Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/dma-direction.h>
19#include <linux/crc7.h>
20#include <linux/crc-itu-t.h>
21#include <linux/scatterlist.h>
22
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25#include <linux/mmc/slot-gpio.h>
26
27#include <linux/spi/spi.h>
28#include <linux/spi/mmc_spi.h>
29
30#include <asm/unaligned.h>
31
32
33/* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
39 *
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
48 *
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
58 */
59
60
61/*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65/* Response tokens used to ack each block written: */
66#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70
71/* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77
78#define MMC_SPI_BLOCKSIZE 512
79
80#define MMC_SPI_R1B_TIMEOUT_MS 3000
81#define MMC_SPI_INIT_TIMEOUT_MS 3000
82
83/* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
89 */
90#define MMC_SPI_BLOCKSATONCE 128
91
92/****************************************************************************/
93
94/*
95 * Local Data Structures
96 */
97
98/* "scratch" is per-{command,block} data exchanged with the card */
99struct scratch {
100 u8 status[29];
101 u8 data_token;
102 __be16 crc_val;
103};
104
105struct mmc_spi_host {
106 struct mmc_host *mmc;
107 struct spi_device *spi;
108
109 unsigned char power_mode;
110 u16 powerup_msecs;
111
112 struct mmc_spi_platform_data *pdata;
113
114 /* for bulk data transfers */
115 struct spi_transfer token, t, crc, early_status;
116 struct spi_message m;
117
118 /* for status readback */
119 struct spi_transfer status;
120 struct spi_message readback;
121
122 /* buffer used for commands and for message "overhead" */
123 struct scratch *data;
124
125 /* Specs say to write ones most of the time, even when the card
126 * has no need to read its input data; and many cards won't care.
127 * This is our source of those ones.
128 */
129 void *ones;
130};
131
132
133/****************************************************************************/
134
135/*
136 * MMC-over-SPI protocol glue, used by the MMC stack interface
137 */
138
139static inline int mmc_cs_off(struct mmc_spi_host *host)
140{
141 /* chipselect will always be inactive after setup() */
142 return spi_setup(host->spi);
143}
144
145static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
146{
147 if (len > sizeof(*host->data)) {
148 WARN_ON(1);
149 return -EIO;
150 }
151
152 host->status.len = len;
153
154 return spi_sync_locked(host->spi, &host->readback);
155}
156
157static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
158 unsigned n, u8 byte)
159{
160 u8 *cp = host->data->status;
161 unsigned long start = jiffies;
162
163 do {
164 int status;
165 unsigned i;
166
167 status = mmc_spi_readbytes(host, n);
168 if (status < 0)
169 return status;
170
171 for (i = 0; i < n; i++) {
172 if (cp[i] != byte)
173 return cp[i];
174 }
175
176 /* If we need long timeouts, we may release the CPU */
177 cond_resched();
178 } while (time_is_after_jiffies(start + timeout));
179 return -ETIMEDOUT;
180}
181
182static inline int
183mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
184{
185 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
186}
187
188static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
189{
190 return mmc_spi_skip(host, timeout, 1, 0xff);
191}
192
193
194/*
195 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
196 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
197 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
198 *
199 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
200 * newer cards R7 (IF_COND).
201 */
202
203static char *maptype(struct mmc_command *cmd)
204{
205 switch (mmc_spi_resp_type(cmd)) {
206 case MMC_RSP_SPI_R1: return "R1";
207 case MMC_RSP_SPI_R1B: return "R1B";
208 case MMC_RSP_SPI_R2: return "R2/R5";
209 case MMC_RSP_SPI_R3: return "R3/R4/R7";
210 default: return "?";
211 }
212}
213
214/* return zero, else negative errno after setting cmd->error */
215static int mmc_spi_response_get(struct mmc_spi_host *host,
216 struct mmc_command *cmd, int cs_on)
217{
218 unsigned long timeout_ms;
219 u8 *cp = host->data->status;
220 u8 *end = cp + host->t.len;
221 int value = 0;
222 int bitshift;
223 u8 leftover = 0;
224 unsigned short rotator;
225 int i;
226 char tag[32];
227
228 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
229 cmd->opcode, maptype(cmd));
230
231 /* Except for data block reads, the whole response will already
232 * be stored in the scratch buffer. It's somewhere after the
233 * command and the first byte we read after it. We ignore that
234 * first byte. After STOP_TRANSMISSION command it may include
235 * two data bits, but otherwise it's all ones.
236 */
237 cp += 8;
238 while (cp < end && *cp == 0xff)
239 cp++;
240
241 /* Data block reads (R1 response types) may need more data... */
242 if (cp == end) {
243 cp = host->data->status;
244 end = cp+1;
245
246 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
247 * status byte ... and we already scanned 2 bytes.
248 *
249 * REVISIT block read paths use nasty byte-at-a-time I/O
250 * so it can always DMA directly into the target buffer.
251 * It'd probably be better to memcpy() the first chunk and
252 * avoid extra i/o calls...
253 *
254 * Note we check for more than 8 bytes, because in practice,
255 * some SD cards are slow...
256 */
257 for (i = 2; i < 16; i++) {
258 value = mmc_spi_readbytes(host, 1);
259 if (value < 0)
260 goto done;
261 if (*cp != 0xff)
262 goto checkstatus;
263 }
264 value = -ETIMEDOUT;
265 goto done;
266 }
267
268checkstatus:
269 bitshift = 0;
270 if (*cp & 0x80) {
271 /* Houston, we have an ugly card with a bit-shifted response */
272 rotator = *cp++ << 8;
273 /* read the next byte */
274 if (cp == end) {
275 value = mmc_spi_readbytes(host, 1);
276 if (value < 0)
277 goto done;
278 cp = host->data->status;
279 end = cp+1;
280 }
281 rotator |= *cp++;
282 while (rotator & 0x8000) {
283 bitshift++;
284 rotator <<= 1;
285 }
286 cmd->resp[0] = rotator >> 8;
287 leftover = rotator;
288 } else {
289 cmd->resp[0] = *cp++;
290 }
291 cmd->error = 0;
292
293 /* Status byte: the entire seven-bit R1 response. */
294 if (cmd->resp[0] != 0) {
295 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
296 & cmd->resp[0])
297 value = -EFAULT; /* Bad address */
298 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
299 value = -ENOSYS; /* Function not implemented */
300 else if (R1_SPI_COM_CRC & cmd->resp[0])
301 value = -EILSEQ; /* Illegal byte sequence */
302 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
303 & cmd->resp[0])
304 value = -EIO; /* I/O error */
305 /* else R1_SPI_IDLE, "it's resetting" */
306 }
307
308 switch (mmc_spi_resp_type(cmd)) {
309
310 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
311 * and less-common stuff like various erase operations.
312 */
313 case MMC_RSP_SPI_R1B:
314 /* maybe we read all the busy tokens already */
315 while (cp < end && *cp == 0)
316 cp++;
317 if (cp == end) {
318 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
319 MMC_SPI_R1B_TIMEOUT_MS;
320 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
321 }
322 break;
323
324 /* SPI R2 == R1 + second status byte; SEND_STATUS
325 * SPI R5 == R1 + data byte; IO_RW_DIRECT
326 */
327 case MMC_RSP_SPI_R2:
328 /* read the next byte */
329 if (cp == end) {
330 value = mmc_spi_readbytes(host, 1);
331 if (value < 0)
332 goto done;
333 cp = host->data->status;
334 end = cp+1;
335 }
336 if (bitshift) {
337 rotator = leftover << 8;
338 rotator |= *cp << bitshift;
339 cmd->resp[0] |= (rotator & 0xFF00);
340 } else {
341 cmd->resp[0] |= *cp << 8;
342 }
343 break;
344
345 /* SPI R3, R4, or R7 == R1 + 4 bytes */
346 case MMC_RSP_SPI_R3:
347 rotator = leftover << 8;
348 cmd->resp[1] = 0;
349 for (i = 0; i < 4; i++) {
350 cmd->resp[1] <<= 8;
351 /* read the next byte */
352 if (cp == end) {
353 value = mmc_spi_readbytes(host, 1);
354 if (value < 0)
355 goto done;
356 cp = host->data->status;
357 end = cp+1;
358 }
359 if (bitshift) {
360 rotator |= *cp++ << bitshift;
361 cmd->resp[1] |= (rotator >> 8);
362 rotator <<= 8;
363 } else {
364 cmd->resp[1] |= *cp++;
365 }
366 }
367 break;
368
369 /* SPI R1 == just one status byte */
370 case MMC_RSP_SPI_R1:
371 break;
372
373 default:
374 dev_dbg(&host->spi->dev, "bad response type %04x\n",
375 mmc_spi_resp_type(cmd));
376 if (value >= 0)
377 value = -EINVAL;
378 goto done;
379 }
380
381 if (value < 0)
382 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
383 tag, cmd->resp[0], cmd->resp[1]);
384
385 /* disable chipselect on errors and some success cases */
386 if (value >= 0 && cs_on)
387 return value;
388done:
389 if (value < 0)
390 cmd->error = value;
391 mmc_cs_off(host);
392 return value;
393}
394
395/* Issue command and read its response.
396 * Returns zero on success, negative for error.
397 *
398 * On error, caller must cope with mmc core retry mechanism. That
399 * means immediate low-level resubmit, which affects the bus lock...
400 */
401static int
402mmc_spi_command_send(struct mmc_spi_host *host,
403 struct mmc_request *mrq,
404 struct mmc_command *cmd, int cs_on)
405{
406 struct scratch *data = host->data;
407 u8 *cp = data->status;
408 int status;
409 struct spi_transfer *t;
410
411 /* We can handle most commands (except block reads) in one full
412 * duplex I/O operation before either starting the next transfer
413 * (data block or command) or else deselecting the card.
414 *
415 * First, write 7 bytes:
416 * - an all-ones byte to ensure the card is ready
417 * - opcode byte (plus start and transmission bits)
418 * - four bytes of big-endian argument
419 * - crc7 (plus end bit) ... always computed, it's cheap
420 *
421 * We init the whole buffer to all-ones, which is what we need
422 * to write while we're reading (later) response data.
