Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.8
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
 
  41#include <linux/dma-buf.h>
  42#include <linux/sizes.h>
  43#include <linux/module.h>
  44
  45#include <drm/drm_drv.h>
  46#include <drm/ttm/ttm_bo.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
  49#include <drm/ttm/ttm_tt.h>
  50
  51#include <drm/amdgpu_drm.h>
  52
  53#include "amdgpu.h"
  54#include "amdgpu_object.h"
  55#include "amdgpu_trace.h"
  56#include "amdgpu_amdkfd.h"
  57#include "amdgpu_sdma.h"
  58#include "amdgpu_ras.h"
  59#include "amdgpu_hmm.h"
  60#include "amdgpu_atomfirmware.h"
  61#include "amdgpu_res_cursor.h"
  62#include "bif/bif_4_1_d.h"
  63
  64MODULE_IMPORT_NS(DMA_BUF);
  65
  66#define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
  67
  68static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  69				   struct ttm_tt *ttm,
  70				   struct ttm_resource *bo_mem);
  71static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  72				      struct ttm_tt *ttm);
  73
  74static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  75				    unsigned int type,
  76				    uint64_t size_in_page)
  77{
  78	return ttm_range_man_init(&adev->mman.bdev, type,
  79				  false, size_in_page);
  80}
  81
  82/**
  83 * amdgpu_evict_flags - Compute placement flags
  84 *
  85 * @bo: The buffer object to evict
  86 * @placement: Possible destination(s) for evicted BO
  87 *
  88 * Fill in placement data when ttm_bo_evict() is called
  89 */
  90static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  91				struct ttm_placement *placement)
  92{
  93	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  94	struct amdgpu_bo *abo;
  95	static const struct ttm_place placements = {
  96		.fpfn = 0,
  97		.lpfn = 0,
  98		.mem_type = TTM_PL_SYSTEM,
  99		.flags = 0
 100	};
 101
 102	/* Don't handle scatter gather BOs */
 103	if (bo->type == ttm_bo_type_sg) {
 104		placement->num_placement = 0;
 105		placement->num_busy_placement = 0;
 106		return;
 107	}
 108
 109	/* Object isn't an AMDGPU object so ignore */
 110	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 111		placement->placement = &placements;
 112		placement->busy_placement = &placements;
 113		placement->num_placement = 1;
 114		placement->num_busy_placement = 1;
 115		return;
 116	}
 117
 118	abo = ttm_to_amdgpu_bo(bo);
 119	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
 
 
 
 
 
 
 
 
 120		placement->num_placement = 0;
 121		placement->num_busy_placement = 0;
 
 122		return;
 123	}
 124
 125	switch (bo->resource->mem_type) {
 126	case AMDGPU_PL_GDS:
 127	case AMDGPU_PL_GWS:
 128	case AMDGPU_PL_OA:
 129	case AMDGPU_PL_DOORBELL:
 130		placement->num_placement = 0;
 131		placement->num_busy_placement = 0;
 132		return;
 133
 134	case TTM_PL_VRAM:
 135		if (!adev->mman.buffer_funcs_enabled) {
 136			/* Move to system memory */
 137			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 138		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 139			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 140			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 141
 142			/* Try evicting to the CPU inaccessible part of VRAM
 143			 * first, but only set GTT as busy placement, so this
 144			 * BO will be evicted to GTT rather than causing other
 145			 * BOs to be evicted from VRAM
 146			 */
 147			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 148							AMDGPU_GEM_DOMAIN_GTT |
 149							AMDGPU_GEM_DOMAIN_CPU);
 150			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 151			abo->placements[0].lpfn = 0;
 152			abo->placement.busy_placement = &abo->placements[1];
 153			abo->placement.num_busy_placement = 1;
 154		} else {
 155			/* Move to GTT memory */
 156			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
 157							AMDGPU_GEM_DOMAIN_CPU);
 158		}
 159		break;
 160	case TTM_PL_TT:
 161	case AMDGPU_PL_PREEMPT:
 162	default:
 163		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 164		break;
 165	}
 166	*placement = abo->placement;
 167}
 168
 169/**
 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 171 * @bo: buffer object to map
 172 * @mem: memory object to map
 173 * @mm_cur: range to map
 
 174 * @window: which GART window to use
 175 * @ring: DMA ring to use for the copy
 176 * @tmz: if we should setup a TMZ enabled mapping
 177 * @size: in number of bytes to map, out number of bytes mapped
 178 * @addr: resulting address inside the MC address space
 179 *
 180 * Setup one of the GART windows to access a specific piece of memory or return
 181 * the physical address for local memory.
 182 */
 183static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 184				 struct ttm_resource *mem,
 185				 struct amdgpu_res_cursor *mm_cur,
 186				 unsigned int window, struct amdgpu_ring *ring,
 187				 bool tmz, uint64_t *size, uint64_t *addr)
 
 188{
 189	struct amdgpu_device *adev = ring->adev;
 190	unsigned int offset, num_pages, num_dw, num_bytes;
 191	uint64_t src_addr, dst_addr;
 192	struct amdgpu_job *job;
 
 
 
 193	void *cpu_addr;
 194	uint64_t flags;
 195	unsigned int i;
 196	int r;
 197
 198	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 199	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 200
 201	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
 202		return -EINVAL;
 203
 204	/* Map only what can't be accessed directly */
 205	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 206		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 207			mm_cur->start;
 208		return 0;
 209	}
 210
 211
 212	/*
 213	 * If start begins at an offset inside the page, then adjust the size
 214	 * and addr accordingly
 215	 */
 216	offset = mm_cur->start & ~PAGE_MASK;
 217
 218	num_pages = PFN_UP(*size + offset);
 219	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
 220
 221	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
 222
 223	*addr = adev->gmc.gart_start;
 224	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 225		AMDGPU_GPU_PAGE_SIZE;
 226	*addr += offset;
 227
 228	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 229	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 230
 231	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
 232				     AMDGPU_FENCE_OWNER_UNDEFINED,
 233				     num_dw * 4 + num_bytes,
 234				     AMDGPU_IB_POOL_DELAYED, &job);
 235	if (r)
 236		return r;
 237
 238	src_addr = num_dw * 4;
 239	src_addr += job->ibs[0].gpu_addr;
 240
 241	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 242	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 243	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 244				dst_addr, num_bytes, false);
 245
 246	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 247	WARN_ON(job->ibs[0].length_dw > num_dw);
 248
 249	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 250	if (tmz)
 251		flags |= AMDGPU_PTE_TMZ;
 252
 253	cpu_addr = &job->ibs[0].ptr[num_dw];
 254
 255	if (mem->mem_type == TTM_PL_TT) {
 256		dma_addr_t *dma_addr;
 257
 258		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 259		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
 
 
 
 260	} else {
 261		dma_addr_t dma_address;
 262
 263		dma_address = mm_cur->start;
 264		dma_address += adev->vm_manager.vram_base_offset;
 265
 266		for (i = 0; i < num_pages; ++i) {
 267			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
 268					flags, cpu_addr);
 
 
 
 269			dma_address += PAGE_SIZE;
 270		}
 271	}
 272
 273	dma_fence_put(amdgpu_job_submit(job));
 274	return 0;
 
 
 
 
 
 
 
 
 
 
 275}
 276
 277/**
 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 279 * @adev: amdgpu device
 280 * @src: buffer/address where to read from
 281 * @dst: buffer/address where to write to
 282 * @size: number of bytes to copy
 283 * @tmz: if a secure copy should be used
 284 * @resv: resv object to sync to
 285 * @f: Returns the last fence if multiple jobs are submitted.
 286 *
 287 * The function copies @size bytes from {src->mem + src->offset} to
 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 289 * move and different for a BO to BO copy.
 290 *
 291 */
 292int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 293			       const struct amdgpu_copy_mem *src,
 294			       const struct amdgpu_copy_mem *dst,
 295			       uint64_t size, bool tmz,
 296			       struct dma_resv *resv,
 297			       struct dma_fence **f)
 298{
 
 
 
 299	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 300	struct amdgpu_res_cursor src_mm, dst_mm;
 301	struct dma_fence *fence = NULL;
 302	int r = 0;
 303
 304	if (!adev->mman.buffer_funcs_enabled) {
 305		DRM_ERROR("Trying to move memory with ring turned off.\n");
 306		return -EINVAL;
 307	}
 308
 309	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 310	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 311
 312	mutex_lock(&adev->mman.gtt_window_lock);
 313	while (src_mm.remaining) {
 314		uint64_t from, to, cur_size;
 
 315		struct dma_fence *next;
 
 
 316
 317		/* Never copy more than 256MiB at once to avoid a timeout */
 318		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
 
 
 
 
 319
 320		/* Map src to window 0 and dst to window 1. */
 321		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 322					  0, ring, tmz, &cur_size, &from);
 
 323		if (r)
 324			goto error;
 325
 326		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 327					  1, ring, tmz, &cur_size, &to);
 
 328		if (r)
 329			goto error;
 330
 331		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 332				       resv, &next, false, true, tmz);
 333		if (r)
 334			goto error;
 335
 336		dma_fence_put(fence);
 337		fence = next;
 338
 339		amdgpu_res_next(&src_mm, cur_size);
 340		amdgpu_res_next(&dst_mm, cur_size);
 341	}
 342error:
 343	mutex_unlock(&adev->mman.gtt_window_lock);
 344	if (f)
 345		*f = dma_fence_get(fence);
 346	dma_fence_put(fence);
 347	return r;
 348}
 349
 350/*
 351 * amdgpu_move_blit - Copy an entire buffer to another buffer
 352 *
 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 354 * help move buffers to and from VRAM.
 355 */
 356static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 357			    bool evict,
 358			    struct ttm_resource *new_mem,
 359			    struct ttm_resource *old_mem)
 360{
 361	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 362	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 363	struct amdgpu_copy_mem src, dst;
 364	struct dma_fence *fence = NULL;
 365	int r;
 366
 367	src.bo = bo;
 368	dst.bo = bo;
 369	src.mem = old_mem;
 370	dst.mem = new_mem;
 371	src.offset = 0;
 372	dst.offset = 0;
 373
 374	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 375				       new_mem->size,
 376				       amdgpu_bo_encrypted(abo),
 377				       bo->base.resv, &fence);
 378	if (r)
 379		goto error;
 380
 381	/* clear the space being freed */
 382	if (old_mem->mem_type == TTM_PL_VRAM &&
 383	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 384		struct dma_fence *wipe_fence = NULL;
 385
 386		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
 387					false);
 388		if (r) {
 389			goto error;
 390		} else if (wipe_fence) {
 391			dma_fence_put(fence);
 392			fence = wipe_fence;
 393		}
 394	}
 395
 396	/* Always block for VM page tables before committing the new location */
 397	if (bo->type == ttm_bo_type_kernel)
 398		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 399	else
 400		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 401	dma_fence_put(fence);
 402	return r;
 403
 404error:
 405	if (fence)
 406		dma_fence_wait(fence, false);
 407	dma_fence_put(fence);
 408	return r;
 409}
 410
 411/*
 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 413 *
 414 * Called by amdgpu_bo_move()
 415 */
 416static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 417			       struct ttm_resource *mem)
 418{
 419	u64 mem_size = (u64)mem->size;
 420	struct amdgpu_res_cursor cursor;
 421	u64 end;
 422
 423	if (mem->mem_type == TTM_PL_SYSTEM ||
 424	    mem->mem_type == TTM_PL_TT)
 425		return true;
 426	if (mem->mem_type != TTM_PL_VRAM)
 427		return false;
 428
 429	amdgpu_res_first(mem, 0, mem_size, &cursor);
 430	end = cursor.start + cursor.size;
 431	while (cursor.remaining) {
 432		amdgpu_res_next(&cursor, cursor.size);
 433
 434		if (!cursor.remaining)
 435			break;
 436
 437		/* ttm_resource_ioremap only supports contiguous memory */
 438		if (end != cursor.start)
 439			return false;
 440
 441		end = cursor.start + cursor.size;
 442	}
 
 443
 444	return end <= adev->gmc.visible_vram_size;
 445}
 446
 447/*
 448 * amdgpu_bo_move - Move a buffer object to a new memory location
 449 *
 450 * Called by ttm_bo_handle_move_mem()
 451 */
 452static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 453			  struct ttm_operation_ctx *ctx,
 454			  struct ttm_resource *new_mem,
 455			  struct ttm_place *hop)
 456{
 457	struct amdgpu_device *adev;
 458	struct amdgpu_bo *abo;
 459	struct ttm_resource *old_mem = bo->resource;
 460	int r;
 461
 462	if (new_mem->mem_type == TTM_PL_TT ||
 463	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 464		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 465		if (r)
 466			return r;
 467	}
 468
 
 469	abo = ttm_to_amdgpu_bo(bo);
 
 
 
 470	adev = amdgpu_ttm_adev(bo->bdev);
 471
 472	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
 473			 bo->ttm == NULL)) {
 474		ttm_bo_move_null(bo, new_mem);
 475		goto out;
 476	}
 477	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 478	    (new_mem->mem_type == TTM_PL_TT ||
 479	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 480		ttm_bo_move_null(bo, new_mem);
 481		goto out;
 482	}
 483	if ((old_mem->mem_type == TTM_PL_TT ||
 484	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 485	    new_mem->mem_type == TTM_PL_SYSTEM) {
 486		r = ttm_bo_wait_ctx(bo, ctx);
 487		if (r)
 488			return r;
 489
 490		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 491		ttm_resource_free(bo, &bo->resource);
 492		ttm_bo_assign_mem(bo, new_mem);
 493		goto out;
 494	}
 495
 496	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 497	    old_mem->mem_type == AMDGPU_PL_GWS ||
 498	    old_mem->mem_type == AMDGPU_PL_OA ||
 499	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
 500	    new_mem->mem_type == AMDGPU_PL_GDS ||
 501	    new_mem->mem_type == AMDGPU_PL_GWS ||
 502	    new_mem->mem_type == AMDGPU_PL_OA ||
 503	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
 504		/* Nothing to save here */
 505		ttm_bo_move_null(bo, new_mem);
 506		goto out;
 507	}
 508
 509	if (bo->type == ttm_bo_type_device &&
 510	    new_mem->mem_type == TTM_PL_VRAM &&
 511	    old_mem->mem_type != TTM_PL_VRAM) {
 512		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 513		 * accesses the BO after it's moved.
 514		 */
 515		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 516	}
 517
 518	if (adev->mman.buffer_funcs_enabled) {
 519		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
 520		      new_mem->mem_type == TTM_PL_VRAM) ||
 521		     (old_mem->mem_type == TTM_PL_VRAM &&
 522		      new_mem->mem_type == TTM_PL_SYSTEM))) {
 523			hop->fpfn = 0;
 524			hop->lpfn = 0;
 525			hop->mem_type = TTM_PL_TT;
 526			hop->flags = TTM_PL_FLAG_TEMPORARY;
 527			return -EMULTIHOP;
 528		}
 529
 530		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 531	} else {
 532		r = -ENODEV;
 533	}
 534
 535	if (r) {
 536		/* Check that all memory is CPU accessible */
 537		if (!amdgpu_mem_visible(adev, old_mem) ||
 538		    !amdgpu_mem_visible(adev, new_mem)) {
 539			pr_err("Move buffer fallback to memcpy unavailable\n");
 540			return r;
 541		}
 542
 543		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 544		if (r)
 545			return r;
 546	}
 547
 548	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
 549out:
 550	/* update statistics */
 551	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 552	amdgpu_bo_move_notify(bo, evict);
 553	return 0;
 554}
 555
 556/*
 557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 558 *
 559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 560 */
 561static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 562				     struct ttm_resource *mem)
 563{
 564	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 565	size_t bus_size = (size_t)mem->size;
 566
 567	switch (mem->mem_type) {
 568	case TTM_PL_SYSTEM:
 569		/* system memory */
 570		return 0;
 571	case TTM_PL_TT:
 572	case AMDGPU_PL_PREEMPT:
 573		break;
 574	case TTM_PL_VRAM:
 575		mem->bus.offset = mem->start << PAGE_SHIFT;
 576		/* check if it's visible */
 577		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
 578			return -EINVAL;
 579
 580		if (adev->mman.aper_base_kaddr &&
 581		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 582			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 583					mem->bus.offset;
 584
 585		mem->bus.offset += adev->gmc.aper_base;
 586		mem->bus.is_iomem = true;
 587		break;
 588	case AMDGPU_PL_DOORBELL:
 589		mem->bus.offset = mem->start << PAGE_SHIFT;
 590		mem->bus.offset += adev->doorbell.base;
 591		mem->bus.is_iomem = true;
 592		mem->bus.caching = ttm_uncached;
 593		break;
 594	default:
 595		return -EINVAL;
 596	}
 597	return 0;
 598}
 599
 600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 601					   unsigned long page_offset)
 602{
 603	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 604	struct amdgpu_res_cursor cursor;
 605
 606	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 607			 &cursor);
 608
 609	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
 610		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
 611
 612	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 613}
 614
 615/**
 616 * amdgpu_ttm_domain_start - Returns GPU start address
 617 * @adev: amdgpu device object
 618 * @type: type of the memory
 619 *
 620 * Returns:
 621 * GPU start address of a memory domain
 622 */
 623
 624uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 625{
 626	switch (type) {
 627	case TTM_PL_TT:
 628		return adev->gmc.gart_start;
 629	case TTM_PL_VRAM:
 630		return adev->gmc.vram_start;
 631	}
 632
 633	return 0;
 634}
 635
 636/*
 637 * TTM backend functions.
 638 */
 639struct amdgpu_ttm_tt {
 640	struct ttm_tt	ttm;
 641	struct drm_gem_object	*gobj;
 642	u64			offset;
 643	uint64_t		userptr;
 644	struct task_struct	*usertask;
 645	uint32_t		userflags;
 646	bool			bound;
 647	int32_t			pool_id;
 
