Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Filesystem-level keyring for fscrypt
   4 *
   5 * Copyright 2019 Google LLC
   6 */
   7
   8/*
   9 * This file implements management of fscrypt master keys in the
  10 * filesystem-level keyring, including the ioctls:
  11 *
  12 * - FS_IOC_ADD_ENCRYPTION_KEY
  13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
  14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
  15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
  16 *
  17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
  18 * information about these ioctls.
  19 */
  20
  21#include <asm/unaligned.h>
  22#include <crypto/skcipher.h>
  23#include <linux/key-type.h>
  24#include <linux/random.h>
  25#include <linux/seq_file.h>
  26
  27#include "fscrypt_private.h"
  28
  29/* The master encryption keys for a filesystem (->s_master_keys) */
  30struct fscrypt_keyring {
  31	/*
  32	 * Lock that protects ->key_hashtable.  It does *not* protect the
  33	 * fscrypt_master_key structs themselves.
  34	 */
  35	spinlock_t lock;
  36
  37	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
  38	struct hlist_head key_hashtable[128];
  39};
  40
  41static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
  42{
  43	fscrypt_destroy_hkdf(&secret->hkdf);
  44	memzero_explicit(secret, sizeof(*secret));
  45}
  46
  47static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
  48				   struct fscrypt_master_key_secret *src)
  49{
  50	memcpy(dst, src, sizeof(*dst));
  51	memzero_explicit(src, sizeof(*src));
  52}
  53
  54static void fscrypt_free_master_key(struct rcu_head *head)
  55{
  56	struct fscrypt_master_key *mk =
  57		container_of(head, struct fscrypt_master_key, mk_rcu_head);
  58	/*
  59	 * The master key secret and any embedded subkeys should have already
  60	 * been wiped when the last active reference to the fscrypt_master_key
  61	 * struct was dropped; doing it here would be unnecessarily late.
  62	 * Nevertheless, use kfree_sensitive() in case anything was missed.
  63	 */
 
 
 
  64	kfree_sensitive(mk);
  65}
  66
  67void fscrypt_put_master_key(struct fscrypt_master_key *mk)
  68{
  69	if (!refcount_dec_and_test(&mk->mk_struct_refs))
  70		return;
  71	/*
  72	 * No structural references left, so free ->mk_users, and also free the
  73	 * fscrypt_master_key struct itself after an RCU grace period ensures
  74	 * that concurrent keyring lookups can no longer find it.
  75	 */
  76	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
  77	key_put(mk->mk_users);
  78	mk->mk_users = NULL;
  79	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
  80}
  81
  82void fscrypt_put_master_key_activeref(struct super_block *sb,
  83				      struct fscrypt_master_key *mk)
  84{
  85	size_t i;
  86
  87	if (!refcount_dec_and_test(&mk->mk_active_refs))
  88		return;
  89	/*
  90	 * No active references left, so complete the full removal of this
  91	 * fscrypt_master_key struct by removing it from the keyring and
  92	 * destroying any subkeys embedded in it.
  93	 */
  94
  95	if (WARN_ON_ONCE(!sb->s_master_keys))
  96		return;
  97	spin_lock(&sb->s_master_keys->lock);
  98	hlist_del_rcu(&mk->mk_node);
  99	spin_unlock(&sb->s_master_keys->lock);
 100
 101	/*
 102	 * ->mk_active_refs == 0 implies that ->mk_present is false and
 103	 * ->mk_decrypted_inodes is empty.
 104	 */
 105	WARN_ON_ONCE(mk->mk_present);
 106	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
 107
 108	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
 109		fscrypt_destroy_prepared_key(
 110				sb, &mk->mk_direct_keys[i]);
 111		fscrypt_destroy_prepared_key(
 112				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
 113		fscrypt_destroy_prepared_key(
 114				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
 115	}
 116	memzero_explicit(&mk->mk_ino_hash_key,
 117			 sizeof(mk->mk_ino_hash_key));
 118	mk->mk_ino_hash_key_initialized = false;
 119
 120	/* Drop the structural ref associated with the active refs. */
 121	fscrypt_put_master_key(mk);
 
 122}
 123
 124/*
 125 * This transitions the key state from present to incompletely removed, and then
 126 * potentially to absent (depending on whether inodes remain).
 
 
 
 127 */
 128static void fscrypt_initiate_key_removal(struct super_block *sb,
 129					 struct fscrypt_master_key *mk)
 130{
 131	WRITE_ONCE(mk->mk_present, false);
 132	wipe_master_key_secret(&mk->mk_secret);
 133	fscrypt_put_master_key_activeref(sb, mk);
 134}
 135
 136static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
 137{
 138	if (spec->__reserved)
 139		return false;
 140	return master_key_spec_len(spec) != 0;
 141}
 142
 143static int fscrypt_user_key_instantiate(struct key *key,
 144					struct key_preparsed_payload *prep)
 145{
 146	/*
 147	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
 148	 * each key, regardless of the exact key size.  The amount of memory
 149	 * actually used is greater than the size of the raw key anyway.
 150	 */
 151	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
 152}
 153
 154static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
 155{
 156	seq_puts(m, key->description);
 157}
 158
 159/*
 160 * Type of key in ->mk_users.  Each key of this type represents a particular
 161 * user who has added a particular master key.
 162 *
 163 * Note that the name of this key type really should be something like
 164 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
 165 * mainly for simplicity of presentation in /proc/keys when read by a non-root
 166 * user.  And it is expected to be rare that a key is actually added by multiple
 167 * users, since users should keep their encryption keys confidential.
 168 */
 169static struct key_type key_type_fscrypt_user = {
 170	.name			= ".fscrypt",
 171	.instantiate		= fscrypt_user_key_instantiate,
 172	.describe		= fscrypt_user_key_describe,
 173};
 174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
 176	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
 177	 CONST_STRLEN("-users") + 1)
 178
 179#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
 180	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182static void format_mk_users_keyring_description(
 183			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
 184			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 185{
 186	sprintf(description, "fscrypt-%*phN-users",
 187		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
 188}
 189
 190static void format_mk_user_description(
 191			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
 192			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 193{
 194
 195	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
 196		mk_identifier, __kuid_val(current_fsuid()));
 197}
 198
 199/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
 200static int allocate_filesystem_keyring(struct super_block *sb)
 201{
 202	struct fscrypt_keyring *keyring;
 
 203
 204	if (sb->s_master_keys)
 205		return 0;
 206
 207	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
 208	if (!keyring)
 209		return -ENOMEM;
 210	spin_lock_init(&keyring->lock);
 
 
 
