Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  5 */
  6
  7#include <stdlib.h>
  8#include <stdbool.h>
  9#include <unistd.h>
 10#include <sched.h>
 11#include <errno.h>
 12#include <string.h>
 13#include <sys/mman.h>
 14#include <sys/wait.h>
 15#include <asm/unistd.h>
 16#include <as-layout.h>
 17#include <init.h>
 18#include <kern_util.h>
 19#include <mem.h>
 20#include <os.h>
 21#include <ptrace_user.h>
 22#include <registers.h>
 23#include <skas.h>
 24#include <sysdep/stub.h>
 25#include <linux/threads.h>
 26
 27int is_skas_winch(int pid, int fd, void *data)
 28{
 29	return pid == getpgrp();
 30}
 31
 32static const char *ptrace_reg_name(int idx)
 33{
 34#define R(n) case HOST_##n: return #n
 35
 36	switch (idx) {
 37#ifdef __x86_64__
 38	R(BX);
 39	R(CX);
 40	R(DI);
 41	R(SI);
 42	R(DX);
 43	R(BP);
 44	R(AX);
 45	R(R8);
 46	R(R9);
 47	R(R10);
 48	R(R11);
 49	R(R12);
 50	R(R13);
 51	R(R14);
 52	R(R15);
 53	R(ORIG_AX);
 54	R(CS);
 55	R(SS);
 56	R(EFLAGS);
 57#elif defined(__i386__)
 58	R(IP);
 59	R(SP);
 60	R(EFLAGS);
 61	R(AX);
 62	R(BX);
 63	R(CX);
 64	R(DX);
 65	R(SI);
 66	R(DI);
 67	R(BP);
 68	R(CS);
 69	R(SS);
 70	R(DS);
 71	R(FS);
 72	R(ES);
 73	R(GS);
 74	R(ORIG_AX);
 75#endif
 76	}
 77	return "";
 78}
 79
 80static int ptrace_dump_regs(int pid)
 81{
 82	unsigned long regs[MAX_REG_NR];
 83	int i;
 84
 85	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
 86		return -errno;
 87
 88	printk(UM_KERN_ERR "Stub registers -\n");
 89	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 90		const char *regname = ptrace_reg_name(i);
 91
 92		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
 93	}
 94
 95	return 0;
 96}
 97
 98/*
 99 * Signals that are OK to receive in the stub - we'll just continue it.
100 * SIGWINCH will happen when UML is inside a detached screen.
101 */
102#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
103
104/* Signals that the stub will finish with - anything else is an error */
105#define STUB_DONE_MASK (1 << SIGTRAP)
106
107void wait_stub_done(int pid)
108{
109	int n, status, err;
110
111	while (1) {
112		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
113		if ((n < 0) || !WIFSTOPPED(status))
114			goto bad_wait;
115
116		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
117			break;
118
119		err = ptrace(PTRACE_CONT, pid, 0, 0);
120		if (err) {
121			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
122			       __func__, errno);
123			fatal_sigsegv();
124		}
125	}
126
127	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
128		return;
129
130bad_wait:
131	err = ptrace_dump_regs(pid);
132	if (err)
133		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
134		       -err);
135	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
136	       __func__, pid, n, errno, status);
 
137	fatal_sigsegv();
138}
139
140extern unsigned long current_stub_stack(void);
141
142static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
143{
144	int err;
145
146	err = get_fp_registers(pid, aux_fp_regs);
147	if (err < 0) {
148		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
149		       err);
150		fatal_sigsegv();
151	}
152	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
153	if (err) {
154		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
155		       "errno = %d\n", pid, errno);
156		fatal_sigsegv();
157	}
158	wait_stub_done(pid);
159
160	/*
161	 * faultinfo is prepared by the stub_segv_handler at start of
162	 * the stub stack page. We just have to copy it.
163	 */
164	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
165
166	err = put_fp_registers(pid, aux_fp_regs);
167	if (err < 0) {
168		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
169		       err);
170		fatal_sigsegv();
171	}
172}
173
174static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
175{
176	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
177	segv(regs->faultinfo, 0, 1, NULL);
178}
179
180static void handle_trap(int pid, struct uml_pt_regs *regs)
 
 
 
 
 
