Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
  2/**************************************************************************
  3 *
  4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
  5 * All Rights Reserved.
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the
  9 * "Software"), to deal in the Software without restriction, including
 10 * without limitation the rights to use, copy, modify, merge, publish,
 11 * distribute, sub license, and/or sell copies of the Software, and to
 12 * permit persons to whom the Software is furnished to do so, subject to
 13 * the following conditions:
 14 *
 15 * The above copyright notice and this permission notice (including the
 16 * next paragraph) shall be included in all copies or substantial portions
 17 * of the Software.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 26 *
 27 **************************************************************************/
 28/*
 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 30 */
 31
 32#include <linux/vmalloc.h>
 33
 34#include <drm/ttm/ttm_bo.h>
 35#include <drm/ttm/ttm_placement.h>
 36#include <drm/ttm/ttm_tt.h>
 37
 38#include <drm/drm_cache.h>
 
 
 
 
 
 
 
 
 
 39
 40struct ttm_transfer_obj {
 41	struct ttm_buffer_object base;
 42	struct ttm_buffer_object *bo;
 43};
 44
 45int ttm_mem_io_reserve(struct ttm_device *bdev,
 46		       struct ttm_resource *mem)
 47{
 48	if (mem->bus.offset || mem->bus.addr)
 49		return 0;
 50
 51	mem->bus.is_iomem = false;
 52	if (!bdev->funcs->io_mem_reserve)
 53		return 0;
 54
 55	return bdev->funcs->io_mem_reserve(bdev, mem);
 56}
 57
 58void ttm_mem_io_free(struct ttm_device *bdev,
 59		     struct ttm_resource *mem)
 60{
 61	if (!mem)
 62		return;
 63
 64	if (!mem->bus.offset && !mem->bus.addr)
 65		return;
 66
 67	if (bdev->funcs->io_mem_free)
 68		bdev->funcs->io_mem_free(bdev, mem);
 69
 70	mem->bus.offset = 0;
 71	mem->bus.addr = NULL;
 72}
 73
 74/**
 75 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
 76 * @clear: Whether to clear rather than copy.
 77 * @num_pages: Number of pages of the operation.
 78 * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
 79 * @src_iter: A struct ttm_kmap_iter representing the source resource.
 80 *
 81 * This function is intended to be able to move out async under a
 82 * dma-fence if desired.
 83 */
 84void ttm_move_memcpy(bool clear,
 85		     u32 num_pages,
 86		     struct ttm_kmap_iter *dst_iter,
 87		     struct ttm_kmap_iter *src_iter)
 88{
 89	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
 90	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
 91	struct iosys_map src_map, dst_map;
 
 92	pgoff_t i;
 93
 94	/* Single TTM move. NOP */
 95	if (dst_ops->maps_tt && src_ops->maps_tt)
 96		return;
 97
 98	/* Don't move nonexistent data. Clear destination instead. */
 99	if (clear) {
 
 
 
100		for (i = 0; i < num_pages; ++i) {
101			dst_ops->map_local(dst_iter, &dst_map, i);
102			if (dst_map.is_iomem)
103				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
104			else
105				memset(dst_map.vaddr, 0, PAGE_SIZE);
106			if (dst_ops->unmap_local)
107				dst_ops->unmap_local(dst_iter, &dst_map);
108		}
109		return;
110	}
111
112	for (i = 0; i < num_pages; ++i) {
113		dst_ops->map_local(dst_iter, &dst_map, i);
114		src_ops->map_local(src_iter, &src_map, i);
115
116		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
117
118		if (src_ops->unmap_local)
119			src_ops->unmap_local(src_iter, &src_map);
120		if (dst_ops->unmap_local)
121			dst_ops->unmap_local(dst_iter, &dst_map);
122	}
123}
124EXPORT_SYMBOL(ttm_move_memcpy);
125
126/**
127 * ttm_bo_move_memcpy
128 *
129 * @bo: A pointer to a struct ttm_buffer_object.
130 * @ctx: operation context
131 * @dst_mem: struct ttm_resource indicating where to move.
132 *
133 * Fallback move function for a mappable buffer object in mappable memory.
134 * The function will, if successful,
135 * free any old aperture space, and set (@new_mem)->mm_node to NULL,
136 * and update the (@bo)->mem placement flags. If unsuccessful, the old
137 * data remains untouched, and it's up to the caller to free the
138 * memory space indicated by @new_mem.
139 * Returns:
140 * !0: Failure.
141 */
142int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
143		       struct ttm_operation_ctx *ctx,
144		       struct ttm_resource *dst_mem)
145{
146	struct ttm_device *bdev = bo->bdev;
147	struct ttm_resource_manager *dst_man =
148		ttm_manager_type(bo->bdev, dst_mem->mem_type);
149	struct ttm_tt *ttm = bo->ttm;
150	struct ttm_resource *src_mem = bo->resource;
151	struct ttm_resource_manager *src_man;
 