423 */
424 memset(cp, 0xff, sizeof(data->status));
425
426 cp[1] = 0x40 | cmd->opcode;
427 put_unaligned_be32(cmd->arg, cp + 2);
428 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
429 cp += 7;
430
431 /* Then, read up to 13 bytes (while writing all-ones):
432 * - N(CR) (== 1..8) bytes of all-ones
433 * - status byte (for all response types)
434 * - the rest of the response, either:
435 * + nothing, for R1 or R1B responses
436 * + second status byte, for R2 responses
437 * + four data bytes, for R3 and R7 responses
438 *
439 * Finally, read some more bytes ... in the nice cases we know in
440 * advance how many, and reading 1 more is always OK:
441 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
442 * - N(RC) (== 1..N) bytes of all-ones, before next command
443 * - N(WR) (== 1..N) bytes of all-ones, before data write
444 *
445 * So in those cases one full duplex I/O of at most 21 bytes will
446 * handle the whole command, leaving the card ready to receive a
447 * data block or new command. We do that whenever we can, shaving
448 * CPU and IRQ costs (especially when using DMA or FIFOs).
449 *
450 * There are two other cases, where it's not generally practical
451 * to rely on a single I/O:
452 *
453 * - R1B responses need at least N(EC) bytes of all-zeroes.
454 *
455 * In this case we can *try* to fit it into one I/O, then
456 * maybe read more data later.
457 *
458 * - Data block reads are more troublesome, since a variable
459 * number of padding bytes precede the token and data.
460 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
461 * + N(AC) (== 1..many) bytes of all-ones
462 *
463 * In this case we currently only have minimal speedups here:
464 * when N(CR) == 1 we can avoid I/O in response_get().
465 */
466 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
467 cp += 2; /* min(N(CR)) + status */
468 /* R1 */
469 } else {
470 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
471 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
472 cp++;
473 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
474 cp += 4;
475 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
476 cp = data->status + sizeof(data->status);
477 /* else: R1 (most commands) */
478 }
479
480 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n",
481 cmd->opcode, maptype(cmd));
482
483 /* send command, leaving chipselect active */
484 spi_message_init(&host->m);
485
486 t = &host->t;
487 memset(t, 0, sizeof(*t));
488 t->tx_buf = t->rx_buf = data->status;
489 t->len = cp - data->status;
490 t->cs_change = 1;
491 spi_message_add_tail(t, &host->m);
492
493 status = spi_sync_locked(host->spi, &host->m);
494 if (status < 0) {
495 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
496 cmd->error = status;
497 return status;
498 }
499
500 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
501 return mmc_spi_response_get(host, cmd, cs_on);
502}
503
504/* Build data message with up to four separate transfers. For TX, we
505 * start by writing the data token. And in most cases, we finish with
506 * a status transfer.
507 *
508 * We always provide TX data for data and CRC. The MMC/SD protocol
509 * requires us to write ones; but Linux defaults to writing zeroes;
510 * so we explicitly initialize it to all ones on RX paths.
511 */
512static void
513mmc_spi_setup_data_message(
514 struct mmc_spi_host *host,
515 bool multiple,
516 enum dma_data_direction direction)
517{
518 struct spi_transfer *t;
519 struct scratch *scratch = host->data;
520
521 spi_message_init(&host->m);
522
523 /* for reads, readblock() skips 0xff bytes before finding
524 * the token; for writes, this transfer issues that token.
525 */
526 if (direction == DMA_TO_DEVICE) {
527 t = &host->token;
528 memset(t, 0, sizeof(*t));
529 t->len = 1;
530 if (multiple)
531 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
532 else
533 scratch->data_token = SPI_TOKEN_SINGLE;
534 t->tx_buf = &scratch->data_token;
535 spi_message_add_tail(t, &host->m);
536 }
537
538 /* Body of transfer is buffer, then CRC ...
539 * either TX-only, or RX with TX-ones.
540 */
541 t = &host->t;
542 memset(t, 0, sizeof(*t));
543 t->tx_buf = host->ones;
544 /* length and actual buffer info are written later */
545 spi_message_add_tail(t, &host->m);
546
547 t = &host->crc;
548 memset(t, 0, sizeof(*t));
549 t->len = 2;
550 if (direction == DMA_TO_DEVICE) {
551 /* the actual CRC may get written later */
552 t->tx_buf = &scratch->crc_val;
553 } else {
554 t->tx_buf = host->ones;
555 t->rx_buf = &scratch->crc_val;
556 }
557 spi_message_add_tail(t, &host->m);
558
559 /*
560 * A single block read is followed by N(EC) [0+] all-ones bytes
561 * before deselect ... don't bother.
562 *
563 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
564 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
565 * collect that single byte, so readblock() doesn't need to.
566 *
567 * For a write, the one-byte data response follows immediately, then
568 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
569 * Then single block reads may deselect, and multiblock ones issue
570 * the next token (next data block, or STOP_TRAN). We can try to
571 * minimize I/O ops by using a single read to collect end-of-busy.
572 */
573 if (multiple || direction == DMA_TO_DEVICE) {
574 t = &host->early_status;
575 memset(t, 0, sizeof(*t));
576 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
577 t->tx_buf = host->ones;
578 t->rx_buf = scratch->status;
579 t->cs_change = 1;
580 spi_message_add_tail(t, &host->m);
581 }
582}
583
584/*
585 * Write one block:
586 * - caller handled preceding N(WR) [1+] all-ones bytes
587 * - data block
588 * + token
589 * + data bytes
590 * + crc16
591 * - an all-ones byte ... card writes a data-response byte
592 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
593 *
594 * Return negative errno, else success.
595 */
596static int
597mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
598 unsigned long timeout)
599{
600 struct spi_device *spi = host->spi;
601 int status, i;
602 struct scratch *scratch = host->data;
603 u32 pattern;
604
605 if (host->mmc->use_spi_crc)
606 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
607
608 status = spi_sync_locked(spi, &host->m);
609 if (status != 0) {
610 dev_dbg(&spi->dev, "write error (%d)\n", status);
611 return status;
612 }
613
614 /*
615 * Get the transmission data-response reply. It must follow
616 * immediately after the data block we transferred. This reply
617 * doesn't necessarily tell whether the write operation succeeded;
618 * it just says if the transmission was ok and whether *earlier*
619 * writes succeeded; see the standard.
620 *
621 * In practice, there are (even modern SDHC-)cards which are late
622 * in sending the response, and miss the time frame by a few bits,
623 * so we have to cope with this situation and check the response
624 * bit-by-bit. Arggh!!!
625 */
626 pattern = get_unaligned_be32(scratch->status);
627
628 /* First 3 bit of pattern are undefined */
629 pattern |= 0xE0000000;
630
631 /* left-adjust to leading 0 bit */
632 while (pattern & 0x80000000)
633 pattern <<= 1;
634 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
635 pattern >>= 27;
636
637 switch (pattern) {
638 case SPI_RESPONSE_ACCEPTED:
639 status = 0;
640 break;
641 case SPI_RESPONSE_CRC_ERR:
642 /* host shall then issue MMC_STOP_TRANSMISSION */
643 status = -EILSEQ;
644 break;
645 case SPI_RESPONSE_WRITE_ERR:
646 /* host shall then issue MMC_STOP_TRANSMISSION,
647 * and should MMC_SEND_STATUS to sort it out
648 */
649 status = -EIO;
650 break;
651 default:
652 status = -EPROTO;
653 break;
654 }
655 if (status != 0) {
656 dev_dbg(&spi->dev, "write error %02x (%d)\n",
657 scratch->status[0], status);
658 return status;
659 }
660
661 t->tx_buf += t->len;
662
663 /* Return when not busy. If we didn't collect that status yet,
664 * we'll need some more I/O.
665 */
666 for (i = 4; i < sizeof(scratch->status); i++) {
667 /* card is non-busy if the most recent bit is 1 */
668 if (scratch->status[i] & 0x01)
669 return 0;
670 }
671 return mmc_spi_wait_unbusy(host, timeout);
672}
673
674/*
675 * Read one block:
676 * - skip leading all-ones bytes ... either
677 * + N(AC) [1..f(clock,CSD)] usually, else
678 * + N(CX) [0..8] when reading CSD or CID
679 * - data block
680 * + token ... if error token, no data or crc
681 * + data bytes
682 * + crc16
683 *
684 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
685 * before dropping chipselect.
686 *
687 * For multiblock reads, caller either reads the next block or issues a
688 * STOP_TRANSMISSION command.
689 */
690static int
691mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
692 unsigned long timeout)
693{
694 struct spi_device *spi = host->spi;
695 int status;
696 struct scratch *scratch = host->data;
697 unsigned int bitshift;
698 u8 leftover;
699
700 /* At least one SD card sends an all-zeroes byte when N(CX)
701 * applies, before the all-ones bytes ... just cope with that.
702 */
703 status = mmc_spi_readbytes(host, 1);
704 if (status < 0)
705 return status;
706 status = scratch->status[0];
707 if (status == 0xff || status == 0)
708 status = mmc_spi_readtoken(host, timeout);
709
710 if (status < 0) {
711 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
712 return status;
713 }
714
715 /* The token may be bit-shifted...
716 * the first 0-bit precedes the data stream.
717 */
718 bitshift = 7;
719 while (status & 0x80) {
720 status <<= 1;
721 bitshift--;
722 }
723 leftover = status << 1;
724
725 status = spi_sync_locked(spi, &host->m);
726 if (status < 0) {
727 dev_dbg(&spi->dev, "read error %d\n", status);
728 return status;
729 }
730
731 if (bitshift) {
732 /* Walk through the data and the crc and do
733 * all the magic to get byte-aligned data.
734 */
735 u8 *cp = t->rx_buf;
736 unsigned int len;
737 unsigned int bitright = 8 - bitshift;
738 u8 temp;
739 for (len = t->len; len; len--) {
740 temp = *cp;
741 *cp++ = leftover | (temp >> bitshift);
742 leftover = temp << bitright;
743 }
744 cp = (u8 *) &scratch->crc_val;
745 temp = *cp;
746 *cp++ = leftover | (temp >> bitshift);
747 leftover = temp << bitright;
748 temp = *cp;
749 *cp = leftover | (temp >> bitshift);
750 }
751
752 if (host->mmc->use_spi_crc) {
753 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
754
755 be16_to_cpus(&scratch->crc_val);
756 if (scratch->crc_val != crc) {
757 dev_dbg(&spi->dev,
758 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
759 scratch->crc_val, crc, t->len);
760 return -EILSEQ;
761 }
762 }
763
764 t->rx_buf += t->len;
765
766 return 0;
767}
768
769/*
770 * An MMC/SD data stage includes one or more blocks, optional CRCs,
771 * and inline handshaking. That handhaking makes it unlike most
772 * other SPI protocol stacks.