181{
 
 
182	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
183		fatal_sigsegv();
184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185	handle_syscall(regs);
186}
187
188extern char __syscall_stub_start[];
189
190/**
191 * userspace_tramp() - userspace trampoline
192 * @stack:	pointer to the new userspace stack page
193 *
194 * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
195 * This function will run on a temporary stack page.
196 * It ptrace()'es itself, then
197 * Two pages are mapped into the userspace address space:
198 * - STUB_CODE (with EXEC), which contains the skas stub code
199 * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
200 * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
201 * And last the process stops itself to give control to the UML kernel for this userspace process.
202 *
203 * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
204 */
205static int userspace_tramp(void *stack)
206{
207	struct sigaction sa;
208	void *addr;
209	int fd;
210	unsigned long long offset;
211	unsigned long segv_handler = STUB_CODE +
212				     (unsigned long) stub_segv_handler -
213				     (unsigned long) __syscall_stub_start;
214
215	ptrace(PTRACE_TRACEME, 0, 0, 0);
216
217	signal(SIGTERM, SIG_DFL);
218	signal(SIGWINCH, SIG_IGN);
219
220	fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
221	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
222		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
223	if (addr == MAP_FAILED) {
224		os_info("mapping mmap stub at 0x%lx failed, errno = %d\n",
225			STUB_CODE, errno);
226		exit(1);
227	}
228
229	fd = phys_mapping(uml_to_phys(stack), &offset);
230	addr = mmap((void *) STUB_DATA,
231		    STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
232		    MAP_FIXED | MAP_SHARED, fd, offset);
233	if (addr == MAP_FAILED) {
234		os_info("mapping segfault stack at 0x%lx failed, errno = %d\n",
235			STUB_DATA, errno);
236		exit(1);
 
 
 
237	}
 
 
238
239	set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE);
240	sigemptyset(&sa.sa_mask);
241	sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
242	sa.sa_sigaction = (void *) segv_handler;
243	sa.sa_restorer = NULL;
244	if (sigaction(SIGSEGV, &sa, NULL) < 0) {
245		os_info("%s - setting SIGSEGV handler failed - errno = %d\n",
246			__func__, errno);
247		exit(1);
 
 
 
 
 
248	}
249
250	kill(os_getpid(), SIGSTOP);
251	return 0;
252}
253
254int userspace_pid[NR_CPUS];
255int kill_userspace_mm[NR_CPUS];
256
257/**
258 * start_userspace() - prepare a new userspace process
259 * @stub_stack:	pointer to the stub stack.
260 *
261 * Setups a new temporary stack page that is used while userspace_tramp() runs
262 * Clones the kernel process into a new userspace process, with FDs only.
263 *
264 * Return: When positive: the process id of the new userspace process,
265 *         when negative: an error number.
266 * FIXME: can PIDs become negative?!
267 */
268int start_userspace(unsigned long stub_stack)
269{
270	void *stack;
271	unsigned long sp;
272	int pid, status, n, flags, err;
273
274	/* setup a temporary stack page */
275	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
276		     PROT_READ | PROT_WRITE | PROT_EXEC,
277		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
278	if (stack == MAP_FAILED) {
279		err = -errno;
280		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
281		       __func__, errno);
282		return err;
283	}
284
285	/* set stack pointer to the end of the stack page, so it can grow downwards */
286	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
287
288	flags = CLONE_FILES | SIGCHLD;
289
290	/* clone into new userspace process */
291	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
292	if (pid < 0) {
293		err = -errno;
294		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
295		       __func__, errno);
296		return err;
297	}
298
299	do {
300		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
301		if (n < 0) {
302			err = -errno;
303			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
304			       __func__, errno);
305			goto out_kill;
306		}
307	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
308
309	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
310		err = -EINVAL;
311		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
312		       __func__, status);
313		goto out_kill;
314	}
315
316	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
317		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
318		err = -errno;
319		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
320		       __func__, errno);
321		goto out_kill;
322	}
323
324	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
325		err = -errno;
326		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
327		       __func__, errno);
328		goto out_kill;
329	}
330
331	return pid;
332
333 out_kill:
334	os_kill_ptraced_process(pid, 1);
335	return err;
336}
337
338void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
339{
340	int err, status, op, pid = userspace_pid[0];
 
 
341	siginfo_t si;
342
343	/* Handle any immediate reschedules or signals */
344	interrupt_end();
345
346	while (1) {
347		if (kill_userspace_mm[0])
348			fatal_sigsegv();
349
350		/*
351		 * This can legitimately fail if the process loads a
352		 * bogus value into a segment register.  It will
353		 * segfault and PTRACE_GETREGS will read that value
354		 * out of the process.  However, PTRACE_SETREGS will
355		 * fail.  In this case, there is nothing to do but
356		 * just kill the process.
357		 */
358		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
359			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
360			       __func__, errno);
361			fatal_sigsegv();
362		}
363
364		if (put_fp_registers(pid, regs->fp)) {
365			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
366			       __func__, errno);
367			fatal_sigsegv();
368		}
369
370		if (singlestepping())
371			op = PTRACE_SYSEMU_SINGLESTEP;
372		else
373			op = PTRACE_SYSEMU;
 
