Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Xilinx USB peripheral controller driver
   4 *
   5 * Copyright (C) 2004 by Thomas Rathbone
   6 * Copyright (C) 2005 by HP Labs
   7 * Copyright (C) 2005 by David Brownell
   8 * Copyright (C) 2010 - 2014 Xilinx, Inc.
   9 *
  10 * Some parts of this driver code is based on the driver for at91-series
  11 * USB peripheral controller (at91_udc.c).
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/delay.h>
  16#include <linux/device.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/interrupt.h>
  19#include <linux/io.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/platform_device.h>
 
 
  23#include <linux/prefetch.h>
  24#include <linux/usb/ch9.h>
  25#include <linux/usb/gadget.h>
  26
  27/* Register offsets for the USB device.*/
  28#define XUSB_EP0_CONFIG_OFFSET		0x0000  /* EP0 Config Reg Offset */
  29#define XUSB_SETUP_PKT_ADDR_OFFSET	0x0080  /* Setup Packet Address */
  30#define XUSB_ADDRESS_OFFSET		0x0100  /* Address Register */
  31#define XUSB_CONTROL_OFFSET		0x0104  /* Control Register */
  32#define XUSB_STATUS_OFFSET		0x0108  /* Status Register */
  33#define XUSB_FRAMENUM_OFFSET		0x010C	/* Frame Number Register */
  34#define XUSB_IER_OFFSET			0x0110	/* Interrupt Enable Register */
  35#define XUSB_BUFFREADY_OFFSET		0x0114	/* Buffer Ready Register */
  36#define XUSB_TESTMODE_OFFSET		0x0118	/* Test Mode Register */
  37#define XUSB_DMA_RESET_OFFSET		0x0200  /* DMA Soft Reset Register */
  38#define XUSB_DMA_CONTROL_OFFSET		0x0204	/* DMA Control Register */
  39#define XUSB_DMA_DSAR_ADDR_OFFSET	0x0208	/* DMA source Address Reg */
  40#define XUSB_DMA_DDAR_ADDR_OFFSET	0x020C	/* DMA destination Addr Reg */
  41#define XUSB_DMA_LENGTH_OFFSET		0x0210	/* DMA Length Register */
  42#define XUSB_DMA_STATUS_OFFSET		0x0214	/* DMA Status Register */
  43
  44/* Endpoint Configuration Space offsets */
  45#define XUSB_EP_CFGSTATUS_OFFSET	0x00	/* Endpoint Config Status  */
  46#define XUSB_EP_BUF0COUNT_OFFSET	0x08	/* Buffer 0 Count */
  47#define XUSB_EP_BUF1COUNT_OFFSET	0x0C	/* Buffer 1 Count */
  48
  49#define XUSB_CONTROL_USB_READY_MASK	0x80000000 /* USB ready Mask */
  50#define XUSB_CONTROL_USB_RMTWAKE_MASK	0x40000000 /* Remote wake up mask */
  51
  52/* Interrupt register related masks.*/
  53#define XUSB_STATUS_GLOBAL_INTR_MASK	0x80000000 /* Global Intr Enable */
  54#define XUSB_STATUS_DMADONE_MASK	0x04000000 /* DMA done Mask */
  55#define XUSB_STATUS_DMAERR_MASK		0x02000000 /* DMA Error Mask */
  56#define XUSB_STATUS_DMABUSY_MASK	0x80000000 /* DMA Error Mask */
  57#define XUSB_STATUS_RESUME_MASK		0x01000000 /* USB Resume Mask */
  58#define XUSB_STATUS_RESET_MASK		0x00800000 /* USB Reset Mask */
  59#define XUSB_STATUS_SUSPEND_MASK	0x00400000 /* USB Suspend Mask */
  60#define XUSB_STATUS_DISCONNECT_MASK	0x00200000 /* USB Disconnect Mask */
  61#define XUSB_STATUS_FIFO_BUFF_RDY_MASK	0x00100000 /* FIFO Buff Ready Mask */
  62#define XUSB_STATUS_FIFO_BUFF_FREE_MASK	0x00080000 /* FIFO Buff Free Mask */
  63#define XUSB_STATUS_SETUP_PACKET_MASK	0x00040000 /* Setup packet received */
  64#define XUSB_STATUS_EP1_BUFF2_COMP_MASK	0x00000200 /* EP 1 Buff 2 Processed */
  65#define XUSB_STATUS_EP1_BUFF1_COMP_MASK	0x00000002 /* EP 1 Buff 1 Processed */
  66#define XUSB_STATUS_EP0_BUFF2_COMP_MASK	0x00000100 /* EP 0 Buff 2 Processed */
  67#define XUSB_STATUS_EP0_BUFF1_COMP_MASK	0x00000001 /* EP 0 Buff 1 Processed */
  68#define XUSB_STATUS_HIGH_SPEED_MASK	0x00010000 /* USB Speed Mask */
  69/* Suspend,Reset,Suspend and Disconnect Mask */
  70#define XUSB_STATUS_INTR_EVENT_MASK	0x01E00000
  71/* Buffers  completion Mask */
  72#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK	0x0000FEFF
  73/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
  74#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK	0x00000101
  75#define XUSB_STATUS_EP_BUFF2_SHIFT	8	   /* EP buffer offset */
  76
  77/* Endpoint Configuration Status Register */
  78#define XUSB_EP_CFG_VALID_MASK		0x80000000 /* Endpoint Valid bit */
  79#define XUSB_EP_CFG_STALL_MASK		0x40000000 /* Endpoint Stall bit */
  80#define XUSB_EP_CFG_DATA_TOGGLE_MASK	0x08000000 /* Endpoint Data toggle */
  81
  82/* USB device specific global configuration constants.*/
  83#define XUSB_MAX_ENDPOINTS		8	/* Maximum End Points */
  84#define XUSB_EP_NUMBER_ZERO		0	/* End point Zero */
  85/* DPRAM is the source address for DMA transfer */
  86#define XUSB_DMA_READ_FROM_DPRAM	0x80000000
  87#define XUSB_DMA_DMASR_BUSY		0x80000000 /* DMA busy */
  88#define XUSB_DMA_DMASR_ERROR		0x40000000 /* DMA Error */
  89/*
  90 * When this bit is set, the DMA buffer ready bit is set by hardware upon
  91 * DMA transfer completion.