 
 211	/*
 212	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
 213	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
 214	 * concurrent tasks can ACQUIRE it.
 215	 */
 216	smp_store_release(&sb->s_master_keys, keyring);
 217	return 0;
 218}
 219
 220/*
 221 * Release all encryption keys that have been added to the filesystem, along
 222 * with the keyring that contains them.
 223 *
 224 * This is called at unmount time, after all potentially-encrypted inodes have
 225 * been evicted.  The filesystem's underlying block device(s) are still
 226 * available at this time; this is important because after user file accesses
 227 * have been allowed, this function may need to evict keys from the keyslots of
 228 * an inline crypto engine, which requires the block device(s).
 229 */
 230void fscrypt_destroy_keyring(struct super_block *sb)
 231{
 232	struct fscrypt_keyring *keyring = sb->s_master_keys;
 233	size_t i;
 234
 235	if (!keyring)
 236		return;
 237
 238	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
 239		struct hlist_head *bucket = &keyring->key_hashtable[i];
 240		struct fscrypt_master_key *mk;
 241		struct hlist_node *tmp;
 242
 243		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
 244			/*
 245			 * Since all potentially-encrypted inodes were already
 246			 * evicted, every key remaining in the keyring should
 247			 * have an empty inode list, and should only still be in
 248			 * the keyring due to the single active ref associated
 249			 * with ->mk_present.  There should be no structural
 250			 * refs beyond the one associated with the active ref.
 251			 */
 252			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
 253			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
 254			WARN_ON_ONCE(!mk->mk_present);
 255			fscrypt_initiate_key_removal(sb, mk);
 256		}
 257	}
 258	kfree_sensitive(keyring);
 259	sb->s_master_keys = NULL;
 260}
 261
 262static struct hlist_head *
 263fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
 264		       const struct fscrypt_key_specifier *mk_spec)
 265{
 266	/*
 267	 * Since key specifiers should be "random" values, it is sufficient to
 268	 * use a trivial hash function that just takes the first several bits of
 269	 * the key specifier.
 270	 */
 271	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
 272
 273	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
 274}
 275
 276/*
 277 * Find the specified master key struct in ->s_master_keys and take a structural
 278 * ref to it.  The structural ref guarantees that the key struct continues to
 279 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
 280 * the key struct.  The structural ref needs to be dropped by
 281 * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
 282 */
 283struct fscrypt_master_key *
 284fscrypt_find_master_key(struct super_block *sb,
 285			const struct fscrypt_key_specifier *mk_spec)
 286{
 287	struct fscrypt_keyring *keyring;
 288	struct hlist_head *bucket;
 289	struct fscrypt_master_key *mk;
 290
 291	/*
 292	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
 293	 * I.e., another task can publish ->s_master_keys concurrently,
 294	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
 295	 * to safely ACQUIRE the memory the other task published.
 296	 */
 297	keyring = smp_load_acquire(&sb->s_master_keys);
 298	if (keyring == NULL)
 299		return NULL; /* No keyring yet, so no keys yet. */
 300
 301	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
 302	rcu_read_lock();
 303	switch (mk_spec->type) {
 304	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
 305		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 306			if (mk->mk_spec.type ==
 307				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 308			    memcmp(mk->mk_spec.u.descriptor,
 309				   mk_spec->u.descriptor,
 310				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
 311			    refcount_inc_not_zero(&mk->mk_struct_refs))
 312				goto out;
 313		}
 314		break;
 315	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
 316		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
 317			if (mk->mk_spec.type ==
 318				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 319			    memcmp(mk->mk_spec.u.identifier,
 320				   mk_spec->u.identifier,
 321				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
 322			    refcount_inc_not_zero(&mk->mk_struct_refs))
 323				goto out;
 324		}
 325		break;
 326	}
 327	mk = NULL;
 328out:
 329	rcu_read_unlock();
 330	return mk;
 331}
 332
 333static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
 334{
 335	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
 336	struct key *keyring;
 337
 338	format_mk_users_keyring_description(description,
 339					    mk->mk_spec.u.identifier);
 340	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 341				current_cred(), KEY_POS_SEARCH |
 342				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
 343				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 344	if (IS_ERR(keyring))
 345		return PTR_ERR(keyring);
 346
 347	mk->mk_users = keyring;
 348	return 0;
 349}
 350
 351/*
 352 * Find the current user's "key" in the master key's ->mk_users.
 353 * Returns ERR_PTR(-ENOKEY) if not found.
 354 */
 355static struct key *find_master_key_user(struct fscrypt_master_key *mk)
 356{
 357	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 358	key_ref_t keyref;
 359
 360	format_mk_user_description(description, mk->mk_spec.u.identifier);
 361
 362	/*
 363	 * We need to mark the keyring reference as "possessed" so that we
 364	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
 365	 */
 366	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
 367				&key_type_fscrypt_user, description, false);
 368	if (IS_ERR(keyref)) {
 369		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
 370		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
 371			keyref = ERR_PTR(-ENOKEY);
 372		return ERR_CAST(keyref);
 373	}
 374	return key_ref_to_ptr(keyref);
 375}
 376
 377/*
 378 * Give the current user a "key" in ->mk_users.  This charges the user's quota
 379 * and marks the master key as added by the current user, so that it cannot be
 380 * removed by another user with the key.  Either ->mk_sem must be held for
 381 * write, or the master key must be still undergoing initialization.
 382 */
 383static int add_master_key_user(struct fscrypt_master_key *mk)
 384{
 385	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 386	struct key *mk_user;
 387	int err;
 388
 389	format_mk_user_description(description, mk->mk_spec.u.identifier);
 390	mk_user = key_alloc(&key_type_fscrypt_user, description,
 391			    current_fsuid(), current_gid(), current_cred(),
 392			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
 393	if (IS_ERR(mk_user))
 394		return PTR_ERR(mk_user);
 395
 396	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
 397	key_put(mk_user);
 398	return err;
 399}
 400
 401/*
 402 * Remove the current user's "key" from ->mk_users.
 403 * ->mk_sem must be held for write.
 404 *
 405 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
 406 */
 407static int remove_master_key_user(struct fscrypt_master_key *mk)
 408{
 409	struct key *mk_user;
 410	int err;
 411
 412	mk_user = find_master_key_user(mk);
 413	if (IS_ERR(mk_user))
 414		return PTR_ERR(mk_user);
 415	err = key_unlink(mk->mk_users, mk_user);
 416	key_put(mk_user);
 417	return err;
 418}
 419
 420/*
 421 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
 422 * insert it into sb->s_master_keys.
 
 423 */
 424static int add_new_master_key(struct super_block *sb,
 425			      struct fscrypt_master_key_secret *secret,
 426			      const struct fscrypt_key_specifier *mk_spec)
 427{
 428	struct fscrypt_keyring *keyring = sb->s_master_keys;
 429	struct fscrypt_master_key *mk;
 
 
 430	int err;
 431
 432	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
 433	if (!mk)
 434		return -ENOMEM;
 435
 436	init_rwsem(&mk->mk_sem);
 437	refcount_set(&mk->mk_struct_refs, 1);
 438	mk->mk_spec = *mk_spec;
 439
 
 
 
 440	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
 441	spin_lock_init(&mk->mk_decrypted_inodes_lock);
 442
 443	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 444		err = allocate_master_key_users_keyring(mk);
 445		if (err)
 446			goto out_put;
 447		err = add_master_key_user(mk);
 448		if (err)
 449			goto out_put;
 450	}
 451
 452	move_master_key_secret(&mk->mk_secret, secret);
 453	mk->mk_present = true;
 454	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455
 456	spin_lock(&keyring->lock);
 457	hlist_add_head_rcu(&mk->mk_node,
 458			   fscrypt_mk_hash_bucket(keyring, mk_spec));
 459	spin_unlock(&keyring->lock);
 460	return 0;
 461
 462out_put:
 463	fscrypt_put_master_key(mk);
 464	return err;
 465}
 466
 467#define KEY_DEAD	1
 468
 469static int add_existing_master_key(struct fscrypt_master_key *mk,
 470				   struct fscrypt_master_key_secret *secret)
 471{
 
 
 472	int err;
 473
 474	/*
 475	 * If the current user is already in ->mk_users, then there's nothing to
 476	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
 477	 * applicable for v1 policy keys, which have NULL ->mk_users.)
 478	 */
 479	if (mk->mk_users) {
 480		struct key *mk_user = find_master_key_user(mk);
 481
 482		if (mk_user != ERR_PTR(-ENOKEY)) {
 483			if (IS_ERR(mk_user))
 484				return PTR_ERR(mk_user);
 485			key_put(mk_user);
 486			return 0;
 487		}
 488		err = add_master_key_user(mk);
 489		if (err)
 490			return err;
 491	}
 492
 493	/* If the key is incompletely removed, make it present again. */
 494	if (!mk->mk_present) {
 495		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
 496			/*
 497			 * Raced with the last active ref being dropped, so the
 498			 * key has become, or is about to become, "absent".
 499			 * Therefore, we need to allocate a new key struct.
 500			 */
 501			return KEY_DEAD;
 
 
 
 502		}
 503		move_master_key_secret(&mk->mk_secret, secret);
 504		WRITE_ONCE(mk->mk_present, true);
 505	}
 506
 
 
 
 507	return 0;
 508}
 509
 510static int do_add_master_key(struct super_block *sb,
 511			     struct fscrypt_master_key_secret *secret,
 512			     const struct fscrypt_key_specifier *mk_spec)
 513{
 514	static DEFINE_MUTEX(fscrypt_add_key_mutex);
 515	struct fscrypt_master_key *mk;
 516	int err;
 517
 518	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
 519
 520	mk = fscrypt_find_master_key(sb, mk_spec);
 521	if (!mk) {
 
 
 
 522		/* Didn't find the key in ->s_master_keys.  Add it. */
 523		err = allocate_filesystem_keyring(sb);
 524		if (!err)
 525			err = add_new_master_key(sb, secret, mk_spec);
 
 526	} else {
 527		/*
 528		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
 529		 * if needed, and make the key "present" again if possible.
 530		 */
 531		down_write(&mk->mk_sem);
 532		err = add_existing_master_key(mk, secret);
 533		up_write(&mk->mk_sem);
 534		if (err == KEY_DEAD) {
 535			/*
 536			 * We found a key struct, but it's already been fully
 537			 * removed.  Ignore the old struct and add a new one.
 538			 * fscrypt_add_key_mutex means we don't need to worry
 539			 * about concurrent adds.
 540			 */
 541			err = add_new_master_key(sb, secret, mk_spec);
 542		}
 543		fscrypt_put_master_key(mk);
 544	}
 