374
375		if (ptrace(op, pid, 0, 0)) {
376			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
377			       __func__, op, errno);
378			fatal_sigsegv();
379		}
380
381		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
382		if (err < 0) {
383			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
384			       __func__, errno);
385			fatal_sigsegv();
386		}
387
388		regs->is_user = 1;
389		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
390			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
391			       __func__, errno);
392			fatal_sigsegv();
393		}
394
395		if (get_fp_registers(pid, regs->fp)) {
396			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
397			       __func__, errno);
398			fatal_sigsegv();
399		}
400
401		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
402
403		if (WIFSTOPPED(status)) {
404			int sig = WSTOPSIG(status);
405
406			/* These signal handlers need the si argument.
407			 * The SIGIO and SIGALARM handlers which constitute the
408			 * majority of invocations, do not use it.
409			 */
410			switch (sig) {
411			case SIGSEGV:
412			case SIGTRAP:
413			case SIGILL:
414			case SIGBUS:
415			case SIGFPE:
416			case SIGWINCH:
417				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
418				break;
419			}
420
421			switch (sig) {
422			case SIGSEGV:
423				if (PTRACE_FULL_FAULTINFO) {
424					get_skas_faultinfo(pid,
425							   &regs->faultinfo, aux_fp_regs);
426					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
427							     regs);
428				}
429				else handle_segv(pid, regs, aux_fp_regs);
430				break;
431			case SIGTRAP + 0x80:
432				handle_trap(pid, regs);
433				break;
434			case SIGTRAP:
435				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
436				break;
437			case SIGALRM:
438				break;
439			case SIGIO:
440			case SIGILL:
441			case SIGBUS:
442			case SIGFPE:
443			case SIGWINCH:
444				block_signals_trace();
445				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
446				unblock_signals_trace();
447				break;
448			default:
449				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
450				       __func__, sig);
451				fatal_sigsegv();
452			}
453			pid = userspace_pid[0];
454			interrupt_end();
455
456			/* Avoid -ERESTARTSYS handling in host */
457			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
458				PT_SYSCALL_NR(regs->gp) = -1;
459		}
460	}
461}
462
463static unsigned long thread_regs[MAX_REG_NR];
464static unsigned long thread_fp_regs[FP_SIZE];
465
466static int __init init_thread_regs(void)
467{
468	get_safe_registers(thread_regs, thread_fp_regs);
469	/* Set parent's instruction pointer to start of clone-stub */
470	thread_regs[REGS_IP_INDEX] = STUB_CODE +
471				(unsigned long) stub_clone_handler -
472				(unsigned long) __syscall_stub_start;
473	thread_regs[REGS_SP_INDEX] = STUB_DATA + STUB_DATA_PAGES * UM_KERN_PAGE_SIZE -
474		sizeof(void *);
475#ifdef __SIGNAL_FRAMESIZE
476	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
477#endif
478	return 0;
479}
480
481__initcall(init_thread_regs);
482
483int copy_context_skas0(unsigned long new_stack, int pid)
484{
485	int err;
486	unsigned long current_stack = current_stub_stack();
487	struct stub_data *data = (struct stub_data *) current_stack;
488	struct stub_data *child_data = (struct stub_data *) new_stack;
489	unsigned long long new_offset;
490	int new_fd = phys_mapping(uml_to_phys((void *)new_stack), &new_offset);
491
492	/*
493	 * prepare offset and fd of child's stack as argument for parent's
494	 * and child's mmap2 calls
495	 */
496	*data = ((struct stub_data) {
497		.offset	= MMAP_OFFSET(new_offset),
498		.fd     = new_fd,
499		.parent_err = -ESRCH,
500		.child_err = 0,
501	});
502
503	*child_data = ((struct stub_data) {
504		.child_err = -ESRCH,
505	});
506
507	err = ptrace_setregs(pid, thread_regs);
508	if (err < 0) {
509		err = -errno;
510		printk(UM_KERN_ERR "%s : PTRACE_SETREGS failed, pid = %d, errno = %d\n",
511		      __func__, pid, -err);
512		return err;
513	}
514
515	err = put_fp_registers(pid, thread_fp_regs);
516	if (err < 0) {
517		printk(UM_KERN_ERR "%s : put_fp_registers failed, pid = %d, err = %d\n",
518		       __func__, pid, err);
519		return err;
520	}
521
522	/*
523	 * Wait, until parent has finished its work: read child's pid from