152	union {
153		struct ttm_kmap_iter_tt tt;
154		struct ttm_kmap_iter_linear_io io;
155	} _dst_iter, _src_iter;
156	struct ttm_kmap_iter *dst_iter, *src_iter;
157	bool clear;
158	int ret = 0;
159
160	if (WARN_ON(!src_mem))
161		return -EINVAL;
162
163	src_man = ttm_manager_type(bdev, src_mem->mem_type);
164	if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
165		    dst_man->use_tt)) {
166		ret = ttm_tt_populate(bdev, ttm, ctx);
167		if (ret)
168			return ret;
169	}
170
171	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
172	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
173		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
174	if (IS_ERR(dst_iter))
175		return PTR_ERR(dst_iter);
176
177	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
178	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
179		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
180	if (IS_ERR(src_iter)) {
181		ret = PTR_ERR(src_iter);
182		goto out_src_iter;
183	}
184
185	clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
186	if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
187		ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
188
189	if (!src_iter->ops->maps_tt)
190		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
191	ttm_bo_move_sync_cleanup(bo, dst_mem);
192
193out_src_iter:
194	if (!dst_iter->ops->maps_tt)
195		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
196
197	return ret;
198}
199EXPORT_SYMBOL(ttm_bo_move_memcpy);
200
201static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
202{
203	struct ttm_transfer_obj *fbo;
204
205	fbo = container_of(bo, struct ttm_transfer_obj, base);
206	dma_resv_fini(&fbo->base.base._resv);
207	ttm_bo_put(fbo->bo);
208	kfree(fbo);
209}
210
211/**
212 * ttm_buffer_object_transfer
213 *
214 * @bo: A pointer to a struct ttm_buffer_object.
215 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
216 * holding the data of @bo with the old placement.
217 *
218 * This is a utility function that may be called after an accelerated move
219 * has been scheduled. A new buffer object is created as a placeholder for
220 * the old data while it's being copied. When that buffer object is idle,
221 * it can be destroyed, releasing the space of the old placement.
222 * Returns:
223 * !0: Failure.
224 */
225
226static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
227				      struct ttm_buffer_object **new_obj)
228{
229	struct ttm_transfer_obj *fbo;
230	int ret;
231
232	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
233	if (!fbo)
234		return -ENOMEM;
235
236	fbo->base = *bo;
237
 
 
 
238	/**
239	 * Fix up members that we shouldn't copy directly:
240	 * TODO: Explicit member copy would probably be better here.
241	 */
242
243	atomic_inc(&ttm_glob.bo_count);
 
 
 