 
 648};
 649
 650#define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
 651
 652#ifdef CONFIG_DRM_AMDGPU_USERPTR
 653/*
 654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 655 * memory and start HMM tracking CPU page table update
 656 *
 657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 658 * once afterwards to stop HMM tracking
 659 */
 660int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
 661				 struct hmm_range **range)
 662{
 663	struct ttm_tt *ttm = bo->tbo.ttm;
 664	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 665	unsigned long start = gtt->userptr;
 666	struct vm_area_struct *vma;
 667	struct mm_struct *mm;
 668	bool readonly;
 669	int r = 0;
 670
 671	/* Make sure get_user_pages_done() can cleanup gracefully */
 672	*range = NULL;
 673
 674	mm = bo->notifier.mm;
 675	if (unlikely(!mm)) {
 676		DRM_DEBUG_DRIVER("BO is not registered?\n");
 677		return -EFAULT;
 678	}
 679
 
 
 
 
 680	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 681		return -ESRCH;
 682
 683	mmap_read_lock(mm);
 684	vma = vma_lookup(mm, start);
 685	if (unlikely(!vma)) {
 686		r = -EFAULT;
 687		goto out_unlock;
 688	}
 689	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 690		vma->vm_file)) {
 691		r = -EPERM;
 692		goto out_unlock;
 693	}
 694
 695	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 696	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
 697				       readonly, NULL, pages, range);
 
 698out_unlock:
 699	mmap_read_unlock(mm);
 700	if (r)
 701		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
 702
 703	mmput(mm);
 704
 705	return r;
 706}
 707
 708/* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
 709 */
 710void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
 711				      struct hmm_range *range)
 712{
 713	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 714
 715	if (gtt && gtt->userptr && range)
 716		amdgpu_hmm_range_get_pages_done(range);
 717}
 718
 719/*
 720 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
 721 * Check if the pages backing this ttm range have been invalidated
 722 *
 723 * Returns: true if pages are still valid
 724 */
 725bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
 726				       struct hmm_range *range)
 727{
 728	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 729
 730	if (!gtt || !gtt->userptr || !range)
 731		return false;
 732
 733	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 734		gtt->userptr, ttm->num_pages);
 735
 736	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
 
 737
 738	return !amdgpu_hmm_range_get_pages_done(range);
 
 
 
 
 
 
 
 
 
 739}
 740#endif
 741
 742/*
 743 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 744 *
 745 * Called by amdgpu_cs_list_validate(). This creates the page list
 746 * that backs user memory and will ultimately be mapped into the device
 747 * address space.
 748 */
 749void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 750{
 751	unsigned long i;
 752
 753	for (i = 0; i < ttm->num_pages; ++i)
 754		ttm->pages[i] = pages ? pages[i] : NULL;
 755}
 756
 757/*
 758 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 759 *
 760 * Called by amdgpu_ttm_backend_bind()
 761 **/
 762static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 763				     struct ttm_tt *ttm)
 764{
 765	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 766	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 767	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 768	enum dma_data_direction direction = write ?
 769		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 770	int r;
 771
 772	/* Allocate an SG array and squash pages into it */
 773	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 774				      (u64)ttm->num_pages << PAGE_SHIFT,
 775				      GFP_KERNEL);
 776	if (r)
 777		goto release_sg;
 778
 779	/* Map SG to device */
 780	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 781	if (r)
 782		goto release_sg;
 783
 784	/* convert SG to linear array of pages and dma addresses */
 785	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 786				       ttm->num_pages);
 787
 788	return 0;
 789
 790release_sg:
 791	kfree(ttm->sg);
 792	ttm->sg = NULL;
 793	return r;
 794}
 795
 796/*
 797 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 798 */
 799static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 800					struct ttm_tt *ttm)
 801{
 802	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 803	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 804	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 805	enum dma_data_direction direction = write ?
 806		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 807
 808	/* double check that we don't free the table twice */
 809	if (!ttm->sg || !ttm->sg->sgl)
 810		return;
 811
 812	/* unmap the pages mapped to the device */
 813	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 814	sg_free_table(ttm->sg);
 815}
 816
 817/*
 818 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
 819 * MQDn+CtrlStackn where n is the number of XCCs per partition.
 820 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
 821 * and uses memory type default, UC. The rest of pages_per_xcc are
 822 * Ctrl stack and modify their memory type to NC.
 823 */
 824static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
 825				struct ttm_tt *ttm, uint64_t flags)
 826{
 827	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 828	uint64_t total_pages = ttm->num_pages;
 829	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
 830	uint64_t page_idx, pages_per_xcc;
 831	int i;
 832	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
 833			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
 834
 835	pages_per_xcc = total_pages;
 836	do_div(pages_per_xcc, num_xcc);
 837
 838	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
 839		/* MQD page: use default flags */
 840		amdgpu_gart_bind(adev,
 841				gtt->offset + (page_idx << PAGE_SHIFT),
 842				1, &gtt->ttm.dma_address[page_idx], flags);
 843		/*
 844		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
 845		 * the second page of the BO onward.
 846		 */
 847		amdgpu_gart_bind(adev,
 848				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
 849				pages_per_xcc - 1,
 850				&gtt->ttm.dma_address[page_idx + 1],
 851				ctrl_flags);
 852	}
 
 853}
 854
 855static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 856				 struct ttm_buffer_object *tbo,
 857				 uint64_t flags)
 858{
 859	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 860	struct ttm_tt *ttm = tbo->ttm;
 861	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
 862
 863	if (amdgpu_bo_encrypted(abo))
 864		flags |= AMDGPU_PTE_TMZ;
 865
 866	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 867		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868	} else {
 869		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 870				 gtt->ttm.dma_address, flags);
 871	}
 
 
 
 
 
 
 
 872}
 873
 874/*
 875 * amdgpu_ttm_backend_bind - Bind GTT memory
 876 *
 877 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 878 * This handles binding GTT memory to the device address space.
 879 */
 880static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 881				   struct ttm_tt *ttm,
 882				   struct ttm_resource *bo_mem)
 883{
 884	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 885	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 886	uint64_t flags;
 887	int r;
 888
 889	if (!bo_mem)
 890		return -EINVAL;
 891
 892	if (gtt->bound)
 893		return 0;
 894
 895	if (gtt->userptr) {
 896		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 897		if (r) {
 898			DRM_ERROR("failed to pin userptr\n");
 899			return r;
 900		}
 901	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
 902		if (!ttm->sg) {
 903			struct dma_buf_attachment *attach;
 904			struct sg_table *sgt;
 905
 906			attach = gtt->gobj->import_attach;
 907			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 908			if (IS_ERR(sgt))
 909				return PTR_ERR(sgt);
 910
 911			ttm->sg = sgt;
 912		}
 913
 914		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 915					       ttm->num_pages);
 916	}
 917
 918	if (!ttm->num_pages) {
 919		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 920		     ttm->num_pages, bo_mem, ttm);
 921	}
 922
 
 
 
 
 
 923	if (bo_mem->mem_type != TTM_PL_TT ||
 924	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 925		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 926		return 0;
 927	}
 928
 929	/* compute PTE flags relevant to this BO memory */
 930	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 931
 932	/* bind pages into GART page tables */
 933	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 934	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 935			 gtt->ttm.dma_address, flags);
 
 
 
 
 936	gtt->bound = true;
 937	return 0;
 938}
 939
 940/*
 941 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 942 * through AGP or GART aperture.
 943 *
 944 * If bo is accessible through AGP aperture, then use AGP aperture
 945 * to access bo; otherwise allocate logical space in GART aperture
 946 * and map bo to GART aperture.
 947 */
 948int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 949{
 950	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 951	struct ttm_operation_ctx ctx = { false, false };
 952	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
 953	struct ttm_placement placement;
 954	struct ttm_place placements;
 955	struct ttm_resource *tmp;
 956	uint64_t addr, flags;
 957	int r;
 958
 959	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 960		return 0;
 961
 962	addr = amdgpu_gmc_agp_addr(bo);
 963	if (addr != AMDGPU_BO_INVALID_OFFSET)
 
 964		return 0;
 
 965
 966	/* allocate GART space */
 967	placement.num_placement = 1;
 968	placement.placement = &placements;
 969	placement.num_busy_placement = 1;
 970	placement.busy_placement = &placements;
 971	placements.fpfn = 0;
 972	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
 973	placements.mem_type = TTM_PL_TT;
 974	placements.flags = bo->resource->placement;
 975
 976	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
 977	if (unlikely(r))
 978		return r;
 979
 980	/* compute PTE flags for this buffer object */
 981	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
 982
 983	/* Bind pages */
 984	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
 985	amdgpu_ttm_gart_bind(adev, bo, flags);
 
 
 
 
 
 986	amdgpu_gart_invalidate_tlb(adev);
 987	ttm_resource_free(bo, &bo->resource);
 988	ttm_bo_assign_mem(bo, tmp);
 989
 990	return 0;
 991}
 992
 993/*
 994 * amdgpu_ttm_recover_gart - Rebind GTT pages
 995 *
 996 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
 997 * rebind GTT pages during a GPU reset.
 998 */
 999void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1000{
1001	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1002	uint64_t flags;
 
1003
1004	if (!tbo->ttm)
1005		return;
1006
1007	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1008	amdgpu_ttm_gart_bind(adev, tbo, flags);
 
 
1009}
1010
1011/*
1012 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1013 *
1014 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1015 * ttm_tt_destroy().
1016 */
1017static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1018				      struct ttm_tt *ttm)
1019{
1020	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1021	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
 
1022
1023	/* if the pages have userptr pinning then clear that first */
1024	if (gtt->userptr) {
1025		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1026	} else if (ttm->sg && gtt->gobj->import_attach) {
1027		struct dma_buf_attachment *attach;
1028
1029		attach = gtt->gobj->import_attach;
1030		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1031		ttm->sg = NULL;
1032	}
1033
1034	if (!gtt->bound)
1035		return;
1036
1037	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1038		return;
1039
1040	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1041	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
 
 
 
1042	gtt->bound = false;
1043}
1044
1045static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1046				       struct ttm_tt *ttm)
1047{
1048	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1049
 
 
1050	if (gtt->usertask)
1051		put_task_struct(gtt->usertask);
1052
1053	ttm_tt_fini(&gtt->ttm);
1054	kfree(gtt);
1055}
1056
1057/**
1058 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1059 *
1060 * @bo: The buffer object to create a GTT ttm_tt object around
1061 * @page_flags: Page flags to be added to the ttm_tt object
1062 *
1063 * Called by ttm_tt_create().
1064 */
1065static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1066					   uint32_t page_flags)
1067{
1068	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1069	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1070	struct amdgpu_ttm_tt *gtt;
1071	enum ttm_caching caching;
1072
1073	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1074	if (!gtt)
1075		return NULL;
1076
1077	gtt->gobj = &bo->base;
1078	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1079		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1080	else
1081		gtt->pool_id = abo->xcp_id;
1082
1083	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1084		caching = ttm_write_combined;
1085	else
1086		caching = ttm_cached;
1087
1088	/* allocate space for the uninitialized page entries */
1089	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1090		kfree(gtt);
1091		return NULL;
1092	}
1093	return &gtt->ttm;
1094}
1095
1096/*
1097 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1098 *
1099 * Map the pages of a ttm_tt object to an address space visible
1100 * to the underlying device.
1101 */
1102static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1103				  struct ttm_tt *ttm,
1104				  struct ttm_operation_ctx *ctx)
1105{
1106	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1107	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1108	struct ttm_pool *pool;
1109	pgoff_t i;
1110	int ret;
1111
1112	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1113	if (gtt->userptr) {
1114		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1115		if (!ttm->sg)
1116			return -ENOMEM;
1117		return 0;
1118	}
1119
1120	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1121		return 0;
1122
1123	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1124		pool = &adev->mman.ttm_pools[gtt->pool_id];
1125	else
1126		pool = &adev->mman.bdev.pool;
1127	ret = ttm_pool_alloc(pool, ttm, ctx);
1128	if (ret)
1129		return ret;
1130
1131	for (i = 0; i < ttm->num_pages; ++i)
1132		ttm->pages[i]->mapping = bdev->dev_mapping;
1133
1134	return 0;
1135}
1136
1137/*
1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139 *
1140 * Unmaps pages of a ttm_tt object from the device address space and
1141 * unpopulates the page array backing it.
1142 */
1143static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144				     struct ttm_tt *ttm)
1145{
1146	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1147	struct amdgpu_device *adev;
1148	struct ttm_pool *pool;
1149	pgoff_t i;
1150
1151	amdgpu_ttm_backend_unbind(bdev, ttm);
1152
1153	if (gtt->userptr) {
1154		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1155		kfree(ttm->sg);
1156		ttm->sg = NULL;
1157		return;
1158	}
1159
1160	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1161		return;
1162
1163	for (i = 0; i < ttm->num_pages; ++i)
1164		ttm->pages[i]->mapping = NULL;
1165
1166	adev = amdgpu_ttm_adev(bdev);
1167
1168	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1169		pool = &adev->mman.ttm_pools[gtt->pool_id];
1170	else
1171		pool = &adev->mman.bdev.pool;
1172
1173	return ttm_pool_free(pool, ttm);
1174}
1175
1176/**
1177 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1178 * task
1179 *
1180 * @tbo: The ttm_buffer_object that contains the userptr
1181 * @user_addr:  The returned value
1182 */
1183int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1184			      uint64_t *user_addr)
1185{
1186	struct amdgpu_ttm_tt *gtt;
1187
1188	if (!tbo->ttm)
1189		return -EINVAL;
1190
1191	gtt = (void *)tbo->ttm;
1192	*user_addr = gtt->userptr;
1193	return 0;
1194}
1195
1196/**
1197 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1198 * task
1199 *
1200 * @bo: The ttm_buffer_object to bind this userptr to
1201 * @addr:  The address in the current tasks VM space to use
1202 * @flags: Requirements of userptr object.
1203 *
1204 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1205 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1206 * initialize GPU VM for a KFD process.
1207 */
1208int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1209			      uint64_t addr, uint32_t flags)
1210{
1211	struct amdgpu_ttm_tt *gtt;
1212
1213	if (!bo->ttm) {
1214		/* TODO: We want a separate TTM object type for userptrs */
1215		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1216		if (bo->ttm == NULL)
1217			return -ENOMEM;
1218	}
1219
1220	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1221	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1222
1223	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1224	gtt->userptr = addr;
1225	gtt->userflags = flags;
1226
1227	if (gtt->usertask)
1228		put_task_struct(gtt->usertask);
1229	gtt->usertask = current->group_leader;
1230	get_task_struct(gtt->usertask);
1231
1232	return 0;
1233}
1234
1235/*
1236 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1237 */
1238struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1239{
1240	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1241
1242	if (gtt == NULL)
1243		return NULL;
1244
1245	if (gtt->usertask == NULL)
1246		return NULL;
1247
1248	return gtt->usertask->mm;
1249}
1250
1251/*
1252 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1253 * address range for the current task.
1254 *
1255 */
1256bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1257				  unsigned long end, unsigned long *userptr)
1258{
1259	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1260	unsigned long size;
1261
1262	if (gtt == NULL || !gtt->userptr)
1263		return false;
1264
1265	/* Return false if no part of the ttm_tt object lies within
1266	 * the range
1267	 */
1268	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1269	if (gtt->userptr > end || gtt->userptr + size <= start)
1270		return false;
1271
1272	if (userptr)
1273		*userptr = gtt->userptr;
1274	return true;
1275}
1276
1277/*
1278 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1279 */
1280bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1281{
1282	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1283
1284	if (gtt == NULL || !gtt->userptr)
1285		return false;
1286
1287	return true;
1288}
1289
1290/*
1291 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1292 */
1293bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1294{
1295	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1296
1297	if (gtt == NULL)
1298		return false;
1299
1300	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1301}
1302
1303/**
1304 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1305 *
1306 * @ttm: The ttm_tt object to compute the flags for
1307 * @mem: The memory registry backing this ttm_tt object
1308 *
1309 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1310 */
1311uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1312{
1313	uint64_t flags = 0;
1314
1315	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1316		flags |= AMDGPU_PTE_VALID;
1317
1318	if (mem && (mem->mem_type == TTM_PL_TT ||
1319		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1320		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1321		flags |= AMDGPU_PTE_SYSTEM;
1322
1323		if (ttm->caching == ttm_cached)
1324			flags |= AMDGPU_PTE_SNOOPED;
1325	}
1326
1327	if (mem && mem->mem_type == TTM_PL_VRAM &&
1328			mem->bus.caching == ttm_cached)
1329		flags |= AMDGPU_PTE_SNOOPED;
1330
1331	return flags;
1332}
1333
1334/**
1335 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1336 *
1337 * @adev: amdgpu_device pointer
1338 * @ttm: The ttm_tt object to compute the flags for
1339 * @mem: The memory registry backing this ttm_tt object
1340 *
1341 * Figure out the flags to use for a VM PTE (Page Table Entry).
1342 */
1343uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1344				 struct ttm_resource *mem)
1345{
1346	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1347
1348	flags |= adev->gart.gart_pte_flags;
1349	flags |= AMDGPU_PTE_READABLE;
1350
1351	if (!amdgpu_ttm_tt_is_readonly(ttm))
1352		flags |= AMDGPU_PTE_WRITEABLE;
1353
1354	return flags;
1355}
1356
1357/*
1358 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1359 * object.
1360 *
1361 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1362 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1363 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1364 * used to clean out a memory space.
1365 */
1366static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1367					    const struct ttm_place *place)
1368{
1369	struct dma_resv_iter resv_cursor;
 