524	 * parent's stack, and check, if bad result.
525	 */
526	err = ptrace(PTRACE_CONT, pid, 0, 0);
527	if (err) {
528		err = -errno;
529		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, errno = %d\n",
530		       pid, errno);
531		return err;
532	}
533
534	wait_stub_done(pid);
535
536	pid = data->parent_err;
537	if (pid < 0) {
538		printk(UM_KERN_ERR "%s - stub-parent reports error %d\n",
539		      __func__, -pid);
540		return pid;
541	}
542
543	/*
544	 * Wait, until child has finished too: read child's result from
545	 * child's stack and check it.
546	 */
547	wait_stub_done(pid);
548	if (child_data->child_err != STUB_DATA) {
549		printk(UM_KERN_ERR "%s - stub-child %d reports error %ld\n",
550		       __func__, pid, data->child_err);
551		err = data->child_err;
552		goto out_kill;
553	}
554
555	if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
556		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
557		err = -errno;
558		printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
559		       __func__, errno);
560		goto out_kill;
561	}
562
563	return pid;
564
565 out_kill:
566	os_kill_ptraced_process(pid, 1);
567	return err;
568}
569
570void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
571{
572	(*buf)[0].JB_IP = (unsigned long) handler;
573	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
574		sizeof(void *);
575}
576
577#define INIT_JMP_NEW_THREAD 0
578#define INIT_JMP_CALLBACK 1
579#define INIT_JMP_HALT 2
580#define INIT_JMP_REBOOT 3
581
582void switch_threads(jmp_buf *me, jmp_buf *you)
583{
584	if (UML_SETJMP(me) == 0)
585		UML_LONGJMP(you, 1);
586}
587
588static jmp_buf initial_jmpbuf;
589
590/* XXX Make these percpu */
591static void (*cb_proc)(void *arg);
592static void *cb_arg;
593static jmp_buf *cb_back;
594
595int start_idle_thread(void *stack, jmp_buf *switch_buf)
596{
597	int n;
598
599	set_handler(SIGWINCH);
600
601	/*
602	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
603	 * and restore signals, with the possible side-effect of
604	 * trying to handle any signals which came when they were
605	 * blocked, which can't be done on this stack.
606	 * Signals must be blocked when jumping back here and restored
607	 * after returning to the jumper.
608	 */
609	n = setjmp(initial_jmpbuf);
610	switch (n) {
611	case INIT_JMP_NEW_THREAD:
612		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
613		(*switch_buf)[0].JB_SP = (unsigned long) stack +
614			UM_THREAD_SIZE - sizeof(void *);
615		break;
616	case INIT_JMP_CALLBACK:
617		(*cb_proc)(cb_arg);
618		longjmp(*cb_back, 1);
619		break;
620	case INIT_JMP_HALT:
621		kmalloc_ok = 0;
622		return 0;
623	case INIT_JMP_REBOOT:
624		kmalloc_ok = 0;
625		return 1;
626	default:
627		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
628		       __func__, n);
629		fatal_sigsegv();
630	}
631	longjmp(*switch_buf, 1);
632
633	/* unreachable */
634	printk(UM_KERN_ERR "impossible long jump!");
635	fatal_sigsegv();
636	return 0;
637}
638
639void initial_thread_cb_skas(void (*proc)(void *), void *arg)
640{
641	jmp_buf here;
642
643	cb_proc = proc;
644	cb_arg = arg;
645	cb_back = &here;
646
647	block_signals_trace();
648	if (UML_SETJMP(&here) == 0)
649		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
650	unblock_signals_trace();
651
652	cb_proc = NULL;
653	cb_arg = NULL;
654	cb_back = NULL;
655}
656
657void halt_skas(void)
658{
659	block_signals_trace();
660	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
661}
662
663static bool noreboot;
664
665static int __init noreboot_cmd_param(char *str, int *add)
666{
667	noreboot = true;
668	return 0;
669}
670
671__uml_setup("noreboot", noreboot_cmd_param,
672"noreboot\n"
673"    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
674"    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
675"    crashes in CI\n");
676
677void reboot_skas(void)
678{
679	block_signals_trace();
680	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
681}
682
683void __switch_mm(struct mm_id *mm_idp)
684{
685	userspace_pid[0] = mm_idp->u.pid;
686	kill_userspace_mm[0] = mm_idp->kill;
687}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
  4 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  5 */
  6
  7#include <stdlib.h>
 