  92 */
  93#define XUSB_DMA_BRR_CTRL		0x40000000 /* DMA bufready ctrl bit */
  94/* Phase States */
  95#define SETUP_PHASE			0x0000	/* Setup Phase */
  96#define DATA_PHASE			0x0001  /* Data Phase */
  97#define STATUS_PHASE			0x0002  /* Status Phase */
  98
  99#define EP0_MAX_PACKET		64 /* Endpoint 0 maximum packet length */
 100#define STATUSBUFF_SIZE		2  /* Buffer size for GET_STATUS command */
 101#define EPNAME_SIZE		4  /* Buffer size for endpoint name */
 102
 103/* container_of helper macros */
 104#define to_udc(g)	 container_of((g), struct xusb_udc, gadget)
 105#define to_xusb_ep(ep)	 container_of((ep), struct xusb_ep, ep_usb)
 106#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
 107
 108/**
 109 * struct xusb_req - Xilinx USB device request structure
 110 * @usb_req: Linux usb request structure
 111 * @queue: usb device request queue
 112 * @ep: pointer to xusb_endpoint structure
 113 */
 114struct xusb_req {
 115	struct usb_request usb_req;
 116	struct list_head queue;
 117	struct xusb_ep *ep;
 118};
 119
 120/**
 121 * struct xusb_ep - USB end point structure.
 122 * @ep_usb: usb endpoint instance
 123 * @queue: endpoint message queue
 124 * @udc: xilinx usb peripheral driver instance pointer
 125 * @desc: pointer to the usb endpoint descriptor
 126 * @rambase: the endpoint buffer address
 127 * @offset: the endpoint register offset value
 128 * @name: name of the endpoint
 129 * @epnumber: endpoint number
 130 * @maxpacket: maximum packet size the endpoint can store
 131 * @buffer0count: the size of the packet recieved in the first buffer
 132 * @buffer1count: the size of the packet received in the second buffer
 133 * @curbufnum: current buffer of endpoint that will be processed next
 134 * @buffer0ready: the busy state of first buffer
 135 * @buffer1ready: the busy state of second buffer
 136 * @is_in: endpoint direction (IN or OUT)
 137 * @is_iso: endpoint type(isochronous or non isochronous)
 138 */
 139struct xusb_ep {
 140	struct usb_ep ep_usb;
 141	struct list_head queue;
 142	struct xusb_udc *udc;
 143	const struct usb_endpoint_descriptor *desc;
 144	u32  rambase;
 145	u32  offset;
 146	char name[4];
 147	u16  epnumber;
 148	u16  maxpacket;
 149	u16  buffer0count;
 150	u16  buffer1count;
 151	u8   curbufnum;
 152	bool buffer0ready;
 153	bool buffer1ready;
 154	bool is_in;
 155	bool is_iso;
 156};
 157
 158/**
 159 * struct xusb_udc -  USB peripheral driver structure
 160 * @gadget: USB gadget driver instance
 161 * @ep: an array of endpoint structures
 162 * @driver: pointer to the usb gadget driver instance
 163 * @setup: usb_ctrlrequest structure for control requests
 164 * @req: pointer to dummy request for get status command
 165 * @dev: pointer to device structure in gadget
 166 * @usb_state: device in suspended state or not
 167 * @remote_wkp: remote wakeup enabled by host
 168 * @setupseqtx: tx status
 169 * @setupseqrx: rx status
 170 * @addr: the usb device base address
 171 * @lock: instance of spinlock
 172 * @dma_enabled: flag indicating whether the dma is included in the system
 173 * @clk: pointer to struct clk
 174 * @read_fn: function pointer to read device registers
 175 * @write_fn: function pointer to write to device registers
 176 */
 177struct xusb_udc {
 178	struct usb_gadget gadget;
 179	struct xusb_ep ep[8];
 180	struct usb_gadget_driver *driver;
 181	struct usb_ctrlrequest setup;
 182	struct xusb_req *req;
 183	struct device *dev;
 184	u32 usb_state;
 185	u32 remote_wkp;
 186	u32 setupseqtx;
 187	u32 setupseqrx;
 188	void __iomem *addr;
 189	spinlock_t lock;
 190	bool dma_enabled;
 191	struct clk *clk;
 192
 193	unsigned int (*read_fn)(void __iomem *reg);
 194	void (*write_fn)(void __iomem *, u32, u32);
 195};
 196
 197/* Endpoint buffer start addresses in the core */
 198static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
 199			  0x1600 };
 200
 201static const char driver_name[] = "xilinx-udc";
 202static const char ep0name[] = "ep0";
 203
 204/* Control endpoint configuration.*/
 205static const struct usb_endpoint_descriptor config_bulk_out_desc = {
 206	.bLength		= USB_DT_ENDPOINT_SIZE,
 207	.bDescriptorType	= USB_DT_ENDPOINT,
 208	.bEndpointAddress	= USB_DIR_OUT,
 209	.bmAttributes		= USB_ENDPOINT_XFER_BULK,
 210	.wMaxPacketSize		= cpu_to_le16(EP0_MAX_PACKET),
 211};
 212
 213/**
 214 * xudc_write32 - little endian write to device registers
 215 * @addr: base addr of device registers
 216 * @offset: register offset
 217 * @val: data to be written
 218 */
 219static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
 220{
 221	iowrite32(val, addr + offset);
 222}
 223
 224/**
 225 * xudc_read32 - little endian read from device registers
 226 * @addr: addr of device register
 227 * Return: value at addr
 228 */
 229static unsigned int xudc_read32(void __iomem *addr)
 230{
 231	return ioread32(addr);
 232}
 233
 234/**
 235 * xudc_write32_be - big endian write to device registers
 236 * @addr: base addr of device registers
 237 * @offset: register offset
 238 * @val: data to be written
 239 */
 240static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
 241{
 242	iowrite32be(val, addr + offset);
 243}
 244
 245/**
 246 * xudc_read32_be - big endian read from device registers
 247 * @addr: addr of device register
 248 * Return: value at addr
 249 */
 250static unsigned int xudc_read32_be(void __iomem *addr)
 251{
 252	return ioread32be(addr);
 253}
 254
 255/**
 256 * xudc_wrstatus - Sets up the usb device status stages.