 
1370	struct dma_fence *f;
1371
1372	if (!amdgpu_bo_is_amdgpu_bo(bo))
1373		return ttm_bo_eviction_valuable(bo, place);
1374
1375	/* Swapout? */
1376	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1377		return true;
1378
1379	if (bo->type == ttm_bo_type_kernel &&
1380	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1381		return false;
1382
1383	/* If bo is a KFD BO, check if the bo belongs to the current process.
1384	 * If true, then return false as any KFD process needs all its BOs to
1385	 * be resident to run successfully
1386	 */
1387	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1388				DMA_RESV_USAGE_BOOKKEEP, f) {
1389		if (amdkfd_fence_check_mm(f, current->mm))
1390			return false;
 
 
 
 
1391	}
1392
1393	/* Preemptible BOs don't own system resources managed by the
1394	 * driver (pages, VRAM, GART space). They point to resources
1395	 * owned by someone else (e.g. pageable memory in user mode
1396	 * or a DMABuf). They are used in a preemptible context so we
1397	 * can guarantee no deadlocks and good QoS in case of MMU
1398	 * notifiers or DMABuf move notifiers from the resource owner.
1399	 */
1400	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1401		return false;
1402
1403	if (bo->resource->mem_type == TTM_PL_TT &&
1404	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1405		return false;
 
 
 
 
 
1406
1407	return ttm_bo_eviction_valuable(bo, place);
1408}
1409
1410static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1411				      void *buf, size_t size, bool write)
1412{
1413	while (size) {
1414		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1415		uint64_t bytes = 4 - (pos & 0x3);
1416		uint32_t shift = (pos & 0x3) * 8;
1417		uint32_t mask = 0xffffffff << shift;
1418		uint32_t value = 0;
1419
1420		if (size < bytes) {
1421			mask &= 0xffffffff >> (bytes - size) * 8;
1422			bytes = size;
1423		}
1424
1425		if (mask != 0xffffffff) {
1426			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1427			if (write) {
1428				value &= ~mask;
1429				value |= (*(uint32_t *)buf << shift) & mask;
1430				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1431			} else {
1432				value = (value & mask) >> shift;
1433				memcpy(buf, &value, bytes);
1434			}
1435		} else {
1436			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1437		}
 
1438
1439		pos += bytes;
1440		buf += bytes;
1441		size -= bytes;
1442	}
1443}
1444
1445static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1446					unsigned long offset, void *buf,
1447					int len, int write)
1448{
1449	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1450	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1451	struct amdgpu_res_cursor src_mm;
1452	struct amdgpu_job *job;
1453	struct dma_fence *fence;
1454	uint64_t src_addr, dst_addr;
1455	unsigned int num_dw;
1456	int r, idx;
1457
1458	if (len != PAGE_SIZE)
1459		return -EINVAL;
1460
1461	if (!adev->mman.sdma_access_ptr)
1462		return -EACCES;
1463
1464	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1465		return -ENODEV;
1466
1467	if (write)
1468		memcpy(adev->mman.sdma_access_ptr, buf, len);
1469
1470	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1471	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1472				     AMDGPU_FENCE_OWNER_UNDEFINED,
1473				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1474				     &job);
1475	if (r)
1476		goto out;
1477
1478	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1479	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1480		src_mm.start;
1481	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1482	if (write)
1483		swap(src_addr, dst_addr);
1484
1485	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1486				PAGE_SIZE, false);
1487
1488	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1489	WARN_ON(job->ibs[0].length_dw > num_dw);
1490
1491	fence = amdgpu_job_submit(job);
1492
1493	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1494		r = -ETIMEDOUT;
1495	dma_fence_put(fence);
1496
1497	if (!(r || write))
1498		memcpy(buf, adev->mman.sdma_access_ptr, len);
1499out:
1500	drm_dev_exit(idx);
1501	return r;
1502}
1503
1504/**
1505 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1506 *
1507 * @bo:  The buffer object to read/write
1508 * @offset:  Offset into buffer object
1509 * @buf:  Secondary buffer to write/read from
1510 * @len: Length in bytes of access
1511 * @write:  true if writing
1512 *
1513 * This is used to access VRAM that backs a buffer object via MMIO
1514 * access for debugging purposes.
1515 */
1516static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1517				    unsigned long offset, void *buf, int len,
1518				    int write)
1519{
1520	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1521	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1522	struct amdgpu_res_cursor cursor;
 
 
1523	int ret = 0;
1524
1525	if (bo->resource->mem_type != TTM_PL_VRAM)
1526		return -EIO;
1527
1528	if (amdgpu_device_has_timeouts_enabled(adev) &&
1529			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1530		return len;
1531
1532	amdgpu_res_first(bo->resource, offset, len, &cursor);
1533	while (cursor.remaining) {
1534		size_t count, size = cursor.size;
1535		loff_t pos = cursor.start;
 
 
1536
1537		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1538		size -= count;
1539		if (size) {
1540			/* using MM to access rest vram and handle un-aligned address */
1541			pos += count;
1542			buf += count;
1543			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1544		}
1545
1546		ret += cursor.size;
1547		buf += cursor.size;
1548		amdgpu_res_next(&cursor, cursor.size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549	}
1550
1551	return ret;
1552}
1553
1554static void
1555amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1556{
1557	amdgpu_bo_move_notify(bo, false);
1558}
1559
1560static struct ttm_device_funcs amdgpu_bo_driver = {
1561	.ttm_tt_create = &amdgpu_ttm_tt_create,
1562	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1563	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1564	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1565	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1566	.evict_flags = &amdgpu_evict_flags,
1567	.move = &amdgpu_bo_move,
1568	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1569	.release_notify = &amdgpu_bo_release_notify,
1570	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1571	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1572	.access_memory = &amdgpu_ttm_access_memory,
 
1573};
1574
1575/*
1576 * Firmware Reservation functions
1577 */
1578/**
1579 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1580 *
1581 * @adev: amdgpu_device pointer
1582 *
1583 * free fw reserved vram if it has been reserved.
1584 */
1585static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1586{
1587	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1588		NULL, &adev->mman.fw_vram_usage_va);
1589}
1590
1591/*
1592 * Driver Reservation functions
1593 */
1594/**
1595 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1596 *
1597 * @adev: amdgpu_device pointer
1598 *
1599 * free drv reserved vram if it has been reserved.
1600 */
1601static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1602{
1603	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1604						  NULL,
1605						  &adev->mman.drv_vram_usage_va);
1606}
1607
1608/**
1609 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1610 *
1611 * @adev: amdgpu_device pointer
1612 *
1613 * create bo vram reservation from fw.
1614 */
1615static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1616{
1617	uint64_t vram_size = adev->gmc.visible_vram_size;
1618
1619	adev->mman.fw_vram_usage_va = NULL;
1620	adev->mman.fw_vram_usage_reserved_bo = NULL;
1621
1622	if (adev->mman.fw_vram_usage_size == 0 ||
1623	    adev->mman.fw_vram_usage_size > vram_size)
1624		return 0;
1625
1626	return amdgpu_bo_create_kernel_at(adev,
1627					  adev->mman.fw_vram_usage_start_offset,
1628					  adev->mman.fw_vram_usage_size,
 
1629					  &adev->mman.fw_vram_usage_reserved_bo,
1630					  &adev->mman.fw_vram_usage_va);
1631}
1632
1633/**
1634 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * create bo vram reservation from drv.
1639 */
1640static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1641{
1642	u64 vram_size = adev->gmc.visible_vram_size;
1643
1644	adev->mman.drv_vram_usage_va = NULL;
1645	adev->mman.drv_vram_usage_reserved_bo = NULL;
1646
1647	if (adev->mman.drv_vram_usage_size == 0 ||
1648	    adev->mman.drv_vram_usage_size > vram_size)
1649		return 0;
1650
1651	return amdgpu_bo_create_kernel_at(adev,
1652					  adev->mman.drv_vram_usage_start_offset,
1653					  adev->mman.drv_vram_usage_size,
1654					  &adev->mman.drv_vram_usage_reserved_bo,
1655					  &adev->mman.drv_vram_usage_va);
1656}
1657
1658/*
1659 * Memoy training reservation functions
1660 */
1661
1662/**
1663 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1664 *
1665 * @adev: amdgpu_device pointer
1666 *
1667 * free memory training reserved vram if it has been reserved.
1668 */
1669static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1670{
1671	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672
1673	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1674	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1675	ctx->c2p_bo = NULL;
1676
1677	return 0;
1678}
1679
1680static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1681						uint32_t reserve_size)
1682{
1683	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1684
1685	memset(ctx, 0, sizeof(*ctx));
1686
1687	ctx->c2p_train_data_offset =
1688		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1689	ctx->p2c_train_data_offset =
1690		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1691	ctx->train_data_size =
1692		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1693
1694	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1695			ctx->train_data_size,
1696			ctx->p2c_train_data_offset,
1697			ctx->c2p_train_data_offset);
1698}
1699
1700/*
1701 * reserve TMR memory at the top of VRAM which holds
1702 * IP Discovery data and is protected by PSP.
1703 */
1704static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1705{
 
1706	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1707	bool mem_train_support = false;
1708	uint32_t reserve_size = 0;
1709	int ret;
1710
1711	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1712		if (amdgpu_atomfirmware_mem_training_supported(adev))
1713			mem_train_support = true;
1714		else
1715			DRM_DEBUG("memory training does not support!\n");
1716	}
1717
1718	/*
1719	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1720	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1721	 *
1722	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1723	 * discovery data and G6 memory training data respectively
1724	 */
1725	if (adev->bios)
1726		reserve_size =
1727			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1728
1729	if (!adev->bios &&
1730	    amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1731		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1732	else if (!reserve_size)
1733		reserve_size = DISCOVERY_TMR_OFFSET;
1734
1735	if (mem_train_support) {
1736		/* reserve vram for mem train according to TMR location */
1737		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1738		ret = amdgpu_bo_create_kernel_at(adev,
1739						 ctx->c2p_train_data_offset,
1740						 ctx->train_data_size,
1741						 &ctx->c2p_bo,
1742						 NULL);
 
1743		if (ret) {
1744			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1745			amdgpu_ttm_training_reserve_vram_fini(adev);
1746			return ret;
1747		}
1748		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1749	}
1750
1751	if (!adev->gmc.is_app_apu) {
1752		ret = amdgpu_bo_create_kernel_at(
1753			adev, adev->gmc.real_vram_size - reserve_size,
1754			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1755		if (ret) {
1756			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1757			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1758					      NULL, NULL);
1759			return ret;
1760		}
1761	} else {
1762		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1763	}
1764
1765	return 0;
1766}
1767
1768static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1769{
1770	int i;
1771
1772	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1773		return 0;
1774
1775	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1776				       sizeof(*adev->mman.ttm_pools),
1777				       GFP_KERNEL);
1778	if (!adev->mman.ttm_pools)
1779		return -ENOMEM;
1780
1781	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1782		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1783			      adev->gmc.mem_partitions[i].numa.node,
1784			      false, false);
1785	}
1786	return 0;
1787}
1788
1789static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1790{
1791	int i;
1792
1793	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1794		return;
1795
1796	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1797		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1798
1799	kfree(adev->mman.ttm_pools);
1800	adev->mman.ttm_pools = NULL;
1801}
1802
1803/*
1804 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1805 * gtt/vram related fields.
1806 *
1807 * This initializes all of the memory space pools that the TTM layer
1808 * will need such as the GTT space (system memory mapped to the device),
1809 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1810 * can be mapped per VMID.
1811 */
1812int amdgpu_ttm_init(struct amdgpu_device *adev)
1813{
1814	uint64_t gtt_size;
1815	int r;
 
1816
1817	mutex_init(&adev->mman.gtt_window_lock);
1818
1819	/* No others user of address space so set it to 0 */
1820	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1821			       adev_to_drm(adev)->anon_inode->i_mapping,
1822			       adev_to_drm(adev)->vma_offset_manager,
1823			       adev->need_swiotlb,
1824			       dma_addressing_limited(adev->dev));
1825	if (r) {
1826		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1827		return r;
1828	}
1829
1830	r = amdgpu_ttm_pools_init(adev);
1831	if (r) {
1832		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1833		return r;
1834	}
1835	adev->mman.initialized = true;
1836
1837	/* Initialize VRAM pool with all of VRAM divided into pages */
1838	r = amdgpu_vram_mgr_init(adev);
1839	if (r) {
1840		DRM_ERROR("Failed initializing VRAM heap.\n");
1841		return r;
1842	}
1843
 
 
 
 
 
 
1844	/* Change the size here instead of the init above so only lpfn is affected */
1845	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1846#ifdef CONFIG_64BIT
1847#ifdef CONFIG_X86
1848	if (adev->gmc.xgmi.connected_to_cpu)
1849		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1850				adev->gmc.visible_vram_size);
1851
1852	else if (adev->gmc.is_app_apu)
1853		DRM_DEBUG_DRIVER(
1854			"No need to ioremap when real vram size is 0\n");
1855	else
1856#endif
1857		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1858				adev->gmc.visible_vram_size);
1859#endif
1860
1861	/*
1862	 *The reserved vram for firmware must be pinned to the specified
1863	 *place on the VRAM, so reserve it early.
1864	 */
1865	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1866	if (r)
1867		return r;
1868
1869	/*
1870	 *The reserved vram for driver must be pinned to the specified
1871	 *place on the VRAM, so reserve it early.
1872	 */
1873	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1874	if (r)
1875		return r;
 