  8#include <unistd.h>
  9#include <sched.h>
 10#include <errno.h>
 11#include <string.h>
 12#include <sys/mman.h>
 13#include <sys/wait.h>
 14#include <asm/unistd.h>
 15#include <as-layout.h>
 16#include <init.h>
 17#include <kern_util.h>
 18#include <mem.h>
 19#include <os.h>
 20#include <ptrace_user.h>
 21#include <registers.h>
 22#include <skas.h>
 23#include <sysdep/stub.h>
 24#include <linux/threads.h>
 25
 26int is_skas_winch(int pid, int fd, void *data)
 27{
 28	return pid == getpgrp();
 29}
 30
 31static const char *ptrace_reg_name(int idx)
 32{
 33#define R(n) case HOST_##n: return #n
 34
 35	switch (idx) {
 36#ifdef __x86_64__
 37	R(BX);
 38	R(CX);
 39	R(DI);
 40	R(SI);
 41	R(DX);
 42	R(BP);
 43	R(AX);
 44	R(R8);
 45	R(R9);
 46	R(R10);
 47	R(R11);
 48	R(R12);
 49	R(R13);
 50	R(R14);
 51	R(R15);
 52	R(ORIG_AX);
 53	R(CS);
 54	R(SS);
 55	R(EFLAGS);
 56#elif defined(__i386__)
 57	R(IP);
 58	R(SP);
 59	R(EFLAGS);
 60	R(AX);
 61	R(BX);
 62	R(CX);
 63	R(DX);
 64	R(SI);
 65	R(DI);
 66	R(BP);
 67	R(CS);
 68	R(SS);
 69	R(DS);
 70	R(FS);
 71	R(ES);
 72	R(GS);
 73	R(ORIG_AX);
 74#endif
 75	}
 76	return "";
 77}
 78
 79static int ptrace_dump_regs(int pid)
 80{
 81	unsigned long regs[MAX_REG_NR];
 82	int i;
 83
 84	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
 85		return -errno;
 86
 87	printk(UM_KERN_ERR "Stub registers -\n");
 88	for (i = 0; i < ARRAY_SIZE(regs); i++) {
 89		const char *regname = ptrace_reg_name(i);
 90
 91		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
 92	}
 93
 94	return 0;
 95}
 96
 97/*
 98 * Signals that are OK to receive in the stub - we'll just continue it.
 99 * SIGWINCH will happen when UML is inside a detached screen.
100 */
101#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
102
103/* Signals that the stub will finish with - anything else is an error */
104#define STUB_DONE_MASK (1 << SIGTRAP)
105
106void wait_stub_done(int pid)
107{
108	int n, status, err;
109
110	while (1) {
111		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
112		if ((n < 0) || !WIFSTOPPED(status))
113			goto bad_wait;
114
115		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
116			break;
117
118		err = ptrace(PTRACE_CONT, pid, 0, 0);
119		if (err) {
120			printk(UM_KERN_ERR "wait_stub_done : continue failed, "
121			       "errno = %d\n", errno);
122			fatal_sigsegv();
123		}
124	}
125
126	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
127		return;
128
129bad_wait:
130	err = ptrace_dump_regs(pid);
131	if (err)
132		printk(UM_KERN_ERR "Failed to get registers from stub, "
133		       "errno = %d\n", -err);
134	printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
135	       "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
136	       status);
137	fatal_sigsegv();
138}
139
140extern unsigned long current_stub_stack(void);
141
142static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
143{
144	int err;
145
146	err = get_fp_registers(pid, aux_fp_regs);
147	if (err < 0) {
148		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
149		       err);
150		fatal_sigsegv();
151	}
152	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
153	if (err) {
154		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
155		       "errno = %d\n", pid, errno);
156		fatal_sigsegv();
157	}
158	wait_stub_done(pid);
159
160	/*
161	 * faultinfo is prepared by the stub_segv_handler at start of
162	 * the stub stack page. We just have to copy it.
163	 */
164	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
165
166	err = put_fp_registers(pid, aux_fp_regs);
167	if (err < 0) {
168		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
169		       err);
170		fatal_sigsegv();
171	}
172}
173
174static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
175{
176	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
177	segv(regs->faultinfo, 0, 1, NULL);
178}
179
180/*
181 * To use the same value of using_sysemu as the caller, ask it that value
182 * (in local_using_sysemu
183 */
184static void handle_trap(int pid, struct uml_pt_regs *regs,
185			int local_using_sysemu)
186{
187	int err, status;
188
189	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
190		fatal_sigsegv();
191
192	if (!local_using_sysemu)
193	{
194		err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
195			     __NR_getpid);
196		if (err < 0) {
197			printk(UM_KERN_ERR "handle_trap - nullifying syscall "
198			       "failed, errno = %d\n", errno);
199			fatal_sigsegv();
200		}
201
202		err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
203		if (err < 0) {
204			printk(UM_KERN_ERR "handle_trap - continuing to end of "
205			       "syscall failed, errno = %d\n", errno);
206			fatal_sigsegv();
207		}
208
209		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
210		if ((err < 0) || !WIFSTOPPED(status) ||
211		    (WSTOPSIG(status) != SIGTRAP + 0x80)) {
212			err = ptrace_dump_regs(pid);
213			if (err)
214				printk(UM_KERN_ERR "Failed to get registers "
215				       "from process, errno = %d\n", -err);
216			printk(UM_KERN_ERR "handle_trap - failed to wait at "
217			       "end of syscall, errno = %d, status = %d\n",
218			       errno, status);
219			fatal_sigsegv();
220		}
221	}
222
223	handle_syscall(regs);
224}
225
226extern char __syscall_stub_start[];
227
228/**
229 * userspace_tramp() - userspace trampoline
230 * @stack:	pointer to the new userspace stack page, can be NULL, if? FIXME:
231 *
232 * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
233 * This function will run on a temporary stack page.
234 * It ptrace()'es itself, then
235 * Two pages are mapped into the userspace address space:
236 * - STUB_CODE (with EXEC), which contains the skas stub code
237 * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
238 * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
239 * And last the process stops itself to give control to the UML kernel for this userspace process.
240 *
241 * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
242 */
243static int userspace_tramp(void *stack)
244{
 
