Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_inode_item.h"
17#include "xfs_btree.h"
18#include "xfs_bmap_btree.h"
19#include "xfs_bmap.h"
20#include "xfs_error.h"
21#include "xfs_trace.h"
22#include "xfs_da_format.h"
23#include "xfs_da_btree.h"
24#include "xfs_dir2_priv.h"
25#include "xfs_attr_leaf.h"
26#include "xfs_types.h"
27#include "xfs_errortag.h"
28
29struct kmem_cache *xfs_ifork_cache;
30
31void
32xfs_init_local_fork(
33 struct xfs_inode *ip,
34 int whichfork,
35 const void *data,
36 int64_t size)
37{
38 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
39 int mem_size = size;
40 bool zero_terminate;
41
42 /*
43 * If we are using the local fork to store a symlink body we need to
44 * zero-terminate it so that we can pass it back to the VFS directly.
45 * Overallocate the in-memory fork by one for that and add a zero
46 * to terminate it below.
47 */
48 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
49 if (zero_terminate)
50 mem_size++;
51
52 if (size) {
53 char *new_data = kmem_alloc(mem_size, KM_NOFS);
54
55 memcpy(new_data, data, size);
56 if (zero_terminate)
57 new_data[size] = '\0';
58
59 ifp->if_data = new_data;
60 } else {
61 ifp->if_data = NULL;
62 }
63
64 ifp->if_bytes = size;
65}
66
67/*
68 * The file is in-lined in the on-disk inode.
69 */
70STATIC int
71xfs_iformat_local(
72 struct xfs_inode *ip,
73 struct xfs_dinode *dip,
74 int whichfork,
75 int size)
76{
77 /*
78 * If the size is unreasonable, then something
79 * is wrong and we just bail out rather than crash in
80 * kmem_alloc() or memcpy() below.
81 */
82 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
83 xfs_warn(ip->i_mount,
84 "corrupt inode %llu (bad size %d for local fork, size = %zd).",
85 (unsigned long long) ip->i_ino, size,
86 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
87 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
88 "xfs_iformat_local", dip, sizeof(*dip),
89 __this_address);
90 return -EFSCORRUPTED;
91 }
92
93 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
94 return 0;
95}
96
97/*
98 * The file consists of a set of extents all of which fit into the on-disk
99 * inode.
100 */
101STATIC int
102xfs_iformat_extents(
103 struct xfs_inode *ip,
104 struct xfs_dinode *dip,
105 int whichfork)
106{
107 struct xfs_mount *mp = ip->i_mount;
108 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
109 int state = xfs_bmap_fork_to_state(whichfork);
110 xfs_extnum_t nex = xfs_dfork_nextents(dip, whichfork);
111 int size = nex * sizeof(xfs_bmbt_rec_t);
112 struct xfs_iext_cursor icur;
113 struct xfs_bmbt_rec *dp;
114 struct xfs_bmbt_irec new;
115 int i;
116
117 /*
118 * If the number of extents is unreasonable, then something is wrong and
119 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
120 */
121 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
122 xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).",
123 ip->i_ino, nex);
124 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
125 "xfs_iformat_extents(1)", dip, sizeof(*dip),
126 __this_address);
127 return -EFSCORRUPTED;
128 }
129
130 ifp->if_bytes = 0;
131 ifp->if_data = NULL;
132 ifp->if_height = 0;
133 if (size) {
134 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
135
136 xfs_iext_first(ifp, &icur);
137 for (i = 0; i < nex; i++, dp++) {
138 xfs_failaddr_t fa;
139
140 xfs_bmbt_disk_get_all(dp, &new);
141 fa = xfs_bmap_validate_extent(ip, whichfork, &new);
142 if (fa) {
143 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
144 "xfs_iformat_extents(2)",
145 dp, sizeof(*dp), fa);
146 return xfs_bmap_complain_bad_rec(ip, whichfork,
147 fa, &new);
148 }
149
150 xfs_iext_insert(ip, &icur, &new, state);
151 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
152 xfs_iext_next(ifp, &icur);
153 }
154 }
155 return 0;
156}
157
158/*
159 * The file has too many extents to fit into
160 * the inode, so they are in B-tree format.
161 * Allocate a buffer for the root of the B-tree
162 * and copy the root into it. The i_extents
163 * field will remain NULL until all of the
164 * extents are read in (when they are needed).
165 */
166STATIC int
167xfs_iformat_btree(
168 struct xfs_inode *ip,
169 struct xfs_dinode *dip,
170 int whichfork)
171{
172 struct xfs_mount *mp = ip->i_mount;
173 xfs_bmdr_block_t *dfp;
174 struct xfs_ifork *ifp;
175 /* REFERENCED */
176 int nrecs;
177 int size;
178 int level;
179
180 ifp = xfs_ifork_ptr(ip, whichfork);
181 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
182 size = XFS_BMAP_BROOT_SPACE(mp, dfp);
183 nrecs = be16_to_cpu(dfp->bb_numrecs);
184 level = be16_to_cpu(dfp->bb_level);
185
186 /*
187 * blow out if -- fork has less extents than can fit in
188 * fork (fork shouldn't be a btree format), root btree
189 * block has more records than can fit into the fork,
190 * or the number of extents is greater than the number of
191 * blocks.
192 */
193 if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
194 nrecs == 0 ||
195 XFS_BMDR_SPACE_CALC(nrecs) >
196 XFS_DFORK_SIZE(dip, mp, whichfork) ||
197 ifp->if_nextents > ip->i_nblocks) ||
198 level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
199 xfs_warn(mp, "corrupt inode %llu (btree).",
200 (unsigned long long) ip->i_ino);
201 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
202 "xfs_iformat_btree", dfp, size,
203 __this_address);
204 return -EFSCORRUPTED;
205 }
206
207 ifp->if_broot_bytes = size;
208 ifp->if_broot = kmem_alloc(size, KM_NOFS);
209 ASSERT(ifp->if_broot != NULL);
210 /*
211 * Copy and convert from the on-disk structure
212 * to the in-memory structure.