773 */
774static void
775mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
776 struct mmc_data *data, u32 blk_size)
777{
778 struct spi_device *spi = host->spi;
779 struct spi_transfer *t;
780 enum dma_data_direction direction = mmc_get_dma_dir(data);
781 struct scatterlist *sg;
782 unsigned n_sg;
783 bool multiple = (data->blocks > 1);
784 const char *write_or_read = (direction == DMA_TO_DEVICE) ? "write" : "read";
785 u32 clock_rate;
786 unsigned long timeout;
787
788 mmc_spi_setup_data_message(host, multiple, direction);
789 t = &host->t;
790
791 if (t->speed_hz)
792 clock_rate = t->speed_hz;
793 else
794 clock_rate = spi->max_speed_hz;
795
796 timeout = data->timeout_ns / 1000 +
797 data->timeout_clks * 1000000 / clock_rate;
798 timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
799
800 /* Handle scatterlist segments one at a time, with synch for
801 * each 512-byte block
802 */
803 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
804 int status = 0;
805 void *kmap_addr;
806 unsigned length = sg->length;
807
808 /* allow pio too; we don't allow highmem */
809 kmap_addr = kmap(sg_page(sg));
810 if (direction == DMA_TO_DEVICE)
811 t->tx_buf = kmap_addr + sg->offset;
812 else
813 t->rx_buf = kmap_addr + sg->offset;
814
815 /* transfer each block, and update request status */
816 while (length) {
817 t->len = min(length, blk_size);
818
819 dev_dbg(&spi->dev, " %s block, %d bytes\n", write_or_read, t->len);
820
821 if (direction == DMA_TO_DEVICE)
822 status = mmc_spi_writeblock(host, t, timeout);
823 else
824 status = mmc_spi_readblock(host, t, timeout);
825 if (status < 0)
826 break;
827
828 data->bytes_xfered += t->len;
829 length -= t->len;
830
831 if (!multiple)
832 break;
833 }
834
835 /* discard mappings */
836 if (direction == DMA_FROM_DEVICE)
837 flush_dcache_page(sg_page(sg));
838 kunmap(sg_page(sg));
839
840 if (status < 0) {
841 data->error = status;
842 dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
843 break;
844 }
845 }
846
847 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
848 * can be issued before multiblock writes. Unlike its more widely
849 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
850 * that can affect the STOP_TRAN logic. Complete (and current)
851 * MMC specs should sort that out before Linux starts using CMD23.
852 */
853 if (direction == DMA_TO_DEVICE && multiple) {
854 struct scratch *scratch = host->data;
855 int tmp;
856 const unsigned statlen = sizeof(scratch->status);
857
858 dev_dbg(&spi->dev, " STOP_TRAN\n");
859
860 /* Tweak the per-block message we set up earlier by morphing
861 * it to hold single buffer with the token followed by some
862 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
863 * "not busy any longer" status, and leave chip selected.
864 */
865 INIT_LIST_HEAD(&host->m.transfers);
866 list_add(&host->early_status.transfer_list,
867 &host->m.transfers);
868
869 memset(scratch->status, 0xff, statlen);
870 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
871
872 host->early_status.tx_buf = host->early_status.rx_buf;
873 host->early_status.len = statlen;
874
875 tmp = spi_sync_locked(spi, &host->m);
876 if (tmp < 0) {
877 if (!data->error)
878 data->error = tmp;
879 return;
880 }
881
882 /* Ideally we collected "not busy" status with one I/O,
883 * avoiding wasteful byte-at-a-time scanning... but more
884 * I/O is often needed.
885 */
886 for (tmp = 2; tmp < statlen; tmp++) {
887 if (scratch->status[tmp] != 0)
888 return;
889 }
890 tmp = mmc_spi_wait_unbusy(host, timeout);
891 if (tmp < 0 && !data->error)
892 data->error = tmp;
893 }
894}
895
896/****************************************************************************/
897
898/*
899 * MMC driver implementation -- the interface to the MMC stack
900 */
901
902static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
903{
904 struct mmc_spi_host *host = mmc_priv(mmc);
905 int status = -EINVAL;
906 int crc_retry = 5;
907 struct mmc_command stop;
908
909#ifdef DEBUG
910 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
911 {
912 struct mmc_command *cmd;
913 int invalid = 0;
914
915 cmd = mrq->cmd;
916 if (!mmc_spi_resp_type(cmd)) {
917 dev_dbg(&host->spi->dev, "bogus command\n");
918 cmd->error = -EINVAL;
919 invalid = 1;
920 }
921
922 cmd = mrq->stop;
923 if (cmd && !mmc_spi_resp_type(cmd)) {
924 dev_dbg(&host->spi->dev, "bogus STOP command\n");
925 cmd->error = -EINVAL;
926 invalid = 1;
927 }
928
929 if (invalid) {
930 dump_stack();
931 mmc_request_done(host->mmc, mrq);
932 return;
933 }
934 }
935#endif
936
937 /* request exclusive bus access */
938 spi_bus_lock(host->spi->master);
939
940crc_recover:
941 /* issue command; then optionally data and stop */
942 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
943 if (status == 0 && mrq->data) {
944 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
945
946 /*
947 * The SPI bus is not always reliable for large data transfers.
948 * If an occasional crc error is reported by the SD device with
949 * data read/write over SPI, it may be recovered by repeating
950 * the last SD command again. The retry count is set to 5 to
951 * ensure the driver passes stress tests.
952 */
953 if (mrq->data->error == -EILSEQ && crc_retry) {
954 stop.opcode = MMC_STOP_TRANSMISSION;
955 stop.arg = 0;
956 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
957 status = mmc_spi_command_send(host, mrq, &stop, 0);
958 crc_retry--;
959 mrq->data->error = 0;
960 goto crc_recover;
961 }
962
963 if (mrq->stop)
964 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
965 else
966 mmc_cs_off(host);
967 }
968
969 /* release the bus */
970 spi_bus_unlock(host->spi->master);
971
972 mmc_request_done(host->mmc, mrq);
973}
974
975/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
976 *
977 * NOTE that here we can't know that the card has just been powered up;
978 * not all MMC/SD sockets support power switching.
979 *
980 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
981 * this doesn't seem to do the right thing at all...
982 */
983static void mmc_spi_initsequence(struct mmc_spi_host *host)
984{
985 /* Try to be very sure any previous command has completed;
986 * wait till not-busy, skip debris from any old commands.
987 */
988 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
989 mmc_spi_readbytes(host, 10);
990
991 /*
992 * Do a burst with chipselect active-high. We need to do this to
993 * meet the requirement of 74 clock cycles with both chipselect
994 * and CMD (MOSI) high before CMD0 ... after the card has been
995 * powered up to Vdd(min), and so is ready to take commands.
996 *
997 * Some cards are particularly needy of this (e.g. Viking "SD256")
998 * while most others don't seem to care.
999 *
1000 * Note that this is one of the places MMC/SD plays games with the
1001 * SPI protocol. Another is that when chipselect is released while
1002 * the card returns BUSY status, the clock must issue several cycles
1003 * with chipselect high before the card will stop driving its output.
1004 *
1005 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1006 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1007 * inverted by gpiolib, so if we want to ascertain to drive it high
1008 * we should toggle the default with an XOR as we do here.
1009 */
1010 host->spi->mode ^= SPI_CS_HIGH;
1011 if (spi_setup(host->spi) != 0) {
1012 /* Just warn; most cards work without it. */
1013 dev_warn(&host->spi->dev,
1014 "can't change chip-select polarity\n");
1015 host->spi->mode ^= SPI_CS_HIGH;
1016 } else {
1017 mmc_spi_readbytes(host, 18);
1018
1019 host->spi->mode ^= SPI_CS_HIGH;
1020 if (spi_setup(host->spi) != 0) {
1021 /* Wot, we can't get the same setup we had before? */
1022 dev_err(&host->spi->dev,
1023 "can't restore chip-select polarity\n");
1024 }
1025 }
1026}
1027
1028static char *mmc_powerstring(u8 power_mode)
1029{
1030 switch (power_mode) {
1031 case MMC_POWER_OFF: return "off";
1032 case MMC_POWER_UP: return "up";
1033 case MMC_POWER_ON: return "on";
1034 }
1035 return "?";
1036}
1037
1038static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1039{
1040 struct mmc_spi_host *host = mmc_priv(mmc);
1041
1042 if (host->power_mode != ios->power_mode) {
1043 int canpower;
1044
1045 canpower = host->pdata && host->pdata->setpower;
1046
1047 dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1048 mmc_powerstring(ios->power_mode),
1049 ios->vdd,
1050 canpower ? ", can switch" : "");
1051
1052 /* switch power on/off if possible, accounting for
1053 * max 250msec powerup time if needed.
1054 */
1055 if (canpower) {
1056 switch (ios->power_mode) {
1057 case MMC_POWER_OFF:
1058 case MMC_POWER_UP:
1059 host->pdata->setpower(&host->spi->dev,
1060 ios->vdd);
1061 if (ios->power_mode == MMC_POWER_UP)
1062 msleep(host->powerup_msecs);
1063 }
1064 }
1065
1066 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1067 if (ios->power_mode == MMC_POWER_ON)
1068 mmc_spi_initsequence(host);
1069
1070 /* If powering down, ground all card inputs to avoid power
1071 * delivery from data lines! On a shared SPI bus, this
1072 * will probably be temporary; 6.4.2 of the simplified SD
1073 * spec says this must last at least 1msec.
1074 *
1075 * - Clock low means CPOL 0, e.g. mode 0
1076 * - MOSI low comes from writing zero
1077 * - Chipselect is usually active low...
1078 */
1079 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1080 int mres;
1081 u8 nullbyte = 0;
1082
1083 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1084 mres = spi_setup(host->spi);
1085 if (mres < 0)
1086 dev_dbg(&host->spi->dev,
1087 "switch to SPI mode 0 failed\n");
1088
1089 if (spi_write(host->spi, &nullbyte, 1) < 0)
1090 dev_dbg(&host->spi->dev,
1091 "put spi signals to low failed\n");
1092
1093 /*
1094 * Now clock should be low due to spi mode 0;
1095 * MOSI should be low because of written 0x00;
1096 * chipselect should be low (it is active low)
1097 * power supply is off, so now MMC is off too!
1098 *
1099 * FIXME no, chipselect can be high since the
1100 * device is inactive and SPI_CS_HIGH is clear...