245	void *addr;
246	int fd;
247	unsigned long long offset;
 
 
 
248
249	ptrace(PTRACE_TRACEME, 0, 0, 0);
250
251	signal(SIGTERM, SIG_DFL);
252	signal(SIGWINCH, SIG_IGN);
253
254	fd = phys_mapping(to_phys(__syscall_stub_start), &offset);
255	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
256		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
257	if (addr == MAP_FAILED) {
258		printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
259		       "errno = %d\n", STUB_CODE, errno);
260		exit(1);
261	}
262
263	if (stack != NULL) {
264		fd = phys_mapping(to_phys(stack), &offset);
265		addr = mmap((void *) STUB_DATA,
266			    UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
267			    MAP_FIXED | MAP_SHARED, fd, offset);
268		if (addr == MAP_FAILED) {
269			printk(UM_KERN_ERR "mapping segfault stack "
270			       "at 0x%lx failed, errno = %d\n",
271			       STUB_DATA, errno);
272			exit(1);
273		}
274	}
275	if (stack != NULL) {
276		struct sigaction sa;
277
278		unsigned long v = STUB_CODE +
279				  (unsigned long) stub_segv_handler -
280				  (unsigned long) __syscall_stub_start;
281
282		set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
283		sigemptyset(&sa.sa_mask);
284		sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
285		sa.sa_sigaction = (void *) v;
286		sa.sa_restorer = NULL;
287		if (sigaction(SIGSEGV, &sa, NULL) < 0) {
288			printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
289			       "handler failed - errno = %d\n", errno);
290			exit(1);
291		}
292	}
293
294	kill(os_getpid(), SIGSTOP);
295	return 0;
296}
297
298int userspace_pid[NR_CPUS];
299int kill_userspace_mm[NR_CPUS];
300
301/**
302 * start_userspace() - prepare a new userspace process
303 * @stub_stack:	pointer to the stub stack. Can be NULL, if? FIXME:
304 *
305 * Setups a new temporary stack page that is used while userspace_tramp() runs
306 * Clones the kernel process into a new userspace process, with FDs only.
307 *
308 * Return: When positive: the process id of the new userspace process,
309 *         when negative: an error number.
310 * FIXME: can PIDs become negative?!
311 */
312int start_userspace(unsigned long stub_stack)
313{
314	void *stack;
315	unsigned long sp;
316	int pid, status, n, flags, err;
317
318	/* setup a temporary stack page */
319	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
320		     PROT_READ | PROT_WRITE | PROT_EXEC,
321		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
322	if (stack == MAP_FAILED) {
323		err = -errno;
324		printk(UM_KERN_ERR "start_userspace : mmap failed, "
325		       "errno = %d\n", errno);
326		return err;
327	}
328
329	/* set stack pointer to the end of the stack page, so it can grow downwards */
330	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
331
332	flags = CLONE_FILES | SIGCHLD;
333
334	/* clone into new userspace process */
335	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
336	if (pid < 0) {
337		err = -errno;
338		printk(UM_KERN_ERR "start_userspace : clone failed, "
339		       "errno = %d\n", errno);
340		return err;
341	}
342
343	do {
344		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
345		if (n < 0) {
346			err = -errno;
347			printk(UM_KERN_ERR "start_userspace : wait failed, "
348			       "errno = %d\n", errno);
349			goto out_kill;
350		}
351	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
352
353	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
354		err = -EINVAL;
355		printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
356		       "status = %d\n", status);
357		goto out_kill;
358	}
359
360	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
361		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
362		err = -errno;
363		printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
364		       "failed, errno = %d\n", errno);
365		goto out_kill;
366	}
367
368	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
369		err = -errno;
370		printk(UM_KERN_ERR "start_userspace : munmap failed, "
371		       "errno = %d\n", errno);
372		goto out_kill;
373	}
374
375	return pid;
376
377 out_kill:
378	os_kill_ptraced_process(pid, 1);
379	return err;
380}
381
382void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
383{
384	int err, status, op, pid = userspace_pid[0];
385	/* To prevent races if using_sysemu changes under us.*/
386	int local_using_sysemu;
387	siginfo_t si;
388
389	/* Handle any immediate reschedules or signals */
390	interrupt_end();
391
392	while (1) {
393		if (kill_userspace_mm[0])
394			fatal_sigsegv();
395