1876
1877	/*
1878	 * only NAVI10 and onwards ASIC support for IP discovery.
1879	 * If IP discovery enabled, a block of memory should be
1880	 * reserved for IP discovey.
1881	 */
1882	if (adev->mman.discovery_bin) {
1883		r = amdgpu_ttm_reserve_tmr(adev);
1884		if (r)
1885			return r;
1886	}
1887
1888	/* allocate memory as required for VGA
1889	 * This is used for VGA emulation and pre-OS scanout buffers to
1890	 * avoid display artifacts while transitioning between pre-OS
1891	 * and driver.
1892	 */
1893	if (!adev->gmc.is_app_apu) {
1894		r = amdgpu_bo_create_kernel_at(adev, 0,
1895					       adev->mman.stolen_vga_size,
1896					       &adev->mman.stolen_vga_memory,
1897					       NULL);
1898		if (r)
1899			return r;
1900
1901		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1902					       adev->mman.stolen_extended_size,
1903					       &adev->mman.stolen_extended_memory,
1904					       NULL);
1905
1906		if (r)
1907			return r;
1908
1909		r = amdgpu_bo_create_kernel_at(adev,
1910					       adev->mman.stolen_reserved_offset,
1911					       adev->mman.stolen_reserved_size,
1912					       &adev->mman.stolen_reserved_memory,
1913					       NULL);
1914		if (r)
1915			return r;
1916	} else {
1917		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1918	}
1919
1920	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1921		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1922
1923	/* Compute GTT size, either based on TTM limit
1924	 * or whatever the user passed on module init.
1925	 */
1926	if (amdgpu_gtt_size == -1)
1927		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
 
 
 
 
 
1928	else
1929		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1930
1931	/* Initialize GTT memory pool */
1932	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1933	if (r) {
1934		DRM_ERROR("Failed initializing GTT heap.\n");
1935		return r;
1936	}
1937	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1938		 (unsigned int)(gtt_size / (1024 * 1024)));
1939
1940	/* Initiailize doorbell pool on PCI BAR */
1941	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1942	if (r) {
1943		DRM_ERROR("Failed initializing doorbell heap.\n");
1944		return r;
1945	}
1946
1947	/* Create a boorbell page for kernel usages */
1948	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1949	if (r) {
1950		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1951		return r;
1952	}
1953
1954	/* Initialize preemptible memory pool */
1955	r = amdgpu_preempt_mgr_init(adev);
1956	if (r) {
1957		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1958		return r;
1959	}
1960
1961	/* Initialize various on-chip memory pools */
1962	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1963	if (r) {
1964		DRM_ERROR("Failed initializing GDS heap.\n");
1965		return r;
1966	}
1967
1968	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1969	if (r) {
1970		DRM_ERROR("Failed initializing gws heap.\n");
1971		return r;
1972	}
1973
1974	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1975	if (r) {
1976		DRM_ERROR("Failed initializing oa heap.\n");
1977		return r;
1978	}
1979	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1980				AMDGPU_GEM_DOMAIN_GTT,
1981				&adev->mman.sdma_access_bo, NULL,
1982				&adev->mman.sdma_access_ptr))
1983		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1984
1985	return 0;
1986}
1987
1988/*
1989 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1990 */
1991void amdgpu_ttm_fini(struct amdgpu_device *adev)
1992{
1993	int idx;
1994
1995	if (!adev->mman.initialized)
1996		return;
1997
1998	amdgpu_ttm_pools_fini(adev);
1999
2000	amdgpu_ttm_training_reserve_vram_fini(adev);
2001	/* return the stolen vga memory back to VRAM */
2002	if (!adev->gmc.is_app_apu) {
2003		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2004		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2005		/* return the FW reserved memory back to VRAM */
2006		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2007				      NULL);
2008		if (adev->mman.stolen_reserved_size)
2009			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2010					      NULL, NULL);
2011	}
2012	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2013					&adev->mman.sdma_access_ptr);
2014	amdgpu_ttm_fw_reserve_vram_fini(adev);
2015	amdgpu_ttm_drv_reserve_vram_fini(adev);
2016
2017	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2018
2019		if (adev->mman.aper_base_kaddr)
2020			iounmap(adev->mman.aper_base_kaddr);
2021		adev->mman.aper_base_kaddr = NULL;
2022
2023		drm_dev_exit(idx);
2024	}
2025
2026	amdgpu_vram_mgr_fini(adev);
2027	amdgpu_gtt_mgr_fini(adev);
2028	amdgpu_preempt_mgr_fini(adev);
2029	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2030	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2031	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2032	ttm_device_fini(&adev->mman.bdev);
2033	adev->mman.initialized = false;
2034	DRM_INFO("amdgpu: ttm finalized\n");
2035}
2036
2037/**
2038 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2039 *
2040 * @adev: amdgpu_device pointer
2041 * @enable: true when we can use buffer functions.
2042 *
2043 * Enable/disable use of buffer functions during suspend/resume. This should
2044 * only be called at bootup or when userspace isn't running.
2045 */
2046void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2047{
2048	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2049	uint64_t size;
2050	int r;
2051
2052	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2053	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2054		return;
2055
2056	if (enable) {
2057		struct amdgpu_ring *ring;
2058		struct drm_gpu_scheduler *sched;
2059
2060		ring = adev->mman.buffer_funcs_ring;
2061		sched = &ring->sched;
2062		r = drm_sched_entity_init(&adev->mman.high_pr,
2063					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2064					  1, NULL);
2065		if (r) {
2066			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2067				  r);
2068			return;
2069		}
2070
2071		r = drm_sched_entity_init(&adev->mman.low_pr,
2072					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2073					  1, NULL);
2074		if (r) {
2075			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2076				  r);
2077			goto error_free_entity;
2078		}
2079	} else {
2080		drm_sched_entity_destroy(&adev->mman.high_pr);
2081		drm_sched_entity_destroy(&adev->mman.low_pr);
2082		dma_fence_put(man->move);
2083		man->move = NULL;
2084	}
2085
2086	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2087	if (enable)
2088		size = adev->gmc.real_vram_size;
2089	else
2090		size = adev->gmc.visible_vram_size;
2091	man->size = size;
2092	adev->mman.buffer_funcs_enabled = enable;
2093
2094	return;
2095
2096error_free_entity:
2097	drm_sched_entity_destroy(&adev->mman.high_pr);
2098}
2099
2100static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2101				  bool direct_submit,
2102				  unsigned int num_dw,
2103				  struct dma_resv *resv,
2104				  bool vm_needs_flush,
2105				  struct amdgpu_job **job,
2106				  bool delayed)
2107{
2108	enum amdgpu_ib_pool_type pool = direct_submit ?
2109		AMDGPU_IB_POOL_DIRECT :
2110		AMDGPU_IB_POOL_DELAYED;
2111	int r;
2112	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2113						    &adev->mman.high_pr;
2114	r = amdgpu_job_alloc_with_ib(adev, entity,
2115				     AMDGPU_FENCE_OWNER_UNDEFINED,
2116				     num_dw * 4, pool, job);
2117	if (r)
2118		return r;
2119
2120	if (vm_needs_flush) {
2121		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2122							adev->gmc.pdb0_bo :
2123							adev->gart.bo);
2124		(*job)->vm_needs_flush = true;
2125	}
2126	if (!resv)
2127		return 0;
2128
2129	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2130						   DMA_RESV_USAGE_BOOKKEEP);
2131}
2132
2133int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2134		       uint64_t dst_offset, uint32_t byte_count,
2135		       struct dma_resv *resv,
2136		       struct dma_fence **fence, bool direct_submit,
2137		       bool vm_needs_flush, bool tmz)
2138{
 
 
2139	struct amdgpu_device *adev = ring->adev;
2140	unsigned int num_loops, num_dw;
2141	struct amdgpu_job *job;
 
2142	uint32_t max_bytes;
2143	unsigned int i;
 
2144	int r;
2145
2146	if (!direct_submit && !ring->sched.ready) {
2147		DRM_ERROR("Trying to move memory with ring turned off.\n");
2148		return -EINVAL;
2149	}
2150
2151	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2152	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2153	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2154	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2155				   resv, vm_needs_flush, &job, false);
2156	if (r)
2157		return r;
2158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159	for (i = 0; i < num_loops; i++) {
2160		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2161
2162		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2163					dst_offset, cur_size_in_bytes, tmz);
2164
2165		src_offset += cur_size_in_bytes;
2166		dst_offset += cur_size_in_bytes;
2167		byte_count -= cur_size_in_bytes;
2168	}
2169
2170	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2171	WARN_ON(job->ibs[0].length_dw > num_dw);
2172	if (direct_submit)
2173		r = amdgpu_job_submit_direct(job, ring, fence);
2174	else
2175		*fence = amdgpu_job_submit(job);
 
2176	if (r)
2177		goto error_free;
2178
2179	return r;
2180
2181error_free:
2182	amdgpu_job_free(job);
2183	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2184	return r;
2185}
2186
2187static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2188			       uint64_t dst_addr, uint32_t byte_count,
2189			       struct dma_resv *resv,
2190			       struct dma_fence **fence,
2191			       bool vm_needs_flush, bool delayed)
2192{
2193	struct amdgpu_device *adev = ring->adev;
 
 
 
 
2194	unsigned int num_loops, num_dw;
 
 
2195	struct amdgpu_job *job;
2196	uint32_t max_bytes;
2197	unsigned int i;
2198	int r;
2199
2200	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2201	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2202	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2203	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2204				   &job, delayed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205	if (r)
2206		return r;
2207
2208	for (i = 0; i < num_loops; i++) {
2209		uint32_t cur_size = min(byte_count, max_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
2210
 
 
2211		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2212					cur_size);
2213
2214		dst_addr += cur_size;
2215		byte_count -= cur_size;
2216	}
2217
2218	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2219	WARN_ON(job->ibs[0].length_dw > num_dw);
2220	*fence = amdgpu_job_submit(job);
 
 
 
 
2221	return 0;
 
 
 
 
2222}
2223
2224int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2225			uint32_t src_data,
2226			struct dma_resv *resv,
2227			struct dma_fence **f,
2228			bool delayed)
2229{
2230	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2231	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2232	struct dma_fence *fence = NULL;
2233	struct amdgpu_res_cursor dst;
2234	int r;
2235
2236	if (!adev->mman.buffer_funcs_enabled) {
2237		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2238		return -EINVAL;
2239	}
 
 
2240
2241	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
 
 
2242
2243	mutex_lock(&adev->mman.gtt_window_lock);
2244	while (dst.remaining) {
2245		struct dma_fence *next;
2246		uint64_t cur_size, to;
2247
2248		/* Never fill more than 256MiB at once to avoid timeouts */
2249		cur_size = min(dst.size, 256ULL << 20);
2250
2251		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2252					  1, ring, false, &cur_size, &to);
2253		if (r)
2254			goto error;
 
 
2255
2256		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2257					&next, true, delayed);
2258		if (r)
2259			goto error;
2260
2261		dma_fence_put(fence);
2262		fence = next;
 
 
 
 
2263
2264		amdgpu_res_next(&dst, cur_size);
2265	}
2266error:
2267	mutex_unlock(&adev->mman.gtt_window_lock);
2268	if (f)
2269		*f = dma_fence_get(fence);
2270	dma_fence_put(fence);
2271	return r;
2272}
2273
2274/**
2275 * amdgpu_ttm_evict_resources - evict memory buffers
2276 * @adev: amdgpu device object
2277 * @mem_type: evicted BO's memory type
2278 *
2279 * Evicts all @mem_type buffers on the lru list of the memory type.
2280 *
2281 * Returns:
2282 * 0 for success or a negative error code on failure.
2283 */
2284int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2285{
2286	struct ttm_resource_manager *man;
2287
2288	switch (mem_type) {
2289	case TTM_PL_VRAM:
2290	case TTM_PL_TT:
2291	case AMDGPU_PL_GWS:
2292	case AMDGPU_PL_GDS:
2293	case AMDGPU_PL_OA:
2294		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2295		break;
2296	default:
2297		DRM_ERROR("Trying to evict invalid memory type\n");
2298		return -EINVAL;
2299	}
2300
2301	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
 
2302}
2303
2304#if defined(CONFIG_DEBUG_FS)
2305
2306static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2307{
2308	struct amdgpu_device *adev = m->private;
 
 
 
2309
2310	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
 
2311}
2312
 
 
 
 
 
2313DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2314
2315/*
2316 * amdgpu_ttm_vram_read - Linear read access to VRAM
2317 *
2318 * Accesses VRAM via MMIO for debugging purposes.
2319 */
2320static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2321				    size_t size, loff_t *pos)
2322{
2323	struct amdgpu_device *adev = file_inode(f)->i_private;
2324	ssize_t result = 0;
2325
2326	if (size & 0x3 || *pos & 0x3)
2327		return -EINVAL;
2328
2329	if (*pos >= adev->gmc.mc_vram_size)
2330		return -ENXIO;
2331
2332	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2333	while (size) {
2334		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2335		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2336
2337		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2338		if (copy_to_user(buf, value, bytes))
2339			return -EFAULT;
2340
2341		result += bytes;
2342		buf += bytes;
2343		*pos += bytes;
2344		size -= bytes;
2345	}
2346
2347	return result;
2348}
2349
2350/*
2351 * amdgpu_ttm_vram_write - Linear write access to VRAM
2352 *
2353 * Accesses VRAM via MMIO for debugging purposes.
2354 */
2355static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2356				    size_t size, loff_t *pos)
2357{
2358	struct amdgpu_device *adev = file_inode(f)->i_private;
2359	ssize_t result = 0;
2360	int r;
2361
2362	if (size & 0x3 || *pos & 0x3)
2363		return -EINVAL;
2364
2365	if (*pos >= adev->gmc.mc_vram_size)
2366		return -ENXIO;
2367
2368	while (size) {
 
2369		uint32_t value;
2370
2371		if (*pos >= adev->gmc.mc_vram_size)
2372			return result;
2373
2374		r = get_user(value, (uint32_t *)buf);
2375		if (r)
2376			return r;
2377
2378		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
 
 
 
 
2379
2380		result += 4;
2381		buf += 4;
2382		*pos += 4;
2383		size -= 4;
2384	}
2385
2386	return result;
2387}
2388
2389static const struct file_operations amdgpu_ttm_vram_fops = {
2390	.owner = THIS_MODULE,
2391	.read = amdgpu_ttm_vram_read,
2392	.write = amdgpu_ttm_vram_write,
2393	.llseek = default_llseek,
2394};
2395
2396/*
2397 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2398 *
2399 * This function is used to read memory that has been mapped to the
2400 * GPU and the known addresses are not physical addresses but instead
2401 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2402 */
2403static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2404				 size_t size, loff_t *pos)
2405{
2406	struct amdgpu_device *adev = file_inode(f)->i_private;
2407	struct iommu_domain *dom;
2408	ssize_t result = 0;
2409	int r;
2410
2411	/* retrieve the IOMMU domain if any for this device */
2412	dom = iommu_get_domain_for_dev(adev->dev);
2413
2414	while (size) {
2415		phys_addr_t addr = *pos & PAGE_MASK;
2416		loff_t off = *pos & ~PAGE_MASK;
2417		size_t bytes = PAGE_SIZE - off;
2418		unsigned long pfn;
2419		struct page *p;
2420		void *ptr;
2421
2422		bytes = min(bytes, size);
2423
2424		/* Translate the bus address to a physical address.  If
2425		 * the domain is NULL it means there is no IOMMU active
2426		 * and the address translation is the identity
2427		 */
2428		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2429
2430		pfn = addr >> PAGE_SHIFT;
2431		if (!pfn_valid(pfn))
2432			return -EPERM;
2433
2434		p = pfn_to_page(pfn);
2435		if (p->mapping != adev->mman.bdev.dev_mapping)
2436			return -EPERM;
2437
2438		ptr = kmap_local_page(p);
2439		r = copy_to_user(buf, ptr + off, bytes);
2440		kunmap_local(ptr);
2441		if (r)
2442			return -EFAULT;
2443
2444		size -= bytes;
2445		*pos += bytes;
2446		result += bytes;
2447	}
2448
2449	return result;
2450}
2451
2452/*
2453 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2454 *
2455 * This function is used to write memory that has been mapped to the
2456 * GPU and the known addresses are not physical addresses but instead
2457 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2458 */
2459static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2460				 size_t size, loff_t *pos)
2461{
2462	struct amdgpu_device *adev = file_inode(f)->i_private;
2463	struct iommu_domain *dom;
2464	ssize_t result = 0;
2465	int r;
2466
2467	dom = iommu_get_domain_for_dev(adev->dev);
2468
2469	while (size) {
2470		phys_addr_t addr = *pos & PAGE_MASK;
2471		loff_t off = *pos & ~PAGE_MASK;
2472		size_t bytes = PAGE_SIZE - off;
2473		unsigned long pfn;
2474		struct page *p;
2475		void *ptr;
2476
2477		bytes = min(bytes, size);
2478
2479		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2480
2481		pfn = addr >> PAGE_SHIFT;
2482		if (!pfn_valid(pfn))
2483			return -EPERM;
2484
2485		p = pfn_to_page(pfn);
2486		if (p->mapping != adev->mman.bdev.dev_mapping)
2487			return -EPERM;
2488
2489		ptr = kmap_local_page(p);
2490		r = copy_from_user(ptr + off, buf, bytes);
2491		kunmap_local(ptr);
2492		if (r)
2493			return -EFAULT;
2494
2495		size -= bytes;
2496		*pos += bytes;
2497		result += bytes;
2498	}
2499
2500	return result;
2501}
2502
2503static const struct file_operations amdgpu_ttm_iomem_fops = {
2504	.owner = THIS_MODULE,
2505	.read = amdgpu_iomem_read,
2506	.write = amdgpu_iomem_write,
2507	.llseek = default_llseek
2508};
2509
2510#endif
2511
2512void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2513{
2514#if defined(CONFIG_DEBUG_FS)
2515	struct drm_minor *minor = adev_to_drm(adev)->primary;
2516	struct dentry *root = minor->debugfs_root;
2517
2518	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2519				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2520	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2521			    &amdgpu_ttm_iomem_fops);
 