 545	mutex_unlock(&fscrypt_add_key_mutex);
 546	return err;
 547}
 548
 549static int add_master_key(struct super_block *sb,
 550			  struct fscrypt_master_key_secret *secret,
 551			  struct fscrypt_key_specifier *key_spec)
 552{
 553	int err;
 554
 555	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 556		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
 557					secret->size);
 558		if (err)
 559			return err;
 560
 561		/*
 562		 * Now that the HKDF context is initialized, the raw key is no
 563		 * longer needed.
 564		 */
 565		memzero_explicit(secret->raw, secret->size);
 566
 567		/* Calculate the key identifier */
 568		err = fscrypt_hkdf_expand(&secret->hkdf,
 569					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
 570					  key_spec->u.identifier,
 571					  FSCRYPT_KEY_IDENTIFIER_SIZE);
 572		if (err)
 573			return err;
 574	}
 575	return do_add_master_key(sb, secret, key_spec);
 576}
 577
 578static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
 579{
 580	const struct fscrypt_provisioning_key_payload *payload = prep->data;
 581
 582	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
 583	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
 584		return -EINVAL;
 585
 586	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 587	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
 588		return -EINVAL;
 589
 590	if (payload->__reserved)
 591		return -EINVAL;
 592
 593	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
 594	if (!prep->payload.data[0])
 595		return -ENOMEM;
 596
 597	prep->quotalen = prep->datalen;
 598	return 0;
 599}
 600
 601static void fscrypt_provisioning_key_free_preparse(
 602					struct key_preparsed_payload *prep)
 603{
 604	kfree_sensitive(prep->payload.data[0]);
 605}
 606
 607static void fscrypt_provisioning_key_describe(const struct key *key,
 608					      struct seq_file *m)
 609{
 610	seq_puts(m, key->description);
 611	if (key_is_positive(key)) {
 612		const struct fscrypt_provisioning_key_payload *payload =
 613			key->payload.data[0];
 614
 615		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
 616	}
 617}
 618
 619static void fscrypt_provisioning_key_destroy(struct key *key)
 620{
 621	kfree_sensitive(key->payload.data[0]);
 622}
 623
 624static struct key_type key_type_fscrypt_provisioning = {
 625	.name			= "fscrypt-provisioning",
 626	.preparse		= fscrypt_provisioning_key_preparse,
 627	.free_preparse		= fscrypt_provisioning_key_free_preparse,
 628	.instantiate		= generic_key_instantiate,
 629	.describe		= fscrypt_provisioning_key_describe,
 630	.destroy		= fscrypt_provisioning_key_destroy,
 631};
 632
 633/*
 634 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
 635 * store it into 'secret'.
 636 *
 637 * The key must be of type "fscrypt-provisioning" and must have the field
 638 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
 639 * only usable with fscrypt with the particular KDF version identified by
 640 * 'type'.  We don't use the "logon" key type because there's no way to
 641 * completely restrict the use of such keys; they can be used by any kernel API
 642 * that accepts "logon" keys and doesn't require a specific service prefix.
 643 *
 644 * The ability to specify the key via Linux keyring key is intended for cases
 645 * where userspace needs to re-add keys after the filesystem is unmounted and
 646 * re-mounted.  Most users should just provide the raw key directly instead.
 647 */
 648static int get_keyring_key(u32 key_id, u32 type,
 649			   struct fscrypt_master_key_secret *secret)
 650{
 651	key_ref_t ref;
 652	struct key *key;
 653	const struct fscrypt_provisioning_key_payload *payload;
 654	int err;
 655
 656	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
 657	if (IS_ERR(ref))
 658		return PTR_ERR(ref);
 659	key = key_ref_to_ptr(ref);
 660
 661	if (key->type != &key_type_fscrypt_provisioning)
 662		goto bad_key;
 663	payload = key->payload.data[0];
 664
 665	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
 666	if (payload->type != type)
 667		goto bad_key;
 668
 669	secret->size = key->datalen - sizeof(*payload);
 670	memcpy(secret->raw, payload->raw, secret->size);
 671	err = 0;
 672	goto out_put;
 673
 674bad_key:
 675	err = -EKEYREJECTED;
 676out_put:
 677	key_ref_put(ref);
 678	return err;
 679}
 680
 681/*
 682 * Add a master encryption key to the filesystem, causing all files which were
 683 * encrypted with it to appear "unlocked" (decrypted) when accessed.
 684 *
 685 * When adding a key for use by v1 encryption policies, this ioctl is
 686 * privileged, and userspace must provide the 'key_descriptor'.
 687 *
 688 * When adding a key for use by v2+ encryption policies, this ioctl is
 689 * unprivileged.  This is needed, in general, to allow non-root users to use
 690 * encryption without encountering the visibility problems of process-subscribed
 691 * keyrings and the inability to properly remove keys.  This works by having
 692 * each key identified by its cryptographically secure hash --- the
 693 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
 694 * cannot add the wrong key for a given identifier.  Furthermore, each added key
 695 * is charged to the appropriate user's quota for the keyrings service, which
 696 * prevents a malicious user from adding too many keys.  Finally, we forbid a
 697 * user from removing a key while other users have added it too, which prevents
 698 * a user who knows another user's key from causing a denial-of-service by
 699 * removing it at an inopportune time.  (We tolerate that a user who knows a key
 700 * can prevent other users from removing it.)
 701 *
 702 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
 703 * Documentation/filesystems/fscrypt.rst.
 704 */
 705int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
 706{
 707	struct super_block *sb = file_inode(filp)->i_sb;
 708	struct fscrypt_add_key_arg __user *uarg = _uarg;
 709	struct fscrypt_add_key_arg arg;
 710	struct fscrypt_master_key_secret secret;
 711	int err;
 712
 713	if (copy_from_user(&arg, uarg, sizeof(arg)))
 714		return -EFAULT;
 715
 716	if (!valid_key_spec(&arg.key_spec))
 717		return -EINVAL;
 718
 719	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
 720		return -EINVAL;
 721
 722	/*
 723	 * Only root can add keys that are identified by an arbitrary descriptor
 724	 * rather than by a cryptographic hash --- since otherwise a malicious
 725	 * user could add the wrong key.
 726	 */
 727	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 728	    !capable(CAP_SYS_ADMIN))
 729		return -EACCES;
 730
 731	memset(&secret, 0, sizeof(secret));
 732	if (arg.key_id) {
 733		if (arg.raw_size != 0)
 734			return -EINVAL;
 735		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
 736		if (err)
 737			goto out_wipe_secret;
 738	} else {
 739		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
 740		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
 741			return -EINVAL;
 742		secret.size = arg.raw_size;
 743		err = -EFAULT;
 744		if (copy_from_user(secret.raw, uarg->raw, secret.size))
 745			goto out_wipe_secret;
 746	}
 747
 748	err = add_master_key(sb, &secret, &arg.key_spec);
 749	if (err)
 750		goto out_wipe_secret;
 751
 752	/* Return the key identifier to userspace, if applicable */
 753	err = -EFAULT;
 754	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 755	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
 756			 FSCRYPT_KEY_IDENTIFIER_SIZE))
 757		goto out_wipe_secret;
 758	err = 0;
 759out_wipe_secret:
 760	wipe_master_key_secret(&secret);
 761	return err;
 762}
 763EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
 764
 765static void
 766fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
 767{
 768	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
 769
 770	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
 771
 772	memset(secret, 0, sizeof(*secret));
 773	secret->size = FSCRYPT_MAX_KEY_SIZE;
 774	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
 775}
 776
 777int fscrypt_get_test_dummy_key_identifier(
 778				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 779{
 780	struct fscrypt_master_key_secret secret;
 781	int err;
 782
 783	fscrypt_get_test_dummy_secret(&secret);
 784
 785	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
 786	if (err)
 787		goto out;
 788	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
 789				  NULL, 0, key_identifier,
 790				  FSCRYPT_KEY_IDENTIFIER_SIZE);
 791out:
 792	wipe_master_key_secret(&secret);
 793	return err;
 794}
 795
 796/**
 797 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
 798 * @sb: the filesystem instance to add the key to
 799 * @key_spec: the key specifier of the test dummy encryption key
 800 *
 801 * Add the key for the test_dummy_encryption mount option to the filesystem.  To
 802 * prevent misuse of this mount option, a per-boot random key is used instead of
 803 * a hardcoded one.  This makes it so that any encrypted files created using
 804 * this option won't be accessible after a reboot.
 805 *
 806 * Return: 0 on success, -errno on failure
 807 */
 808int fscrypt_add_test_dummy_key(struct super_block *sb,
 809			       struct fscrypt_key_specifier *key_spec)
 810{
 
 811	struct fscrypt_master_key_secret secret;
 812	int err;
 813
 814	fscrypt_get_test_dummy_secret(&secret);
 
 
 
 
 
 815	err = add_master_key(sb, &secret, key_spec);
 816	wipe_master_key_secret(&secret);
 817	return err;
 818}
 819
 820/*
 821 * Verify that the current user has added a master key with the given identifier
 822 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
 823 * their files using some other user's key which they don't actually know.
 824 * Cryptographically this isn't much of a problem, but the semantics of this
 825 * would be a bit weird, so it's best to just forbid it.
 826 *
 827 * The system administrator (CAP_FOWNER) can override this, which should be
 828 * enough for any use cases where encryption policies are being set using keys
 829 * that were chosen ahead of time but aren't available at the moment.
 830 *
 831 * Note that the key may have already removed by the time this returns, but
 832 * that's okay; we just care whether the key was there at some point.
 833 *
 834 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
 835 */
 836int fscrypt_verify_key_added(struct super_block *sb,
 837			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 838{
 839	struct fscrypt_key_specifier mk_spec;
 