213 */
214 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
215 ifp->if_broot, size);
216
217 ifp->if_bytes = 0;
218 ifp->if_data = NULL;
219 ifp->if_height = 0;
220 return 0;
221}
222
223int
224xfs_iformat_data_fork(
225 struct xfs_inode *ip,
226 struct xfs_dinode *dip)
227{
228 struct inode *inode = VFS_I(ip);
229 int error;
230
231 /*
232 * Initialize the extent count early, as the per-format routines may
233 * depend on it. Use release semantics to set needextents /after/ we
234 * set the format. This ensures that we can use acquire semantics on
235 * needextents in xfs_need_iread_extents() and be guaranteed to see a
236 * valid format value after that load.
237 */
238 ip->i_df.if_format = dip->di_format;
239 ip->i_df.if_nextents = xfs_dfork_data_extents(dip);
240 smp_store_release(&ip->i_df.if_needextents,
241 ip->i_df.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
242
243 switch (inode->i_mode & S_IFMT) {
244 case S_IFIFO:
245 case S_IFCHR:
246 case S_IFBLK:
247 case S_IFSOCK:
248 ip->i_disk_size = 0;
249 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
250 return 0;
251 case S_IFREG:
252 case S_IFLNK:
253 case S_IFDIR:
254 switch (ip->i_df.if_format) {
255 case XFS_DINODE_FMT_LOCAL:
256 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
257 be64_to_cpu(dip->di_size));
258 if (!error)
259 error = xfs_ifork_verify_local_data(ip);
260 return error;
261 case XFS_DINODE_FMT_EXTENTS:
262 return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
263 case XFS_DINODE_FMT_BTREE:
264 return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
265 default:
266 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
267 dip, sizeof(*dip), __this_address);
268 return -EFSCORRUPTED;
269 }
270 break;
271 default:
272 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
273 sizeof(*dip), __this_address);
274 return -EFSCORRUPTED;
275 }
276}
277
278static uint16_t
279xfs_dfork_attr_shortform_size(
280 struct xfs_dinode *dip)
281{
282 struct xfs_attr_sf_hdr *sf = XFS_DFORK_APTR(dip);
283
284 return be16_to_cpu(sf->totsize);
285}
286
287void
288xfs_ifork_init_attr(
289 struct xfs_inode *ip,
290 enum xfs_dinode_fmt format,
291 xfs_extnum_t nextents)
292{
293 /*
294 * Initialize the extent count early, as the per-format routines may
295 * depend on it. Use release semantics to set needextents /after/ we
296 * set the format. This ensures that we can use acquire semantics on
297 * needextents in xfs_need_iread_extents() and be guaranteed to see a
298 * valid format value after that load.
299 */
300 ip->i_af.if_format = format;
301 ip->i_af.if_nextents = nextents;
302 smp_store_release(&ip->i_af.if_needextents,
303 ip->i_af.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
304}
305
306void
307xfs_ifork_zap_attr(
308 struct xfs_inode *ip)
309{
310 xfs_idestroy_fork(&ip->i_af);
311 memset(&ip->i_af, 0, sizeof(struct xfs_ifork));
312 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
313}
314
315int
316xfs_iformat_attr_fork(
317 struct xfs_inode *ip,
318 struct xfs_dinode *dip)
319{
320 xfs_extnum_t naextents = xfs_dfork_attr_extents(dip);
321 int error = 0;
322
323 /*
324 * Initialize the extent count early, as the per-format routines may
325 * depend on it.
326 */
327 xfs_ifork_init_attr(ip, dip->di_aformat, naextents);
328
329 switch (ip->i_af.if_format) {
330 case XFS_DINODE_FMT_LOCAL:
331 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
332 xfs_dfork_attr_shortform_size(dip));
333 if (!error)
334 error = xfs_ifork_verify_local_attr(ip);
335 break;
336 case XFS_DINODE_FMT_EXTENTS:
337 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
338 break;
339 case XFS_DINODE_FMT_BTREE:
340 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
341 break;
342 default:
343 xfs_inode_verifier_error(ip, error, __func__, dip,
344 sizeof(*dip), __this_address);
345 error = -EFSCORRUPTED;
346 break;
347 }
348
349 if (error)
350 xfs_ifork_zap_attr(ip);
351 return error;
352}
353
354/*
355 * Reallocate the space for if_broot based on the number of records
356 * being added or deleted as indicated in rec_diff. Move the records
357 * and pointers in if_broot to fit the new size. When shrinking this
358 * will eliminate holes between the records and pointers created by
359 * the caller. When growing this will create holes to be filled in
360 * by the caller.
361 *
362 * The caller must not request to add more records than would fit in
363 * the on-disk inode root. If the if_broot is currently NULL, then
364 * if we are adding records, one will be allocated. The caller must also
365 * not request that the number of records go below zero, although
366 * it can go to zero.
367 *
368 * ip -- the inode whose if_broot area is changing
369 * ext_diff -- the change in the number of records, positive or negative,
370 * requested for the if_broot array.
371 */
372void
373xfs_iroot_realloc(
374 xfs_inode_t *ip,
375 int rec_diff,
376 int whichfork)
377{
378 struct xfs_mount *mp = ip->i_mount;
379 int cur_max;
380 struct xfs_ifork *ifp;
381 struct xfs_btree_block *new_broot;
382 int new_max;
383 size_t new_size;
384 char *np;
385 char *op;
386
387 /*
388 * Handle the degenerate case quietly.