1101 */
1102 msleep(10);
1103 if (mres == 0) {
1104 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1105 mres = spi_setup(host->spi);
1106 if (mres < 0)
1107 dev_dbg(&host->spi->dev,
1108 "switch back to SPI mode 3 failed\n");
1109 }
1110 }
1111
1112 host->power_mode = ios->power_mode;
1113 }
1114
1115 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1116 int status;
1117
1118 host->spi->max_speed_hz = ios->clock;
1119 status = spi_setup(host->spi);
1120 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n",
1121 host->spi->max_speed_hz, status);
1122 }
1123}
1124
1125static const struct mmc_host_ops mmc_spi_ops = {
1126 .request = mmc_spi_request,
1127 .set_ios = mmc_spi_set_ios,
1128 .get_ro = mmc_gpio_get_ro,
1129 .get_cd = mmc_gpio_get_cd,
1130};
1131
1132
1133/****************************************************************************/
1134
1135/*
1136 * SPI driver implementation
1137 */
1138
1139static irqreturn_t
1140mmc_spi_detect_irq(int irq, void *mmc)
1141{
1142 struct mmc_spi_host *host = mmc_priv(mmc);
1143 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1144
1145 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1146 return IRQ_HANDLED;
1147}
1148
1149static int mmc_spi_probe(struct spi_device *spi)
1150{
1151 void *ones;
1152 struct mmc_host *mmc;
1153 struct mmc_spi_host *host;
1154 int status;
1155 bool has_ro = false;
1156
1157 /* We rely on full duplex transfers, mostly to reduce
1158 * per-transfer overheads (by making fewer transfers).
1159 */
1160 if (spi->master->flags & SPI_CONTROLLER_HALF_DUPLEX)
1161 return -EINVAL;
1162
1163 /* MMC and SD specs only seem to care that sampling is on the
1164 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1165 * should be legit. We'll use mode 0 since the steady state is 0,
1166 * which is appropriate for hotplugging, unless the platform data
1167 * specify mode 3 (if hardware is not compatible to mode 0).
1168 */
1169 if (spi->mode != SPI_MODE_3)
1170 spi->mode = SPI_MODE_0;
1171 spi->bits_per_word = 8;
1172
1173 status = spi_setup(spi);
1174 if (status < 0) {
1175 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1176 spi->mode, spi->max_speed_hz / 1000,
1177 status);
1178 return status;
1179 }
1180
1181 /* We need a supply of ones to transmit. This is the only time
1182 * the CPU touches these, so cache coherency isn't a concern.
1183 *
1184 * NOTE if many systems use more than one MMC-over-SPI connector
1185 * it'd save some memory to share this. That's evidently rare.
1186 */
1187 status = -ENOMEM;
1188 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1189 if (!ones)
1190 goto nomem;
1191 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1192
1193 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1194 if (!mmc)
1195 goto nomem;
1196
1197 mmc->ops = &mmc_spi_ops;
1198 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1199 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1200 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1201 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1202
1203 mmc->caps = MMC_CAP_SPI;
1204
1205 /* SPI doesn't need the lowspeed device identification thing for
1206 * MMC or SD cards, since it never comes up in open drain mode.
1207 * That's good; some SPI masters can't handle very low speeds!
1208 *
1209 * However, low speed SDIO cards need not handle over 400 KHz;
1210 * that's the only reason not to use a few MHz for f_min (until
1211 * the upper layer reads the target frequency from the CSD).
1212 */
1213 mmc->f_min = 400000;
1214 mmc->f_max = spi->max_speed_hz;
1215
1216 host = mmc_priv(mmc);
1217 host->mmc = mmc;
1218 host->spi = spi;
1219
1220 host->ones = ones;
1221
1222 dev_set_drvdata(&spi->dev, mmc);
1223
1224 /* Platform data is used to hook up things like card sensing
1225 * and power switching gpios.
1226 */
1227 host->pdata = mmc_spi_get_pdata(spi);
1228 if (host->pdata)
1229 mmc->ocr_avail = host->pdata->ocr_mask;
1230 if (!mmc->ocr_avail) {
1231 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1232 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1233 }
1234 if (host->pdata && host->pdata->setpower) {
1235 host->powerup_msecs = host->pdata->powerup_msecs;
1236 if (!host->powerup_msecs || host->powerup_msecs > 250)
1237 host->powerup_msecs = 250;
1238 }
1239
1240 /* Preallocate buffers */
1241 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1242 if (!host->data)
1243 goto fail_nobuf1;
1244
1245 /* setup message for status/busy readback */
1246 spi_message_init(&host->readback);
1247
1248 spi_message_add_tail(&host->status, &host->readback);
1249 host->status.tx_buf = host->ones;
1250 host->status.rx_buf = &host->data->status;
1251 host->status.cs_change = 1;
1252
1253 /* register card detect irq */
1254 if (host->pdata && host->pdata->init) {
1255 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1256 if (status != 0)
1257 goto fail_glue_init;
1258 }
1259
1260 /* pass platform capabilities, if any */
1261 if (host->pdata) {
1262 mmc->caps |= host->pdata->caps;
1263 mmc->caps2 |= host->pdata->caps2;
1264 }
1265
1266 status = mmc_add_host(mmc);
1267 if (status != 0)
1268 goto fail_glue_init;
1269
1270 /*
1271 * Index 0 is card detect
1272 * Old boardfiles were specifying 1 ms as debounce
1273 */
1274 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1275 if (status == -EPROBE_DEFER)
1276 goto fail_gpiod_request;
1277 if (!status) {
1278 /*
1279 * The platform has a CD GPIO signal that may support
1280 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1281 * if polling is needed or not.
1282 */
1283 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1284 mmc_gpiod_request_cd_irq(mmc);
1285 }
1286 mmc_detect_change(mmc, 0);
1287
1288 /* Index 1 is write protect/read only */
1289 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1290 if (status == -EPROBE_DEFER)
1291 goto fail_gpiod_request;
1292 if (!status)
1293 has_ro = true;
1294
1295 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1296 dev_name(&mmc->class_dev),
1297 has_ro ? "" : ", no WP",
1298 (host->pdata && host->pdata->setpower)
1299 ? "" : ", no poweroff",
1300 (mmc->caps & MMC_CAP_NEEDS_POLL)
1301 ? ", cd polling" : "");
1302 return 0;
1303
1304fail_gpiod_request:
1305 mmc_remove_host(mmc);
1306fail_glue_init:
1307 kfree(host->data);
1308fail_nobuf1:
1309 mmc_spi_put_pdata(spi);
1310 mmc_free_host(mmc);
1311nomem:
1312 kfree(ones);
1313 return status;
1314}
1315
1316
1317static void mmc_spi_remove(struct spi_device *spi)
1318{
1319 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1320 struct mmc_spi_host *host = mmc_priv(mmc);
1321
1322 /* prevent new mmc_detect_change() calls */
1323 if (host->pdata && host->pdata->exit)
1324 host->pdata->exit(&spi->dev, mmc);
1325
1326 mmc_remove_host(mmc);
1327
1328 kfree(host->data);
1329 kfree(host->ones);
1330
1331 spi->max_speed_hz = mmc->f_max;
1332 mmc_spi_put_pdata(spi);
1333 mmc_free_host(mmc);
1334}
1335
1336static const struct spi_device_id mmc_spi_dev_ids[] = {
1337 { "mmc-spi-slot"},
1338 { },
1339};
1340MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1341
1342static const struct of_device_id mmc_spi_of_match_table[] = {
1343 { .compatible = "mmc-spi-slot", },
1344 {},
1345};
1346MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1347
1348static struct spi_driver mmc_spi_driver = {
1349 .driver = {
1350 .name = "mmc_spi",
1351 .of_match_table = mmc_spi_of_match_table,
1352 },
1353 .id_table = mmc_spi_dev_ids,
1354 .probe = mmc_spi_probe,
1355 .remove = mmc_spi_remove,
1356};
1357
1358module_spi_driver(mmc_spi_driver);
1359
1360MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1361MODULE_DESCRIPTION("SPI SD/MMC host driver");
1362MODULE_LICENSE("GPL");
1363MODULE_ALIAS("spi:mmc_spi");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/dma-mapping.h>
19#include <linux/crc7.h>
20#include <linux/crc-itu-t.h>
21#include <linux/scatterlist.h>
22
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25#include <linux/mmc/slot-gpio.h>
26
27#include <linux/spi/spi.h>
28#include <linux/spi/mmc_spi.h>
29
30#include <asm/unaligned.h>
31
32
33/* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
39 *
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
48 *
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
58 */
59
60
61/*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65/* Response tokens used to ack each block written: */
66#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70
71/* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77
78#define MMC_SPI_BLOCKSIZE 512
79
80#define MMC_SPI_R1B_TIMEOUT_MS 3000
81#define MMC_SPI_INIT_TIMEOUT_MS 3000
82
83/* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
89 */
90#define MMC_SPI_BLOCKSATONCE 128
91
92/****************************************************************************/
93
94/*
95 * Local Data Structures
96 */
97
98/* "scratch" is per-{command,block} data exchanged with the card */
99struct scratch {
100 u8 status[29];
101 u8 data_token;
102 __be16 crc_val;
103};
104
105struct mmc_spi_host {
106 struct mmc_host *mmc;
107 struct spi_device *spi;
108
109 unsigned char power_mode;
110 u16 powerup_msecs;
111
112 struct mmc_spi_platform_data *pdata;
113
114 /* for bulk data transfers */
115 struct spi_transfer token, t, crc, early_status;
116 struct spi_message m;
117
118 /* for status readback */
119 struct spi_transfer status;
120 struct spi_message readback;
121
122 /* underlying DMA-aware controller, or null */
123 struct device *dma_dev;
124
125 /* buffer used for commands and for message "overhead" */
126 struct scratch *data;
127 dma_addr_t data_dma;
128
129 /* Specs say to write ones most of the time, even when the card
130 * has no need to read its input data; and many cards won't care.
131 * This is our source of those ones.
132 */
133 void *ones;
134 dma_addr_t ones_dma;
135};
136
137
138/****************************************************************************/
139
140/*
141 * MMC-over-SPI protocol glue, used by the MMC stack interface
142 */
143
144static inline int mmc_cs_off(struct mmc_spi_host *host)
145{
146 /* chipselect will always be inactive after setup() */
147 return spi_setup(host->spi);
148}
149
150static int
151mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
152{
153 int status;
154
155 if (len > sizeof(*host->data)) {
156 WARN_ON(1);
157 return -EIO;
158 }
159
160 host->status.len = len;
161
162 if (host->dma_dev)
163 dma_sync_single_for_device(host->dma_dev,
164 host->data_dma, sizeof(*host->data),
165 DMA_FROM_DEVICE);
166
167 status = spi_sync_locked(host->spi, &host->readback);
168
169 if (host->dma_dev)
170 dma_sync_single_for_cpu(host->dma_dev,
171 host->data_dma, sizeof(*host->data),
172 DMA_FROM_DEVICE);
173
174 return status;
175}
176
177static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
178 unsigned n, u8 byte)
179{
180 u8 *cp = host->data->status;
181 unsigned long start = jiffies;
182
183 while (1) {
184 int status;
185 unsigned i;
186
187 status = mmc_spi_readbytes(host, n);
188 if (status < 0)
189 return status;
190
191 for (i = 0; i < n; i++) {
192 if (cp[i] != byte)
193 return cp[i];
194 }
195
196 if (time_is_before_jiffies(start + timeout))
197 break;
198
199 /* If we need long timeouts, we may release the CPU.