244	drm_vma_node_reset(&fbo->base.base.vma_node);
245
246	kref_init(&fbo->base.kref);
247	fbo->base.destroy = &ttm_transfered_destroy;
248	fbo->base.pin_count = 0;
249	if (bo->type != ttm_bo_type_sg)
250		fbo->base.base.resv = &fbo->base.base._resv;
251
252	dma_resv_init(&fbo->base.base._resv);
253	fbo->base.base.dev = NULL;
254	ret = dma_resv_trylock(&fbo->base.base._resv);
255	WARN_ON(!ret);
256
257	if (fbo->base.resource) {
258		ttm_resource_set_bo(fbo->base.resource, &fbo->base);
259		bo->resource = NULL;
260		ttm_bo_set_bulk_move(&fbo->base, NULL);
261	} else {
262		fbo->base.bulk_move = NULL;
263	}
264
265	ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
266	if (ret) {
267		kfree(fbo);
268		return ret;
269	}
270
271	ttm_bo_get(bo);
272	fbo->bo = bo;
273
274	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
275
276	*new_obj = &fbo->base;
277	return 0;
278}
279
280/**
281 * ttm_io_prot
282 *
283 * @bo: ttm buffer object
284 * @res: ttm resource object
285 * @tmp: Page protection flag for a normal, cached mapping.
286 *
287 * Utility function that returns the pgprot_t that should be used for
288 * setting up a PTE with the caching model indicated by @c_state.
289 */
290pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
291		     pgprot_t tmp)
292{
293	struct ttm_resource_manager *man;
294	enum ttm_caching caching;
295
296	man = ttm_manager_type(bo->bdev, res->mem_type);
297	caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
298
299	return ttm_prot_from_caching(caching, tmp);
300}
301EXPORT_SYMBOL(ttm_io_prot);
302
303static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
304			  unsigned long offset,
305			  unsigned long size,
306			  struct ttm_bo_kmap_obj *map)
307{
308	struct ttm_resource *mem = bo->resource;
309
310	if (bo->resource->bus.addr) {
311		map->bo_kmap_type = ttm_bo_map_premapped;
312		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
313	} else {
314		resource_size_t res = bo->resource->bus.offset + offset;
315
316		map->bo_kmap_type = ttm_bo_map_iomap;
317		if (mem->bus.caching == ttm_write_combined)
318			map->virtual = ioremap_wc(res, size);
319#ifdef CONFIG_X86
320		else if (mem->bus.caching == ttm_cached)
321			map->virtual = ioremap_cache(res, size);
322#endif
323		else
324			map->virtual = ioremap(res, size);
325	}
326	return (!map->virtual) ? -ENOMEM : 0;
327}
328
329static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
330			   unsigned long start_page,
331			   unsigned long num_pages,
332			   struct ttm_bo_kmap_obj *map)
333{
334	struct ttm_resource *mem = bo->resource;
335	struct ttm_operation_ctx ctx = {
336		.interruptible = false,
337		.no_wait_gpu = false
338	};
339	struct ttm_tt *ttm = bo->ttm;
340	pgprot_t prot;
341	int ret;
342
343	BUG_ON(!ttm);
344
345	ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
346	if (ret)
347		return ret;
348
349	if (num_pages == 1 && ttm->caching == ttm_cached) {
350		/*
351		 * We're mapping a single page, and the desired
352		 * page protection is consistent with the bo.
353		 */
354
355		map->bo_kmap_type = ttm_bo_map_kmap;
356		map->page = ttm->pages[start_page];
357		map->virtual = kmap(map->page);
358	} else {
359		/*
360		 * We need to use vmap to get the desired page protection
361		 * or to make the buffer object look contiguous.
362		 */
363		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
364		map->bo_kmap_type = ttm_bo_map_vmap;
365		map->virtual = vmap(ttm->pages + start_page, num_pages,
366				    0, prot);
367	}
368	return (!map->virtual) ? -ENOMEM : 0;
369}
370
371/**
372 * ttm_bo_kmap
373 *
374 * @bo: The buffer object.
375 * @start_page: The first page to map.
376 * @num_pages: Number of pages to map.
377 * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
378 *
379 * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
380 * data in the buffer object. The ttm_kmap_obj_virtual function can then be
381 * used to obtain a virtual address to the data.
382 *
383 * Returns
384 * -ENOMEM: Out of memory.
385 * -EINVAL: Invalid range.
386 */
387int ttm_bo_kmap(struct ttm_buffer_object *bo,
388		unsigned long start_page, unsigned long num_pages,
389		struct ttm_bo_kmap_obj *map)
390{
391	unsigned long offset, size;
392	int ret;
393
394	map->virtual = NULL;
395	map->bo = bo;
396	if (num_pages > PFN_UP(bo->resource->size))
397		return -EINVAL;
398	if ((start_page + num_pages) > PFN_UP(bo->resource->size))
399		return -EINVAL;
400
401	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
402	if (ret)
403		return ret;
404	if (!bo->resource->bus.is_iomem) {
405		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
406	} else {
407		offset = start_page << PAGE_SHIFT;
408		size = num_pages << PAGE_SHIFT;
409		return ttm_bo_ioremap(bo, offset, size, map);
410	}
411}
412EXPORT_SYMBOL(ttm_bo_kmap);
413
414/**
415 * ttm_bo_kunmap
416 *
417 * @map: Object describing the map to unmap.
418 *
419 * Unmaps a kernel map set up by ttm_bo_kmap.
420 */
421void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
422{
423	if (!map->virtual)
424		return;
425	switch (map->bo_kmap_type) {
426	case ttm_bo_map_iomap:
427		iounmap(map->virtual);
428		break;
429	case ttm_bo_map_vmap:
430		vunmap(map->virtual);
431		break;
432	case ttm_bo_map_kmap:
433		kunmap(map->page);
434		break;
435	case ttm_bo_map_premapped:
436		break;
437	default:
438		BUG();
439	}
440	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
441	map->virtual = NULL;
442	map->page = NULL;
443}
444EXPORT_SYMBOL(ttm_bo_kunmap);
445
446/**
447 * ttm_bo_vmap
448 *
449 * @bo: The buffer object.
450 * @map: pointer to a struct iosys_map representing the map.
451 *
452 * Sets up a kernel virtual mapping, using ioremap or vmap to the
453 * data in the buffer object. The parameter @map returns the virtual
454 * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
455 *
456 * Returns
457 * -ENOMEM: Out of memory.
458 * -EINVAL: Invalid range.
459 */
460int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
461{
462	struct ttm_resource *mem = bo->resource;
463	int ret;
464
465	dma_resv_assert_held(bo->base.resv);
466
467	ret = ttm_mem_io_reserve(bo->bdev, mem);
468	if (ret)
469		return ret;
470
471	if (mem->bus.is_iomem) {
472		void __iomem *vaddr_iomem;
473
474		if (mem->bus.addr)
475			vaddr_iomem = (void __iomem *)mem->bus.addr;
476		else if (mem->bus.caching == ttm_write_combined)
477			vaddr_iomem = ioremap_wc(mem->bus.offset,
478						 bo->base.size);
479#ifdef CONFIG_X86
480		else if (mem->bus.caching == ttm_cached)
481			vaddr_iomem = ioremap_cache(mem->bus.offset,
482						  bo->base.size);
483#endif
484		else
485			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
486
487		if (!vaddr_iomem)
488			return -ENOMEM;
489
490		iosys_map_set_vaddr_iomem(map, vaddr_iomem);
491
492	} else {
493		struct ttm_operation_ctx ctx = {
494			.interruptible = false,
495			.no_wait_gpu = false
496		};
497		struct ttm_tt *ttm = bo->ttm;
498		pgprot_t prot;
499		void *vaddr;
500
501		ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
502		if (ret)
503			return ret;
504
505		/*
506		 * We need to use vmap to get the desired page protection
507		 * or to make the buffer object look contiguous.
508		 */
509		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
510		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
511		if (!vaddr)
512			return -ENOMEM;
513
514		iosys_map_set_vaddr(map, vaddr);
515	}
516
517	return 0;
518}
519EXPORT_SYMBOL(ttm_bo_vmap);
520
521/**
522 * ttm_bo_vunmap
523 *
524 * @bo: The buffer object.
525 * @map: Object describing the map to unmap.
526 *
527 * Unmaps a kernel map set up by ttm_bo_vmap().
528 */
529void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
530{
531	struct ttm_resource *mem = bo->resource;
532
533	dma_resv_assert_held(bo->base.resv);
534
535	if (iosys_map_is_null(map))
536		return;
537
538	if (!map->is_iomem)
539		vunmap(map->vaddr);
540	else if (!mem->bus.addr)
541		iounmap(map->vaddr_iomem);
542	iosys_map_clear(map);
543
544	ttm_mem_io_free(bo->bdev, bo->resource);
545}
546EXPORT_SYMBOL(ttm_bo_vunmap);
547
548static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
549				 bool dst_use_tt)
550{
551	long ret;
552
553	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
554				    false, 15 * HZ);
555	if (ret == 0)
556		return -EBUSY;
557	if (ret < 0)
558		return ret;
559
560	if (!dst_use_tt)
561		ttm_bo_tt_destroy(bo);
562	ttm_resource_free(bo, &bo->resource);
563	return 0;
564}
565
566static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
567				struct dma_fence *fence,
568				bool dst_use_tt)
569{
570	struct ttm_buffer_object *ghost_obj;
571	int ret;
572
573	/**
574	 * This should help pipeline ordinary buffer moves.
575	 *
576	 * Hang old buffer memory on a new buffer object,
577	 * and leave it to be released when the GPU
578	 * operation has completed.
579	 */
580
 
