Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Broadcom GENET (Gigabit Ethernet) controller driver
   4 *
   5 * Copyright (c) 2014-2020 Broadcom
   6 */
   7
   8#define pr_fmt(fmt)				"bcmgenet: " fmt
   9
  10#include <linux/acpi.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/sched.h>
  14#include <linux/types.h>
  15#include <linux/fcntl.h>
  16#include <linux/interrupt.h>
  17#include <linux/string.h>
  18#include <linux/if_ether.h>
  19#include <linux/init.h>
  20#include <linux/errno.h>
  21#include <linux/delay.h>
  22#include <linux/platform_device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/pm.h>
  25#include <linux/clk.h>
  26#include <net/arp.h>
  27
  28#include <linux/mii.h>
  29#include <linux/ethtool.h>
  30#include <linux/netdevice.h>
  31#include <linux/inetdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/in.h>
  35#include <linux/ip.h>
  36#include <linux/ipv6.h>
  37#include <linux/phy.h>
  38#include <linux/platform_data/bcmgenet.h>
  39
  40#include <asm/unaligned.h>
  41
  42#include "bcmgenet.h"
  43
  44/* Maximum number of hardware queues, downsized if needed */
  45#define GENET_MAX_MQ_CNT	4
  46
  47/* Default highest priority queue for multi queue support */
  48#define GENET_Q0_PRIORITY	0
  49
  50#define GENET_Q16_RX_BD_CNT	\
  51	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
  52#define GENET_Q16_TX_BD_CNT	\
  53	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
  54
  55#define RX_BUF_LENGTH		2048
  56#define SKB_ALIGNMENT		32
  57
  58/* Tx/Rx DMA register offset, skip 256 descriptors */
  59#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
  60#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
  61
  62#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
  63				TOTAL_DESC * DMA_DESC_SIZE)
  64
  65#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
  66				TOTAL_DESC * DMA_DESC_SIZE)
  67
  68/* Forward declarations */
  69static void bcmgenet_set_rx_mode(struct net_device *dev);
  70
  71static inline void bcmgenet_writel(u32 value, void __iomem *offset)
  72{
  73	/* MIPS chips strapped for BE will automagically configure the
  74	 * peripheral registers for CPU-native byte order.
  75	 */
  76	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  77		__raw_writel(value, offset);
  78	else
  79		writel_relaxed(value, offset);
  80}
  81
  82static inline u32 bcmgenet_readl(void __iomem *offset)
  83{
  84	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  85		return __raw_readl(offset);
  86	else
  87		return readl_relaxed(offset);
  88}
  89
  90static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
  91					     void __iomem *d, u32 value)
  92{
  93	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
  94}
  95
  96static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
  97				    void __iomem *d,
  98				    dma_addr_t addr)
  99{
 100	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
 101
 102	/* Register writes to GISB bus can take couple hundred nanoseconds
 103	 * and are done for each packet, save these expensive writes unless
 104	 * the platform is explicitly configured for 64-bits/LPAE.
 105	 */
 106#ifdef CONFIG_PHYS_ADDR_T_64BIT
 107	if (priv->hw_params->flags & GENET_HAS_40BITS)
 108		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 109#endif
 110}
 111
 112/* Combined address + length/status setter */
 113static inline void dmadesc_set(struct bcmgenet_priv *priv,
 114			       void __iomem *d, dma_addr_t addr, u32 val)
 115{
 116	dmadesc_set_addr(priv, d, addr);
 117	dmadesc_set_length_status(priv, d, val);
 118}
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
 121
 122#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
 123				NETIF_MSG_LINK)
 124
 125static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
 126{
 127	if (GENET_IS_V1(priv))
 128		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
 129	else
 130		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
 131}
 132
 133static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 134{
 135	if (GENET_IS_V1(priv))
 136		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
 137	else
 138		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
 139}
 140
 141/* These macros are defined to deal with register map change
 142 * between GENET1.1 and GENET2. Only those currently being used
 143 * by driver are defined.
 144 */
 145static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
 146{
 147	if (GENET_IS_V1(priv))
 148		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
 149	else
 150		return bcmgenet_readl(priv->base +
 151				      priv->hw_params->tbuf_offset + TBUF_CTRL);
 152}
 153
 154static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 155{
 156	if (GENET_IS_V1(priv))
 157		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
 158	else
 159		bcmgenet_writel(val, priv->base +
 160				priv->hw_params->tbuf_offset + TBUF_CTRL);
 161}
 162
 163static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
 164{
 165	if (GENET_IS_V1(priv))
 166		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
 167	else
 168		return bcmgenet_readl(priv->base +
 169				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
 170}
 171
 172static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
 173{
 174	if (GENET_IS_V1(priv))
 175		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
 176	else
 177		bcmgenet_writel(val, priv->base +
 178				priv->hw_params->tbuf_offset + TBUF_BP_MC);
 179}
 180
 181/* RX/TX DMA register accessors */
 182enum dma_reg {
 183	DMA_RING_CFG = 0,
 184	DMA_CTRL,
 185	DMA_STATUS,
 186	DMA_SCB_BURST_SIZE,
 187	DMA_ARB_CTRL,
 188	DMA_PRIORITY_0,
 189	DMA_PRIORITY_1,
 190	DMA_PRIORITY_2,
 191	DMA_INDEX2RING_0,
 192	DMA_INDEX2RING_1,
 193	DMA_INDEX2RING_2,
 194	DMA_INDEX2RING_3,
 195	DMA_INDEX2RING_4,
 196	DMA_INDEX2RING_5,
 197	DMA_INDEX2RING_6,
 198	DMA_INDEX2RING_7,
 199	DMA_RING0_TIMEOUT,
 200	DMA_RING1_TIMEOUT,
 201	DMA_RING2_TIMEOUT,
 202	DMA_RING3_TIMEOUT,
 203	DMA_RING4_TIMEOUT,
 204	DMA_RING5_TIMEOUT,
 205	DMA_RING6_TIMEOUT,
 206	DMA_RING7_TIMEOUT,
 207	DMA_RING8_TIMEOUT,
 208	DMA_RING9_TIMEOUT,
 209	DMA_RING10_TIMEOUT,
 210	DMA_RING11_TIMEOUT,
 211	DMA_RING12_TIMEOUT,
 212	DMA_RING13_TIMEOUT,
 213	DMA_RING14_TIMEOUT,
 214	DMA_RING15_TIMEOUT,
 215	DMA_RING16_TIMEOUT,
 216};
 217
 218static const u8 bcmgenet_dma_regs_v3plus[] = {
 219	[DMA_RING_CFG]		= 0x00,
 220	[DMA_CTRL]		= 0x04,
 221	[DMA_STATUS]		= 0x08,
 222	[DMA_SCB_BURST_SIZE]	= 0x0C,
 223	[DMA_ARB_CTRL]		= 0x2C,
 224	[DMA_PRIORITY_0]	= 0x30,
 225	[DMA_PRIORITY_1]	= 0x34,
 226	[DMA_PRIORITY_2]	= 0x38,
 227	[DMA_RING0_TIMEOUT]	= 0x2C,
 228	[DMA_RING1_TIMEOUT]	= 0x30,
 229	[DMA_RING2_TIMEOUT]	= 0x34,
 230	[DMA_RING3_TIMEOUT]	= 0x38,
 231	[DMA_RING4_TIMEOUT]	= 0x3c,
 232	[DMA_RING5_TIMEOUT]	= 0x40,
 233	[DMA_RING6_TIMEOUT]	= 0x44,
 234	[DMA_RING7_TIMEOUT]	= 0x48,
 235	[DMA_RING8_TIMEOUT]	= 0x4c,
 236	[DMA_RING9_TIMEOUT]	= 0x50,
 237	[DMA_RING10_TIMEOUT]	= 0x54,
 238	[DMA_RING11_TIMEOUT]	= 0x58,
 239	[DMA_RING12_TIMEOUT]	= 0x5c,
 240	[DMA_RING13_TIMEOUT]	= 0x60,
 241	[DMA_RING14_TIMEOUT]	= 0x64,
 242	[DMA_RING15_TIMEOUT]	= 0x68,
 243	[DMA_RING16_TIMEOUT]	= 0x6C,
 244	[DMA_INDEX2RING_0]	= 0x70,
 245	[DMA_INDEX2RING_1]	= 0x74,
 246	[DMA_INDEX2RING_2]	= 0x78,
 247	[DMA_INDEX2RING_3]	= 0x7C,
 248	[DMA_INDEX2RING_4]	= 0x80,
 249	[DMA_INDEX2RING_5]	= 0x84,
 250	[DMA_INDEX2RING_6]	= 0x88,
 251	[DMA_INDEX2RING_7]	= 0x8C,
 252};
 253
 254static const u8 bcmgenet_dma_regs_v2[] = {
 255	[DMA_RING_CFG]		= 0x00,
 256	[DMA_CTRL]		= 0x04,
 257	[DMA_STATUS]		= 0x08,
 258	[DMA_SCB_BURST_SIZE]	= 0x0C,
 259	[DMA_ARB_CTRL]		= 0x30,
 260	[DMA_PRIORITY_0]	= 0x34,
 261	[DMA_PRIORITY_1]	= 0x38,
 262	[DMA_PRIORITY_2]	= 0x3C,
 263	[DMA_RING0_TIMEOUT]	= 0x2C,
 264	[DMA_RING1_TIMEOUT]	= 0x30,
 265	[DMA_RING2_TIMEOUT]	= 0x34,
 266	[DMA_RING3_TIMEOUT]	= 0x38,
 267	[DMA_RING4_TIMEOUT]	= 0x3c,
 268	[DMA_RING5_TIMEOUT]	= 0x40,
 269	[DMA_RING6_TIMEOUT]	= 0x44,
 270	[DMA_RING7_TIMEOUT]	= 0x48,
 271	[DMA_RING8_TIMEOUT]	= 0x4c,
 272	[DMA_RING9_TIMEOUT]	= 0x50,
 273	[DMA_RING10_TIMEOUT]	= 0x54,
 274	[DMA_RING11_TIMEOUT]	= 0x58,
 275	[DMA_RING12_TIMEOUT]	= 0x5c,
 276	[DMA_RING13_TIMEOUT]	= 0x60,
 277	[DMA_RING14_TIMEOUT]	= 0x64,
 278	[DMA_RING15_TIMEOUT]	= 0x68,
 279	[DMA_RING16_TIMEOUT]	= 0x6C,
 280};
 281
 282static const u8 bcmgenet_dma_regs_v1[] = {
 283	[DMA_CTRL]		= 0x00,
 284	[DMA_STATUS]		= 0x04,
 285	[DMA_SCB_BURST_SIZE]	= 0x0C,
 286	[DMA_ARB_CTRL]		= 0x30,
 287	[DMA_PRIORITY_0]	= 0x34,
 288	[DMA_PRIORITY_1]	= 0x38,
 289	[DMA_PRIORITY_2]	= 0x3C,
 290	[DMA_RING0_TIMEOUT]	= 0x2C,
 291	[DMA_RING1_TIMEOUT]	= 0x30,
 292	[DMA_RING2_TIMEOUT]	= 0x34,
 293	[DMA_RING3_TIMEOUT]	= 0x38,
 294	[DMA_RING4_TIMEOUT]	= 0x3c,
 295	[DMA_RING5_TIMEOUT]	= 0x40,
 296	[DMA_RING6_TIMEOUT]	= 0x44,
 297	[DMA_RING7_TIMEOUT]	= 0x48,
 298	[DMA_RING8_TIMEOUT]	= 0x4c,
 299	[DMA_RING9_TIMEOUT]	= 0x50,
 300	[DMA_RING10_TIMEOUT]	= 0x54,
 301	[DMA_RING11_TIMEOUT]	= 0x58,
 302	[DMA_RING12_TIMEOUT]	= 0x5c,
 303	[DMA_RING13_TIMEOUT]	= 0x60,
 304	[DMA_RING14_TIMEOUT]	= 0x64,
 305	[DMA_RING15_TIMEOUT]	= 0x68,
 306	[DMA_RING16_TIMEOUT]	= 0x6C,
 307};
 308
 309/* Set at runtime once bcmgenet version is known */
 310static const u8 *bcmgenet_dma_regs;
 311
 312static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
 313{
 314	return netdev_priv(dev_get_drvdata(dev));
 315}
 316
 317static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
 318				      enum dma_reg r)
 319{
 320	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 321			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 322}
 323
 324static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
 325					u32 val, enum dma_reg r)
 326{
 327	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 328			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 329}
 330
 331static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
 332				      enum dma_reg r)
 333{
 334	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 335			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 336}
 337
 338static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
 339					u32 val, enum dma_reg r)
 340{
 341	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 342			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 343}
 344
 345/* RDMA/TDMA ring registers and accessors
 346 * we merge the common fields and just prefix with T/D the registers
 347 * having different meaning depending on the direction
 348 */
 349enum dma_ring_reg {
 350	TDMA_READ_PTR = 0,
 351	RDMA_WRITE_PTR = TDMA_READ_PTR,
 352	TDMA_READ_PTR_HI,
 353	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
 354	TDMA_CONS_INDEX,
 355	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
 356	TDMA_PROD_INDEX,
 357	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
 358	DMA_RING_BUF_SIZE,
 359	DMA_START_ADDR,
 360	DMA_START_ADDR_HI,
 361	DMA_END_ADDR,
 362	DMA_END_ADDR_HI,
 363	DMA_MBUF_DONE_THRESH,
 364	TDMA_FLOW_PERIOD,
 365	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
 366	TDMA_WRITE_PTR,
 367	RDMA_READ_PTR = TDMA_WRITE_PTR,
 368	TDMA_WRITE_PTR_HI,
 369	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
 370};
 371
 372/* GENET v4 supports 40-bits pointer addressing
 373 * for obvious reasons the LO and HI word parts
 374 * are contiguous, but this offsets the other
 375 * registers.
 376 */
 377static const u8 genet_dma_ring_regs_v4[] = {
 378	[TDMA_READ_PTR]			= 0x00,
 379	[TDMA_READ_PTR_HI]		= 0x04,
 380	[TDMA_CONS_INDEX]		= 0x08,
 381	[TDMA_PROD_INDEX]		= 0x0C,
 382	[DMA_RING_BUF_SIZE]		= 0x10,
 383	[DMA_START_ADDR]		= 0x14,
 384	[DMA_START_ADDR_HI]		= 0x18,
 385	[DMA_END_ADDR]			= 0x1C,
 386	[DMA_END_ADDR_HI]		= 0x20,
 387	[DMA_MBUF_DONE_THRESH]		= 0x24,
 388	[TDMA_FLOW_PERIOD]		= 0x28,
 389	[TDMA_WRITE_PTR]		= 0x2C,
 390	[TDMA_WRITE_PTR_HI]		= 0x30,
 391};
 392
 393static const u8 genet_dma_ring_regs_v123[] = {
 394	[TDMA_READ_PTR]			= 0x00,
 395	[TDMA_CONS_INDEX]		= 0x04,
 396	[TDMA_PROD_INDEX]		= 0x08,
 397	[DMA_RING_BUF_SIZE]		= 0x0C,
 398	[DMA_START_ADDR]		= 0x10,
 399	[DMA_END_ADDR]			= 0x14,
 400	[DMA_MBUF_DONE_THRESH]		= 0x18,
 401	[TDMA_FLOW_PERIOD]		= 0x1C,
 402	[TDMA_WRITE_PTR]		= 0x20,
 403};
 404
 405/* Set at runtime once GENET version is known */
 406static const u8 *genet_dma_ring_regs;
 407
 408static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
 409					   unsigned int ring,
 410					   enum dma_ring_reg r)
 411{
 412	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 413			      (DMA_RING_SIZE * ring) +
 414			      genet_dma_ring_regs[r]);
 415}
 416
 417static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
 418					     unsigned int ring, u32 val,
 419					     enum dma_ring_reg r)
 420{
 421	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 422			(DMA_RING_SIZE * ring) +
 423			genet_dma_ring_regs[r]);
 424}
 425
 426static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
 427					   unsigned int ring,
 428					   enum dma_ring_reg r)
 429{
 430	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 431			      (DMA_RING_SIZE * ring) +
 432			      genet_dma_ring_regs[r]);
 433}
 434
 435static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
 436					     unsigned int ring, u32 val,
 437					     enum dma_ring_reg r)
 438{
 439	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 440			(DMA_RING_SIZE * ring) +
 441			genet_dma_ring_regs[r]);
 442}
 443
 444static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
 445{
 446	u32 offset;
 447	u32 reg;
 448
 449	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
 450	reg = bcmgenet_hfb_reg_readl(priv, offset);
 451	reg |= (1 << (f_index % 32));
 452	bcmgenet_hfb_reg_writel(priv, reg, offset);
 453	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
 454	reg |= RBUF_HFB_EN;
 455	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
 456}
 457
 458static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
 459{
 460	u32 offset, reg, reg1;
 461
 462	offset = HFB_FLT_ENABLE_V3PLUS;
 463	reg = bcmgenet_hfb_reg_readl(priv, offset);
 464	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
 465	if  (f_index < 32) {
 466		reg1 &= ~(1 << (f_index % 32));
 467		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
 468	} else {
 469		reg &= ~(1 << (f_index % 32));
 470		bcmgenet_hfb_reg_writel(priv, reg, offset);
 471	}
 472	if (!reg && !reg1) {
 473		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
 474		reg &= ~RBUF_HFB_EN;
 475		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
 476	}
 477}
 478
 479static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
 480						     u32 f_index, u32 rx_queue)
 481{
 482	u32 offset;
 483	u32 reg;
 484
 485	offset = f_index / 8;
 486	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
 487	reg &= ~(0xF << (4 * (f_index % 8)));
 488	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
 489	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
 490}
 491
 492static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
 493					   u32 f_index, u32 f_length)
 494{
 495	u32 offset;
 496	u32 reg;
 497
 498	offset = HFB_FLT_LEN_V3PLUS +
 499		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
 500		 sizeof(u32);
 501	reg = bcmgenet_hfb_reg_readl(priv, offset);
 502	reg &= ~(0xFF << (8 * (f_index % 4)));
 503	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
 504	bcmgenet_hfb_reg_writel(priv, reg, offset);
 505}
 506
 507static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
 508{
 509	while (size) {
 510		switch (*(unsigned char *)mask++) {
 511		case 0x00:
 512		case 0x0f:
 513		case 0xf0:
 514		case 0xff:
 515			size--;
 516			continue;
 517		default:
 518			return -EINVAL;
 519		}
 520	}
 521
 522	return 0;
 523}
 524
 525#define VALIDATE_MASK(x) \
 526	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
 527
 528static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
 529				    u32 offset, void *val, void *mask,
 530				    size_t size)
 531{
 532	u32 index, tmp;
 533
 534	index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
 535	tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
 536
 537	while (size--) {
 538		if (offset++ & 1) {
 539			tmp &= ~0x300FF;
 540			tmp |= (*(unsigned char *)val++);
 541			switch ((*(unsigned char *)mask++)) {
 542			case 0xFF:
 543				tmp |= 0x30000;
 544				break;
 545			case 0xF0:
 546				tmp |= 0x20000;
 547				break;
 548			case 0x0F:
 549				tmp |= 0x10000;
 550				break;
 551			}
 552			bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
 553			if (size)
 554				tmp = bcmgenet_hfb_readl(priv,
 555							 index * sizeof(u32));
 556		} else {
 557			tmp &= ~0xCFF00;
 558			tmp |= (*(unsigned char *)val++) << 8;
 559			switch ((*(unsigned char *)mask++)) {
 560			case 0xFF:
 561				tmp |= 0xC0000;
 562				break;
 563			case 0xF0:
 564				tmp |= 0x80000;
 565				break;
 566			case 0x0F:
 567				tmp |= 0x40000;
 568				break;
 569			}
 570			if (!size)
 571				bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
 572		}
 573	}
 574
 575	return 0;
 576}
 577
 578static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
 579					     struct bcmgenet_rxnfc_rule *rule)
 580{
 581	struct ethtool_rx_flow_spec *fs = &rule->fs;
 582	u32 offset = 0, f_length = 0, f;
 583	u8 val_8, mask_8;
 584	__be16 val_16;
 585	u16 mask_16;
 586	size_t size;
 587
 588	f = fs->location;
 589	if (fs->flow_type & FLOW_MAC_EXT) {
 590		bcmgenet_hfb_insert_data(priv, f, 0,
 591					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
 592					 sizeof(fs->h_ext.h_dest));
 593	}
 594
 595	if (fs->flow_type & FLOW_EXT) {
 596		if (fs->m_ext.vlan_etype ||
 597		    fs->m_ext.vlan_tci) {
 598			bcmgenet_hfb_insert_data(priv, f, 12,
 599						 &fs->h_ext.vlan_etype,
 600						 &fs->m_ext.vlan_etype,
 601						 sizeof(fs->h_ext.vlan_etype));
 602			bcmgenet_hfb_insert_data(priv, f, 14,
 603						 &fs->h_ext.vlan_tci,
 604						 &fs->m_ext.vlan_tci,
 605						 sizeof(fs->h_ext.vlan_tci));
 606			offset += VLAN_HLEN;
 607			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
 608		}
 609	}
 610
 611	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
 612	case ETHER_FLOW:
 613		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
 614		bcmgenet_hfb_insert_data(priv, f, 0,
 615					 &fs->h_u.ether_spec.h_dest,
 616					 &fs->m_u.ether_spec.h_dest,
 617					 sizeof(fs->h_u.ether_spec.h_dest));
 618		bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
 619					 &fs->h_u.ether_spec.h_source,
 620					 &fs->m_u.ether_spec.h_source,
 621					 sizeof(fs->h_u.ether_spec.h_source));
 622		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
 623					 &fs->h_u.ether_spec.h_proto,
 624					 &fs->m_u.ether_spec.h_proto,
 625					 sizeof(fs->h_u.ether_spec.h_proto));
 626		break;
 627	case IP_USER_FLOW:
 628		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
 629		/* Specify IP Ether Type */
 630		val_16 = htons(ETH_P_IP);
 631		mask_16 = 0xFFFF;
 632		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
 633					 &val_16, &mask_16, sizeof(val_16));
 634		bcmgenet_hfb_insert_data(priv, f, 15 + offset,
 635					 &fs->h_u.usr_ip4_spec.tos,
 636					 &fs->m_u.usr_ip4_spec.tos,
 637					 sizeof(fs->h_u.usr_ip4_spec.tos));
 638		bcmgenet_hfb_insert_data(priv, f, 23 + offset,
 639					 &fs->h_u.usr_ip4_spec.proto,
 640					 &fs->m_u.usr_ip4_spec.proto,
 641					 sizeof(fs->h_u.usr_ip4_spec.proto));
 642		bcmgenet_hfb_insert_data(priv, f, 26 + offset,
 643					 &fs->h_u.usr_ip4_spec.ip4src,
 644					 &fs->m_u.usr_ip4_spec.ip4src,
 645					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
 646		bcmgenet_hfb_insert_data(priv, f, 30 + offset,
 647					 &fs->h_u.usr_ip4_spec.ip4dst,
 648					 &fs->m_u.usr_ip4_spec.ip4dst,
 649					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
 650		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
 651			break;
 652
 653		/* Only supports 20 byte IPv4 header */
 654		val_8 = 0x45;
 655		mask_8 = 0xFF;
 656		bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
 657					 &val_8, &mask_8,
 658					 sizeof(val_8));
 659		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
 660		bcmgenet_hfb_insert_data(priv, f,
 661					 ETH_HLEN + 20 + offset,
 662					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
 663					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
 664					 size);
 665		f_length += DIV_ROUND_UP(size, 2);
 666		break;
 667	}
 668
 669	bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
 670	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
 671		/* Ring 0 flows can be handled by the default Descriptor Ring
 672		 * We'll map them to ring 0, but don't enable the filter
 673		 */
 674		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
 675		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
 676	} else {
 677		/* Other Rx rings are direct mapped here */
 678		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
 679							 fs->ring_cookie);
 680		bcmgenet_hfb_enable_filter(priv, f);
 681		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
 682	}
 683}
 684
 685/* bcmgenet_hfb_clear
 686 *
 687 * Clear Hardware Filter Block and disable all filtering.
 688 */
 689static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
 690{
 691	u32 base, i;
 692
 693	base = f_index * priv->hw_params->hfb_filter_size;
 694	for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
 695		bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
 696}
 697
 698static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
 699{
 700	u32 i;
 701
 702	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
 703		return;
 704
 705	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
 706	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
 707	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
 708
 709	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
 710		bcmgenet_rdma_writel(priv, 0x0, i);
 711
 712	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
 713		bcmgenet_hfb_reg_writel(priv, 0x0,
 714					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
 715
 716	for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
 717		bcmgenet_hfb_clear_filter(priv, i);
 718}
 719
 720static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
 721{
 722	int i;
 723
 724	INIT_LIST_HEAD(&priv->rxnfc_list);
 725	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
 726		return;
 727
 728	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
 729		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
 730		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
 731	}
 732
 733	bcmgenet_hfb_clear(priv);
 734}
 735
 736static int bcmgenet_begin(struct net_device *dev)
 737{
 738	struct bcmgenet_priv *priv = netdev_priv(dev);
 739
 740	/* Turn on the clock */
 741	return clk_prepare_enable(priv->clk);
 742}
 743
 744static void bcmgenet_complete(struct net_device *dev)
 745{
 746	struct bcmgenet_priv *priv = netdev_priv(dev);
 747
 748	/* Turn off the clock */
 749	clk_disable_unprepare(priv->clk);
 750}
 751
 752static int bcmgenet_get_link_ksettings(struct net_device *dev,
 753				       struct ethtool_link_ksettings *cmd)
 754{
 755	if (!netif_running(dev))
 756		return -EINVAL;
 757
 758	if (!dev->phydev)
 759		return -ENODEV;
 760
 761	phy_ethtool_ksettings_get(dev->phydev, cmd);
 762
 763	return 0;
 764}
 765
 766static int bcmgenet_set_link_ksettings(struct net_device *dev,
 767				       const struct ethtool_link_ksettings *cmd)
 768{
 769	if (!netif_running(dev))
 770		return -EINVAL;
 771
 772	if (!dev->phydev)
 773		return -ENODEV;
 774
 775	return phy_ethtool_ksettings_set(dev->phydev, cmd);
 776}
 777
 778static int bcmgenet_set_features(struct net_device *dev,
 779				 netdev_features_t features)
 780{
 781	struct bcmgenet_priv *priv = netdev_priv(dev);
 782	u32 reg;
 783	int ret;
 784
 785	ret = clk_prepare_enable(priv->clk);
 786	if (ret)
 787		return ret;
 788
 789	/* Make sure we reflect the value of CRC_CMD_FWD */
 790	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
 791	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
 792
 793	clk_disable_unprepare(priv->clk);
 794
 795	return ret;
 796}
 797
 798static u32 bcmgenet_get_msglevel(struct net_device *dev)
 799{
 800	struct bcmgenet_priv *priv = netdev_priv(dev);
 801
 802	return priv->msg_enable;
 803}
 804
 805static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
 806{
 807	struct bcmgenet_priv *priv = netdev_priv(dev);
 808
 809	priv->msg_enable = level;
 810}
 811
 812static int bcmgenet_get_coalesce(struct net_device *dev,
 813				 struct ethtool_coalesce *ec,
 814				 struct kernel_ethtool_coalesce *kernel_coal,
 815				 struct netlink_ext_ack *extack)
 816{
 817	struct bcmgenet_priv *priv = netdev_priv(dev);
 818	struct bcmgenet_rx_ring *ring;
 819	unsigned int i;
 820
 821	ec->tx_max_coalesced_frames =
 822		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
 823					 DMA_MBUF_DONE_THRESH);
 824	ec->rx_max_coalesced_frames =
 825		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
 826					 DMA_MBUF_DONE_THRESH);
 827	ec->rx_coalesce_usecs =
 828		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
 829
 830	for (i = 0; i < priv->hw_params->rx_queues; i++) {
 831		ring = &priv->rx_rings[i];
 832		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 833	}
 834	ring = &priv->rx_rings[DESC_INDEX];
 835	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 836
 837	return 0;
 838}
 839
 840static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
 841				     u32 usecs, u32 pkts)
 842{
 843	struct bcmgenet_priv *priv = ring->priv;
 844	unsigned int i = ring->index;
 845	u32 reg;
 846
 847	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
 848
 849	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
 850	reg &= ~DMA_TIMEOUT_MASK;
 851	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
 852	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
 853}
 854
 855static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
 856					  struct ethtool_coalesce *ec)
 857{
 858	struct dim_cq_moder moder;
 859	u32 usecs, pkts;
 860
 861	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
 862	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
 863	usecs = ring->rx_coalesce_usecs;
 864	pkts = ring->rx_max_coalesced_frames;
 865
 866	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
 867		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
 868		usecs = moder.usec;
 869		pkts = moder.pkts;
 870	}
 871
 872	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
 873	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
 874}
 875
 876static int bcmgenet_set_coalesce(struct net_device *dev,
 877				 struct ethtool_coalesce *ec,
 878				 struct kernel_ethtool_coalesce *kernel_coal,
 879				 struct netlink_ext_ack *extack)
 880{
 881	struct bcmgenet_priv *priv = netdev_priv(dev);
 882	unsigned int i;
 883
 884	/* Base system clock is 125Mhz, DMA timeout is this reference clock
 885	 * divided by 1024, which yields roughly 8.192us, our maximum value
 886	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
 887	 */
 888	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 889	    ec->tx_max_coalesced_frames == 0 ||
 890	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 891	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
 892		return -EINVAL;
 893
 894	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
 895		return -EINVAL;
 896
 897	/* GENET TDMA hardware does not support a configurable timeout, but will
 898	 * always generate an interrupt either after MBDONE packets have been
 899	 * transmitted, or when the ring is empty.
 900	 */
 901
 902	/* Program all TX queues with the same values, as there is no
 903	 * ethtool knob to do coalescing on a per-queue basis
 904	 */
 905	for (i = 0; i < priv->hw_params->tx_queues; i++)
 906		bcmgenet_tdma_ring_writel(priv, i,
 907					  ec->tx_max_coalesced_frames,
 908					  DMA_MBUF_DONE_THRESH);
 909	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
 910				  ec->tx_max_coalesced_frames,
 911				  DMA_MBUF_DONE_THRESH);
 912
 913	for (i = 0; i < priv->hw_params->rx_queues; i++)
 914		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
 915	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
 916
 917	return 0;
 918}
 919
 920static void bcmgenet_get_pauseparam(struct net_device *dev,
 921				    struct ethtool_pauseparam *epause)
 922{
 923	struct bcmgenet_priv *priv;
 924	u32 umac_cmd;
 925
 926	priv = netdev_priv(dev);
 927
 928	epause->autoneg = priv->autoneg_pause;
 929
 930	if (netif_carrier_ok(dev)) {
 931		/* report active state when link is up */
 932		umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD);
 933		epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE);
 934		epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE);
 935	} else {
 936		/* otherwise report stored settings */
 937		epause->tx_pause = priv->tx_pause;
 938		epause->rx_pause = priv->rx_pause;
 939	}
 940}
 941
 942static int bcmgenet_set_pauseparam(struct net_device *dev,
 943				   struct ethtool_pauseparam *epause)
 944{
 945	struct bcmgenet_priv *priv = netdev_priv(dev);
 946
 947	if (!dev->phydev)
 948		return -ENODEV;
 949
 950	if (!phy_validate_pause(dev->phydev, epause))
 951		return -EINVAL;
 952
 953	priv->autoneg_pause = !!epause->autoneg;
 954	priv->tx_pause = !!epause->tx_pause;
 955	priv->rx_pause = !!epause->rx_pause;
 956
 957	bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
 958
 959	return 0;
 960}
 961
 962/* standard ethtool support functions. */
 963enum bcmgenet_stat_type {
 964	BCMGENET_STAT_NETDEV = -1,
 965	BCMGENET_STAT_MIB_RX,
 966	BCMGENET_STAT_MIB_TX,
 967	BCMGENET_STAT_RUNT,
 968	BCMGENET_STAT_MISC,
 969	BCMGENET_STAT_SOFT,
 970};
 971
 972struct bcmgenet_stats {
 973	char stat_string[ETH_GSTRING_LEN];
 974	int stat_sizeof;
 975	int stat_offset;
 976	enum bcmgenet_stat_type type;
 977	/* reg offset from UMAC base for misc counters */
 978	u16 reg_offset;
 979};
 980
 981#define STAT_NETDEV(m) { \
 982	.stat_string = __stringify(m), \
 983	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
 984	.stat_offset = offsetof(struct net_device_stats, m), \
 985	.type = BCMGENET_STAT_NETDEV, \
 986}
 987
 988#define STAT_GENET_MIB(str, m, _type) { \
 989	.stat_string = str, \
 990	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 991	.stat_offset = offsetof(struct bcmgenet_priv, m), \
 992	.type = _type, \
 993}
 994
 995#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
 996#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
 997#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
 998#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
 999
1000#define STAT_GENET_MISC(str, m, offset) { \
1001	.stat_string = str, \
1002	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
1003	.stat_offset = offsetof(struct bcmgenet_priv, m), \
1004	.type = BCMGENET_STAT_MISC, \
1005	.reg_offset = offset, \
1006}
1007
1008#define STAT_GENET_Q(num) \
1009	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
1010			tx_rings[num].packets), \
1011	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
1012			tx_rings[num].bytes), \
1013	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
1014			rx_rings[num].bytes),	 \
1015	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
1016			rx_rings[num].packets), \
1017	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1018			rx_rings[num].errors), \
1019	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1020			rx_rings[num].dropped)
1021
1022/* There is a 0xC gap between the end of RX and beginning of TX stats and then
1023 * between the end of TX stats and the beginning of the RX RUNT
1024 */
1025#define BCMGENET_STAT_OFFSET	0xc
1026
1027/* Hardware counters must be kept in sync because the order/offset
1028 * is important here (order in structure declaration = order in hardware)
1029 */
1030static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1031	/* general stats */
1032	STAT_NETDEV(rx_packets),
1033	STAT_NETDEV(tx_packets),
1034	STAT_NETDEV(rx_bytes),
1035	STAT_NETDEV(tx_bytes),
1036	STAT_NETDEV(rx_errors),
1037	STAT_NETDEV(tx_errors),
1038	STAT_NETDEV(rx_dropped),
1039	STAT_NETDEV(tx_dropped),
1040	STAT_NETDEV(multicast),
1041	/* UniMAC RSV counters */
1042	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1043	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1044	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1045	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1046	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1047	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1048	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1049	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1050	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1051	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1052	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1053	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1054	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1055	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1056	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1057	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1058	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1059	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1060	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1061	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1062	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1063	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1064	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1065	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1066	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1067	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1068	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1069	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1070	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1071	/* UniMAC TSV counters */
1072	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1073	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1074	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1075	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1076	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1077	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1078	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1079	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1080	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1081	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1082	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1083	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1084	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1085	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1086	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1087	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1088	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1089	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1090	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1091	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1092	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1093	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1094	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1095	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1096	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1097	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1098	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1099	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1100	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1101	/* UniMAC RUNT counters */
1102	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1103	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1104	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1105	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1106	/* Misc UniMAC counters */
1107	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1108			UMAC_RBUF_OVFL_CNT_V1),
1109	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1110			UMAC_RBUF_ERR_CNT_V1),
1111	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1112	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1113	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1114	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1115	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1116	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1117			    mib.tx_realloc_tsb_failed),
1118	/* Per TX queues */
1119	STAT_GENET_Q(0),
1120	STAT_GENET_Q(1),
1121	STAT_GENET_Q(2),
1122	STAT_GENET_Q(3),
1123	STAT_GENET_Q(16),
1124};
1125
1126#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1127
1128static void bcmgenet_get_drvinfo(struct net_device *dev,
1129				 struct ethtool_drvinfo *info)
1130{
1131	strscpy(info->driver, "bcmgenet", sizeof(info->driver));
1132}
1133
1134static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1135{
1136	switch (string_set) {
1137	case ETH_SS_STATS:
1138		return BCMGENET_STATS_LEN;
1139	default:
1140		return -EOPNOTSUPP;
1141	}
1142}
1143
1144static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1145				 u8 *data)
1146{
1147	int i;
1148
1149	switch (stringset) {
1150	case ETH_SS_STATS:
1151		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1152			memcpy(data + i * ETH_GSTRING_LEN,
1153			       bcmgenet_gstrings_stats[i].stat_string,
1154			       ETH_GSTRING_LEN);
1155		}
1156		break;
1157	}
1158}
1159
1160static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1161{
1162	u16 new_offset;
1163	u32 val;
1164
1165	switch (offset) {
1166	case UMAC_RBUF_OVFL_CNT_V1:
1167		if (GENET_IS_V2(priv))
1168			new_offset = RBUF_OVFL_CNT_V2;
1169		else
1170			new_offset = RBUF_OVFL_CNT_V3PLUS;
1171
1172		val = bcmgenet_rbuf_readl(priv,	new_offset);
1173		/* clear if overflowed */
1174		if (val == ~0)
1175			bcmgenet_rbuf_writel(priv, 0, new_offset);
1176		break;
1177	case UMAC_RBUF_ERR_CNT_V1:
1178		if (GENET_IS_V2(priv))
1179			new_offset = RBUF_ERR_CNT_V2;
1180		else
1181			new_offset = RBUF_ERR_CNT_V3PLUS;
1182
1183		val = bcmgenet_rbuf_readl(priv,	new_offset);
1184		/* clear if overflowed */
1185		if (val == ~0)
1186			bcmgenet_rbuf_writel(priv, 0, new_offset);
1187		break;
1188	default:
1189		val = bcmgenet_umac_readl(priv, offset);
1190		/* clear if overflowed */
1191		if (val == ~0)
1192			bcmgenet_umac_writel(priv, 0, offset);
1193		break;
1194	}
1195
1196	return val;
1197}
1198
1199static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1200{
1201	int i, j = 0;
1202
1203	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1204		const struct bcmgenet_stats *s;
1205		u8 offset = 0;
1206		u32 val = 0;
1207		char *p;
1208
1209		s = &bcmgenet_gstrings_stats[i];
1210		switch (s->type) {
1211		case BCMGENET_STAT_NETDEV:
1212		case BCMGENET_STAT_SOFT:
1213			continue;
1214		case BCMGENET_STAT_RUNT:
1215			offset += BCMGENET_STAT_OFFSET;
1216			fallthrough;
1217		case BCMGENET_STAT_MIB_TX:
1218			offset += BCMGENET_STAT_OFFSET;
1219			fallthrough;
1220		case BCMGENET_STAT_MIB_RX:
1221			val = bcmgenet_umac_readl(priv,
1222						  UMAC_MIB_START + j + offset);
1223			offset = 0;	/* Reset Offset */
1224			break;
1225		case BCMGENET_STAT_MISC:
1226			if (GENET_IS_V1(priv)) {
1227				val = bcmgenet_umac_readl(priv, s->reg_offset);
1228				/* clear if overflowed */
1229				if (val == ~0)
1230					bcmgenet_umac_writel(priv, 0,
1231							     s->reg_offset);
1232			} else {
1233				val = bcmgenet_update_stat_misc(priv,
1234								s->reg_offset);
1235			}
1236			break;
1237		}
1238
1239		j += s->stat_sizeof;
1240		p = (char *)priv + s->stat_offset;
1241		*(u32 *)p = val;
1242	}
1243}
1244
1245static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1246				       struct ethtool_stats *stats,
1247				       u64 *data)
1248{
1249	struct bcmgenet_priv *priv = netdev_priv(dev);
1250	int i;
1251
1252	if (netif_running(dev))
1253		bcmgenet_update_mib_counters(priv);
1254
1255	dev->netdev_ops->ndo_get_stats(dev);
1256
1257	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1258		const struct bcmgenet_stats *s;
1259		char *p;
1260
1261		s = &bcmgenet_gstrings_stats[i];
1262		if (s->type == BCMGENET_STAT_NETDEV)
1263			p = (char *)&dev->stats;
1264		else
1265			p = (char *)priv;
1266		p += s->stat_offset;
1267		if (sizeof(unsigned long) != sizeof(u32) &&
1268		    s->stat_sizeof == sizeof(unsigned long))
1269			data[i] = *(unsigned long *)p;
1270		else
1271			data[i] = *(u32 *)p;
1272	}
1273}
1274
1275void bcmgenet_eee_enable_set(struct net_device *dev, bool enable,
1276			     bool tx_lpi_enabled)
1277{
1278	struct bcmgenet_priv *priv = netdev_priv(dev);
1279	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1280	u32 reg;
1281
1282	if (enable && !priv->clk_eee_enabled) {
1283		clk_prepare_enable(priv->clk_eee);
1284		priv->clk_eee_enabled = true;
1285	}
1286
1287	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1288	if (enable)
1289		reg |= EEE_EN;
1290	else
1291		reg &= ~EEE_EN;
1292	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1293
1294	/* Enable EEE and switch to a 27Mhz clock automatically */
1295	reg = bcmgenet_readl(priv->base + off);
1296	if (tx_lpi_enabled)
1297		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1298	else
1299		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1300	bcmgenet_writel(reg, priv->base + off);
1301
1302	/* Do the same for thing for RBUF */
1303	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1304	if (enable)
1305		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1306	else
1307		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1308	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1309
1310	if (!enable && priv->clk_eee_enabled) {
1311		clk_disable_unprepare(priv->clk_eee);
1312		priv->clk_eee_enabled = false;
1313	}
1314
1315	priv->eee.eee_enabled = enable;
1316	priv->eee.eee_active = enable;
1317	priv->eee.tx_lpi_enabled = tx_lpi_enabled;
1318}
1319
1320static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1321{
1322	struct bcmgenet_priv *priv = netdev_priv(dev);
1323	struct ethtool_eee *p = &priv->eee;
1324
1325	if (GENET_IS_V1(priv))
1326		return -EOPNOTSUPP;
1327
1328	if (!dev->phydev)
1329		return -ENODEV;
1330
1331	e->eee_enabled = p->eee_enabled;
1332	e->eee_active = p->eee_active;
1333	e->tx_lpi_enabled = p->tx_lpi_enabled;
1334	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1335
1336	return phy_ethtool_get_eee(dev->phydev, e);
1337}
1338
1339static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1340{
1341	struct bcmgenet_priv *priv = netdev_priv(dev);
1342	struct ethtool_eee *p = &priv->eee;
 
