Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v6.8.
  1// SPDX-License-Identifier: GPL-2.0-only
  2
  3/*
  4 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
  5 *
  6 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
  7 *
  8 * Copyright (c) 2001, 2d3D, Inc.
  9 *
 10 * References:
 11 *
 12 *    [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 13 *           - Order Number: 290644-005
 14 *           - January 2000
 15 *
 16 *    [2] MTD internal API documentation
 17 *           - http://www.linux-mtd.infradead.org/ 
 18 *
 19 * Limitations:
 20 *
 21 *    Even though this driver is written for 3 Volt Fast Boot
 22 *    Block Flash Memory, it is rather specific to LART. With
 23 *    Minor modifications, notably the without data/address line
 24 *    mangling and different bus settings, etc. it should be
 25 *    trivial to adapt to other platforms.
 26 *
 27 *    If somebody would sponsor me a different board, I'll
 28 *    adapt the driver (:
 29 */
 30
 31/* debugging */
 32//#define LART_DEBUG
 33
 34#include <linux/kernel.h>
 35#include <linux/module.h>
 36#include <linux/types.h>
 37#include <linux/init.h>
 38#include <linux/errno.h>
 39#include <linux/string.h>
 40#include <linux/mtd/mtd.h>
 41#include <linux/mtd/partitions.h>
 42
 43#ifndef CONFIG_SA1100_LART
 44#error This is for LART architecture only
 45#endif
 46
 47static char module_name[] = "lart";
 48
 49/*
 50 * These values is specific to 28Fxxxx3 flash memory.
 51 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 52 */
 53#define FLASH_BLOCKSIZE_PARAM		(4096 * BUSWIDTH)
 54#define FLASH_NUMBLOCKS_16m_PARAM	8
 55#define FLASH_NUMBLOCKS_8m_PARAM	8
 56
 57/*
 58 * These values is specific to 28Fxxxx3 flash memory.
 59 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 60 */
 61#define FLASH_BLOCKSIZE_MAIN		(32768 * BUSWIDTH)
 62#define FLASH_NUMBLOCKS_16m_MAIN	31
 63#define FLASH_NUMBLOCKS_8m_MAIN		15
 64
 65/*
 66 * These values are specific to LART
 67 */
 68
 69/* general */
 70#define BUSWIDTH			4				/* don't change this - a lot of the code _will_ break if you change this */
 71#define FLASH_OFFSET		0xe8000000		/* see linux/arch/arm/mach-sa1100/lart.c */
 72
 73/* blob */
 74#define NUM_BLOB_BLOCKS		FLASH_NUMBLOCKS_16m_PARAM
 75#define PART_BLOB_START		0x00000000
 76#define PART_BLOB_LEN		(NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
 77
 78/* kernel */
 79#define NUM_KERNEL_BLOCKS	7
 80#define PART_KERNEL_START	(PART_BLOB_START + PART_BLOB_LEN)
 81#define PART_KERNEL_LEN		(NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
 82
 83/* initial ramdisk */
 84#define NUM_INITRD_BLOCKS	24
 85#define PART_INITRD_START	(PART_KERNEL_START + PART_KERNEL_LEN)
 86#define PART_INITRD_LEN		(NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
 87
 88/*
 89 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
 90 */
 91#define READ_ARRAY			0x00FF00FF		/* Read Array/Reset */
 92#define READ_ID_CODES		0x00900090		/* Read Identifier Codes */
 93#define ERASE_SETUP			0x00200020		/* Block Erase */
 94#define ERASE_CONFIRM		0x00D000D0		/* Block Erase and Program Resume */
 95#define PGM_SETUP			0x00400040		/* Program */
 96#define STATUS_READ			0x00700070		/* Read Status Register */
 97#define STATUS_CLEAR		0x00500050		/* Clear Status Register */
 98#define STATUS_BUSY			0x00800080		/* Write State Machine Status (WSMS) */
 99#define STATUS_ERASE_ERR	0x00200020		/* Erase Status (ES) */
100#define STATUS_PGM_ERR		0x00100010		/* Program Status (PS) */
101
102/*
103 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
104 */
105#define FLASH_MANUFACTURER			0x00890089
106#define FLASH_DEVICE_8mbit_TOP		0x88f188f1
107#define FLASH_DEVICE_8mbit_BOTTOM	0x88f288f2
108#define FLASH_DEVICE_16mbit_TOP		0x88f388f3
109#define FLASH_DEVICE_16mbit_BOTTOM	0x88f488f4