200 * We use jiffies here because we want to have a relation
201 * between elapsed time and the blocking of the scheduler.
202 */
203 if (time_is_before_jiffies(start + 1))
204 schedule();
205 }
206 return -ETIMEDOUT;
207}
208
209static inline int
210mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
211{
212 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
213}
214
215static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
216{
217 return mmc_spi_skip(host, timeout, 1, 0xff);
218}
219
220
221/*
222 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
223 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
224 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
225 *
226 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
227 * newer cards R7 (IF_COND).
228 */
229
230static char *maptype(struct mmc_command *cmd)
231{
232 switch (mmc_spi_resp_type(cmd)) {
233 case MMC_RSP_SPI_R1: return "R1";
234 case MMC_RSP_SPI_R1B: return "R1B";
235 case MMC_RSP_SPI_R2: return "R2/R5";
236 case MMC_RSP_SPI_R3: return "R3/R4/R7";
237 default: return "?";
238 }
239}
240
241/* return zero, else negative errno after setting cmd->error */
242static int mmc_spi_response_get(struct mmc_spi_host *host,
243 struct mmc_command *cmd, int cs_on)
244{
245 unsigned long timeout_ms;
246 u8 *cp = host->data->status;
247 u8 *end = cp + host->t.len;
248 int value = 0;
249 int bitshift;
250 u8 leftover = 0;
251 unsigned short rotator;
252 int i;
253 char tag[32];
254
255 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
256 cmd->opcode, maptype(cmd));
257
258 /* Except for data block reads, the whole response will already
259 * be stored in the scratch buffer. It's somewhere after the
260 * command and the first byte we read after it. We ignore that
261 * first byte. After STOP_TRANSMISSION command it may include
262 * two data bits, but otherwise it's all ones.
263 */
264 cp += 8;
265 while (cp < end && *cp == 0xff)
266 cp++;
267
268 /* Data block reads (R1 response types) may need more data... */
269 if (cp == end) {
270 cp = host->data->status;
271 end = cp+1;
272
273 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
274 * status byte ... and we already scanned 2 bytes.
275 *
276 * REVISIT block read paths use nasty byte-at-a-time I/O
277 * so it can always DMA directly into the target buffer.
278 * It'd probably be better to memcpy() the first chunk and
279 * avoid extra i/o calls...
280 *
281 * Note we check for more than 8 bytes, because in practice,
282 * some SD cards are slow...
283 */
284 for (i = 2; i < 16; i++) {
285 value = mmc_spi_readbytes(host, 1);
286 if (value < 0)
287 goto done;
288 if (*cp != 0xff)
289 goto checkstatus;
290 }
291 value = -ETIMEDOUT;
292 goto done;
293 }
294
295checkstatus:
296 bitshift = 0;
297 if (*cp & 0x80) {
298 /* Houston, we have an ugly card with a bit-shifted response */
299 rotator = *cp++ << 8;
300 /* read the next byte */
301 if (cp == end) {
302 value = mmc_spi_readbytes(host, 1);
303 if (value < 0)
304 goto done;
305 cp = host->data->status;
306 end = cp+1;
307 }
308 rotator |= *cp++;
309 while (rotator & 0x8000) {
310 bitshift++;
311 rotator <<= 1;
312 }
313 cmd->resp[0] = rotator >> 8;
314 leftover = rotator;
315 } else {
316 cmd->resp[0] = *cp++;
317 }
318 cmd->error = 0;
319
320 /* Status byte: the entire seven-bit R1 response. */
321 if (cmd->resp[0] != 0) {
322 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
323 & cmd->resp[0])
324 value = -EFAULT; /* Bad address */
325 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
326 value = -ENOSYS; /* Function not implemented */
327 else if (R1_SPI_COM_CRC & cmd->resp[0])
328 value = -EILSEQ; /* Illegal byte sequence */
329 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
330 & cmd->resp[0])
331 value = -EIO; /* I/O error */
332 /* else R1_SPI_IDLE, "it's resetting" */
333 }
334
335 switch (mmc_spi_resp_type(cmd)) {
336
337 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
338 * and less-common stuff like various erase operations.
339 */
340 case MMC_RSP_SPI_R1B:
341 /* maybe we read all the busy tokens already */
342 while (cp < end && *cp == 0)
343 cp++;
344 if (cp == end) {
345 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
346 MMC_SPI_R1B_TIMEOUT_MS;
347 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
348 }
349 break;
350
351 /* SPI R2 == R1 + second status byte; SEND_STATUS
352 * SPI R5 == R1 + data byte; IO_RW_DIRECT
353 */
354 case MMC_RSP_SPI_R2:
355 /* read the next byte */
356 if (cp == end) {
357 value = mmc_spi_readbytes(host, 1);
358 if (value < 0)
359 goto done;
360 cp = host->data->status;
361 end = cp+1;
362 }
363 if (bitshift) {
364 rotator = leftover << 8;
365 rotator |= *cp << bitshift;
366 cmd->resp[0] |= (rotator & 0xFF00);
367 } else {
368 cmd->resp[0] |= *cp << 8;
369 }
370 break;
371
372 /* SPI R3, R4, or R7 == R1 + 4 bytes */
373 case MMC_RSP_SPI_R3:
374 rotator = leftover << 8;
375 cmd->resp[1] = 0;
376 for (i = 0; i < 4; i++) {
377 cmd->resp[1] <<= 8;
378 /* read the next byte */
379 if (cp == end) {
380 value = mmc_spi_readbytes(host, 1);
381 if (value < 0)
382 goto done;
383 cp = host->data->status;
384 end = cp+1;
385 }
386 if (bitshift) {
387 rotator |= *cp++ << bitshift;
388 cmd->resp[1] |= (rotator >> 8);
389 rotator <<= 8;
390 } else {
391 cmd->resp[1] |= *cp++;
392 }
393 }
394 break;
395
396 /* SPI R1 == just one status byte */
397 case MMC_RSP_SPI_R1:
398 break;
399
400 default:
401 dev_dbg(&host->spi->dev, "bad response type %04x\n",
402 mmc_spi_resp_type(cmd));
403 if (value >= 0)
404 value = -EINVAL;
405 goto done;
406 }
407
408 if (value < 0)
409 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
410 tag, cmd->resp[0], cmd->resp[1]);
411
412 /* disable chipselect on errors and some success cases */
413 if (value >= 0 && cs_on)
414 return value;
415done:
416 if (value < 0)
417 cmd->error = value;
418 mmc_cs_off(host);
419 return value;
420}
421
422/* Issue command and read its response.
423 * Returns zero on success, negative for error.
424 *
425 * On error, caller must cope with mmc core retry mechanism. That
426 * means immediate low-level resubmit, which affects the bus lock...
427 */
428static int
429mmc_spi_command_send(struct mmc_spi_host *host,
430 struct mmc_request *mrq,
431 struct mmc_command *cmd, int cs_on)
432{
433 struct scratch *data = host->data;
434 u8 *cp = data->status;
435 int status;
436 struct spi_transfer *t;
437
438 /* We can handle most commands (except block reads) in one full
439 * duplex I/O operation before either starting the next transfer
440 * (data block or command) or else deselecting the card.
441 *
442 * First, write 7 bytes:
443 * - an all-ones byte to ensure the card is ready
444 * - opcode byte (plus start and transmission bits)
445 * - four bytes of big-endian argument
446 * - crc7 (plus end bit) ... always computed, it's cheap
447 *
448 * We init the whole buffer to all-ones, which is what we need
449 * to write while we're reading (later) response data.
450 */
451 memset(cp, 0xff, sizeof(data->status));
452
453 cp[1] = 0x40 | cmd->opcode;
454 put_unaligned_be32(cmd->arg, cp + 2);
455 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
456 cp += 7;
457
458 /* Then, read up to 13 bytes (while writing all-ones):
459 * - N(CR) (== 1..8) bytes of all-ones
460 * - status byte (for all response types)
461 * - the rest of the response, either:
462 * + nothing, for R1 or R1B responses
463 * + second status byte, for R2 responses
464 * + four data bytes, for R3 and R7 responses
465 *
466 * Finally, read some more bytes ... in the nice cases we know in
467 * advance how many, and reading 1 more is always OK:
468 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
469 * - N(RC) (== 1..N) bytes of all-ones, before next command
470 * - N(WR) (== 1..N) bytes of all-ones, before data write
471 *
472 * So in those cases one full duplex I/O of at most 21 bytes will
473 * handle the whole command, leaving the card ready to receive a
474 * data block or new command. We do that whenever we can, shaving
475 * CPU and IRQ costs (especially when using DMA or FIFOs).
476 *
477 * There are two other cases, where it's not generally practical
478 * to rely on a single I/O:
479 *
480 * - R1B responses need at least N(EC) bytes of all-zeroes.
481 *
482 * In this case we can *try* to fit it into one I/O, then
483 * maybe read more data later.
484 *
485 * - Data block reads are more troublesome, since a variable
486 * number of padding bytes precede the token and data.
487 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
488 * + N(AC) (== 1..many) bytes of all-ones
489 *
490 * In this case we currently only have minimal speedups here:
491 * when N(CR) == 1 we can avoid I/O in response_get().
492 */
493 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
494 cp += 2; /* min(N(CR)) + status */
495 /* R1 */
496 } else {
497 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
498 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
499 cp++;
500 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
501 cp += 4;
502 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
503 cp = data->status + sizeof(data->status);
504 /* else: R1 (most commands) */
505 }
506
507 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n",
508 cmd->opcode, maptype(cmd));
509
510 /* send command, leaving chipselect active */
511 spi_message_init(&host->m);
512
513 t = &host->t;
514 memset(t, 0, sizeof(*t));
515 t->tx_buf = t->rx_buf = data->status;
516 t->tx_dma = t->rx_dma = host->data_dma;
517 t->len = cp - data->status;
518 t->cs_change = 1;
519 spi_message_add_tail(t, &host->m);
520
521 if (host->dma_dev) {
522 host->m.is_dma_mapped = 1;
523 dma_sync_single_for_device(host->dma_dev,
524 host->data_dma, sizeof(*host->data),
525 DMA_BIDIRECTIONAL);
526 }
527 status = spi_sync_locked(host->spi, &host->m);
528
529 if (host->dma_dev)
530 dma_sync_single_for_cpu(host->dma_dev,
531 host->data_dma, sizeof(*host->data),
532 DMA_BIDIRECTIONAL);
533 if (status < 0) {
534 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
535 cmd->error = status;
536 return status;
537 }
538
539 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
540 return mmc_spi_response_get(host, cmd, cs_on);
541}
542
543/* Build data message with up to four separate transfers. For TX, we
544 * start by writing the data token. And in most cases, we finish with
545 * a status transfer.