389 */
390 if (rec_diff == 0) {
391 return;
392 }
393
394 ifp = xfs_ifork_ptr(ip, whichfork);
395 if (rec_diff > 0) {
396 /*
397 * If there wasn't any memory allocated before, just
398 * allocate it now and get out.
399 */
400 if (ifp->if_broot_bytes == 0) {
401 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
402 ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
403 ifp->if_broot_bytes = (int)new_size;
404 return;
405 }
406
407 /*
408 * If there is already an existing if_broot, then we need
409 * to realloc() it and shift the pointers to their new
410 * location. The records don't change location because
411 * they are kept butted up against the btree block header.
412 */
413 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
414 new_max = cur_max + rec_diff;
415 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
416 ifp->if_broot = krealloc(ifp->if_broot, new_size,
417 GFP_NOFS | __GFP_NOFAIL);
418 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
419 ifp->if_broot_bytes);
420 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
421 (int)new_size);
422 ifp->if_broot_bytes = (int)new_size;
423 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
424 xfs_inode_fork_size(ip, whichfork));
425 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
426 return;
427 }
428
429 /*
430 * rec_diff is less than 0. In this case, we are shrinking the
431 * if_broot buffer. It must already exist. If we go to zero
432 * records, just get rid of the root and clear the status bit.
433 */
434 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
435 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
436 new_max = cur_max + rec_diff;
437 ASSERT(new_max >= 0);
438 if (new_max > 0)
439 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
440 else
441 new_size = 0;
442 if (new_size > 0) {
443 new_broot = kmem_alloc(new_size, KM_NOFS);
444 /*
445 * First copy over the btree block header.
446 */
447 memcpy(new_broot, ifp->if_broot,
448 XFS_BMBT_BLOCK_LEN(ip->i_mount));
449 } else {
450 new_broot = NULL;
451 }
452
453 /*
454 * Only copy the records and pointers if there are any.
455 */
456 if (new_max > 0) {
457 /*
458 * First copy the records.
459 */
460 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
461 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
462 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
463
464 /*
465 * Then copy the pointers.
466 */
467 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
468 ifp->if_broot_bytes);
469 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
470 (int)new_size);
471 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
472 }
473 kmem_free(ifp->if_broot);
474 ifp->if_broot = new_broot;
475 ifp->if_broot_bytes = (int)new_size;
476 if (ifp->if_broot)
477 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
478 xfs_inode_fork_size(ip, whichfork));
479 return;
480}
481
482
483/*
484 * This is called when the amount of space needed for if_data
485 * is increased or decreased. The change in size is indicated by
486 * the number of bytes that need to be added or deleted in the
487 * byte_diff parameter.
488 *
489 * If the amount of space needed has decreased below the size of the
490 * inline buffer, then switch to using the inline buffer. Otherwise,
491 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
492 * to what is needed.
493 *
494 * ip -- the inode whose if_data area is changing
495 * byte_diff -- the change in the number of bytes, positive or negative,
496 * requested for the if_data array.
497 */
498void *
499xfs_idata_realloc(
500 struct xfs_inode *ip,
501 int64_t byte_diff,
502 int whichfork)
503{
504 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
505 int64_t new_size = ifp->if_bytes + byte_diff;
506
507 ASSERT(new_size >= 0);
508 ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork));
509
510 if (byte_diff) {
511 ifp->if_data = krealloc(ifp->if_data, new_size,
512 GFP_NOFS | __GFP_NOFAIL);
513 if (new_size == 0)
514 ifp->if_data = NULL;
515 ifp->if_bytes = new_size;
516 }
517
518 return ifp->if_data;
519}
520
521/* Free all memory and reset a fork back to its initial state. */
522void
523xfs_idestroy_fork(
524 struct xfs_ifork *ifp)
525{
526 if (ifp->if_broot != NULL) {
527 kmem_free(ifp->if_broot);
528 ifp->if_broot = NULL;
529 }
530
531 switch (ifp->if_format) {
532 case XFS_DINODE_FMT_LOCAL:
533 kmem_free(ifp->if_data);
534 ifp->if_data = NULL;
535 break;
536 case XFS_DINODE_FMT_EXTENTS:
537 case XFS_DINODE_FMT_BTREE:
538 if (ifp->if_height)
539 xfs_iext_destroy(ifp);
540 break;
541 }
542}
543
544/*
545 * Convert in-core extents to on-disk form
546 *
547 * In the case of the data fork, the in-core and on-disk fork sizes can be
548 * different due to delayed allocation extents. We only copy on-disk extents
549 * here, so callers must always use the physical fork size to determine the
550 * size of the buffer passed to this routine. We will return the size actually
551 * used.
552 */
553int
554xfs_iextents_copy(
555 struct xfs_inode *ip,
556 struct xfs_bmbt_rec *dp,
557 int whichfork)
558{
559 int state = xfs_bmap_fork_to_state(whichfork);
560 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
561 struct xfs_iext_cursor icur;
562 struct xfs_bmbt_irec rec;
563 int64_t copied = 0;
564
565 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
566 ASSERT(ifp->if_bytes > 0);
567
568 for_each_xfs_iext(ifp, &icur, &rec) {
569 if (isnullstartblock(rec.br_startblock))
570 continue;
571 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
572 xfs_bmbt_disk_set_all(dp, &rec);
573 trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
574 copied += sizeof(struct xfs_bmbt_rec);
575 dp++;
576 }
577
578 ASSERT(copied > 0);
579 ASSERT(copied <= ifp->if_bytes);
580 return copied;
581}
582
583/*
584 * Each of the following cases stores data into the same region
585 * of the on-disk inode, so only one of them can be valid at
586 * any given time. While it is possible to have conflicting formats
587 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
588 * in EXTENTS format, this can only happen when the fork has
589 * changed formats after being modified but before being flushed.