 257 * @udc: pointer to the usb device controller structure.
 258 */
 259static void xudc_wrstatus(struct xusb_udc *udc)
 260{
 261	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
 262	u32 epcfgreg;
 263
 264	epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
 265				XUSB_EP_CFG_DATA_TOGGLE_MASK;
 266	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
 267	udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
 268	udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
 269}
 270
 271/**
 272 * xudc_epconfig - Configures the given endpoint.
 273 * @ep: pointer to the usb device endpoint structure.
 274 * @udc: pointer to the usb peripheral controller structure.
 275 *
 276 * This function configures a specific endpoint with the given configuration
 277 * data.
 278 */
 279static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
 280{
 281	u32 epcfgreg;
 282
 283	/*
 284	 * Configure the end point direction, type, Max Packet Size and the
 285	 * EP buffer location.
 286	 */
 287	epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
 288		   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
 289	udc->write_fn(udc->addr, ep->offset, epcfgreg);
 290
 291	/* Set the Buffer count and the Buffer ready bits.*/
 292	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
 293		      ep->buffer0count);
 294	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
 295		      ep->buffer1count);
 296	if (ep->buffer0ready)
 297		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 298			      1 << ep->epnumber);
 299	if (ep->buffer1ready)
 300		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 301			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 302}
 303
 304/**
 305 * xudc_start_dma - Starts DMA transfer.
 306 * @ep: pointer to the usb device endpoint structure.
 307 * @src: DMA source address.
 308 * @dst: DMA destination address.
 309 * @length: number of bytes to transfer.
 310 *
 311 * Return: 0 on success, error code on failure
 312 *
 313 * This function starts DMA transfer by writing to DMA source,
 314 * destination and lenth registers.
 315 */
 316static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
 317			  dma_addr_t dst, u32 length)
 318{
 319	struct xusb_udc *udc = ep->udc;
 320	int rc = 0;
 321	u32 timeout = 500;
 322	u32 reg;
 323
 324	/*
 325	 * Set the addresses in the DMA source and
 326	 * destination registers and then set the length
 327	 * into the DMA length register.
 328	 */
 329	udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
 330	udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
 331	udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
 332
 333	/*
 334	 * Wait till DMA transaction is complete and
 335	 * check whether the DMA transaction was
 336	 * successful.
 337	 */
 338	do {
 339		reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
 340		if (!(reg &  XUSB_DMA_DMASR_BUSY))
 341			break;
 342
 343		/*
 344		 * We can't sleep here, because it's also called from
 345		 * interrupt context.
 346		 */
 347		timeout--;
 348		if (!timeout) {
 349			dev_err(udc->dev, "DMA timeout\n");
 350			return -ETIMEDOUT;
 351		}
 352		udelay(1);
 353	} while (1);
 354
 355	if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
 356			  XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
 357		dev_err(udc->dev, "DMA Error\n");
 358		rc = -EINVAL;
 359	}
 360
 361	return rc;
 362}
 363
 364/**
 365 * xudc_dma_send - Sends IN data using DMA.
 366 * @ep: pointer to the usb device endpoint structure.
 367 * @req: pointer to the usb request structure.
 368 * @buffer: pointer to data to be sent.
 369 * @length: number of bytes to send.
 370 *
 371 * Return: 0 on success, -EAGAIN if no buffer is free and error
 372 *	   code on failure.
 373 *
 374 * This function sends data using DMA.
 375 */
 376static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
 377			 u8 *buffer, u32 length)
 378{
 379	u32 *eprambase;
 380	dma_addr_t src;
 381	dma_addr_t dst;
 382	struct xusb_udc *udc = ep->udc;
 383
 384	src = req->usb_req.dma + req->usb_req.actual;
 385	if (req->usb_req.length)
 386		dma_sync_single_for_device(udc->dev, src,
 387					   length, DMA_TO_DEVICE);
 388	if (!ep->curbufnum && !ep->buffer0ready) {
 389		/* Get the Buffer address and copy the transmit data.*/
 390		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 391		dst = virt_to_phys(eprambase);
 392		udc->write_fn(udc->addr, ep->offset +
 393			      XUSB_EP_BUF0COUNT_OFFSET, length);
 394		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 395			      XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
 396		ep->buffer0ready = 1;
 397		ep->curbufnum = 1;
 398	} else if (ep->curbufnum && !ep->buffer1ready) {
 399		/* Get the Buffer address and copy the transmit data.*/
 400		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 401			     ep->ep_usb.maxpacket);
 402		dst = virt_to_phys(eprambase);
 403		udc->write_fn(udc->addr, ep->offset +
 404			      XUSB_EP_BUF1COUNT_OFFSET, length);
 405		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 406			      XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
 407			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 408		ep->buffer1ready = 1;
 409		ep->curbufnum = 0;
 410	} else {
 411		/* None of ping pong buffers are ready currently .*/
 412		return -EAGAIN;
 413	}
 414
 415	return xudc_start_dma(ep, src, dst, length);
 416}
 417
 418/**
 419 * xudc_dma_receive - Receives OUT data using DMA.