1343
1344	if (GENET_IS_V1(priv))
1345		return -EOPNOTSUPP;
1346
1347	if (!dev->phydev)
1348		return -ENODEV;
1349
1350	p->eee_enabled = e->eee_enabled;
1351
1352	if (!p->eee_enabled) {
1353		bcmgenet_eee_enable_set(dev, false, false);
1354	} else {
1355		p->eee_active = phy_init_eee(dev->phydev, false) >= 0;
 
 
 
 
 
1356		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1357		bcmgenet_eee_enable_set(dev, p->eee_active, e->tx_lpi_enabled);
1358	}
1359
1360	return phy_ethtool_set_eee(dev->phydev, e);
1361}
1362
1363static int bcmgenet_validate_flow(struct net_device *dev,
1364				  struct ethtool_rxnfc *cmd)
1365{
1366	struct ethtool_usrip4_spec *l4_mask;
1367	struct ethhdr *eth_mask;
1368
1369	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES &&
1370	    cmd->fs.location != RX_CLS_LOC_ANY) {
1371		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1372			   cmd->fs.location);
1373		return -EINVAL;
1374	}
1375
1376	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1377	case IP_USER_FLOW:
1378		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1379		/* don't allow mask which isn't valid */
1380		if (VALIDATE_MASK(l4_mask->ip4src) ||
1381		    VALIDATE_MASK(l4_mask->ip4dst) ||
1382		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1383		    VALIDATE_MASK(l4_mask->proto) ||
1384		    VALIDATE_MASK(l4_mask->ip_ver) ||
1385		    VALIDATE_MASK(l4_mask->tos)) {
1386			netdev_err(dev, "rxnfc: Unsupported mask\n");
1387			return -EINVAL;
1388		}
1389		break;
1390	case ETHER_FLOW:
1391		eth_mask = &cmd->fs.m_u.ether_spec;
1392		/* don't allow mask which isn't valid */
1393		if (VALIDATE_MASK(eth_mask->h_dest) ||
1394		    VALIDATE_MASK(eth_mask->h_source) ||
1395		    VALIDATE_MASK(eth_mask->h_proto)) {
1396			netdev_err(dev, "rxnfc: Unsupported mask\n");
1397			return -EINVAL;
1398		}
1399		break;
1400	default:
1401		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1402			   cmd->fs.flow_type);
1403		return -EINVAL;
1404	}
1405
1406	if ((cmd->fs.flow_type & FLOW_EXT)) {
1407		/* don't allow mask which isn't valid */
1408		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1409		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1410			netdev_err(dev, "rxnfc: Unsupported mask\n");
1411			return -EINVAL;
1412		}
1413		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1414			netdev_err(dev, "rxnfc: user-def not supported\n");
1415			return -EINVAL;
1416		}
1417	}
1418
1419	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1420		/* don't allow mask which isn't valid */
1421		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1422			netdev_err(dev, "rxnfc: Unsupported mask\n");
1423			return -EINVAL;
1424		}
1425	}
1426
1427	return 0;
1428}
1429
1430static int bcmgenet_insert_flow(struct net_device *dev,
1431				struct ethtool_rxnfc *cmd)
1432{
1433	struct bcmgenet_priv *priv = netdev_priv(dev);
1434	struct bcmgenet_rxnfc_rule *loc_rule;
1435	int err, i;
1436
1437	if (priv->hw_params->hfb_filter_size < 128) {
1438		netdev_err(dev, "rxnfc: Not supported by this device\n");
1439		return -EINVAL;
1440	}
1441
1442	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1443	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1444		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1445			   cmd->fs.ring_cookie);
1446		return -EINVAL;
1447	}
1448
1449	err = bcmgenet_validate_flow(dev, cmd);
1450	if (err)
1451		return err;
1452
1453	if (cmd->fs.location == RX_CLS_LOC_ANY) {
1454		list_for_each_entry(loc_rule, &priv->rxnfc_list, list) {
1455			cmd->fs.location = loc_rule->fs.location;
1456			err = memcmp(&loc_rule->fs, &cmd->fs,
1457				     sizeof(struct ethtool_rx_flow_spec));
1458			if (!err)
1459				/* rule exists so return current location */
1460				return 0;
1461		}
1462		for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
1463			loc_rule = &priv->rxnfc_rules[i];
1464			if (loc_rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1465				cmd->fs.location = i;
1466				break;
1467			}
1468		}
1469		if (i == MAX_NUM_OF_FS_RULES) {
1470			cmd->fs.location = RX_CLS_LOC_ANY;
1471			return -ENOSPC;
1472		}
1473	} else {
1474		loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1475	}
1476	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1477		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1478	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1479		list_del(&loc_rule->list);
1480		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1481	}
1482	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1483	memcpy(&loc_rule->fs, &cmd->fs,
1484	       sizeof(struct ethtool_rx_flow_spec));
1485
1486	bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1487
1488	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1489
1490	return 0;
1491}
1492
1493static int bcmgenet_delete_flow(struct net_device *dev,
1494				struct ethtool_rxnfc *cmd)
1495{
1496	struct bcmgenet_priv *priv = netdev_priv(dev);
1497	struct bcmgenet_rxnfc_rule *rule;
1498	int err = 0;
1499
1500	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1501		return -EINVAL;
1502
1503	rule = &priv->rxnfc_rules[cmd->fs.location];
1504	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1505		err =  -ENOENT;
1506		goto out;
1507	}
1508
1509	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1510		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1511	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1512		list_del(&rule->list);
1513		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1514	}
1515	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1516	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1517
1518out:
1519	return err;
1520}
1521
1522static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1523{
1524	struct bcmgenet_priv *priv = netdev_priv(dev);
1525	int err = 0;
1526
1527	switch (cmd->cmd) {
1528	case ETHTOOL_SRXCLSRLINS:
1529		err = bcmgenet_insert_flow(dev, cmd);
1530		break;
1531	case ETHTOOL_SRXCLSRLDEL:
1532		err = bcmgenet_delete_flow(dev, cmd);
1533		break;
1534	default:
1535		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1536			    cmd->cmd);
1537		return -EINVAL;
1538	}
1539
1540	return err;
1541}
1542
1543static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1544			     int loc)
1545{
1546	struct bcmgenet_priv *priv = netdev_priv(dev);
1547	struct bcmgenet_rxnfc_rule *rule;
1548	int err = 0;
1549
1550	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1551		return -EINVAL;
1552
1553	rule = &priv->rxnfc_rules[loc];
1554	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1555		err = -ENOENT;
1556	else
1557		memcpy(&cmd->fs, &rule->fs,
1558		       sizeof(struct ethtool_rx_flow_spec));
1559
1560	return err;
1561}
1562
1563static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1564{
1565	struct list_head *pos;
1566	int res = 0;
1567
1568	list_for_each(pos, &priv->rxnfc_list)
1569		res++;
1570
1571	return res;
1572}
1573
1574static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1575			      u32 *rule_locs)
1576{
1577	struct bcmgenet_priv *priv = netdev_priv(dev);
1578	struct bcmgenet_rxnfc_rule *rule;
1579	int err = 0;
1580	int i = 0;
1581
1582	switch (cmd->cmd) {
1583	case ETHTOOL_GRXRINGS:
1584		cmd->data = priv->hw_params->rx_queues ?: 1;
1585		break;
1586	case ETHTOOL_GRXCLSRLCNT:
1587		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1588		cmd->data = MAX_NUM_OF_FS_RULES | RX_CLS_LOC_SPECIAL;
1589		break;
1590	case ETHTOOL_GRXCLSRULE:
1591		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1592		break;
1593	case ETHTOOL_GRXCLSRLALL:
1594		list_for_each_entry(rule, &priv->rxnfc_list, list)
1595			if (i < cmd->rule_cnt)
1596				rule_locs[i++] = rule->fs.location;
1597		cmd->rule_cnt = i;
1598		cmd->data = MAX_NUM_OF_FS_RULES;
1599		break;
1600	default:
1601		err = -EOPNOTSUPP;
1602		break;
1603	}
1604
1605	return err;
1606}
1607
1608/* standard ethtool support functions. */
1609static const struct ethtool_ops bcmgenet_ethtool_ops = {
1610	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1611				     ETHTOOL_COALESCE_MAX_FRAMES |
1612				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1613	.begin			= bcmgenet_begin,
1614	.complete		= bcmgenet_complete,
1615	.get_strings		= bcmgenet_get_strings,
1616	.get_sset_count		= bcmgenet_get_sset_count,
1617	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1618	.get_drvinfo		= bcmgenet_get_drvinfo,
1619	.get_link		= ethtool_op_get_link,
1620	.get_msglevel		= bcmgenet_get_msglevel,
1621	.set_msglevel		= bcmgenet_set_msglevel,
1622	.get_wol		= bcmgenet_get_wol,
1623	.set_wol		= bcmgenet_set_wol,
1624	.get_eee		= bcmgenet_get_eee,
1625	.set_eee		= bcmgenet_set_eee,
1626	.nway_reset		= phy_ethtool_nway_reset,
1627	.get_coalesce		= bcmgenet_get_coalesce,
1628	.set_coalesce		= bcmgenet_set_coalesce,
1629	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1630	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1631	.get_ts_info		= ethtool_op_get_ts_info,
1632	.get_rxnfc		= bcmgenet_get_rxnfc,
1633	.set_rxnfc		= bcmgenet_set_rxnfc,
1634	.get_pauseparam		= bcmgenet_get_pauseparam,
1635	.set_pauseparam		= bcmgenet_set_pauseparam,
1636};
1637
1638/* Power down the unimac, based on mode. */
1639static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1640				enum bcmgenet_power_mode mode)
1641{
1642	int ret = 0;
1643	u32 reg;
1644
1645	switch (mode) {
1646	case GENET_POWER_CABLE_SENSE:
1647		phy_detach(priv->dev->phydev);
1648		break;
1649
1650	case GENET_POWER_WOL_MAGIC:
1651		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1652		break;
1653
1654	case GENET_POWER_PASSIVE:
1655		/* Power down LED */
1656		if (priv->hw_params->flags & GENET_HAS_EXT) {
1657			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1658			if (GENET_IS_V5(priv) && !priv->ephy_16nm)
1659				reg |= EXT_PWR_DOWN_PHY_EN |
1660				       EXT_PWR_DOWN_PHY_RD |
1661				       EXT_PWR_DOWN_PHY_SD |
1662				       EXT_PWR_DOWN_PHY_RX |
1663				       EXT_PWR_DOWN_PHY_TX |
1664				       EXT_IDDQ_GLBL_PWR;
1665			else
1666				reg |= EXT_PWR_DOWN_PHY;
1667
1668			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1669			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670
1671			bcmgenet_phy_power_set(priv->dev, false);
1672		}
1673		break;
1674	default:
1675		break;
1676	}
1677
1678	return ret;
1679}
1680
1681static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1682			      enum bcmgenet_power_mode mode)
1683{
1684	u32 reg;
1685
1686	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1687		return;
1688
1689	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1690
1691	switch (mode) {
1692	case GENET_POWER_PASSIVE:
1693		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1694			 EXT_ENERGY_DET_MASK);
1695		if (GENET_IS_V5(priv) && !priv->ephy_16nm) {
1696			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1697				 EXT_PWR_DOWN_PHY_RD |
1698				 EXT_PWR_DOWN_PHY_SD |
1699				 EXT_PWR_DOWN_PHY_RX |
1700				 EXT_PWR_DOWN_PHY_TX |
1701				 EXT_IDDQ_GLBL_PWR);
1702			reg |=   EXT_PHY_RESET;
1703			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1704			mdelay(1);
1705
1706			reg &=  ~EXT_PHY_RESET;
1707		} else {
1708			reg &= ~EXT_PWR_DOWN_PHY;
1709			reg |= EXT_PWR_DN_EN_LD;
1710		}
1711		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1712		bcmgenet_phy_power_set(priv->dev, true);
1713		break;
1714
1715	case GENET_POWER_CABLE_SENSE:
1716		/* enable APD */
1717		if (!GENET_IS_V5(priv)) {
1718			reg |= EXT_PWR_DN_EN_LD;
1719			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1720		}
1721		break;
1722	case GENET_POWER_WOL_MAGIC:
1723		bcmgenet_wol_power_up_cfg(priv, mode);
1724		return;
1725	default:
1726		break;
1727	}
1728}
1729
1730static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1731					 struct bcmgenet_tx_ring *ring)
1732{
1733	struct enet_cb *tx_cb_ptr;
1734
1735	tx_cb_ptr = ring->cbs;
1736	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1737
1738	/* Advancing local write pointer */
1739	if (ring->write_ptr == ring->end_ptr)
1740		ring->write_ptr = ring->cb_ptr;
1741	else
1742		ring->write_ptr++;
1743
1744	return tx_cb_ptr;
1745}
1746
1747static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1748					 struct bcmgenet_tx_ring *ring)
1749{
1750	struct enet_cb *tx_cb_ptr;
1751
1752	tx_cb_ptr = ring->cbs;
1753	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1754
1755	/* Rewinding local write pointer */
1756	if (ring->write_ptr == ring->cb_ptr)
1757		ring->write_ptr = ring->end_ptr;
1758	else
1759		ring->write_ptr--;
1760
1761	return tx_cb_ptr;
1762}
1763
1764static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1765{
1766	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1767				 INTRL2_CPU_MASK_SET);
1768}
1769
1770static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1771{
1772	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1773				 INTRL2_CPU_MASK_CLEAR);
1774}
1775
1776static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1777{
1778	bcmgenet_intrl2_1_writel(ring->priv,
1779				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1780				 INTRL2_CPU_MASK_SET);
1781}
1782
1783static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1784{
1785	bcmgenet_intrl2_1_writel(ring->priv,
1786				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1787				 INTRL2_CPU_MASK_CLEAR);
1788}
1789
1790static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1791{
1792	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1793				 INTRL2_CPU_MASK_SET);
1794}
1795
1796static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1797{
1798	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1799				 INTRL2_CPU_MASK_CLEAR);
1800}
1801
1802static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1803{
1804	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1805				 INTRL2_CPU_MASK_CLEAR);
1806}
1807
1808static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1809{
1810	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1811				 INTRL2_CPU_MASK_SET);
1812}
1813
1814/* Simple helper to free a transmit control block's resources
1815 * Returns an skb when the last transmit control block associated with the
1816 * skb is freed.  The skb should be freed by the caller if necessary.
1817 */
1818static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1819					   struct enet_cb *cb)
1820{
1821	struct sk_buff *skb;
1822
1823	skb = cb->skb;
1824
1825	if (skb) {
1826		cb->skb = NULL;
1827		if (cb == GENET_CB(skb)->first_cb)
1828			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1829					 dma_unmap_len(cb, dma_len),
1830					 DMA_TO_DEVICE);
1831		else
1832			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1833				       dma_unmap_len(cb, dma_len),
1834				       DMA_TO_DEVICE);
1835		dma_unmap_addr_set(cb, dma_addr, 0);
1836
1837		if (cb == GENET_CB(skb)->last_cb)
1838			return skb;
1839
1840	} else if (dma_unmap_addr(cb, dma_addr)) {
1841		dma_unmap_page(dev,
1842			       dma_unmap_addr(cb, dma_addr),
1843			       dma_unmap_len(cb, dma_len),
1844			       DMA_TO_DEVICE);
1845		dma_unmap_addr_set(cb, dma_addr, 0);
1846	}
1847
1848	return NULL;
1849}
1850
1851/* Simple helper to free a receive control block's resources */
1852static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1853					   struct enet_cb *cb)
1854{
1855	struct sk_buff *skb;
1856
1857	skb = cb->skb;
1858	cb->skb = NULL;
1859
1860	if (dma_unmap_addr(cb, dma_addr)) {
1861		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1862				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1863		dma_unmap_addr_set(cb, dma_addr, 0);
1864	}
1865
1866	return skb;
1867}
1868
1869/* Unlocked version of the reclaim routine */
1870static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1871					  struct bcmgenet_tx_ring *ring)
1872{
1873	struct bcmgenet_priv *priv = netdev_priv(dev);
1874	unsigned int txbds_processed = 0;
1875	unsigned int bytes_compl = 0;
1876	unsigned int pkts_compl = 0;
1877	unsigned int txbds_ready;
1878	unsigned int c_index;
1879	struct sk_buff *skb;
1880
1881	/* Clear status before servicing to reduce spurious interrupts */
1882	if (ring->index == DESC_INDEX)
1883		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1884					 INTRL2_CPU_CLEAR);
1885	else
1886		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1887					 INTRL2_CPU_CLEAR);
1888
1889	/* Compute how many buffers are transmitted since last xmit call */
1890	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1891		& DMA_C_INDEX_MASK;
1892	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1893
1894	netif_dbg(priv, tx_done, dev,
1895		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1896		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1897
1898	/* Reclaim transmitted buffers */
1899	while (txbds_processed < txbds_ready) {
1900		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1901					  &priv->tx_cbs[ring->clean_ptr]);
1902		if (skb) {
1903			pkts_compl++;
1904			bytes_compl += GENET_CB(skb)->bytes_sent;
1905			dev_consume_skb_any(skb);
1906		}
1907
1908		txbds_processed++;
1909		if (likely(ring->clean_ptr < ring->end_ptr))
1910			ring->clean_ptr++;
1911		else
1912			ring->clean_ptr = ring->cb_ptr;
1913	}
1914
1915	ring->free_bds += txbds_processed;
1916	ring->c_index = c_index;
1917
1918	ring->packets += pkts_compl;
1919	ring->bytes += bytes_compl;
1920
1921	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1922				  pkts_compl, bytes_compl);
1923
1924	return txbds_processed;
1925}
1926
1927static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1928				struct bcmgenet_tx_ring *ring)
1929{
1930	unsigned int released;
1931
1932	spin_lock_bh(&ring->lock);
1933	released = __bcmgenet_tx_reclaim(dev, ring);
1934	spin_unlock_bh(&ring->lock);
1935
1936	return released;
1937}
1938
1939static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1940{
1941	struct bcmgenet_tx_ring *ring =
1942		container_of(napi, struct bcmgenet_tx_ring, napi);
1943	unsigned int work_done = 0;
1944	struct netdev_queue *txq;
1945
1946	spin_lock(&ring->lock);
1947	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1948	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1949		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1950		netif_tx_wake_queue(txq);
1951	}
1952	spin_unlock(&ring->lock);
1953
1954	if (work_done == 0) {
1955		napi_complete(napi);
1956		ring->int_enable(ring);
1957
1958		return 0;
1959	}
1960
1961	return budget;
1962}
1963
1964static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1965{
1966	struct bcmgenet_priv *priv = netdev_priv(dev);
1967	int i;
1968
1969	if (netif_is_multiqueue(dev)) {
1970		for (i = 0; i < priv->hw_params->tx_queues; i++)
1971			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1972	}
1973
1974	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1975}
1976
1977/* Reallocate the SKB to put enough headroom in front of it and insert
1978 * the transmit checksum offsets in the descriptors
1979 */
1980static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1981					struct sk_buff *skb)
1982{
1983	struct bcmgenet_priv *priv = netdev_priv(dev);
1984	struct status_64 *status = NULL;
1985	struct sk_buff *new_skb;
1986	u16 offset;
1987	u8 ip_proto;
1988	__be16 ip_ver;
1989	u32 tx_csum_info;
1990
1991	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1992		/* If 64 byte status block enabled, must make sure skb has
1993		 * enough headroom for us to insert 64B status block.
1994		 */
1995		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1996		if (!new_skb) {
1997			dev_kfree_skb_any(skb);
1998			priv->mib.tx_realloc_tsb_failed++;
1999			dev->stats.tx_dropped++;
2000			return NULL;
2001		}
2002		dev_consume_skb_any(skb);
2003		skb = new_skb;
2004		priv->mib.tx_realloc_tsb++;
2005	}
2006
2007	skb_push(skb, sizeof(*status));
2008	status = (struct status_64 *)skb->data;
2009
2010	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
2011		ip_ver = skb->protocol;
2012		switch (ip_ver) {
2013		case htons(ETH_P_IP):
2014			ip_proto = ip_hdr(skb)->protocol;
2015			break;
2016		case htons(ETH_P_IPV6):
2017			ip_proto = ipv6_hdr(skb)->nexthdr;
2018			break;
2019		default:
2020			/* don't use UDP flag */
2021			ip_proto = 0;
2022			break;
2023		}
2024
2025		offset = skb_checksum_start_offset(skb) - sizeof(*status);
2026		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
2027				(offset + skb->csum_offset) |
2028				STATUS_TX_CSUM_LV;
2029
2030		/* Set the special UDP flag for UDP */
2031		if (ip_proto == IPPROTO_UDP)
2032			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
2033
2034		status->tx_csum_info = tx_csum_info;
2035	}
2036
2037	return skb;
2038}
2039
2040static void bcmgenet_hide_tsb(struct sk_buff *skb)
2041{
2042	__skb_pull(skb, sizeof(struct status_64));
2043}
2044
2045static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2046{
2047	struct bcmgenet_priv *priv = netdev_priv(dev);
2048	struct device *kdev = &priv->pdev->dev;
2049	struct bcmgenet_tx_ring *ring = NULL;
2050	struct enet_cb *tx_cb_ptr;
2051	struct netdev_queue *txq;
2052	int nr_frags, index;
2053	dma_addr_t mapping;
2054	unsigned int size;
2055	skb_frag_t *frag;
2056	u32 len_stat;
2057	int ret;
2058	int i;
2059
2060	index = skb_get_queue_mapping(skb);
2061	/* Mapping strategy:
2062	 * queue_mapping = 0, unclassified, packet xmited through ring16
2063	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2064	 * queue_mapping = 2, goes to ring 1.
2065	 * queue_mapping = 3, goes to ring 2.
2066	 * queue_mapping = 4, goes to ring 3.
2067	 */
2068	if (index == 0)
2069		index = DESC_INDEX;
2070	else
2071		index -= 1;
2072
2073	ring = &priv->tx_rings[index];
2074	txq = netdev_get_tx_queue(dev, ring->queue);
2075
2076	nr_frags = skb_shinfo(skb)->nr_frags;
2077
2078	spin_lock(&ring->lock);
2079	if (ring->free_bds <= (nr_frags + 1)) {
2080		if (!netif_tx_queue_stopped(txq))
2081			netif_tx_stop_queue(txq);
 
 
 