546 *
547 * We always provide TX data for data and CRC. The MMC/SD protocol
548 * requires us to write ones; but Linux defaults to writing zeroes;
549 * so we explicitly initialize it to all ones on RX paths.
550 *
551 * We also handle DMA mapping, so the underlying SPI controller does
552 * not need to (re)do it for each message.
553 */
554static void
555mmc_spi_setup_data_message(
556 struct mmc_spi_host *host,
557 int multiple,
558 enum dma_data_direction direction)
559{
560 struct spi_transfer *t;
561 struct scratch *scratch = host->data;
562 dma_addr_t dma = host->data_dma;
563
564 spi_message_init(&host->m);
565 if (dma)
566 host->m.is_dma_mapped = 1;
567
568 /* for reads, readblock() skips 0xff bytes before finding
569 * the token; for writes, this transfer issues that token.
570 */
571 if (direction == DMA_TO_DEVICE) {
572 t = &host->token;
573 memset(t, 0, sizeof(*t));
574 t->len = 1;
575 if (multiple)
576 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
577 else
578 scratch->data_token = SPI_TOKEN_SINGLE;
579 t->tx_buf = &scratch->data_token;
580 if (dma)
581 t->tx_dma = dma + offsetof(struct scratch, data_token);
582 spi_message_add_tail(t, &host->m);
583 }
584
585 /* Body of transfer is buffer, then CRC ...
586 * either TX-only, or RX with TX-ones.
587 */
588 t = &host->t;
589 memset(t, 0, sizeof(*t));
590 t->tx_buf = host->ones;
591 t->tx_dma = host->ones_dma;
592 /* length and actual buffer info are written later */
593 spi_message_add_tail(t, &host->m);
594
595 t = &host->crc;
596 memset(t, 0, sizeof(*t));
597 t->len = 2;
598 if (direction == DMA_TO_DEVICE) {
599 /* the actual CRC may get written later */
600 t->tx_buf = &scratch->crc_val;
601 if (dma)
602 t->tx_dma = dma + offsetof(struct scratch, crc_val);
603 } else {
604 t->tx_buf = host->ones;
605 t->tx_dma = host->ones_dma;
606 t->rx_buf = &scratch->crc_val;
607 if (dma)
608 t->rx_dma = dma + offsetof(struct scratch, crc_val);
609 }
610 spi_message_add_tail(t, &host->m);
611
612 /*
613 * A single block read is followed by N(EC) [0+] all-ones bytes
614 * before deselect ... don't bother.
615 *
616 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
617 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
618 * collect that single byte, so readblock() doesn't need to.
619 *
620 * For a write, the one-byte data response follows immediately, then
621 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
622 * Then single block reads may deselect, and multiblock ones issue
623 * the next token (next data block, or STOP_TRAN). We can try to
624 * minimize I/O ops by using a single read to collect end-of-busy.
625 */
626 if (multiple || direction == DMA_TO_DEVICE) {
627 t = &host->early_status;
628 memset(t, 0, sizeof(*t));
629 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
630 t->tx_buf = host->ones;
631 t->tx_dma = host->ones_dma;
632 t->rx_buf = scratch->status;
633 if (dma)
634 t->rx_dma = dma + offsetof(struct scratch, status);
635 t->cs_change = 1;
636 spi_message_add_tail(t, &host->m);
637 }
638}
639
640/*
641 * Write one block:
642 * - caller handled preceding N(WR) [1+] all-ones bytes
643 * - data block
644 * + token
645 * + data bytes
646 * + crc16
647 * - an all-ones byte ... card writes a data-response byte
648 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
649 *
650 * Return negative errno, else success.
651 */
652static int
653mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
654 unsigned long timeout)
655{
656 struct spi_device *spi = host->spi;
657 int status, i;
658 struct scratch *scratch = host->data;
659 u32 pattern;
660
661 if (host->mmc->use_spi_crc)
662 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
663 if (host->dma_dev)
664 dma_sync_single_for_device(host->dma_dev,
665 host->data_dma, sizeof(*scratch),
666 DMA_BIDIRECTIONAL);
667
668 status = spi_sync_locked(spi, &host->m);
669
670 if (status != 0) {
671 dev_dbg(&spi->dev, "write error (%d)\n", status);
672 return status;
673 }
674
675 if (host->dma_dev)
676 dma_sync_single_for_cpu(host->dma_dev,
677 host->data_dma, sizeof(*scratch),
678 DMA_BIDIRECTIONAL);
679
680 /*
681 * Get the transmission data-response reply. It must follow
682 * immediately after the data block we transferred. This reply
683 * doesn't necessarily tell whether the write operation succeeded;
684 * it just says if the transmission was ok and whether *earlier*
685 * writes succeeded; see the standard.
686 *
687 * In practice, there are (even modern SDHC-)cards which are late
688 * in sending the response, and miss the time frame by a few bits,
689 * so we have to cope with this situation and check the response
690 * bit-by-bit. Arggh!!!
691 */
692 pattern = get_unaligned_be32(scratch->status);
693
694 /* First 3 bit of pattern are undefined */
695 pattern |= 0xE0000000;
696
697 /* left-adjust to leading 0 bit */
698 while (pattern & 0x80000000)
699 pattern <<= 1;
700 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
701 pattern >>= 27;
702
703 switch (pattern) {
704 case SPI_RESPONSE_ACCEPTED:
705 status = 0;
706 break;
707 case SPI_RESPONSE_CRC_ERR:
708 /* host shall then issue MMC_STOP_TRANSMISSION */
709 status = -EILSEQ;
710 break;
711 case SPI_RESPONSE_WRITE_ERR:
712 /* host shall then issue MMC_STOP_TRANSMISSION,
713 * and should MMC_SEND_STATUS to sort it out
714 */
715 status = -EIO;
716 break;
717 default:
718 status = -EPROTO;
719 break;
720 }
721 if (status != 0) {
722 dev_dbg(&spi->dev, "write error %02x (%d)\n",
723 scratch->status[0], status);
724 return status;
725 }
726
727 t->tx_buf += t->len;
728 if (host->dma_dev)
729 t->tx_dma += t->len;
730
731 /* Return when not busy. If we didn't collect that status yet,
732 * we'll need some more I/O.
733 */
734 for (i = 4; i < sizeof(scratch->status); i++) {
735 /* card is non-busy if the most recent bit is 1 */
736 if (scratch->status[i] & 0x01)
737 return 0;
738 }
739 return mmc_spi_wait_unbusy(host, timeout);
740}
741
742/*
743 * Read one block:
744 * - skip leading all-ones bytes ... either
745 * + N(AC) [1..f(clock,CSD)] usually, else
746 * + N(CX) [0..8] when reading CSD or CID
747 * - data block
748 * + token ... if error token, no data or crc
749 * + data bytes
750 * + crc16
751 *
752 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
753 * before dropping chipselect.
754 *
755 * For multiblock reads, caller either reads the next block or issues a
756 * STOP_TRANSMISSION command.
757 */
758static int
759mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
760 unsigned long timeout)
761{
762 struct spi_device *spi = host->spi;
763 int status;
764 struct scratch *scratch = host->data;
765 unsigned int bitshift;
766 u8 leftover;
767
768 /* At least one SD card sends an all-zeroes byte when N(CX)
769 * applies, before the all-ones bytes ... just cope with that.
770 */
771 status = mmc_spi_readbytes(host, 1);
772 if (status < 0)
773 return status;
774 status = scratch->status[0];
775 if (status == 0xff || status == 0)
776 status = mmc_spi_readtoken(host, timeout);
777
778 if (status < 0) {
779 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
780 return status;
781 }
782
783 /* The token may be bit-shifted...
784 * the first 0-bit precedes the data stream.
785 */
786 bitshift = 7;
787 while (status & 0x80) {
788 status <<= 1;
789 bitshift--;
790 }
791 leftover = status << 1;
792
793 if (host->dma_dev) {
794 dma_sync_single_for_device(host->dma_dev,
795 host->data_dma, sizeof(*scratch),
796 DMA_BIDIRECTIONAL);
797 dma_sync_single_for_device(host->dma_dev,
798 t->rx_dma, t->len,
799 DMA_FROM_DEVICE);
800 }
801
802 status = spi_sync_locked(spi, &host->m);
803 if (status < 0) {
804 dev_dbg(&spi->dev, "read error %d\n", status);
805 return status;
806 }
807
808 if (host->dma_dev) {
809 dma_sync_single_for_cpu(host->dma_dev,
810 host->data_dma, sizeof(*scratch),
811 DMA_BIDIRECTIONAL);
812 dma_sync_single_for_cpu(host->dma_dev,
813 t->rx_dma, t->len,
814 DMA_FROM_DEVICE);
815 }
816
817 if (bitshift) {
818 /* Walk through the data and the crc and do
819 * all the magic to get byte-aligned data.
820 */
821 u8 *cp = t->rx_buf;
822 unsigned int len;
823 unsigned int bitright = 8 - bitshift;
824 u8 temp;
825 for (len = t->len; len; len--) {
826 temp = *cp;
827 *cp++ = leftover | (temp >> bitshift);
828 leftover = temp << bitright;
829 }
830 cp = (u8 *) &scratch->crc_val;
831 temp = *cp;
832 *cp++ = leftover | (temp >> bitshift);
833 leftover = temp << bitright;
834 temp = *cp;
835 *cp = leftover | (temp >> bitshift);
836 }
837
838 if (host->mmc->use_spi_crc) {
839 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
840
841 be16_to_cpus(&scratch->crc_val);
842 if (scratch->crc_val != crc) {
843 dev_dbg(&spi->dev,
844 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
845 scratch->crc_val, crc, t->len);
846 return -EILSEQ;
847 }
848 }
849
850 t->rx_buf += t->len;
851 if (host->dma_dev)
852 t->rx_dma += t->len;
853
854 return 0;
855}
856
857/*
858 * An MMC/SD data stage includes one or more blocks, optional CRCs,
859 * and inline handshaking. That handhaking makes it unlike most
860 * other SPI protocol stacks.