590 * In these cases, the format always takes precedence, because the
591 * format indicates the current state of the fork.
592 */
593void
594xfs_iflush_fork(
595 struct xfs_inode *ip,
596 struct xfs_dinode *dip,
597 struct xfs_inode_log_item *iip,
598 int whichfork)
599{
600 char *cp;
601 struct xfs_ifork *ifp;
602 xfs_mount_t *mp;
603 static const short brootflag[2] =
604 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
605 static const short dataflag[2] =
606 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
607 static const short extflag[2] =
608 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
609
610 if (!iip)
611 return;
612 ifp = xfs_ifork_ptr(ip, whichfork);
613 /*
614 * This can happen if we gave up in iformat in an error path,
615 * for the attribute fork.
616 */
617 if (!ifp) {
618 ASSERT(whichfork == XFS_ATTR_FORK);
619 return;
620 }
621 cp = XFS_DFORK_PTR(dip, whichfork);
622 mp = ip->i_mount;
623 switch (ifp->if_format) {
624 case XFS_DINODE_FMT_LOCAL:
625 if ((iip->ili_fields & dataflag[whichfork]) &&
626 (ifp->if_bytes > 0)) {
627 ASSERT(ifp->if_data != NULL);
628 ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork));
629 memcpy(cp, ifp->if_data, ifp->if_bytes);
630 }
631 break;
632
633 case XFS_DINODE_FMT_EXTENTS:
634 if ((iip->ili_fields & extflag[whichfork]) &&
635 (ifp->if_bytes > 0)) {
636 ASSERT(ifp->if_nextents > 0);
637 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
638 whichfork);
639 }
640 break;
641
642 case XFS_DINODE_FMT_BTREE:
643 if ((iip->ili_fields & brootflag[whichfork]) &&
644 (ifp->if_broot_bytes > 0)) {
645 ASSERT(ifp->if_broot != NULL);
646 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
647 xfs_inode_fork_size(ip, whichfork));
648 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
649 (xfs_bmdr_block_t *)cp,
650 XFS_DFORK_SIZE(dip, mp, whichfork));
651 }
652 break;
653
654 case XFS_DINODE_FMT_DEV:
655 if (iip->ili_fields & XFS_ILOG_DEV) {
656 ASSERT(whichfork == XFS_DATA_FORK);
657 xfs_dinode_put_rdev(dip,
658 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
659 }
660 break;
661
662 default:
663 ASSERT(0);
664 break;
665 }
666}
667
668/* Convert bmap state flags to an inode fork. */
669struct xfs_ifork *
670xfs_iext_state_to_fork(
671 struct xfs_inode *ip,
672 int state)
673{
674 if (state & BMAP_COWFORK)
675 return ip->i_cowfp;
676 else if (state & BMAP_ATTRFORK)
677 return &ip->i_af;
678 return &ip->i_df;
679}
680
681/*
682 * Initialize an inode's copy-on-write fork.
683 */
684void
685xfs_ifork_init_cow(
686 struct xfs_inode *ip)
687{
688 if (ip->i_cowfp)
689 return;
690
691 ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache,
692 GFP_NOFS | __GFP_NOFAIL);
693 ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
694}
695
696/* Verify the inline contents of the data fork of an inode. */
697int
698xfs_ifork_verify_local_data(
699 struct xfs_inode *ip)
700{
701 xfs_failaddr_t fa = NULL;
702
703 switch (VFS_I(ip)->i_mode & S_IFMT) {
704 case S_IFDIR: {
705 struct xfs_mount *mp = ip->i_mount;
706 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
707 struct xfs_dir2_sf_hdr *sfp = ifp->if_data;
708
709 fa = xfs_dir2_sf_verify(mp, sfp, ifp->if_bytes);
710 break;
711 }
712 case S_IFLNK: {
713 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
714
715 fa = xfs_symlink_shortform_verify(ifp->if_data, ifp->if_bytes);
716 break;
717 }
718 default:
719 break;
720 }
721
722 if (fa) {
723 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
724 ip->i_df.if_data, ip->i_df.if_bytes, fa);
725 return -EFSCORRUPTED;
726 }
727
728 return 0;
729}
730
731/* Verify the inline contents of the attr fork of an inode. */
732int
733xfs_ifork_verify_local_attr(
734 struct xfs_inode *ip)
735{
736 struct xfs_ifork *ifp = &ip->i_af;
737 xfs_failaddr_t fa;
738
739 if (!xfs_inode_has_attr_fork(ip)) {
740 fa = __this_address;
741 } else {
742 struct xfs_ifork *ifp = &ip->i_af;
743
744 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
745 fa = xfs_attr_shortform_verify(ifp->if_data, ifp->if_bytes);
746 }
747 if (fa) {
748 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
749 ifp->if_data, ifp->if_bytes, fa);
750 return -EFSCORRUPTED;
751 }
752
753 return 0;
754}
755
756int
757xfs_iext_count_may_overflow(
758 struct xfs_inode *ip,
759 int whichfork,
760 int nr_to_add)
761{
762 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
763 uint64_t max_exts;
764 uint64_t nr_exts;
765
766 if (whichfork == XFS_COW_FORK)
767 return 0;
768
769 max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip),
770 whichfork);
771
772 if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
773 max_exts = 10;
774
775 nr_exts = ifp->if_nextents + nr_to_add;
776 if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
777 return -EFBIG;
778
779 return 0;
780}
781
782/*
783 * Upgrade this inode's extent counter fields to be able to handle a potential
784 * increase in the extent count by nr_to_add. Normally this is the same
785 * quantity that caused xfs_iext_count_may_overflow() to return -EFBIG.