 
 
581	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
582	if (ret)
583		return ret;
584
585	dma_resv_add_fence(&ghost_obj->base._resv, fence,
586			   DMA_RESV_USAGE_KERNEL);
587
588	/**
589	 * If we're not moving to fixed memory, the TTM object
590	 * needs to stay alive. Otherwhise hang it on the ghost
591	 * bo to be unbound and destroyed.
592	 */
593
594	if (dst_use_tt)
595		ghost_obj->ttm = NULL;
596	else
597		bo->ttm = NULL;
 
598
599	dma_resv_unlock(&ghost_obj->base._resv);
600	ttm_bo_put(ghost_obj);
601	return 0;
602}
603
604static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
605				       struct dma_fence *fence)
606{
607	struct ttm_device *bdev = bo->bdev;
608	struct ttm_resource_manager *from;
609
610	from = ttm_manager_type(bdev, bo->resource->mem_type);
611
612	/**
613	 * BO doesn't have a TTM we need to bind/unbind. Just remember
614	 * this eviction and free up the allocation
615	 */
616	spin_lock(&from->move_lock);
617	if (!from->move || dma_fence_is_later(fence, from->move)) {
618		dma_fence_put(from->move);
619		from->move = dma_fence_get(fence);
620	}
621	spin_unlock(&from->move_lock);
622
623	ttm_resource_free(bo, &bo->resource);
 
 
 
624}
625
626/**
627 * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
628 *
629 * @bo: A pointer to a struct ttm_buffer_object.
630 * @fence: A fence object that signals when moving is complete.
631 * @evict: This is an evict move. Don't return until the buffer is idle.
632 * @pipeline: evictions are to be pipelined.
633 * @new_mem: struct ttm_resource indicating where to move.
634 *
635 * Accelerated move function to be called when an accelerated move
636 * has been scheduled. The function will create a new temporary buffer object
637 * representing the old placement, and put the sync object on both buffer
638 * objects. After that the newly created buffer object is unref'd to be
639 * destroyed when the move is complete. This will help pipeline
640 * buffer moves.
641 */
642int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
643			      struct dma_fence *fence,
644			      bool evict,
645			      bool pipeline,
646			      struct ttm_resource *new_mem)
647{
648	struct ttm_device *bdev = bo->bdev;
649	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
650	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
651	int ret = 0;
652
653	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
654	if (!evict)
655		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
656	else if (!from->use_tt && pipeline)
657		ttm_bo_move_pipeline_evict(bo, fence);
658	else
659		ret = ttm_bo_wait_free_node(bo, man->use_tt);
660
661	if (ret)
662		return ret;
663
664	ttm_bo_assign_mem(bo, new_mem);
665
666	return 0;
667}
668EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
669
670/**
671 * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
672 *
673 * @bo: A pointer to a struct ttm_buffer_object.
674 * @new_mem: struct ttm_resource indicating where to move.
675 *
676 * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
677 * by the caller to be idle. Typically used after memcpy buffer moves.
678 */
679void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
680			      struct ttm_resource *new_mem)
681{
682	struct ttm_device *bdev = bo->bdev;
683	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
684	int ret;
685
686	ret = ttm_bo_wait_free_node(bo, man->use_tt);
687	if (WARN_ON(ret))
688		return;
689
690	ttm_bo_assign_mem(bo, new_mem);
691}
692EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
693
694/**
695 * ttm_bo_pipeline_gutting - purge the contents of a bo
696 * @bo: The buffer object
697 *
698 * Purge the contents of a bo, async if the bo is not idle.
699 * After a successful call, the bo is left unpopulated in
700 * system placement. The function may wait uninterruptible
701 * for idle on OOM.
702 *
703 * Return: 0 if successful, negative error code on failure.
704 */
705int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
706{
 
707	struct ttm_buffer_object *ghost;
 
708	struct ttm_tt *ttm;
709	int ret;
710
 
 
 
 
711	/* If already idle, no need for ghost object dance. */
712	if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
 