110
111/***************************************************************************************************/
112
113/*
114 * The data line mapping on LART is as follows:
115 *
116 *   	 U2  CPU |   U3  CPU
117 *   	 -------------------
118 *   	  0  20  |   0   12
119 *   	  1  22  |   1   14
120 *   	  2  19  |   2   11
121 *   	  3  17  |   3   9
122 *   	  4  24  |   4   0
123 *   	  5  26  |   5   2
124 *   	  6  31  |   6   7
125 *   	  7  29  |   7   5
126 *   	  8  21  |   8   13
127 *   	  9  23  |   9   15
128 *   	  10 18  |   10  10
129 *   	  11 16  |   11  8
130 *   	  12 25  |   12  1
131 *   	  13 27  |   13  3
132 *   	  14 30  |   14  6
133 *   	  15 28  |   15  4
134 */
135
136/* Mangle data (x) */
137#define DATA_TO_FLASH(x)				\
138	(									\
139		(((x) & 0x08009000) >> 11)	+	\
140		(((x) & 0x00002000) >> 10)	+	\
141		(((x) & 0x04004000) >> 8)	+	\
142		(((x) & 0x00000010) >> 4)	+	\
143		(((x) & 0x91000820) >> 3)	+	\
144		(((x) & 0x22080080) >> 2)	+	\
145		((x) & 0x40000400)			+	\
146		(((x) & 0x00040040) << 1)	+	\
147		(((x) & 0x00110000) << 4)	+	\
148		(((x) & 0x00220100) << 5)	+	\
149		(((x) & 0x00800208) << 6)	+	\
150		(((x) & 0x00400004) << 9)	+	\
151		(((x) & 0x00000001) << 12)	+	\
152		(((x) & 0x00000002) << 13)		\
153	)
154
155/* Unmangle data (x) */
156#define FLASH_TO_DATA(x)				\
157	(									\
158		(((x) & 0x00010012) << 11)	+	\
159		(((x) & 0x00000008) << 10)	+	\
160		(((x) & 0x00040040) << 8)	+	\
161		(((x) & 0x00000001) << 4)	+	\
162		(((x) & 0x12200104) << 3)	+	\
163		(((x) & 0x08820020) << 2)	+	\
164		((x) & 0x40000400)			+	\
165		(((x) & 0x00080080) >> 1)	+	\
166		(((x) & 0x01100000) >> 4)	+	\
167		(((x) & 0x04402000) >> 5)	+	\
168		(((x) & 0x20008200) >> 6)	+	\
169		(((x) & 0x80000800) >> 9)	+	\
170		(((x) & 0x00001000) >> 12)	+	\
171		(((x) & 0x00004000) >> 13)		\
172	)
173
174/*
175 * The address line mapping on LART is as follows:
176 *
177 *   	 U3  CPU |   U2  CPU
178 *   	 -------------------
179 *   	  0  2   |   0   2
180 *   	  1  3   |   1   3
181 *   	  2  9   |   2   9
182 *   	  3  13  |   3   8
183 *   	  4  8   |   4   7
184 *   	  5  12  |   5   6
185 *   	  6  11  |   6   5
186 *   	  7  10  |   7   4
187 *   	  8  4   |   8   10
188 *   	  9  5   |   9   11
189 *   	 10  6   |   10  12
190 *   	 11  7   |   11  13
191 *
192 *   	 BOOT BLOCK BOUNDARY
193 *
194 *   	 12  15  |   12  15
195 *   	 13  14  |   13  14
196 *   	 14  16  |   14  16
197 *
198 *   	 MAIN BLOCK BOUNDARY
199 *
200 *   	 15  17  |   15  18
201 *   	 16  18  |   16  17
202 *   	 17  20  |   17  20
203 *   	 18  19  |   18  19
204 *   	 19  21  |   19  21
205 *
206 * As we can see from above, the addresses aren't mangled across
207 * block boundaries, so we don't need to worry about address
208 * translations except for sending/reading commands during
209 * initialization
210 */
211
212/* Mangle address (x) on chip U2 */
213#define ADDR_TO_FLASH_U2(x)				\
214	(									\
215		(((x) & 0x00000f00) >> 4)	+	\
216		(((x) & 0x00042000) << 1)	+	\
217		(((x) & 0x0009c003) << 2)	+	\
218		(((x) & 0x00021080) << 3)	+	\
219		(((x) & 0x00000010) << 4)	+	\
220		(((x) & 0x00000040) << 5)	+	\
221		(((x) & 0x00000024) << 7)	+	\
222		(((x) & 0x00000008) << 10)		\
223	)
224
225/* Unmangle address (x) on chip U2 */
226#define FLASH_U2_TO_ADDR(x)				\
227	(									\
228		(((x) << 4) & 0x00000f00)	+	\
229		(((x) >> 1) & 0x00042000)	+	\
230		(((x) >> 2) & 0x0009c003)	+	\
231		(((x) >> 3) & 0x00021080)	+	\
232		(((x) >> 4) & 0x00000010)	+	\
233		(((x) >> 5) & 0x00000040)	+	\
234		(((x) >> 7) & 0x00000024)	+	\
235		(((x) >> 10) & 0x00000008)		\
236	)
237
238/* Mangle address (x) on chip U3 */
239#define ADDR_TO_FLASH_U3(x)				\
240	(									\
241		(((x) & 0x00000080) >> 3)	+	\
242		(((x) & 0x00000040) >> 1)	+	\