786 */
787int
788xfs_iext_count_upgrade(
789 struct xfs_trans *tp,
790 struct xfs_inode *ip,
791 uint nr_to_add)
792{
793 ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR);
794
795 if (!xfs_has_large_extent_counts(ip->i_mount) ||
796 xfs_inode_has_large_extent_counts(ip) ||
797 XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
798 return -EFBIG;
799
800 ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
801 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
802
803 return 0;
804}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_inode_item.h"
17#include "xfs_btree.h"
18#include "xfs_bmap_btree.h"
19#include "xfs_bmap.h"
20#include "xfs_error.h"
21#include "xfs_trace.h"
22#include "xfs_da_format.h"
23#include "xfs_da_btree.h"
24#include "xfs_dir2_priv.h"
25#include "xfs_attr_leaf.h"
26#include "xfs_types.h"
27#include "xfs_errortag.h"
28
29kmem_zone_t *xfs_ifork_zone;
30
31void
32xfs_init_local_fork(
33 struct xfs_inode *ip,
34 int whichfork,
35 const void *data,
36 int64_t size)
37{
38 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
39 int mem_size = size, real_size = 0;
40 bool zero_terminate;
41
42 /*
43 * If we are using the local fork to store a symlink body we need to
44 * zero-terminate it so that we can pass it back to the VFS directly.
45 * Overallocate the in-memory fork by one for that and add a zero
46 * to terminate it below.
47 */
48 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
49 if (zero_terminate)
50 mem_size++;
51
52 if (size) {
53 real_size = roundup(mem_size, 4);
54 ifp->if_u1.if_data = kmem_alloc(real_size, KM_NOFS);
55 memcpy(ifp->if_u1.if_data, data, size);
56 if (zero_terminate)
57 ifp->if_u1.if_data[size] = '\0';
58 } else {
59 ifp->if_u1.if_data = NULL;
60 }
61
62 ifp->if_bytes = size;
63}
64
65/*
66 * The file is in-lined in the on-disk inode.
67 */
68STATIC int
69xfs_iformat_local(
70 xfs_inode_t *ip,
71 xfs_dinode_t *dip,
72 int whichfork,
73 int size)
74{
75 /*
76 * If the size is unreasonable, then something
77 * is wrong and we just bail out rather than crash in
78 * kmem_alloc() or memcpy() below.
79 */
80 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
81 xfs_warn(ip->i_mount,
82 "corrupt inode %Lu (bad size %d for local fork, size = %zd).",
83 (unsigned long long) ip->i_ino, size,
84 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
85 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
86 "xfs_iformat_local", dip, sizeof(*dip),
87 __this_address);
88 return -EFSCORRUPTED;
89 }
90
91 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
92 return 0;
93}
94
95/*
96 * The file consists of a set of extents all of which fit into the on-disk
97 * inode.
98 */
99STATIC int
100xfs_iformat_extents(
101 struct xfs_inode *ip,
102 struct xfs_dinode *dip,
103 int whichfork)
104{
105 struct xfs_mount *mp = ip->i_mount;
106 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
107 int state = xfs_bmap_fork_to_state(whichfork);
108 int nex = XFS_DFORK_NEXTENTS(dip, whichfork);
109 int size = nex * sizeof(xfs_bmbt_rec_t);
110 struct xfs_iext_cursor icur;
111 struct xfs_bmbt_rec *dp;
112 struct xfs_bmbt_irec new;
113 int i;
114
115 /*
116 * If the number of extents is unreasonable, then something is wrong and
117 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
118 */
119 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
120 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
121 (unsigned long long) ip->i_ino, nex);
122 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
123 "xfs_iformat_extents(1)", dip, sizeof(*dip),
124 __this_address);
125 return -EFSCORRUPTED;
126 }
127
128 ifp->if_bytes = 0;
129 ifp->if_u1.if_root = NULL;
130 ifp->if_height = 0;
131 if (size) {
132 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
133
134 xfs_iext_first(ifp, &icur);
135 for (i = 0; i < nex; i++, dp++) {
136 xfs_failaddr_t fa;
137
138 xfs_bmbt_disk_get_all(dp, &new);
139 fa = xfs_bmap_validate_extent(ip, whichfork, &new);
140 if (fa) {
141 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
142 "xfs_iformat_extents(2)",
143 dp, sizeof(*dp), fa);
144 return -EFSCORRUPTED;
145 }
146
147 xfs_iext_insert(ip, &icur, &new, state);
148 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
149 xfs_iext_next(ifp, &icur);
150 }
151 }
152 return 0;
153}
154
155/*
156 * The file has too many extents to fit into
157 * the inode, so they are in B-tree format.
158 * Allocate a buffer for the root of the B-tree
159 * and copy the root into it. The i_extents
160 * field will remain NULL until all of the
161 * extents are read in (when they are needed).
162 */
163STATIC int
164xfs_iformat_btree(
165 xfs_inode_t *ip,
166 xfs_dinode_t *dip,
167 int whichfork)
168{
169 struct xfs_mount *mp = ip->i_mount;
170 xfs_bmdr_block_t *dfp;
171 struct xfs_ifork *ifp;
172 /* REFERENCED */
173 int nrecs;
174 int size;
175 int level;
176
177 ifp = XFS_IFORK_PTR(ip, whichfork);
178 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
179 size = XFS_BMAP_BROOT_SPACE(mp, dfp);
180 nrecs = be16_to_cpu(dfp->bb_numrecs);
181 level = be16_to_cpu(dfp->bb_level);
182
183 /*
184 * blow out if -- fork has less extents than can fit in
185 * fork (fork shouldn't be a btree format), root btree
186 * block has more records than can fit into the fork,
187 * or the number of extents is greater than the number of
188 * blocks.