 420 * @ep: pointer to the usb device endpoint structure.
 421 * @req: pointer to the usb request structure.
 422 * @buffer: pointer to storage buffer of received data.
 423 * @length: number of bytes to receive.
 424 *
 425 * Return: 0 on success, -EAGAIN if no buffer is free and error
 426 *	   code on failure.
 427 *
 428 * This function receives data using DMA.
 429 */
 430static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
 431			    u8 *buffer, u32 length)
 432{
 433	u32 *eprambase;
 434	dma_addr_t src;
 435	dma_addr_t dst;
 436	struct xusb_udc *udc = ep->udc;
 437
 438	dst = req->usb_req.dma + req->usb_req.actual;
 439	if (!ep->curbufnum && !ep->buffer0ready) {
 440		/* Get the Buffer address and copy the transmit data */
 441		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 442		src = virt_to_phys(eprambase);
 443		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 444			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 445			      (1 << ep->epnumber));
 446		ep->buffer0ready = 1;
 447		ep->curbufnum = 1;
 448	} else if (ep->curbufnum && !ep->buffer1ready) {
 449		/* Get the Buffer address and copy the transmit data */
 450		eprambase = (u32 __force *)(udc->addr +
 451			     ep->rambase + ep->ep_usb.maxpacket);
 452		src = virt_to_phys(eprambase);
 453		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 454			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 455			      (1 << (ep->epnumber +
 456			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 457		ep->buffer1ready = 1;
 458		ep->curbufnum = 0;
 459	} else {
 460		/* None of the ping-pong buffers are ready currently */
 461		return -EAGAIN;
 462	}
 463
 464	return xudc_start_dma(ep, src, dst, length);
 465}
 466
 467/**
 468 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
 469 * @ep: pointer to the usb endpoint configuration structure.
 470 * @req: pointer to the usb request structure.
 471 * @bufferptr: pointer to buffer containing the data to be sent.
 472 * @bufferlen: The number of data bytes to be sent.
 473 *
 474 * Return: 0 on success, -EAGAIN if no buffer is free.
 475 *
 476 * This function copies the transmit/receive data to/from the end point buffer
 477 * and enables the buffer for transmission/reception.
 478 */
 479static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
 480		       u8 *bufferptr, u32 bufferlen)
 481{
 482	u32 *eprambase;
 483	u32 bytestosend;
 484	int rc = 0;
 485	struct xusb_udc *udc = ep->udc;
 486
 487	bytestosend = bufferlen;
 488	if (udc->dma_enabled) {
 489		if (ep->is_in)
 490			rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
 491		else
 492			rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
 493		return rc;
 494	}
 495	/* Put the transmit buffer into the correct ping-pong buffer.*/
 496	if (!ep->curbufnum && !ep->buffer0ready) {
 497		/* Get the Buffer address and copy the transmit data.*/
 498		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 499		if (ep->is_in) {
 500			memcpy_toio((void __iomem *)eprambase, bufferptr,
 501				    bytestosend);
 502			udc->write_fn(udc->addr, ep->offset +
 503				      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
 504		} else {
 505			memcpy_toio((void __iomem *)bufferptr, eprambase,
 506				    bytestosend);
 507		}
 508		/*
 509		 * Enable the buffer for transmission.
 510		 */
 511		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 512			      1 << ep->epnumber);
 513		ep->buffer0ready = 1;
 514		ep->curbufnum = 1;
 515	} else if (ep->curbufnum && !ep->buffer1ready) {
 516		/* Get the Buffer address and copy the transmit data.*/
 517		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 518			     ep->ep_usb.maxpacket);
 519		if (ep->is_in) {
 520			memcpy_toio((void __iomem *)eprambase, bufferptr,
 521				    bytestosend);
 522			udc->write_fn(udc->addr, ep->offset +
 523				      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
 524		} else {
 525			memcpy_toio((void __iomem *)bufferptr, eprambase,
 526				    bytestosend);
 527		}
 528		/*
 529		 * Enable the buffer for transmission.
 530		 */
 531		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 532			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 533		ep->buffer1ready = 1;
 534		ep->curbufnum = 0;
 535	} else {
 536		/* None of the ping-pong buffers are ready currently */
 537		return -EAGAIN;
 538	}
 539	return rc;
 540}
 541
 542/**
 543 * xudc_done - Exeutes the endpoint data transfer completion tasks.
 544 * @ep: pointer to the usb device endpoint structure.
 545 * @req: pointer to the usb request structure.
 546 * @status: Status of the data transfer.
 547 *
 548 * Deletes the message from the queue and updates data transfer completion
 549 * status.
 550 */
 551static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
 552{
 553	struct xusb_udc *udc = ep->udc;
 554
 555	list_del_init(&req->queue);
 556
 557	if (req->usb_req.status == -EINPROGRESS)
 558		req->usb_req.status = status;
 559	else
 560		status = req->usb_req.status;
 561
 562	if (status && status != -ESHUTDOWN)
 563		dev_dbg(udc->dev, "%s done %p, status %d\n",
 564			ep->ep_usb.name, req, status);
 565	/* unmap request if DMA is present*/
 566	if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
 567		usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
 568					 ep->is_in);
 569
 570	if (req->usb_req.complete) {
 571		spin_unlock(&udc->lock);
 572		req->usb_req.complete(&ep->ep_usb, &req->usb_req);
 573		spin_lock(&udc->lock);
 574	}
 575}
 576
 577/**
 578 * xudc_read_fifo - Reads the data from the given endpoint buffer.
 579 * @ep: pointer to the usb device endpoint structure.
 580 * @req: pointer to the usb request structure.