 
2082		ret = NETDEV_TX_BUSY;
2083		goto out;
2084	}
2085
2086	/* Retain how many bytes will be sent on the wire, without TSB inserted
2087	 * by transmit checksum offload
2088	 */
2089	GENET_CB(skb)->bytes_sent = skb->len;
2090
2091	/* add the Transmit Status Block */
2092	skb = bcmgenet_add_tsb(dev, skb);
2093	if (!skb) {
2094		ret = NETDEV_TX_OK;
2095		goto out;
2096	}
2097
2098	for (i = 0; i <= nr_frags; i++) {
2099		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2100
2101		BUG_ON(!tx_cb_ptr);
2102
2103		if (!i) {
2104			/* Transmit single SKB or head of fragment list */
2105			GENET_CB(skb)->first_cb = tx_cb_ptr;
2106			size = skb_headlen(skb);
2107			mapping = dma_map_single(kdev, skb->data, size,
2108						 DMA_TO_DEVICE);
2109		} else {
2110			/* xmit fragment */
2111			frag = &skb_shinfo(skb)->frags[i - 1];
2112			size = skb_frag_size(frag);
2113			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2114						   DMA_TO_DEVICE);
2115		}
2116
2117		ret = dma_mapping_error(kdev, mapping);
2118		if (ret) {
2119			priv->mib.tx_dma_failed++;
2120			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2121			ret = NETDEV_TX_OK;
2122			goto out_unmap_frags;
2123		}
2124		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2125		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2126
2127		tx_cb_ptr->skb = skb;
2128
2129		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2130			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2131
2132		/* Note: if we ever change from DMA_TX_APPEND_CRC below we
2133		 * will need to restore software padding of "runt" packets
2134		 */
2135		len_stat |= DMA_TX_APPEND_CRC;
2136
2137		if (!i) {
2138			len_stat |= DMA_SOP;
2139			if (skb->ip_summed == CHECKSUM_PARTIAL)
2140				len_stat |= DMA_TX_DO_CSUM;
2141		}
2142		if (i == nr_frags)
2143			len_stat |= DMA_EOP;
2144
2145		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2146	}
2147
2148	GENET_CB(skb)->last_cb = tx_cb_ptr;
2149
2150	bcmgenet_hide_tsb(skb);
2151	skb_tx_timestamp(skb);
2152
2153	/* Decrement total BD count and advance our write pointer */
2154	ring->free_bds -= nr_frags + 1;
2155	ring->prod_index += nr_frags + 1;
2156	ring->prod_index &= DMA_P_INDEX_MASK;
2157
2158	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2159
2160	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2161		netif_tx_stop_queue(txq);
2162
2163	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2164		/* Packets are ready, update producer index */
2165		bcmgenet_tdma_ring_writel(priv, ring->index,
2166					  ring->prod_index, TDMA_PROD_INDEX);
2167out:
2168	spin_unlock(&ring->lock);
2169
2170	return ret;
2171
2172out_unmap_frags:
2173	/* Back up for failed control block mapping */
2174	bcmgenet_put_txcb(priv, ring);
2175
2176	/* Unmap successfully mapped control blocks */
2177	while (i-- > 0) {
2178		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2179		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2180	}
2181
2182	dev_kfree_skb(skb);
2183	goto out;
2184}
2185
2186static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2187					  struct enet_cb *cb)
2188{
2189	struct device *kdev = &priv->pdev->dev;
2190	struct sk_buff *skb;
2191	struct sk_buff *rx_skb;
2192	dma_addr_t mapping;
2193
2194	/* Allocate a new Rx skb */
2195	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2196				 GFP_ATOMIC | __GFP_NOWARN);
2197	if (!skb) {
2198		priv->mib.alloc_rx_buff_failed++;
2199		netif_err(priv, rx_err, priv->dev,
2200			  "%s: Rx skb allocation failed\n", __func__);
2201		return NULL;
2202	}
2203
2204	/* DMA-map the new Rx skb */
2205	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2206				 DMA_FROM_DEVICE);
2207	if (dma_mapping_error(kdev, mapping)) {
2208		priv->mib.rx_dma_failed++;
2209		dev_kfree_skb_any(skb);
2210		netif_err(priv, rx_err, priv->dev,
2211			  "%s: Rx skb DMA mapping failed\n", __func__);
2212		return NULL;
2213	}
2214
2215	/* Grab the current Rx skb from the ring and DMA-unmap it */
2216	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2217
2218	/* Put the new Rx skb on the ring */
2219	cb->skb = skb;
2220	dma_unmap_addr_set(cb, dma_addr, mapping);
2221	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2222	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2223
2224	/* Return the current Rx skb to caller */
2225	return rx_skb;
2226}
2227
2228/* bcmgenet_desc_rx - descriptor based rx process.
2229 * this could be called from bottom half, or from NAPI polling method.
2230 */
2231static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2232				     unsigned int budget)
2233{
2234	struct bcmgenet_priv *priv = ring->priv;
2235	struct net_device *dev = priv->dev;
2236	struct enet_cb *cb;
2237	struct sk_buff *skb;
2238	u32 dma_length_status;
2239	unsigned long dma_flag;
2240	int len;
2241	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2242	unsigned int bytes_processed = 0;
2243	unsigned int p_index, mask;
2244	unsigned int discards;
2245
2246	/* Clear status before servicing to reduce spurious interrupts */
2247	if (ring->index == DESC_INDEX) {
2248		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2249					 INTRL2_CPU_CLEAR);
2250	} else {
2251		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2252		bcmgenet_intrl2_1_writel(priv,
2253					 mask,
2254					 INTRL2_CPU_CLEAR);
2255	}
2256
2257	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2258
2259	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2260		   DMA_P_INDEX_DISCARD_CNT_MASK;
2261	if (discards > ring->old_discards) {
2262		discards = discards - ring->old_discards;
2263		ring->errors += discards;
2264		ring->old_discards += discards;
2265
2266		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2267		if (ring->old_discards >= 0xC000) {
2268			ring->old_discards = 0;
2269			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2270						  RDMA_PROD_INDEX);
2271		}
2272	}
2273
2274	p_index &= DMA_P_INDEX_MASK;
2275	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2276
2277	netif_dbg(priv, rx_status, dev,
2278		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2279
2280	while ((rxpktprocessed < rxpkttoprocess) &&
2281	       (rxpktprocessed < budget)) {
2282		struct status_64 *status;
2283		__be16 rx_csum;
2284
2285		cb = &priv->rx_cbs[ring->read_ptr];
2286		skb = bcmgenet_rx_refill(priv, cb);
2287
2288		if (unlikely(!skb)) {
2289			ring->dropped++;
2290			goto next;
2291		}
2292
2293		status = (struct status_64 *)skb->data;
2294		dma_length_status = status->length_status;
2295		if (dev->features & NETIF_F_RXCSUM) {
2296			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2297			if (rx_csum) {
2298				skb->csum = (__force __wsum)ntohs(rx_csum);
2299				skb->ip_summed = CHECKSUM_COMPLETE;
2300			}
2301		}
2302
2303		/* DMA flags and length are still valid no matter how
2304		 * we got the Receive Status Vector (64B RSB or register)
2305		 */
2306		dma_flag = dma_length_status & 0xffff;
2307		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2308
2309		netif_dbg(priv, rx_status, dev,
2310			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2311			  __func__, p_index, ring->c_index,
2312			  ring->read_ptr, dma_length_status);
2313
2314		if (unlikely(len > RX_BUF_LENGTH)) {
2315			netif_err(priv, rx_status, dev, "oversized packet\n");
2316			dev->stats.rx_length_errors++;
2317			dev->stats.rx_errors++;
2318			dev_kfree_skb_any(skb);
2319			goto next;
2320		}
2321
2322		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2323			netif_err(priv, rx_status, dev,
2324				  "dropping fragmented packet!\n");
2325			ring->errors++;
2326			dev_kfree_skb_any(skb);
2327			goto next;
2328		}
2329
2330		/* report errors */
2331		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2332						DMA_RX_OV |
2333						DMA_RX_NO |
2334						DMA_RX_LG |
2335						DMA_RX_RXER))) {
2336			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2337				  (unsigned int)dma_flag);
2338			if (dma_flag & DMA_RX_CRC_ERROR)
2339				dev->stats.rx_crc_errors++;
2340			if (dma_flag & DMA_RX_OV)
2341				dev->stats.rx_over_errors++;
2342			if (dma_flag & DMA_RX_NO)
2343				dev->stats.rx_frame_errors++;
2344			if (dma_flag & DMA_RX_LG)
2345				dev->stats.rx_length_errors++;
2346			dev->stats.rx_errors++;
2347			dev_kfree_skb_any(skb);
2348			goto next;
2349		} /* error packet */
2350
2351		skb_put(skb, len);
2352
2353		/* remove RSB and hardware 2bytes added for IP alignment */
2354		skb_pull(skb, 66);
2355		len -= 66;
2356
2357		if (priv->crc_fwd_en) {
2358			skb_trim(skb, len - ETH_FCS_LEN);
2359			len -= ETH_FCS_LEN;
2360		}
2361
2362		bytes_processed += len;
2363
2364		/*Finish setting up the received SKB and send it to the kernel*/
2365		skb->protocol = eth_type_trans(skb, priv->dev);
2366		ring->packets++;
2367		ring->bytes += len;
2368		if (dma_flag & DMA_RX_MULT)
2369			dev->stats.multicast++;
2370
2371		/* Notify kernel */
2372		napi_gro_receive(&ring->napi, skb);
2373		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2374
2375next:
2376		rxpktprocessed++;
2377		if (likely(ring->read_ptr < ring->end_ptr))
2378			ring->read_ptr++;
2379		else
2380			ring->read_ptr = ring->cb_ptr;
2381
2382		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2383		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2384	}
2385
2386	ring->dim.bytes = bytes_processed;
2387	ring->dim.packets = rxpktprocessed;
2388
2389	return rxpktprocessed;
2390}
2391
2392/* Rx NAPI polling method */
2393static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2394{
2395	struct bcmgenet_rx_ring *ring = container_of(napi,
2396			struct bcmgenet_rx_ring, napi);
2397	struct dim_sample dim_sample = {};
2398	unsigned int work_done;
2399
2400	work_done = bcmgenet_desc_rx(ring, budget);
2401
2402	if (work_done < budget) {
2403		napi_complete_done(napi, work_done);
2404		ring->int_enable(ring);
2405	}
2406
2407	if (ring->dim.use_dim) {
2408		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2409				  ring->dim.bytes, &dim_sample);
2410		net_dim(&ring->dim.dim, dim_sample);
2411	}
2412
2413	return work_done;
2414}
2415
2416static void bcmgenet_dim_work(struct work_struct *work)
2417{
2418	struct dim *dim = container_of(work, struct dim, work);
2419	struct bcmgenet_net_dim *ndim =
2420			container_of(dim, struct bcmgenet_net_dim, dim);
2421	struct bcmgenet_rx_ring *ring =
2422			container_of(ndim, struct bcmgenet_rx_ring, dim);
2423	struct dim_cq_moder cur_profile =
2424			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2425
2426	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2427	dim->state = DIM_START_MEASURE;
2428}
2429
2430/* Assign skb to RX DMA descriptor. */
2431static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2432				     struct bcmgenet_rx_ring *ring)
2433{
2434	struct enet_cb *cb;
2435	struct sk_buff *skb;
2436	int i;
2437
2438	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2439
2440	/* loop here for each buffer needing assign */
2441	for (i = 0; i < ring->size; i++) {
2442		cb = ring->cbs + i;
2443		skb = bcmgenet_rx_refill(priv, cb);
2444		if (skb)
2445			dev_consume_skb_any(skb);
2446		if (!cb->skb)
2447			return -ENOMEM;
2448	}
2449
2450	return 0;
2451}
2452
2453static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2454{
2455	struct sk_buff *skb;
2456	struct enet_cb *cb;
2457	int i;
2458
2459	for (i = 0; i < priv->num_rx_bds; i++) {
2460		cb = &priv->rx_cbs[i];
2461
2462		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2463		if (skb)
2464			dev_consume_skb_any(skb);
2465	}
2466}
2467
2468static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2469{
2470	u32 reg;
2471
2472	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2473	if (reg & CMD_SW_RESET)
2474		return;
2475	if (enable)
2476		reg |= mask;
2477	else
2478		reg &= ~mask;
2479	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2480
2481	/* UniMAC stops on a packet boundary, wait for a full-size packet
2482	 * to be processed
2483	 */
2484	if (enable == 0)
2485		usleep_range(1000, 2000);
2486}
2487
2488static void reset_umac(struct bcmgenet_priv *priv)
2489{
2490	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2491	bcmgenet_rbuf_ctrl_set(priv, 0);
2492	udelay(10);
2493
2494	/* issue soft reset and disable MAC while updating its registers */
2495	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2496	udelay(2);
2497}
2498
2499static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2500{
2501	/* Mask all interrupts.*/
2502	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2503	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2504	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2505	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2506}
2507
2508static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2509{
2510	u32 int0_enable = 0;
2511
2512	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2513	 * and MoCA PHY
2514	 */
2515	if (priv->internal_phy) {
2516		int0_enable |= UMAC_IRQ_LINK_EVENT;
2517		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2518			int0_enable |= UMAC_IRQ_PHY_DET_R;
2519	} else if (priv->ext_phy) {
2520		int0_enable |= UMAC_IRQ_LINK_EVENT;
2521	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2522		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2523			int0_enable |= UMAC_IRQ_LINK_EVENT;
2524	}
2525	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2526}
2527
2528static void init_umac(struct bcmgenet_priv *priv)
2529{
2530	struct device *kdev = &priv->pdev->dev;
2531	u32 reg;
2532	u32 int0_enable = 0;
2533
2534	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2535
2536	reset_umac(priv);
2537
2538	/* clear tx/rx counter */
2539	bcmgenet_umac_writel(priv,
2540			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2541			     UMAC_MIB_CTRL);
2542	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2543
2544	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2545
2546	/* init tx registers, enable TSB */
2547	reg = bcmgenet_tbuf_ctrl_get(priv);
2548	reg |= TBUF_64B_EN;
2549	bcmgenet_tbuf_ctrl_set(priv, reg);
2550
2551	/* init rx registers, enable ip header optimization and RSB */
2552	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2553	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2554	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2555
2556	/* enable rx checksumming */
2557	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2558	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2559	/* If UniMAC forwards CRC, we need to skip over it to get
2560	 * a valid CHK bit to be set in the per-packet status word
2561	 */
2562	if (priv->crc_fwd_en)
2563		reg |= RBUF_SKIP_FCS;
2564	else
2565		reg &= ~RBUF_SKIP_FCS;
2566	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2567
2568	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2569		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2570
2571	bcmgenet_intr_disable(priv);
2572
2573	/* Configure backpressure vectors for MoCA */
2574	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2575		reg = bcmgenet_bp_mc_get(priv);
2576		reg |= BIT(priv->hw_params->bp_in_en_shift);
2577
2578		/* bp_mask: back pressure mask */
2579		if (netif_is_multiqueue(priv->dev))
2580			reg |= priv->hw_params->bp_in_mask;
2581		else
2582			reg &= ~priv->hw_params->bp_in_mask;
2583		bcmgenet_bp_mc_set(priv, reg);
2584	}
2585
2586	/* Enable MDIO interrupts on GENET v3+ */
2587	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2588		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2589
2590	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2591
2592	dev_dbg(kdev, "done init umac\n");
2593}
2594
2595static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2596			      void (*cb)(struct work_struct *work))
2597{
2598	struct bcmgenet_net_dim *dim = &ring->dim;
2599
2600	INIT_WORK(&dim->dim.work, cb);
2601	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2602	dim->event_ctr = 0;
2603	dim->packets = 0;
2604	dim->bytes = 0;
2605}
2606
2607static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2608{
2609	struct bcmgenet_net_dim *dim = &ring->dim;
2610	struct dim_cq_moder moder;
2611	u32 usecs, pkts;
2612
2613	usecs = ring->rx_coalesce_usecs;
2614	pkts = ring->rx_max_coalesced_frames;
2615
2616	/* If DIM was enabled, re-apply default parameters */
2617	if (dim->use_dim) {
2618		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2619		usecs = moder.usec;
2620		pkts = moder.pkts;
2621	}
2622
2623	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2624}
2625
2626/* Initialize a Tx ring along with corresponding hardware registers */
2627static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2628				  unsigned int index, unsigned int size,
2629				  unsigned int start_ptr, unsigned int end_ptr)
2630{
2631	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2632	u32 words_per_bd = WORDS_PER_BD(priv);
2633	u32 flow_period_val = 0;
2634
2635	spin_lock_init(&ring->lock);
2636	ring->priv = priv;
2637	ring->index = index;
2638	if (index == DESC_INDEX) {
2639		ring->queue = 0;
2640		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2641		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2642	} else {
2643		ring->queue = index + 1;
2644		ring->int_enable = bcmgenet_tx_ring_int_enable;
2645		ring->int_disable = bcmgenet_tx_ring_int_disable;
2646	}
2647	ring->cbs = priv->tx_cbs + start_ptr;
2648	ring->size = size;
2649	ring->clean_ptr = start_ptr;
2650	ring->c_index = 0;
2651	ring->free_bds = size;
2652	ring->write_ptr = start_ptr;
2653	ring->cb_ptr = start_ptr;
2654	ring->end_ptr = end_ptr - 1;
2655	ring->prod_index = 0;
2656
2657	/* Set flow period for ring != 16 */
2658	if (index != DESC_INDEX)
2659		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2660
2661	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2662	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2663	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2664	/* Disable rate control for now */
2665	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2666				  TDMA_FLOW_PERIOD);
2667	bcmgenet_tdma_ring_writel(priv, index,
2668				  ((size << DMA_RING_SIZE_SHIFT) |
2669				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2670
2671	/* Set start and end address, read and write pointers */
2672	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673				  DMA_START_ADDR);
2674	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2675				  TDMA_READ_PTR);
2676	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2677				  TDMA_WRITE_PTR);
2678	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2679				  DMA_END_ADDR);
2680
2681	/* Initialize Tx NAPI */
2682	netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll);
 
2683}
2684
2685/* Initialize a RDMA ring */
2686static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2687				 unsigned int index, unsigned int size,
2688				 unsigned int start_ptr, unsigned int end_ptr)
2689{
2690	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2691	u32 words_per_bd = WORDS_PER_BD(priv);
2692	int ret;
2693
2694	ring->priv = priv;
2695	ring->index = index;
2696	if (index == DESC_INDEX) {
2697		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2698		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2699	} else {
2700		ring->int_enable = bcmgenet_rx_ring_int_enable;
2701		ring->int_disable = bcmgenet_rx_ring_int_disable;
2702	}
2703	ring->cbs = priv->rx_cbs + start_ptr;
2704	ring->size = size;
2705	ring->c_index = 0;
2706	ring->read_ptr = start_ptr;
2707	ring->cb_ptr = start_ptr;
2708	ring->end_ptr = end_ptr - 1;
2709
2710	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2711	if (ret)
2712		return ret;
2713
2714	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2715	bcmgenet_init_rx_coalesce(ring);
2716
2717	/* Initialize Rx NAPI */
2718	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll);
 
2719
2720	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2721	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2722	bcmgenet_rdma_ring_writel(priv, index,
2723				  ((size << DMA_RING_SIZE_SHIFT) |
2724				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2725	bcmgenet_rdma_ring_writel(priv, index,
2726				  (DMA_FC_THRESH_LO <<
2727				   DMA_XOFF_THRESHOLD_SHIFT) |
2728				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2729
2730	/* Set start and end address, read and write pointers */
2731	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2732				  DMA_START_ADDR);
2733	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2734				  RDMA_READ_PTR);
2735	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2736				  RDMA_WRITE_PTR);
2737	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2738				  DMA_END_ADDR);
2739
2740	return ret;
2741}
2742
2743static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2744{
2745	unsigned int i;
2746	struct bcmgenet_tx_ring *ring;
2747
2748	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2749		ring = &priv->tx_rings[i];
2750		napi_enable(&ring->napi);
2751		ring->int_enable(ring);
2752	}
2753
2754	ring = &priv->tx_rings[DESC_INDEX];
2755	napi_enable(&ring->napi);
2756	ring->int_enable(ring);
2757}
2758
2759static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2760{
2761	unsigned int i;
2762	struct bcmgenet_tx_ring *ring;
2763
2764	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2765		ring = &priv->tx_rings[i];
2766		napi_disable(&ring->napi);
2767	}
2768
2769	ring = &priv->tx_rings[DESC_INDEX];
2770	napi_disable(&ring->napi);
2771}
2772
2773static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2774{
2775	unsigned int i;
2776	struct bcmgenet_tx_ring *ring;
2777
2778	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2779		ring = &priv->tx_rings[i];
2780		netif_napi_del(&ring->napi);
2781	}
2782
2783	ring = &priv->tx_rings[DESC_INDEX];
2784	netif_napi_del(&ring->napi);
2785}
2786
2787/* Initialize Tx queues
2788 *
2789 * Queues 0-3 are priority-based, each one has 32 descriptors,
2790 * with queue 0 being the highest priority queue.
2791 *
2792 * Queue 16 is the default Tx queue with
2793 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2794 *
2795 * The transmit control block pool is then partitioned as follows:
2796 * - Tx queue 0 uses tx_cbs[0..31]
2797 * - Tx queue 1 uses tx_cbs[32..63]
2798 * - Tx queue 2 uses tx_cbs[64..95]
2799 * - Tx queue 3 uses tx_cbs[96..127]
2800 * - Tx queue 16 uses tx_cbs[128..255]
2801 */
2802static void bcmgenet_init_tx_queues(struct net_device *dev)
2803{
2804	struct bcmgenet_priv *priv = netdev_priv(dev);
2805	u32 i, dma_enable;
2806	u32 dma_ctrl, ring_cfg;
2807	u32 dma_priority[3] = {0, 0, 0};
2808
2809	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2810	dma_enable = dma_ctrl & DMA_EN;
2811	dma_ctrl &= ~DMA_EN;
2812	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2813
2814	dma_ctrl = 0;
2815	ring_cfg = 0;
2816
2817	/* Enable strict priority arbiter mode */
2818	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2819
2820	/* Initialize Tx priority queues */
2821	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2822		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2823				      i * priv->hw_params->tx_bds_per_q,
2824				      (i + 1) * priv->hw_params->tx_bds_per_q);
2825		ring_cfg |= (1 << i);
2826		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2827		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2828			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2829	}
2830
2831	/* Initialize Tx default queue 16 */
2832	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2833			      priv->hw_params->tx_queues *
2834			      priv->hw_params->tx_bds_per_q,
2835			      TOTAL_DESC);
2836	ring_cfg |= (1 << DESC_INDEX);
2837	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2838	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2839		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2840		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2841
2842	/* Set Tx queue priorities */
2843	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2844	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2845	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2846
2847	/* Enable Tx queues */
2848	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2849
2850	/* Enable Tx DMA */
2851	if (dma_enable)
2852		dma_ctrl |= DMA_EN;
2853	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2854}
2855
2856static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2857{
2858	unsigned int i;
2859	struct bcmgenet_rx_ring *ring;
2860
2861	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2862		ring = &priv->rx_rings[i];
2863		napi_enable(&ring->napi);
2864		ring->int_enable(ring);
2865	}
2866
2867	ring = &priv->rx_rings[DESC_INDEX];
2868	napi_enable(&ring->napi);
2869	ring->int_enable(ring);
2870}
2871
2872static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2873{
2874	unsigned int i;
2875	struct bcmgenet_rx_ring *ring;
2876
2877	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2878		ring = &priv->rx_rings[i];
2879		napi_disable(&ring->napi);
2880		cancel_work_sync(&ring->dim.dim.work);
2881	}
2882
2883	ring = &priv->rx_rings[DESC_INDEX];
2884	napi_disable(&ring->napi);
2885	cancel_work_sync(&ring->dim.dim.work);
2886}
2887
2888static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2889{
2890	unsigned int i;
2891	struct bcmgenet_rx_ring *ring;
2892
2893	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2894		ring = &priv->rx_rings[i];
2895		netif_napi_del(&ring->napi);
2896	}
2897
2898	ring = &priv->rx_rings[DESC_INDEX];
2899	netif_napi_del(&ring->napi);
2900}
2901
2902/* Initialize Rx queues
2903 *
2904 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2905 * used to direct traffic to these queues.
2906 *
2907 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2908 */
2909static int bcmgenet_init_rx_queues(struct net_device *dev)
2910{
2911	struct bcmgenet_priv *priv = netdev_priv(dev);
2912	u32 i;
2913	u32 dma_enable;
2914	u32 dma_ctrl;
2915	u32 ring_cfg;
2916	int ret;
2917
2918	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2919	dma_enable = dma_ctrl & DMA_EN;
2920	dma_ctrl &= ~DMA_EN;
2921	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2922
2923	dma_ctrl = 0;
2924	ring_cfg = 0;
2925
2926	/* Initialize Rx priority queues */
2927	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2928		ret = bcmgenet_init_rx_ring(priv, i,
2929					    priv->hw_params->rx_bds_per_q,
2930					    i * priv->hw_params->rx_bds_per_q,
2931					    (i + 1) *
2932					    priv->hw_params->rx_bds_per_q);
2933		if (ret)
2934			return ret;
2935
2936		ring_cfg |= (1 << i);
2937		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2938	}
2939
2940	/* Initialize Rx default queue 16 */
2941	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2942				    priv->hw_params->rx_queues *
2943				    priv->hw_params->rx_bds_per_q,
2944				    TOTAL_DESC);
2945	if (ret)
2946		return ret;
2947
2948	ring_cfg |= (1 << DESC_INDEX);
2949	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2950
2951	/* Enable rings */
2952	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2953
2954	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2955	if (dma_enable)
2956		dma_ctrl |= DMA_EN;
2957	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2958
2959	return 0;
2960}
2961
2962static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2963{
2964	int ret = 0;
2965	int timeout = 0;
2966	u32 reg;
2967	u32 dma_ctrl;
2968	int i;
2969
2970	/* Disable TDMA to stop add more frames in TX DMA */
2971	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2972	reg &= ~DMA_EN;
2973	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2974
2975	/* Check TDMA status register to confirm TDMA is disabled */
2976	while (timeout++ < DMA_TIMEOUT_VAL) {
2977		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2978		if (reg & DMA_DISABLED)
2979			break;
2980
2981		udelay(1);
2982	}
2983
2984	if (timeout == DMA_TIMEOUT_VAL) {
2985		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2986		ret = -ETIMEDOUT;
2987	}
2988
2989	/* Wait 10ms for packet drain in both tx and rx dma */
2990	usleep_range(10000, 20000);
2991
2992	/* Disable RDMA */
2993	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2994	reg &= ~DMA_EN;
2995	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2996
2997	timeout = 0;
2998	/* Check RDMA status register to confirm RDMA is disabled */
2999	while (timeout++ < DMA_TIMEOUT_VAL) {
3000		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
3001		if (reg & DMA_DISABLED)
3002			break;
3003
3004		udelay(1);
3005	}
3006
3007	if (timeout == DMA_TIMEOUT_VAL) {
3008		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
3009		ret = -ETIMEDOUT;
3010	}
3011
3012	dma_ctrl = 0;
3013	for (i = 0; i < priv->hw_params->rx_queues; i++)
3014		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3015	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3016	reg &= ~dma_ctrl;
3017	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3018
3019	dma_ctrl = 0;
3020	for (i = 0; i < priv->hw_params->tx_queues; i++)
3021		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3022	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3023	reg &= ~dma_ctrl;
3024	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3025
3026	return ret;
3027}
3028
3029static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
3030{
3031	struct netdev_queue *txq;
3032	int i;
3033
3034	bcmgenet_fini_rx_napi(priv);
3035	bcmgenet_fini_tx_napi(priv);
3036
3037	for (i = 0; i < priv->num_tx_bds; i++)
3038		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
3039						  priv->tx_cbs + i));
3040
3041	for (i = 0; i < priv->hw_params->tx_queues; i++) {
3042		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
3043		netdev_tx_reset_queue(txq);
3044	}
3045
3046	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
3047	netdev_tx_reset_queue(txq);
3048
3049	bcmgenet_free_rx_buffers(priv);
3050	kfree(priv->rx_cbs);
3051	kfree(priv->tx_cbs);
3052}
3053
3054/* init_edma: Initialize DMA control register */
3055static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3056{
3057	int ret;
3058	unsigned int i;
3059	struct enet_cb *cb;
3060
3061	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3062
3063	/* Initialize common Rx ring structures */
3064	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3065	priv->num_rx_bds = TOTAL_DESC;
3066	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3067			       GFP_KERNEL);
3068	if (!priv->rx_cbs)
3069		return -ENOMEM;
3070
3071	for (i = 0; i < priv->num_rx_bds; i++) {
3072		cb = priv->rx_cbs + i;
3073		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3074	}
3075
3076	/* Initialize common TX ring structures */
3077	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3078	priv->num_tx_bds = TOTAL_DESC;
3079	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3080			       GFP_KERNEL);
3081	if (!priv->tx_cbs) {
3082		kfree(priv->rx_cbs);
3083		return -ENOMEM;
3084	}
3085
3086	for (i = 0; i < priv->num_tx_bds; i++) {
3087		cb = priv->tx_cbs + i;
3088		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3089	}
3090
3091	/* Init rDma */
3092	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3093			     DMA_SCB_BURST_SIZE);
3094
3095	/* Initialize Rx queues */
3096	ret = bcmgenet_init_rx_queues(priv->dev);
3097	if (ret) {
3098		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3099		bcmgenet_free_rx_buffers(priv);
3100		kfree(priv->rx_cbs);
3101		kfree(priv->tx_cbs);
3102		return ret;
3103	}
3104
3105	/* Init tDma */
3106	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3107			     DMA_SCB_BURST_SIZE);
3108
3109	/* Initialize Tx queues */
3110	bcmgenet_init_tx_queues(priv->dev);
3111
3112	return 0;
3113}
3114
3115/* Interrupt bottom half */
3116static void bcmgenet_irq_task(struct work_struct *work)
3117{
3118	unsigned int status;
3119	struct bcmgenet_priv *priv = container_of(
3120			work, struct bcmgenet_priv, bcmgenet_irq_work);
3121
3122	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3123
3124	spin_lock_irq(&priv->lock);
3125	status = priv->irq0_stat;
3126	priv->irq0_stat = 0;
3127	spin_unlock_irq(&priv->lock);
3128
3129	if (status & UMAC_IRQ_PHY_DET_R &&
3130	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3131		phy_init_hw(priv->dev->phydev);
3132		genphy_config_aneg(priv->dev->phydev);
3133	}
3134
3135	/* Link UP/DOWN event */
3136	if (status & UMAC_IRQ_LINK_EVENT)
3137		phy_mac_interrupt(priv->dev->phydev);
3138
3139}
3140
3141/* bcmgenet_isr1: handle Rx and Tx priority queues */
3142static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3143{
3144	struct bcmgenet_priv *priv = dev_id;
3145	struct bcmgenet_rx_ring *rx_ring;
3146	struct bcmgenet_tx_ring *tx_ring;
3147	unsigned int index, status;
3148
3149	/* Read irq status */
3150	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3151		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3152
3153	/* clear interrupts */
3154	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3155
3156	netif_dbg(priv, intr, priv->dev,
3157		  "%s: IRQ=0x%x\n", __func__, status);
3158
3159	/* Check Rx priority queue interrupts */
3160	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3161		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3162			continue;
3163
3164		rx_ring = &priv->rx_rings[index];
3165		rx_ring->dim.event_ctr++;
3166
3167		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3168			rx_ring->int_disable(rx_ring);
3169			__napi_schedule_irqoff(&rx_ring->napi);
3170		}
3171	}
3172
3173	/* Check Tx priority queue interrupts */
3174	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3175		if (!(status & BIT(index)))
3176			continue;
3177
3178		tx_ring = &priv->tx_rings[index];
3179
3180		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3181			tx_ring->int_disable(tx_ring);
3182			__napi_schedule_irqoff(&tx_ring->napi);
3183		}
3184	}
3185
3186	return IRQ_HANDLED;
3187}
3188
3189/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3190static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3191{
3192	struct bcmgenet_priv *priv = dev_id;
3193	struct bcmgenet_rx_ring *rx_ring;
3194	struct bcmgenet_tx_ring *tx_ring;
3195	unsigned int status;
3196	unsigned long flags;
3197
3198	/* Read irq status */
3199	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3200		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3201
3202	/* clear interrupts */
3203	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3204
3205	netif_dbg(priv, intr, priv->dev,
3206		  "IRQ=0x%x\n", status);
3207
3208	if (status & UMAC_IRQ_RXDMA_DONE) {
3209		rx_ring = &priv->rx_rings[DESC_INDEX];
3210		rx_ring->dim.event_ctr++;
3211
3212		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3213			rx_ring->int_disable(rx_ring);
3214			__napi_schedule_irqoff(&rx_ring->napi);
3215		}
3216	}
3217
3218	if (status & UMAC_IRQ_TXDMA_DONE) {
3219		tx_ring = &priv->tx_rings[DESC_INDEX];
3220
3221		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3222			tx_ring->int_disable(tx_ring);
3223			__napi_schedule_irqoff(&tx_ring->napi);
3224		}
3225	}
3226
3227	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3228		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3229		wake_up(&priv->wq);
3230	}
3231
3232	/* all other interested interrupts handled in bottom half */
3233	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3234	if (status) {
3235		/* Save irq status for bottom-half processing. */
3236		spin_lock_irqsave(&priv->lock, flags);
3237		priv->irq0_stat |= status;
3238		spin_unlock_irqrestore(&priv->lock, flags);
3239
3240		schedule_work(&priv->bcmgenet_irq_work);
3241	}
3242
3243	return IRQ_HANDLED;
3244}
3245
3246static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3247{
3248	/* Acknowledge the interrupt */
3249	return IRQ_HANDLED;
3250}
3251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3252static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3253{
3254	u32 reg;
3255
3256	reg = bcmgenet_rbuf_ctrl_get(priv);
3257	reg |= BIT(1);
3258	bcmgenet_rbuf_ctrl_set(priv, reg);
3259	udelay(10);
3260
3261	reg &= ~BIT(1);
3262	bcmgenet_rbuf_ctrl_set(priv, reg);
3263	udelay(10);
3264}
3265
3266static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3267				 const unsigned char *addr)
3268{
3269	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3270	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3271}
3272
3273static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3274				 unsigned char *addr)
3275{
3276	u32 addr_tmp;
3277
3278	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3279	put_unaligned_be32(addr_tmp, &addr[0]);
3280	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3281	put_unaligned_be16(addr_tmp, &addr[4]);
3282}
3283
3284/* Returns a reusable dma control register value */
3285static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3286{
3287	unsigned int i;
3288	u32 reg;
3289	u32 dma_ctrl;
3290
3291	/* disable DMA */
3292	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3293	for (i = 0; i < priv->hw_params->tx_queues; i++)
3294		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3295	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3296	reg &= ~dma_ctrl;
3297	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3298
3299	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3300	for (i = 0; i < priv->hw_params->rx_queues; i++)
3301		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3302	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3303	reg &= ~dma_ctrl;
3304	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3305
3306	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3307	udelay(10);
3308	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3309
3310	return dma_ctrl;
3311}
3312
3313static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3314{
3315	u32 reg;
3316
3317	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3318	reg |= dma_ctrl;
3319	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3320
3321	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3322	reg |= dma_ctrl;
3323	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3324}
3325
3326static void bcmgenet_netif_start(struct net_device *dev)
3327{
3328	struct bcmgenet_priv *priv = netdev_priv(dev);
3329
3330	/* Start the network engine */
3331	bcmgenet_set_rx_mode(dev);
3332	bcmgenet_enable_rx_napi(priv);
3333
3334	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3335
3336	bcmgenet_enable_tx_napi(priv);
3337
3338	/* Monitor link interrupts now */
3339	bcmgenet_link_intr_enable(priv);
3340
3341	phy_start(dev->phydev);
3342}
3343
3344static int bcmgenet_open(struct net_device *dev)
3345{
3346	struct bcmgenet_priv *priv = netdev_priv(dev);
3347	unsigned long dma_ctrl;
3348	int ret;
3349
3350	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3351
3352	/* Turn on the clock */
3353	clk_prepare_enable(priv->clk);
3354
3355	/* If this is an internal GPHY, power it back on now, before UniMAC is
3356	 * brought out of reset as absolutely no UniMAC activity is allowed
3357	 */
3358	if (priv->internal_phy)
3359		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3360
3361	/* take MAC out of reset */
3362	bcmgenet_umac_reset(priv);
3363
3364	init_umac(priv);
3365
3366	/* Apply features again in case we changed them while interface was
3367	 * down
3368	 */
3369	bcmgenet_set_features(dev, dev->features);
3370
3371	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3372
3373	/* Disable RX/TX DMA and flush TX queues */
3374	dma_ctrl = bcmgenet_dma_disable(priv);
3375
3376	/* Reinitialize TDMA and RDMA and SW housekeeping */
3377	ret = bcmgenet_init_dma(priv);
3378	if (ret) {
3379		netdev_err(dev, "failed to initialize DMA\n");
3380		goto err_clk_disable;
3381	}
3382
3383	/* Always enable ring 16 - descriptor ring */
3384	bcmgenet_enable_dma(priv, dma_ctrl);
3385
3386	/* HFB init */
3387	bcmgenet_hfb_init(priv);
3388
3389	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3390			  dev->name, priv);
3391	if (ret < 0) {
3392		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3393		goto err_fini_dma;
3394	}
3395
3396	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3397			  dev->name, priv);
3398	if (ret < 0) {
3399		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3400		goto err_irq0;
3401	}
3402
3403	ret = bcmgenet_mii_probe(dev);
3404	if (ret) {
3405		netdev_err(dev, "failed to connect to PHY\n");
3406		goto err_irq1;
3407	}
3408
3409	bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause);
3410
3411	bcmgenet_netif_start(dev);
3412
3413	netif_tx_start_all_queues(dev);
3414
3415	return 0;
3416
3417err_irq1:
3418	free_irq(priv->irq1, priv);
3419err_irq0:
3420	free_irq(priv->irq0, priv);
3421err_fini_dma:
3422	bcmgenet_dma_teardown(priv);
3423	bcmgenet_fini_dma(priv);
3424err_clk_disable:
3425	if (priv->internal_phy)
3426		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3427	clk_disable_unprepare(priv->clk);
3428	return ret;
3429}
3430
3431static void bcmgenet_netif_stop(struct net_device *dev, bool stop_phy)
3432{
3433	struct bcmgenet_priv *priv = netdev_priv(dev);
3434
3435	bcmgenet_disable_tx_napi(priv);
3436	netif_tx_disable(dev);
3437
3438	/* Disable MAC receive */
3439	umac_enable_set(priv, CMD_RX_EN, false);
3440
3441	bcmgenet_dma_teardown(priv);
3442
3443	/* Disable MAC transmit. TX DMA disabled must be done before this */
3444	umac_enable_set(priv, CMD_TX_EN, false);
3445
3446	if (stop_phy)
3447		phy_stop(dev->phydev);
3448	bcmgenet_disable_rx_napi(priv);
3449	bcmgenet_intr_disable(priv);
3450
3451	/* Wait for pending work items to complete. Since interrupts are
3452	 * disabled no new work will be scheduled.
3453	 */
3454	cancel_work_sync(&priv->bcmgenet_irq_work);
3455
 