 
 
 
 
 
 
 
 
 
2522	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2523			    &amdgpu_ttm_page_pool_fops);
2524	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2525							     TTM_PL_VRAM),
2526					    root, "amdgpu_vram_mm");
2527	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2528							     TTM_PL_TT),
2529					    root, "amdgpu_gtt_mm");
2530	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2531							     AMDGPU_PL_GDS),
2532					    root, "amdgpu_gds_mm");
2533	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2534							     AMDGPU_PL_GWS),
2535					    root, "amdgpu_gws_mm");
2536	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2537							     AMDGPU_PL_OA),
2538					    root, "amdgpu_oa_mm");
2539
2540#endif
2541}
v5.14.15
   1/*
   2 * Copyright 2009 Jerome Glisse.
   3 * All Rights Reserved.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the
   7 * "Software"), to deal in the Software without restriction, including
   8 * without limitation the rights to use, copy, modify, merge, publish,
   9 * distribute, sub license, and/or sell copies of the Software, and to
  10 * permit persons to whom the Software is furnished to do so, subject to
  11 * the following conditions:
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  20 *
  21 * The above copyright notice and this permission notice (including the
  22 * next paragraph) shall be included in all copies or substantial portions
  23 * of the Software.
  24 *
  25 */
  26/*
  27 * Authors:
  28 *    Jerome Glisse <glisse@freedesktop.org>
  29 *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
  30 *    Dave Airlie
  31 */
  32
  33#include <linux/dma-mapping.h>
  34#include <linux/iommu.h>
  35#include <linux/pagemap.h>
  36#include <linux/sched/task.h>
  37#include <linux/sched/mm.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/swap.h>
  41#include <linux/swiotlb.h>
  42#include <linux/dma-buf.h>
  43#include <linux/sizes.h>
 
  44
  45#include <drm/ttm/ttm_bo_api.h>
  46#include <drm/ttm/ttm_bo_driver.h>
  47#include <drm/ttm/ttm_placement.h>
  48#include <drm/ttm/ttm_range_manager.h>
 
  49
  50#include <drm/amdgpu_drm.h>
  51
  52#include "amdgpu.h"
  53#include "amdgpu_object.h"
  54#include "amdgpu_trace.h"
  55#include "amdgpu_amdkfd.h"
  56#include "amdgpu_sdma.h"
  57#include "amdgpu_ras.h"
 
  58#include "amdgpu_atomfirmware.h"
  59#include "amdgpu_res_cursor.h"
  60#include "bif/bif_4_1_d.h"
  61
  62#define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
 
 
  63
  64static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
  65				   struct ttm_tt *ttm,
  66				   struct ttm_resource *bo_mem);
  67static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
  68				      struct ttm_tt *ttm);
  69
  70static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
  71				    unsigned int type,
  72				    uint64_t size_in_page)
  73{
  74	return ttm_range_man_init(&adev->mman.bdev, type,
  75				  false, size_in_page);
  76}
  77
  78/**
  79 * amdgpu_evict_flags - Compute placement flags
  80 *
  81 * @bo: The buffer object to evict
  82 * @placement: Possible destination(s) for evicted BO
  83 *
  84 * Fill in placement data when ttm_bo_evict() is called
  85 */
  86static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
  87				struct ttm_placement *placement)
  88{
  89	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
  90	struct amdgpu_bo *abo;
  91	static const struct ttm_place placements = {
  92		.fpfn = 0,
  93		.lpfn = 0,
  94		.mem_type = TTM_PL_SYSTEM,
  95		.flags = 0
  96	};
  97
  98	/* Don't handle scatter gather BOs */
  99	if (bo->type == ttm_bo_type_sg) {
 100		placement->num_placement = 0;
 101		placement->num_busy_placement = 0;
 102		return;
 103	}
 104
 105	/* Object isn't an AMDGPU object so ignore */
 106	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
 107		placement->placement = &placements;
 108		placement->busy_placement = &placements;
 109		placement->num_placement = 1;
 110		placement->num_busy_placement = 1;
 111		return;
 112	}
 113
 114	abo = ttm_to_amdgpu_bo(bo);
 115	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
 116		struct dma_fence *fence;
 117		struct dma_resv *resv = &bo->base._resv;
 118
 119		rcu_read_lock();
 120		fence = rcu_dereference(resv->fence_excl);
 121		if (fence && !fence->ops->signaled)
 122			dma_fence_enable_sw_signaling(fence);
 123
 124		placement->num_placement = 0;
 125		placement->num_busy_placement = 0;
 126		rcu_read_unlock();
 127		return;
 128	}
 129
 130	switch (bo->resource->mem_type) {
 131	case AMDGPU_PL_GDS:
 132	case AMDGPU_PL_GWS:
 133	case AMDGPU_PL_OA:
 
 134		placement->num_placement = 0;
 135		placement->num_busy_placement = 0;
 136		return;
 137
 138	case TTM_PL_VRAM:
 139		if (!adev->mman.buffer_funcs_enabled) {
 140			/* Move to system memory */
 141			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 142		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
 143			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
 144			   amdgpu_bo_in_cpu_visible_vram(abo)) {
 145
 146			/* Try evicting to the CPU inaccessible part of VRAM
 147			 * first, but only set GTT as busy placement, so this
 148			 * BO will be evicted to GTT rather than causing other
 149			 * BOs to be evicted from VRAM
 150			 */
 151			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
 152							 AMDGPU_GEM_DOMAIN_GTT);
 
 153			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
 154			abo->placements[0].lpfn = 0;
 155			abo->placement.busy_placement = &abo->placements[1];
 156			abo->placement.num_busy_placement = 1;
 157		} else {
 158			/* Move to GTT memory */
 159			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
 
 160		}
 161		break;
 162	case TTM_PL_TT:
 163	case AMDGPU_PL_PREEMPT:
 164	default:
 165		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
 166		break;
 167	}
 168	*placement = abo->placement;
 169}
 170
 171/**
 172 * amdgpu_ttm_map_buffer - Map memory into the GART windows
 173 * @bo: buffer object to map
 174 * @mem: memory object to map
 175 * @mm_cur: range to map
 176 * @num_pages: number of pages to map
 177 * @window: which GART window to use
 178 * @ring: DMA ring to use for the copy
 179 * @tmz: if we should setup a TMZ enabled mapping
 
 180 * @addr: resulting address inside the MC address space
 181 *
 182 * Setup one of the GART windows to access a specific piece of memory or return
 183 * the physical address for local memory.
 184 */
 185static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
 186				 struct ttm_resource *mem,
 187				 struct amdgpu_res_cursor *mm_cur,
 188				 unsigned num_pages, unsigned window,
 189				 struct amdgpu_ring *ring, bool tmz,
 190				 uint64_t *addr)
 191{
 192	struct amdgpu_device *adev = ring->adev;
 
 
 193	struct amdgpu_job *job;
 194	unsigned num_dw, num_bytes;
 195	struct dma_fence *fence;
 196	uint64_t src_addr, dst_addr;
 197	void *cpu_addr;
 198	uint64_t flags;
 199	unsigned int i;
 200	int r;
 201
 202	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
 203	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
 204	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
 
 
 205
 206	/* Map only what can't be accessed directly */
 207	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
 208		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
 209			mm_cur->start;
 210		return 0;
 211	}
 212
 
 
 
 
 
 
 
 
 
 
 
 
 213	*addr = adev->gmc.gart_start;
 214	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
 215		AMDGPU_GPU_PAGE_SIZE;
 216	*addr += mm_cur->start & ~PAGE_MASK;
 217
 218	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
 219	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
 220
 221	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
 
 
 222				     AMDGPU_IB_POOL_DELAYED, &job);
 223	if (r)
 224		return r;
 225
 226	src_addr = num_dw * 4;
 227	src_addr += job->ibs[0].gpu_addr;
 228
 229	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
 230	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
 231	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
 232				dst_addr, num_bytes, false);
 233
 234	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
 235	WARN_ON(job->ibs[0].length_dw > num_dw);
 236
 237	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
 238	if (tmz)
 239		flags |= AMDGPU_PTE_TMZ;
 240
 241	cpu_addr = &job->ibs[0].ptr[num_dw];
 242
 243	if (mem->mem_type == TTM_PL_TT) {
 244		dma_addr_t *dma_addr;
 245
 246		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
 247		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
 248				    cpu_addr);
 249		if (r)
 250			goto error_free;
 251	} else {
 252		dma_addr_t dma_address;
 253
 254		dma_address = mm_cur->start;
 255		dma_address += adev->vm_manager.vram_base_offset;
 256
 257		for (i = 0; i < num_pages; ++i) {
 258			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
 259					    &dma_address, flags, cpu_addr);
 260			if (r)
 261				goto error_free;
 262
 263			dma_address += PAGE_SIZE;
 264		}
 265	}
 266
 267	r = amdgpu_job_submit(job, &adev->mman.entity,
 268			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
 269	if (r)
 270		goto error_free;
 271
 272	dma_fence_put(fence);
 273
 274	return r;
 275
 276error_free:
 277	amdgpu_job_free(job);
 278	return r;
 279}
 280
 281/**
 282 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
 283 * @adev: amdgpu device
 284 * @src: buffer/address where to read from
 285 * @dst: buffer/address where to write to
 286 * @size: number of bytes to copy
 287 * @tmz: if a secure copy should be used
 288 * @resv: resv object to sync to
 289 * @f: Returns the last fence if multiple jobs are submitted.
 290 *
 291 * The function copies @size bytes from {src->mem + src->offset} to
 292 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
 293 * move and different for a BO to BO copy.
 294 *
 295 */
 296int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
 297			       const struct amdgpu_copy_mem *src,
 298			       const struct amdgpu_copy_mem *dst,
 299			       uint64_t size, bool tmz,
 300			       struct dma_resv *resv,
 301			       struct dma_fence **f)
 302{
 303	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
 304					AMDGPU_GPU_PAGE_SIZE);
 305
 306	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
 307	struct amdgpu_res_cursor src_mm, dst_mm;
 308	struct dma_fence *fence = NULL;
 309	int r = 0;
 310
 311	if (!adev->mman.buffer_funcs_enabled) {
 312		DRM_ERROR("Trying to move memory with ring turned off.\n");
 313		return -EINVAL;
 314	}
 315
 316	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
 317	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
 318
 319	mutex_lock(&adev->mman.gtt_window_lock);
 320	while (src_mm.remaining) {
 321		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
 322		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
 323		struct dma_fence *next;
 324		uint32_t cur_size;
 325		uint64_t from, to;
 326
 327		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
 328		 * begins at an offset, then adjust the size accordingly
 329		 */
 330		cur_size = max(src_page_offset, dst_page_offset);
 331		cur_size = min(min3(src_mm.size, dst_mm.size, size),
 332			       (uint64_t)(GTT_MAX_BYTES - cur_size));
 333
 334		/* Map src to window 0 and dst to window 1. */
 335		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
 336					  PFN_UP(cur_size + src_page_offset),
 337					  0, ring, tmz, &from);
 338		if (r)
 339			goto error;
 340
 341		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
 342					  PFN_UP(cur_size + dst_page_offset),
 343					  1, ring, tmz, &to);
 344		if (r)
 345			goto error;
 346
 347		r = amdgpu_copy_buffer(ring, from, to, cur_size,
 348				       resv, &next, false, true, tmz);
 349		if (r)
 350			goto error;
 351
 352		dma_fence_put(fence);
 353		fence = next;
 354
 355		amdgpu_res_next(&src_mm, cur_size);
 356		amdgpu_res_next(&dst_mm, cur_size);
 357	}
 358error:
 359	mutex_unlock(&adev->mman.gtt_window_lock);
 360	if (f)
 361		*f = dma_fence_get(fence);
 362	dma_fence_put(fence);
 363	return r;
 364}
 365
 366/*
 367 * amdgpu_move_blit - Copy an entire buffer to another buffer
 368 *
 369 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
 370 * help move buffers to and from VRAM.
 371 */
 372static int amdgpu_move_blit(struct ttm_buffer_object *bo,
 373			    bool evict,
 374			    struct ttm_resource *new_mem,
 375			    struct ttm_resource *old_mem)
 376{
 377	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 378	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
 379	struct amdgpu_copy_mem src, dst;
 380	struct dma_fence *fence = NULL;
 381	int r;
 382
 383	src.bo = bo;
 384	dst.bo = bo;
 385	src.mem = old_mem;
 386	dst.mem = new_mem;
 387	src.offset = 0;
 388	dst.offset = 0;
 389
 390	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
 391				       new_mem->num_pages << PAGE_SHIFT,
 392				       amdgpu_bo_encrypted(abo),
 393				       bo->base.resv, &fence);
 394	if (r)
 395		goto error;
 396
 397	/* clear the space being freed */
 398	if (old_mem->mem_type == TTM_PL_VRAM &&
 399	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
 400		struct dma_fence *wipe_fence = NULL;
 401
 402		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
 403				       NULL, &wipe_fence);
 404		if (r) {
 405			goto error;
 406		} else if (wipe_fence) {
 407			dma_fence_put(fence);
 408			fence = wipe_fence;
 409		}
 410	}
 411
 412	/* Always block for VM page tables before committing the new location */
 413	if (bo->type == ttm_bo_type_kernel)
 414		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
 415	else
 416		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
 417	dma_fence_put(fence);
 418	return r;
 419
 420error:
 421	if (fence)
 422		dma_fence_wait(fence, false);
 423	dma_fence_put(fence);
 424	return r;
 425}
 426
 427/*
 428 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
 429 *
 430 * Called by amdgpu_bo_move()
 431 */
 432static bool amdgpu_mem_visible(struct amdgpu_device *adev,
 433			       struct ttm_resource *mem)
 434{
 435	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
 436	struct amdgpu_res_cursor cursor;
 
 437
 438	if (mem->mem_type == TTM_PL_SYSTEM ||
 439	    mem->mem_type == TTM_PL_TT)
 440		return true;
 441	if (mem->mem_type != TTM_PL_VRAM)
 442		return false;
 443
 444	amdgpu_res_first(mem, 0, mem_size, &cursor);
 
 
 
 
 
 
 
 
 
 
 445
 446	/* ttm_resource_ioremap only supports contiguous memory */
 447	if (cursor.size != mem_size)
 448		return false;
 449
 450	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
 451}
 452
 453/*
 454 * amdgpu_bo_move - Move a buffer object to a new memory location
 455 *
 456 * Called by ttm_bo_handle_move_mem()
 457 */
 458static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
 459			  struct ttm_operation_ctx *ctx,
 460			  struct ttm_resource *new_mem,
 461			  struct ttm_place *hop)
 462{
 463	struct amdgpu_device *adev;
 464	struct amdgpu_bo *abo;
 465	struct ttm_resource *old_mem = bo->resource;
 466	int r;
 467
 468	if (new_mem->mem_type == TTM_PL_TT ||
 469	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
 470		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
 471		if (r)
 472			return r;
 473	}
 474
 475	/* Can't move a pinned BO */
 476	abo = ttm_to_amdgpu_bo(bo);
 477	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
 478		return -EINVAL;
 479
 480	adev = amdgpu_ttm_adev(bo->bdev);
 481
 482	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
 