 840	struct fscrypt_master_key *mk;
 841	struct key *mk_user;
 842	int err;
 843
 844	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
 845	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
 846
 847	mk = fscrypt_find_master_key(sb, &mk_spec);
 848	if (!mk) {
 849		err = -ENOKEY;
 850		goto out;
 851	}
 852	down_read(&mk->mk_sem);
 853	mk_user = find_master_key_user(mk);
 854	if (IS_ERR(mk_user)) {
 855		err = PTR_ERR(mk_user);
 856	} else {
 857		key_put(mk_user);
 858		err = 0;
 859	}
 860	up_read(&mk->mk_sem);
 861	fscrypt_put_master_key(mk);
 862out:
 863	if (err == -ENOKEY && capable(CAP_FOWNER))
 864		err = 0;
 865	return err;
 866}
 867
 868/*
 869 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
 870 * directory, then it can have at most one dentry; however, that dentry may be
 871 * pinned by child dentries, so first try to evict the children too.
 872 */
 873static void shrink_dcache_inode(struct inode *inode)
 874{
 875	struct dentry *dentry;
 876
 877	if (S_ISDIR(inode->i_mode)) {
 878		dentry = d_find_any_alias(inode);
 879		if (dentry) {
 880			shrink_dcache_parent(dentry);
 881			dput(dentry);
 882		}
 883	}
 884	d_prune_aliases(inode);
 885}
 886
 887static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
 888{
 889	struct fscrypt_inode_info *ci;
 890	struct inode *inode;
 891	struct inode *toput_inode = NULL;
 892
 893	spin_lock(&mk->mk_decrypted_inodes_lock);
 894
 895	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
 896		inode = ci->ci_inode;
 897		spin_lock(&inode->i_lock);
 898		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
 899			spin_unlock(&inode->i_lock);
 900			continue;
 901		}
 902		__iget(inode);
 903		spin_unlock(&inode->i_lock);
 904		spin_unlock(&mk->mk_decrypted_inodes_lock);
 905
 906		shrink_dcache_inode(inode);
 907		iput(toput_inode);
 908		toput_inode = inode;
 909
 910		spin_lock(&mk->mk_decrypted_inodes_lock);
 911	}
 912
 913	spin_unlock(&mk->mk_decrypted_inodes_lock);
 914	iput(toput_inode);
 915}
 916
 917static int check_for_busy_inodes(struct super_block *sb,
 918				 struct fscrypt_master_key *mk)
 919{
 920	struct list_head *pos;
 921	size_t busy_count = 0;
 922	unsigned long ino;
 923	char ino_str[50] = "";
 924
 925	spin_lock(&mk->mk_decrypted_inodes_lock);
 926
 927	list_for_each(pos, &mk->mk_decrypted_inodes)
 928		busy_count++;
 929
 930	if (busy_count == 0) {
 931		spin_unlock(&mk->mk_decrypted_inodes_lock);
 932		return 0;
 933	}
 934
 935	{
 936		/* select an example file to show for debugging purposes */
 937		struct inode *inode =
 938			list_first_entry(&mk->mk_decrypted_inodes,
 939					 struct fscrypt_inode_info,
 940					 ci_master_key_link)->ci_inode;
 941		ino = inode->i_ino;
 942	}
 943	spin_unlock(&mk->mk_decrypted_inodes_lock);
 944
 945	/* If the inode is currently being created, ino may still be 0. */
 946	if (ino)
 947		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
 948
 949	fscrypt_warn(NULL,
 950		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
 951		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
 952		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
 953		     ino_str);
 954	return -EBUSY;
 955}
 956
 957static int try_to_lock_encrypted_files(struct super_block *sb,
 958				       struct fscrypt_master_key *mk)
 959{
 960	int err1;
 961	int err2;
 962
 963	/*
 964	 * An inode can't be evicted while it is dirty or has dirty pages.
 965	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
 966	 *
 967	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
 968	 * it works, and it's more important to minimize the amount of caches we
 969	 * drop than the amount of data we sync.  Also, unprivileged users can
 970	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
 971	 */
 972	down_read(&sb->s_umount);
 973	err1 = sync_filesystem(sb);
 974	up_read(&sb->s_umount);
 975	/* If a sync error occurs, still try to evict as much as possible. */
 976
 977	/*
 978	 * Inodes are pinned by their dentries, so we have to evict their
 979	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
 980	 * and inappropriate for use by unprivileged users.  So instead go
 981	 * through the inodes' alias lists and try to evict each dentry.
 982	 */
 983	evict_dentries_for_decrypted_inodes(mk);
 984
 985	/*
 986	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
 987	 * the list; any inodes for which that dropped the last reference will
 988	 * have been evicted due to fscrypt_drop_inode() detecting the key
 989	 * removal and telling the VFS to evict the inode.  So to finish, we
 990	 * just need to check whether any inodes couldn't be evicted.
 991	 */
 992	err2 = check_for_busy_inodes(sb, mk);
 993
 994	return err1 ?: err2;
 995}
 996
 997/*
 998 * Try to remove an fscrypt master encryption key.
 999 *
1000 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1001 * claim to the key, then removes the key itself if no other users have claims.
1002 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1003 * key itself.
1004 *
1005 * To "remove the key itself", first we transition the key to the "incompletely
1006 * removed" state, so that no more inodes can be unlocked with it.  Then we try
1007 * to evict all cached inodes that had been unlocked with the key.
1008 *
1009 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1010 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1011 * state where it tracks the list of remaining inodes.  Userspace can execute
1012 * the ioctl again later to retry eviction, or alternatively can re-add the key.
 
1013 *
1014 * For more details, see the "Removing keys" section of
1015 * Documentation/filesystems/fscrypt.rst.
1016 */
1017static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1018{
1019	struct super_block *sb = file_inode(filp)->i_sb;
1020	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1021	struct fscrypt_remove_key_arg arg;
 
1022	struct fscrypt_master_key *mk;
1023	u32 status_flags = 0;
1024	int err;
1025	bool inodes_remain;
1026
1027	if (copy_from_user(&arg, uarg, sizeof(arg)))
1028		return -EFAULT;
1029
1030	if (!valid_key_spec(&arg.key_spec))
1031		return -EINVAL;
1032
1033	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1034		return -EINVAL;
1035
1036	/*
1037	 * Only root can add and remove keys that are identified by an arbitrary
1038	 * descriptor rather than by a cryptographic hash.
1039	 */
1040	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1041	    !capable(CAP_SYS_ADMIN))
1042		return -EACCES;
1043
1044	/* Find the key being removed. */
1045	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1046	if (!mk)
1047		return -ENOKEY;
1048	down_write(&mk->mk_sem);
 
 
1049
1050	/* If relevant, remove current user's (or all users) claim to the key */
1051	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1052		if (all_users)
1053			err = keyring_clear(mk->mk_users);
1054		else
1055			err = remove_master_key_user(mk);
1056		if (err) {
1057			up_write(&mk->mk_sem);
1058			goto out_put_key;
1059		}
1060		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1061			/*
1062			 * Other users have still added the key too.  We removed
1063			 * the current user's claim to the key, but we still
1064			 * can't remove the key itself.
1065			 */
1066			status_flags |=
1067				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1068			err = 0;
1069			up_write(&mk->mk_sem);
1070			goto out_put_key;
1071		}
1072	}
1073
1074	/* No user claims remaining.  Initiate removal of the key. */
1075	err = -ENOKEY;
1076	if (mk->mk_present) {
1077		fscrypt_initiate_key_removal(sb, mk);
1078		err = 0;
1079	}
1080	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1081	up_write(&mk->mk_sem);
1082
1083	if (inodes_remain) {
 
 
 
 
 
1084		/* Some inodes still reference this key; try to evict them. */
1085		err = try_to_lock_encrypted_files(sb, mk);
1086		if (err == -EBUSY) {
1087			status_flags |=
1088				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1089			err = 0;
1090		}
1091	}
1092	/*
1093	 * We return 0 if we successfully did something: removed a claim to the
1094	 * key, initiated removal of the key, or tried locking the files again.
1095	 * Users need to check the informational status flags if they care
1096	 * whether the key has been fully removed including all files locked.
1097	 */
1098out_put_key:
1099	fscrypt_put_master_key(mk);
1100	if (err == 0)
1101		err = put_user(status_flags, &uarg->removal_status_flags);
1102	return err;
1103}
1104
1105int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1106{
1107	return do_remove_key(filp, uarg, false);
1108}
1109EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1110
1111int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1112{
1113	if (!capable(CAP_SYS_ADMIN))
1114		return -EACCES;
1115	return do_remove_key(filp, uarg, true);
1116}
1117EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1118
1119/*
1120 * Retrieve the status of an fscrypt master encryption key.
1121 *
1122 * We set ->status to indicate whether the key is absent, present, or
1123 * incompletely removed.  (For an explanation of what these statuses mean and
1124 * how they are represented internally, see struct fscrypt_master_key.)  This
1125 * field allows applications to easily determine the status of an encrypted
1126 * directory without using a hack such as trying to open a regular file in it
1127 * (which can confuse the "incompletely removed" status with absent or present).
 