 
 
 
 
3456	/* tx reclaim */
3457	bcmgenet_tx_reclaim_all(dev);
3458	bcmgenet_fini_dma(priv);
3459}
3460
3461static int bcmgenet_close(struct net_device *dev)
3462{
3463	struct bcmgenet_priv *priv = netdev_priv(dev);
3464	int ret = 0;
3465
3466	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3467
3468	bcmgenet_netif_stop(dev, false);
3469
3470	/* Really kill the PHY state machine and disconnect from it */
3471	phy_disconnect(dev->phydev);
3472
3473	free_irq(priv->irq0, priv);
3474	free_irq(priv->irq1, priv);
3475
3476	if (priv->internal_phy)
3477		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3478
3479	clk_disable_unprepare(priv->clk);
3480
3481	return ret;
3482}
3483
3484static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3485{
3486	struct bcmgenet_priv *priv = ring->priv;
3487	u32 p_index, c_index, intsts, intmsk;
3488	struct netdev_queue *txq;
3489	unsigned int free_bds;
3490	bool txq_stopped;
3491
3492	if (!netif_msg_tx_err(priv))
3493		return;
3494
3495	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3496
3497	spin_lock(&ring->lock);
3498	if (ring->index == DESC_INDEX) {
3499		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3500		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3501	} else {
3502		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3503		intmsk = 1 << ring->index;
3504	}
3505	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3506	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3507	txq_stopped = netif_tx_queue_stopped(txq);
3508	free_bds = ring->free_bds;
3509	spin_unlock(&ring->lock);
3510
3511	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3512		  "TX queue status: %s, interrupts: %s\n"
3513		  "(sw)free_bds: %d (sw)size: %d\n"
3514		  "(sw)p_index: %d (hw)p_index: %d\n"
3515		  "(sw)c_index: %d (hw)c_index: %d\n"
3516		  "(sw)clean_p: %d (sw)write_p: %d\n"
3517		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3518		  ring->index, ring->queue,
3519		  txq_stopped ? "stopped" : "active",
3520		  intsts & intmsk ? "enabled" : "disabled",
3521		  free_bds, ring->size,
3522		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3523		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3524		  ring->clean_ptr, ring->write_ptr,
3525		  ring->cb_ptr, ring->end_ptr);
3526}
3527
3528static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3529{
3530	struct bcmgenet_priv *priv = netdev_priv(dev);
3531	u32 int0_enable = 0;
3532	u32 int1_enable = 0;
3533	unsigned int q;
3534
3535	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3536
3537	for (q = 0; q < priv->hw_params->tx_queues; q++)
3538		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3539	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3540
3541	bcmgenet_tx_reclaim_all(dev);
3542
3543	for (q = 0; q < priv->hw_params->tx_queues; q++)
3544		int1_enable |= (1 << q);
3545
3546	int0_enable = UMAC_IRQ_TXDMA_DONE;
3547
3548	/* Re-enable TX interrupts if disabled */
3549	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3550	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3551
3552	netif_trans_update(dev);
3553
3554	dev->stats.tx_errors++;
3555
3556	netif_tx_wake_all_queues(dev);
3557}
3558
3559#define MAX_MDF_FILTER	17
3560
3561static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3562					 const unsigned char *addr,
3563					 int *i)
3564{
3565	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3566			     UMAC_MDF_ADDR + (*i * 4));
3567	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3568			     addr[4] << 8 | addr[5],
3569			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3570	*i += 2;
3571}
3572
3573static void bcmgenet_set_rx_mode(struct net_device *dev)
3574{
3575	struct bcmgenet_priv *priv = netdev_priv(dev);
3576	struct netdev_hw_addr *ha;
3577	int i, nfilter;
3578	u32 reg;
3579
3580	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3581
3582	/* Number of filters needed */
3583	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3584
3585	/*
3586	 * Turn on promicuous mode for three scenarios
3587	 * 1. IFF_PROMISC flag is set
3588	 * 2. IFF_ALLMULTI flag is set
3589	 * 3. The number of filters needed exceeds the number filters
3590	 *    supported by the hardware.
3591	*/
3592	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3593	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3594	    (nfilter > MAX_MDF_FILTER)) {
3595		reg |= CMD_PROMISC;
3596		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3597		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3598		return;
3599	} else {
3600		reg &= ~CMD_PROMISC;
3601		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3602	}
3603
3604	/* update MDF filter */
3605	i = 0;
3606	/* Broadcast */
3607	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3608	/* my own address.*/
3609	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3610
3611	/* Unicast */
3612	netdev_for_each_uc_addr(ha, dev)
3613		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3614
3615	/* Multicast */
3616	netdev_for_each_mc_addr(ha, dev)
3617		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3618
3619	/* Enable filters */
3620	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3621	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3622}
3623
3624/* Set the hardware MAC address. */
3625static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3626{
3627	struct sockaddr *addr = p;
3628
3629	/* Setting the MAC address at the hardware level is not possible
3630	 * without disabling the UniMAC RX/TX enable bits.
3631	 */
3632	if (netif_running(dev))
3633		return -EBUSY;
3634
3635	eth_hw_addr_set(dev, addr->sa_data);
3636
3637	return 0;
3638}
3639
3640static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3641{
3642	struct bcmgenet_priv *priv = netdev_priv(dev);
3643	unsigned long tx_bytes = 0, tx_packets = 0;
3644	unsigned long rx_bytes = 0, rx_packets = 0;
3645	unsigned long rx_errors = 0, rx_dropped = 0;
3646	struct bcmgenet_tx_ring *tx_ring;
3647	struct bcmgenet_rx_ring *rx_ring;
3648	unsigned int q;
3649
3650	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3651		tx_ring = &priv->tx_rings[q];
3652		tx_bytes += tx_ring->bytes;
3653		tx_packets += tx_ring->packets;
3654	}
3655	tx_ring = &priv->tx_rings[DESC_INDEX];
3656	tx_bytes += tx_ring->bytes;
3657	tx_packets += tx_ring->packets;
3658
3659	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3660		rx_ring = &priv->rx_rings[q];
3661
3662		rx_bytes += rx_ring->bytes;
3663		rx_packets += rx_ring->packets;
3664		rx_errors += rx_ring->errors;
3665		rx_dropped += rx_ring->dropped;
3666	}
3667	rx_ring = &priv->rx_rings[DESC_INDEX];
3668	rx_bytes += rx_ring->bytes;
3669	rx_packets += rx_ring->packets;
3670	rx_errors += rx_ring->errors;
3671	rx_dropped += rx_ring->dropped;
3672
3673	dev->stats.tx_bytes = tx_bytes;
3674	dev->stats.tx_packets = tx_packets;
3675	dev->stats.rx_bytes = rx_bytes;
3676	dev->stats.rx_packets = rx_packets;
3677	dev->stats.rx_errors = rx_errors;
3678	dev->stats.rx_missed_errors = rx_errors;
3679	dev->stats.rx_dropped = rx_dropped;
3680	return &dev->stats;
3681}
3682
3683static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3684{
3685	struct bcmgenet_priv *priv = netdev_priv(dev);
3686
3687	if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3688	    priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3689		return -EOPNOTSUPP;
3690
3691	if (new_carrier)
3692		netif_carrier_on(dev);
3693	else
3694		netif_carrier_off(dev);
3695
3696	return 0;
3697}
3698
3699static const struct net_device_ops bcmgenet_netdev_ops = {
3700	.ndo_open		= bcmgenet_open,
3701	.ndo_stop		= bcmgenet_close,
3702	.ndo_start_xmit		= bcmgenet_xmit,
3703	.ndo_tx_timeout		= bcmgenet_timeout,
3704	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3705	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3706	.ndo_eth_ioctl		= phy_do_ioctl_running,
3707	.ndo_set_features	= bcmgenet_set_features,
 
 
 
3708	.ndo_get_stats		= bcmgenet_get_stats,
3709	.ndo_change_carrier	= bcmgenet_change_carrier,
3710};
3711
3712/* Array of GENET hardware parameters/characteristics */
3713static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3714	[GENET_V1] = {
3715		.tx_queues = 0,
3716		.tx_bds_per_q = 0,
3717		.rx_queues = 0,
3718		.rx_bds_per_q = 0,
3719		.bp_in_en_shift = 16,
3720		.bp_in_mask = 0xffff,
3721		.hfb_filter_cnt = 16,
3722		.qtag_mask = 0x1F,
3723		.hfb_offset = 0x1000,
3724		.rdma_offset = 0x2000,
3725		.tdma_offset = 0x3000,
3726		.words_per_bd = 2,
3727	},
3728	[GENET_V2] = {
3729		.tx_queues = 4,
3730		.tx_bds_per_q = 32,
3731		.rx_queues = 0,
3732		.rx_bds_per_q = 0,
3733		.bp_in_en_shift = 16,
3734		.bp_in_mask = 0xffff,
3735		.hfb_filter_cnt = 16,
3736		.qtag_mask = 0x1F,
3737		.tbuf_offset = 0x0600,
3738		.hfb_offset = 0x1000,
3739		.hfb_reg_offset = 0x2000,
3740		.rdma_offset = 0x3000,
3741		.tdma_offset = 0x4000,
3742		.words_per_bd = 2,
3743		.flags = GENET_HAS_EXT,
3744	},
3745	[GENET_V3] = {
3746		.tx_queues = 4,
3747		.tx_bds_per_q = 32,
3748		.rx_queues = 0,
3749		.rx_bds_per_q = 0,
3750		.bp_in_en_shift = 17,
3751		.bp_in_mask = 0x1ffff,
3752		.hfb_filter_cnt = 48,
3753		.hfb_filter_size = 128,
3754		.qtag_mask = 0x3F,
3755		.tbuf_offset = 0x0600,
3756		.hfb_offset = 0x8000,
3757		.hfb_reg_offset = 0xfc00,
3758		.rdma_offset = 0x10000,
3759		.tdma_offset = 0x11000,
3760		.words_per_bd = 2,
3761		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3762			 GENET_HAS_MOCA_LINK_DET,
3763	},
3764	[GENET_V4] = {
3765		.tx_queues = 4,
3766		.tx_bds_per_q = 32,
3767		.rx_queues = 0,
3768		.rx_bds_per_q = 0,
3769		.bp_in_en_shift = 17,
3770		.bp_in_mask = 0x1ffff,
3771		.hfb_filter_cnt = 48,
3772		.hfb_filter_size = 128,
3773		.qtag_mask = 0x3F,
3774		.tbuf_offset = 0x0600,
3775		.hfb_offset = 0x8000,
3776		.hfb_reg_offset = 0xfc00,
3777		.rdma_offset = 0x2000,
3778		.tdma_offset = 0x4000,
3779		.words_per_bd = 3,
3780		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3781			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3782	},
3783	[GENET_V5] = {
3784		.tx_queues = 4,
3785		.tx_bds_per_q = 32,
3786		.rx_queues = 0,
3787		.rx_bds_per_q = 0,
3788		.bp_in_en_shift = 17,
3789		.bp_in_mask = 0x1ffff,
3790		.hfb_filter_cnt = 48,
3791		.hfb_filter_size = 128,
3792		.qtag_mask = 0x3F,
3793		.tbuf_offset = 0x0600,
3794		.hfb_offset = 0x8000,
3795		.hfb_reg_offset = 0xfc00,
3796		.rdma_offset = 0x2000,
3797		.tdma_offset = 0x4000,
3798		.words_per_bd = 3,
3799		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3800			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3801	},
3802};
3803
3804/* Infer hardware parameters from the detected GENET version */
3805static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3806{
3807	struct bcmgenet_hw_params *params;
3808	u32 reg;
3809	u8 major;
3810	u16 gphy_rev;
3811
3812	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3813		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3814		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3815	} else if (GENET_IS_V3(priv)) {
3816		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3817		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3818	} else if (GENET_IS_V2(priv)) {
3819		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3820		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3821	} else if (GENET_IS_V1(priv)) {
3822		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3823		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3824	}
3825
3826	/* enum genet_version starts at 1 */
3827	priv->hw_params = &bcmgenet_hw_params[priv->version];
3828	params = priv->hw_params;
3829
3830	/* Read GENET HW version */
3831	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3832	major = (reg >> 24 & 0x0f);
3833	if (major == 6)
3834		major = 5;
3835	else if (major == 5)
3836		major = 4;
3837	else if (major == 0)
3838		major = 1;
3839	if (major != priv->version) {
3840		dev_err(&priv->pdev->dev,
3841			"GENET version mismatch, got: %d, configured for: %d\n",
3842			major, priv->version);
3843	}
3844
3845	/* Print the GENET core version */
3846	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3847		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3848
3849	/* Store the integrated PHY revision for the MDIO probing function
3850	 * to pass this information to the PHY driver. The PHY driver expects
3851	 * to find the PHY major revision in bits 15:8 while the GENET register
3852	 * stores that information in bits 7:0, account for that.
3853	 *
3854	 * On newer chips, starting with PHY revision G0, a new scheme is
3855	 * deployed similar to the Starfighter 2 switch with GPHY major
3856	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3857	 * is reserved as well as special value 0x01ff, we have a small
3858	 * heuristic to check for the new GPHY revision and re-arrange things
3859	 * so the GPHY driver is happy.
3860	 */
3861	gphy_rev = reg & 0xffff;
3862
3863	if (GENET_IS_V5(priv)) {
3864		/* The EPHY revision should come from the MDIO registers of
3865		 * the PHY not from GENET.
3866		 */
3867		if (gphy_rev != 0) {
3868			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3869				gphy_rev);
3870		}
3871	/* This is reserved so should require special treatment */
3872	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3873		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3874		return;
3875	/* This is the good old scheme, just GPHY major, no minor nor patch */
3876	} else if ((gphy_rev & 0xf0) != 0) {
3877		priv->gphy_rev = gphy_rev << 8;
3878	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3879	} else if ((gphy_rev & 0xff00) != 0) {
3880		priv->gphy_rev = gphy_rev;
3881	}
3882
3883#ifdef CONFIG_PHYS_ADDR_T_64BIT
3884	if (!(params->flags & GENET_HAS_40BITS))
3885		pr_warn("GENET does not support 40-bits PA\n");
3886#endif
3887
3888	pr_debug("Configuration for version: %d\n"
3889		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3890		"BP << en: %2d, BP msk: 0x%05x\n"
3891		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3892		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3893		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3894		"Words/BD: %d\n",
3895		priv->version,
3896		params->tx_queues, params->tx_bds_per_q,
3897		params->rx_queues, params->rx_bds_per_q,
3898		params->bp_in_en_shift, params->bp_in_mask,
3899		params->hfb_filter_cnt, params->qtag_mask,
3900		params->tbuf_offset, params->hfb_offset,
3901		params->hfb_reg_offset,
3902		params->rdma_offset, params->tdma_offset,
3903		params->words_per_bd);
3904}
3905
3906struct bcmgenet_plat_data {
3907	enum bcmgenet_version version;
3908	u32 dma_max_burst_length;
3909	bool ephy_16nm;
3910};
3911
3912static const struct bcmgenet_plat_data v1_plat_data = {
3913	.version = GENET_V1,
3914	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3915};
3916
3917static const struct bcmgenet_plat_data v2_plat_data = {
3918	.version = GENET_V2,
3919	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3920};
3921
3922static const struct bcmgenet_plat_data v3_plat_data = {
3923	.version = GENET_V3,
3924	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3925};
3926
3927static const struct bcmgenet_plat_data v4_plat_data = {
3928	.version = GENET_V4,
3929	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3930};
3931
3932static const struct bcmgenet_plat_data v5_plat_data = {
3933	.version = GENET_V5,
3934	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3935};
3936
3937static const struct bcmgenet_plat_data bcm2711_plat_data = {
3938	.version = GENET_V5,
3939	.dma_max_burst_length = 0x08,
3940};
3941
3942static const struct bcmgenet_plat_data bcm7712_plat_data = {
3943	.version = GENET_V5,
3944	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3945	.ephy_16nm = true,
3946};
3947
3948static const struct of_device_id bcmgenet_match[] = {
3949	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3950	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3951	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3952	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3953	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3954	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3955	{ .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data },
3956	{ },
3957};
3958MODULE_DEVICE_TABLE(of, bcmgenet_match);
3959
3960static int bcmgenet_probe(struct platform_device *pdev)
3961{
3962	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3963	const struct bcmgenet_plat_data *pdata;
3964	struct bcmgenet_priv *priv;
3965	struct net_device *dev;
3966	unsigned int i;
3967	int err = -EIO;
3968
3969	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3970	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3971				 GENET_MAX_MQ_CNT + 1);
3972	if (!dev) {
3973		dev_err(&pdev->dev, "can't allocate net device\n");
3974		return -ENOMEM;
3975	}
3976
3977	priv = netdev_priv(dev);
3978	priv->irq0 = platform_get_irq(pdev, 0);
3979	if (priv->irq0 < 0) {
3980		err = priv->irq0;
3981		goto err;
3982	}
3983	priv->irq1 = platform_get_irq(pdev, 1);
3984	if (priv->irq1 < 0) {
3985		err = priv->irq1;
3986		goto err;
3987	}
3988	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3989	if (priv->wol_irq == -EPROBE_DEFER) {
3990		err = priv->wol_irq;
3991		goto err;
3992	}
3993
3994	priv->base = devm_platform_ioremap_resource(pdev, 0);
3995	if (IS_ERR(priv->base)) {
3996		err = PTR_ERR(priv->base);
3997		goto err;
3998	}
3999
4000	spin_lock_init(&priv->lock);
4001
4002	/* Set default pause parameters */
4003	priv->autoneg_pause = 1;
4004	priv->tx_pause = 1;
4005	priv->rx_pause = 1;
4006
4007	SET_NETDEV_DEV(dev, &pdev->dev);
4008	dev_set_drvdata(&pdev->dev, dev);
4009	dev->watchdog_timeo = 2 * HZ;
4010	dev->ethtool_ops = &bcmgenet_ethtool_ops;
4011	dev->netdev_ops = &bcmgenet_netdev_ops;
4012
4013	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
4014
4015	/* Set default features */
4016	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
4017			 NETIF_F_RXCSUM;
4018	dev->hw_features |= dev->features;
4019	dev->vlan_features |= dev->features;
4020
4021	/* Request the WOL interrupt and advertise suspend if available */
4022	priv->wol_irq_disabled = true;
4023	if (priv->wol_irq > 0) {
4024		err = devm_request_irq(&pdev->dev, priv->wol_irq,
4025				       bcmgenet_wol_isr, 0, dev->name, priv);
4026		if (!err)
4027			device_set_wakeup_capable(&pdev->dev, 1);
4028	}
4029
4030	/* Set the needed headroom to account for any possible
4031	 * features enabling/disabling at runtime
4032	 */
4033	dev->needed_headroom += 64;
4034
 
 
4035	priv->dev = dev;
4036	priv->pdev = pdev;
4037
4038	pdata = device_get_match_data(&pdev->dev);
4039	if (pdata) {
4040		priv->version = pdata->version;
4041		priv->dma_max_burst_length = pdata->dma_max_burst_length;
4042		priv->ephy_16nm = pdata->ephy_16nm;
4043	} else {
4044		priv->version = pd->genet_version;
4045		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
4046	}
4047
4048	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
4049	if (IS_ERR(priv->clk)) {
4050		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
4051		err = PTR_ERR(priv->clk);
4052		goto err;
4053	}
4054
4055	err = clk_prepare_enable(priv->clk);
4056	if (err)
4057		goto err;
4058
4059	bcmgenet_set_hw_params(priv);
4060
4061	err = -EIO;
4062	if (priv->hw_params->flags & GENET_HAS_40BITS)
4063		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4064	if (err)
4065		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4066	if (err)
4067		goto err_clk_disable;
4068
4069	/* Mii wait queue */
4070	init_waitqueue_head(&priv->wq);
4071	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4072	priv->rx_buf_len = RX_BUF_LENGTH;
4073	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4074
4075	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4076	if (IS_ERR(priv->clk_wol)) {
4077		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4078		err = PTR_ERR(priv->clk_wol);
4079		goto err_clk_disable;
4080	}
4081
4082	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4083	if (IS_ERR(priv->clk_eee)) {
4084		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4085		err = PTR_ERR(priv->clk_eee);
4086		goto err_clk_disable;
4087	}
4088
4089	/* If this is an internal GPHY, power it on now, before UniMAC is
4090	 * brought out of reset as absolutely no UniMAC activity is allowed
4091	 */
4092	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4093		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4094
4095	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4096		eth_hw_addr_set(dev, pd->mac_address);
4097	else
4098		if (device_get_ethdev_address(&pdev->dev, dev))
4099			if (has_acpi_companion(&pdev->dev)) {
4100				u8 addr[ETH_ALEN];
4101
4102				bcmgenet_get_hw_addr(priv, addr);
4103				eth_hw_addr_set(dev, addr);
4104			}
4105
4106	if (!is_valid_ether_addr(dev->dev_addr)) {
4107		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4108		eth_hw_addr_random(dev);
4109	}
4110
4111	reset_umac(priv);
4112
4113	err = bcmgenet_mii_init(dev);
4114	if (err)
4115		goto err_clk_disable;
4116
4117	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4118	 * just the ring 16 descriptor based TX
4119	 */
4120	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4121	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4122
4123	/* Set default coalescing parameters */
4124	for (i = 0; i < priv->hw_params->rx_queues; i++)
4125		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4126	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4127
4128	/* libphy will determine the link state */
4129	netif_carrier_off(dev);
4130
4131	/* Turn off the main clock, WOL clock is handled separately */
4132	clk_disable_unprepare(priv->clk);
4133
4134	err = register_netdev(dev);
4135	if (err) {
4136		bcmgenet_mii_exit(dev);
4137		goto err;
4138	}
4139
4140	return err;
4141
4142err_clk_disable:
4143	clk_disable_unprepare(priv->clk);
4144err:
4145	free_netdev(dev);
4146	return err;
4147}
4148
4149static void bcmgenet_remove(struct platform_device *pdev)
4150{
4151	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4152
4153	dev_set_drvdata(&pdev->dev, NULL);
4154	unregister_netdev(priv->dev);
4155	bcmgenet_mii_exit(priv->dev);
4156	free_netdev(priv->dev);
 
 
4157}
4158
4159static void bcmgenet_shutdown(struct platform_device *pdev)
4160{
4161	bcmgenet_remove(pdev);
4162}
4163
4164#ifdef CONFIG_PM_SLEEP
4165static int bcmgenet_resume_noirq(struct device *d)
4166{
4167	struct net_device *dev = dev_get_drvdata(d);
4168	struct bcmgenet_priv *priv = netdev_priv(dev);
4169	int ret;
4170	u32 reg;
4171
4172	if (!netif_running(dev))
4173		return 0;
4174
4175	/* Turn on the clock */
4176	ret = clk_prepare_enable(priv->clk);
4177	if (ret)
4178		return ret;
4179
4180	if (device_may_wakeup(d) && priv->wolopts) {
4181		/* Account for Wake-on-LAN events and clear those events
4182		 * (Some devices need more time between enabling the clocks
4183		 *  and the interrupt register reflecting the wake event so
4184		 *  read the register twice)
4185		 */
4186		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4187		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4188		if (reg & UMAC_IRQ_WAKE_EVENT)
4189			pm_wakeup_event(&priv->pdev->dev, 0);
4190	}
4191
4192	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4193
4194	return 0;
4195}
4196
4197static int bcmgenet_resume(struct device *d)
4198{
4199	struct net_device *dev = dev_get_drvdata(d);
4200	struct bcmgenet_priv *priv = netdev_priv(dev);
4201	struct bcmgenet_rxnfc_rule *rule;
4202	unsigned long dma_ctrl;
4203	int ret;
4204
4205	if (!netif_running(dev))
4206		return 0;
4207
4208	/* From WOL-enabled suspend, switch to regular clock */
4209	if (device_may_wakeup(d) && priv->wolopts)
4210		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4211
4212	/* If this is an internal GPHY, power it back on now, before UniMAC is
4213	 * brought out of reset as absolutely no UniMAC activity is allowed
4214	 */
4215	if (priv->internal_phy)
4216		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4217
4218	bcmgenet_umac_reset(priv);
4219
4220	init_umac(priv);
4221
4222	phy_init_hw(dev->phydev);
4223
4224	/* Speed settings must be restored */
4225	genphy_config_aneg(dev->phydev);
4226	bcmgenet_mii_config(priv->dev, false);
4227
4228	/* Restore enabled features */
4229	bcmgenet_set_features(dev, dev->features);
4230
4231	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4232
4233	/* Restore hardware filters */
4234	bcmgenet_hfb_clear(priv);
4235	list_for_each_entry(rule, &priv->rxnfc_list, list)
4236		if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4237			bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4238
4239	/* Disable RX/TX DMA and flush TX queues */
4240	dma_ctrl = bcmgenet_dma_disable(priv);
4241
4242	/* Reinitialize TDMA and RDMA and SW housekeeping */
4243	ret = bcmgenet_init_dma(priv);
4244	if (ret) {
4245		netdev_err(dev, "failed to initialize DMA\n");
4246		goto out_clk_disable;
4247	}
4248
4249	/* Always enable ring 16 - descriptor ring */
4250	bcmgenet_enable_dma(priv, dma_ctrl);
4251
4252	if (!device_may_wakeup(d))
4253		phy_resume(dev->phydev);
4254
 
 
 