189 */
190 if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
191 nrecs == 0 ||
192 XFS_BMDR_SPACE_CALC(nrecs) >
193 XFS_DFORK_SIZE(dip, mp, whichfork) ||
194 ifp->if_nextents > ip->i_nblocks) ||
195 level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
196 xfs_warn(mp, "corrupt inode %Lu (btree).",
197 (unsigned long long) ip->i_ino);
198 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
199 "xfs_iformat_btree", dfp, size,
200 __this_address);
201 return -EFSCORRUPTED;
202 }
203
204 ifp->if_broot_bytes = size;
205 ifp->if_broot = kmem_alloc(size, KM_NOFS);
206 ASSERT(ifp->if_broot != NULL);
207 /*
208 * Copy and convert from the on-disk structure
209 * to the in-memory structure.
210 */
211 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
212 ifp->if_broot, size);
213
214 ifp->if_bytes = 0;
215 ifp->if_u1.if_root = NULL;
216 ifp->if_height = 0;
217 return 0;
218}
219
220int
221xfs_iformat_data_fork(
222 struct xfs_inode *ip,
223 struct xfs_dinode *dip)
224{
225 struct inode *inode = VFS_I(ip);
226 int error;
227
228 /*
229 * Initialize the extent count early, as the per-format routines may
230 * depend on it.
231 */
232 ip->i_df.if_format = dip->di_format;
233 ip->i_df.if_nextents = be32_to_cpu(dip->di_nextents);
234
235 switch (inode->i_mode & S_IFMT) {
236 case S_IFIFO:
237 case S_IFCHR:
238 case S_IFBLK:
239 case S_IFSOCK:
240 ip->i_disk_size = 0;
241 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
242 return 0;
243 case S_IFREG:
244 case S_IFLNK:
245 case S_IFDIR:
246 switch (ip->i_df.if_format) {
247 case XFS_DINODE_FMT_LOCAL:
248 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
249 be64_to_cpu(dip->di_size));
250 if (!error)
251 error = xfs_ifork_verify_local_data(ip);
252 return error;
253 case XFS_DINODE_FMT_EXTENTS:
254 return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
255 case XFS_DINODE_FMT_BTREE:
256 return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
257 default:
258 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
259 dip, sizeof(*dip), __this_address);
260 return -EFSCORRUPTED;
261 }
262 break;
263 default:
264 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
265 sizeof(*dip), __this_address);
266 return -EFSCORRUPTED;
267 }
268}
269
270static uint16_t
271xfs_dfork_attr_shortform_size(
272 struct xfs_dinode *dip)
273{
274 struct xfs_attr_shortform *atp =
275 (struct xfs_attr_shortform *)XFS_DFORK_APTR(dip);
276
277 return be16_to_cpu(atp->hdr.totsize);
278}
279
280struct xfs_ifork *
281xfs_ifork_alloc(
282 enum xfs_dinode_fmt format,
283 xfs_extnum_t nextents)
284{
285 struct xfs_ifork *ifp;
286
287 ifp = kmem_cache_zalloc(xfs_ifork_zone, GFP_NOFS | __GFP_NOFAIL);
288 ifp->if_format = format;
289 ifp->if_nextents = nextents;
290 return ifp;
291}
292
293int
294xfs_iformat_attr_fork(
295 struct xfs_inode *ip,
296 struct xfs_dinode *dip)
297{
298 int error = 0;
299
300 /*
301 * Initialize the extent count early, as the per-format routines may
302 * depend on it.
303 */
304 ip->i_afp = xfs_ifork_alloc(dip->di_aformat,
305 be16_to_cpu(dip->di_anextents));
306
307 switch (ip->i_afp->if_format) {
308 case XFS_DINODE_FMT_LOCAL:
309 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
310 xfs_dfork_attr_shortform_size(dip));
311 if (!error)
312 error = xfs_ifork_verify_local_attr(ip);
313 break;
314 case XFS_DINODE_FMT_EXTENTS:
315 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
316 break;
317 case XFS_DINODE_FMT_BTREE:
318 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
319 break;
320 default:
321 xfs_inode_verifier_error(ip, error, __func__, dip,
322 sizeof(*dip), __this_address);
323 error = -EFSCORRUPTED;
324 break;
325 }
326
327 if (error) {
328 kmem_cache_free(xfs_ifork_zone, ip->i_afp);
329 ip->i_afp = NULL;
330 }
331 return error;
332}
333
334/*
335 * Reallocate the space for if_broot based on the number of records
336 * being added or deleted as indicated in rec_diff. Move the records
337 * and pointers in if_broot to fit the new size. When shrinking this
338 * will eliminate holes between the records and pointers created by
339 * the caller. When growing this will create holes to be filled in
340 * by the caller.
341 *
342 * The caller must not request to add more records than would fit in
343 * the on-disk inode root. If the if_broot is currently NULL, then
344 * if we are adding records, one will be allocated. The caller must also
345 * not request that the number of records go below zero, although
346 * it can go to zero.
347 *
348 * ip -- the inode whose if_broot area is changing
349 * ext_diff -- the change in the number of records, positive or negative,
350 * requested for the if_broot array.
351 */
352void
353xfs_iroot_realloc(
354 xfs_inode_t *ip,
355 int rec_diff,
356 int whichfork)
357{
358 struct xfs_mount *mp = ip->i_mount;
359 int cur_max;
360 struct xfs_ifork *ifp;
361 struct xfs_btree_block *new_broot;
362 int new_max;
363 size_t new_size;
364 char *np;
365 char *op;
366
367 /*
368 * Handle the degenerate case quietly.