1128 *
1129 * In addition, for v2 policy keys we allow applications to determine, via
1130 * ->status_flags and ->user_count, whether the key has been added by the
1131 * current user, by other users, or by both.  Most applications should not need
1132 * this, since ordinarily only one user should know a given key.  However, if a
1133 * secret key is shared by multiple users, applications may wish to add an
1134 * already-present key to prevent other users from removing it.  This ioctl can
1135 * be used to check whether that really is the case before the work is done to
1136 * add the key --- which might e.g. require prompting the user for a passphrase.
1137 *
1138 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1139 * Documentation/filesystems/fscrypt.rst.
1140 */
1141int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1142{
1143	struct super_block *sb = file_inode(filp)->i_sb;
1144	struct fscrypt_get_key_status_arg arg;
 
1145	struct fscrypt_master_key *mk;
1146	int err;
1147
1148	if (copy_from_user(&arg, uarg, sizeof(arg)))
1149		return -EFAULT;
1150
1151	if (!valid_key_spec(&arg.key_spec))
1152		return -EINVAL;
1153
1154	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1155		return -EINVAL;
1156
1157	arg.status_flags = 0;
1158	arg.user_count = 0;
1159	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1160
1161	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1162	if (!mk) {
 
 
1163		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1164		err = 0;
1165		goto out;
1166	}
1167	down_read(&mk->mk_sem);
 
1168
1169	if (!mk->mk_present) {
1170		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1171			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1172			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1173		err = 0;
1174		goto out_release_key;
1175	}
1176
1177	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1178	if (mk->mk_users) {
1179		struct key *mk_user;
1180
1181		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1182		mk_user = find_master_key_user(mk);
1183		if (!IS_ERR(mk_user)) {
1184			arg.status_flags |=
1185				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1186			key_put(mk_user);
1187		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1188			err = PTR_ERR(mk_user);
1189			goto out_release_key;
1190		}
1191	}
1192	err = 0;
1193out_release_key:
1194	up_read(&mk->mk_sem);
1195	fscrypt_put_master_key(mk);
1196out:
1197	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1198		err = -EFAULT;
1199	return err;
1200}
1201EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1202
1203int __init fscrypt_init_keyring(void)
1204{
1205	int err;
1206
1207	err = register_key_type(&key_type_fscrypt_user);
1208	if (err)
1209		return err;
1210
 
 
 
 
1211	err = register_key_type(&key_type_fscrypt_provisioning);
1212	if (err)
1213		goto err_unregister_fscrypt_user;
1214
1215	return 0;
1216
1217err_unregister_fscrypt_user:
1218	unregister_key_type(&key_type_fscrypt_user);
 
 
1219	return err;
1220}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Filesystem-level keyring for fscrypt
   4 *
   5 * Copyright 2019 Google LLC
   6 */
   7
   8/*
   9 * This file implements management of fscrypt master keys in the
  10 * filesystem-level keyring, including the ioctls:
  11 *
  12 * - FS_IOC_ADD_ENCRYPTION_KEY
  13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
  14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
  15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
  16 *
  17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
  18 * information about these ioctls.
  19 */
  20
 
  21#include <crypto/skcipher.h>
  22#include <linux/key-type.h>
  23#include <linux/random.h>
  24#include <linux/seq_file.h>
  25
  26#include "fscrypt_private.h"
  27
 
 
 
 
 
 
 
 
 
 
 
 
  28static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
  29{
  30	fscrypt_destroy_hkdf(&secret->hkdf);
  31	memzero_explicit(secret, sizeof(*secret));
  32}
  33
  34static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
  35				   struct fscrypt_master_key_secret *src)
  36{
  37	memcpy(dst, src, sizeof(*dst));
  38	memzero_explicit(src, sizeof(*src));
  39}
  40
  41static void free_master_key(struct fscrypt_master_key *mk)
  42{
  43	size_t i;
  44
  45	wipe_master_key_secret(&mk->mk_secret);
  46
  47	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
  48		fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
  49		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
  50		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]);
  51	}
  52
  53	key_put(mk->mk_users);
  54	kfree_sensitive(mk);
  55}
  56
  57static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
  58{
  59	if (spec->__reserved)
  60		return false;
  61	return master_key_spec_len(spec) != 0;
 
 
 
 
 
 
 
 
  62}
  63
  64static int fscrypt_key_instantiate(struct key *key,
  65				   struct key_preparsed_payload *prep)
  66{
  67	key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
  68	return 0;
  69}
 
 
 
 
 
 
  70
  71static void fscrypt_key_destroy(struct key *key)
  72{
  73	free_master_key(key->payload.data[0]);
  74}
 
  75
  76static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
  77{
  78	seq_puts(m, key->description);
 
 
 
  79
  80	if (key_is_positive(key)) {
  81		const struct fscrypt_master_key *mk = key->payload.data[0];
 
 
 
 
 
 
 
 
 
  82
  83		if (!is_master_key_secret_present(&mk->mk_secret))
  84			seq_puts(m, ": secret removed");
  85	}
  86}
  87
  88/*
  89 * Type of key in ->s_master_keys.  Each key of this type represents a master
  90 * key which has been added to the filesystem.  Its payload is a
  91 * 'struct fscrypt_master_key'.  The "." prefix in the key type name prevents
  92 * users from adding keys of this type via the keyrings syscalls rather than via
  93 * the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
  94 */
  95static struct key_type key_type_fscrypt = {
  96	.name			= "._fscrypt",
  97	.instantiate		= fscrypt_key_instantiate,
  98	.destroy		= fscrypt_key_destroy,
  99	.describe		= fscrypt_key_describe,
 100};
 
 
 
 
 
 
 
 
 101
 102static int fscrypt_user_key_instantiate(struct key *key,
 103					struct key_preparsed_payload *prep)
 104{
 105	/*
 106	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
 107	 * each key, regardless of the exact key size.  The amount of memory
 108	 * actually used is greater than the size of the raw key anyway.
 109	 */
 110	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
 111}
 112
 113static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
 114{
 115	seq_puts(m, key->description);
 116}
 117
 118/*
 119 * Type of key in ->mk_users.  Each key of this type represents a particular
 120 * user who has added a particular master key.
 121 *
 122 * Note that the name of this key type really should be something like
 123 * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
 124 * mainly for simplicity of presentation in /proc/keys when read by a non-root
 125 * user.  And it is expected to be rare that a key is actually added by multiple
 126 * users, since users should keep their encryption keys confidential.
 127 */
 128static struct key_type key_type_fscrypt_user = {
 129	.name			= ".fscrypt",
 130	.instantiate		= fscrypt_user_key_instantiate,
 131	.describe		= fscrypt_user_key_describe,
 132};
 133
 134/* Search ->s_master_keys or ->mk_users */
 135static struct key *search_fscrypt_keyring(struct key *keyring,
 136					  struct key_type *type,
 137					  const char *description)
 138{
 139	/*
 140	 * We need to mark the keyring reference as "possessed" so that we
 141	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
 142	 */
 143	key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
 144
 145	keyref = keyring_search(keyref, type, description, false);
 146	if (IS_ERR(keyref)) {
 147		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
 148		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
 149			keyref = ERR_PTR(-ENOKEY);
 150		return ERR_CAST(keyref);
 151	}
 152	return key_ref_to_ptr(keyref);
 153}
 154
 155#define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE	\
 156	(CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id))
 157
 158#define FSCRYPT_MK_DESCRIPTION_SIZE	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
 159
 160#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
 161	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
 162	 CONST_STRLEN("-users") + 1)
 163
 164#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
 165	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
 166
 167static void format_fs_keyring_description(
 168			char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
 169			const struct super_block *sb)
 170{
 171	sprintf(description, "fscrypt-%s", sb->s_id);
 172}
 173
 174static void format_mk_description(
 175			char description[FSCRYPT_MK_DESCRIPTION_SIZE],
 176			const struct fscrypt_key_specifier *mk_spec)
 177{
 178	sprintf(description, "%*phN",
 179		master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
 180}
 181
 182static void format_mk_users_keyring_description(
 183			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
 184			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 185{
 186	sprintf(description, "fscrypt-%*phN-users",
 187		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
 188}
 189
 190static void format_mk_user_description(
 191			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
 192			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 193{
 194
 195	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
 196		mk_identifier, __kuid_val(current_fsuid()));
 197}
 198
 199/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
 200static int allocate_filesystem_keyring(struct super_block *sb)
 201{
 202	char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
 203	struct key *keyring;
 204
 205	if (sb->s_master_keys)
 206		return 0;
 207
 208	format_fs_keyring_description(description, sb);
 209	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 210				current_cred(), KEY_POS_SEARCH |
 211				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
 212				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 213	if (IS_ERR(keyring))
 214		return PTR_ERR(keyring);
 215
 216	/*
 217	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
 218	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
 219	 * concurrent tasks can ACQUIRE it.
 220	 */
 221	smp_store_release(&sb->s_master_keys, keyring);
 222	return 0;
 223}
 224
 225void fscrypt_sb_free(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 226{
 227	key_put(sb->s_master_keys);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228	sb->s_master_keys = NULL;
 229}
 230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231/*
 232 * Find the specified master key in ->s_master_keys.
 233 * Returns ERR_PTR(-ENOKEY) if not found.
 