4255	bcmgenet_netif_start(dev);
4256
4257	netif_device_attach(dev);
4258
4259	return 0;
4260
4261out_clk_disable:
4262	if (priv->internal_phy)
4263		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4264	clk_disable_unprepare(priv->clk);
4265	return ret;
4266}
4267
4268static int bcmgenet_suspend(struct device *d)
4269{
4270	struct net_device *dev = dev_get_drvdata(d);
4271	struct bcmgenet_priv *priv = netdev_priv(dev);
4272
4273	if (!netif_running(dev))
4274		return 0;
4275
4276	netif_device_detach(dev);
4277
4278	bcmgenet_netif_stop(dev, true);
4279
4280	if (!device_may_wakeup(d))
4281		phy_suspend(dev->phydev);
4282
4283	/* Disable filtering */
4284	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4285
4286	return 0;
4287}
4288
4289static int bcmgenet_suspend_noirq(struct device *d)
4290{
4291	struct net_device *dev = dev_get_drvdata(d);
4292	struct bcmgenet_priv *priv = netdev_priv(dev);
4293	int ret = 0;
4294
4295	if (!netif_running(dev))
4296		return 0;
4297
4298	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4299	if (device_may_wakeup(d) && priv->wolopts)
4300		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4301	else if (priv->internal_phy)
4302		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4303
4304	/* Let the framework handle resumption and leave the clocks on */
4305	if (ret)
4306		return ret;
4307
4308	/* Turn off the clocks */
4309	clk_disable_unprepare(priv->clk);
4310
4311	return 0;
4312}
4313#else
4314#define bcmgenet_suspend	NULL
4315#define bcmgenet_suspend_noirq	NULL
4316#define bcmgenet_resume		NULL
4317#define bcmgenet_resume_noirq	NULL
4318#endif /* CONFIG_PM_SLEEP */
4319
4320static const struct dev_pm_ops bcmgenet_pm_ops = {
4321	.suspend	= bcmgenet_suspend,
4322	.suspend_noirq	= bcmgenet_suspend_noirq,
4323	.resume		= bcmgenet_resume,
4324	.resume_noirq	= bcmgenet_resume_noirq,
4325};
4326
4327static const struct acpi_device_id genet_acpi_match[] = {
4328	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4329	{ },
4330};
4331MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4332
4333static struct platform_driver bcmgenet_driver = {
4334	.probe	= bcmgenet_probe,
4335	.remove_new = bcmgenet_remove,
4336	.shutdown = bcmgenet_shutdown,
4337	.driver	= {
4338		.name	= "bcmgenet",
4339		.of_match_table = bcmgenet_match,
4340		.pm	= &bcmgenet_pm_ops,
4341		.acpi_match_table = genet_acpi_match,
4342	},
4343};
4344module_platform_driver(bcmgenet_driver);
4345
4346MODULE_AUTHOR("Broadcom Corporation");
4347MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4348MODULE_ALIAS("platform:bcmgenet");
4349MODULE_LICENSE("GPL");
4350MODULE_SOFTDEP("pre: mdio-bcm-unimac");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Broadcom GENET (Gigabit Ethernet) controller driver
   4 *
   5 * Copyright (c) 2014-2020 Broadcom
   6 */
   7
   8#define pr_fmt(fmt)				"bcmgenet: " fmt
   9
  10#include <linux/acpi.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/sched.h>
  14#include <linux/types.h>
  15#include <linux/fcntl.h>
  16#include <linux/interrupt.h>
  17#include <linux/string.h>
  18#include <linux/if_ether.h>
  19#include <linux/init.h>
  20#include <linux/errno.h>
  21#include <linux/delay.h>
  22#include <linux/platform_device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/pm.h>
  25#include <linux/clk.h>
  26#include <net/arp.h>
  27
  28#include <linux/mii.h>
  29#include <linux/ethtool.h>
  30#include <linux/netdevice.h>
  31#include <linux/inetdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/in.h>
  35#include <linux/ip.h>
  36#include <linux/ipv6.h>
  37#include <linux/phy.h>
  38#include <linux/platform_data/bcmgenet.h>
  39
  40#include <asm/unaligned.h>
  41
  42#include "bcmgenet.h"
  43
  44/* Maximum number of hardware queues, downsized if needed */
  45#define GENET_MAX_MQ_CNT	4
  46
  47/* Default highest priority queue for multi queue support */
  48#define GENET_Q0_PRIORITY	0
  49
  50#define GENET_Q16_RX_BD_CNT	\
  51	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
  52#define GENET_Q16_TX_BD_CNT	\
  53	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
  54
  55#define RX_BUF_LENGTH		2048
  56#define SKB_ALIGNMENT		32
  57
  58/* Tx/Rx DMA register offset, skip 256 descriptors */
  59#define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
  60#define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
  61
  62#define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
  63				TOTAL_DESC * DMA_DESC_SIZE)
  64
  65#define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
  66				TOTAL_DESC * DMA_DESC_SIZE)
  67
  68/* Forward declarations */
  69static void bcmgenet_set_rx_mode(struct net_device *dev);
  70
  71static inline void bcmgenet_writel(u32 value, void __iomem *offset)
  72{
  73	/* MIPS chips strapped for BE will automagically configure the
  74	 * peripheral registers for CPU-native byte order.
  75	 */
  76	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  77		__raw_writel(value, offset);
  78	else
  79		writel_relaxed(value, offset);
  80}
  81
  82static inline u32 bcmgenet_readl(void __iomem *offset)
  83{
  84	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
  85		return __raw_readl(offset);
  86	else
  87		return readl_relaxed(offset);
  88}
  89
  90static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
  91					     void __iomem *d, u32 value)
  92{
  93	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
  94}
  95
  96static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
  97				    void __iomem *d,
  98				    dma_addr_t addr)
  99{
 100	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
 101
 102	/* Register writes to GISB bus can take couple hundred nanoseconds
 103	 * and are done for each packet, save these expensive writes unless
 104	 * the platform is explicitly configured for 64-bits/LPAE.
 105	 */
 106#ifdef CONFIG_PHYS_ADDR_T_64BIT
 107	if (priv->hw_params->flags & GENET_HAS_40BITS)
 108		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 109#endif
 110}
 111
 112/* Combined address + length/status setter */
 113static inline void dmadesc_set(struct bcmgenet_priv *priv,
 114			       void __iomem *d, dma_addr_t addr, u32 val)
 115{
 116	dmadesc_set_addr(priv, d, addr);
 117	dmadesc_set_length_status(priv, d, val);
 118}
 119
 120static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
 121					  void __iomem *d)
 122{
 123	dma_addr_t addr;
 124
 125	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
 126
 127	/* Register writes to GISB bus can take couple hundred nanoseconds
 128	 * and are done for each packet, save these expensive writes unless
 129	 * the platform is explicitly configured for 64-bits/LPAE.
 130	 */
 131#ifdef CONFIG_PHYS_ADDR_T_64BIT
 132	if (priv->hw_params->flags & GENET_HAS_40BITS)
 133		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
 134#endif
 135	return addr;
 136}
 137
 138#define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
 139
 140#define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
 141				NETIF_MSG_LINK)
 142
 143static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
 144{
 145	if (GENET_IS_V1(priv))
 146		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
 147	else
 148		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
 149}
 150
 151static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 152{
 153	if (GENET_IS_V1(priv))
 154		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
 155	else
 156		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
 157}
 158
 159/* These macros are defined to deal with register map change
 160 * between GENET1.1 and GENET2. Only those currently being used
 161 * by driver are defined.
 162 */
 163static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
 164{
 165	if (GENET_IS_V1(priv))
 166		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
 167	else
 168		return bcmgenet_readl(priv->base +
 169				      priv->hw_params->tbuf_offset + TBUF_CTRL);
 170}
 171
 172static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
 173{
 174	if (GENET_IS_V1(priv))
 175		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
 176	else
 177		bcmgenet_writel(val, priv->base +
 178				priv->hw_params->tbuf_offset + TBUF_CTRL);
 179}
 180
 181static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
 182{
 183	if (GENET_IS_V1(priv))
 184		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
 185	else
 186		return bcmgenet_readl(priv->base +
 187				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
 188}
 189
 190static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
 191{
 192	if (GENET_IS_V1(priv))
 193		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
 194	else
 195		bcmgenet_writel(val, priv->base +
 196				priv->hw_params->tbuf_offset + TBUF_BP_MC);
 197}
 198
 199/* RX/TX DMA register accessors */
 200enum dma_reg {
 201	DMA_RING_CFG = 0,
 202	DMA_CTRL,
 203	DMA_STATUS,
 204	DMA_SCB_BURST_SIZE,
 205	DMA_ARB_CTRL,
 206	DMA_PRIORITY_0,
 207	DMA_PRIORITY_1,
 208	DMA_PRIORITY_2,
 209	DMA_INDEX2RING_0,
 210	DMA_INDEX2RING_1,
 211	DMA_INDEX2RING_2,
 212	DMA_INDEX2RING_3,
 213	DMA_INDEX2RING_4,
 214	DMA_INDEX2RING_5,
 215	DMA_INDEX2RING_6,
 216	DMA_INDEX2RING_7,
 217	DMA_RING0_TIMEOUT,
 218	DMA_RING1_TIMEOUT,
 219	DMA_RING2_TIMEOUT,
 220	DMA_RING3_TIMEOUT,
 221	DMA_RING4_TIMEOUT,
 222	DMA_RING5_TIMEOUT,
 223	DMA_RING6_TIMEOUT,
 224	DMA_RING7_TIMEOUT,
 225	DMA_RING8_TIMEOUT,
 226	DMA_RING9_TIMEOUT,
 227	DMA_RING10_TIMEOUT,
 228	DMA_RING11_TIMEOUT,
 229	DMA_RING12_TIMEOUT,
 230	DMA_RING13_TIMEOUT,
 231	DMA_RING14_TIMEOUT,
 232	DMA_RING15_TIMEOUT,
 233	DMA_RING16_TIMEOUT,
 234};
 235
 236static const u8 bcmgenet_dma_regs_v3plus[] = {
 237	[DMA_RING_CFG]		= 0x00,
 238	[DMA_CTRL]		= 0x04,
 239	[DMA_STATUS]		= 0x08,
 240	[DMA_SCB_BURST_SIZE]	= 0x0C,
 241	[DMA_ARB_CTRL]		= 0x2C,
 242	[DMA_PRIORITY_0]	= 0x30,
 243	[DMA_PRIORITY_1]	= 0x34,
 244	[DMA_PRIORITY_2]	= 0x38,
 245	[DMA_RING0_TIMEOUT]	= 0x2C,
 246	[DMA_RING1_TIMEOUT]	= 0x30,
 247	[DMA_RING2_TIMEOUT]	= 0x34,
 248	[DMA_RING3_TIMEOUT]	= 0x38,
 249	[DMA_RING4_TIMEOUT]	= 0x3c,
 250	[DMA_RING5_TIMEOUT]	= 0x40,
 251	[DMA_RING6_TIMEOUT]	= 0x44,
 252	[DMA_RING7_TIMEOUT]	= 0x48,
 253	[DMA_RING8_TIMEOUT]	= 0x4c,
 254	[DMA_RING9_TIMEOUT]	= 0x50,
 255	[DMA_RING10_TIMEOUT]	= 0x54,
 256	[DMA_RING11_TIMEOUT]	= 0x58,
 257	[DMA_RING12_TIMEOUT]	= 0x5c,
 258	[DMA_RING13_TIMEOUT]	= 0x60,
 259	[DMA_RING14_TIMEOUT]	= 0x64,
 260	[DMA_RING15_TIMEOUT]	= 0x68,
 261	[DMA_RING16_TIMEOUT]	= 0x6C,
 262	[DMA_INDEX2RING_0]	= 0x70,
 263	[DMA_INDEX2RING_1]	= 0x74,
 264	[DMA_INDEX2RING_2]	= 0x78,
 265	[DMA_INDEX2RING_3]	= 0x7C,
 266	[DMA_INDEX2RING_4]	= 0x80,
 267	[DMA_INDEX2RING_5]	= 0x84,
 268	[DMA_INDEX2RING_6]	= 0x88,
 269	[DMA_INDEX2RING_7]	= 0x8C,
 270};
 271
 272static const u8 bcmgenet_dma_regs_v2[] = {
 273	[DMA_RING_CFG]		= 0x00,
 274	[DMA_CTRL]		= 0x04,
 275	[DMA_STATUS]		= 0x08,
 276	[DMA_SCB_BURST_SIZE]	= 0x0C,
 277	[DMA_ARB_CTRL]		= 0x30,
 278	[DMA_PRIORITY_0]	= 0x34,
 279	[DMA_PRIORITY_1]	= 0x38,
 280	[DMA_PRIORITY_2]	= 0x3C,
 281	[DMA_RING0_TIMEOUT]	= 0x2C,
 282	[DMA_RING1_TIMEOUT]	= 0x30,
 283	[DMA_RING2_TIMEOUT]	= 0x34,
 284	[DMA_RING3_TIMEOUT]	= 0x38,
 285	[DMA_RING4_TIMEOUT]	= 0x3c,
 286	[DMA_RING5_TIMEOUT]	= 0x40,
 287	[DMA_RING6_TIMEOUT]	= 0x44,
 288	[DMA_RING7_TIMEOUT]	= 0x48,
 289	[DMA_RING8_TIMEOUT]	= 0x4c,
 290	[DMA_RING9_TIMEOUT]	= 0x50,
 291	[DMA_RING10_TIMEOUT]	= 0x54,
 292	[DMA_RING11_TIMEOUT]	= 0x58,
 293	[DMA_RING12_TIMEOUT]	= 0x5c,
 294	[DMA_RING13_TIMEOUT]	= 0x60,
 295	[DMA_RING14_TIMEOUT]	= 0x64,
 296	[DMA_RING15_TIMEOUT]	= 0x68,
 297	[DMA_RING16_TIMEOUT]	= 0x6C,
 298};
 299
 300static const u8 bcmgenet_dma_regs_v1[] = {
 301	[DMA_CTRL]		= 0x00,
 302	[DMA_STATUS]		= 0x04,
 303	[DMA_SCB_BURST_SIZE]	= 0x0C,
 304	[DMA_ARB_CTRL]		= 0x30,
 305	[DMA_PRIORITY_0]	= 0x34,
 306	[DMA_PRIORITY_1]	= 0x38,
 307	[DMA_PRIORITY_2]	= 0x3C,
 308	[DMA_RING0_TIMEOUT]	= 0x2C,
 309	[DMA_RING1_TIMEOUT]	= 0x30,
 310	[DMA_RING2_TIMEOUT]	= 0x34,
 311	[DMA_RING3_TIMEOUT]	= 0x38,
 312	[DMA_RING4_TIMEOUT]	= 0x3c,
 313	[DMA_RING5_TIMEOUT]	= 0x40,
 314	[DMA_RING6_TIMEOUT]	= 0x44,
 315	[DMA_RING7_TIMEOUT]	= 0x48,
 316	[DMA_RING8_TIMEOUT]	= 0x4c,
 317	[DMA_RING9_TIMEOUT]	= 0x50,
 318	[DMA_RING10_TIMEOUT]	= 0x54,
 319	[DMA_RING11_TIMEOUT]	= 0x58,
 320	[DMA_RING12_TIMEOUT]	= 0x5c,
 321	[DMA_RING13_TIMEOUT]	= 0x60,
 322	[DMA_RING14_TIMEOUT]	= 0x64,
 323	[DMA_RING15_TIMEOUT]	= 0x68,
 324	[DMA_RING16_TIMEOUT]	= 0x6C,
 325};
 326
 327/* Set at runtime once bcmgenet version is known */
 328static const u8 *bcmgenet_dma_regs;
 329
 330static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
 331{
 332	return netdev_priv(dev_get_drvdata(dev));
 333}
 334
 335static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
 336				      enum dma_reg r)
 337{
 338	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 339			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 340}
 341
 342static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
 343					u32 val, enum dma_reg r)
 344{
 345	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 346			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 347}
 348
 349static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
 350				      enum dma_reg r)
 351{
 352	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 353			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 354}
 355
 356static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
 357					u32 val, enum dma_reg r)
 358{
 359	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 360			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
 361}
 362
 363/* RDMA/TDMA ring registers and accessors
 364 * we merge the common fields and just prefix with T/D the registers
 365 * having different meaning depending on the direction
 366 */
 367enum dma_ring_reg {
 368	TDMA_READ_PTR = 0,
 369	RDMA_WRITE_PTR = TDMA_READ_PTR,
 370	TDMA_READ_PTR_HI,
 371	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
 372	TDMA_CONS_INDEX,
 373	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
 374	TDMA_PROD_INDEX,
 375	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
 376	DMA_RING_BUF_SIZE,
 377	DMA_START_ADDR,
 378	DMA_START_ADDR_HI,
 379	DMA_END_ADDR,
 380	DMA_END_ADDR_HI,
 381	DMA_MBUF_DONE_THRESH,
 382	TDMA_FLOW_PERIOD,
 383	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
 384	TDMA_WRITE_PTR,
 385	RDMA_READ_PTR = TDMA_WRITE_PTR,
 386	TDMA_WRITE_PTR_HI,
 387	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
 388};
 389
 390/* GENET v4 supports 40-bits pointer addressing
 391 * for obvious reasons the LO and HI word parts
 392 * are contiguous, but this offsets the other
 393 * registers.
 394 */
 395static const u8 genet_dma_ring_regs_v4[] = {
 396	[TDMA_READ_PTR]			= 0x00,
 397	[TDMA_READ_PTR_HI]		= 0x04,
 398	[TDMA_CONS_INDEX]		= 0x08,
 399	[TDMA_PROD_INDEX]		= 0x0C,
 400	[DMA_RING_BUF_SIZE]		= 0x10,
 401	[DMA_START_ADDR]		= 0x14,
 402	[DMA_START_ADDR_HI]		= 0x18,
 403	[DMA_END_ADDR]			= 0x1C,
 404	[DMA_END_ADDR_HI]		= 0x20,
 405	[DMA_MBUF_DONE_THRESH]		= 0x24,
 406	[TDMA_FLOW_PERIOD]		= 0x28,
 407	[TDMA_WRITE_PTR]		= 0x2C,
 408	[TDMA_WRITE_PTR_HI]		= 0x30,
 409};
 410
 411static const u8 genet_dma_ring_regs_v123[] = {
 412	[TDMA_READ_PTR]			= 0x00,
 413	[TDMA_CONS_INDEX]		= 0x04,
 414	[TDMA_PROD_INDEX]		= 0x08,
 415	[DMA_RING_BUF_SIZE]		= 0x0C,
 416	[DMA_START_ADDR]		= 0x10,
 417	[DMA_END_ADDR]			= 0x14,
 418	[DMA_MBUF_DONE_THRESH]		= 0x18,
 419	[TDMA_FLOW_PERIOD]		= 0x1C,
 420	[TDMA_WRITE_PTR]		= 0x20,
 421};
 422
 423/* Set at runtime once GENET version is known */
 424static const u8 *genet_dma_ring_regs;
 425
 426static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
 427					   unsigned int ring,
 428					   enum dma_ring_reg r)
 429{
 430	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
 431			      (DMA_RING_SIZE * ring) +
 432			      genet_dma_ring_regs[r]);
 433}
 434
 435static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
 436					     unsigned int ring, u32 val,
 437					     enum dma_ring_reg r)
 438{
 439	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
 440			(DMA_RING_SIZE * ring) +
 441			genet_dma_ring_regs[r]);
 442}
 443
 444static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
 445					   unsigned int ring,
 446					   enum dma_ring_reg r)
 447{
 448	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
 449			      (DMA_RING_SIZE * ring) +
 450			      genet_dma_ring_regs[r]);
 451}
 452
 453static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
 454					     unsigned int ring, u32 val,
 455					     enum dma_ring_reg r)
 456{
 457	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
 458			(DMA_RING_SIZE * ring) +
 459			genet_dma_ring_regs[r]);
 460}
 461
 462static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
 463{
 464	u32 offset;
 465	u32 reg;
 466
 467	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
 468	reg = bcmgenet_hfb_reg_readl(priv, offset);
 469	reg |= (1 << (f_index % 32));
 470	bcmgenet_hfb_reg_writel(priv, reg, offset);
 471	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
 472	reg |= RBUF_HFB_EN;
 473	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
 474}
 475
 476static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
 477{
 478	u32 offset, reg, reg1;
 479
 480	offset = HFB_FLT_ENABLE_V3PLUS;
 481	reg = bcmgenet_hfb_reg_readl(priv, offset);
 482	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
 483	if  (f_index < 32) {
 484		reg1 &= ~(1 << (f_index % 32));
 485		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
 486	} else {
 487		reg &= ~(1 << (f_index % 32));
 488		bcmgenet_hfb_reg_writel(priv, reg, offset);
 489	}
 490	if (!reg && !reg1) {
 491		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
 492		reg &= ~RBUF_HFB_EN;
 493		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
 494	}
 495}
 496
 497static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
 498						     u32 f_index, u32 rx_queue)
 499{
 500	u32 offset;
 501	u32 reg;
 502
 503	offset = f_index / 8;
 504	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
 505	reg &= ~(0xF << (4 * (f_index % 8)));
 506	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
 507	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
 508}
 509
 510static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
 511					   u32 f_index, u32 f_length)
 512{
 513	u32 offset;
 514	u32 reg;
 515
 516	offset = HFB_FLT_LEN_V3PLUS +
 517		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
 518		 sizeof(u32);
 519	reg = bcmgenet_hfb_reg_readl(priv, offset);
 520	reg &= ~(0xFF << (8 * (f_index % 4)));
 521	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
 522	bcmgenet_hfb_reg_writel(priv, reg, offset);
 523}
 524
 525static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
 526{
 527	while (size) {
 528		switch (*(unsigned char *)mask++) {
 529		case 0x00:
 530		case 0x0f:
 531		case 0xf0:
 532		case 0xff:
 533			size--;
 534			continue;
 535		default:
 536			return -EINVAL;
 537		}
 538	}
 539
 540	return 0;
 541}
 542
 543#define VALIDATE_MASK(x) \
 544	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
 545
 546static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index,
 547				    u32 offset, void *val, void *mask,
 548				    size_t size)
 549{
 550	u32 index, tmp;
 551
 552	index = f_index * priv->hw_params->hfb_filter_size + offset / 2;
 553	tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32));
 554
 555	while (size--) {
 556		if (offset++ & 1) {
 557			tmp &= ~0x300FF;
 558			tmp |= (*(unsigned char *)val++);
 559			switch ((*(unsigned char *)mask++)) {
 560			case 0xFF:
 561				tmp |= 0x30000;
 562				break;
 563			case 0xF0:
 564				tmp |= 0x20000;
 565				break;
 566			case 0x0F:
 567				tmp |= 0x10000;
 568				break;
 569			}
 570			bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32));
 571			if (size)
 572				tmp = bcmgenet_hfb_readl(priv,
 573							 index * sizeof(u32));
 574		} else {
 575			tmp &= ~0xCFF00;
 576			tmp |= (*(unsigned char *)val++) << 8;
 577			switch ((*(unsigned char *)mask++)) {
 578			case 0xFF:
 579				tmp |= 0xC0000;
 580				break;
 581			case 0xF0:
 582				tmp |= 0x80000;
 583				break;
 584			case 0x0F:
 585				tmp |= 0x40000;
 586				break;
 587			}
 588			if (!size)
 589				bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32));
 590		}
 591	}
 592
 593	return 0;
 594}
 595
 596static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
 597					     struct bcmgenet_rxnfc_rule *rule)
 598{
 599	struct ethtool_rx_flow_spec *fs = &rule->fs;
 600	u32 offset = 0, f_length = 0, f;
 601	u8 val_8, mask_8;
 602	__be16 val_16;
 603	u16 mask_16;
 604	size_t size;
 605
 606	f = fs->location;
 607	if (fs->flow_type & FLOW_MAC_EXT) {
 608		bcmgenet_hfb_insert_data(priv, f, 0,
 609					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
 610					 sizeof(fs->h_ext.h_dest));
 611	}
 612
 613	if (fs->flow_type & FLOW_EXT) {
 614		if (fs->m_ext.vlan_etype ||
 615		    fs->m_ext.vlan_tci) {
 616			bcmgenet_hfb_insert_data(priv, f, 12,
 617						 &fs->h_ext.vlan_etype,
 618						 &fs->m_ext.vlan_etype,
 619						 sizeof(fs->h_ext.vlan_etype));
 620			bcmgenet_hfb_insert_data(priv, f, 14,
 621						 &fs->h_ext.vlan_tci,
 622						 &fs->m_ext.vlan_tci,
 623						 sizeof(fs->h_ext.vlan_tci));
 624			offset += VLAN_HLEN;
 625			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
 626		}
 627	}
 628
 629	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
 630	case ETHER_FLOW:
 631		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
 632		bcmgenet_hfb_insert_data(priv, f, 0,
 633					 &fs->h_u.ether_spec.h_dest,
 634					 &fs->m_u.ether_spec.h_dest,
 635					 sizeof(fs->h_u.ether_spec.h_dest));
 636		bcmgenet_hfb_insert_data(priv, f, ETH_ALEN,
 637					 &fs->h_u.ether_spec.h_source,
 638					 &fs->m_u.ether_spec.h_source,
 639					 sizeof(fs->h_u.ether_spec.h_source));
 640		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
 641					 &fs->h_u.ether_spec.h_proto,
 642					 &fs->m_u.ether_spec.h_proto,
 643					 sizeof(fs->h_u.ether_spec.h_proto));
 644		break;
 645	case IP_USER_FLOW:
 646		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
 647		/* Specify IP Ether Type */
 648		val_16 = htons(ETH_P_IP);
 649		mask_16 = 0xFFFF;
 650		bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset,
 651					 &val_16, &mask_16, sizeof(val_16));
 652		bcmgenet_hfb_insert_data(priv, f, 15 + offset,
 653					 &fs->h_u.usr_ip4_spec.tos,
 654					 &fs->m_u.usr_ip4_spec.tos,
 655					 sizeof(fs->h_u.usr_ip4_spec.tos));
 656		bcmgenet_hfb_insert_data(priv, f, 23 + offset,
 657					 &fs->h_u.usr_ip4_spec.proto,
 658					 &fs->m_u.usr_ip4_spec.proto,
 659					 sizeof(fs->h_u.usr_ip4_spec.proto));
 660		bcmgenet_hfb_insert_data(priv, f, 26 + offset,
 661					 &fs->h_u.usr_ip4_spec.ip4src,
 662					 &fs->m_u.usr_ip4_spec.ip4src,
 663					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
 664		bcmgenet_hfb_insert_data(priv, f, 30 + offset,
 665					 &fs->h_u.usr_ip4_spec.ip4dst,
 666					 &fs->m_u.usr_ip4_spec.ip4dst,
 667					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
 668		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
 669			break;
 670
 671		/* Only supports 20 byte IPv4 header */
 672		val_8 = 0x45;
 673		mask_8 = 0xFF;
 674		bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset,
 675					 &val_8, &mask_8,
 676					 sizeof(val_8));
 677		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
 678		bcmgenet_hfb_insert_data(priv, f,
 679					 ETH_HLEN + 20 + offset,
 680					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
 681					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
 682					 size);
 683		f_length += DIV_ROUND_UP(size, 2);
 684		break;
 685	}
 686
 687	bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length);
 688	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
 689		/* Ring 0 flows can be handled by the default Descriptor Ring
 690		 * We'll map them to ring 0, but don't enable the filter
 691		 */
 692		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0);
 693		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
 694	} else {
 695		/* Other Rx rings are direct mapped here */
 696		bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f,
 697							 fs->ring_cookie);
 698		bcmgenet_hfb_enable_filter(priv, f);
 699		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
 700	}
 701}
 702
 703/* bcmgenet_hfb_clear
 704 *
 705 * Clear Hardware Filter Block and disable all filtering.
 706 */
 707static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index)
 708{
 709	u32 base, i;
 710
 711	base = f_index * priv->hw_params->hfb_filter_size;
 712	for (i = 0; i < priv->hw_params->hfb_filter_size; i++)
 713		bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32));
 714}
 715
 716static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
 717{
 718	u32 i;
 719
 720	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
 721		return;
 722
 723	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
 724	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
 725	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
 726
 727	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
 728		bcmgenet_rdma_writel(priv, 0x0, i);
 729
 730	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
 731		bcmgenet_hfb_reg_writel(priv, 0x0,
 732					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
 733
 734	for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++)
 735		bcmgenet_hfb_clear_filter(priv, i);
 736}
 737
 738static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
 739{
 740	int i;
 741
 742	INIT_LIST_HEAD(&priv->rxnfc_list);
 743	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
 744		return;
 745
 746	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
 747		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
 748		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
 749	}
 750
 751	bcmgenet_hfb_clear(priv);
 752}
 753
 754static int bcmgenet_begin(struct net_device *dev)
 755{
 756	struct bcmgenet_priv *priv = netdev_priv(dev);
 757
 758	/* Turn on the clock */
 759	return clk_prepare_enable(priv->clk);
 760}
 761
 762static void bcmgenet_complete(struct net_device *dev)
 763{
 764	struct bcmgenet_priv *priv = netdev_priv(dev);
 765
 766	/* Turn off the clock */
 767	clk_disable_unprepare(priv->clk);
 768}
 769
 770static int bcmgenet_get_link_ksettings(struct net_device *dev,
 771				       struct ethtool_link_ksettings *cmd)
 772{
 773	if (!netif_running(dev))
 774		return -EINVAL;
 775
 776	if (!dev->phydev)
 777		return -ENODEV;
 778
 779	phy_ethtool_ksettings_get(dev->phydev, cmd);
 780
 781	return 0;
 782}
 783
 784static int bcmgenet_set_link_ksettings(struct net_device *dev,
 785				       const struct ethtool_link_ksettings *cmd)
 786{
 787	if (!netif_running(dev))
 788		return -EINVAL;
 789
 790	if (!dev->phydev)
 791		return -ENODEV;
 792
 793	return phy_ethtool_ksettings_set(dev->phydev, cmd);
 794}
 795
 796static int bcmgenet_set_features(struct net_device *dev,
 797				 netdev_features_t features)
 798{
 799	struct bcmgenet_priv *priv = netdev_priv(dev);
 800	u32 reg;
 801	int ret;
 802
 803	ret = clk_prepare_enable(priv->clk);
 804	if (ret)
 805		return ret;
 806
 807	/* Make sure we reflect the value of CRC_CMD_FWD */
 808	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
 809	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
 810
 811	clk_disable_unprepare(priv->clk);
 812
 813	return ret;
 814}
 815
 816static u32 bcmgenet_get_msglevel(struct net_device *dev)
 817{
 818	struct bcmgenet_priv *priv = netdev_priv(dev);
 819
 820	return priv->msg_enable;
 821}
 822
 823static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
 824{
 825	struct bcmgenet_priv *priv = netdev_priv(dev);
 826
 827	priv->msg_enable = level;
 828}
 829
 830static int bcmgenet_get_coalesce(struct net_device *dev,
 831				 struct ethtool_coalesce *ec)
 
 
 832{
 833	struct bcmgenet_priv *priv = netdev_priv(dev);
 834	struct bcmgenet_rx_ring *ring;
 835	unsigned int i;
 836
 837	ec->tx_max_coalesced_frames =
 838		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
 839					 DMA_MBUF_DONE_THRESH);
 840	ec->rx_max_coalesced_frames =
 841		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
 842					 DMA_MBUF_DONE_THRESH);
 843	ec->rx_coalesce_usecs =
 844		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
 845
 846	for (i = 0; i < priv->hw_params->rx_queues; i++) {
 847		ring = &priv->rx_rings[i];
 848		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 849	}
 850	ring = &priv->rx_rings[DESC_INDEX];
 851	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
 852
 853	return 0;
 854}
 855
 856static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
 857				     u32 usecs, u32 pkts)
 858{
 859	struct bcmgenet_priv *priv = ring->priv;
 860	unsigned int i = ring->index;
 861	u32 reg;
 862
 863	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
 864
 865	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
 866	reg &= ~DMA_TIMEOUT_MASK;
 867	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
 868	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
 869}
 870
 871static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
 872					  struct ethtool_coalesce *ec)
 873{
 874	struct dim_cq_moder moder;
 875	u32 usecs, pkts;
 876
 877	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
 878	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
 879	usecs = ring->rx_coalesce_usecs;
 880	pkts = ring->rx_max_coalesced_frames;
 881
 882	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
 883		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
 884		usecs = moder.usec;
 885		pkts = moder.pkts;
 886	}
 887
 888	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
 889	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
 890}
 891
 892static int bcmgenet_set_coalesce(struct net_device *dev,
 893				 struct ethtool_coalesce *ec)
 