 581 *
 582 * Return: 0 if request is completed and -EAGAIN if not completed.
 583 *
 584 * Pulls OUT packet data from the endpoint buffer.
 585 */
 586static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
 587{
 588	u8 *buf;
 589	u32 is_short, count, bufferspace;
 590	u8 bufoffset;
 591	u8 two_pkts = 0;
 592	int ret;
 593	int retval = -EAGAIN;
 594	struct xusb_udc *udc = ep->udc;
 595
 596	if (ep->buffer0ready && ep->buffer1ready) {
 597		dev_dbg(udc->dev, "Packet NOT ready!\n");
 598		return retval;
 599	}
 600top:
 601	if (ep->curbufnum)
 602		bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
 603	else
 604		bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
 605
 606	count = udc->read_fn(udc->addr + ep->offset + bufoffset);
 607
 608	if (!ep->buffer0ready && !ep->buffer1ready)
 609		two_pkts = 1;
 610
 611	buf = req->usb_req.buf + req->usb_req.actual;
 612	prefetchw(buf);
 613	bufferspace = req->usb_req.length - req->usb_req.actual;
 614	is_short = count < ep->ep_usb.maxpacket;
 615
 616	if (unlikely(!bufferspace)) {
 617		/*
 618		 * This happens when the driver's buffer
 619		 * is smaller than what the host sent.
 620		 * discard the extra data.
 621		 */
 622		if (req->usb_req.status != -EOVERFLOW)
 623			dev_dbg(udc->dev, "%s overflow %d\n",
 624				ep->ep_usb.name, count);
 625		req->usb_req.status = -EOVERFLOW;
 626		xudc_done(ep, req, -EOVERFLOW);
 627		return 0;
 628	}
 629
 630	ret = xudc_eptxrx(ep, req, buf, count);
 631	switch (ret) {
 632	case 0:
 633		req->usb_req.actual += min(count, bufferspace);
 634		dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
 635			ep->ep_usb.name, count, is_short ? "/S" : "", req,
 636			req->usb_req.actual, req->usb_req.length);
 637
 638		/* Completion */
 639		if ((req->usb_req.actual == req->usb_req.length) || is_short) {
 640			if (udc->dma_enabled && req->usb_req.length)
 641				dma_sync_single_for_cpu(udc->dev,
 642							req->usb_req.dma,
 643							req->usb_req.actual,
 644							DMA_FROM_DEVICE);
 645			xudc_done(ep, req, 0);
 646			return 0;
 647		}
 648		if (two_pkts) {
 649			two_pkts = 0;
 650			goto top;
 651		}
 652		break;
 653	case -EAGAIN:
 654		dev_dbg(udc->dev, "receive busy\n");
 655		break;
 656	case -EINVAL:
 657	case -ETIMEDOUT:
 658		/* DMA error, dequeue the request */
 659		xudc_done(ep, req, -ECONNRESET);
 660		retval = 0;
 661		break;
 662	}
 663
 664	return retval;
 665}
 666
 667/**
 668 * xudc_write_fifo - Writes data into the given endpoint buffer.
 669 * @ep: pointer to the usb device endpoint structure.
 670 * @req: pointer to the usb request structure.
 671 *
 672 * Return: 0 if request is completed and -EAGAIN if not completed.
 673 *
 674 * Loads endpoint buffer for an IN packet.
 675 */
 676static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
 677{
 678	u32 max;
 679	u32 length;
 680	int ret;
 681	int retval = -EAGAIN;
 682	struct xusb_udc *udc = ep->udc;
 683	int is_last, is_short = 0;
 684	u8 *buf;
 685
 686	max = le16_to_cpu(ep->desc->wMaxPacketSize);
 687	buf = req->usb_req.buf + req->usb_req.actual;
 688	prefetch(buf);
 689	length = req->usb_req.length - req->usb_req.actual;
 690	length = min(length, max);
 691
 692	ret = xudc_eptxrx(ep, req, buf, length);
 693	switch (ret) {
 694	case 0:
 695		req->usb_req.actual += length;
 696		if (unlikely(length != max)) {
 697			is_last = is_short = 1;
 698		} else {
 699			if (likely(req->usb_req.length !=
 700				   req->usb_req.actual) || req->usb_req.zero)
 701				is_last = 0;
 702			else
 703				is_last = 1;
 704		}
 705		dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
 706			__func__, ep->ep_usb.name, length, is_last ? "/L" : "",
 707			is_short ? "/S" : "",
 708			req->usb_req.length - req->usb_req.actual, req);
 709		/* completion */
 710		if (is_last) {
 711			xudc_done(ep, req, 0);
 712			retval = 0;
 713		}
 714		break;
 715	case -EAGAIN:
 716		dev_dbg(udc->dev, "Send busy\n");
 717		break;
 718	case -EINVAL:
 719	case -ETIMEDOUT:
 720		/* DMA error, dequeue the request */
 721		xudc_done(ep, req, -ECONNRESET);
 722		retval = 0;
 723		break;
 724	}
 725
 726	return retval;
 727}
 728
 729/**
 730 * xudc_nuke - Cleans up the data transfer message list.
 731 * @ep: pointer to the usb device endpoint structure.
 732 * @status: Status of the data transfer.
 733 */
 734static void xudc_nuke(struct xusb_ep *ep, int status)
 735{
 736	struct xusb_req *req;
 737
 738	while (!list_empty(&ep->queue)) {
 739		req = list_first_entry(&ep->queue, struct xusb_req, queue);
 740		xudc_done(ep, req, status);
 741	}
 742}
 743
 744/**
 745 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
 746 * @_ep: pointer to the usb device endpoint structure.
 747 * @value: value to indicate stall/unstall.