243		(((x) & 0x00052020) << 1)	+	\
244		(((x) & 0x00084f03) << 2)	+	\
245		(((x) & 0x00029010) << 3)	+	\
246		(((x) & 0x00000008) << 5)	+	\
247		(((x) & 0x00000004) << 7)		\
248	)
249
250/* Unmangle address (x) on chip U3 */
251#define FLASH_U3_TO_ADDR(x)				\
252	(									\
253		(((x) << 3) & 0x00000080)	+	\
254		(((x) << 1) & 0x00000040)	+	\
255		(((x) >> 1) & 0x00052020)	+	\
256		(((x) >> 2) & 0x00084f03)	+	\
257		(((x) >> 3) & 0x00029010)	+	\
258		(((x) >> 5) & 0x00000008)	+	\
259		(((x) >> 7) & 0x00000004)		\
260	)
261
262/***************************************************************************************************/
263
264static __u8 read8 (__u32 offset)
265{
266   volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
267#ifdef LART_DEBUG
268   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
269#endif
270   return (*data);
271}
272
273static __u32 read32 (__u32 offset)
274{
275   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
276#ifdef LART_DEBUG
277   printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
278#endif
279   return (*data);
280}
281
282static void write32 (__u32 x,__u32 offset)
283{
284   volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
285   *data = x;
286#ifdef LART_DEBUG
287   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
288#endif
289}
290
291/***************************************************************************************************/
292
293/*
294 * Probe for 16mbit flash memory on a LART board without doing
295 * too much damage. Since we need to write 1 dword to memory,
296 * we're f**cked if this happens to be DRAM since we can't
297 * restore the memory (otherwise we might exit Read Array mode).
298 *
299 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
300 */
301static int flash_probe (void)
302{
303   __u32 manufacturer,devtype;
304
305   /* setup "Read Identifier Codes" mode */
306   write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
307
308   /* probe U2. U2/U3 returns the same data since the first 3
309	* address lines is mangled in the same way */
310   manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
311   devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
312
313   /* put the flash back into command mode */
314   write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
315
316   return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
317}
318
319/*
320 * Erase one block of flash memory at offset ``offset'' which is any
321 * address within the block which should be erased.
322 *
323 * Returns 1 if successful, 0 otherwise.
324 */
325static inline int erase_block (__u32 offset)
326{
327   __u32 status;
328
329#ifdef LART_DEBUG
330   printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
331#endif
332
333   /* erase and confirm */
334   write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
335   write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
336
337   /* wait for block erase to finish */
338   do
339	 {
340		write32 (DATA_TO_FLASH (STATUS_READ),offset);
341		status = FLASH_TO_DATA (read32 (offset));
342	 }
343   while ((~status & STATUS_BUSY) != 0);
344
345   /* put the flash back into command mode */
346   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
347
348   /* was the erase successful? */
349   if ((status & STATUS_ERASE_ERR))
350	 {
351		printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
352		return (0);
353	 }
354
355   return (1);
356}
357
358static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
359{
360   __u32 addr,len;
361   int i,first;
362
363#ifdef LART_DEBUG
364   printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
365#endif
366
367   /*
368	* check that both start and end of the requested erase are
369	* aligned with the erasesize at the appropriate addresses.