369 */
370 if (rec_diff == 0) {
371 return;
372 }
373
374 ifp = XFS_IFORK_PTR(ip, whichfork);
375 if (rec_diff > 0) {
376 /*
377 * If there wasn't any memory allocated before, just
378 * allocate it now and get out.
379 */
380 if (ifp->if_broot_bytes == 0) {
381 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
382 ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
383 ifp->if_broot_bytes = (int)new_size;
384 return;
385 }
386
387 /*
388 * If there is already an existing if_broot, then we need
389 * to realloc() it and shift the pointers to their new
390 * location. The records don't change location because
391 * they are kept butted up against the btree block header.
392 */
393 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
394 new_max = cur_max + rec_diff;
395 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
396 ifp->if_broot = krealloc(ifp->if_broot, new_size,
397 GFP_NOFS | __GFP_NOFAIL);
398 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
399 ifp->if_broot_bytes);
400 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
401 (int)new_size);
402 ifp->if_broot_bytes = (int)new_size;
403 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
404 XFS_IFORK_SIZE(ip, whichfork));
405 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
406 return;
407 }
408
409 /*
410 * rec_diff is less than 0. In this case, we are shrinking the
411 * if_broot buffer. It must already exist. If we go to zero
412 * records, just get rid of the root and clear the status bit.
413 */
414 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
415 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
416 new_max = cur_max + rec_diff;
417 ASSERT(new_max >= 0);
418 if (new_max > 0)
419 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
420 else
421 new_size = 0;
422 if (new_size > 0) {
423 new_broot = kmem_alloc(new_size, KM_NOFS);
424 /*
425 * First copy over the btree block header.
426 */
427 memcpy(new_broot, ifp->if_broot,
428 XFS_BMBT_BLOCK_LEN(ip->i_mount));
429 } else {
430 new_broot = NULL;
431 }
432
433 /*
434 * Only copy the records and pointers if there are any.
435 */
436 if (new_max > 0) {
437 /*
438 * First copy the records.
439 */
440 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
441 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
442 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
443
444 /*
445 * Then copy the pointers.
446 */
447 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
448 ifp->if_broot_bytes);
449 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
450 (int)new_size);
451 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
452 }
453 kmem_free(ifp->if_broot);
454 ifp->if_broot = new_broot;
455 ifp->if_broot_bytes = (int)new_size;
456 if (ifp->if_broot)
457 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
458 XFS_IFORK_SIZE(ip, whichfork));
459 return;
460}
461
462
463/*
464 * This is called when the amount of space needed for if_data
465 * is increased or decreased. The change in size is indicated by
466 * the number of bytes that need to be added or deleted in the
467 * byte_diff parameter.
468 *
469 * If the amount of space needed has decreased below the size of the
470 * inline buffer, then switch to using the inline buffer. Otherwise,
471 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
472 * to what is needed.
473 *
474 * ip -- the inode whose if_data area is changing
475 * byte_diff -- the change in the number of bytes, positive or negative,
476 * requested for the if_data array.
477 */
478void
479xfs_idata_realloc(
480 struct xfs_inode *ip,
481 int64_t byte_diff,
482 int whichfork)
483{
484 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
485 int64_t new_size = ifp->if_bytes + byte_diff;
486
487 ASSERT(new_size >= 0);
488 ASSERT(new_size <= XFS_IFORK_SIZE(ip, whichfork));
489
490 if (byte_diff == 0)
491 return;
492
493 if (new_size == 0) {
494 kmem_free(ifp->if_u1.if_data);
495 ifp->if_u1.if_data = NULL;
496 ifp->if_bytes = 0;
497 return;
498 }
499
500 /*
501 * For inline data, the underlying buffer must be a multiple of 4 bytes
502 * in size so that it can be logged and stay on word boundaries.
503 * We enforce that here.
504 */
505 ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, roundup(new_size, 4),
506 GFP_NOFS | __GFP_NOFAIL);
507 ifp->if_bytes = new_size;
508}
509
510void
511xfs_idestroy_fork(
512 struct xfs_ifork *ifp)
513{
514 if (ifp->if_broot != NULL) {
515 kmem_free(ifp->if_broot);
516 ifp->if_broot = NULL;
517 }
518
519 switch (ifp->if_format) {
520 case XFS_DINODE_FMT_LOCAL:
521 kmem_free(ifp->if_u1.if_data);
522 ifp->if_u1.if_data = NULL;
523 break;
524 case XFS_DINODE_FMT_EXTENTS:
525 case XFS_DINODE_FMT_BTREE:
526 if (ifp->if_height)
527 xfs_iext_destroy(ifp);
528 break;
529 }
530}
531
532/*
533 * Convert in-core extents to on-disk form
534 *
535 * In the case of the data fork, the in-core and on-disk fork sizes can be
536 * different due to delayed allocation extents. We only copy on-disk extents
537 * here, so callers must always use the physical fork size to determine the
538 * size of the buffer passed to this routine. We will return the size actually
539 * used.