 748 *
 749 * Return: 0 for success and error value on failure
 750 */
 751static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
 752{
 753	struct xusb_ep *ep = to_xusb_ep(_ep);
 754	struct xusb_udc *udc;
 755	unsigned long flags;
 756	u32 epcfgreg;
 757
 758	if (!_ep || (!ep->desc && ep->epnumber)) {
 759		pr_debug("%s: bad ep or descriptor\n", __func__);
 760		return -EINVAL;
 761	}
 762	udc = ep->udc;
 763
 764	if (ep->is_in && (!list_empty(&ep->queue)) && value) {
 765		dev_dbg(udc->dev, "requests pending can't halt\n");
 766		return -EAGAIN;
 767	}
 768
 769	if (ep->buffer0ready || ep->buffer1ready) {
 770		dev_dbg(udc->dev, "HW buffers busy can't halt\n");
 771		return -EAGAIN;
 772	}
 773
 774	spin_lock_irqsave(&udc->lock, flags);
 775
 776	if (value) {
 777		/* Stall the device.*/
 778		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 779		epcfgreg |= XUSB_EP_CFG_STALL_MASK;
 780		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 781	} else {
 782		/* Unstall the device.*/
 783		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 784		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
 785		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 786		if (ep->epnumber) {
 787			/* Reset the toggle bit.*/
 788			epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
 789			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
 790			udc->write_fn(udc->addr, ep->offset, epcfgreg);
 791		}
 792	}
 793
 794	spin_unlock_irqrestore(&udc->lock, flags);
 795	return 0;
 796}
 797
 798/**
 799 * __xudc_ep_enable - Enables the given endpoint.
 800 * @ep: pointer to the xusb endpoint structure.
 801 * @desc: pointer to usb endpoint descriptor.
 802 *
 803 * Return: 0 for success and error value on failure
 804 */
 805static int __xudc_ep_enable(struct xusb_ep *ep,
 806			    const struct usb_endpoint_descriptor *desc)
 807{
 808	struct xusb_udc *udc = ep->udc;
 809	u32 tmp;
 810	u32 epcfg;
 811	u32 ier;
 812	u16 maxpacket;
 813
 814	ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
 815	/* Bit 3...0:endpoint number */
 816	ep->epnumber = (desc->bEndpointAddress & 0x0f);
 817	ep->desc = desc;
 818	ep->ep_usb.desc = desc;
 819	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
 820	ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
 821
 822	switch (tmp) {
 823	case USB_ENDPOINT_XFER_CONTROL:
 824		dev_dbg(udc->dev, "only one control endpoint\n");
 825		/* NON- ISO */
 826		ep->is_iso = 0;
 827		return -EINVAL;
 828	case USB_ENDPOINT_XFER_INT:
 829		/* NON- ISO */
 830		ep->is_iso = 0;
 831		if (maxpacket > 64) {
 832			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 833			return -EINVAL;
 834		}
 835		break;
 836	case USB_ENDPOINT_XFER_BULK:
 837		/* NON- ISO */
 838		ep->is_iso = 0;
 839		if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
 840				maxpacket <= 512)) {
 841			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 842			return -EINVAL;
 843		}
 844		break;
 845	case USB_ENDPOINT_XFER_ISOC:
 846		/* ISO */
 847		ep->is_iso = 1;
 848		break;
 849	}
 850
 851	ep->buffer0ready = false;
 852	ep->buffer1ready = false;
 853	ep->curbufnum = 0;
 854	ep->rambase = rambase[ep->epnumber];
 855	xudc_epconfig(ep, udc);
 856
 857	dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
 858		ep->epnumber, maxpacket);
 859
 860	/* Enable the End point.*/
 861	epcfg = udc->read_fn(udc->addr + ep->offset);
 862	epcfg |= XUSB_EP_CFG_VALID_MASK;
 863	udc->write_fn(udc->addr, ep->offset, epcfg);
 864	if (ep->epnumber)
 865		ep->rambase <<= 2;
 866
 867	/* Enable buffer completion interrupts for endpoint */
 868	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
 869	ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
 870	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
 871
 872	/* for OUT endpoint set buffers ready to receive */
 873	if (ep->epnumber && !ep->is_in) {
 874		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 875			      1 << ep->epnumber);
 876		ep->buffer0ready = true;
 877		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 878			     (1 << (ep->epnumber +
 879			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 880		ep->buffer1ready = true;
 881	}
 882
 883	return 0;
 884}
 885
 886/**
 887 * xudc_ep_enable - Enables the given endpoint.
 888 * @_ep: pointer to the usb endpoint structure.
 889 * @desc: pointer to usb endpoint descriptor.
 890 *
 891 * Return: 0 for success and error value on failure
 892 */
 893static int xudc_ep_enable(struct usb_ep *_ep,
 894			  const struct usb_endpoint_descriptor *desc)
 895{
 896	struct xusb_ep *ep;
 897	struct xusb_udc *udc;
 898	unsigned long flags;
 899	int ret;
 900
 901	if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
 902		pr_debug("%s: bad ep or descriptor\n", __func__);
 903		return -EINVAL;
 904	}
 905
 906	ep = to_xusb_ep(_ep);
 907	udc = ep->udc;
 908
 909	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
 910		dev_dbg(udc->dev, "bogus device state\n");
 911		return -ESHUTDOWN;
 912	}
 913
 914	spin_lock_irqsave(&udc->lock, flags);
 915	ret = __xudc_ep_enable(ep, desc);
 916	spin_unlock_irqrestore(&udc->lock, flags);
 917
 918	return ret;
 919}
 920
 921/**
 922 * xudc_ep_disable - Disables the given endpoint.
 923 * @_ep: pointer to the usb endpoint structure.