 483		ttm_bo_move_null(bo, new_mem);
 484		goto out;
 485	}
 486	if (old_mem->mem_type == TTM_PL_SYSTEM &&
 487	    (new_mem->mem_type == TTM_PL_TT ||
 488	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
 489		ttm_bo_move_null(bo, new_mem);
 490		goto out;
 491	}
 492	if ((old_mem->mem_type == TTM_PL_TT ||
 493	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
 494	    new_mem->mem_type == TTM_PL_SYSTEM) {
 495		r = ttm_bo_wait_ctx(bo, ctx);
 496		if (r)
 497			return r;
 498
 499		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
 500		ttm_resource_free(bo, &bo->resource);
 501		ttm_bo_assign_mem(bo, new_mem);
 502		goto out;
 503	}
 504
 505	if (old_mem->mem_type == AMDGPU_PL_GDS ||
 506	    old_mem->mem_type == AMDGPU_PL_GWS ||
 507	    old_mem->mem_type == AMDGPU_PL_OA ||
 
 508	    new_mem->mem_type == AMDGPU_PL_GDS ||
 509	    new_mem->mem_type == AMDGPU_PL_GWS ||
 510	    new_mem->mem_type == AMDGPU_PL_OA) {
 
 511		/* Nothing to save here */
 512		ttm_bo_move_null(bo, new_mem);
 513		goto out;
 514	}
 515
 516	if (bo->type == ttm_bo_type_device &&
 517	    new_mem->mem_type == TTM_PL_VRAM &&
 518	    old_mem->mem_type != TTM_PL_VRAM) {
 519		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
 520		 * accesses the BO after it's moved.
 521		 */
 522		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
 523	}
 524
 525	if (adev->mman.buffer_funcs_enabled) {
 526		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
 527		      new_mem->mem_type == TTM_PL_VRAM) ||
 528		     (old_mem->mem_type == TTM_PL_VRAM &&
 529		      new_mem->mem_type == TTM_PL_SYSTEM))) {
 530			hop->fpfn = 0;
 531			hop->lpfn = 0;
 532			hop->mem_type = TTM_PL_TT;
 533			hop->flags = 0;
 534			return -EMULTIHOP;
 535		}
 536
 537		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
 538	} else {
 539		r = -ENODEV;
 540	}
 541
 542	if (r) {
 543		/* Check that all memory is CPU accessible */
 544		if (!amdgpu_mem_visible(adev, old_mem) ||
 545		    !amdgpu_mem_visible(adev, new_mem)) {
 546			pr_err("Move buffer fallback to memcpy unavailable\n");
 547			return r;
 548		}
 549
 550		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
 551		if (r)
 552			return r;
 553	}
 554
 
 555out:
 556	/* update statistics */
 557	atomic64_add(bo->base.size, &adev->num_bytes_moved);
 558	amdgpu_bo_move_notify(bo, evict, new_mem);
 559	return 0;
 560}
 561
 562/*
 563 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
 564 *
 565 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
 566 */
 567static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
 568				     struct ttm_resource *mem)
 569{
 570	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 571	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
 572
 573	switch (mem->mem_type) {
 574	case TTM_PL_SYSTEM:
 575		/* system memory */
 576		return 0;
 577	case TTM_PL_TT:
 578	case AMDGPU_PL_PREEMPT:
 579		break;
 580	case TTM_PL_VRAM:
 581		mem->bus.offset = mem->start << PAGE_SHIFT;
 582		/* check if it's visible */
 583		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
 584			return -EINVAL;
 585
 586		if (adev->mman.aper_base_kaddr &&
 587		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
 588			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
 589					mem->bus.offset;
 590
 591		mem->bus.offset += adev->gmc.aper_base;
 592		mem->bus.is_iomem = true;
 593		break;
 
 
 
 
 
 
 594	default:
 595		return -EINVAL;
 596	}
 597	return 0;
 598}
 599
 600static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
 601					   unsigned long page_offset)
 602{
 603	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 604	struct amdgpu_res_cursor cursor;
 605
 606	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
 607			 &cursor);
 
 
 
 
 608	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
 609}
 610
 611/**
 612 * amdgpu_ttm_domain_start - Returns GPU start address
 613 * @adev: amdgpu device object
 614 * @type: type of the memory
 615 *
 616 * Returns:
 617 * GPU start address of a memory domain
 618 */
 619
 620uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
 621{
 622	switch (type) {
 623	case TTM_PL_TT:
 624		return adev->gmc.gart_start;
 625	case TTM_PL_VRAM:
 626		return adev->gmc.vram_start;
 627	}
 628
 629	return 0;
 630}
 631
 632/*
 633 * TTM backend functions.
 634 */
 635struct amdgpu_ttm_tt {
 636	struct ttm_tt	ttm;
 637	struct drm_gem_object	*gobj;
 638	u64			offset;
 639	uint64_t		userptr;
 640	struct task_struct	*usertask;
 641	uint32_t		userflags;
 642	bool			bound;
 643#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 644	struct hmm_range	*range;
 645#endif
 646};
 647
 
 
 648#ifdef CONFIG_DRM_AMDGPU_USERPTR
 649/*
 650 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
 651 * memory and start HMM tracking CPU page table update
 652 *
 653 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
 654 * once afterwards to stop HMM tracking
 655 */
 656int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
 
 657{
 658	struct ttm_tt *ttm = bo->tbo.ttm;
 659	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 660	unsigned long start = gtt->userptr;
 661	struct vm_area_struct *vma;
 662	struct mm_struct *mm;
 663	bool readonly;
 664	int r = 0;
 665
 
 
 
 666	mm = bo->notifier.mm;
 667	if (unlikely(!mm)) {
 668		DRM_DEBUG_DRIVER("BO is not registered?\n");
 669		return -EFAULT;
 670	}
 671
 672	/* Another get_user_pages is running at the same time?? */
 673	if (WARN_ON(gtt->range))
 674		return -EFAULT;
 675
 676	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
 677		return -ESRCH;
 678
 679	mmap_read_lock(mm);
 680	vma = vma_lookup(mm, start);
 681	if (unlikely(!vma)) {
 682		r = -EFAULT;
 683		goto out_unlock;
 684	}
 685	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
 686		vma->vm_file)) {
 687		r = -EPERM;
 688		goto out_unlock;
 689	}
 690
 691	readonly = amdgpu_ttm_tt_is_readonly(ttm);
 692	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
 693				       ttm->num_pages, &gtt->range, readonly,
 694				       true, NULL);
 695out_unlock:
 696	mmap_read_unlock(mm);
 
 
 
 697	mmput(mm);
 698
 699	return r;
 700}
 701
 
 
 
 
 
 
 
 
 
 
 
 702/*
 703 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
 704 * Check if the pages backing this ttm range have been invalidated
 705 *
 706 * Returns: true if pages are still valid
 707 */
 708bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
 
 709{
 710	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 711	bool r = false;
 712
 713	if (!gtt || !gtt->userptr)
 714		return false;
 715
 716	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
 717		gtt->userptr, ttm->num_pages);
 718
 719	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
 720		"No user pages to check\n");
 721
 722	if (gtt->range) {
 723		/*
 724		 * FIXME: Must always hold notifier_lock for this, and must
 725		 * not ignore the return code.
 726		 */
 727		r = amdgpu_hmm_range_get_pages_done(gtt->range);
 728		gtt->range = NULL;
 729	}
 730
 731	return !r;
 732}
 733#endif
 734
 735/*
 736 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
 737 *
 738 * Called by amdgpu_cs_list_validate(). This creates the page list
 739 * that backs user memory and will ultimately be mapped into the device
 740 * address space.
 741 */
 742void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
 743{
 744	unsigned long i;
 745
 746	for (i = 0; i < ttm->num_pages; ++i)
 747		ttm->pages[i] = pages ? pages[i] : NULL;
 748}
 749
 750/*
 751 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
 752 *
 753 * Called by amdgpu_ttm_backend_bind()
 754 **/
 755static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
 756				     struct ttm_tt *ttm)
 757{
 758	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 759	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 760	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 761	enum dma_data_direction direction = write ?
 762		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 763	int r;
 764
 765	/* Allocate an SG array and squash pages into it */
 766	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
 767				      (u64)ttm->num_pages << PAGE_SHIFT,
 768				      GFP_KERNEL);
 769	if (r)
 770		goto release_sg;
 771
 772	/* Map SG to device */
 773	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
 774	if (r)
 775		goto release_sg;
 776
 777	/* convert SG to linear array of pages and dma addresses */
 778	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 779				       ttm->num_pages);
 780
 781	return 0;
 782
 783release_sg:
 784	kfree(ttm->sg);
 785	ttm->sg = NULL;
 786	return r;
 787}
 788
 789/*
 790 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
 791 */
 792static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
 793					struct ttm_tt *ttm)
 794{
 795	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 796	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 797	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
 798	enum dma_data_direction direction = write ?
 799		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
 800
 801	/* double check that we don't free the table twice */
 802	if (!ttm->sg || !ttm->sg->sgl)
 803		return;
 804
 805	/* unmap the pages mapped to the device */
 806	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
 807	sg_free_table(ttm->sg);
 
 808
 809#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
 810	if (gtt->range) {
 811		unsigned long i;
 812
 813		for (i = 0; i < ttm->num_pages; i++) {
 814			if (ttm->pages[i] !=
 815			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
 816				break;
 817		}
 
 
 
 
 
 
 
 
 
 
 
 818
 819		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 820	}
 821#endif
 822}
 823
 824static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
 825				struct ttm_buffer_object *tbo,
 826				uint64_t flags)
 827{
 828	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
 829	struct ttm_tt *ttm = tbo->ttm;
 830	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 831	int r;
 832
 833	if (amdgpu_bo_encrypted(abo))
 834		flags |= AMDGPU_PTE_TMZ;
 835
 836	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
 837		uint64_t page_idx = 1;
 838
 839		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
 840				gtt->ttm.dma_address, flags);
 841		if (r)
 842			goto gart_bind_fail;
 843
 844		/* The memory type of the first page defaults to UC. Now
 845		 * modify the memory type to NC from the second page of
 846		 * the BO onward.
 847		 */
 848		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
 849		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
 850
 851		r = amdgpu_gart_bind(adev,
 852				gtt->offset + (page_idx << PAGE_SHIFT),
 853				ttm->num_pages - page_idx,
 854				&(gtt->ttm.dma_address[page_idx]), flags);
 855	} else {
 856		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 857				     gtt->ttm.dma_address, flags);
 858	}
 859
 860gart_bind_fail:
 861	if (r)
 862		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
 863			  ttm->num_pages, gtt->offset);
 864
 865	return r;
 866}
 867
 868/*
 869 * amdgpu_ttm_backend_bind - Bind GTT memory
 870 *
 871 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
 872 * This handles binding GTT memory to the device address space.
 873 */
 874static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
 875				   struct ttm_tt *ttm,
 876				   struct ttm_resource *bo_mem)
 877{
 878	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
 879	struct amdgpu_ttm_tt *gtt = (void*)ttm;
 880	uint64_t flags;
 881	int r = 0;
 882
 883	if (!bo_mem)
 884		return -EINVAL;
 885
 886	if (gtt->bound)
 887		return 0;
 888
 889	if (gtt->userptr) {
 890		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
 891		if (r) {
 892			DRM_ERROR("failed to pin userptr\n");
 893			return r;
 894		}
 895	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
 896		if (!ttm->sg) {
 897			struct dma_buf_attachment *attach;
 898			struct sg_table *sgt;
 899
 900			attach = gtt->gobj->import_attach;
 901			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
 902			if (IS_ERR(sgt))
 903				return PTR_ERR(sgt);
 904
 905			ttm->sg = sgt;
 906		}
 907
 908		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
 909					       ttm->num_pages);
 910	}
 911
 912	if (!ttm->num_pages) {
 913		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
 914		     ttm->num_pages, bo_mem, ttm);
 915	}
 916
 917	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
 918	    bo_mem->mem_type == AMDGPU_PL_GWS ||
 919	    bo_mem->mem_type == AMDGPU_PL_OA)
 920		return -EINVAL;
 921
 922	if (bo_mem->mem_type != TTM_PL_TT ||
 923	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
 924		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
 925		return 0;
 926	}
 927
 928	/* compute PTE flags relevant to this BO memory */
 929	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
 930
 931	/* bind pages into GART page tables */
 932	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
 933	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
 934		gtt->ttm.dma_address, flags);
 935
 936	if (r)
 937		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
 938			  ttm->num_pages, gtt->offset);
 939	gtt->bound = true;
 940	return r;
 941}
 942
 943/*
 944 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
 945 * through AGP or GART aperture.
 946 *
 947 * If bo is accessible through AGP aperture, then use AGP aperture
 948 * to access bo; otherwise allocate logical space in GART aperture
 949 * and map bo to GART aperture.
 950 */
 951int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
 952{
 953	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
 954	struct ttm_operation_ctx ctx = { false, false };
 955	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
 956	struct ttm_placement placement;
 957	struct ttm_place placements;
 958	struct ttm_resource *tmp;
 959	uint64_t addr, flags;
 960	int r;
 961
 962	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
 963		return 0;
 964
 965	addr = amdgpu_gmc_agp_addr(bo);
 966	if (addr != AMDGPU_BO_INVALID_OFFSET) {
 967		bo->resource->start = addr >> PAGE_SHIFT;
 968		return 0;
 969	}
 970
 971	/* allocate GART space */
 972	placement.num_placement = 1;
 973	placement.placement = &placements;
 974	placement.num_busy_placement = 1;
 975	placement.busy_placement = &placements;
 976	placements.fpfn = 0;
 977	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
 978	placements.mem_type = TTM_PL_TT;
 979	placements.flags = bo->resource->placement;
 980
 981	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
 982	if (unlikely(r))
 983		return r;
 984
 985	/* compute PTE flags for this buffer object */
 986	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
 987
 988	/* Bind pages */
 989	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
 990	r = amdgpu_ttm_gart_bind(adev, bo, flags);
 991	if (unlikely(r)) {
 992		ttm_resource_free(bo, &tmp);
 993		return r;
 994	}
 995
 996	amdgpu_gart_invalidate_tlb(adev);
 997	ttm_resource_free(bo, &bo->resource);
 998	ttm_bo_assign_mem(bo, tmp);
 999
1000	return 0;
1001}
1002
1003/*
1004 * amdgpu_ttm_recover_gart - Rebind GTT pages
1005 *
1006 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1007 * rebind GTT pages during a GPU reset.
1008 */
1009int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1010{
1011	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1012	uint64_t flags;
1013	int r;
1014
1015	if (!tbo->ttm)
1016		return 0;
1017
1018	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1019	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1020
1021	return r;
1022}
1023
1024/*
1025 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1026 *
1027 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1028 * ttm_tt_destroy().
1029 */
1030static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1031				      struct ttm_tt *ttm)
1032{
1033	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1034	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1035	int r;
1036
1037	/* if the pages have userptr pinning then clear that first */
1038	if (gtt->userptr) {
1039		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1040	} else if (ttm->sg && gtt->gobj->import_attach) {
1041		struct dma_buf_attachment *attach;
1042
1043		attach = gtt->gobj->import_attach;
1044		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1045		ttm->sg = NULL;
1046	}
1047
1048	if (!gtt->bound)
1049		return;
1050
1051	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1052		return;
1053
1054	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1055	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1056	if (r)
1057		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1058			  gtt->ttm.num_pages, gtt->offset);
1059	gtt->bound = false;
1060}
1061
1062static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1063				       struct ttm_tt *ttm)
1064{
1065	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1066
1067	amdgpu_ttm_backend_unbind(bdev, ttm);
1068	ttm_tt_destroy_common(bdev, ttm);
1069	if (gtt->usertask)
1070		put_task_struct(gtt->usertask);
1071
1072	ttm_tt_fini(&gtt->ttm);
1073	kfree(gtt);
1074}
1075
1076/**
1077 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1078 *
1079 * @bo: The buffer object to create a GTT ttm_tt object around
1080 * @page_flags: Page flags to be added to the ttm_tt object
1081 *
1082 * Called by ttm_tt_create().
1083 */
1084static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1085					   uint32_t page_flags)
1086{
 
1087	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1088	struct amdgpu_ttm_tt *gtt;
1089	enum ttm_caching caching;
1090
1091	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1092	if (gtt == NULL) {
1093		return NULL;
1094	}
1095	gtt->gobj = &bo->base;
 
 
 