861 */
862static void
863mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
864 struct mmc_data *data, u32 blk_size)
865{
866 struct spi_device *spi = host->spi;
867 struct device *dma_dev = host->dma_dev;
868 struct spi_transfer *t;
869 enum dma_data_direction direction;
870 struct scatterlist *sg;
871 unsigned n_sg;
872 int multiple = (data->blocks > 1);
873 u32 clock_rate;
874 unsigned long timeout;
875
876 direction = mmc_get_dma_dir(data);
877 mmc_spi_setup_data_message(host, multiple, direction);
878 t = &host->t;
879
880 if (t->speed_hz)
881 clock_rate = t->speed_hz;
882 else
883 clock_rate = spi->max_speed_hz;
884
885 timeout = data->timeout_ns / 1000 +
886 data->timeout_clks * 1000000 / clock_rate;
887 timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
888
889 /* Handle scatterlist segments one at a time, with synch for
890 * each 512-byte block
891 */
892 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
893 int status = 0;
894 dma_addr_t dma_addr = 0;
895 void *kmap_addr;
896 unsigned length = sg->length;
897 enum dma_data_direction dir = direction;
898
899 /* set up dma mapping for controller drivers that might
900 * use DMA ... though they may fall back to PIO
901 */
902 if (dma_dev) {
903 /* never invalidate whole *shared* pages ... */
904 if ((sg->offset != 0 || length != PAGE_SIZE)
905 && dir == DMA_FROM_DEVICE)
906 dir = DMA_BIDIRECTIONAL;
907
908 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
909 PAGE_SIZE, dir);
910 if (dma_mapping_error(dma_dev, dma_addr)) {
911 data->error = -EFAULT;
912 break;
913 }
914 if (direction == DMA_TO_DEVICE)
915 t->tx_dma = dma_addr + sg->offset;
916 else
917 t->rx_dma = dma_addr + sg->offset;
918 }
919
920 /* allow pio too; we don't allow highmem */
921 kmap_addr = kmap(sg_page(sg));
922 if (direction == DMA_TO_DEVICE)
923 t->tx_buf = kmap_addr + sg->offset;
924 else
925 t->rx_buf = kmap_addr + sg->offset;
926
927 /* transfer each block, and update request status */
928 while (length) {
929 t->len = min(length, blk_size);
930
931 dev_dbg(&host->spi->dev, " %s block, %d bytes\n",
932 (direction == DMA_TO_DEVICE) ? "write" : "read",
933 t->len);
934
935 if (direction == DMA_TO_DEVICE)
936 status = mmc_spi_writeblock(host, t, timeout);
937 else
938 status = mmc_spi_readblock(host, t, timeout);
939 if (status < 0)
940 break;
941
942 data->bytes_xfered += t->len;
943 length -= t->len;
944
945 if (!multiple)
946 break;
947 }
948
949 /* discard mappings */
950 if (direction == DMA_FROM_DEVICE)
951 flush_kernel_dcache_page(sg_page(sg));
952 kunmap(sg_page(sg));
953 if (dma_dev)
954 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
955
956 if (status < 0) {
957 data->error = status;
958 dev_dbg(&spi->dev, "%s status %d\n",
959 (direction == DMA_TO_DEVICE) ? "write" : "read",
960 status);
961 break;
962 }
963 }
964
965 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
966 * can be issued before multiblock writes. Unlike its more widely
967 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
968 * that can affect the STOP_TRAN logic. Complete (and current)
969 * MMC specs should sort that out before Linux starts using CMD23.
970 */
971 if (direction == DMA_TO_DEVICE && multiple) {
972 struct scratch *scratch = host->data;
973 int tmp;
974 const unsigned statlen = sizeof(scratch->status);
975
976 dev_dbg(&spi->dev, " STOP_TRAN\n");
977
978 /* Tweak the per-block message we set up earlier by morphing
979 * it to hold single buffer with the token followed by some
980 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
981 * "not busy any longer" status, and leave chip selected.
982 */
983 INIT_LIST_HEAD(&host->m.transfers);
984 list_add(&host->early_status.transfer_list,
985 &host->m.transfers);
986
987 memset(scratch->status, 0xff, statlen);
988 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
989
990 host->early_status.tx_buf = host->early_status.rx_buf;
991 host->early_status.tx_dma = host->early_status.rx_dma;
992 host->early_status.len = statlen;
993
994 if (host->dma_dev)
995 dma_sync_single_for_device(host->dma_dev,
996 host->data_dma, sizeof(*scratch),
997 DMA_BIDIRECTIONAL);
998
999 tmp = spi_sync_locked(spi, &host->m);
1000
1001 if (host->dma_dev)
1002 dma_sync_single_for_cpu(host->dma_dev,
1003 host->data_dma, sizeof(*scratch),
1004 DMA_BIDIRECTIONAL);
1005
1006 if (tmp < 0) {
1007 if (!data->error)
1008 data->error = tmp;
1009 return;
1010 }
1011
1012 /* Ideally we collected "not busy" status with one I/O,
1013 * avoiding wasteful byte-at-a-time scanning... but more
1014 * I/O is often needed.
1015 */
1016 for (tmp = 2; tmp < statlen; tmp++) {
1017 if (scratch->status[tmp] != 0)
1018 return;
1019 }
1020 tmp = mmc_spi_wait_unbusy(host, timeout);
1021 if (tmp < 0 && !data->error)
1022 data->error = tmp;
1023 }
1024}
1025
1026/****************************************************************************/
1027
1028/*
1029 * MMC driver implementation -- the interface to the MMC stack
1030 */
1031
1032static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1033{
1034 struct mmc_spi_host *host = mmc_priv(mmc);
1035 int status = -EINVAL;
1036 int crc_retry = 5;
1037 struct mmc_command stop;
1038
1039#ifdef DEBUG
1040 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1041 {
1042 struct mmc_command *cmd;
1043 int invalid = 0;
1044
1045 cmd = mrq->cmd;
1046 if (!mmc_spi_resp_type(cmd)) {
1047 dev_dbg(&host->spi->dev, "bogus command\n");
1048 cmd->error = -EINVAL;
1049 invalid = 1;
1050 }
1051
1052 cmd = mrq->stop;
1053 if (cmd && !mmc_spi_resp_type(cmd)) {
1054 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1055 cmd->error = -EINVAL;
1056 invalid = 1;
1057 }
1058
1059 if (invalid) {
1060 dump_stack();
1061 mmc_request_done(host->mmc, mrq);
1062 return;
1063 }
1064 }
1065#endif
1066
1067 /* request exclusive bus access */
1068 spi_bus_lock(host->spi->master);
1069
1070crc_recover:
1071 /* issue command; then optionally data and stop */
1072 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1073 if (status == 0 && mrq->data) {
1074 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1075
1076 /*
1077 * The SPI bus is not always reliable for large data transfers.
1078 * If an occasional crc error is reported by the SD device with
1079 * data read/write over SPI, it may be recovered by repeating
1080 * the last SD command again. The retry count is set to 5 to
1081 * ensure the driver passes stress tests.
1082 */
1083 if (mrq->data->error == -EILSEQ && crc_retry) {
1084 stop.opcode = MMC_STOP_TRANSMISSION;
1085 stop.arg = 0;
1086 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1087 status = mmc_spi_command_send(host, mrq, &stop, 0);
1088 crc_retry--;
1089 mrq->data->error = 0;
1090 goto crc_recover;
1091 }
1092
1093 if (mrq->stop)
1094 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1095 else
1096 mmc_cs_off(host);
1097 }
1098
1099 /* release the bus */
1100 spi_bus_unlock(host->spi->master);
1101
1102 mmc_request_done(host->mmc, mrq);
1103}
1104
1105/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1106 *
1107 * NOTE that here we can't know that the card has just been powered up;
1108 * not all MMC/SD sockets support power switching.
1109 *
1110 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1111 * this doesn't seem to do the right thing at all...
1112 */
1113static void mmc_spi_initsequence(struct mmc_spi_host *host)
1114{
1115 /* Try to be very sure any previous command has completed;
1116 * wait till not-busy, skip debris from any old commands.
1117 */
1118 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1119 mmc_spi_readbytes(host, 10);
1120
1121 /*
1122 * Do a burst with chipselect active-high. We need to do this to
1123 * meet the requirement of 74 clock cycles with both chipselect
1124 * and CMD (MOSI) high before CMD0 ... after the card has been
1125 * powered up to Vdd(min), and so is ready to take commands.
1126 *
1127 * Some cards are particularly needy of this (e.g. Viking "SD256")
1128 * while most others don't seem to care.
1129 *
1130 * Note that this is one of the places MMC/SD plays games with the
1131 * SPI protocol. Another is that when chipselect is released while
1132 * the card returns BUSY status, the clock must issue several cycles
1133 * with chipselect high before the card will stop driving its output.
1134 *
1135 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1136 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1137 * inverted by gpiolib, so if we want to ascertain to drive it high
1138 * we should toggle the default with an XOR as we do here.
1139 */
1140 host->spi->mode ^= SPI_CS_HIGH;
1141 if (spi_setup(host->spi) != 0) {
1142 /* Just warn; most cards work without it. */
1143 dev_warn(&host->spi->dev,
1144 "can't change chip-select polarity\n");
1145 host->spi->mode ^= SPI_CS_HIGH;
1146 } else {
1147 mmc_spi_readbytes(host, 18);
1148
1149 host->spi->mode ^= SPI_CS_HIGH;
1150 if (spi_setup(host->spi) != 0) {
1151 /* Wot, we can't get the same setup we had before? */
1152 dev_err(&host->spi->dev,
1153 "can't restore chip-select polarity\n");
1154 }
1155 }
1156}
1157
1158static char *mmc_powerstring(u8 power_mode)
1159{
1160 switch (power_mode) {
1161 case MMC_POWER_OFF: return "off";
1162 case MMC_POWER_UP: return "up";
1163 case MMC_POWER_ON: return "on";
1164 }
1165 return "?";
1166}
1167
1168static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1169{
1170 struct mmc_spi_host *host = mmc_priv(mmc);
1171
1172 if (host->power_mode != ios->power_mode) {
1173 int canpower;
1174
1175 canpower = host->pdata && host->pdata->setpower;
1176
1177 dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1178 mmc_powerstring(ios->power_mode),
1179 ios->vdd,
1180 canpower ? ", can switch" : "");
1181
1182 /* switch power on/off if possible, accounting for
1183 * max 250msec powerup time if needed.
1184 */
1185 if (canpower) {
1186 switch (ios->power_mode) {
1187 case MMC_POWER_OFF:
1188 case MMC_POWER_UP:
1189 host->pdata->setpower(&host->spi->dev,
1190 ios->vdd);
1191 if (ios->power_mode == MMC_POWER_UP)
1192 msleep(host->powerup_msecs);
1193 }
1194 }
1195
1196 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1197 if (ios->power_mode == MMC_POWER_ON)
1198 mmc_spi_initsequence(host);
1199
1200 /* If powering down, ground all card inputs to avoid power
1201 * delivery from data lines! On a shared SPI bus, this
1202 * will probably be temporary; 6.4.2 of the simplified SD
1203 * spec says this must last at least 1msec.