 924 *
 925 * Return: 0 for success and error value on failure
 926 */
 927static int xudc_ep_disable(struct usb_ep *_ep)
 928{
 929	struct xusb_ep *ep;
 930	unsigned long flags;
 931	u32 epcfg;
 932	struct xusb_udc *udc;
 933
 934	if (!_ep) {
 935		pr_debug("%s: invalid ep\n", __func__);
 936		return -EINVAL;
 937	}
 938
 939	ep = to_xusb_ep(_ep);
 940	udc = ep->udc;
 941
 942	spin_lock_irqsave(&udc->lock, flags);
 943
 944	xudc_nuke(ep, -ESHUTDOWN);
 945
 946	/* Restore the endpoint's pristine config */
 947	ep->desc = NULL;
 948	ep->ep_usb.desc = NULL;
 949
 950	dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
 951	/* Disable the endpoint.*/
 952	epcfg = udc->read_fn(udc->addr + ep->offset);
 953	epcfg &= ~XUSB_EP_CFG_VALID_MASK;
 954	udc->write_fn(udc->addr, ep->offset, epcfg);
 955
 956	spin_unlock_irqrestore(&udc->lock, flags);
 957	return 0;
 958}
 959
 960/**
 961 * xudc_ep_alloc_request - Initializes the request queue.
 962 * @_ep: pointer to the usb endpoint structure.
 963 * @gfp_flags: Flags related to the request call.
 964 *
 965 * Return: pointer to request structure on success and a NULL on failure.
 966 */
 967static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
 968						 gfp_t gfp_flags)
 969{
 970	struct xusb_ep *ep = to_xusb_ep(_ep);
 971	struct xusb_req *req;
 972
 973	req = kzalloc(sizeof(*req), gfp_flags);
 974	if (!req)
 975		return NULL;
 976
 977	req->ep = ep;
 978	INIT_LIST_HEAD(&req->queue);
 979	return &req->usb_req;
 980}
 981
 982/**
 983 * xudc_free_request - Releases the request from queue.
 984 * @_ep: pointer to the usb device endpoint structure.
 985 * @_req: pointer to the usb request structure.
 986 */
 987static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
 988{
 989	struct xusb_req *req = to_xusb_req(_req);
 990
 991	kfree(req);
 992}
 993
 994/**
 995 * __xudc_ep0_queue - Adds the request to endpoint 0 queue.
 996 * @ep0: pointer to the xusb endpoint 0 structure.
 997 * @req: pointer to the xusb request structure.
 998 *
 999 * Return: 0 for success and error value on failure
1000 */
1001static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
1002{
1003	struct xusb_udc *udc = ep0->udc;
1004	u32 length;
1005	u8 *corebuf;
1006
1007	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1008		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1009		return -EINVAL;
1010	}
1011	if (!list_empty(&ep0->queue)) {
1012		dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1013		return -EBUSY;
1014	}
1015
1016	req->usb_req.status = -EINPROGRESS;
1017	req->usb_req.actual = 0;
1018
1019	list_add_tail(&req->queue, &ep0->queue);
1020
1021	if (udc->setup.bRequestType & USB_DIR_IN) {
1022		prefetch(req->usb_req.buf);
1023		length = req->usb_req.length;
1024		corebuf = (void __force *) ((ep0->rambase << 2) +
1025			   udc->addr);
1026		length = req->usb_req.actual = min_t(u32, length,
1027						     EP0_MAX_PACKET);
1028		memcpy_toio((void __iomem *)corebuf, req->usb_req.buf, length);
1029		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1030		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031	} else {
1032		if (udc->setup.wLength) {
1033			/* Enable EP0 buffer to receive data */
1034			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1035			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1036		} else {
1037			xudc_wrstatus(udc);
1038		}
1039	}
1040
1041	return 0;
1042}
1043
1044/**
1045 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1046 * @_ep: pointer to the usb endpoint 0 structure.
1047 * @_req: pointer to the usb request structure.
1048 * @gfp_flags: Flags related to the request call.
1049 *
1050 * Return: 0 for success and error value on failure
1051 */
1052static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1053			  gfp_t gfp_flags)
1054{
1055	struct xusb_req *req	= to_xusb_req(_req);
1056	struct xusb_ep	*ep0	= to_xusb_ep(_ep);
1057	struct xusb_udc *udc	= ep0->udc;
1058	unsigned long flags;
1059	int ret;
1060
1061	spin_lock_irqsave(&udc->lock, flags);
1062	ret = __xudc_ep0_queue(ep0, req);
1063	spin_unlock_irqrestore(&udc->lock, flags);
1064
1065	return ret;
1066}
1067
1068/**
1069 * xudc_ep_queue - Adds the request to endpoint queue.
1070 * @_ep: pointer to the usb endpoint structure.
1071 * @_req: pointer to the usb request structure.
1072 * @gfp_flags: Flags related to the request call.
1073 *
1074 * Return: 0 for success and error value on failure
1075 */
1076static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1077			 gfp_t gfp_flags)
1078{
1079	struct xusb_req *req = to_xusb_req(_req);
1080	struct xusb_ep	*ep  = to_xusb_ep(_ep);
1081	struct xusb_udc *udc = ep->udc;
1082	int  ret;
1083	unsigned long flags;
1084
1085	if (!ep->desc) {
1086		dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1087			__func__, ep->name);
1088		return -ESHUTDOWN;
1089	}
1090
1091	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1092		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1093		return -EINVAL;
1094	}
1095
1096	spin_lock_irqsave(&udc->lock, flags);
1097
1098	_req->status = -EINPROGRESS;
1099	_req->actual = 0;
1100
1101	if (udc->dma_enabled) {
1102		ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1103					     ep->is_in);
1104		if (ret) {
1105			dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1106				ep->epnumber);
1107			spin_unlock_irqrestore(&udc->lock, flags);
1108			return -EAGAIN;
1109		}
1110	}
1111
1112	if (list_empty(&ep->queue)) {
1113		if (ep->is_in) {
1114			dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1115			if (!xudc_write_fifo(ep, req))
1116				req = NULL;
1117		} else {
1118			dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1119			if (!xudc_read_fifo(ep, req))
1120				req = NULL;
1121		}
1122	}
1123
1124	if (req != NULL)
1125		list_add_tail(&req->queue, &ep->queue);
1126
1127	spin_unlock_irqrestore(&udc->lock, flags);
1128	return 0;
1129}
1130
1131/**
1132 * xudc_ep_dequeue - Removes the request from the queue.