370	*
371	* skip all erase regions which are ended before the start of
372	* the requested erase. Actually, to save on the calculations,
373	* we skip to the first erase region which starts after the
374	* start of the requested erase, and then go back one.
375	*/
376   for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
377   i--;
378
379   /*
380	* ok, now i is pointing at the erase region in which this
381	* erase request starts. Check the start of the requested
382	* erase range is aligned with the erase size which is in
383	* effect here.
384	*/
385   if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
386      return -EINVAL;
387
388   /* Remember the erase region we start on */
389   first = i;
390
391   /*
392	* next, check that the end of the requested erase is aligned
393	* with the erase region at that address.
394	*
395	* as before, drop back one to point at the region in which
396	* the address actually falls
397	*/
398   for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
399   i--;
400
401   /* is the end aligned on a block boundary? */
402   if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
403      return -EINVAL;
404
405   addr = instr->addr;
406   len = instr->len;
407
408   i = first;
409
410   /* now erase those blocks */
411   while (len)
412	 {
413		if (!erase_block (addr))
414			 return (-EIO);
415
416		addr += mtd->eraseregions[i].erasesize;
417		len -= mtd->eraseregions[i].erasesize;
418
419		if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
420	 }
421
422   return (0);
423}
424
425static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
426{
427#ifdef LART_DEBUG
428   printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
429#endif
430
431   /* we always read len bytes */
432   *retlen = len;
433
434   /* first, we read bytes until we reach a dword boundary */
435   if (from & (BUSWIDTH - 1))
436	 {
437		int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
438
439		while (len && gap--) {
440			*buf++ = read8 (from++);
441			len--;
442		}
443	 }
444
445   /* now we read dwords until we reach a non-dword boundary */
446   while (len >= BUSWIDTH)
447	 {
448		*((__u32 *) buf) = read32 (from);
449
450		buf += BUSWIDTH;
451		from += BUSWIDTH;
452		len -= BUSWIDTH;
453	 }
454
455   /* top up the last unaligned bytes */
456   if (len & (BUSWIDTH - 1))
457	 while (len--) *buf++ = read8 (from++);
458
459   return (0);
460}
461
462/*
463 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
464 * must be 32 bits, i.e. it must be on a dword boundary.
465 *
466 * Returns 1 if successful, 0 otherwise.
467 */
468static inline int write_dword (__u32 offset,__u32 x)
469{
470   __u32 status;
471
472#ifdef LART_DEBUG
473   printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
474#endif
475
476   /* setup writing */
477   write32 (DATA_TO_FLASH (PGM_SETUP),offset);
478
479   /* write the data */
480   write32 (x,offset);
481
482   /* wait for the write to finish */
483   do
484	 {
485		write32 (DATA_TO_FLASH (STATUS_READ),offset);
486		status = FLASH_TO_DATA (read32 (offset));
487	 }
488   while ((~status & STATUS_BUSY) != 0);
489
490   /* put the flash back into command mode */
491   write32 (DATA_TO_FLASH (READ_ARRAY),offset);
492
493   /* was the write successful? */
494   if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
495	 {
496		printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
497		return (0);
498	 }
499
500   return (1);
501}
502
503static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
504{
505   __u8 tmp[4];
506   int i,n;
507
508#ifdef LART_DEBUG
509   printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
510#endif
511
512   /* sanity checks */
513   if (!len) return (0);
514
515   /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
516   if (to & (BUSWIDTH - 1))
517	 {
518		__u32 aligned = to & ~(BUSWIDTH - 1);
519		int gap = to - aligned;
520
521		i = n = 0;
522
523		while (gap--) tmp[i++] = 0xFF;
524		while (len && i < BUSWIDTH) {
525			tmp[i++] = buf[n++];
526			len--;
527		}
528		while (i < BUSWIDTH) tmp[i++] = 0xFF;
529
530		if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
531
532		to += n;
533		buf += n;
534		*retlen += n;
535	 }
536
537   /* now we write dwords until we reach a non-dword boundary */
538   while (len >= BUSWIDTH)