 
 
 234 */
 235struct key *fscrypt_find_master_key(struct super_block *sb,
 236				    const struct fscrypt_key_specifier *mk_spec)
 
 237{
 238	struct key *keyring;
 239	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
 
 240
 241	/*
 242	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
 243	 * I.e., another task can publish ->s_master_keys concurrently,
 244	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
 245	 * to safely ACQUIRE the memory the other task published.
 246	 */
 247	keyring = smp_load_acquire(&sb->s_master_keys);
 248	if (keyring == NULL)
 249		return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
 250
 251	format_mk_description(description, mk_spec);
 252	return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253}
 254
 255static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
 256{
 257	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
 258	struct key *keyring;
 259
 260	format_mk_users_keyring_description(description,
 261					    mk->mk_spec.u.identifier);
 262	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 263				current_cred(), KEY_POS_SEARCH |
 264				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
 265				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
 266	if (IS_ERR(keyring))
 267		return PTR_ERR(keyring);
 268
 269	mk->mk_users = keyring;
 270	return 0;
 271}
 272
 273/*
 274 * Find the current user's "key" in the master key's ->mk_users.
 275 * Returns ERR_PTR(-ENOKEY) if not found.
 276 */
 277static struct key *find_master_key_user(struct fscrypt_master_key *mk)
 278{
 279	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 
 280
 281	format_mk_user_description(description, mk->mk_spec.u.identifier);
 282	return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
 283				      description);
 
 
 
 
 
 
 
 
 
 
 
 
 284}
 285
 286/*
 287 * Give the current user a "key" in ->mk_users.  This charges the user's quota
 288 * and marks the master key as added by the current user, so that it cannot be
 289 * removed by another user with the key.  Either the master key's key->sem must
 290 * be held for write, or the master key must be still undergoing initialization.
 291 */
 292static int add_master_key_user(struct fscrypt_master_key *mk)
 293{
 294	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
 295	struct key *mk_user;
 296	int err;
 297
 298	format_mk_user_description(description, mk->mk_spec.u.identifier);
 299	mk_user = key_alloc(&key_type_fscrypt_user, description,
 300			    current_fsuid(), current_gid(), current_cred(),
 301			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
 302	if (IS_ERR(mk_user))
 303		return PTR_ERR(mk_user);
 304
 305	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
 306	key_put(mk_user);
 307	return err;
 308}
 309
 310/*
 311 * Remove the current user's "key" from ->mk_users.
 312 * The master key's key->sem must be held for write.
 313 *
 314 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
 315 */
 316static int remove_master_key_user(struct fscrypt_master_key *mk)
 317{
 318	struct key *mk_user;
 319	int err;
 320
 321	mk_user = find_master_key_user(mk);
 322	if (IS_ERR(mk_user))
 323		return PTR_ERR(mk_user);
 324	err = key_unlink(mk->mk_users, mk_user);
 325	key_put(mk_user);
 326	return err;
 327}
 328
 329/*
 330 * Allocate a new fscrypt_master_key which contains the given secret, set it as
 331 * the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
 332 * into the given keyring.  Synchronized by fscrypt_add_key_mutex.
 333 */
 334static int add_new_master_key(struct fscrypt_master_key_secret *secret,
 335			      const struct fscrypt_key_specifier *mk_spec,
 336			      struct key *keyring)
 337{
 
 338	struct fscrypt_master_key *mk;
 339	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
 340	struct key *key;
 341	int err;
 342
 343	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
 344	if (!mk)
 345		return -ENOMEM;
 346
 
 
 347	mk->mk_spec = *mk_spec;
 348
 349	move_master_key_secret(&mk->mk_secret, secret);
 350
 351	refcount_set(&mk->mk_refcount, 1); /* secret is present */
 352	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
 353	spin_lock_init(&mk->mk_decrypted_inodes_lock);
 354
 355	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 356		err = allocate_master_key_users_keyring(mk);
 357		if (err)
 358			goto out_free_mk;
 359		err = add_master_key_user(mk);
 360		if (err)
 361			goto out_free_mk;
 362	}
 363
 364	/*
 365	 * Note that we don't charge this key to anyone's quota, since when
 366	 * ->mk_users is in use those keys are charged instead, and otherwise
 367	 * (when ->mk_users isn't in use) only root can add these keys.
 368	 */
 369	format_mk_description(description, mk_spec);
 370	key = key_alloc(&key_type_fscrypt, description,
 371			GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
 372			KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
 373			KEY_ALLOC_NOT_IN_QUOTA, NULL);
 374	if (IS_ERR(key)) {
 375		err = PTR_ERR(key);
 376		goto out_free_mk;
 377	}
 378	err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
 379	key_put(key);
 380	if (err)
 381		goto out_free_mk;
 382
 
 
 
 
 383	return 0;
 384
 385out_free_mk:
 386	free_master_key(mk);
 387	return err;
 388}
 389
 390#define KEY_DEAD	1
 391
 392static int add_existing_master_key(struct fscrypt_master_key *mk,
 393				   struct fscrypt_master_key_secret *secret)
 394{
 395	struct key *mk_user;
 396	bool rekey;
 397	int err;
 398
 399	/*
 400	 * If the current user is already in ->mk_users, then there's nothing to
 401	 * do.  (Not applicable for v1 policy keys, which have NULL ->mk_users.)
 
 402	 */
 403	if (mk->mk_users) {
 404		mk_user = find_master_key_user(mk);
 
 405		if (mk_user != ERR_PTR(-ENOKEY)) {
 406			if (IS_ERR(mk_user))
 407				return PTR_ERR(mk_user);
 408			key_put(mk_user);
 409			return 0;
 410		}
 
 
 
 411	}
 412
 413	/* If we'll be re-adding ->mk_secret, try to take the reference. */
 414	rekey = !is_master_key_secret_present(&mk->mk_secret);
 415	if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
 416		return KEY_DEAD;
 417
 418	/* Add the current user to ->mk_users, if applicable. */
 419	if (mk->mk_users) {
 420		err = add_master_key_user(mk);
 421		if (err) {
 422			if (rekey && refcount_dec_and_test(&mk->mk_refcount))
 423				return KEY_DEAD;
 424			return err;
 425		}
 
 
 426	}
 427
 428	/* Re-add the secret if needed. */
 429	if (rekey)
 430		move_master_key_secret(&mk->mk_secret, secret);
 431	return 0;
 432}
 433
 434static int do_add_master_key(struct super_block *sb,
 435			     struct fscrypt_master_key_secret *secret,
 436			     const struct fscrypt_key_specifier *mk_spec)
 437{
 438	static DEFINE_MUTEX(fscrypt_add_key_mutex);
 439	struct key *key;
 440	int err;
 441
 442	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
 443retry:
 444	key = fscrypt_find_master_key(sb, mk_spec);
 445	if (IS_ERR(key)) {
 446		err = PTR_ERR(key);
 447		if (err != -ENOKEY)
 448			goto out_unlock;
 449		/* Didn't find the key in ->s_master_keys.  Add it. */
 450		err = allocate_filesystem_keyring(sb);
 451		if (err)
 452			goto out_unlock;
 453		err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
 454	} else {
 455		/*
 456		 * Found the key in ->s_master_keys.  Re-add the secret if
 457		 * needed, and add the user to ->mk_users if needed.
 458		 */
 459		down_write(&key->sem);
 460		err = add_existing_master_key(key->payload.data[0], secret);
 461		up_write(&key->sem);
 462		if (err == KEY_DEAD) {
 463			/* Key being removed or needs to be removed */
 464			key_invalidate(key);
 465			key_put(key);
 466			goto retry;
 
 
 