396		/*
397		 * This can legitimately fail if the process loads a
398		 * bogus value into a segment register.  It will
399		 * segfault and PTRACE_GETREGS will read that value
400		 * out of the process.  However, PTRACE_SETREGS will
401		 * fail.  In this case, there is nothing to do but
402		 * just kill the process.
403		 */
404		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
405			printk(UM_KERN_ERR "userspace - ptrace set regs "
406			       "failed, errno = %d\n", errno);
407			fatal_sigsegv();
408		}
409
410		if (put_fp_registers(pid, regs->fp)) {
411			printk(UM_KERN_ERR "userspace - ptrace set fp regs "
412			       "failed, errno = %d\n", errno);
413			fatal_sigsegv();
414		}
415
416		/* Now we set local_using_sysemu to be used for one loop */
417		local_using_sysemu = get_using_sysemu();
418
419		op = SELECT_PTRACE_OPERATION(local_using_sysemu,
420					     singlestepping(NULL));
421
422		if (ptrace(op, pid, 0, 0)) {
423			printk(UM_KERN_ERR "userspace - ptrace continue "
424			       "failed, op = %d, errno = %d\n", op, errno);
425			fatal_sigsegv();
426		}
427
428		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
429		if (err < 0) {
430			printk(UM_KERN_ERR "userspace - wait failed, "
431			       "errno = %d\n", errno);
432			fatal_sigsegv();
433		}
434
435		regs->is_user = 1;
436		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
437			printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
438			       "errno = %d\n", errno);
439			fatal_sigsegv();
440		}
441
442		if (get_fp_registers(pid, regs->fp)) {
443			printk(UM_KERN_ERR "userspace -  get_fp_registers failed, "
444			       "errno = %d\n", errno);
445			fatal_sigsegv();
446		}
447
448		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
449
450		if (WIFSTOPPED(status)) {
451			int sig = WSTOPSIG(status);
452
453			/* These signal handlers need the si argument.
454			 * The SIGIO and SIGALARM handlers which constitute the
455			 * majority of invocations, do not use it.
456			 */
457			switch (sig) {
458			case SIGSEGV:
459			case SIGTRAP:
460			case SIGILL:
461			case SIGBUS:
462			case SIGFPE:
463			case SIGWINCH:
464				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
465				break;
466			}
467
468			switch (sig) {
469			case SIGSEGV:
470				if (PTRACE_FULL_FAULTINFO) {
471					get_skas_faultinfo(pid,
472							   &regs->faultinfo, aux_fp_regs);
473					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
474							     regs);
475				}
476				else handle_segv(pid, regs, aux_fp_regs);
477				break;
478			case SIGTRAP + 0x80:
479			        handle_trap(pid, regs, local_using_sysemu);
480				break;
481			case SIGTRAP:
482				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
483				break;
484			case SIGALRM:
485				break;
486			case SIGIO:
487			case SIGILL:
488			case SIGBUS:
489			case SIGFPE:
490			case SIGWINCH:
491				block_signals_trace();
492				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
493				unblock_signals_trace();
494				break;
495			default:
496				printk(UM_KERN_ERR "userspace - child stopped "
497				       "with signal %d\n", sig);
498				fatal_sigsegv();
499			}
500			pid = userspace_pid[0];
501			interrupt_end();
502
503			/* Avoid -ERESTARTSYS handling in host */
504			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
505				PT_SYSCALL_NR(regs->gp) = -1;
506		}
507	}
508}
509
510static unsigned long thread_regs[MAX_REG_NR];
511static unsigned long thread_fp_regs[FP_SIZE];
512
513static int __init init_thread_regs(void)
514{
515	get_safe_registers(thread_regs, thread_fp_regs);
516	/* Set parent's instruction pointer to start of clone-stub */
517	thread_regs[REGS_IP_INDEX] = STUB_CODE +
518				(unsigned long) stub_clone_handler -
519				(unsigned long) __syscall_stub_start;
520	thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
521		sizeof(void *);
522#ifdef __SIGNAL_FRAMESIZE
523	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
524#endif
525	return 0;
526}
527
528__initcall(init_thread_regs);
529
530int copy_context_skas0(unsigned long new_stack, int pid)
531{
532	int err;
533	unsigned long current_stack = current_stub_stack();
534	struct stub_data *data = (struct stub_data *) current_stack;
535	struct stub_data *child_data = (struct stub_data *) new_stack;
536	unsigned long long new_offset;
537	int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
538
539	/*
540	 * prepare offset and fd of child's stack as argument for parent's
541	 * and child's mmap2 calls
542	 */
543	*data = ((struct stub_data) {