539	 {
540		if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
541
542		to += BUSWIDTH;
543		buf += BUSWIDTH;
544		*retlen += BUSWIDTH;
545		len -= BUSWIDTH;
546	 }
547
548   /* top up the last unaligned bytes, padded with 0xFF.... */
549   if (len & (BUSWIDTH - 1))
550	 {
551		i = n = 0;
552
553		while (len--) tmp[i++] = buf[n++];
554		while (i < BUSWIDTH) tmp[i++] = 0xFF;
555
556		if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
557
558		*retlen += n;
559	 }
560
561   return (0);
562}
563
564/***************************************************************************************************/
565
566static struct mtd_info mtd;
567
568static struct mtd_erase_region_info erase_regions[] = {
569	/* parameter blocks */
570	{
571		.offset		= 0x00000000,
572		.erasesize	= FLASH_BLOCKSIZE_PARAM,
573		.numblocks	= FLASH_NUMBLOCKS_16m_PARAM,
574	},
575	/* main blocks */
576	{
577		.offset	 = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
578		.erasesize	= FLASH_BLOCKSIZE_MAIN,
579		.numblocks	= FLASH_NUMBLOCKS_16m_MAIN,
580	}
581};
582
583static const struct mtd_partition lart_partitions[] = {
584	/* blob */
585	{
586		.name	= "blob",
587		.offset	= PART_BLOB_START,
588		.size	= PART_BLOB_LEN,
589	},
590	/* kernel */
591	{
592		.name	= "kernel",
593		.offset	= PART_KERNEL_START,	/* MTDPART_OFS_APPEND */
594		.size	= PART_KERNEL_LEN,
595	},
596	/* initial ramdisk / file system */
597	{
598		.name	= "file system",
599		.offset	= PART_INITRD_START,	/* MTDPART_OFS_APPEND */
600		.size	= PART_INITRD_LEN,	/* MTDPART_SIZ_FULL */
601	}
602};
603#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
604
605static int __init lart_flash_init (void)
606{
607   int result;
608   memset (&mtd,0,sizeof (mtd));
609   printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
610   printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
611   if (!flash_probe ())
612	 {
613		printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
614		return (-ENXIO);
615	 }
616   printk ("%s: This looks like a LART board to me.\n",module_name);
617   mtd.name = module_name;
618   mtd.type = MTD_NORFLASH;
619   mtd.writesize = 1;
620   mtd.writebufsize = 4;
621   mtd.flags = MTD_CAP_NORFLASH;
622   mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
623   mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
624   mtd.numeraseregions = ARRAY_SIZE(erase_regions);
625   mtd.eraseregions = erase_regions;
626   mtd._erase = flash_erase;
627   mtd._read = flash_read;
628   mtd._write = flash_write;
629   mtd.owner = THIS_MODULE;
630
631#ifdef LART_DEBUG
632   printk (KERN_DEBUG
633		   "mtd.name = %s\n"
634		   "mtd.size = 0x%.8x (%uM)\n"
635		   "mtd.erasesize = 0x%.8x (%uK)\n"
636		   "mtd.numeraseregions = %d\n",
637		   mtd.name,
638		   mtd.size,mtd.size / (1024*1024),
639		   mtd.erasesize,mtd.erasesize / 1024,
640		   mtd.numeraseregions);
641
642   if (mtd.numeraseregions)
643	 for (result = 0; result < mtd.numeraseregions; result++)
644	   printk (KERN_DEBUG
645			   "\n\n"
646			   "mtd.eraseregions[%d].offset = 0x%.8x\n"
647			   "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
648			   "mtd.eraseregions[%d].numblocks = %d\n",
649			   result,mtd.eraseregions[result].offset,
650			   result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
651			   result,mtd.eraseregions[result].numblocks);
652
653   printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
654
655   for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
656	 printk (KERN_DEBUG
657			 "\n\n"
658			 "lart_partitions[%d].name = %s\n"
659			 "lart_partitions[%d].offset = 0x%.8x\n"
660			 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
661			 result,lart_partitions[result].name,
662			 result,lart_partitions[result].offset,
663			 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
664#endif
665
666   result = mtd_device_register(&mtd, lart_partitions,
667                                ARRAY_SIZE(lart_partitions));
668
669   return (result);
670}
671
672static void __exit lart_flash_exit (void)
673{
674   mtd_device_unregister(&mtd);
675}
676
677module_init (lart_flash_init);
678module_exit (lart_flash_exit);
679
680MODULE_LICENSE("GPL");
681MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
682MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");