 
 894{
 895	struct bcmgenet_priv *priv = netdev_priv(dev);
 896	unsigned int i;
 897
 898	/* Base system clock is 125Mhz, DMA timeout is this reference clock
 899	 * divided by 1024, which yields roughly 8.192us, our maximum value
 900	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
 901	 */
 902	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 903	    ec->tx_max_coalesced_frames == 0 ||
 904	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
 905	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
 906		return -EINVAL;
 907
 908	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
 909		return -EINVAL;
 910
 911	/* GENET TDMA hardware does not support a configurable timeout, but will
 912	 * always generate an interrupt either after MBDONE packets have been
 913	 * transmitted, or when the ring is empty.
 914	 */
 915
 916	/* Program all TX queues with the same values, as there is no
 917	 * ethtool knob to do coalescing on a per-queue basis
 918	 */
 919	for (i = 0; i < priv->hw_params->tx_queues; i++)
 920		bcmgenet_tdma_ring_writel(priv, i,
 921					  ec->tx_max_coalesced_frames,
 922					  DMA_MBUF_DONE_THRESH);
 923	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
 924				  ec->tx_max_coalesced_frames,
 925				  DMA_MBUF_DONE_THRESH);
 926
 927	for (i = 0; i < priv->hw_params->rx_queues; i++)
 928		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
 929	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
 930
 931	return 0;
 932}
 933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934/* standard ethtool support functions. */
 935enum bcmgenet_stat_type {
 936	BCMGENET_STAT_NETDEV = -1,
 937	BCMGENET_STAT_MIB_RX,
 938	BCMGENET_STAT_MIB_TX,
 939	BCMGENET_STAT_RUNT,
 940	BCMGENET_STAT_MISC,
 941	BCMGENET_STAT_SOFT,
 942};
 943
 944struct bcmgenet_stats {
 945	char stat_string[ETH_GSTRING_LEN];
 946	int stat_sizeof;
 947	int stat_offset;
 948	enum bcmgenet_stat_type type;
 949	/* reg offset from UMAC base for misc counters */
 950	u16 reg_offset;
 951};
 952
 953#define STAT_NETDEV(m) { \
 954	.stat_string = __stringify(m), \
 955	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
 956	.stat_offset = offsetof(struct net_device_stats, m), \
 957	.type = BCMGENET_STAT_NETDEV, \
 958}
 959
 960#define STAT_GENET_MIB(str, m, _type) { \
 961	.stat_string = str, \
 962	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 963	.stat_offset = offsetof(struct bcmgenet_priv, m), \
 964	.type = _type, \
 965}
 966
 967#define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
 968#define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
 969#define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
 970#define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
 971
 972#define STAT_GENET_MISC(str, m, offset) { \
 973	.stat_string = str, \
 974	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
 975	.stat_offset = offsetof(struct bcmgenet_priv, m), \
 976	.type = BCMGENET_STAT_MISC, \
 977	.reg_offset = offset, \
 978}
 979
 980#define STAT_GENET_Q(num) \
 981	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
 982			tx_rings[num].packets), \
 983	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
 984			tx_rings[num].bytes), \
 985	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
 986			rx_rings[num].bytes),	 \
 987	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
 988			rx_rings[num].packets), \
 989	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
 990			rx_rings[num].errors), \
 991	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
 992			rx_rings[num].dropped)
 993
 994/* There is a 0xC gap between the end of RX and beginning of TX stats and then
 995 * between the end of TX stats and the beginning of the RX RUNT
 996 */
 997#define BCMGENET_STAT_OFFSET	0xc
 998
 999/* Hardware counters must be kept in sync because the order/offset
1000 * is important here (order in structure declaration = order in hardware)
1001 */
1002static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1003	/* general stats */
1004	STAT_NETDEV(rx_packets),
1005	STAT_NETDEV(tx_packets),
1006	STAT_NETDEV(rx_bytes),
1007	STAT_NETDEV(tx_bytes),
1008	STAT_NETDEV(rx_errors),
1009	STAT_NETDEV(tx_errors),
1010	STAT_NETDEV(rx_dropped),
1011	STAT_NETDEV(tx_dropped),
1012	STAT_NETDEV(multicast),
1013	/* UniMAC RSV counters */
1014	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1015	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1016	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1017	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1018	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1019	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1020	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1021	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1022	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1023	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1024	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1025	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1026	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1027	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1028	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1029	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1030	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1031	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1032	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1033	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1034	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1035	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1036	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1037	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1038	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1039	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1040	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1041	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1042	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1043	/* UniMAC TSV counters */
1044	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1045	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1046	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1047	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1048	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1049	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1050	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1051	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1052	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1053	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1054	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1055	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1056	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1057	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1058	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1059	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1060	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1061	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1062	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1063	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1064	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1065	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1066	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1067	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1068	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1069	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1070	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1071	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1072	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1073	/* UniMAC RUNT counters */
1074	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1075	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1076	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1077	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1078	/* Misc UniMAC counters */
1079	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1080			UMAC_RBUF_OVFL_CNT_V1),
1081	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1082			UMAC_RBUF_ERR_CNT_V1),
1083	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1084	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1085	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1086	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1087	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1088	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1089			    mib.tx_realloc_tsb_failed),
1090	/* Per TX queues */
1091	STAT_GENET_Q(0),
1092	STAT_GENET_Q(1),
1093	STAT_GENET_Q(2),
1094	STAT_GENET_Q(3),
1095	STAT_GENET_Q(16),
1096};
1097
1098#define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1099
1100static void bcmgenet_get_drvinfo(struct net_device *dev,
1101				 struct ethtool_drvinfo *info)
1102{
1103	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1104}
1105
1106static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1107{
1108	switch (string_set) {
1109	case ETH_SS_STATS:
1110		return BCMGENET_STATS_LEN;
1111	default:
1112		return -EOPNOTSUPP;
1113	}
1114}
1115
1116static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1117				 u8 *data)
1118{
1119	int i;
1120
1121	switch (stringset) {
1122	case ETH_SS_STATS:
1123		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1124			memcpy(data + i * ETH_GSTRING_LEN,
1125			       bcmgenet_gstrings_stats[i].stat_string,
1126			       ETH_GSTRING_LEN);
1127		}
1128		break;
1129	}
1130}
1131
1132static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1133{
1134	u16 new_offset;
1135	u32 val;
1136
1137	switch (offset) {
1138	case UMAC_RBUF_OVFL_CNT_V1:
1139		if (GENET_IS_V2(priv))
1140			new_offset = RBUF_OVFL_CNT_V2;
1141		else
1142			new_offset = RBUF_OVFL_CNT_V3PLUS;
1143
1144		val = bcmgenet_rbuf_readl(priv,	new_offset);
1145		/* clear if overflowed */
1146		if (val == ~0)
1147			bcmgenet_rbuf_writel(priv, 0, new_offset);
1148		break;
1149	case UMAC_RBUF_ERR_CNT_V1:
1150		if (GENET_IS_V2(priv))
1151			new_offset = RBUF_ERR_CNT_V2;
1152		else
1153			new_offset = RBUF_ERR_CNT_V3PLUS;
1154
1155		val = bcmgenet_rbuf_readl(priv,	new_offset);
1156		/* clear if overflowed */
1157		if (val == ~0)
1158			bcmgenet_rbuf_writel(priv, 0, new_offset);
1159		break;
1160	default:
1161		val = bcmgenet_umac_readl(priv, offset);
1162		/* clear if overflowed */
1163		if (val == ~0)
1164			bcmgenet_umac_writel(priv, 0, offset);
1165		break;
1166	}
1167
1168	return val;
1169}
1170
1171static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1172{
1173	int i, j = 0;
1174
1175	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1176		const struct bcmgenet_stats *s;
1177		u8 offset = 0;
1178		u32 val = 0;
1179		char *p;
1180
1181		s = &bcmgenet_gstrings_stats[i];
1182		switch (s->type) {
1183		case BCMGENET_STAT_NETDEV:
1184		case BCMGENET_STAT_SOFT:
1185			continue;
1186		case BCMGENET_STAT_RUNT:
1187			offset += BCMGENET_STAT_OFFSET;
1188			fallthrough;
1189		case BCMGENET_STAT_MIB_TX:
1190			offset += BCMGENET_STAT_OFFSET;
1191			fallthrough;
1192		case BCMGENET_STAT_MIB_RX:
1193			val = bcmgenet_umac_readl(priv,
1194						  UMAC_MIB_START + j + offset);
1195			offset = 0;	/* Reset Offset */
1196			break;
1197		case BCMGENET_STAT_MISC:
1198			if (GENET_IS_V1(priv)) {
1199				val = bcmgenet_umac_readl(priv, s->reg_offset);
1200				/* clear if overflowed */
1201				if (val == ~0)
1202					bcmgenet_umac_writel(priv, 0,
1203							     s->reg_offset);
1204			} else {
1205				val = bcmgenet_update_stat_misc(priv,
1206								s->reg_offset);
1207			}
1208			break;
1209		}
1210
1211		j += s->stat_sizeof;
1212		p = (char *)priv + s->stat_offset;
1213		*(u32 *)p = val;
1214	}
1215}
1216
1217static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1218				       struct ethtool_stats *stats,
1219				       u64 *data)
1220{
1221	struct bcmgenet_priv *priv = netdev_priv(dev);
1222	int i;
1223
1224	if (netif_running(dev))
1225		bcmgenet_update_mib_counters(priv);
1226
1227	dev->netdev_ops->ndo_get_stats(dev);
1228
1229	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1230		const struct bcmgenet_stats *s;
1231		char *p;
1232
1233		s = &bcmgenet_gstrings_stats[i];
1234		if (s->type == BCMGENET_STAT_NETDEV)
1235			p = (char *)&dev->stats;
1236		else
1237			p = (char *)priv;
1238		p += s->stat_offset;
1239		if (sizeof(unsigned long) != sizeof(u32) &&
1240		    s->stat_sizeof == sizeof(unsigned long))
1241			data[i] = *(unsigned long *)p;
1242		else
1243			data[i] = *(u32 *)p;
1244	}
1245}
1246
1247static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
 
1248{
1249	struct bcmgenet_priv *priv = netdev_priv(dev);
1250	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1251	u32 reg;
1252
1253	if (enable && !priv->clk_eee_enabled) {
1254		clk_prepare_enable(priv->clk_eee);
1255		priv->clk_eee_enabled = true;
1256	}
1257
1258	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1259	if (enable)
1260		reg |= EEE_EN;
1261	else
1262		reg &= ~EEE_EN;
1263	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1264
1265	/* Enable EEE and switch to a 27Mhz clock automatically */
1266	reg = bcmgenet_readl(priv->base + off);
1267	if (enable)
1268		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1269	else
1270		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1271	bcmgenet_writel(reg, priv->base + off);
1272
1273	/* Do the same for thing for RBUF */
1274	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1275	if (enable)
1276		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1277	else
1278		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1279	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1280
1281	if (!enable && priv->clk_eee_enabled) {
1282		clk_disable_unprepare(priv->clk_eee);
1283		priv->clk_eee_enabled = false;
1284	}
1285
1286	priv->eee.eee_enabled = enable;
1287	priv->eee.eee_active = enable;
 
1288}
1289
1290static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1291{
1292	struct bcmgenet_priv *priv = netdev_priv(dev);
1293	struct ethtool_eee *p = &priv->eee;
1294
1295	if (GENET_IS_V1(priv))
1296		return -EOPNOTSUPP;
1297
1298	if (!dev->phydev)
1299		return -ENODEV;
1300
1301	e->eee_enabled = p->eee_enabled;
1302	e->eee_active = p->eee_active;
 
1303	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1304
1305	return phy_ethtool_get_eee(dev->phydev, e);
1306}
1307
1308static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1309{
1310	struct bcmgenet_priv *priv = netdev_priv(dev);
1311	struct ethtool_eee *p = &priv->eee;
1312	int ret = 0;
1313
1314	if (GENET_IS_V1(priv))
1315		return -EOPNOTSUPP;
1316
1317	if (!dev->phydev)
1318		return -ENODEV;
1319
1320	p->eee_enabled = e->eee_enabled;
1321
1322	if (!p->eee_enabled) {
1323		bcmgenet_eee_enable_set(dev, false);
1324	} else {
1325		ret = phy_init_eee(dev->phydev, 0);
1326		if (ret) {
1327			netif_err(priv, hw, dev, "EEE initialization failed\n");
1328			return ret;
1329		}
1330
1331		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1332		bcmgenet_eee_enable_set(dev, true);
1333	}
1334
1335	return phy_ethtool_set_eee(dev->phydev, e);
1336}
1337
1338static int bcmgenet_validate_flow(struct net_device *dev,
1339				  struct ethtool_rxnfc *cmd)
1340{
1341	struct ethtool_usrip4_spec *l4_mask;
1342	struct ethhdr *eth_mask;
1343
1344	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
 
1345		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1346			   cmd->fs.location);
1347		return -EINVAL;
1348	}
1349
1350	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1351	case IP_USER_FLOW:
1352		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1353		/* don't allow mask which isn't valid */
1354		if (VALIDATE_MASK(l4_mask->ip4src) ||
1355		    VALIDATE_MASK(l4_mask->ip4dst) ||
1356		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1357		    VALIDATE_MASK(l4_mask->proto) ||
1358		    VALIDATE_MASK(l4_mask->ip_ver) ||
1359		    VALIDATE_MASK(l4_mask->tos)) {
1360			netdev_err(dev, "rxnfc: Unsupported mask\n");
1361			return -EINVAL;
1362		}
1363		break;
1364	case ETHER_FLOW:
1365		eth_mask = &cmd->fs.m_u.ether_spec;
1366		/* don't allow mask which isn't valid */
1367		if (VALIDATE_MASK(eth_mask->h_dest) ||
1368		    VALIDATE_MASK(eth_mask->h_source) ||
1369		    VALIDATE_MASK(eth_mask->h_proto)) {
1370			netdev_err(dev, "rxnfc: Unsupported mask\n");
1371			return -EINVAL;
1372		}
1373		break;
1374	default:
1375		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1376			   cmd->fs.flow_type);
1377		return -EINVAL;
1378	}
1379
1380	if ((cmd->fs.flow_type & FLOW_EXT)) {
1381		/* don't allow mask which isn't valid */
1382		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1383		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1384			netdev_err(dev, "rxnfc: Unsupported mask\n");
1385			return -EINVAL;
1386		}
1387		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1388			netdev_err(dev, "rxnfc: user-def not supported\n");
1389			return -EINVAL;
1390		}
1391	}
1392
1393	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1394		/* don't allow mask which isn't valid */
1395		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1396			netdev_err(dev, "rxnfc: Unsupported mask\n");
1397			return -EINVAL;
1398		}
1399	}
1400
1401	return 0;
1402}
1403
1404static int bcmgenet_insert_flow(struct net_device *dev,
1405				struct ethtool_rxnfc *cmd)
1406{
1407	struct bcmgenet_priv *priv = netdev_priv(dev);
1408	struct bcmgenet_rxnfc_rule *loc_rule;
1409	int err;
1410
1411	if (priv->hw_params->hfb_filter_size < 128) {
1412		netdev_err(dev, "rxnfc: Not supported by this device\n");
1413		return -EINVAL;
1414	}
1415
1416	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1417	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1418		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1419			   cmd->fs.ring_cookie);
1420		return -EINVAL;
1421	}
1422
1423	err = bcmgenet_validate_flow(dev, cmd);
1424	if (err)
1425		return err;
1426
1427	loc_rule = &priv->rxnfc_rules[cmd->fs.location];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1429		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1430	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1431		list_del(&loc_rule->list);
1432		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1433	}
1434	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1435	memcpy(&loc_rule->fs, &cmd->fs,
1436	       sizeof(struct ethtool_rx_flow_spec));
1437
1438	bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1439
1440	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1441
1442	return 0;
1443}
1444
1445static int bcmgenet_delete_flow(struct net_device *dev,
1446				struct ethtool_rxnfc *cmd)
1447{
1448	struct bcmgenet_priv *priv = netdev_priv(dev);
1449	struct bcmgenet_rxnfc_rule *rule;
1450	int err = 0;
1451
1452	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1453		return -EINVAL;
1454
1455	rule = &priv->rxnfc_rules[cmd->fs.location];
1456	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1457		err =  -ENOENT;
1458		goto out;
1459	}
1460
1461	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1462		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1463	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) {
1464		list_del(&rule->list);
1465		bcmgenet_hfb_clear_filter(priv, cmd->fs.location);
1466	}
1467	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1468	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1469
1470out:
1471	return err;
1472}
1473
1474static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1475{
1476	struct bcmgenet_priv *priv = netdev_priv(dev);
1477	int err = 0;
1478
1479	switch (cmd->cmd) {
1480	case ETHTOOL_SRXCLSRLINS:
1481		err = bcmgenet_insert_flow(dev, cmd);
1482		break;
1483	case ETHTOOL_SRXCLSRLDEL:
1484		err = bcmgenet_delete_flow(dev, cmd);
1485		break;
1486	default:
1487		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1488			    cmd->cmd);
1489		return -EINVAL;
1490	}
1491
1492	return err;
1493}
1494
1495static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1496			     int loc)
1497{
1498	struct bcmgenet_priv *priv = netdev_priv(dev);
1499	struct bcmgenet_rxnfc_rule *rule;
1500	int err = 0;
1501
1502	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1503		return -EINVAL;
1504
1505	rule = &priv->rxnfc_rules[loc];
1506	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1507		err = -ENOENT;
1508	else
1509		memcpy(&cmd->fs, &rule->fs,
1510		       sizeof(struct ethtool_rx_flow_spec));
1511
1512	return err;
1513}
1514
1515static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1516{
1517	struct list_head *pos;
1518	int res = 0;
1519
1520	list_for_each(pos, &priv->rxnfc_list)
1521		res++;
1522
1523	return res;
1524}
1525
1526static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1527			      u32 *rule_locs)
1528{
1529	struct bcmgenet_priv *priv = netdev_priv(dev);
1530	struct bcmgenet_rxnfc_rule *rule;
1531	int err = 0;
1532	int i = 0;
1533
1534	switch (cmd->cmd) {
1535	case ETHTOOL_GRXRINGS:
1536		cmd->data = priv->hw_params->rx_queues ?: 1;
1537		break;
1538	case ETHTOOL_GRXCLSRLCNT:
1539		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1540		cmd->data = MAX_NUM_OF_FS_RULES;
1541		break;
1542	case ETHTOOL_GRXCLSRULE:
1543		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1544		break;
1545	case ETHTOOL_GRXCLSRLALL:
1546		list_for_each_entry(rule, &priv->rxnfc_list, list)
1547			if (i < cmd->rule_cnt)
1548				rule_locs[i++] = rule->fs.location;
1549		cmd->rule_cnt = i;
1550		cmd->data = MAX_NUM_OF_FS_RULES;
1551		break;
1552	default:
1553		err = -EOPNOTSUPP;
1554		break;
1555	}
1556
1557	return err;
1558}
1559
1560/* standard ethtool support functions. */
1561static const struct ethtool_ops bcmgenet_ethtool_ops = {
1562	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1563				     ETHTOOL_COALESCE_MAX_FRAMES |
1564				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1565	.begin			= bcmgenet_begin,
1566	.complete		= bcmgenet_complete,
1567	.get_strings		= bcmgenet_get_strings,
1568	.get_sset_count		= bcmgenet_get_sset_count,
1569	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1570	.get_drvinfo		= bcmgenet_get_drvinfo,
1571	.get_link		= ethtool_op_get_link,
1572	.get_msglevel		= bcmgenet_get_msglevel,
1573	.set_msglevel		= bcmgenet_set_msglevel,
1574	.get_wol		= bcmgenet_get_wol,
1575	.set_wol		= bcmgenet_set_wol,
1576	.get_eee		= bcmgenet_get_eee,
1577	.set_eee		= bcmgenet_set_eee,
1578	.nway_reset		= phy_ethtool_nway_reset,
1579	.get_coalesce		= bcmgenet_get_coalesce,
1580	.set_coalesce		= bcmgenet_set_coalesce,
1581	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1582	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1583	.get_ts_info		= ethtool_op_get_ts_info,
1584	.get_rxnfc		= bcmgenet_get_rxnfc,
1585	.set_rxnfc		= bcmgenet_set_rxnfc,
 
 
1586};
1587
1588/* Power down the unimac, based on mode. */
1589static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1590				enum bcmgenet_power_mode mode)
1591{
1592	int ret = 0;
1593	u32 reg;
1594
1595	switch (mode) {
1596	case GENET_POWER_CABLE_SENSE:
1597		phy_detach(priv->dev->phydev);
1598		break;
1599
1600	case GENET_POWER_WOL_MAGIC:
1601		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1602		break;
1603
1604	case GENET_POWER_PASSIVE:
1605		/* Power down LED */
1606		if (priv->hw_params->flags & GENET_HAS_EXT) {
1607			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1608			if (GENET_IS_V5(priv))
1609				reg |= EXT_PWR_DOWN_PHY_EN |
1610				       EXT_PWR_DOWN_PHY_RD |
1611				       EXT_PWR_DOWN_PHY_SD |
1612				       EXT_PWR_DOWN_PHY_RX |
1613				       EXT_PWR_DOWN_PHY_TX |
1614				       EXT_IDDQ_GLBL_PWR;
1615			else
1616				reg |= EXT_PWR_DOWN_PHY;
1617
1618			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1619			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1620
1621			bcmgenet_phy_power_set(priv->dev, false);
1622		}
1623		break;
1624	default:
1625		break;
1626	}
1627
1628	return ret;
1629}
1630
1631static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1632			      enum bcmgenet_power_mode mode)
1633{
1634	u32 reg;
1635
1636	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1637		return;
1638
1639	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1640
1641	switch (mode) {
1642	case GENET_POWER_PASSIVE:
1643		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS |
1644			 EXT_ENERGY_DET_MASK);
1645		if (GENET_IS_V5(priv)) {
1646			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1647				 EXT_PWR_DOWN_PHY_RD |
1648				 EXT_PWR_DOWN_PHY_SD |
1649				 EXT_PWR_DOWN_PHY_RX |
1650				 EXT_PWR_DOWN_PHY_TX |
1651				 EXT_IDDQ_GLBL_PWR);
1652			reg |=   EXT_PHY_RESET;
1653			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1654			mdelay(1);
1655
1656			reg &=  ~EXT_PHY_RESET;
1657		} else {
1658			reg &= ~EXT_PWR_DOWN_PHY;
1659			reg |= EXT_PWR_DN_EN_LD;
1660		}
1661		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1662		bcmgenet_phy_power_set(priv->dev, true);
1663		break;
1664
1665	case GENET_POWER_CABLE_SENSE:
1666		/* enable APD */
1667		if (!GENET_IS_V5(priv)) {
1668			reg |= EXT_PWR_DN_EN_LD;
1669			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1670		}
1671		break;
1672	case GENET_POWER_WOL_MAGIC:
1673		bcmgenet_wol_power_up_cfg(priv, mode);
1674		return;
1675	default:
1676		break;
1677	}
1678}
1679
1680static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1681					 struct bcmgenet_tx_ring *ring)
1682{
1683	struct enet_cb *tx_cb_ptr;
1684
1685	tx_cb_ptr = ring->cbs;
1686	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1687
1688	/* Advancing local write pointer */
1689	if (ring->write_ptr == ring->end_ptr)
1690		ring->write_ptr = ring->cb_ptr;
1691	else
1692		ring->write_ptr++;
1693
1694	return tx_cb_ptr;
1695}
1696
1697static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1698					 struct bcmgenet_tx_ring *ring)
1699{
1700	struct enet_cb *tx_cb_ptr;
1701
1702	tx_cb_ptr = ring->cbs;
1703	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1704
1705	/* Rewinding local write pointer */
1706	if (ring->write_ptr == ring->cb_ptr)
1707		ring->write_ptr = ring->end_ptr;
1708	else
1709		ring->write_ptr--;
1710
1711	return tx_cb_ptr;
1712}
1713
1714static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1715{
1716	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1717				 INTRL2_CPU_MASK_SET);
1718}
1719
1720static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1721{
1722	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1723				 INTRL2_CPU_MASK_CLEAR);
1724}
1725
1726static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1727{
1728	bcmgenet_intrl2_1_writel(ring->priv,
1729				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1730				 INTRL2_CPU_MASK_SET);
1731}
1732
1733static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1734{
1735	bcmgenet_intrl2_1_writel(ring->priv,
1736				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1737				 INTRL2_CPU_MASK_CLEAR);
1738}
1739
1740static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1741{
1742	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1743				 INTRL2_CPU_MASK_SET);
1744}
1745
1746static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1747{
1748	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1749				 INTRL2_CPU_MASK_CLEAR);
1750}
1751
1752static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1753{
1754	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1755				 INTRL2_CPU_MASK_CLEAR);
1756}
1757
1758static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1759{
1760	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1761				 INTRL2_CPU_MASK_SET);
1762}
1763
1764/* Simple helper to free a transmit control block's resources
1765 * Returns an skb when the last transmit control block associated with the
1766 * skb is freed.  The skb should be freed by the caller if necessary.
1767 */
1768static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1769					   struct enet_cb *cb)
1770{
1771	struct sk_buff *skb;
1772
1773	skb = cb->skb;
1774
1775	if (skb) {
1776		cb->skb = NULL;
1777		if (cb == GENET_CB(skb)->first_cb)
1778			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1779					 dma_unmap_len(cb, dma_len),
1780					 DMA_TO_DEVICE);
1781		else
1782			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1783				       dma_unmap_len(cb, dma_len),
1784				       DMA_TO_DEVICE);
1785		dma_unmap_addr_set(cb, dma_addr, 0);
1786
1787		if (cb == GENET_CB(skb)->last_cb)
1788			return skb;
1789
1790	} else if (dma_unmap_addr(cb, dma_addr)) {
1791		dma_unmap_page(dev,
1792			       dma_unmap_addr(cb, dma_addr),
1793			       dma_unmap_len(cb, dma_len),
1794			       DMA_TO_DEVICE);
1795		dma_unmap_addr_set(cb, dma_addr, 0);
1796	}
1797
1798	return NULL;
1799}
1800
1801/* Simple helper to free a receive control block's resources */
1802static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1803					   struct enet_cb *cb)
1804{
1805	struct sk_buff *skb;
1806
1807	skb = cb->skb;
1808	cb->skb = NULL;
1809
1810	if (dma_unmap_addr(cb, dma_addr)) {
1811		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1812				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1813		dma_unmap_addr_set(cb, dma_addr, 0);
1814	}
1815
1816	return skb;
1817}
1818
1819/* Unlocked version of the reclaim routine */
1820static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1821					  struct bcmgenet_tx_ring *ring)
1822{
1823	struct bcmgenet_priv *priv = netdev_priv(dev);
1824	unsigned int txbds_processed = 0;
1825	unsigned int bytes_compl = 0;
1826	unsigned int pkts_compl = 0;
1827	unsigned int txbds_ready;
1828	unsigned int c_index;
1829	struct sk_buff *skb;
1830
1831	/* Clear status before servicing to reduce spurious interrupts */
1832	if (ring->index == DESC_INDEX)
1833		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1834					 INTRL2_CPU_CLEAR);
1835	else
1836		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1837					 INTRL2_CPU_CLEAR);
1838
1839	/* Compute how many buffers are transmitted since last xmit call */
1840	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1841		& DMA_C_INDEX_MASK;
1842	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1843
1844	netif_dbg(priv, tx_done, dev,
1845		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1846		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1847
1848	/* Reclaim transmitted buffers */
1849	while (txbds_processed < txbds_ready) {
1850		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1851					  &priv->tx_cbs[ring->clean_ptr]);
1852		if (skb) {
1853			pkts_compl++;
1854			bytes_compl += GENET_CB(skb)->bytes_sent;
1855			dev_consume_skb_any(skb);
1856		}
1857
1858		txbds_processed++;
1859		if (likely(ring->clean_ptr < ring->end_ptr))
1860			ring->clean_ptr++;
1861		else
1862			ring->clean_ptr = ring->cb_ptr;
1863	}
1864
1865	ring->free_bds += txbds_processed;
1866	ring->c_index = c_index;
1867
1868	ring->packets += pkts_compl;
1869	ring->bytes += bytes_compl;
1870
1871	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1872				  pkts_compl, bytes_compl);
1873
1874	return txbds_processed;
1875}
1876
1877static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1878				struct bcmgenet_tx_ring *ring)
1879{
1880	unsigned int released;
1881
1882	spin_lock_bh(&ring->lock);
1883	released = __bcmgenet_tx_reclaim(dev, ring);
1884	spin_unlock_bh(&ring->lock);
1885
1886	return released;
1887}
1888
1889static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1890{
1891	struct bcmgenet_tx_ring *ring =
1892		container_of(napi, struct bcmgenet_tx_ring, napi);
1893	unsigned int work_done = 0;
1894	struct netdev_queue *txq;
1895
1896	spin_lock(&ring->lock);
1897	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1898	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1899		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1900		netif_tx_wake_queue(txq);
1901	}
1902	spin_unlock(&ring->lock);
1903
1904	if (work_done == 0) {
1905		napi_complete(napi);
1906		ring->int_enable(ring);
1907
1908		return 0;
1909	}
1910
1911	return budget;
1912}
1913
1914static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1915{
1916	struct bcmgenet_priv *priv = netdev_priv(dev);
1917	int i;
1918
1919	if (netif_is_multiqueue(dev)) {
1920		for (i = 0; i < priv->hw_params->tx_queues; i++)
1921			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1922	}
1923
1924	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1925}
1926
1927/* Reallocate the SKB to put enough headroom in front of it and insert
1928 * the transmit checksum offsets in the descriptors
1929 */
1930static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1931					struct sk_buff *skb)
1932{
1933	struct bcmgenet_priv *priv = netdev_priv(dev);
1934	struct status_64 *status = NULL;
1935	struct sk_buff *new_skb;
1936	u16 offset;
1937	u8 ip_proto;
1938	__be16 ip_ver;
1939	u32 tx_csum_info;
1940
1941	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1942		/* If 64 byte status block enabled, must make sure skb has
1943		 * enough headroom for us to insert 64B status block.
1944		 */
1945		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1946		if (!new_skb) {
1947			dev_kfree_skb_any(skb);
1948			priv->mib.tx_realloc_tsb_failed++;
1949			dev->stats.tx_dropped++;
1950			return NULL;
1951		}
1952		dev_consume_skb_any(skb);
1953		skb = new_skb;
1954		priv->mib.tx_realloc_tsb++;
1955	}
1956
1957	skb_push(skb, sizeof(*status));
1958	status = (struct status_64 *)skb->data;
1959
1960	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1961		ip_ver = skb->protocol;
1962		switch (ip_ver) {
1963		case htons(ETH_P_IP):
1964			ip_proto = ip_hdr(skb)->protocol;
1965			break;
1966		case htons(ETH_P_IPV6):
1967			ip_proto = ipv6_hdr(skb)->nexthdr;
1968			break;
1969		default:
1970			/* don't use UDP flag */
1971			ip_proto = 0;
1972			break;
1973		}
1974
1975		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1976		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1977				(offset + skb->csum_offset) |
1978				STATUS_TX_CSUM_LV;
1979
1980		/* Set the special UDP flag for UDP */
1981		if (ip_proto == IPPROTO_UDP)
1982			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1983
1984		status->tx_csum_info = tx_csum_info;
1985	}
1986
1987	return skb;
1988}
1989
 
 
 
 
 
1990static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1991{
1992	struct bcmgenet_priv *priv = netdev_priv(dev);
1993	struct device *kdev = &priv->pdev->dev;
1994	struct bcmgenet_tx_ring *ring = NULL;
1995	struct enet_cb *tx_cb_ptr;
1996	struct netdev_queue *txq;
1997	int nr_frags, index;
1998	dma_addr_t mapping;
1999	unsigned int size;
2000	skb_frag_t *frag;
2001	u32 len_stat;
2002	int ret;
2003	int i;
2004
2005	index = skb_get_queue_mapping(skb);
2006	/* Mapping strategy:
2007	 * queue_mapping = 0, unclassified, packet xmited through ring16
2008	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2009	 * queue_mapping = 2, goes to ring 1.
2010	 * queue_mapping = 3, goes to ring 2.
2011	 * queue_mapping = 4, goes to ring 3.
2012	 */
2013	if (index == 0)
2014		index = DESC_INDEX;
2015	else
2016		index -= 1;
2017
2018	ring = &priv->tx_rings[index];
2019	txq = netdev_get_tx_queue(dev, ring->queue);
2020
2021	nr_frags = skb_shinfo(skb)->nr_frags;
2022
2023	spin_lock(&ring->lock);
2024	if (ring->free_bds <= (nr_frags + 1)) {
2025		if (!netif_tx_queue_stopped(txq)) {
2026			netif_tx_stop_queue(txq);
2027			netdev_err(dev,
2028				   "%s: tx ring %d full when queue %d awake\n",
2029				   __func__, index, ring->queue);
2030		}
2031		ret = NETDEV_TX_BUSY;
2032		goto out;
2033	}
2034
2035	/* Retain how many bytes will be sent on the wire, without TSB inserted
2036	 * by transmit checksum offload
2037	 */
2038	GENET_CB(skb)->bytes_sent = skb->len;
2039
2040	/* add the Transmit Status Block */
2041	skb = bcmgenet_add_tsb(dev, skb);
2042	if (!skb) {
2043		ret = NETDEV_TX_OK;
2044		goto out;
2045	}
2046
2047	for (i = 0; i <= nr_frags; i++) {
2048		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2049
2050		BUG_ON(!tx_cb_ptr);
2051
2052		if (!i) {
2053			/* Transmit single SKB or head of fragment list */
2054			GENET_CB(skb)->first_cb = tx_cb_ptr;
2055			size = skb_headlen(skb);
2056			mapping = dma_map_single(kdev, skb->data, size,
2057						 DMA_TO_DEVICE);
2058		} else {
2059			/* xmit fragment */
2060			frag = &skb_shinfo(skb)->frags[i - 1];
2061			size = skb_frag_size(frag);
2062			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2063						   DMA_TO_DEVICE);
2064		}
2065
2066		ret = dma_mapping_error(kdev, mapping);
2067		if (ret) {
2068			priv->mib.tx_dma_failed++;
2069			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2070			ret = NETDEV_TX_OK;
2071			goto out_unmap_frags;
2072		}
2073		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2074		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2075
2076		tx_cb_ptr->skb = skb;
2077
2078		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2079			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2080
2081		/* Note: if we ever change from DMA_TX_APPEND_CRC below we
2082		 * will need to restore software padding of "runt" packets
2083		 */
 
 
2084		if (!i) {
2085			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2086			if (skb->ip_summed == CHECKSUM_PARTIAL)
2087				len_stat |= DMA_TX_DO_CSUM;
2088		}
2089		if (i == nr_frags)
2090			len_stat |= DMA_EOP;
2091
2092		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2093	}
2094
2095	GENET_CB(skb)->last_cb = tx_cb_ptr;
 