 467		}
 468		key_put(key);
 469	}
 470out_unlock:
 471	mutex_unlock(&fscrypt_add_key_mutex);
 472	return err;
 473}
 474
 475static int add_master_key(struct super_block *sb,
 476			  struct fscrypt_master_key_secret *secret,
 477			  struct fscrypt_key_specifier *key_spec)
 478{
 479	int err;
 480
 481	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
 482		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
 483					secret->size);
 484		if (err)
 485			return err;
 486
 487		/*
 488		 * Now that the HKDF context is initialized, the raw key is no
 489		 * longer needed.
 490		 */
 491		memzero_explicit(secret->raw, secret->size);
 492
 493		/* Calculate the key identifier */
 494		err = fscrypt_hkdf_expand(&secret->hkdf,
 495					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
 496					  key_spec->u.identifier,
 497					  FSCRYPT_KEY_IDENTIFIER_SIZE);
 498		if (err)
 499			return err;
 500	}
 501	return do_add_master_key(sb, secret, key_spec);
 502}
 503
 504static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
 505{
 506	const struct fscrypt_provisioning_key_payload *payload = prep->data;
 507
 508	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
 509	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
 510		return -EINVAL;
 511
 512	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 513	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
 514		return -EINVAL;
 515
 516	if (payload->__reserved)
 517		return -EINVAL;
 518
 519	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
 520	if (!prep->payload.data[0])
 521		return -ENOMEM;
 522
 523	prep->quotalen = prep->datalen;
 524	return 0;
 525}
 526
 527static void fscrypt_provisioning_key_free_preparse(
 528					struct key_preparsed_payload *prep)
 529{
 530	kfree_sensitive(prep->payload.data[0]);
 531}
 532
 533static void fscrypt_provisioning_key_describe(const struct key *key,
 534					      struct seq_file *m)
 535{
 536	seq_puts(m, key->description);
 537	if (key_is_positive(key)) {
 538		const struct fscrypt_provisioning_key_payload *payload =
 539			key->payload.data[0];
 540
 541		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
 542	}
 543}
 544
 545static void fscrypt_provisioning_key_destroy(struct key *key)
 546{
 547	kfree_sensitive(key->payload.data[0]);
 548}
 549
 550static struct key_type key_type_fscrypt_provisioning = {
 551	.name			= "fscrypt-provisioning",
 552	.preparse		= fscrypt_provisioning_key_preparse,
 553	.free_preparse		= fscrypt_provisioning_key_free_preparse,
 554	.instantiate		= generic_key_instantiate,
 555	.describe		= fscrypt_provisioning_key_describe,
 556	.destroy		= fscrypt_provisioning_key_destroy,
 557};
 558
 559/*
 560 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
 561 * store it into 'secret'.
 562 *
 563 * The key must be of type "fscrypt-provisioning" and must have the field
 564 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
 565 * only usable with fscrypt with the particular KDF version identified by
 566 * 'type'.  We don't use the "logon" key type because there's no way to
 567 * completely restrict the use of such keys; they can be used by any kernel API
 568 * that accepts "logon" keys and doesn't require a specific service prefix.
 569 *
 570 * The ability to specify the key via Linux keyring key is intended for cases
 571 * where userspace needs to re-add keys after the filesystem is unmounted and
 572 * re-mounted.  Most users should just provide the raw key directly instead.
 573 */
 574static int get_keyring_key(u32 key_id, u32 type,
 575			   struct fscrypt_master_key_secret *secret)
 576{
 577	key_ref_t ref;
 578	struct key *key;
 579	const struct fscrypt_provisioning_key_payload *payload;
 580	int err;
 581
 582	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
 583	if (IS_ERR(ref))
 584		return PTR_ERR(ref);
 585	key = key_ref_to_ptr(ref);
 586
 587	if (key->type != &key_type_fscrypt_provisioning)
 588		goto bad_key;
 589	payload = key->payload.data[0];
 590
 591	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
 592	if (payload->type != type)
 593		goto bad_key;
 594
 595	secret->size = key->datalen - sizeof(*payload);
 596	memcpy(secret->raw, payload->raw, secret->size);
 597	err = 0;
 598	goto out_put;
 599
 600bad_key:
 601	err = -EKEYREJECTED;
 602out_put:
 603	key_ref_put(ref);
 604	return err;
 605}
 606
 607/*
 608 * Add a master encryption key to the filesystem, causing all files which were
 609 * encrypted with it to appear "unlocked" (decrypted) when accessed.
 610 *
 611 * When adding a key for use by v1 encryption policies, this ioctl is
 612 * privileged, and userspace must provide the 'key_descriptor'.
 613 *
 614 * When adding a key for use by v2+ encryption policies, this ioctl is
 615 * unprivileged.  This is needed, in general, to allow non-root users to use
 616 * encryption without encountering the visibility problems of process-subscribed
 617 * keyrings and the inability to properly remove keys.  This works by having
 618 * each key identified by its cryptographically secure hash --- the
 619 * 'key_identifier'.  The cryptographic hash ensures that a malicious user
 620 * cannot add the wrong key for a given identifier.  Furthermore, each added key
 621 * is charged to the appropriate user's quota for the keyrings service, which
 622 * prevents a malicious user from adding too many keys.  Finally, we forbid a
 623 * user from removing a key while other users have added it too, which prevents
 624 * a user who knows another user's key from causing a denial-of-service by
 625 * removing it at an inopportune time.  (We tolerate that a user who knows a key
 626 * can prevent other users from removing it.)
 627 *
 628 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
 629 * Documentation/filesystems/fscrypt.rst.
 630 */
 631int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
 632{
 633	struct super_block *sb = file_inode(filp)->i_sb;
 634	struct fscrypt_add_key_arg __user *uarg = _uarg;
 635	struct fscrypt_add_key_arg arg;
 636	struct fscrypt_master_key_secret secret;
 637	int err;
 638
 639	if (copy_from_user(&arg, uarg, sizeof(arg)))
 640		return -EFAULT;
 641
 642	if (!valid_key_spec(&arg.key_spec))
 643		return -EINVAL;
 644
 645	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
 646		return -EINVAL;
 647
 648	/*
 649	 * Only root can add keys that are identified by an arbitrary descriptor
 650	 * rather than by a cryptographic hash --- since otherwise a malicious
 651	 * user could add the wrong key.
 652	 */
 653	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 654	    !capable(CAP_SYS_ADMIN))
 655		return -EACCES;
 656
 657	memset(&secret, 0, sizeof(secret));
 658	if (arg.key_id) {
 659		if (arg.raw_size != 0)
 660			return -EINVAL;
 661		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
 662		if (err)
 663			goto out_wipe_secret;
 664	} else {
 665		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
 666		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
 667			return -EINVAL;
 668		secret.size = arg.raw_size;
 669		err = -EFAULT;
 670		if (copy_from_user(secret.raw, uarg->raw, secret.size))
 671			goto out_wipe_secret;
 672	}
 673
 674	err = add_master_key(sb, &secret, &arg.key_spec);
 675	if (err)
 676		goto out_wipe_secret;
 677
 678	/* Return the key identifier to userspace, if applicable */
 679	err = -EFAULT;
 680	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
 681	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
 682			 FSCRYPT_KEY_IDENTIFIER_SIZE))
 683		goto out_wipe_secret;
 684	err = 0;
 685out_wipe_secret:
 686	wipe_master_key_secret(&secret);
 687	return err;
 688}
 689EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
 690
 691/*
 692 * Add the key for '-o test_dummy_encryption' to the filesystem keyring.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693 *
 694 * Use a per-boot random key to prevent people from misusing this option.
 695 */
 696int fscrypt_add_test_dummy_key(struct super_block *sb,
 697			       struct fscrypt_key_specifier *key_spec)
 698{
 699	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
 700	struct fscrypt_master_key_secret secret;
 701	int err;
 702
 703	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
 704
 705	memset(&secret, 0, sizeof(secret));
 706	secret.size = FSCRYPT_MAX_KEY_SIZE;
 707	memcpy(secret.raw, test_key, FSCRYPT_MAX_KEY_SIZE);
 708
 709	err = add_master_key(sb, &secret, key_spec);
 710	wipe_master_key_secret(&secret);
 711	return err;
 712}
 713
 714/*
 715 * Verify that the current user has added a master key with the given identifier
 716 * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
 717 * their files using some other user's key which they don't actually know.
 718 * Cryptographically this isn't much of a problem, but the semantics of this
 719 * would be a bit weird, so it's best to just forbid it.
 720 *
 721 * The system administrator (CAP_FOWNER) can override this, which should be
 722 * enough for any use cases where encryption policies are being set using keys
 723 * that were chosen ahead of time but aren't available at the moment.
 724 *
 725 * Note that the key may have already removed by the time this returns, but
 726 * that's okay; we just care whether the key was there at some point.
 727 *
 728 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
 729 */
 730int fscrypt_verify_key_added(struct super_block *sb,
 731			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
 732{
 733	struct fscrypt_key_specifier mk_spec;
 734	struct key *key, *mk_user;
 735	struct fscrypt_master_key *mk;
 
 736	int err;
 737
 738	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
 739	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
 740
 741	key = fscrypt_find_master_key(sb, &mk_spec);
 742	if (IS_ERR(key)) {
 743		err = PTR_ERR(key);
 744		goto out;
 745	}
 746	mk = key->payload.data[0];
 747	mk_user = find_master_key_user(mk);
 748	if (IS_ERR(mk_user)) {
 749		err = PTR_ERR(mk_user);
 750	} else {
 751		key_put(mk_user);
 752		err = 0;
 753	}
 754	key_put(key);
 
