation - there is no register that
2224	 * has the status of the EEE negotiation so do a best-guess based
2225	 * on whether Tx or Rx LPI indications have been received.
2226	 */
2227	if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2228		edata->eee_active = true;
2229
2230	edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2231	edata->tx_lpi_enabled = true;
2232	edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2233
2234release:
2235	hw->phy.ops.release(hw);
2236	if (ret_val)
2237		ret_val = -ENODATA;
2238
2239	pm_runtime_put_sync(netdev->dev.parent);
2240
2241	return ret_val;
2242}
2243
2244static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2245{
2246	struct e1000_adapter *adapter = netdev_priv(netdev);
2247	struct e1000_hw *hw = &adapter->hw;
2248	struct ethtool_eee eee_curr;
2249	s32 ret_val;
2250
2251	ret_val = e1000e_get_eee(netdev, &eee_curr);
2252	if (ret_val)
2253		return ret_val;
2254
2255	if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2256		e_err("Setting EEE tx-lpi is not supported\n");
2257		return -EINVAL;
2258	}
2259
2260	if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2261		e_err("Setting EEE Tx LPI timer is not supported\n");
2262		return -EINVAL;
2263	}
2264
2265	if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2266		e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2267		return -EINVAL;
2268	}
2269
2270	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2271
2272	hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2273
2274	pm_runtime_get_sync(netdev->dev.parent);
2275
2276	/* reset the link */
2277	if (netif_running(netdev))
2278		e1000e_reinit_locked(adapter);
2279	else
2280		e1000e_reset(adapter);
2281
2282	pm_runtime_put_sync(netdev->dev.parent);
2283
2284	return 0;
2285}
2286
2287static int e1000e_get_ts_info(struct net_device *netdev,
2288			      struct ethtool_ts_info *info)
2289{
2290	struct e1000_adapter *adapter = netdev_priv(netdev);
2291
2292	ethtool_op_get_ts_info(netdev, info);
2293
2294	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2295		return 0;
2296
2297	info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2298				  SOF_TIMESTAMPING_RX_HARDWARE |
2299				  SOF_TIMESTAMPING_RAW_HARDWARE);
2300
2301	info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2302
2303	info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2304			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2305			    BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2306			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2307			    BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2308			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2309			    BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2310			    BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2311			    BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2312			    BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2313			    BIT(HWTSTAMP_FILTER_ALL));
2314
2315	if (adapter->ptp_clock)
2316		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2317
2318	return 0;
2319}
2320
2321static u32 e1000e_get_priv_flags(struct net_device *netdev)
2322{
2323	struct e1000_adapter *adapter = netdev_priv(netdev);
2324	u32 priv_flags = 0;
2325
2326	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2327		priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2328
2329	return priv_flags;
2330}
2331
2332static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2333{
2334	struct e1000_adapter *adapter = netdev_priv(netdev);
2335	unsigned int flags2 = adapter->flags2;
2336
2337	flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2338	if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2339		struct e1000_hw *hw = &adapter->hw;
2340
2341		if (hw->mac.type < e1000_pch_cnp)
2342			return -EINVAL;
2343		flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2344	}
2345
2346	if (flags2 != adapter->flags2)
2347		adapter->flags2 = flags2;
2348
2349	return 0;
2350}
2351
2352static const struct ethtool_ops e1000_ethtool_ops = {
2353	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2354	.get_drvinfo		= e1000_get_drvinfo,
2355	.get_regs_len		= e1000_get_regs_len,
2356	.get_regs		= e1000_get_regs,
2357	.get_wol		= e1000_get_wol,
2358	.set_wol		= e1000_set_wol,
2359	.get_msglevel		= e1000_get_msglevel,
2360	.set_msglevel		= e1000_set_msglevel,
2361	.nway_reset		= e1000_nway_reset,
2362	.get_link		= ethtool_op_get_link,
2363	.get_eeprom_len		= e1000_get_eeprom_len,
2364	.get_eeprom		= e1000_get_eeprom,
2365	.set_eeprom		= e1000_set_eeprom,
2366	.get_ringparam		= e1000_get_ringparam,
2367	.set_ringparam		= e1000_set_ringparam,
2368	.get_pauseparam		= e1000_get_pauseparam,
2369	.set_pauseparam		= e1000_set_pauseparam,
2370	.self_test		= e1000_diag_test,
2371	.get_strings		= e1000_get_strings,
2372	.set_phys_id		= e1000_set_phys_id,
2373	.get_ethtool_stats	= e1000_get_ethtool_stats,
2374	.get_sset_count		= e1000e_get_sset_count,
2375	.get_coalesce		= e1000_get_coalesce,
2376	.set_coalesce		= e1000_set_coalesce,
2377	.get_rxnfc		= e1000_get_rxnfc,
2378	.get_ts_info		= e1000e_get_ts_info,
2379	.get_eee		= e1000e_get_eee,
2380	.set_eee		= e1000e_set_eee,
2381	.get_link_ksettings	= e1000_get_link_ksettings,
2382	.set_link_ksettings	= e1000_set_link_ksettings,
2383	.get_priv_flags		= e1000e_get_priv_flags,
2384	.set_priv_flags		= e1000e_set_priv_flags,
2385};
2386
2387void e1000e_set_ethtool_ops(struct net_device *netdev)
2388{
2389	netdev->ethtool_ops = &e1000_ethtool_ops;
2390}