 
1096
1097	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1098		caching = ttm_write_combined;
1099	else
1100		caching = ttm_cached;
1101
1102	/* allocate space for the uninitialized page entries */
1103	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1104		kfree(gtt);
1105		return NULL;
1106	}
1107	return &gtt->ttm;
1108}
1109
1110/*
1111 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1112 *
1113 * Map the pages of a ttm_tt object to an address space visible
1114 * to the underlying device.
1115 */
1116static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1117				  struct ttm_tt *ttm,
1118				  struct ttm_operation_ctx *ctx)
1119{
1120	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1121	struct amdgpu_ttm_tt *gtt = (void *)ttm;
 
 
 
1122
1123	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1124	if (gtt && gtt->userptr) {
1125		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1126		if (!ttm->sg)
1127			return -ENOMEM;
1128		return 0;
1129	}
1130
1131	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1132		return 0;
1133
1134	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
 
 
 
 
 
 
 
 
 
 
 
1135}
1136
1137/*
1138 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1139 *
1140 * Unmaps pages of a ttm_tt object from the device address space and
1141 * unpopulates the page array backing it.
1142 */
1143static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1144				     struct ttm_tt *ttm)
1145{
1146	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1147	struct amdgpu_device *adev;
 
 
 
 
1148
1149	if (gtt && gtt->userptr) {
1150		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1151		kfree(ttm->sg);
1152		ttm->sg = NULL;
1153		return;
1154	}
1155
1156	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1157		return;
1158
 
 
 
1159	adev = amdgpu_ttm_adev(bdev);
1160	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161}
1162
1163/**
1164 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1165 * task
1166 *
1167 * @bo: The ttm_buffer_object to bind this userptr to
1168 * @addr:  The address in the current tasks VM space to use
1169 * @flags: Requirements of userptr object.
1170 *
1171 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1172 * to current task
 
1173 */
1174int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1175			      uint64_t addr, uint32_t flags)
1176{
1177	struct amdgpu_ttm_tt *gtt;
1178
1179	if (!bo->ttm) {
1180		/* TODO: We want a separate TTM object type for userptrs */
1181		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1182		if (bo->ttm == NULL)
1183			return -ENOMEM;
1184	}
1185
1186	/* Set TTM_PAGE_FLAG_SG before populate but after create. */
1187	bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1188
1189	gtt = (void *)bo->ttm;
1190	gtt->userptr = addr;
1191	gtt->userflags = flags;
1192
1193	if (gtt->usertask)
1194		put_task_struct(gtt->usertask);
1195	gtt->usertask = current->group_leader;
1196	get_task_struct(gtt->usertask);
1197
1198	return 0;
1199}
1200
1201/*
1202 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1203 */
1204struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1205{
1206	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1207
1208	if (gtt == NULL)
1209		return NULL;
1210
1211	if (gtt->usertask == NULL)
1212		return NULL;
1213
1214	return gtt->usertask->mm;
1215}
1216
1217/*
1218 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1219 * address range for the current task.
1220 *
1221 */
1222bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1223				  unsigned long end)
1224{
1225	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1226	unsigned long size;
1227
1228	if (gtt == NULL || !gtt->userptr)
1229		return false;
1230
1231	/* Return false if no part of the ttm_tt object lies within
1232	 * the range
1233	 */
1234	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1235	if (gtt->userptr > end || gtt->userptr + size <= start)
1236		return false;
1237
 
 
1238	return true;
1239}
1240
1241/*
1242 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1243 */
1244bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1245{
1246	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1247
1248	if (gtt == NULL || !gtt->userptr)
1249		return false;
1250
1251	return true;
1252}
1253
1254/*
1255 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1256 */
1257bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1258{
1259	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1260
1261	if (gtt == NULL)
1262		return false;
1263
1264	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1265}
1266
1267/**
1268 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1269 *
1270 * @ttm: The ttm_tt object to compute the flags for
1271 * @mem: The memory registry backing this ttm_tt object
1272 *
1273 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1274 */
1275uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1276{
1277	uint64_t flags = 0;
1278
1279	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1280		flags |= AMDGPU_PTE_VALID;
1281
1282	if (mem && (mem->mem_type == TTM_PL_TT ||
 
1283		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1284		flags |= AMDGPU_PTE_SYSTEM;
1285
1286		if (ttm->caching == ttm_cached)
1287			flags |= AMDGPU_PTE_SNOOPED;
1288	}
1289
1290	if (mem && mem->mem_type == TTM_PL_VRAM &&
1291			mem->bus.caching == ttm_cached)
1292		flags |= AMDGPU_PTE_SNOOPED;
1293
1294	return flags;
1295}
1296
1297/**
1298 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1299 *
1300 * @adev: amdgpu_device pointer
1301 * @ttm: The ttm_tt object to compute the flags for
1302 * @mem: The memory registry backing this ttm_tt object
1303 *
1304 * Figure out the flags to use for a VM PTE (Page Table Entry).
1305 */
1306uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1307				 struct ttm_resource *mem)
1308{
1309	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1310
1311	flags |= adev->gart.gart_pte_flags;
1312	flags |= AMDGPU_PTE_READABLE;
1313
1314	if (!amdgpu_ttm_tt_is_readonly(ttm))
1315		flags |= AMDGPU_PTE_WRITEABLE;
1316
1317	return flags;
1318}
1319
1320/*
1321 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1322 * object.
1323 *
1324 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1325 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1326 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1327 * used to clean out a memory space.
1328 */
1329static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1330					    const struct ttm_place *place)
1331{
1332	unsigned long num_pages = bo->resource->num_pages;
1333	struct amdgpu_res_cursor cursor;
1334	struct dma_resv_list *flist;
1335	struct dma_fence *f;
1336	int i;
 
 
1337
1338	/* Swapout? */
1339	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1340		return true;
1341
1342	if (bo->type == ttm_bo_type_kernel &&
1343	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1344		return false;
1345
1346	/* If bo is a KFD BO, check if the bo belongs to the current process.
1347	 * If true, then return false as any KFD process needs all its BOs to
1348	 * be resident to run successfully
1349	 */
1350	flist = dma_resv_shared_list(bo->base.resv);
1351	if (flist) {
1352		for (i = 0; i < flist->shared_count; ++i) {
1353			f = rcu_dereference_protected(flist->shared[i],
1354				dma_resv_held(bo->base.resv));
1355			if (amdkfd_fence_check_mm(f, current->mm))
1356				return false;
1357		}
1358	}
1359
1360	switch (bo->resource->mem_type) {
1361	case AMDGPU_PL_PREEMPT:
1362		/* Preemptible BOs don't own system resources managed by the
1363		 * driver (pages, VRAM, GART space). They point to resources
1364		 * owned by someone else (e.g. pageable memory in user mode
1365		 * or a DMABuf). They are used in a preemptible context so we
1366		 * can guarantee no deadlocks and good QoS in case of MMU
1367		 * notifiers or DMABuf move notifiers from the resource owner.
1368		 */
 
 
 
1369		return false;
1370	case TTM_PL_TT:
1371		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1372		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1373			return false;
1374		return true;
1375
1376	case TTM_PL_VRAM:
1377		/* Check each drm MM node individually */
1378		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1379				 &cursor);
1380		while (cursor.remaining) {
1381			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1382			    && !(place->lpfn &&
1383				 place->lpfn <= PFN_DOWN(cursor.start)))
1384				return true;
 
 
 
 
 
 
 
 
1385
1386			amdgpu_res_next(&cursor, cursor.size);
 
 
 
 
 
 
 
 
 
 
 
1387		}
1388		return false;
1389
1390	default:
1391		break;
 
1392	}
 
1393
1394	return ttm_bo_eviction_valuable(bo, place);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395}
1396
1397/**
1398 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1399 *
1400 * @bo:  The buffer object to read/write
1401 * @offset:  Offset into buffer object
1402 * @buf:  Secondary buffer to write/read from
1403 * @len: Length in bytes of access
1404 * @write:  true if writing
1405 *
1406 * This is used to access VRAM that backs a buffer object via MMIO
1407 * access for debugging purposes.
1408 */
1409static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1410				    unsigned long offset, void *buf, int len,
1411				    int write)
1412{
1413	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1414	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1415	struct amdgpu_res_cursor cursor;
1416	unsigned long flags;
1417	uint32_t value = 0;
1418	int ret = 0;
1419
1420	if (bo->resource->mem_type != TTM_PL_VRAM)
1421		return -EIO;
1422
 
 
 
 
1423	amdgpu_res_first(bo->resource, offset, len, &cursor);
1424	while (cursor.remaining) {
1425		uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1426		uint64_t bytes = 4 - (cursor.start & 3);
1427		uint32_t shift = (cursor.start & 3) * 8;
1428		uint32_t mask = 0xffffffff << shift;
1429
1430		if (cursor.size < bytes) {
1431			mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1432			bytes = cursor.size;
 
 
 
 
1433		}
1434
1435		if (mask != 0xffffffff) {
1436			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1437			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1438			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1439			value = RREG32_NO_KIQ(mmMM_DATA);
1440			if (write) {
1441				value &= ~mask;
1442				value |= (*(uint32_t *)buf << shift) & mask;
1443				WREG32_NO_KIQ(mmMM_DATA, value);
1444			}
1445			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1446			if (!write) {
1447				value = (value & mask) >> shift;
1448				memcpy(buf, &value, bytes);
1449			}
1450		} else {
1451			bytes = cursor.size & ~0x3ULL;
1452			amdgpu_device_vram_access(adev, cursor.start,
1453						  (uint32_t *)buf, bytes,
1454						  write);
1455		}
1456
1457		ret += bytes;
1458		buf = (uint8_t *)buf + bytes;
1459		amdgpu_res_next(&cursor, bytes);
1460	}
1461
1462	return ret;
1463}
1464
1465static void
1466amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1467{
1468	amdgpu_bo_move_notify(bo, false, NULL);
1469}
1470
1471static struct ttm_device_funcs amdgpu_bo_driver = {
1472	.ttm_tt_create = &amdgpu_ttm_tt_create,
1473	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1474	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1475	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1476	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1477	.evict_flags = &amdgpu_evict_flags,
1478	.move = &amdgpu_bo_move,
1479	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1480	.release_notify = &amdgpu_bo_release_notify,
1481	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1482	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1483	.access_memory = &amdgpu_ttm_access_memory,
1484	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1485};
1486
1487/*
1488 * Firmware Reservation functions
1489 */
1490/**
1491 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1492 *
1493 * @adev: amdgpu_device pointer
1494 *
1495 * free fw reserved vram if it has been reserved.
1496 */
1497static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1498{
1499	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1500		NULL, &adev->mman.fw_vram_usage_va);
1501}
1502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503/**
1504 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1505 *
1506 * @adev: amdgpu_device pointer
1507 *
1508 * create bo vram reservation from fw.
1509 */
1510static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1511{
1512	uint64_t vram_size = adev->gmc.visible_vram_size;
1513
1514	adev->mman.fw_vram_usage_va = NULL;
1515	adev->mman.fw_vram_usage_reserved_bo = NULL;
1516
1517	if (adev->mman.fw_vram_usage_size == 0 ||
1518	    adev->mman.fw_vram_usage_size > vram_size)
1519		return 0;
1520
1521	return amdgpu_bo_create_kernel_at(adev,
1522					  adev->mman.fw_vram_usage_start_offset,
1523					  adev->mman.fw_vram_usage_size,
1524					  AMDGPU_GEM_DOMAIN_VRAM,
1525					  &adev->mman.fw_vram_usage_reserved_bo,
1526					  &adev->mman.fw_vram_usage_va);
1527}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529/*
1530 * Memoy training reservation functions
1531 */
1532
1533/**
1534 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1535 *
1536 * @adev: amdgpu_device pointer
1537 *
1538 * free memory training reserved vram if it has been reserved.
1539 */
1540static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1541{
1542	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1543
1544	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1545	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1546	ctx->c2p_bo = NULL;
1547
1548	return 0;
1549}
1550
1551static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
 
1552{
1553	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1554
1555	memset(ctx, 0, sizeof(*ctx));
1556
1557	ctx->c2p_train_data_offset =
1558		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1559	ctx->p2c_train_data_offset =
1560		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1561	ctx->train_data_size =
1562		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1563
1564	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1565			ctx->train_data_size,
1566			ctx->p2c_train_data_offset,
1567			ctx->c2p_train_data_offset);
1568}
1569
1570/*
1571 * reserve TMR memory at the top of VRAM which holds
1572 * IP Discovery data and is protected by PSP.
1573 */
1574static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1575{
1576	int ret;
1577	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1578	bool mem_train_support = false;
 
 
1579
1580	if (!amdgpu_sriov_vf(adev)) {
1581		if (amdgpu_atomfirmware_mem_training_supported(adev))
1582			mem_train_support = true;
1583		else
1584			DRM_DEBUG("memory training does not support!\n");
1585	}
1586
1587	/*
1588	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1589	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1590	 *
1591	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1592	 * discovery data and G6 memory training data respectively
1593	 */
1594	adev->mman.discovery_tmr_size =
1595		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1596	if (!adev->mman.discovery_tmr_size)
1597		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
 
 
 
 
 
1598
1599	if (mem_train_support) {
1600		/* reserve vram for mem train according to TMR location */
1601		amdgpu_ttm_training_data_block_init(adev);
1602		ret = amdgpu_bo_create_kernel_at(adev,
1603					 ctx->c2p_train_data_offset,
1604					 ctx->train_data_size,
1605					 AMDGPU_GEM_DOMAIN_VRAM,
1606					 &ctx->c2p_bo,
1607					 NULL);
1608		if (ret) {
1609			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1610			amdgpu_ttm_training_reserve_vram_fini(adev);
1611			return ret;
1612		}
1613		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1614	}
1615
1616	ret = amdgpu_bo_create_kernel_at(adev,
1617				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1618				adev->mman.discovery_tmr_size,
1619				AMDGPU_GEM_DOMAIN_VRAM,
1620				&adev->mman.discovery_memory,
1621				NULL);
1622	if (ret) {
1623		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1624		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1625		return ret;
 
 
1626	}
1627
1628	return 0;
1629}
1630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631/*
1632 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1633 * gtt/vram related fields.
1634 *
1635 * This initializes all of the memory space pools that the TTM layer
1636 * will need such as the GTT space (system memory mapped to the device),
1637 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1638 * can be mapped per VMID.
1639 */
1640int amdgpu_ttm_init(struct amdgpu_device *adev)
1641{
1642	uint64_t gtt_size;
1643	int r;
1644	u64 vis_vram_limit;
1645
1646	mutex_init(&adev->mman.gtt_window_lock);
1647
1648	/* No others user of address space so set it to 0 */
1649	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1650			       adev_to_drm(adev)->anon_inode->i_mapping,
1651			       adev_to_drm(adev)->vma_offset_manager,
1652			       adev->need_swiotlb,
1653			       dma_addressing_limited(adev->dev));
1654	if (r) {
1655		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1656		return r;
1657	}
 
 
 
 
 
 
1658	adev->mman.initialized = true;
1659
1660	/* Initialize VRAM pool with all of VRAM divided into pages */
1661	r = amdgpu_vram_mgr_init(adev);
1662	if (r) {
1663		DRM_ERROR("Failed initializing VRAM heap.\n");
1664		return r;
1665	}
1666
1667	/* Reduce size of CPU-visible VRAM if requested */
1668	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1669	if (amdgpu_vis_vram_limit > 0 &&
1670	    vis_vram_limit <= adev->gmc.visible_vram_size)
1671		adev->gmc.visible_vram_size = vis_vram_limit;
1672
1673	/* Change the size here instead of the init above so only lpfn is affected */
1674	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1675#ifdef CONFIG_64BIT
1676#ifdef CONFIG_X86
1677	if (adev->gmc.xgmi.connected_to_cpu)
1678		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1679				adev->gmc.visible_vram_size);
1680
 
 
 
1681	else
1682#endif
1683		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1684				adev->gmc.visible_vram_size);
1685#endif
1686
1687	/*
1688	 *The reserved vram for firmware must be pinned to the specified
1689	 *place on the VRAM, so reserve it early.
1690	 */
1691	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1692	if (r) {
 
 
 
 
 
 
 