713		if (!bo->ttm) {
714			/* See comment below about clearing. */
715			ret = ttm_tt_create(bo, true);
716			if (ret)
717				return ret;
718		} else {
719			ttm_tt_unpopulate(bo->bdev, bo->ttm);
720			if (bo->type == ttm_bo_type_device)
721				ttm_tt_mark_for_clear(bo->ttm);
722		}
723		ttm_resource_free(bo, &bo->resource);
 
724		return 0;
725	}
726
727	/*
728	 * We need an unpopulated ttm_tt after giving our current one,
729	 * if any, to the ghost object. And we can't afford to fail
730	 * creating one *after* the operation. If the bo subsequently gets
731	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
732	 * to avoid leaking sensitive information to user-space.
733	 */
734
735	ttm = bo->ttm;
736	bo->ttm = NULL;
737	ret = ttm_tt_create(bo, true);
738	swap(bo->ttm, ttm);
739	if (ret)
740		return ret;
741
742	ret = ttm_buffer_object_transfer(bo, &ghost);
743	if (ret)
744		goto error_destroy_tt;
745
746	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
747	/* Last resort, wait for the BO to be idle when we are OOM */
748	if (ret) {
749		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
750				      false, MAX_SCHEDULE_TIMEOUT);
751	}
752
753	dma_resv_unlock(&ghost->base._resv);
754	ttm_bo_put(ghost);
755	bo->ttm = ttm;
 
 
756	return 0;
757
758error_destroy_tt:
759	ttm_tt_destroy(bo->bdev, ttm);
 
 
 
760	return ret;
761}
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
  2/**************************************************************************
  3 *
  4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
  5 * All Rights Reserved.
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the
  9 * "Software"), to deal in the Software without restriction, including
 10 * without limitation the rights to use, copy, modify, merge, publish,
 11 * distribute, sub license, and/or sell copies of the Software, and to
 12 * permit persons to whom the Software is furnished to do so, subject to
 13 * the following conditions:
 14 *
 15 * The above copyright notice and this permission notice (including the
 16 * next paragraph) shall be included in all copies or substantial portions
 17 * of the Software.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 26 *
 27 **************************************************************************/
 28/*
 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 30 */
 31
 32#include <drm/ttm/ttm_bo_driver.h>
 
 
 33#include <drm/ttm/ttm_placement.h>
 
 
 34#include <drm/drm_cache.h>
 35#include <drm/drm_vma_manager.h>
 36#include <linux/dma-buf-map.h>
 37#include <linux/io.h>
 38#include <linux/highmem.h>
 39#include <linux/wait.h>
 40#include <linux/slab.h>
 41#include <linux/vmalloc.h>
 42#include <linux/module.h>
 43#include <linux/dma-resv.h>
 44
 45struct ttm_transfer_obj {
 46	struct ttm_buffer_object base;
 47	struct ttm_buffer_object *bo;
 48};
 49
 50int ttm_mem_io_reserve(struct ttm_device *bdev,
 51		       struct ttm_resource *mem)
 52{
 53	if (mem->bus.offset || mem->bus.addr)
 54		return 0;
 55
 56	mem->bus.is_iomem = false;
 57	if (!bdev->funcs->io_mem_reserve)
 58		return 0;
 59
 60	return bdev->funcs->io_mem_reserve(bdev, mem);
 61}
 62
 63void ttm_mem_io_free(struct ttm_device *bdev,
 64		     struct ttm_resource *mem)
 65{
 66	if (!mem)
 67		return;
 68
 69	if (!mem->bus.offset && !mem->bus.addr)
 70		return;
 71
 72	if (bdev->funcs->io_mem_free)
 73		bdev->funcs->io_mem_free(bdev, mem);
 74
 75	mem->bus.offset = 0;
 76	mem->bus.addr = NULL;
 77}
 78
 79/**
 80 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
 81 * @bo: The struct ttm_buffer_object.
 82 * @new_mem: The struct ttm_resource we're moving to (copy destination).
 83 * @new_iter: A struct ttm_kmap_iter representing the destination resource.
 84 * @src_iter: A struct ttm_kmap_iter representing the source resource.
 85 *
 86 * This function is intended to be able to move out async under a
 87 * dma-fence if desired.
 88 */
 89void ttm_move_memcpy(struct ttm_buffer_object *bo,
 90		     u32 num_pages,
 91		     struct ttm_kmap_iter *dst_iter,
 92		     struct ttm_kmap_iter *src_iter)
 93{
 94	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
 95	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
 96	struct ttm_tt *ttm = bo->ttm;
 97	struct dma_buf_map src_map, dst_map;
 98	pgoff_t i;
 99
100	/* Single TTM move. NOP */
101	if (dst_ops->maps_tt && src_ops->maps_tt)
102		return;
103
104	/* Don't move nonexistent data. Clear destination instead. */
105	if (src_ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm))) {
106		if (ttm && !(ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC))
107			return;
108
109		for (i = 0; i < num_pages; ++i) {
110			dst_ops->map_local(dst_iter, &dst_map, i);
111			if (dst_map.is_iomem)
112				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
113			else
114				memset(dst_map.vaddr, 0, PAGE_SIZE);
115			if (dst_ops->unmap_local)
116				dst_ops->unmap_local(dst_iter, &dst_map);
117		}
118		return;
119	}
120
121	for (i = 0; i < num_pages; ++i) {
122		dst_ops->map_local(dst_iter, &dst_map, i);
123		src_ops->map_local(src_iter, &src_map, i);
124
125		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
126
127		if (src_ops->unmap_local)
128			src_ops->unmap_local(src_iter, &src_map);
129		if (dst_ops->unmap_local)
130			dst_ops->unmap_local(dst_iter, &dst_map);
131	}
132}
133EXPORT_SYMBOL(ttm_move_memcpy);
134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
136		       struct ttm_operation_ctx *ctx,
137		       struct ttm_resource *dst_mem)
138{
139	struct ttm_device *bdev = bo->bdev;
140	struct ttm_resource_manager *dst_man =
141		ttm_manager_type(bo->bdev, dst_mem->mem_type);
142	struct ttm_tt *ttm = bo->ttm;
143	struct ttm_resource *src_mem = bo->resource;
144	struct ttm_resource_manager *src_man =
145		ttm_manager_type(bdev, src_mem->mem_type);
146	union {
147		struct ttm_kmap_iter_tt tt;
148		struct ttm_kmap_iter_linear_io io;
149	} _dst_iter, _src_iter;
150	struct ttm_kmap_iter *dst_iter, *src_iter;
 
