Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Copyright (C) 2011 Red Hat, Inc.
  4 *
  5 * This file is released under the GPL.
  6 */
  7
  8#ifndef DM_BTREE_INTERNAL_H
  9#define DM_BTREE_INTERNAL_H
 10
 11#include "dm-btree.h"
 12
 13/*----------------------------------------------------------------*/
 14
 15/*
 16 * We'll need 2 accessor functions for n->csum and n->blocknr
 17 * to support dm-btree-spine.c in that case.
 18 */
 19
 20enum node_flags {
 21	INTERNAL_NODE = 1,
 22	LEAF_NODE = 1 << 1
 23};
 24
 25/*
 26 * Every btree node begins with this structure.  Make sure it's a multiple
 27 * of 8-bytes in size, otherwise the 64bit keys will be mis-aligned.
 28 */
 29struct node_header {
 30	__le32 csum;
 31	__le32 flags;
 32	__le64 blocknr; /* Block this node is supposed to live in. */
 33
 34	__le32 nr_entries;
 35	__le32 max_entries;
 36	__le32 value_size;
 37	__le32 padding;
 38} __packed __aligned(8);
 39
 40struct btree_node {
 41	struct node_header header;
 42	__le64 keys[];
 43} __packed __aligned(8);
 44
 45
 46/*
 47 * Locks a block using the btree node validator.
 48 */
 49int bn_read_lock(struct dm_btree_info *info, dm_block_t b,
 50		 struct dm_block **result);
 51
 52void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
 53		  struct dm_btree_value_type *vt);
 54
 55int new_block(struct dm_btree_info *info, struct dm_block **result);
 56void unlock_block(struct dm_btree_info *info, struct dm_block *b);
 57
 58/*
 59 * Spines keep track of the rolling locks.  There are 2 variants, read-only
 60 * and one that uses shadowing.  These are separate structs to allow the
 61 * type checker to spot misuse, for example accidentally calling read_lock
 62 * on a shadow spine.
 63 */
 64struct ro_spine {
 65	struct dm_btree_info *info;
 66
 67	int count;
 68	struct dm_block *nodes[2];
 69};
 70
 71void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info);
 72void exit_ro_spine(struct ro_spine *s);
 73int ro_step(struct ro_spine *s, dm_block_t new_child);
 74void ro_pop(struct ro_spine *s);
 75struct btree_node *ro_node(struct ro_spine *s);
 76
 77struct shadow_spine {
 78	struct dm_btree_info *info;
 79
 80	int count;
 81	struct dm_block *nodes[2];
 82
 83	dm_block_t root;
 84};
 85
 86void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info);
 87void exit_shadow_spine(struct shadow_spine *s);
 88
 89int shadow_step(struct shadow_spine *s, dm_block_t b,
 90		struct dm_btree_value_type *vt);
 91
 92/*
 93 * The spine must have at least one entry before calling this.
 94 */
 95struct dm_block *shadow_current(struct shadow_spine *s);
 96
 97/*
 98 * The spine must have at least two entries before calling this.
 99 */
100struct dm_block *shadow_parent(struct shadow_spine *s);
101
102int shadow_has_parent(struct shadow_spine *s);
103
104dm_block_t shadow_root(struct shadow_spine *s);
105
106/*
107 * Some inlines.
108 */
109static inline __le64 *key_ptr(struct btree_node *n, uint32_t index)
110{
111	return n->keys + index;
112}
113
114static inline void *value_base(struct btree_node *n)
115{
116	return &n->keys[le32_to_cpu(n->header.max_entries)];
117}
118
119static inline void *value_ptr(struct btree_node *n, uint32_t index)
120{
121	uint32_t value_size = le32_to_cpu(n->header.value_size);
122
123	return value_base(n) + (value_size * index);
124}
125
126/*
127 * Assumes the values are suitably-aligned and converts to core format.
128 */
129static inline uint64_t value64(struct btree_node *n, uint32_t index)
130{
131	__le64 *values_le = value_base(n);
132
133	return le64_to_cpu(values_le[index]);
134}
135
136/*
137 * Searching for a key within a single node.
138 */
139int lower_bound(struct btree_node *n, uint64_t key);
140
141extern struct dm_block_validator btree_node_validator;
142
143/*
144 * Value type for upper levels of multi-level btrees.
145 */
146extern void init_le64_type(struct dm_transaction_manager *tm,
147			   struct dm_btree_value_type *vt);
148
149/*
150 * This returns a shadowed btree leaf that you may modify.  In practise
151 * this means overwrites only, since an insert could cause a node to
152 * be split.  Useful if you need access to the old value to calculate the
153 * new one.
154 *
155 * This only works with single level btrees.  The given key must be present in
156 * the tree, otherwise -EINVAL will be returned.
157 */
158int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
159			     uint64_t key, int *index,
160			     dm_block_t *new_root, struct dm_block **leaf);
161
162#endif	/* DM_BTREE_INTERNAL_H */
v5.14.15
 
  1/*
  2 * Copyright (C) 2011 Red Hat, Inc.