1204 *
1205 * - Clock low means CPOL 0, e.g. mode 0
1206 * - MOSI low comes from writing zero
1207 * - Chipselect is usually active low...
1208 */
1209 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1210 int mres;
1211 u8 nullbyte = 0;
1212
1213 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1214 mres = spi_setup(host->spi);
1215 if (mres < 0)
1216 dev_dbg(&host->spi->dev,
1217 "switch to SPI mode 0 failed\n");
1218
1219 if (spi_write(host->spi, &nullbyte, 1) < 0)
1220 dev_dbg(&host->spi->dev,
1221 "put spi signals to low failed\n");
1222
1223 /*
1224 * Now clock should be low due to spi mode 0;
1225 * MOSI should be low because of written 0x00;
1226 * chipselect should be low (it is active low)
1227 * power supply is off, so now MMC is off too!
1228 *
1229 * FIXME no, chipselect can be high since the
1230 * device is inactive and SPI_CS_HIGH is clear...
1231 */
1232 msleep(10);
1233 if (mres == 0) {
1234 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1235 mres = spi_setup(host->spi);
1236 if (mres < 0)
1237 dev_dbg(&host->spi->dev,
1238 "switch back to SPI mode 3 failed\n");
1239 }
1240 }
1241
1242 host->power_mode = ios->power_mode;
1243 }
1244
1245 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1246 int status;
1247
1248 host->spi->max_speed_hz = ios->clock;
1249 status = spi_setup(host->spi);
1250 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n",
1251 host->spi->max_speed_hz, status);
1252 }
1253}
1254
1255static const struct mmc_host_ops mmc_spi_ops = {
1256 .request = mmc_spi_request,
1257 .set_ios = mmc_spi_set_ios,
1258 .get_ro = mmc_gpio_get_ro,
1259 .get_cd = mmc_gpio_get_cd,
1260};
1261
1262
1263/****************************************************************************/
1264
1265/*
1266 * SPI driver implementation
1267 */
1268
1269static irqreturn_t
1270mmc_spi_detect_irq(int irq, void *mmc)
1271{
1272 struct mmc_spi_host *host = mmc_priv(mmc);
1273 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1274
1275 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1276 return IRQ_HANDLED;
1277}
1278
1279#ifdef CONFIG_HAS_DMA
1280static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
1281{
1282 struct spi_device *spi = host->spi;
1283 struct device *dev;
1284
1285 if (!spi->master->dev.parent->dma_mask)
1286 return 0;
1287
1288 dev = spi->master->dev.parent;
1289
1290 host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
1291 DMA_TO_DEVICE);
1292 if (dma_mapping_error(dev, host->ones_dma))
1293 return -ENOMEM;
1294
1295 host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
1296 DMA_BIDIRECTIONAL);
1297 if (dma_mapping_error(dev, host->data_dma)) {
1298 dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1299 DMA_TO_DEVICE);
1300 return -ENOMEM;
1301 }
1302
1303 dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
1304 DMA_BIDIRECTIONAL);
1305
1306 host->dma_dev = dev;
1307 return 0;
1308}
1309
1310static void mmc_spi_dma_free(struct mmc_spi_host *host)
1311{
1312 if (!host->dma_dev)
1313 return;
1314
1315 dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1316 DMA_TO_DEVICE);
1317 dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data),
1318 DMA_BIDIRECTIONAL);
1319}
1320#else
1321static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
1322static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
1323#endif
1324
1325static int mmc_spi_probe(struct spi_device *spi)
1326{
1327 void *ones;
1328 struct mmc_host *mmc;
1329 struct mmc_spi_host *host;
1330 int status;
1331 bool has_ro = false;
1332
1333 /* We rely on full duplex transfers, mostly to reduce
1334 * per-transfer overheads (by making fewer transfers).
1335 */
1336 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1337 return -EINVAL;
1338
1339 /* MMC and SD specs only seem to care that sampling is on the
1340 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1341 * should be legit. We'll use mode 0 since the steady state is 0,
1342 * which is appropriate for hotplugging, unless the platform data
1343 * specify mode 3 (if hardware is not compatible to mode 0).
1344 */
1345 if (spi->mode != SPI_MODE_3)
1346 spi->mode = SPI_MODE_0;
1347 spi->bits_per_word = 8;
1348
1349 status = spi_setup(spi);
1350 if (status < 0) {
1351 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1352 spi->mode, spi->max_speed_hz / 1000,
1353 status);
1354 return status;
1355 }
1356
1357 /* We need a supply of ones to transmit. This is the only time
1358 * the CPU touches these, so cache coherency isn't a concern.
1359 *
1360 * NOTE if many systems use more than one MMC-over-SPI connector
1361 * it'd save some memory to share this. That's evidently rare.
1362 */
1363 status = -ENOMEM;
1364 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1365 if (!ones)
1366 goto nomem;
1367 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1368
1369 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1370 if (!mmc)
1371 goto nomem;
1372
1373 mmc->ops = &mmc_spi_ops;
1374 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1375 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1376 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1377 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1378
1379 mmc->caps = MMC_CAP_SPI;
1380
1381 /* SPI doesn't need the lowspeed device identification thing for
1382 * MMC or SD cards, since it never comes up in open drain mode.
1383 * That's good; some SPI masters can't handle very low speeds!
1384 *
1385 * However, low speed SDIO cards need not handle over 400 KHz;
1386 * that's the only reason not to use a few MHz for f_min (until
1387 * the upper layer reads the target frequency from the CSD).
1388 */
1389 mmc->f_min = 400000;
1390 mmc->f_max = spi->max_speed_hz;
1391
1392 host = mmc_priv(mmc);
1393 host->mmc = mmc;
1394 host->spi = spi;
1395
1396 host->ones = ones;
1397
1398 dev_set_drvdata(&spi->dev, mmc);
1399
1400 /* Platform data is used to hook up things like card sensing
1401 * and power switching gpios.
1402 */
1403 host->pdata = mmc_spi_get_pdata(spi);
1404 if (host->pdata)
1405 mmc->ocr_avail = host->pdata->ocr_mask;
1406 if (!mmc->ocr_avail) {
1407 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1408 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1409 }
1410 if (host->pdata && host->pdata->setpower) {
1411 host->powerup_msecs = host->pdata->powerup_msecs;
1412 if (!host->powerup_msecs || host->powerup_msecs > 250)
1413 host->powerup_msecs = 250;
1414 }
1415
1416 /* preallocate dma buffers */
1417 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1418 if (!host->data)
1419 goto fail_nobuf1;
1420
1421 status = mmc_spi_dma_alloc(host);
1422 if (status)
1423 goto fail_dma;
1424
1425 /* setup message for status/busy readback */
1426 spi_message_init(&host->readback);
1427 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1428
1429 spi_message_add_tail(&host->status, &host->readback);
1430 host->status.tx_buf = host->ones;
1431 host->status.tx_dma = host->ones_dma;
1432 host->status.rx_buf = &host->data->status;
1433 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1434 host->status.cs_change = 1;
1435
1436 /* register card detect irq */
1437 if (host->pdata && host->pdata->init) {
1438 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1439 if (status != 0)
1440 goto fail_glue_init;
1441 }
1442
1443 /* pass platform capabilities, if any */
1444 if (host->pdata) {
1445 mmc->caps |= host->pdata->caps;
1446 mmc->caps2 |= host->pdata->caps2;
1447 }
1448
1449 status = mmc_add_host(mmc);
1450 if (status != 0)
1451 goto fail_add_host;
1452
1453 /*
1454 * Index 0 is card detect
1455 * Old boardfiles were specifying 1 ms as debounce
1456 */
1457 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1458 if (status == -EPROBE_DEFER)
1459 goto fail_add_host;
1460 if (!status) {
1461 /*
1462 * The platform has a CD GPIO signal that may support
1463 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1464 * if polling is needed or not.
1465 */
1466 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1467 mmc_gpiod_request_cd_irq(mmc);
1468 }
1469 mmc_detect_change(mmc, 0);
1470
1471 /* Index 1 is write protect/read only */
1472 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1473 if (status == -EPROBE_DEFER)
1474 goto fail_add_host;
1475 if (!status)
1476 has_ro = true;
1477
1478 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1479 dev_name(&mmc->class_dev),
1480 host->dma_dev ? "" : ", no DMA",
1481 has_ro ? "" : ", no WP",
1482 (host->pdata && host->pdata->setpower)
1483 ? "" : ", no poweroff",
1484 (mmc->caps & MMC_CAP_NEEDS_POLL)
1485 ? ", cd polling" : "");
1486 return 0;
1487
1488fail_add_host:
1489 mmc_remove_host(mmc);
1490fail_glue_init:
1491 mmc_spi_dma_free(host);
1492fail_dma:
1493 kfree(host->data);
1494fail_nobuf1:
1495 mmc_spi_put_pdata(spi);
1496 mmc_free_host(mmc);
1497nomem:
1498 kfree(ones);
1499 return status;
1500}
1501
1502
1503static int mmc_spi_remove(struct spi_device *spi)
1504{
1505 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1506 struct mmc_spi_host *host = mmc_priv(mmc);
1507
1508 /* prevent new mmc_detect_change() calls */
1509 if (host->pdata && host->pdata->exit)
1510 host->pdata->exit(&spi->dev, mmc);
1511
1512 mmc_remove_host(mmc);
1513
1514 mmc_spi_dma_free(host);
1515 kfree(host->data);
1516 kfree(host->ones);
1517
1518 spi->max_speed_hz = mmc->f_max;
1519 mmc_spi_put_pdata(spi);
1520 mmc_free_host(mmc);
1521 return 0;
1522}
1523
1524static const struct of_device_id mmc_spi_of_match_table[] = {
1525 { .compatible = "mmc-spi-slot", },
1526 {},
1527};
1528MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1529
1530static struct spi_driver mmc_spi_driver = {
1531 .driver = {
1532 .name = "mmc_spi",
1533 .of_match_table = mmc_spi_of_match_table,
1534 },
1535 .probe = mmc_spi_probe,
1536 .remove = mmc_spi_remove,
1537};
1538
1539module_spi_driver(mmc_spi_driver);
1540
1541MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1542MODULE_DESCRIPTION("SPI SD/MMC host driver");
1543MODULE_LICENSE("GPL");
1544MODULE_ALIAS("spi:mmc_spi");