151	int ret = 0;
152
153	if (ttm && ((ttm->page_flags & TTM_PAGE_FLAG_SWAPPED) ||
 
 
 
 
154		    dst_man->use_tt)) {
155		ret = ttm_tt_populate(bdev, ttm, ctx);
156		if (ret)
157			return ret;
158	}
159
160	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
161	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
162		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
163	if (IS_ERR(dst_iter))
164		return PTR_ERR(dst_iter);
165
166	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
167	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
168		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
169	if (IS_ERR(src_iter)) {
170		ret = PTR_ERR(src_iter);
171		goto out_src_iter;
172	}
173
174	ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter);
 
 
175
176	if (!src_iter->ops->maps_tt)
177		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
178	ttm_bo_move_sync_cleanup(bo, dst_mem);
179
180out_src_iter:
181	if (!dst_iter->ops->maps_tt)
182		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
183
184	return ret;
185}
186EXPORT_SYMBOL(ttm_bo_move_memcpy);
187
188static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
189{
190	struct ttm_transfer_obj *fbo;
191
192	fbo = container_of(bo, struct ttm_transfer_obj, base);
 
193	ttm_bo_put(fbo->bo);
194	kfree(fbo);
195}
196
197/**
198 * ttm_buffer_object_transfer
199 *
200 * @bo: A pointer to a struct ttm_buffer_object.
201 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
202 * holding the data of @bo with the old placement.
203 *
204 * This is a utility function that may be called after an accelerated move
205 * has been scheduled. A new buffer object is created as a placeholder for
206 * the old data while it's being copied. When that buffer object is idle,
207 * it can be destroyed, releasing the space of the old placement.
208 * Returns:
209 * !0: Failure.
210 */
211
212static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
213				      struct ttm_buffer_object **new_obj)
214{
215	struct ttm_transfer_obj *fbo;
216	int ret;
217
218	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
219	if (!fbo)
220		return -ENOMEM;
221
222	fbo->base = *bo;
223
224	ttm_bo_get(bo);
225	fbo->bo = bo;
226
227	/**
228	 * Fix up members that we shouldn't copy directly:
229	 * TODO: Explicit member copy would probably be better here.
230	 */
231
232	atomic_inc(&ttm_glob.bo_count);
233	INIT_LIST_HEAD(&fbo->base.ddestroy);
234	INIT_LIST_HEAD(&fbo->base.lru);
235	fbo->base.moving = NULL;
236	drm_vma_node_reset(&fbo->base.base.vma_node);
237
238	kref_init(&fbo->base.kref);
239	fbo->base.destroy = &ttm_transfered_destroy;
240	fbo->base.pin_count = 0;
241	if (bo->type != ttm_bo_type_sg)
242		fbo->base.base.resv = &fbo->base.base._resv;
243
244	dma_resv_init(&fbo->base.base._resv);
245	fbo->base.base.dev = NULL;
246	ret = dma_resv_trylock(&fbo->base.base._resv);
247	WARN_ON(!ret);
248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
250
251	*new_obj = &fbo->base;
252	return 0;
253}
254
 
 
 
 
 
 
 
 
 