  3 *
  4 * This file is released under the GPL.
  5 */
  6
  7#ifndef DM_BTREE_INTERNAL_H
  8#define DM_BTREE_INTERNAL_H
  9
 10#include "dm-btree.h"
 11
 12/*----------------------------------------------------------------*/
 13
 14/*
 15 * We'll need 2 accessor functions for n->csum and n->blocknr
 16 * to support dm-btree-spine.c in that case.
 17 */
 18
 19enum node_flags {
 20	INTERNAL_NODE = 1,
 21	LEAF_NODE = 1 << 1
 22};
 23
 24/*
 25 * Every btree node begins with this structure.  Make sure it's a multiple
 26 * of 8-bytes in size, otherwise the 64bit keys will be mis-aligned.
 27 */
 28struct node_header {
 29	__le32 csum;
 30	__le32 flags;
 31	__le64 blocknr; /* Block this node is supposed to live in. */
 32
 33	__le32 nr_entries;
 34	__le32 max_entries;
 35	__le32 value_size;
 36	__le32 padding;
 37} __attribute__((packed, aligned(8)));
 38
 39struct btree_node {
 40	struct node_header header;
 41	__le64 keys[];
 42} __attribute__((packed, aligned(8)));
 43
 44
 45/*
 46 * Locks a block using the btree node validator.
 47 */
 48int bn_read_lock(struct dm_btree_info *info, dm_block_t b,
 49		 struct dm_block **result);
 50
 51void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
 52		  struct dm_btree_value_type *vt);
 53
 54int new_block(struct dm_btree_info *info, struct dm_block **result);
 55void unlock_block(struct dm_btree_info *info, struct dm_block *b);
 56
 57/*
 58 * Spines keep track of the rolling locks.  There are 2 variants, read-only
 59 * and one that uses shadowing.  These are separate structs to allow the
 60 * type checker to spot misuse, for example accidentally calling read_lock
 61 * on a shadow spine.
 62 */
 63struct ro_spine {
 64	struct dm_btree_info *info;
 65
 66	int count;
 67	struct dm_block *nodes[2];
 68};
 69
 70void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info);
 71void exit_ro_spine(struct ro_spine *s);
 72int ro_step(struct ro_spine *s, dm_block_t new_child);
 73void ro_pop(struct ro_spine *s);
 74struct btree_node *ro_node(struct ro_spine *s);
 75
 76struct shadow_spine {
 77	struct dm_btree_info *info;
 78
 79	int count;
 80	struct dm_block *nodes[2];
 81
 82	dm_block_t root;
 83};
 84
 85void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info);
 86void exit_shadow_spine(struct shadow_spine *s);
 87
 88int shadow_step(struct shadow_spine *s, dm_block_t b,
 89		struct dm_btree_value_type *vt);
 90
 91/*
 92 * The spine must have at least one entry before calling this.
 93 */
 94struct dm_block *shadow_current(struct shadow_spine *s);
 95
 96/*
 97 * The spine must have at least two entries before calling this.
 98 */
 99struct dm_block *shadow_parent(struct shadow_spine *s);
100
101int shadow_has_parent(struct shadow_spine *s);
102
103dm_block_t shadow_root(struct shadow_spine *s);
104
105/*
106 * Some inlines.
107 */
108static inline __le64 *key_ptr(struct btree_node *n, uint32_t index)
109{
110	return n->keys + index;
111}
112
113static inline void *value_base(struct btree_node *n)
114{
115	return &n->keys[le32_to_cpu(n->header.max_entries)];
116}
117
118static inline void *value_ptr(struct btree_node *n, uint32_t index)
119{
120	uint32_t value_size = le32_to_cpu(n->header.value_size);
 
121	return value_base(n) + (value_size * index);
122}
123
124/*
125 * Assumes the values are suitably-aligned and converts to core format.
126 */
127static inline uint64_t value64(struct btree_node *n, uint32_t index)
128{
129	__le64 *values_le = value_base(n);
130
131	return le64_to_cpu(values_le[index]);
132}
133
134/*
135 * Searching for a key within a single node.
136 */
137int lower_bound(struct btree_node *n, uint64_t key);
138
139extern struct dm_block_validator btree_node_validator;
140
141/*
142 * Value type for upper levels of multi-level btrees.
143 */
144extern void init_le64_type(struct dm_transaction_manager *tm,
145			   struct dm_btree_value_type *vt);
146
147/*
148 * This returns a shadowed btree leaf that you may modify.  In practise
149 * this means overwrites only, since an insert could cause a node to
150 * be split.  Useful if you need access to the old value to calculate the
151 * new one.
152 *
153 * This only works with single level btrees.  The given key must be present in
154 * the tree, otherwise -EINVAL will be returned.
155 */
156int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
157			     uint64_t key, int *index,
158			     dm_block_t *new_root, struct dm_block **leaf);
159
160#endif	/* DM_BTREE_INTERNAL_H */