 
2096	skb_tx_timestamp(skb);
2097
2098	/* Decrement total BD count and advance our write pointer */
2099	ring->free_bds -= nr_frags + 1;
2100	ring->prod_index += nr_frags + 1;
2101	ring->prod_index &= DMA_P_INDEX_MASK;
2102
2103	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2104
2105	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2106		netif_tx_stop_queue(txq);
2107
2108	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2109		/* Packets are ready, update producer index */
2110		bcmgenet_tdma_ring_writel(priv, ring->index,
2111					  ring->prod_index, TDMA_PROD_INDEX);
2112out:
2113	spin_unlock(&ring->lock);
2114
2115	return ret;
2116
2117out_unmap_frags:
2118	/* Back up for failed control block mapping */
2119	bcmgenet_put_txcb(priv, ring);
2120
2121	/* Unmap successfully mapped control blocks */
2122	while (i-- > 0) {
2123		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2124		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2125	}
2126
2127	dev_kfree_skb(skb);
2128	goto out;
2129}
2130
2131static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2132					  struct enet_cb *cb)
2133{
2134	struct device *kdev = &priv->pdev->dev;
2135	struct sk_buff *skb;
2136	struct sk_buff *rx_skb;
2137	dma_addr_t mapping;
2138
2139	/* Allocate a new Rx skb */
2140	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2141				 GFP_ATOMIC | __GFP_NOWARN);
2142	if (!skb) {
2143		priv->mib.alloc_rx_buff_failed++;
2144		netif_err(priv, rx_err, priv->dev,
2145			  "%s: Rx skb allocation failed\n", __func__);
2146		return NULL;
2147	}
2148
2149	/* DMA-map the new Rx skb */
2150	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2151				 DMA_FROM_DEVICE);
2152	if (dma_mapping_error(kdev, mapping)) {
2153		priv->mib.rx_dma_failed++;
2154		dev_kfree_skb_any(skb);
2155		netif_err(priv, rx_err, priv->dev,
2156			  "%s: Rx skb DMA mapping failed\n", __func__);
2157		return NULL;
2158	}
2159
2160	/* Grab the current Rx skb from the ring and DMA-unmap it */
2161	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2162
2163	/* Put the new Rx skb on the ring */
2164	cb->skb = skb;
2165	dma_unmap_addr_set(cb, dma_addr, mapping);
2166	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2167	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2168
2169	/* Return the current Rx skb to caller */
2170	return rx_skb;
2171}
2172
2173/* bcmgenet_desc_rx - descriptor based rx process.
2174 * this could be called from bottom half, or from NAPI polling method.
2175 */
2176static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2177				     unsigned int budget)
2178{
2179	struct bcmgenet_priv *priv = ring->priv;
2180	struct net_device *dev = priv->dev;
2181	struct enet_cb *cb;
2182	struct sk_buff *skb;
2183	u32 dma_length_status;
2184	unsigned long dma_flag;
2185	int len;
2186	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2187	unsigned int bytes_processed = 0;
2188	unsigned int p_index, mask;
2189	unsigned int discards;
2190
2191	/* Clear status before servicing to reduce spurious interrupts */
2192	if (ring->index == DESC_INDEX) {
2193		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2194					 INTRL2_CPU_CLEAR);
2195	} else {
2196		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2197		bcmgenet_intrl2_1_writel(priv,
2198					 mask,
2199					 INTRL2_CPU_CLEAR);
2200	}
2201
2202	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2203
2204	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2205		   DMA_P_INDEX_DISCARD_CNT_MASK;
2206	if (discards > ring->old_discards) {
2207		discards = discards - ring->old_discards;
2208		ring->errors += discards;
2209		ring->old_discards += discards;
2210
2211		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2212		if (ring->old_discards >= 0xC000) {
2213			ring->old_discards = 0;
2214			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2215						  RDMA_PROD_INDEX);
2216		}
2217	}
2218
2219	p_index &= DMA_P_INDEX_MASK;
2220	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2221
2222	netif_dbg(priv, rx_status, dev,
2223		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2224
2225	while ((rxpktprocessed < rxpkttoprocess) &&
2226	       (rxpktprocessed < budget)) {
2227		struct status_64 *status;
2228		__be16 rx_csum;
2229
2230		cb = &priv->rx_cbs[ring->read_ptr];
2231		skb = bcmgenet_rx_refill(priv, cb);
2232
2233		if (unlikely(!skb)) {
2234			ring->dropped++;
2235			goto next;
2236		}
2237
2238		status = (struct status_64 *)skb->data;
2239		dma_length_status = status->length_status;
2240		if (dev->features & NETIF_F_RXCSUM) {
2241			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2242			skb->csum = (__force __wsum)ntohs(rx_csum);
2243			skb->ip_summed = CHECKSUM_COMPLETE;
 
 
2244		}
2245
2246		/* DMA flags and length are still valid no matter how
2247		 * we got the Receive Status Vector (64B RSB or register)
2248		 */
2249		dma_flag = dma_length_status & 0xffff;
2250		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2251
2252		netif_dbg(priv, rx_status, dev,
2253			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2254			  __func__, p_index, ring->c_index,
2255			  ring->read_ptr, dma_length_status);
2256
 
 
 
 
 
 
 
 
2257		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2258			netif_err(priv, rx_status, dev,
2259				  "dropping fragmented packet!\n");
2260			ring->errors++;
2261			dev_kfree_skb_any(skb);
2262			goto next;
2263		}
2264
2265		/* report errors */
2266		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2267						DMA_RX_OV |
2268						DMA_RX_NO |
2269						DMA_RX_LG |
2270						DMA_RX_RXER))) {
2271			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2272				  (unsigned int)dma_flag);
2273			if (dma_flag & DMA_RX_CRC_ERROR)
2274				dev->stats.rx_crc_errors++;
2275			if (dma_flag & DMA_RX_OV)
2276				dev->stats.rx_over_errors++;
2277			if (dma_flag & DMA_RX_NO)
2278				dev->stats.rx_frame_errors++;
2279			if (dma_flag & DMA_RX_LG)
2280				dev->stats.rx_length_errors++;
2281			dev->stats.rx_errors++;
2282			dev_kfree_skb_any(skb);
2283			goto next;
2284		} /* error packet */
2285
2286		skb_put(skb, len);
2287
2288		/* remove RSB and hardware 2bytes added for IP alignment */
2289		skb_pull(skb, 66);
2290		len -= 66;
2291
2292		if (priv->crc_fwd_en) {
2293			skb_trim(skb, len - ETH_FCS_LEN);
2294			len -= ETH_FCS_LEN;
2295		}
2296
2297		bytes_processed += len;
2298
2299		/*Finish setting up the received SKB and send it to the kernel*/
2300		skb->protocol = eth_type_trans(skb, priv->dev);
2301		ring->packets++;
2302		ring->bytes += len;
2303		if (dma_flag & DMA_RX_MULT)
2304			dev->stats.multicast++;
2305
2306		/* Notify kernel */
2307		napi_gro_receive(&ring->napi, skb);
2308		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2309
2310next:
2311		rxpktprocessed++;
2312		if (likely(ring->read_ptr < ring->end_ptr))
2313			ring->read_ptr++;
2314		else
2315			ring->read_ptr = ring->cb_ptr;
2316
2317		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2318		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2319	}
2320
2321	ring->dim.bytes = bytes_processed;
2322	ring->dim.packets = rxpktprocessed;
2323
2324	return rxpktprocessed;
2325}
2326
2327/* Rx NAPI polling method */
2328static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2329{
2330	struct bcmgenet_rx_ring *ring = container_of(napi,
2331			struct bcmgenet_rx_ring, napi);
2332	struct dim_sample dim_sample = {};
2333	unsigned int work_done;
2334
2335	work_done = bcmgenet_desc_rx(ring, budget);
2336
2337	if (work_done < budget) {
2338		napi_complete_done(napi, work_done);
2339		ring->int_enable(ring);
2340	}
2341
2342	if (ring->dim.use_dim) {
2343		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2344				  ring->dim.bytes, &dim_sample);
2345		net_dim(&ring->dim.dim, dim_sample);
2346	}
2347
2348	return work_done;
2349}
2350
2351static void bcmgenet_dim_work(struct work_struct *work)
2352{
2353	struct dim *dim = container_of(work, struct dim, work);
2354	struct bcmgenet_net_dim *ndim =
2355			container_of(dim, struct bcmgenet_net_dim, dim);
2356	struct bcmgenet_rx_ring *ring =
2357			container_of(ndim, struct bcmgenet_rx_ring, dim);
2358	struct dim_cq_moder cur_profile =
2359			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2360
2361	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2362	dim->state = DIM_START_MEASURE;
2363}
2364
2365/* Assign skb to RX DMA descriptor. */
2366static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2367				     struct bcmgenet_rx_ring *ring)
2368{
2369	struct enet_cb *cb;
2370	struct sk_buff *skb;
2371	int i;
2372
2373	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2374
2375	/* loop here for each buffer needing assign */
2376	for (i = 0; i < ring->size; i++) {
2377		cb = ring->cbs + i;
2378		skb = bcmgenet_rx_refill(priv, cb);
2379		if (skb)
2380			dev_consume_skb_any(skb);
2381		if (!cb->skb)
2382			return -ENOMEM;
2383	}
2384
2385	return 0;
2386}
2387
2388static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2389{
2390	struct sk_buff *skb;
2391	struct enet_cb *cb;
2392	int i;
2393
2394	for (i = 0; i < priv->num_rx_bds; i++) {
2395		cb = &priv->rx_cbs[i];
2396
2397		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2398		if (skb)
2399			dev_consume_skb_any(skb);
2400	}
2401}
2402
2403static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2404{
2405	u32 reg;
2406
2407	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2408	if (reg & CMD_SW_RESET)
2409		return;
2410	if (enable)
2411		reg |= mask;
2412	else
2413		reg &= ~mask;
2414	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2415
2416	/* UniMAC stops on a packet boundary, wait for a full-size packet
2417	 * to be processed
2418	 */
2419	if (enable == 0)
2420		usleep_range(1000, 2000);
2421}
2422
2423static void reset_umac(struct bcmgenet_priv *priv)
2424{
2425	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2426	bcmgenet_rbuf_ctrl_set(priv, 0);
2427	udelay(10);
2428
2429	/* issue soft reset and disable MAC while updating its registers */
2430	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2431	udelay(2);
2432}
2433
2434static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2435{
2436	/* Mask all interrupts.*/
2437	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2438	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2439	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2440	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2441}
2442
2443static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2444{
2445	u32 int0_enable = 0;
2446
2447	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2448	 * and MoCA PHY
2449	 */
2450	if (priv->internal_phy) {
2451		int0_enable |= UMAC_IRQ_LINK_EVENT;
2452		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2453			int0_enable |= UMAC_IRQ_PHY_DET_R;
2454	} else if (priv->ext_phy) {
2455		int0_enable |= UMAC_IRQ_LINK_EVENT;
2456	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2457		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2458			int0_enable |= UMAC_IRQ_LINK_EVENT;
2459	}
2460	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2461}
2462
2463static void init_umac(struct bcmgenet_priv *priv)
2464{
2465	struct device *kdev = &priv->pdev->dev;
2466	u32 reg;
2467	u32 int0_enable = 0;
2468
2469	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2470
2471	reset_umac(priv);
2472
2473	/* clear tx/rx counter */
2474	bcmgenet_umac_writel(priv,
2475			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2476			     UMAC_MIB_CTRL);
2477	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2478
2479	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2480
2481	/* init tx registers, enable TSB */
2482	reg = bcmgenet_tbuf_ctrl_get(priv);
2483	reg |= TBUF_64B_EN;
2484	bcmgenet_tbuf_ctrl_set(priv, reg);
2485
2486	/* init rx registers, enable ip header optimization and RSB */
2487	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2488	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2489	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2490
2491	/* enable rx checksumming */
2492	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2493	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2494	/* If UniMAC forwards CRC, we need to skip over it to get
2495	 * a valid CHK bit to be set in the per-packet status word
2496	 */
2497	if (priv->crc_fwd_en)
2498		reg |= RBUF_SKIP_FCS;
2499	else
2500		reg &= ~RBUF_SKIP_FCS;
2501	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2502
2503	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2504		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2505
2506	bcmgenet_intr_disable(priv);
2507
2508	/* Configure backpressure vectors for MoCA */
2509	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2510		reg = bcmgenet_bp_mc_get(priv);
2511		reg |= BIT(priv->hw_params->bp_in_en_shift);
2512
2513		/* bp_mask: back pressure mask */
2514		if (netif_is_multiqueue(priv->dev))
2515			reg |= priv->hw_params->bp_in_mask;
2516		else
2517			reg &= ~priv->hw_params->bp_in_mask;
2518		bcmgenet_bp_mc_set(priv, reg);
2519	}
2520
2521	/* Enable MDIO interrupts on GENET v3+ */
2522	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2523		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2524
2525	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2526
2527	dev_dbg(kdev, "done init umac\n");
2528}
2529
2530static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2531			      void (*cb)(struct work_struct *work))
2532{
2533	struct bcmgenet_net_dim *dim = &ring->dim;
2534
2535	INIT_WORK(&dim->dim.work, cb);
2536	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2537	dim->event_ctr = 0;
2538	dim->packets = 0;
2539	dim->bytes = 0;
2540}
2541
2542static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2543{
2544	struct bcmgenet_net_dim *dim = &ring->dim;
2545	struct dim_cq_moder moder;
2546	u32 usecs, pkts;
2547
2548	usecs = ring->rx_coalesce_usecs;
2549	pkts = ring->rx_max_coalesced_frames;
2550
2551	/* If DIM was enabled, re-apply default parameters */
2552	if (dim->use_dim) {
2553		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2554		usecs = moder.usec;
2555		pkts = moder.pkts;
2556	}
2557
2558	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2559}
2560
2561/* Initialize a Tx ring along with corresponding hardware registers */
2562static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2563				  unsigned int index, unsigned int size,
2564				  unsigned int start_ptr, unsigned int end_ptr)
2565{
2566	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2567	u32 words_per_bd = WORDS_PER_BD(priv);
2568	u32 flow_period_val = 0;
2569
2570	spin_lock_init(&ring->lock);
2571	ring->priv = priv;
2572	ring->index = index;
2573	if (index == DESC_INDEX) {
2574		ring->queue = 0;
2575		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2576		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2577	} else {
2578		ring->queue = index + 1;
2579		ring->int_enable = bcmgenet_tx_ring_int_enable;
2580		ring->int_disable = bcmgenet_tx_ring_int_disable;
2581	}
2582	ring->cbs = priv->tx_cbs + start_ptr;
2583	ring->size = size;
2584	ring->clean_ptr = start_ptr;
2585	ring->c_index = 0;
2586	ring->free_bds = size;
2587	ring->write_ptr = start_ptr;
2588	ring->cb_ptr = start_ptr;
2589	ring->end_ptr = end_ptr - 1;
2590	ring->prod_index = 0;
2591
2592	/* Set flow period for ring != 16 */
2593	if (index != DESC_INDEX)
2594		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2595
2596	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2597	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2598	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2599	/* Disable rate control for now */
2600	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2601				  TDMA_FLOW_PERIOD);
2602	bcmgenet_tdma_ring_writel(priv, index,
2603				  ((size << DMA_RING_SIZE_SHIFT) |
2604				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2605
2606	/* Set start and end address, read and write pointers */
2607	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2608				  DMA_START_ADDR);
2609	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2610				  TDMA_READ_PTR);
2611	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2612				  TDMA_WRITE_PTR);
2613	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2614				  DMA_END_ADDR);
2615
2616	/* Initialize Tx NAPI */
2617	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2618			  NAPI_POLL_WEIGHT);
2619}
2620
2621/* Initialize a RDMA ring */
2622static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2623				 unsigned int index, unsigned int size,
2624				 unsigned int start_ptr, unsigned int end_ptr)
2625{
2626	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2627	u32 words_per_bd = WORDS_PER_BD(priv);
2628	int ret;
2629
2630	ring->priv = priv;
2631	ring->index = index;
2632	if (index == DESC_INDEX) {
2633		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2634		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2635	} else {
2636		ring->int_enable = bcmgenet_rx_ring_int_enable;
2637		ring->int_disable = bcmgenet_rx_ring_int_disable;
2638	}
2639	ring->cbs = priv->rx_cbs + start_ptr;
2640	ring->size = size;
2641	ring->c_index = 0;
2642	ring->read_ptr = start_ptr;
2643	ring->cb_ptr = start_ptr;
2644	ring->end_ptr = end_ptr - 1;
2645
2646	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2647	if (ret)
2648		return ret;
2649
2650	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2651	bcmgenet_init_rx_coalesce(ring);
2652
2653	/* Initialize Rx NAPI */
2654	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2655		       NAPI_POLL_WEIGHT);
2656
2657	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2658	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2659	bcmgenet_rdma_ring_writel(priv, index,
2660				  ((size << DMA_RING_SIZE_SHIFT) |
2661				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2662	bcmgenet_rdma_ring_writel(priv, index,
2663				  (DMA_FC_THRESH_LO <<
2664				   DMA_XOFF_THRESHOLD_SHIFT) |
2665				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2666
2667	/* Set start and end address, read and write pointers */
2668	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2669				  DMA_START_ADDR);
2670	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2671				  RDMA_READ_PTR);
2672	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2673				  RDMA_WRITE_PTR);
2674	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2675				  DMA_END_ADDR);
2676
2677	return ret;
2678}
2679
2680static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2681{
2682	unsigned int i;
2683	struct bcmgenet_tx_ring *ring;
2684
2685	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2686		ring = &priv->tx_rings[i];
2687		napi_enable(&ring->napi);
2688		ring->int_enable(ring);
2689	}
2690
2691	ring = &priv->tx_rings[DESC_INDEX];
2692	napi_enable(&ring->napi);
2693	ring->int_enable(ring);
2694}
2695
2696static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2697{
2698	unsigned int i;
2699	struct bcmgenet_tx_ring *ring;
2700
2701	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2702		ring = &priv->tx_rings[i];
2703		napi_disable(&ring->napi);
2704	}
2705
2706	ring = &priv->tx_rings[DESC_INDEX];
2707	napi_disable(&ring->napi);
2708}
2709
2710static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2711{
2712	unsigned int i;
2713	struct bcmgenet_tx_ring *ring;
2714
2715	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2716		ring = &priv->tx_rings[i];
2717		netif_napi_del(&ring->napi);
2718	}
2719
2720	ring = &priv->tx_rings[DESC_INDEX];
2721	netif_napi_del(&ring->napi);
2722}
2723
2724/* Initialize Tx queues
2725 *
2726 * Queues 0-3 are priority-based, each one has 32 descriptors,
2727 * with queue 0 being the highest priority queue.
2728 *
2729 * Queue 16 is the default Tx queue with
2730 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2731 *
2732 * The transmit control block pool is then partitioned as follows:
2733 * - Tx queue 0 uses tx_cbs[0..31]
2734 * - Tx queue 1 uses tx_cbs[32..63]
2735 * - Tx queue 2 uses tx_cbs[64..95]
2736 * - Tx queue 3 uses tx_cbs[96..127]
2737 * - Tx queue 16 uses tx_cbs[128..255]
2738 */
2739static void bcmgenet_init_tx_queues(struct net_device *dev)
2740{
2741	struct bcmgenet_priv *priv = netdev_priv(dev);
2742	u32 i, dma_enable;
2743	u32 dma_ctrl, ring_cfg;
2744	u32 dma_priority[3] = {0, 0, 0};
2745
2746	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2747	dma_enable = dma_ctrl & DMA_EN;
2748	dma_ctrl &= ~DMA_EN;
2749	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2750
2751	dma_ctrl = 0;
2752	ring_cfg = 0;
2753
2754	/* Enable strict priority arbiter mode */
2755	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2756
2757	/* Initialize Tx priority queues */
2758	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2759		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2760				      i * priv->hw_params->tx_bds_per_q,
2761				      (i + 1) * priv->hw_params->tx_bds_per_q);
2762		ring_cfg |= (1 << i);
2763		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2764		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2765			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2766	}
2767
2768	/* Initialize Tx default queue 16 */
2769	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2770			      priv->hw_params->tx_queues *
2771			      priv->hw_params->tx_bds_per_q,
2772			      TOTAL_DESC);
2773	ring_cfg |= (1 << DESC_INDEX);
2774	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2775	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2776		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2777		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2778
2779	/* Set Tx queue priorities */
2780	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2781	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2782	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2783
2784	/* Enable Tx queues */
2785	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2786
2787	/* Enable Tx DMA */
2788	if (dma_enable)
2789		dma_ctrl |= DMA_EN;
2790	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2791}
2792
2793static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2794{
2795	unsigned int i;
2796	struct bcmgenet_rx_ring *ring;
2797
2798	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2799		ring = &priv->rx_rings[i];
2800		napi_enable(&ring->napi);
2801		ring->int_enable(ring);
2802	}
2803
2804	ring = &priv->rx_rings[DESC_INDEX];
2805	napi_enable(&ring->napi);
2806	ring->int_enable(ring);
2807}
2808
2809static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2810{
2811	unsigned int i;
2812	struct bcmgenet_rx_ring *ring;
2813
2814	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2815		ring = &priv->rx_rings[i];
2816		napi_disable(&ring->napi);
2817		cancel_work_sync(&ring->dim.dim.work);
2818	}
2819
2820	ring = &priv->rx_rings[DESC_INDEX];
2821	napi_disable(&ring->napi);
2822	cancel_work_sync(&ring->dim.dim.work);
2823}
2824
2825static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2826{
2827	unsigned int i;
2828	struct bcmgenet_rx_ring *ring;
2829
2830	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2831		ring = &priv->rx_rings[i];
2832		netif_napi_del(&ring->napi);
2833	}
2834
2835	ring = &priv->rx_rings[DESC_INDEX];
2836	netif_napi_del(&ring->napi);
2837}
2838
2839/* Initialize Rx queues
2840 *
2841 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2842 * used to direct traffic to these queues.
2843 *
2844 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2845 */
2846static int bcmgenet_init_rx_queues(struct net_device *dev)
2847{
2848	struct bcmgenet_priv *priv = netdev_priv(dev);
2849	u32 i;
2850	u32 dma_enable;
2851	u32 dma_ctrl;
2852	u32 ring_cfg;
2853	int ret;
2854
2855	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2856	dma_enable = dma_ctrl & DMA_EN;
2857	dma_ctrl &= ~DMA_EN;
2858	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2859
2860	dma_ctrl = 0;
2861	ring_cfg = 0;
2862
2863	/* Initialize Rx priority queues */
2864	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2865		ret = bcmgenet_init_rx_ring(priv, i,
2866					    priv->hw_params->rx_bds_per_q,
2867					    i * priv->hw_params->rx_bds_per_q,
2868					    (i + 1) *
2869					    priv->hw_params->rx_bds_per_q);
2870		if (ret)
2871			return ret;
2872
2873		ring_cfg |= (1 << i);
2874		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2875	}
2876
2877	/* Initialize Rx default queue 16 */
2878	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2879				    priv->hw_params->rx_queues *
2880				    priv->hw_params->rx_bds_per_q,
2881				    TOTAL_DESC);
2882	if (ret)
2883		return ret;
2884
2885	ring_cfg |= (1 << DESC_INDEX);
2886	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2887
2888	/* Enable rings */
2889	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2890
2891	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2892	if (dma_enable)
2893		dma_ctrl |= DMA_EN;
2894	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2895
2896	return 0;
2897}
2898
2899static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2900{
2901	int ret = 0;
2902	int timeout = 0;
2903	u32 reg;
2904	u32 dma_ctrl;
2905	int i;
2906
2907	/* Disable TDMA to stop add more frames in TX DMA */
2908	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2909	reg &= ~DMA_EN;
2910	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2911
2912	/* Check TDMA status register to confirm TDMA is disabled */
2913	while (timeout++ < DMA_TIMEOUT_VAL) {
2914		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2915		if (reg & DMA_DISABLED)
2916			break;
2917
2918		udelay(1);
2919	}
2920
2921	if (timeout == DMA_TIMEOUT_VAL) {
2922		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2923		ret = -ETIMEDOUT;
2924	}
2925
2926	/* Wait 10ms for packet drain in both tx and rx dma */
2927	usleep_range(10000, 20000);
2928
2929	/* Disable RDMA */
2930	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2931	reg &= ~DMA_EN;
2932	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2933
2934	timeout = 0;
2935	/* Check RDMA status register to confirm RDMA is disabled */
2936	while (timeout++ < DMA_TIMEOUT_VAL) {
2937		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2938		if (reg & DMA_DISABLED)
2939			break;
2940
2941		udelay(1);
2942	}
2943
2944	if (timeout == DMA_TIMEOUT_VAL) {
2945		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2946		ret = -ETIMEDOUT;
2947	}
2948
2949	dma_ctrl = 0;
2950	for (i = 0; i < priv->hw_params->rx_queues; i++)
2951		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2952	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2953	reg &= ~dma_ctrl;
2954	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2955
2956	dma_ctrl = 0;
2957	for (i = 0; i < priv->hw_params->tx_queues; i++)
2958		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2959	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2960	reg &= ~dma_ctrl;
2961	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2962
2963	return ret;
2964}
2965
2966static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2967{
2968	struct netdev_queue *txq;
2969	int i;
2970
2971	bcmgenet_fini_rx_napi(priv);
2972	bcmgenet_fini_tx_napi(priv);
2973
2974	for (i = 0; i < priv->num_tx_bds; i++)
2975		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2976						  priv->tx_cbs + i));
2977
2978	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2979		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2980		netdev_tx_reset_queue(txq);
2981	}
2982
2983	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2984	netdev_tx_reset_queue(txq);
2985
2986	bcmgenet_free_rx_buffers(priv);
2987	kfree(priv->rx_cbs);
2988	kfree(priv->tx_cbs);
2989}
2990
2991/* init_edma: Initialize DMA control register */
2992static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2993{
2994	int ret;
2995	unsigned int i;
2996	struct enet_cb *cb;
2997
2998	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2999
3000	/* Initialize common Rx ring structures */
3001	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3002	priv->num_rx_bds = TOTAL_DESC;
3003	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3004			       GFP_KERNEL);
3005	if (!priv->rx_cbs)
3006		return -ENOMEM;
3007
3008	for (i = 0; i < priv->num_rx_bds; i++) {
3009		cb = priv->rx_cbs + i;
3010		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3011	}
3012
3013	/* Initialize common TX ring structures */
3014	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3015	priv->num_tx_bds = TOTAL_DESC;
3016	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3017			       GFP_KERNEL);
3018	if (!priv->tx_cbs) {
3019		kfree(priv->rx_cbs);
3020		return -ENOMEM;
3021	}
3022
3023	for (i = 0; i < priv->num_tx_bds; i++) {
3024		cb = priv->tx_cbs + i;
3025		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3026	}
3027
3028	/* Init rDma */
3029	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3030			     DMA_SCB_BURST_SIZE);
3031
3032	/* Initialize Rx queues */
3033	ret = bcmgenet_init_rx_queues(priv->dev);
3034	if (ret) {
3035		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3036		bcmgenet_free_rx_buffers(priv);
3037		kfree(priv->rx_cbs);
3038		kfree(priv->tx_cbs);
3039		return ret;
3040	}
3041
3042	/* Init tDma */
3043	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3044			     DMA_SCB_BURST_SIZE);
3045
3046	/* Initialize Tx queues */
3047	bcmgenet_init_tx_queues(priv->dev);
3048
3049	return 0;
3050}
3051
3052/* Interrupt bottom half */
3053static void bcmgenet_irq_task(struct work_struct *work)
3054{
3055	unsigned int status;
3056	struct bcmgenet_priv *priv = container_of(
3057			work, struct bcmgenet_priv, bcmgenet_irq_work);
3058
3059	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3060
3061	spin_lock_irq(&priv->lock);
3062	status = priv->irq0_stat;
3063	priv->irq0_stat = 0;
3064	spin_unlock_irq(&priv->lock);
3065
3066	if (status & UMAC_IRQ_PHY_DET_R &&
3067	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3068		phy_init_hw(priv->dev->phydev);
3069		genphy_config_aneg(priv->dev->phydev);
3070	}
3071
3072	/* Link UP/DOWN event */
3073	if (status & UMAC_IRQ_LINK_EVENT)
3074		phy_mac_interrupt(priv->dev->phydev);
3075
3076}
3077
3078/* bcmgenet_isr1: handle Rx and Tx priority queues */
3079static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3080{
3081	struct bcmgenet_priv *priv = dev_id;
3082	struct bcmgenet_rx_ring *rx_ring;
3083	struct bcmgenet_tx_ring *tx_ring;
3084	unsigned int index, status;
3085
3086	/* Read irq status */
3087	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3088		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3089
3090	/* clear interrupts */
3091	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3092
3093	netif_dbg(priv, intr, priv->dev,
3094		  "%s: IRQ=0x%x\n", __func__, status);
3095
3096	/* Check Rx priority queue interrupts */
3097	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3098		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3099			continue;
3100
3101		rx_ring = &priv->rx_rings[index];
3102		rx_ring->dim.event_ctr++;
3103
3104		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3105			rx_ring->int_disable(rx_ring);
3106			__napi_schedule_irqoff(&rx_ring->napi);
3107		}
3108	}
3109
3110	/* Check Tx priority queue interrupts */
3111	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3112		if (!(status & BIT(index)))
3113			continue;
3114
3115		tx_ring = &priv->tx_rings[index];
3116
3117		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3118			tx_ring->int_disable(tx_ring);
3119			__napi_schedule_irqoff(&tx_ring->napi);
3120		}
3121	}
3122
3123	return IRQ_HANDLED;
3124}
3125
3126/* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3127static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3128{
3129	struct bcmgenet_priv *priv = dev_id;
3130	struct bcmgenet_rx_ring *rx_ring;
3131	struct bcmgenet_tx_ring *tx_ring;
3132	unsigned int status;
3133	unsigned long flags;
3134
3135	/* Read irq status */
3136	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3137		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3138
3139	/* clear interrupts */
3140	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3141
3142	netif_dbg(priv, intr, priv->dev,
3143		  "IRQ=0x%x\n", status);
3144
3145	if (status & UMAC_IRQ_RXDMA_DONE) {
3146		rx_ring = &priv->rx_rings[DESC_INDEX];
3147		rx_ring->dim.event_ctr++;
3148
3149		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3150			rx_ring->int_disable(rx_ring);
3151			__napi_schedule_irqoff(&rx_ring->napi);
3152		}
3153	}
3154
3155	if (status & UMAC_IRQ_TXDMA_DONE) {
3156		tx_ring = &priv->tx_rings[DESC_INDEX];
3157
3158		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3159			tx_ring->int_disable(tx_ring);
3160			__napi_schedule_irqoff(&tx_ring->napi);
3161		}
3162	}
3163
3164	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3165		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3166		wake_up(&priv->wq);
3167	}
3168
3169	/* all other interested interrupts handled in bottom half */
3170	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3171	if (status) {
3172		/* Save irq status for bottom-half processing. */
3173		spin_lock_irqsave(&priv->lock, flags);
3174		priv->irq0_stat |= status;
3175		spin_unlock_irqrestore(&priv->lock, flags);
3176
3177		schedule_work(&priv->bcmgenet_irq_work);
3178	}
3179
3180	return IRQ_HANDLED;
3181}
3182
3183static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3184{
3185	/* Acknowledge the interrupt */
3186	return IRQ_HANDLED;
3187}
3188
3189#ifdef CONFIG_NET_POLL_CONTROLLER
3190static void bcmgenet_poll_controller(struct net_device *dev)
3191{
3192	struct bcmgenet_priv *priv = netdev_priv(dev);
3193
3194	/* Invoke the main RX/TX interrupt handler */
3195	disable_irq(priv->irq0);
3196	bcmgenet_isr0(priv->irq0, priv);
3197	enable_irq(priv->irq0);
3198
3199	/* And the interrupt handler for RX/TX priority queues */
3200	disable_irq(priv->irq1);
3201	bcmgenet_isr1(priv->irq1, priv);
3202	enable_irq(priv->irq1);
3203}
3204#endif
3205
3206static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3207{
3208	u32 reg;
3209
3210	reg = bcmgenet_rbuf_ctrl_get(priv);
3211	reg |= BIT(1);
3212	bcmgenet_rbuf_ctrl_set(priv, reg);
3213	udelay(10);
3214
3215	reg &= ~BIT(1);
3216	bcmgenet_rbuf_ctrl_set(priv, reg);
3217	udelay(10);
3218}
3219
3220static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3221				 unsigned char *addr)
3222{
3223	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3224	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3225}
3226
3227static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3228				 unsigned char *addr)
3229{
3230	u32 addr_tmp;
3231
3232	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3233	put_unaligned_be32(addr_tmp, &addr[0]);
3234	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3235	put_unaligned_be16(addr_tmp, &addr[4]);
3236}
3237
3238/* Returns a reusable dma control register value */
3239static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3240{
3241	unsigned int i;
3242	u32 reg;
3243	u32 dma_ctrl;
3244
3245	/* disable DMA */
3246	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3247	for (i = 0; i < priv->hw_params->tx_queues; i++)
3248		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3249	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3250	reg &= ~dma_ctrl;
3251	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3252
3253	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3254	for (i = 0; i < priv->hw_params->rx_queues; i++)
3255		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
3256	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3257	reg &= ~dma_ctrl;
3258	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3259
3260	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3261	udelay(10);
3262	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3263
3264	return dma_ctrl;
3265}
3266
3267static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3268{
3269	u32 reg;
3270
3271	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3272	reg |= dma_ctrl;
3273	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3274
3275	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3276	reg |= dma_ctrl;
3277	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3278}
3279
3280static void bcmgenet_netif_start(struct net_device *dev)
3281{
3282	struct bcmgenet_priv *priv = netdev_priv(dev);
3283
3284	/* Start the network engine */
3285	bcmgenet_set_rx_mode(dev);
3286	bcmgenet_enable_rx_napi(priv);
3287
3288	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3289
3290	bcmgenet_enable_tx_napi(priv);
3291
3292	/* Monitor link interrupts now */
3293	bcmgenet_link_intr_enable(priv);
3294
3295	phy_start(dev->phydev);
3296}
3297
3298static int bcmgenet_open(struct net_device *dev)
3299{
3300	struct bcmgenet_priv *priv = netdev_priv(dev);
3301	unsigned long dma_ctrl;
3302	int ret;
3303
3304	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3305
3306	/* Turn on the clock */
3307	clk_prepare_enable(priv->clk);
3308
3309	/* If this is an internal GPHY, power it back on now, before UniMAC is
3310	 * brought out of reset as absolutely no UniMAC activity is allowed
3311	 */
3312	if (priv->internal_phy)
3313		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3314
3315	/* take MAC out of reset */
3316	bcmgenet_umac_reset(priv);
3317
3318	init_umac(priv);
3319
3320	/* Apply features again in case we changed them while interface was
3321	 * down
3322	 */
3323	bcmgenet_set_features(dev, dev->features);
3324
3325	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3326
3327	/* Disable RX/TX DMA and flush TX queues */
3328	dma_ctrl = bcmgenet_dma_disable(priv);
3329
3330	/* Reinitialize TDMA and RDMA and SW housekeeping */
3331	ret = bcmgenet_init_dma(priv);
3332	if (ret) {
3333		netdev_err(dev, "failed to initialize DMA\n");
3334		goto err_clk_disable;
3335	}
3336
3337	/* Always enable ring 16 - descriptor ring */
3338	bcmgenet_enable_dma(priv, dma_ctrl);
3339
3340	/* HFB init */
3341	bcmgenet_hfb_init(priv);
3342
3343	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3344			  dev->name, priv);
3345	if (ret < 0) {
3346		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3347		goto err_fini_dma;
3348	}
3349
3350	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3351			  dev->name, priv);
3352	if (ret < 0) {
3353		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3354		goto err_irq0;
3355	}
3356
3357	ret = bcmgenet_mii_probe(dev);
3358	if (ret) {
3359		netdev_err(dev, "failed to connect to PHY\n");
3360		goto err_irq1;
3361	}
3362
 