 
255pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
256		     pgprot_t tmp)
257{
258	struct ttm_resource_manager *man;
259	enum ttm_caching caching;
260
261	man = ttm_manager_type(bo->bdev, res->mem_type);
262	caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
263
264	return ttm_prot_from_caching(caching, tmp);
265}
266EXPORT_SYMBOL(ttm_io_prot);
267
268static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
269			  unsigned long offset,
270			  unsigned long size,
271			  struct ttm_bo_kmap_obj *map)
272{
273	struct ttm_resource *mem = bo->resource;
274
275	if (bo->resource->bus.addr) {
276		map->bo_kmap_type = ttm_bo_map_premapped;
277		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
278	} else {
279		resource_size_t res = bo->resource->bus.offset + offset;
280
281		map->bo_kmap_type = ttm_bo_map_iomap;
282		if (mem->bus.caching == ttm_write_combined)
283			map->virtual = ioremap_wc(res, size);
284#ifdef CONFIG_X86
285		else if (mem->bus.caching == ttm_cached)
286			map->virtual = ioremap_cache(res, size);
287#endif
288		else
289			map->virtual = ioremap(res, size);
290	}
291	return (!map->virtual) ? -ENOMEM : 0;
292}
293
294static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
295			   unsigned long start_page,
296			   unsigned long num_pages,
297			   struct ttm_bo_kmap_obj *map)
298{
299	struct ttm_resource *mem = bo->resource;
300	struct ttm_operation_ctx ctx = {
301		.interruptible = false,
302		.no_wait_gpu = false
303	};
304	struct ttm_tt *ttm = bo->ttm;
305	pgprot_t prot;
306	int ret;
307
308	BUG_ON(!ttm);
309
310	ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
311	if (ret)
312		return ret;
313
314	if (num_pages == 1 && ttm->caching == ttm_cached) {
315		/*
316		 * We're mapping a single page, and the desired
317		 * page protection is consistent with the bo.
318		 */
319
320		map->bo_kmap_type = ttm_bo_map_kmap;
321		map->page = ttm->pages[start_page];
322		map->virtual = kmap(map->page);
323	} else {
324		/*
325		 * We need to use vmap to get the desired page protection
326		 * or to make the buffer object look contiguous.
327		 */
328		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
329		map->bo_kmap_type = ttm_bo_map_vmap;
330		map->virtual = vmap(ttm->pages + start_page, num_pages,
331				    0, prot);
332	}
333	return (!map->virtual) ? -ENOMEM : 0;
334}
335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336int ttm_bo_kmap(struct ttm_buffer_object *bo,
337		unsigned long start_page, unsigned long num_pages,
338		struct ttm_bo_kmap_obj *map)
339{
340	unsigned long offset, size;
341	int ret;
342
343	map->virtual = NULL;
344	map->bo = bo;
345	if (num_pages > bo->resource->num_pages)
346		return -EINVAL;
347	if ((start_page + num_pages) > bo->resource->num_pages)
348		return -EINVAL;
349
350	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
351	if (ret)
352		return ret;
353	if (!bo->resource->bus.is_iomem) {
354		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
355	} else {
356		offset = start_page << PAGE_SHIFT;
357		size = num_pages << PAGE_SHIFT;
358		return ttm_bo_ioremap(bo, offset, size, map);
359	}
360}
361EXPORT_SYMBOL(ttm_bo_kmap);
362
 
 
 
 
 
 
 
363void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
364{
365	if (!map->virtual)
366		return;
367	switch (map->bo_kmap_type) {
368	case ttm_bo_map_iomap:
369		iounmap(map->virtual);
370		break;
371	case ttm_bo_map_vmap:
372		vunmap(map->virtual);
373		break;
374	case ttm_bo_map_kmap:
375		kunmap(map->page);
376		break;
377	case ttm_bo_map_premapped:
378		break;
379	default:
380		BUG();
381	}
382	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
383	map->virtual = NULL;
384	map->page = NULL;
385}
386EXPORT_SYMBOL(ttm_bo_kunmap);
387
388int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389{
390	struct ttm_resource *mem = bo->resource;
391	int ret;
392
 
 
393	ret = ttm_mem_io_reserve(bo->bdev, mem);
394	if (ret)
395		return ret;
396
397	if (mem->bus.is_iomem) {
398		void __iomem *vaddr_iomem;
399
400		if (mem->bus.addr)
401			vaddr_iomem = (void __iomem *)mem->bus.addr;
402		else if (mem->bus.caching == ttm_write_combined)
403			vaddr_iomem = ioremap_wc(mem->bus.offset,
404						 bo->base.size);
405#ifdef CONFIG_X86
406		else if (mem->bus.caching == ttm_cached)
407			vaddr_iomem = ioremap_cache(mem->bus.offset,
408						  bo->base.size);
409#endif
410		else
411			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
412
413		if (!vaddr_iomem)
414			return -ENOMEM;
415
416		dma_buf_map_set_vaddr_iomem(map, vaddr_iomem);
417
418	} else {
419		struct ttm_operation_ctx ctx = {
420			.interruptible = false,
421			.no_wait_gpu = false
422		};
423		struct ttm_tt *ttm = bo->ttm;
424		pgprot_t prot;
425		void *vaddr;
426
427		ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
428		if (ret)
429			return ret;
430
431		/*
432		 * We need to use vmap to get the desired page protection
433		 * or to make the buffer object look contiguous.
434		 */
435		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
436		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
437		if (!vaddr)
438			return -ENOMEM;
439
440		dma_buf_map_set_vaddr(map, vaddr);
441	}
442
443	return 0;
444}
445EXPORT_SYMBOL(ttm_bo_vmap);
446
447void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
 
 
 
 
 
 
 
 
448{
449	struct ttm_resource *mem = bo->resource;
450
451	if (dma_buf_map_is_null(map))
 
 
452		return;
453
454	if (!map->is_iomem)
455		vunmap(map->vaddr);
456	else if (!mem->bus.addr)
457		iounmap(map->vaddr_iomem);
458	dma_buf_map_clear(map);
459
460	ttm_mem_io_free(bo->bdev, bo->resource);
461}
462EXPORT_SYMBOL(ttm_bo_vunmap);
463
464static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
465				 bool dst_use_tt)
466{
467	int ret;
468	ret = ttm_bo_wait(bo, false, false);
469	if (ret)
 
 
 