544		.offset	= MMAP_OFFSET(new_offset),
545		.fd     = new_fd,
546		.parent_err = -ESRCH,
547		.child_err = 0,
548	});
549
550	*child_data = ((struct stub_data) {
551		.child_err = -ESRCH,
552	});
553
554	err = ptrace_setregs(pid, thread_regs);
555	if (err < 0) {
556		err = -errno;
557		printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
558		       "failed, pid = %d, errno = %d\n", pid, -err);
559		return err;
560	}
561
562	err = put_fp_registers(pid, thread_fp_regs);
563	if (err < 0) {
564		printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
565		       "failed, pid = %d, err = %d\n", pid, err);
566		return err;
567	}
568
569	/*
570	 * Wait, until parent has finished its work: read child's pid from
571	 * parent's stack, and check, if bad result.
572	 */
573	err = ptrace(PTRACE_CONT, pid, 0, 0);
574	if (err) {
575		err = -errno;
576		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
577		       "errno = %d\n", pid, errno);
578		return err;
579	}
580
581	wait_stub_done(pid);
582
583	pid = data->parent_err;
584	if (pid < 0) {
585		printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
586		       "error %d\n", -pid);
587		return pid;
588	}
589
590	/*
591	 * Wait, until child has finished too: read child's result from
592	 * child's stack and check it.
593	 */
594	wait_stub_done(pid);
595	if (child_data->child_err != STUB_DATA) {
596		printk(UM_KERN_ERR "copy_context_skas0 - stub-child %d reports "
597		       "error %ld\n", pid, data->child_err);
598		err = data->child_err;
599		goto out_kill;
600	}
601
602	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
603		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
604		err = -errno;
605		printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
606		       "failed, errno = %d\n", errno);
607		goto out_kill;
608	}
609
610	return pid;
611
612 out_kill:
613	os_kill_ptraced_process(pid, 1);
614	return err;
615}
616
617void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
618{
619	(*buf)[0].JB_IP = (unsigned long) handler;
620	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
621		sizeof(void *);
622}
623
624#define INIT_JMP_NEW_THREAD 0
625#define INIT_JMP_CALLBACK 1
626#define INIT_JMP_HALT 2
627#define INIT_JMP_REBOOT 3
628
629void switch_threads(jmp_buf *me, jmp_buf *you)
630{
631	if (UML_SETJMP(me) == 0)
632		UML_LONGJMP(you, 1);
633}
634
635static jmp_buf initial_jmpbuf;
636
637/* XXX Make these percpu */
638static void (*cb_proc)(void *arg);
639static void *cb_arg;
640static jmp_buf *cb_back;
641
642int start_idle_thread(void *stack, jmp_buf *switch_buf)
643{
644	int n;
645
646	set_handler(SIGWINCH);
647
648	/*
649	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
650	 * and restore signals, with the possible side-effect of
651	 * trying to handle any signals which came when they were
652	 * blocked, which can't be done on this stack.
653	 * Signals must be blocked when jumping back here and restored
654	 * after returning to the jumper.
655	 */
656	n = setjmp(initial_jmpbuf);
657	switch (n) {
658	case INIT_JMP_NEW_THREAD:
659		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
660		(*switch_buf)[0].JB_SP = (unsigned long) stack +
661			UM_THREAD_SIZE - sizeof(void *);
662		break;
663	case INIT_JMP_CALLBACK:
664		(*cb_proc)(cb_arg);
665		longjmp(*cb_back, 1);
666		break;
667	case INIT_JMP_HALT:
668		kmalloc_ok = 0;
669		return 0;
670	case INIT_JMP_REBOOT:
671		kmalloc_ok = 0;
672		return 1;
673	default:
674		printk(UM_KERN_ERR "Bad sigsetjmp return in "
675		       "start_idle_thread - %d\n", n);
676		fatal_sigsegv();
677	}
678	longjmp(*switch_buf, 1);
679
680	/* unreachable */
681	printk(UM_KERN_ERR "impossible long jump!");
682	fatal_sigsegv();
683	return 0;
684}
685
686void initial_thread_cb_skas(void (*proc)(void *), void *arg)
687{
688	jmp_buf here;
689
690	cb_proc = proc;
691	cb_arg = arg;
692	cb_back = &here;
693
694	block_signals_trace();
695	if (UML_SETJMP(&here) == 0)
696		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
697	unblock_signals_trace();
698
699	cb_proc = NULL;
700	cb_arg = NULL;
701	cb_back = NULL;
702}
703
704void halt_skas(void)
705{
706	block_signals_trace();
707	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
708}
709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710void reboot_skas(void)
711{
712	block_signals_trace();
713	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
714}
715
716void __switch_mm(struct mm_id *mm_idp)
717{
718	userspace_pid[0] = mm_idp->u.pid;
719	kill_userspace_mm[0] = mm_idp->kill;
720}