 
1693		return r;
1694	}
1695
1696	/*
1697	 * only NAVI10 and onwards ASIC support for IP discovery.
1698	 * If IP discovery enabled, a block of memory should be
1699	 * reserved for IP discovey.
1700	 */
1701	if (adev->mman.discovery_bin) {
1702		r = amdgpu_ttm_reserve_tmr(adev);
1703		if (r)
1704			return r;
1705	}
1706
1707	/* allocate memory as required for VGA
1708	 * This is used for VGA emulation and pre-OS scanout buffers to
1709	 * avoid display artifacts while transitioning between pre-OS
1710	 * and driver.  */
1711	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1712				       AMDGPU_GEM_DOMAIN_VRAM,
1713				       &adev->mman.stolen_vga_memory,
1714				       NULL);
1715	if (r)
1716		return r;
1717	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1718				       adev->mman.stolen_extended_size,
1719				       AMDGPU_GEM_DOMAIN_VRAM,
1720				       &adev->mman.stolen_extended_memory,
1721				       NULL);
1722	if (r)
1723		return r;
1724	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1725				       adev->mman.stolen_reserved_size,
1726				       AMDGPU_GEM_DOMAIN_VRAM,
1727				       &adev->mman.stolen_reserved_memory,
1728				       NULL);
1729	if (r)
1730		return r;
 
 
 
 
 
 
 
1731
1732	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1733		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1734
1735	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1736	 * or whatever the user passed on module init */
1737	if (amdgpu_gtt_size == -1) {
1738		struct sysinfo si;
1739
1740		si_meminfo(&si);
1741		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1742			       adev->gmc.mc_vram_size),
1743			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1744	}
1745	else
1746		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1747
1748	/* Initialize GTT memory pool */
1749	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1750	if (r) {
1751		DRM_ERROR("Failed initializing GTT heap.\n");
1752		return r;
1753	}
1754	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1755		 (unsigned)(gtt_size / (1024 * 1024)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756
1757	/* Initialize preemptible memory pool */
1758	r = amdgpu_preempt_mgr_init(adev);
1759	if (r) {
1760		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1761		return r;
1762	}
1763
1764	/* Initialize various on-chip memory pools */
1765	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1766	if (r) {
1767		DRM_ERROR("Failed initializing GDS heap.\n");
1768		return r;
1769	}
1770
1771	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1772	if (r) {
1773		DRM_ERROR("Failed initializing gws heap.\n");
1774		return r;
1775	}
1776
1777	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1778	if (r) {
1779		DRM_ERROR("Failed initializing oa heap.\n");
1780		return r;
1781	}
 
 
 
 
 
1782
1783	return 0;
1784}
1785
1786/*
1787 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1788 */
1789void amdgpu_ttm_fini(struct amdgpu_device *adev)
1790{
 
 
1791	if (!adev->mman.initialized)
1792		return;
1793
 
 
1794	amdgpu_ttm_training_reserve_vram_fini(adev);
1795	/* return the stolen vga memory back to VRAM */
1796	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1797	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1798	/* return the IP Discovery TMR memory back to VRAM */
1799	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1800	if (adev->mman.stolen_reserved_size)
1801		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1802				      NULL, NULL);
 
 
 
 
 
1803	amdgpu_ttm_fw_reserve_vram_fini(adev);
 
 
 
 
 
 
 
 
 
 
1804
1805	amdgpu_vram_mgr_fini(adev);
1806	amdgpu_gtt_mgr_fini(adev);
1807	amdgpu_preempt_mgr_fini(adev);
1808	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1809	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1810	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1811	ttm_device_fini(&adev->mman.bdev);
1812	adev->mman.initialized = false;
1813	DRM_INFO("amdgpu: ttm finalized\n");
1814}
1815
1816/**
1817 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1818 *
1819 * @adev: amdgpu_device pointer
1820 * @enable: true when we can use buffer functions.
1821 *
1822 * Enable/disable use of buffer functions during suspend/resume. This should
1823 * only be called at bootup or when userspace isn't running.
1824 */
1825void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1826{
1827	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1828	uint64_t size;
1829	int r;
1830
1831	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1832	    adev->mman.buffer_funcs_enabled == enable)
1833		return;
1834
1835	if (enable) {
1836		struct amdgpu_ring *ring;
1837		struct drm_gpu_scheduler *sched;
1838
1839		ring = adev->mman.buffer_funcs_ring;
1840		sched = &ring->sched;
1841		r = drm_sched_entity_init(&adev->mman.entity,
1842					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1843					  1, NULL);
1844		if (r) {
1845			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1846				  r);
1847			return;
1848		}
 
 
 
 
 
 
 
 
 
1849	} else {
1850		drm_sched_entity_destroy(&adev->mman.entity);
 
1851		dma_fence_put(man->move);
1852		man->move = NULL;
1853	}
1854
1855	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1856	if (enable)
1857		size = adev->gmc.real_vram_size;
1858	else
1859		size = adev->gmc.visible_vram_size;
1860	man->size = size >> PAGE_SHIFT;
1861	adev->mman.buffer_funcs_enabled = enable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862}
1863
1864int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1865		       uint64_t dst_offset, uint32_t byte_count,
1866		       struct dma_resv *resv,
1867		       struct dma_fence **fence, bool direct_submit,
1868		       bool vm_needs_flush, bool tmz)
1869{
1870	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1871		AMDGPU_IB_POOL_DELAYED;
1872	struct amdgpu_device *adev = ring->adev;
 
1873	struct amdgpu_job *job;
1874
1875	uint32_t max_bytes;
1876	unsigned num_loops, num_dw;
1877	unsigned i;
1878	int r;
1879
1880	if (direct_submit && !ring->sched.ready) {
1881		DRM_ERROR("Trying to move memory with ring turned off.\n");
1882		return -EINVAL;
1883	}
1884
1885	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1886	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1887	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1888
1889	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1890	if (r)
1891		return r;
1892
1893	if (vm_needs_flush) {
1894		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1895					adev->gmc.pdb0_bo : adev->gart.bo);
1896		job->vm_needs_flush = true;
1897	}
1898	if (resv) {
1899		r = amdgpu_sync_resv(adev, &job->sync, resv,
1900				     AMDGPU_SYNC_ALWAYS,
1901				     AMDGPU_FENCE_OWNER_UNDEFINED);
1902		if (r) {
1903			DRM_ERROR("sync failed (%d).\n", r);
1904			goto error_free;
1905		}
1906	}
1907
1908	for (i = 0; i < num_loops; i++) {
1909		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1910
1911		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1912					dst_offset, cur_size_in_bytes, tmz);
1913
1914		src_offset += cur_size_in_bytes;
1915		dst_offset += cur_size_in_bytes;
1916		byte_count -= cur_size_in_bytes;
1917	}
1918
1919	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1920	WARN_ON(job->ibs[0].length_dw > num_dw);
1921	if (direct_submit)
1922		r = amdgpu_job_submit_direct(job, ring, fence);
1923	else
1924		r = amdgpu_job_submit(job, &adev->mman.entity,
1925				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1926	if (r)
1927		goto error_free;
1928
1929	return r;
1930
1931error_free:
1932	amdgpu_job_free(job);
1933	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1934	return r;
1935}
1936
1937int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1938		       uint32_t src_data,
1939		       struct dma_resv *resv,
1940		       struct dma_fence **fence)
 
1941{
1942	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1943	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1944	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1945
1946	struct amdgpu_res_cursor cursor;
1947	unsigned int num_loops, num_dw;
1948	uint64_t num_bytes;
1949
1950	struct amdgpu_job *job;
 
 
1951	int r;
1952
1953	if (!adev->mman.buffer_funcs_enabled) {
1954		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1955		return -EINVAL;
1956	}
1957
1958	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1959		DRM_ERROR("Trying to clear preemptible memory.\n");
1960		return -EINVAL;
1961	}
1962
1963	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1964		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1965		if (r)
1966			return r;
1967	}
1968
1969	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1970	num_loops = 0;
1971
1972	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1973	while (cursor.remaining) {
1974		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1975		amdgpu_res_next(&cursor, cursor.size);
1976	}
1977	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1978
1979	/* for IB padding */
1980	num_dw += 64;
1981
1982	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1983				     &job);
1984	if (r)
1985		return r;
1986
1987	if (resv) {
1988		r = amdgpu_sync_resv(adev, &job->sync, resv,
1989				     AMDGPU_SYNC_ALWAYS,
1990				     AMDGPU_FENCE_OWNER_UNDEFINED);
1991		if (r) {
1992			DRM_ERROR("sync failed (%d).\n", r);
1993			goto error_free;
1994		}
1995	}
1996
1997	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1998	while (cursor.remaining) {
1999		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2000		uint64_t dst_addr = cursor.start;
2001
2002		dst_addr += amdgpu_ttm_domain_start(adev,
2003						    bo->tbo.resource->mem_type);
2004		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2005					cur_size);
2006
2007		amdgpu_res_next(&cursor, cur_size);
 
2008	}
2009
2010	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2011	WARN_ON(job->ibs[0].length_dw > num_dw);
2012	r = amdgpu_job_submit(job, &adev->mman.entity,
2013			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2014	if (r)
2015		goto error_free;
2016
2017	return 0;
2018
2019error_free:
2020	amdgpu_job_free(job);
2021	return r;
2022}
2023
2024#if defined(CONFIG_DEBUG_FS)
 
 
 
 
 
 
 
 
 
 
2025
2026static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2027{
2028	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2029	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2030							    TTM_PL_VRAM);
2031	struct drm_printer p = drm_seq_file_printer(m);
2032
2033	man->func->debug(man, &p);
2034	return 0;
2035}
2036
2037static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2038{
2039	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
 
2040
2041	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2042}
2043
2044static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2045{
2046	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2047	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2048							    TTM_PL_TT);
2049	struct drm_printer p = drm_seq_file_printer(m);
2050
2051	man->func->debug(man, &p);
2052	return 0;
2053}
 
2054
2055static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2056{
2057	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2058	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2059							    AMDGPU_PL_GDS);
2060	struct drm_printer p = drm_seq_file_printer(m);
2061
2062	man->func->debug(man, &p);
2063	return 0;
 
 
 
 
 
 
2064}
2065
2066static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
 
 
 
 
 
 
 
 
 
 
2067{
2068	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2069	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2070							    AMDGPU_PL_GWS);
2071	struct drm_printer p = drm_seq_file_printer(m);
 
 
 
 
 
 
 
 
 
 
2072
2073	man->func->debug(man, &p);
2074	return 0;
2075}
2076
2077static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
 
 
2078{
2079	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2080	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2081							    AMDGPU_PL_OA);
2082	struct drm_printer p = drm_seq_file_printer(m);
2083
2084	man->func->debug(man, &p);
2085	return 0;
2086}
2087
2088DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2089DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2090DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2091DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2092DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2093DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2094
2095/*
2096 * amdgpu_ttm_vram_read - Linear read access to VRAM
2097 *
2098 * Accesses VRAM via MMIO for debugging purposes.
2099 */
2100static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2101				    size_t size, loff_t *pos)
2102{
2103	struct amdgpu_device *adev = file_inode(f)->i_private;
2104	ssize_t result = 0;
2105
2106	if (size & 0x3 || *pos & 0x3)
2107		return -EINVAL;
2108
2109	if (*pos >= adev->gmc.mc_vram_size)
2110		return -ENXIO;
2111
2112	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2113	while (size) {
2114		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2115		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2116
2117		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2118		if (copy_to_user(buf, value, bytes))
2119			return -EFAULT;
2120
2121		result += bytes;
2122		buf += bytes;
2123		*pos += bytes;
2124		size -= bytes;
2125	}
2126
2127	return result;
2128}
2129
2130/*
2131 * amdgpu_ttm_vram_write - Linear write access to VRAM
2132 *
2133 * Accesses VRAM via MMIO for debugging purposes.
2134 */
2135static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2136				    size_t size, loff_t *pos)
2137{
2138	struct amdgpu_device *adev = file_inode(f)->i_private;
2139	ssize_t result = 0;
2140	int r;
2141
2142	if (size & 0x3 || *pos & 0x3)
2143		return -EINVAL;
2144
2145	if (*pos >= adev->gmc.mc_vram_size)
2146		return -ENXIO;
2147
2148	while (size) {
2149		unsigned long flags;
2150		uint32_t value;
2151
2152		if (*pos >= adev->gmc.mc_vram_size)
2153			return result;
2154
2155		r = get_user(value, (uint32_t *)buf);
2156		if (r)
2157			return r;
2158
2159		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2160		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2161		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2162		WREG32_NO_KIQ(mmMM_DATA, value);
2163		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2164
2165		result += 4;
2166		buf += 4;
2167		*pos += 4;
2168		size -= 4;
2169	}
2170
2171	return result;
2172}
2173
2174static const struct file_operations amdgpu_ttm_vram_fops = {
2175	.owner = THIS_MODULE,
2176	.read = amdgpu_ttm_vram_read,
2177	.write = amdgpu_ttm_vram_write,
2178	.llseek = default_llseek,
2179};
2180
2181/*
2182 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2183 *
2184 * This function is used to read memory that has been mapped to the
2185 * GPU and the known addresses are not physical addresses but instead
2186 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2187 */
2188static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2189				 size_t size, loff_t *pos)
2190{
2191	struct amdgpu_device *adev = file_inode(f)->i_private;
2192	struct iommu_domain *dom;
2193	ssize_t result = 0;
2194	int r;
2195
2196	/* retrieve the IOMMU domain if any for this device */
2197	dom = iommu_get_domain_for_dev(adev->dev);
2198
2199	while (size) {
2200		phys_addr_t addr = *pos & PAGE_MASK;
2201		loff_t off = *pos & ~PAGE_MASK;
2202		size_t bytes = PAGE_SIZE - off;
2203		unsigned long pfn;
2204		struct page *p;
2205		void *ptr;
2206
2207		bytes = bytes < size ? bytes : size;
2208
2209		/* Translate the bus address to a physical address.  If
2210		 * the domain is NULL it means there is no IOMMU active
2211		 * and the address translation is the identity
2212		 */
2213		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2214
2215		pfn = addr >> PAGE_SHIFT;
2216		if (!pfn_valid(pfn))
2217			return -EPERM;
2218
2219		p = pfn_to_page(pfn);
2220		if (p->mapping != adev->mman.bdev.dev_mapping)
2221			return -EPERM;
2222
2223		ptr = kmap(p);
2224		r = copy_to_user(buf, ptr + off, bytes);
2225		kunmap(p);
2226		if (r)
2227			return -EFAULT;
2228
2229		size -= bytes;
2230		*pos += bytes;
2231		result += bytes;
2232	}
2233
2234	return result;
2235}
2236
2237/*
2238 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2239 *
2240 * This function is used to write memory that has been mapped to the
2241 * GPU and the known addresses are not physical addresses but instead
2242 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2243 */
2244static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2245				 size_t size, loff_t *pos)
2246{
2247	struct amdgpu_device *adev = file_inode(f)->i_private;
2248	struct iommu_domain *dom;
2249	ssize_t result = 0;
2250	int r;
2251
2252	dom = iommu_get_domain_for_dev(adev->dev);
2253
2254	while (size) {
2255		phys_addr_t addr = *pos & PAGE_MASK;
2256		loff_t off = *pos & ~PAGE_MASK;
2257		size_t bytes = PAGE_SIZE - off;
2258		unsigned long pfn;
2259		struct page *p;
2260		void *ptr;
2261
2262		bytes = bytes < size ? bytes : size;
2263
2264		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2265
2266		pfn = addr >> PAGE_SHIFT;
2267		if (!pfn_valid(pfn))
2268			return -EPERM;
2269
2270		p = pfn_to_page(pfn);
2271		if (p->mapping != adev->mman.bdev.dev_mapping)
2272			return -EPERM;
2273
2274		ptr = kmap(p);
2275		r = copy_from_user(ptr + off, buf, bytes);
2276		kunmap(p);
2277		if (r)
2278			return -EFAULT;
2279
2280		size -= bytes;
2281		*pos += bytes;
2282		result += bytes;
2283	}
2284
2285	return result;
2286}
2287
2288static const struct file_operations amdgpu_ttm_iomem_fops = {
2289	.owner = THIS_MODULE,
2290	.read = amdgpu_iomem_read,
2291	.write = amdgpu_iomem_write,
2292	.llseek = default_llseek
2293};
2294
2295#endif
2296
2297void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2298{
2299#if defined(CONFIG_DEBUG_FS)
2300	struct drm_minor *minor = adev_to_drm(adev)->primary;
2301	struct dentry *root = minor->debugfs_root;
2302
2303	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2304				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2305	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2306			    &amdgpu_ttm_iomem_fops);
2307	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2308			    &amdgpu_mm_vram_table_fops);
2309	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2310			    &amdgpu_mm_tt_table_fops);
2311	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2312			    &amdgpu_mm_gds_table_fops);
2313	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2314			    &amdgpu_mm_gws_table_fops);
2315	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2316			    &amdgpu_mm_oa_table_fops);
2317	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2318			    &amdgpu_ttm_page_pool_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319#endif
2320}