 
470		return ret;
471
472	if (!dst_use_tt)
473		ttm_bo_tt_destroy(bo);
474	ttm_resource_free(bo, &bo->resource);
475	return 0;
476}
477
478static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
479				struct dma_fence *fence,
480				bool dst_use_tt)
481{
482	struct ttm_buffer_object *ghost_obj;
483	int ret;
484
485	/**
486	 * This should help pipeline ordinary buffer moves.
487	 *
488	 * Hang old buffer memory on a new buffer object,
489	 * and leave it to be released when the GPU
490	 * operation has completed.
491	 */
492
493	dma_fence_put(bo->moving);
494	bo->moving = dma_fence_get(fence);
495
496	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
497	if (ret)
498		return ret;
499
500	dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
 
501
502	/**
503	 * If we're not moving to fixed memory, the TTM object
504	 * needs to stay alive. Otherwhise hang it on the ghost
505	 * bo to be unbound and destroyed.
506	 */
507
508	if (dst_use_tt)
509		ghost_obj->ttm = NULL;
510	else
511		bo->ttm = NULL;
512	bo->resource = NULL;
513
514	dma_resv_unlock(&ghost_obj->base._resv);
515	ttm_bo_put(ghost_obj);
516	return 0;
517}
518
519static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
520				       struct dma_fence *fence)
521{
522	struct ttm_device *bdev = bo->bdev;
523	struct ttm_resource_manager *from;
524
525	from = ttm_manager_type(bdev, bo->resource->mem_type);
526
527	/**
528	 * BO doesn't have a TTM we need to bind/unbind. Just remember
529	 * this eviction and free up the allocation
530	 */
531	spin_lock(&from->move_lock);
532	if (!from->move || dma_fence_is_later(fence, from->move)) {
533		dma_fence_put(from->move);
534		from->move = dma_fence_get(fence);
535	}
536	spin_unlock(&from->move_lock);
537
538	ttm_resource_free(bo, &bo->resource);
539
540	dma_fence_put(bo->moving);
541	bo->moving = dma_fence_get(fence);
542}
543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
545			      struct dma_fence *fence,
546			      bool evict,
547			      bool pipeline,
548			      struct ttm_resource *new_mem)
549{
550	struct ttm_device *bdev = bo->bdev;
551	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
552	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
553	int ret = 0;
554
555	dma_resv_add_excl_fence(bo->base.resv, fence);
556	if (!evict)
557		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
558	else if (!from->use_tt && pipeline)
559		ttm_bo_move_pipeline_evict(bo, fence);
560	else
561		ret = ttm_bo_wait_free_node(bo, man->use_tt);
562
563	if (ret)
564		return ret;
565
566	ttm_bo_assign_mem(bo, new_mem);
567
568	return 0;
569}
570EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
571
572/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573 * ttm_bo_pipeline_gutting - purge the contents of a bo
574 * @bo: The buffer object
575 *
576 * Purge the contents of a bo, async if the bo is not idle.
577 * After a successful call, the bo is left unpopulated in
578 * system placement. The function may wait uninterruptible
579 * for idle on OOM.
580 *
581 * Return: 0 if successful, negative error code on failure.
582 */
583int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
584{
585	static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
586	struct ttm_buffer_object *ghost;
587	struct ttm_resource *sys_res;
588	struct ttm_tt *ttm;
589	int ret;
590
591	ret = ttm_resource_alloc(bo, &sys_mem, &sys_res);
592	if (ret)
593		return ret;
594
595	/* If already idle, no need for ghost object dance. */
596	ret = ttm_bo_wait(bo, false, true);
597	if (ret != -EBUSY) {
598		if (!bo->ttm) {
599			/* See comment below about clearing. */
600			ret = ttm_tt_create(bo, true);
601			if (ret)
602				goto error_free_sys_mem;
603		} else {
604			ttm_tt_unpopulate(bo->bdev, bo->ttm);
605			if (bo->type == ttm_bo_type_device)
606				ttm_tt_mark_for_clear(bo->ttm);
607		}
608		ttm_resource_free(bo, &bo->resource);
609		ttm_bo_assign_mem(bo, sys_res);
610		return 0;
611	}
612
613	/*
614	 * We need an unpopulated ttm_tt after giving our current one,
615	 * if any, to the ghost object. And we can't afford to fail
616	 * creating one *after* the operation. If the bo subsequently gets
617	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
618	 * to avoid leaking sensitive information to user-space.
619	 */
620
621	ttm = bo->ttm;
622	bo->ttm = NULL;
623	ret = ttm_tt_create(bo, true);
624	swap(bo->ttm, ttm);
625	if (ret)
626		goto error_free_sys_mem;
627
628	ret = ttm_buffer_object_transfer(bo, &ghost);
629	if (ret)
630		goto error_destroy_tt;
631
632	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
633	/* Last resort, wait for the BO to be idle when we are OOM */
634	if (ret)
635		ttm_bo_wait(bo, false, false);
 
 
636
637	dma_resv_unlock(&ghost->base._resv);
638	ttm_bo_put(ghost);
639	bo->ttm = ttm;
640	bo->resource = NULL;
641	ttm_bo_assign_mem(bo, sys_res);
642	return 0;
643
644error_destroy_tt:
645	ttm_tt_destroy(bo->bdev, ttm);
646
647error_free_sys_mem:
648	ttm_resource_free(bo, &sys_res);
649	return ret;
650}