 
3363	bcmgenet_netif_start(dev);
3364
3365	netif_tx_start_all_queues(dev);
3366
3367	return 0;
3368
3369err_irq1:
3370	free_irq(priv->irq1, priv);
3371err_irq0:
3372	free_irq(priv->irq0, priv);
3373err_fini_dma:
3374	bcmgenet_dma_teardown(priv);
3375	bcmgenet_fini_dma(priv);
3376err_clk_disable:
3377	if (priv->internal_phy)
3378		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3379	clk_disable_unprepare(priv->clk);
3380	return ret;
3381}
3382
3383static void bcmgenet_netif_stop(struct net_device *dev)
3384{
3385	struct bcmgenet_priv *priv = netdev_priv(dev);
3386
3387	bcmgenet_disable_tx_napi(priv);
3388	netif_tx_disable(dev);
3389
3390	/* Disable MAC receive */
3391	umac_enable_set(priv, CMD_RX_EN, false);
3392
3393	bcmgenet_dma_teardown(priv);
3394
3395	/* Disable MAC transmit. TX DMA disabled must be done before this */
3396	umac_enable_set(priv, CMD_TX_EN, false);
3397
3398	phy_stop(dev->phydev);
 
3399	bcmgenet_disable_rx_napi(priv);
3400	bcmgenet_intr_disable(priv);
3401
3402	/* Wait for pending work items to complete. Since interrupts are
3403	 * disabled no new work will be scheduled.
3404	 */
3405	cancel_work_sync(&priv->bcmgenet_irq_work);
3406
3407	priv->old_link = -1;
3408	priv->old_speed = -1;
3409	priv->old_duplex = -1;
3410	priv->old_pause = -1;
3411
3412	/* tx reclaim */
3413	bcmgenet_tx_reclaim_all(dev);
3414	bcmgenet_fini_dma(priv);
3415}
3416
3417static int bcmgenet_close(struct net_device *dev)
3418{
3419	struct bcmgenet_priv *priv = netdev_priv(dev);
3420	int ret = 0;
3421
3422	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3423
3424	bcmgenet_netif_stop(dev);
3425
3426	/* Really kill the PHY state machine and disconnect from it */
3427	phy_disconnect(dev->phydev);
3428
3429	free_irq(priv->irq0, priv);
3430	free_irq(priv->irq1, priv);
3431
3432	if (priv->internal_phy)
3433		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3434
3435	clk_disable_unprepare(priv->clk);
3436
3437	return ret;
3438}
3439
3440static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3441{
3442	struct bcmgenet_priv *priv = ring->priv;
3443	u32 p_index, c_index, intsts, intmsk;
3444	struct netdev_queue *txq;
3445	unsigned int free_bds;
3446	bool txq_stopped;
3447
3448	if (!netif_msg_tx_err(priv))
3449		return;
3450
3451	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3452
3453	spin_lock(&ring->lock);
3454	if (ring->index == DESC_INDEX) {
3455		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3456		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3457	} else {
3458		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3459		intmsk = 1 << ring->index;
3460	}
3461	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3462	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3463	txq_stopped = netif_tx_queue_stopped(txq);
3464	free_bds = ring->free_bds;
3465	spin_unlock(&ring->lock);
3466
3467	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3468		  "TX queue status: %s, interrupts: %s\n"
3469		  "(sw)free_bds: %d (sw)size: %d\n"
3470		  "(sw)p_index: %d (hw)p_index: %d\n"
3471		  "(sw)c_index: %d (hw)c_index: %d\n"
3472		  "(sw)clean_p: %d (sw)write_p: %d\n"
3473		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3474		  ring->index, ring->queue,
3475		  txq_stopped ? "stopped" : "active",
3476		  intsts & intmsk ? "enabled" : "disabled",
3477		  free_bds, ring->size,
3478		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3479		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3480		  ring->clean_ptr, ring->write_ptr,
3481		  ring->cb_ptr, ring->end_ptr);
3482}
3483
3484static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3485{
3486	struct bcmgenet_priv *priv = netdev_priv(dev);
3487	u32 int0_enable = 0;
3488	u32 int1_enable = 0;
3489	unsigned int q;
3490
3491	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3492
3493	for (q = 0; q < priv->hw_params->tx_queues; q++)
3494		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3495	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3496
3497	bcmgenet_tx_reclaim_all(dev);
3498
3499	for (q = 0; q < priv->hw_params->tx_queues; q++)
3500		int1_enable |= (1 << q);
3501
3502	int0_enable = UMAC_IRQ_TXDMA_DONE;
3503
3504	/* Re-enable TX interrupts if disabled */
3505	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3506	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3507
3508	netif_trans_update(dev);
3509
3510	dev->stats.tx_errors++;
3511
3512	netif_tx_wake_all_queues(dev);
3513}
3514
3515#define MAX_MDF_FILTER	17
3516
3517static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3518					 unsigned char *addr,
3519					 int *i)
3520{
3521	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3522			     UMAC_MDF_ADDR + (*i * 4));
3523	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3524			     addr[4] << 8 | addr[5],
3525			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3526	*i += 2;
3527}
3528
3529static void bcmgenet_set_rx_mode(struct net_device *dev)
3530{
3531	struct bcmgenet_priv *priv = netdev_priv(dev);
3532	struct netdev_hw_addr *ha;
3533	int i, nfilter;
3534	u32 reg;
3535
3536	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3537
3538	/* Number of filters needed */
3539	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3540
3541	/*
3542	 * Turn on promicuous mode for three scenarios
3543	 * 1. IFF_PROMISC flag is set
3544	 * 2. IFF_ALLMULTI flag is set
3545	 * 3. The number of filters needed exceeds the number filters
3546	 *    supported by the hardware.
3547	*/
3548	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3549	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3550	    (nfilter > MAX_MDF_FILTER)) {
3551		reg |= CMD_PROMISC;
3552		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3553		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3554		return;
3555	} else {
3556		reg &= ~CMD_PROMISC;
3557		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3558	}
3559
3560	/* update MDF filter */
3561	i = 0;
3562	/* Broadcast */
3563	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3564	/* my own address.*/
3565	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3566
3567	/* Unicast */
3568	netdev_for_each_uc_addr(ha, dev)
3569		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3570
3571	/* Multicast */
3572	netdev_for_each_mc_addr(ha, dev)
3573		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3574
3575	/* Enable filters */
3576	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3577	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3578}
3579
3580/* Set the hardware MAC address. */
3581static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3582{
3583	struct sockaddr *addr = p;
3584
3585	/* Setting the MAC address at the hardware level is not possible
3586	 * without disabling the UniMAC RX/TX enable bits.
3587	 */
3588	if (netif_running(dev))
3589		return -EBUSY;
3590
3591	ether_addr_copy(dev->dev_addr, addr->sa_data);
3592
3593	return 0;
3594}
3595
3596static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3597{
3598	struct bcmgenet_priv *priv = netdev_priv(dev);
3599	unsigned long tx_bytes = 0, tx_packets = 0;
3600	unsigned long rx_bytes = 0, rx_packets = 0;
3601	unsigned long rx_errors = 0, rx_dropped = 0;
3602	struct bcmgenet_tx_ring *tx_ring;
3603	struct bcmgenet_rx_ring *rx_ring;
3604	unsigned int q;
3605
3606	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3607		tx_ring = &priv->tx_rings[q];
3608		tx_bytes += tx_ring->bytes;
3609		tx_packets += tx_ring->packets;
3610	}
3611	tx_ring = &priv->tx_rings[DESC_INDEX];
3612	tx_bytes += tx_ring->bytes;
3613	tx_packets += tx_ring->packets;
3614
3615	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3616		rx_ring = &priv->rx_rings[q];
3617
3618		rx_bytes += rx_ring->bytes;
3619		rx_packets += rx_ring->packets;
3620		rx_errors += rx_ring->errors;
3621		rx_dropped += rx_ring->dropped;
3622	}
3623	rx_ring = &priv->rx_rings[DESC_INDEX];
3624	rx_bytes += rx_ring->bytes;
3625	rx_packets += rx_ring->packets;
3626	rx_errors += rx_ring->errors;
3627	rx_dropped += rx_ring->dropped;
3628
3629	dev->stats.tx_bytes = tx_bytes;
3630	dev->stats.tx_packets = tx_packets;
3631	dev->stats.rx_bytes = rx_bytes;
3632	dev->stats.rx_packets = rx_packets;
3633	dev->stats.rx_errors = rx_errors;
3634	dev->stats.rx_missed_errors = rx_errors;
3635	dev->stats.rx_dropped = rx_dropped;
3636	return &dev->stats;
3637}
3638
3639static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier)
3640{
3641	struct bcmgenet_priv *priv = netdev_priv(dev);
3642
3643	if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) ||
3644	    priv->phy_interface != PHY_INTERFACE_MODE_MOCA)
3645		return -EOPNOTSUPP;
3646
3647	if (new_carrier)
3648		netif_carrier_on(dev);
3649	else
3650		netif_carrier_off(dev);
3651
3652	return 0;
3653}
3654
3655static const struct net_device_ops bcmgenet_netdev_ops = {
3656	.ndo_open		= bcmgenet_open,
3657	.ndo_stop		= bcmgenet_close,
3658	.ndo_start_xmit		= bcmgenet_xmit,
3659	.ndo_tx_timeout		= bcmgenet_timeout,
3660	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3661	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3662	.ndo_do_ioctl		= phy_do_ioctl_running,
3663	.ndo_set_features	= bcmgenet_set_features,
3664#ifdef CONFIG_NET_POLL_CONTROLLER
3665	.ndo_poll_controller	= bcmgenet_poll_controller,
3666#endif
3667	.ndo_get_stats		= bcmgenet_get_stats,
3668	.ndo_change_carrier	= bcmgenet_change_carrier,
3669};
3670
3671/* Array of GENET hardware parameters/characteristics */
3672static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3673	[GENET_V1] = {
3674		.tx_queues = 0,
3675		.tx_bds_per_q = 0,
3676		.rx_queues = 0,
3677		.rx_bds_per_q = 0,
3678		.bp_in_en_shift = 16,
3679		.bp_in_mask = 0xffff,
3680		.hfb_filter_cnt = 16,
3681		.qtag_mask = 0x1F,
3682		.hfb_offset = 0x1000,
3683		.rdma_offset = 0x2000,
3684		.tdma_offset = 0x3000,
3685		.words_per_bd = 2,
3686	},
3687	[GENET_V2] = {
3688		.tx_queues = 4,
3689		.tx_bds_per_q = 32,
3690		.rx_queues = 0,
3691		.rx_bds_per_q = 0,
3692		.bp_in_en_shift = 16,
3693		.bp_in_mask = 0xffff,
3694		.hfb_filter_cnt = 16,
3695		.qtag_mask = 0x1F,
3696		.tbuf_offset = 0x0600,
3697		.hfb_offset = 0x1000,
3698		.hfb_reg_offset = 0x2000,
3699		.rdma_offset = 0x3000,
3700		.tdma_offset = 0x4000,
3701		.words_per_bd = 2,
3702		.flags = GENET_HAS_EXT,
3703	},
3704	[GENET_V3] = {
3705		.tx_queues = 4,
3706		.tx_bds_per_q = 32,
3707		.rx_queues = 0,
3708		.rx_bds_per_q = 0,
3709		.bp_in_en_shift = 17,
3710		.bp_in_mask = 0x1ffff,
3711		.hfb_filter_cnt = 48,
3712		.hfb_filter_size = 128,
3713		.qtag_mask = 0x3F,
3714		.tbuf_offset = 0x0600,
3715		.hfb_offset = 0x8000,
3716		.hfb_reg_offset = 0xfc00,
3717		.rdma_offset = 0x10000,
3718		.tdma_offset = 0x11000,
3719		.words_per_bd = 2,
3720		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3721			 GENET_HAS_MOCA_LINK_DET,
3722	},
3723	[GENET_V4] = {
3724		.tx_queues = 4,
3725		.tx_bds_per_q = 32,
3726		.rx_queues = 0,
3727		.rx_bds_per_q = 0,
3728		.bp_in_en_shift = 17,
3729		.bp_in_mask = 0x1ffff,
3730		.hfb_filter_cnt = 48,
3731		.hfb_filter_size = 128,
3732		.qtag_mask = 0x3F,
3733		.tbuf_offset = 0x0600,
3734		.hfb_offset = 0x8000,
3735		.hfb_reg_offset = 0xfc00,
3736		.rdma_offset = 0x2000,
3737		.tdma_offset = 0x4000,
3738		.words_per_bd = 3,
3739		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3740			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3741	},
3742	[GENET_V5] = {
3743		.tx_queues = 4,
3744		.tx_bds_per_q = 32,
3745		.rx_queues = 0,
3746		.rx_bds_per_q = 0,
3747		.bp_in_en_shift = 17,
3748		.bp_in_mask = 0x1ffff,
3749		.hfb_filter_cnt = 48,
3750		.hfb_filter_size = 128,
3751		.qtag_mask = 0x3F,
3752		.tbuf_offset = 0x0600,
3753		.hfb_offset = 0x8000,
3754		.hfb_reg_offset = 0xfc00,
3755		.rdma_offset = 0x2000,
3756		.tdma_offset = 0x4000,
3757		.words_per_bd = 3,
3758		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3759			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3760	},
3761};
3762
3763/* Infer hardware parameters from the detected GENET version */
3764static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3765{
3766	struct bcmgenet_hw_params *params;
3767	u32 reg;
3768	u8 major;
3769	u16 gphy_rev;
3770
3771	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3772		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3773		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3774	} else if (GENET_IS_V3(priv)) {
3775		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3776		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3777	} else if (GENET_IS_V2(priv)) {
3778		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3779		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3780	} else if (GENET_IS_V1(priv)) {
3781		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3782		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3783	}
3784
3785	/* enum genet_version starts at 1 */
3786	priv->hw_params = &bcmgenet_hw_params[priv->version];
3787	params = priv->hw_params;
3788
3789	/* Read GENET HW version */
3790	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3791	major = (reg >> 24 & 0x0f);
3792	if (major == 6)
3793		major = 5;
3794	else if (major == 5)
3795		major = 4;
3796	else if (major == 0)
3797		major = 1;
3798	if (major != priv->version) {
3799		dev_err(&priv->pdev->dev,
3800			"GENET version mismatch, got: %d, configured for: %d\n",
3801			major, priv->version);
3802	}
3803
3804	/* Print the GENET core version */
3805	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3806		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3807
3808	/* Store the integrated PHY revision for the MDIO probing function
3809	 * to pass this information to the PHY driver. The PHY driver expects
3810	 * to find the PHY major revision in bits 15:8 while the GENET register
3811	 * stores that information in bits 7:0, account for that.
3812	 *
3813	 * On newer chips, starting with PHY revision G0, a new scheme is
3814	 * deployed similar to the Starfighter 2 switch with GPHY major
3815	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3816	 * is reserved as well as special value 0x01ff, we have a small
3817	 * heuristic to check for the new GPHY revision and re-arrange things
3818	 * so the GPHY driver is happy.
3819	 */
3820	gphy_rev = reg & 0xffff;
3821
3822	if (GENET_IS_V5(priv)) {
3823		/* The EPHY revision should come from the MDIO registers of
3824		 * the PHY not from GENET.
3825		 */
3826		if (gphy_rev != 0) {
3827			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3828				gphy_rev);
3829		}
3830	/* This is reserved so should require special treatment */
3831	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3832		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3833		return;
3834	/* This is the good old scheme, just GPHY major, no minor nor patch */
3835	} else if ((gphy_rev & 0xf0) != 0) {
3836		priv->gphy_rev = gphy_rev << 8;
3837	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3838	} else if ((gphy_rev & 0xff00) != 0) {
3839		priv->gphy_rev = gphy_rev;
3840	}
3841
3842#ifdef CONFIG_PHYS_ADDR_T_64BIT
3843	if (!(params->flags & GENET_HAS_40BITS))
3844		pr_warn("GENET does not support 40-bits PA\n");
3845#endif
3846
3847	pr_debug("Configuration for version: %d\n"
3848		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3849		"BP << en: %2d, BP msk: 0x%05x\n"
3850		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3851		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3852		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3853		"Words/BD: %d\n",
3854		priv->version,
3855		params->tx_queues, params->tx_bds_per_q,
3856		params->rx_queues, params->rx_bds_per_q,
3857		params->bp_in_en_shift, params->bp_in_mask,
3858		params->hfb_filter_cnt, params->qtag_mask,
3859		params->tbuf_offset, params->hfb_offset,
3860		params->hfb_reg_offset,
3861		params->rdma_offset, params->tdma_offset,
3862		params->words_per_bd);
3863}
3864
3865struct bcmgenet_plat_data {
3866	enum bcmgenet_version version;
3867	u32 dma_max_burst_length;
 
3868};
3869
3870static const struct bcmgenet_plat_data v1_plat_data = {
3871	.version = GENET_V1,
3872	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3873};
3874
3875static const struct bcmgenet_plat_data v2_plat_data = {
3876	.version = GENET_V2,
3877	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3878};
3879
3880static const struct bcmgenet_plat_data v3_plat_data = {
3881	.version = GENET_V3,
3882	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3883};
3884
3885static const struct bcmgenet_plat_data v4_plat_data = {
3886	.version = GENET_V4,
3887	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3888};
3889
3890static const struct bcmgenet_plat_data v5_plat_data = {
3891	.version = GENET_V5,
3892	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3893};
3894
3895static const struct bcmgenet_plat_data bcm2711_plat_data = {
3896	.version = GENET_V5,
3897	.dma_max_burst_length = 0x08,
3898};
3899
 
 
 
 
 
 
3900static const struct of_device_id bcmgenet_match[] = {
3901	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3902	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3903	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3904	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3905	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3906	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
 
3907	{ },
3908};
3909MODULE_DEVICE_TABLE(of, bcmgenet_match);
3910
3911static int bcmgenet_probe(struct platform_device *pdev)
3912{
3913	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3914	const struct bcmgenet_plat_data *pdata;
3915	struct bcmgenet_priv *priv;
3916	struct net_device *dev;
3917	unsigned int i;
3918	int err = -EIO;
3919
3920	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3921	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3922				 GENET_MAX_MQ_CNT + 1);
3923	if (!dev) {
3924		dev_err(&pdev->dev, "can't allocate net device\n");
3925		return -ENOMEM;
3926	}
3927
3928	priv = netdev_priv(dev);
3929	priv->irq0 = platform_get_irq(pdev, 0);
3930	if (priv->irq0 < 0) {
3931		err = priv->irq0;
3932		goto err;
3933	}
3934	priv->irq1 = platform_get_irq(pdev, 1);
3935	if (priv->irq1 < 0) {
3936		err = priv->irq1;
3937		goto err;
3938	}
3939	priv->wol_irq = platform_get_irq_optional(pdev, 2);
 
 
 
 
3940
3941	priv->base = devm_platform_ioremap_resource(pdev, 0);
3942	if (IS_ERR(priv->base)) {
3943		err = PTR_ERR(priv->base);
3944		goto err;
3945	}
3946
3947	spin_lock_init(&priv->lock);
3948
 
 
 
 
 
3949	SET_NETDEV_DEV(dev, &pdev->dev);
3950	dev_set_drvdata(&pdev->dev, dev);
3951	dev->watchdog_timeo = 2 * HZ;
3952	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3953	dev->netdev_ops = &bcmgenet_netdev_ops;
3954
3955	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3956
3957	/* Set default features */
3958	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3959			 NETIF_F_RXCSUM;
3960	dev->hw_features |= dev->features;
3961	dev->vlan_features |= dev->features;
3962
3963	/* Request the WOL interrupt and advertise suspend if available */
3964	priv->wol_irq_disabled = true;
3965	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3966			       dev->name, priv);
3967	if (!err)
3968		device_set_wakeup_capable(&pdev->dev, 1);
 
 
3969
3970	/* Set the needed headroom to account for any possible
3971	 * features enabling/disabling at runtime
3972	 */
3973	dev->needed_headroom += 64;
3974
3975	netdev_boot_setup_check(dev);
3976
3977	priv->dev = dev;
3978	priv->pdev = pdev;
3979
3980	pdata = device_get_match_data(&pdev->dev);
3981	if (pdata) {
3982		priv->version = pdata->version;
3983		priv->dma_max_burst_length = pdata->dma_max_burst_length;
 
3984	} else {
3985		priv->version = pd->genet_version;
3986		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3987	}
3988
3989	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3990	if (IS_ERR(priv->clk)) {
3991		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3992		err = PTR_ERR(priv->clk);
3993		goto err;
3994	}
3995
3996	err = clk_prepare_enable(priv->clk);
3997	if (err)
3998		goto err;
3999
4000	bcmgenet_set_hw_params(priv);
4001
4002	err = -EIO;
4003	if (priv->hw_params->flags & GENET_HAS_40BITS)
4004		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
4005	if (err)
4006		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4007	if (err)
4008		goto err_clk_disable;
4009
4010	/* Mii wait queue */
4011	init_waitqueue_head(&priv->wq);
4012	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4013	priv->rx_buf_len = RX_BUF_LENGTH;
4014	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4015
4016	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4017	if (IS_ERR(priv->clk_wol)) {
4018		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4019		err = PTR_ERR(priv->clk_wol);
4020		goto err_clk_disable;
4021	}
4022
4023	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4024	if (IS_ERR(priv->clk_eee)) {
4025		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4026		err = PTR_ERR(priv->clk_eee);
4027		goto err_clk_disable;
4028	}
4029
4030	/* If this is an internal GPHY, power it on now, before UniMAC is
4031	 * brought out of reset as absolutely no UniMAC activity is allowed
4032	 */
4033	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4034		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4035
4036	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4037		ether_addr_copy(dev->dev_addr, pd->mac_address);
4038	else
4039		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4040			if (has_acpi_companion(&pdev->dev))
4041				bcmgenet_get_hw_addr(priv, dev->dev_addr);
 
 
 
 
4042
4043	if (!is_valid_ether_addr(dev->dev_addr)) {
4044		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4045		eth_hw_addr_random(dev);
4046	}
4047
4048	reset_umac(priv);
4049
4050	err = bcmgenet_mii_init(dev);
4051	if (err)
4052		goto err_clk_disable;
4053
4054	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4055	 * just the ring 16 descriptor based TX
4056	 */
4057	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4058	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4059
4060	/* Set default coalescing parameters */
4061	for (i = 0; i < priv->hw_params->rx_queues; i++)
4062		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4063	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4064
4065	/* libphy will determine the link state */
4066	netif_carrier_off(dev);
4067
4068	/* Turn off the main clock, WOL clock is handled separately */
4069	clk_disable_unprepare(priv->clk);
4070
4071	err = register_netdev(dev);
4072	if (err) {
4073		bcmgenet_mii_exit(dev);
4074		goto err;
4075	}
4076
4077	return err;
4078
4079err_clk_disable:
4080	clk_disable_unprepare(priv->clk);
4081err:
4082	free_netdev(dev);
4083	return err;
4084}
4085
4086static int bcmgenet_remove(struct platform_device *pdev)
4087{
4088	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4089
4090	dev_set_drvdata(&pdev->dev, NULL);
4091	unregister_netdev(priv->dev);
4092	bcmgenet_mii_exit(priv->dev);
4093	free_netdev(priv->dev);
4094
4095	return 0;
4096}
4097
4098static void bcmgenet_shutdown(struct platform_device *pdev)
4099{
4100	bcmgenet_remove(pdev);
4101}
4102
4103#ifdef CONFIG_PM_SLEEP
4104static int bcmgenet_resume_noirq(struct device *d)
4105{
4106	struct net_device *dev = dev_get_drvdata(d);
4107	struct bcmgenet_priv *priv = netdev_priv(dev);
4108	int ret;
4109	u32 reg;
4110
4111	if (!netif_running(dev))
4112		return 0;
4113
4114	/* Turn on the clock */
4115	ret = clk_prepare_enable(priv->clk);
4116	if (ret)
4117		return ret;
4118
4119	if (device_may_wakeup(d) && priv->wolopts) {
4120		/* Account for Wake-on-LAN events and clear those events
4121		 * (Some devices need more time between enabling the clocks
4122		 *  and the interrupt register reflecting the wake event so
4123		 *  read the register twice)
4124		 */
4125		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4126		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4127		if (reg & UMAC_IRQ_WAKE_EVENT)
4128			pm_wakeup_event(&priv->pdev->dev, 0);
4129	}
4130
4131	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4132
4133	return 0;
4134}
4135
4136static int bcmgenet_resume(struct device *d)
4137{
4138	struct net_device *dev = dev_get_drvdata(d);
4139	struct bcmgenet_priv *priv = netdev_priv(dev);
4140	struct bcmgenet_rxnfc_rule *rule;
4141	unsigned long dma_ctrl;
4142	int ret;
4143
4144	if (!netif_running(dev))
4145		return 0;
4146
4147	/* From WOL-enabled suspend, switch to regular clock */
4148	if (device_may_wakeup(d) && priv->wolopts)
4149		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4150
4151	/* If this is an internal GPHY, power it back on now, before UniMAC is
4152	 * brought out of reset as absolutely no UniMAC activity is allowed
4153	 */
4154	if (priv->internal_phy)
4155		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4156
4157	bcmgenet_umac_reset(priv);
4158
4159	init_umac(priv);
4160
4161	phy_init_hw(dev->phydev);
4162
4163	/* Speed settings must be restored */
4164	genphy_config_aneg(dev->phydev);
4165	bcmgenet_mii_config(priv->dev, false);
4166
4167	/* Restore enabled features */
4168	bcmgenet_set_features(dev, dev->features);
4169
4170	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4171
4172	/* Restore hardware filters */
4173	bcmgenet_hfb_clear(priv);
4174	list_for_each_entry(rule, &priv->rxnfc_list, list)
4175		if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
4176			bcmgenet_hfb_create_rxnfc_filter(priv, rule);
4177
4178	/* Disable RX/TX DMA and flush TX queues */
4179	dma_ctrl = bcmgenet_dma_disable(priv);
4180
4181	/* Reinitialize TDMA and RDMA and SW housekeeping */
4182	ret = bcmgenet_init_dma(priv);
4183	if (ret) {
4184		netdev_err(dev, "failed to initialize DMA\n");
4185		goto out_clk_disable;
4186	}
4187
4188	/* Always enable ring 16 - descriptor ring */
4189	bcmgenet_enable_dma(priv, dma_ctrl);
4190
4191	if (!device_may_wakeup(d))
4192		phy_resume(dev->phydev);
4193
4194	if (priv->eee.eee_enabled)
4195		bcmgenet_eee_enable_set(dev, true);
4196
4197	bcmgenet_netif_start(dev);
4198
4199	netif_device_attach(dev);
4200
4201	return 0;
4202
4203out_clk_disable:
4204	if (priv->internal_phy)
4205		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4206	clk_disable_unprepare(priv->clk);
4207	return ret;
4208}
4209
4210static int bcmgenet_suspend(struct device *d)
4211{
4212	struct net_device *dev = dev_get_drvdata(d);
4213	struct bcmgenet_priv *priv = netdev_priv(dev);
4214
4215	if (!netif_running(dev))
4216		return 0;
4217
4218	netif_device_detach(dev);
4219
4220	bcmgenet_netif_stop(dev);
4221
4222	if (!device_may_wakeup(d))
4223		phy_suspend(dev->phydev);
4224
4225	/* Disable filtering */
4226	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4227
4228	return 0;
4229}
4230
4231static int bcmgenet_suspend_noirq(struct device *d)
4232{
4233	struct net_device *dev = dev_get_drvdata(d);
4234	struct bcmgenet_priv *priv = netdev_priv(dev);
4235	int ret = 0;
4236
4237	if (!netif_running(dev))
4238		return 0;
4239
4240	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4241	if (device_may_wakeup(d) && priv->wolopts)
4242		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4243	else if (priv->internal_phy)
4244		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4245
4246	/* Let the framework handle resumption and leave the clocks on */
4247	if (ret)
4248		return ret;
4249
4250	/* Turn off the clocks */
4251	clk_disable_unprepare(priv->clk);
4252
4253	return 0;
4254}
4255#else
4256#define bcmgenet_suspend	NULL
4257#define bcmgenet_suspend_noirq	NULL
4258#define bcmgenet_resume		NULL
4259#define bcmgenet_resume_noirq	NULL
4260#endif /* CONFIG_PM_SLEEP */
4261
4262static const struct dev_pm_ops bcmgenet_pm_ops = {
4263	.suspend	= bcmgenet_suspend,
4264	.suspend_noirq	= bcmgenet_suspend_noirq,
4265	.resume		= bcmgenet_resume,
4266	.resume_noirq	= bcmgenet_resume_noirq,
4267};
4268
4269static const struct acpi_device_id genet_acpi_match[] = {
4270	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4271	{ },
4272};
4273MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4274
4275static struct platform_driver bcmgenet_driver = {
4276	.probe	= bcmgenet_probe,
4277	.remove	= bcmgenet_remove,
4278	.shutdown = bcmgenet_shutdown,
4279	.driver	= {
4280		.name	= "bcmgenet",
4281		.of_match_table = bcmgenet_match,
4282		.pm	= &bcmgenet_pm_ops,
4283		.acpi_match_table = genet_acpi_match,
4284	},
4285};
4286module_platform_driver(bcmgenet_driver);
4287
4288MODULE_AUTHOR("Broadcom Corporation");
4289MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4290MODULE_ALIAS("platform:bcmgenet");
4291MODULE_LICENSE("GPL");
4292MODULE_SOFTDEP("pre: mdio-bcm-unimac");