 755out:
 756	if (err == -ENOKEY && capable(CAP_FOWNER))
 757		err = 0;
 758	return err;
 759}
 760
 761/*
 762 * Try to evict the inode's dentries from the dentry cache.  If the inode is a
 763 * directory, then it can have at most one dentry; however, that dentry may be
 764 * pinned by child dentries, so first try to evict the children too.
 765 */
 766static void shrink_dcache_inode(struct inode *inode)
 767{
 768	struct dentry *dentry;
 769
 770	if (S_ISDIR(inode->i_mode)) {
 771		dentry = d_find_any_alias(inode);
 772		if (dentry) {
 773			shrink_dcache_parent(dentry);
 774			dput(dentry);
 775		}
 776	}
 777	d_prune_aliases(inode);
 778}
 779
 780static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
 781{
 782	struct fscrypt_info *ci;
 783	struct inode *inode;
 784	struct inode *toput_inode = NULL;
 785
 786	spin_lock(&mk->mk_decrypted_inodes_lock);
 787
 788	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
 789		inode = ci->ci_inode;
 790		spin_lock(&inode->i_lock);
 791		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
 792			spin_unlock(&inode->i_lock);
 793			continue;
 794		}
 795		__iget(inode);
 796		spin_unlock(&inode->i_lock);
 797		spin_unlock(&mk->mk_decrypted_inodes_lock);
 798
 799		shrink_dcache_inode(inode);
 800		iput(toput_inode);
 801		toput_inode = inode;
 802
 803		spin_lock(&mk->mk_decrypted_inodes_lock);
 804	}
 805
 806	spin_unlock(&mk->mk_decrypted_inodes_lock);
 807	iput(toput_inode);
 808}
 809
 810static int check_for_busy_inodes(struct super_block *sb,
 811				 struct fscrypt_master_key *mk)
 812{
 813	struct list_head *pos;
 814	size_t busy_count = 0;
 815	unsigned long ino;
 816	char ino_str[50] = "";
 817
 818	spin_lock(&mk->mk_decrypted_inodes_lock);
 819
 820	list_for_each(pos, &mk->mk_decrypted_inodes)
 821		busy_count++;
 822
 823	if (busy_count == 0) {
 824		spin_unlock(&mk->mk_decrypted_inodes_lock);
 825		return 0;
 826	}
 827
 828	{
 829		/* select an example file to show for debugging purposes */
 830		struct inode *inode =
 831			list_first_entry(&mk->mk_decrypted_inodes,
 832					 struct fscrypt_info,
 833					 ci_master_key_link)->ci_inode;
 834		ino = inode->i_ino;
 835	}
 836	spin_unlock(&mk->mk_decrypted_inodes_lock);
 837
 838	/* If the inode is currently being created, ino may still be 0. */
 839	if (ino)
 840		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
 841
 842	fscrypt_warn(NULL,
 843		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
 844		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
 845		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
 846		     ino_str);
 847	return -EBUSY;
 848}
 849
 850static int try_to_lock_encrypted_files(struct super_block *sb,
 851				       struct fscrypt_master_key *mk)
 852{
 853	int err1;
 854	int err2;
 855
 856	/*
 857	 * An inode can't be evicted while it is dirty or has dirty pages.
 858	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
 859	 *
 860	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
 861	 * it works, and it's more important to minimize the amount of caches we
 862	 * drop than the amount of data we sync.  Also, unprivileged users can
 863	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
 864	 */
 865	down_read(&sb->s_umount);
 866	err1 = sync_filesystem(sb);
 867	up_read(&sb->s_umount);
 868	/* If a sync error occurs, still try to evict as much as possible. */
 869
 870	/*
 871	 * Inodes are pinned by their dentries, so we have to evict their
 872	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
 873	 * and inappropriate for use by unprivileged users.  So instead go
 874	 * through the inodes' alias lists and try to evict each dentry.
 875	 */
 876	evict_dentries_for_decrypted_inodes(mk);
 877
 878	/*
 879	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
 880	 * the list; any inodes for which that dropped the last reference will
 881	 * have been evicted due to fscrypt_drop_inode() detecting the key
 882	 * removal and telling the VFS to evict the inode.  So to finish, we
 883	 * just need to check whether any inodes couldn't be evicted.
 884	 */
 885	err2 = check_for_busy_inodes(sb, mk);
 886
 887	return err1 ?: err2;
 888}
 889
 890/*
 891 * Try to remove an fscrypt master encryption key.
 892 *
 893 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
 894 * claim to the key, then removes the key itself if no other users have claims.
 895 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
 896 * key itself.
 897 *
 898 * To "remove the key itself", first we wipe the actual master key secret, so
 899 * that no more inodes can be unlocked with it.  Then we try to evict all cached
 900 * inodes that had been unlocked with the key.
 901 *
 902 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
 903 * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
 904 * state (without the actual secret key) where it tracks the list of remaining
 905 * inodes.  Userspace can execute the ioctl again later to retry eviction, or
 906 * alternatively can re-add the secret key again.
 907 *
 908 * For more details, see the "Removing keys" section of
 909 * Documentation/filesystems/fscrypt.rst.
 910 */
 911static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
 912{
 913	struct super_block *sb = file_inode(filp)->i_sb;
 914	struct fscrypt_remove_key_arg __user *uarg = _uarg;
 915	struct fscrypt_remove_key_arg arg;
 916	struct key *key;
 917	struct fscrypt_master_key *mk;
 918	u32 status_flags = 0;
 919	int err;
 920	bool dead;
 921
 922	if (copy_from_user(&arg, uarg, sizeof(arg)))
 923		return -EFAULT;
 924
 925	if (!valid_key_spec(&arg.key_spec))
 926		return -EINVAL;
 927
 928	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
 929		return -EINVAL;
 930
 931	/*
 932	 * Only root can add and remove keys that are identified by an arbitrary
 933	 * descriptor rather than by a cryptographic hash.
 934	 */
 935	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
 936	    !capable(CAP_SYS_ADMIN))
 937		return -EACCES;
 938
 939	/* Find the key being removed. */
 940	key = fscrypt_find_master_key(sb, &arg.key_spec);
 941	if (IS_ERR(key))
 942		return PTR_ERR(key);
 943	mk = key->payload.data[0];
 944
 945	down_write(&key->sem);
 946
 947	/* If relevant, remove current user's (or all users) claim to the key */
 948	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
 949		if (all_users)
 950			err = keyring_clear(mk->mk_users);
 951		else
 952			err = remove_master_key_user(mk);
 953		if (err) {
 954			up_write(&key->sem);
 955			goto out_put_key;
 956		}
 957		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
 958			/*
 959			 * Other users have still added the key too.  We removed
 960			 * the current user's claim to the key, but we still
 961			 * can't remove the key itself.
 962			 */
 963			status_flags |=
 964				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
 965			err = 0;
 966			up_write(&key->sem);
 967			goto out_put_key;
 968		}
 969	}
 970
 971	/* No user claims remaining.  Go ahead and wipe the secret. */
 972	dead = false;
 973	if (is_master_key_secret_present(&mk->mk_secret)) {
 974		wipe_master_key_secret(&mk->mk_secret);
 975		dead = refcount_dec_and_test(&mk->mk_refcount);
 976	}
 977	up_write(&key->sem);
 978	if (dead) {
 979		/*
 980		 * No inodes reference the key, and we wiped the secret, so the
 981		 * key object is free to be removed from the keyring.
 982		 */
 983		key_invalidate(key);
 984		err = 0;
 985	} else {
 986		/* Some inodes still reference this key; try to evict them. */
 987		err = try_to_lock_encrypted_files(sb, mk);
 988		if (err == -EBUSY) {
 989			status_flags |=
 990				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
 991			err = 0;
 992		}
 993	}
 994	/*
 995	 * We return 0 if we successfully did something: removed a claim to the
 996	 * key, wiped the secret, or tried locking the files again.  Users need
 997	 * to check the informational status flags if they care whether the key
 998	 * has been fully removed including all files locked.
 999	 */
1000out_put_key:
1001	key_put(key);
1002	if (err == 0)
1003		err = put_user(status_flags, &uarg->removal_status_flags);
1004	return err;
1005}
1006
1007int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1008{
1009	return do_remove_key(filp, uarg, false);
1010}
1011EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1012
1013int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1014{
1015	if (!capable(CAP_SYS_ADMIN))
1016		return -EACCES;
1017	return do_remove_key(filp, uarg, true);
1018}
1019EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1020
1021/*
1022 * Retrieve the status of an fscrypt master encryption key.
1023 *
1024 * We set ->status to indicate whether the key is absent, present, or
1025 * incompletely removed.  "Incompletely removed" means that the master key
1026 * secret has been removed, but some files which had been unlocked with it are
1027 * still in use.  This field allows applications to easily determine the state
1028 * of an encrypted directory without using a hack such as trying to open a
1029 * regular file in it (which can confuse the "incompletely removed" state with
1030 * absent or present).
1031 *
1032 * In addition, for v2 policy keys we allow applications to determine, via
1033 * ->status_flags and ->user_count, whether the key has been added by the
1034 * current user, by other users, or by both.  Most applications should not need
1035 * this, since ordinarily only one user should know a given key.  However, if a
1036 * secret key is shared by multiple users, applications may wish to add an
1037 * already-present key to prevent other users from removing it.  This ioctl can
1038 * be used to check whether that really is the case before the work is done to
1039 * add the key --- which might e.g. require prompting the user for a passphrase.
1040 *
1041 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1042 * Documentation/filesystems/fscrypt.rst.
1043 */
1044int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1045{
1046	struct super_block *sb = file_inode(filp)->i_sb;
1047	struct fscrypt_get_key_status_arg arg;
1048	struct key *key;
1049	struct fscrypt_master_key *mk;
1050	int err;
1051
1052	if (copy_from_user(&arg, uarg, sizeof(arg)))
1053		return -EFAULT;
1054
1055	if (!valid_key_spec(&arg.key_spec))
1056		return -EINVAL;
1057
1058	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1059		return -EINVAL;
1060
1061	arg.status_flags = 0;
1062	arg.user_count = 0;
1063	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1064
1065	key = fscrypt_find_master_key(sb, &arg.key_spec);
1066	if (IS_ERR(key)) {
1067		if (key != ERR_PTR(-ENOKEY))
1068			return PTR_ERR(key);
1069		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1070		err = 0;
1071		goto out;
1072	}
1073	mk = key->payload.data[0];
1074	down_read(&key->sem);
1075
1076	if (!is_master_key_secret_present(&mk->mk_secret)) {
1077		arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
 
 
1078		err = 0;
1079		goto out_release_key;
1080	}
1081
1082	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1083	if (mk->mk_users) {
1084		struct key *mk_user;
1085
1086		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1087		mk_user = find_master_key_user(mk);
1088		if (!IS_ERR(mk_user)) {
1089			arg.status_flags |=
1090				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1091			key_put(mk_user);
1092		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1093			err = PTR_ERR(mk_user);
1094			goto out_release_key;
1095		}
1096	}
1097	err = 0;
1098out_release_key:
1099	up_read(&key->sem);
1100	key_put(key);
1101out:
1102	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1103		err = -EFAULT;
1104	return err;
1105}
1106EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1107
1108int __init fscrypt_init_keyring(void)
1109{
1110	int err;
1111
1112	err = register_key_type(&key_type_fscrypt);
1113	if (err)
1114		return err;
1115
1116	err = register_key_type(&key_type_fscrypt_user);
1117	if (err)
1118		goto err_unregister_fscrypt;
1119
1120	err = register_key_type(&key_type_fscrypt_provisioning);
1121	if (err)
1122		goto err_unregister_fscrypt_user;
1123
1124	return 0;
1125
1126err_unregister_fscrypt_user:
1127	unregister_key_type(&key_type_fscrypt_user);
1128err_unregister_fscrypt:
1129	unregister_key_type(&key_type_fscrypt);
1130	return err;
1131}