540 */
541int
542xfs_iextents_copy(
543 struct xfs_inode *ip,
544 struct xfs_bmbt_rec *dp,
545 int whichfork)
546{
547 int state = xfs_bmap_fork_to_state(whichfork);
548 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
549 struct xfs_iext_cursor icur;
550 struct xfs_bmbt_irec rec;
551 int64_t copied = 0;
552
553 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
554 ASSERT(ifp->if_bytes > 0);
555
556 for_each_xfs_iext(ifp, &icur, &rec) {
557 if (isnullstartblock(rec.br_startblock))
558 continue;
559 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
560 xfs_bmbt_disk_set_all(dp, &rec);
561 trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
562 copied += sizeof(struct xfs_bmbt_rec);
563 dp++;
564 }
565
566 ASSERT(copied > 0);
567 ASSERT(copied <= ifp->if_bytes);
568 return copied;
569}
570
571/*
572 * Each of the following cases stores data into the same region
573 * of the on-disk inode, so only one of them can be valid at
574 * any given time. While it is possible to have conflicting formats
575 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
576 * in EXTENTS format, this can only happen when the fork has
577 * changed formats after being modified but before being flushed.
578 * In these cases, the format always takes precedence, because the
579 * format indicates the current state of the fork.
580 */
581void
582xfs_iflush_fork(
583 xfs_inode_t *ip,
584 xfs_dinode_t *dip,
585 struct xfs_inode_log_item *iip,
586 int whichfork)
587{
588 char *cp;
589 struct xfs_ifork *ifp;
590 xfs_mount_t *mp;
591 static const short brootflag[2] =
592 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
593 static const short dataflag[2] =
594 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
595 static const short extflag[2] =
596 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
597
598 if (!iip)
599 return;
600 ifp = XFS_IFORK_PTR(ip, whichfork);
601 /*
602 * This can happen if we gave up in iformat in an error path,
603 * for the attribute fork.
604 */
605 if (!ifp) {
606 ASSERT(whichfork == XFS_ATTR_FORK);
607 return;
608 }
609 cp = XFS_DFORK_PTR(dip, whichfork);
610 mp = ip->i_mount;
611 switch (ifp->if_format) {
612 case XFS_DINODE_FMT_LOCAL:
613 if ((iip->ili_fields & dataflag[whichfork]) &&
614 (ifp->if_bytes > 0)) {
615 ASSERT(ifp->if_u1.if_data != NULL);
616 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
617 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
618 }
619 break;
620
621 case XFS_DINODE_FMT_EXTENTS:
622 if ((iip->ili_fields & extflag[whichfork]) &&
623 (ifp->if_bytes > 0)) {
624 ASSERT(ifp->if_nextents > 0);
625 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
626 whichfork);
627 }
628 break;
629
630 case XFS_DINODE_FMT_BTREE:
631 if ((iip->ili_fields & brootflag[whichfork]) &&
632 (ifp->if_broot_bytes > 0)) {
633 ASSERT(ifp->if_broot != NULL);
634 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
635 XFS_IFORK_SIZE(ip, whichfork));
636 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
637 (xfs_bmdr_block_t *)cp,
638 XFS_DFORK_SIZE(dip, mp, whichfork));
639 }
640 break;
641
642 case XFS_DINODE_FMT_DEV:
643 if (iip->ili_fields & XFS_ILOG_DEV) {
644 ASSERT(whichfork == XFS_DATA_FORK);
645 xfs_dinode_put_rdev(dip,
646 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
647 }
648 break;
649
650 default:
651 ASSERT(0);
652 break;
653 }
654}
655
656/* Convert bmap state flags to an inode fork. */
657struct xfs_ifork *
658xfs_iext_state_to_fork(
659 struct xfs_inode *ip,
660 int state)
661{
662 if (state & BMAP_COWFORK)
663 return ip->i_cowfp;
664 else if (state & BMAP_ATTRFORK)
665 return ip->i_afp;
666 return &ip->i_df;
667}
668
669/*
670 * Initialize an inode's copy-on-write fork.
671 */
672void
673xfs_ifork_init_cow(
674 struct xfs_inode *ip)
675{
676 if (ip->i_cowfp)
677 return;
678
679 ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_zone,
680 GFP_NOFS | __GFP_NOFAIL);
681 ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
682}
683
684/* Verify the inline contents of the data fork of an inode. */
685int
686xfs_ifork_verify_local_data(
687 struct xfs_inode *ip)
688{
689 xfs_failaddr_t fa = NULL;
690
691 switch (VFS_I(ip)->i_mode & S_IFMT) {
692 case S_IFDIR:
693 fa = xfs_dir2_sf_verify(ip);
694 break;
695 case S_IFLNK:
696 fa = xfs_symlink_shortform_verify(ip);
697 break;
698 default:
699 break;
700 }
701
702 if (fa) {
703 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
704 ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa);
705 return -EFSCORRUPTED;
706 }
707
708 return 0;
709}
710
711/* Verify the inline contents of the attr fork of an inode. */
712int
713xfs_ifork_verify_local_attr(
714 struct xfs_inode *ip)
715{
716 struct xfs_ifork *ifp = ip->i_afp;
717 xfs_failaddr_t fa;
718
719 if (!ifp)
720 fa = __this_address;
721 else
722 fa = xfs_attr_shortform_verify(ip);
723
724 if (fa) {
725 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
726 ifp ? ifp->if_u1.if_data : NULL,
727 ifp ? ifp->if_bytes : 0, fa);
728 return -EFSCORRUPTED;
729 }
730
731 return 0;
732}
733
734int
735xfs_iext_count_may_overflow(
736 struct xfs_inode *ip,
737 int whichfork,
738 int nr_to_add)
739{
740 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
741 uint64_t max_exts;
742 uint64_t nr_exts;
743
744 if (whichfork == XFS_COW_FORK)
745 return 0;
746
747 max_exts = (whichfork == XFS_ATTR_FORK) ? MAXAEXTNUM : MAXEXTNUM;
748
749 if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
750 max_exts = 10;
751
752 nr_exts = ifp->if_nextents + nr_to_add;
753 if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
754 return -EFBIG;
755
756 return 0;
757}