1133 * @_ep: pointer to the usb device endpoint structure.
1134 * @_req: pointer to the usb request structure.
1135 *
1136 * Return: 0 for success and error value on failure
1137 */
1138static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1139{
1140	struct xusb_ep *ep	= to_xusb_ep(_ep);
1141	struct xusb_req *req	= NULL;
1142	struct xusb_req *iter;
1143	struct xusb_udc *udc	= ep->udc;
1144	unsigned long flags;
1145
1146	spin_lock_irqsave(&udc->lock, flags);
1147	/* Make sure it's actually queued on this endpoint */
1148	list_for_each_entry(iter, &ep->queue, queue) {
1149		if (&iter->usb_req != _req)
1150			continue;
1151		req = iter;
1152		break;
1153	}
1154	if (!req) {
1155		spin_unlock_irqrestore(&udc->lock, flags);
1156		return -EINVAL;
1157	}
1158	xudc_done(ep, req, -ECONNRESET);
1159	spin_unlock_irqrestore(&udc->lock, flags);
1160
1161	return 0;
1162}
1163
1164/**
1165 * xudc_ep0_enable - Enables the given endpoint.
1166 * @ep: pointer to the usb endpoint structure.
1167 * @desc: pointer to usb endpoint descriptor.
1168 *
1169 * Return: error always.
1170 *
1171 * endpoint 0 enable should not be called by gadget layer.
1172 */
1173static int xudc_ep0_enable(struct usb_ep *ep,
1174			   const struct usb_endpoint_descriptor *desc)
1175{
1176	return -EINVAL;
1177}
1178
1179/**
1180 * xudc_ep0_disable - Disables the given endpoint.
1181 * @ep: pointer to the usb endpoint structure.
1182 *
1183 * Return: error always.
1184 *
1185 * endpoint 0 disable should not be called by gadget layer.
1186 */
1187static int xudc_ep0_disable(struct usb_ep *ep)
1188{
1189	return -EINVAL;
1190}
1191
1192static const struct usb_ep_ops xusb_ep0_ops = {
1193	.enable		= xudc_ep0_enable,
1194	.disable	= xudc_ep0_disable,
1195	.alloc_request	= xudc_ep_alloc_request,
1196	.free_request	= xudc_free_request,
1197	.queue		= xudc_ep0_queue,
1198	.dequeue	= xudc_ep_dequeue,
1199	.set_halt	= xudc_ep_set_halt,
1200};
1201
1202static const struct usb_ep_ops xusb_ep_ops = {
1203	.enable		= xudc_ep_enable,
1204	.disable	= xudc_ep_disable,
1205	.alloc_request	= xudc_ep_alloc_request,
1206	.free_request	= xudc_free_request,
1207	.queue		= xudc_ep_queue,
1208	.dequeue	= xudc_ep_dequeue,
1209	.set_halt	= xudc_ep_set_halt,
1210};
1211
1212/**
1213 * xudc_get_frame - Reads the current usb frame number.
1214 * @gadget: pointer to the usb gadget structure.
1215 *
1216 * Return: current frame number for success and error value on failure.
1217 */
1218static int xudc_get_frame(struct usb_gadget *gadget)
1219{
1220	struct xusb_udc *udc;
1221	int frame;
1222
1223	if (!gadget)
1224		return -ENODEV;
1225
1226	udc = to_udc(gadget);
1227	frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1228	return frame;
1229}
1230
1231/**
1232 * xudc_wakeup - Send remote wakeup signal to host
1233 * @gadget: pointer to the usb gadget structure.
1234 *
1235 * Return: 0 on success and error on failure
1236 */
1237static int xudc_wakeup(struct usb_gadget *gadget)
1238{
1239	struct xusb_udc *udc = to_udc(gadget);
1240	u32 crtlreg;
1241	int status = -EINVAL;
1242	unsigned long flags;
1243
1244	spin_lock_irqsave(&udc->lock, flags);
1245
1246	/* Remote wake up not enabled by host */
1247	if (!udc->remote_wkp)
1248		goto done;
1249
1250	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1251	crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1252	/* set remote wake up bit */
1253	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254	/*
1255	 * wait for a while and reset remote wake up bit since this bit
1256	 * is not cleared by HW after sending remote wakeup to host.
1257	 */
1258	mdelay(2);
1259
1260	crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1261	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1262	status = 0;
1263done:
1264	spin_unlock_irqrestore(&udc->lock, flags);
1265	return status;
1266}
1267
1268/**
1269 * xudc_pullup - start/stop USB traffic
1270 * @gadget: pointer to the usb gadget structure.
1271 * @is_on: flag to start or stop
1272 *
1273 * Return: 0 always
1274 *
1275 * This function starts/stops SIE engine of IP based on is_on.
1276 */
1277static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1278{
1279	struct xusb_udc *udc = to_udc(gadget);
1280	unsigned long flags;
1281	u32 crtlreg;
1282
1283	spin_lock_irqsave(&udc->lock, flags);
1284
1285	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1286	if (is_on)
1287		crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1288	else
1289		crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1290
1291	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1292
1293	spin_unlock_irqrestore(&udc->lock, flags);
1294
1295	return 0;
1296}
1297
1298/**
1299 * xudc_eps_init - initialize endpoints.
1300 * @udc: pointer to the usb device controller structure.
1301 */
1302static void xudc_eps_init(struct xusb_udc *udc)
1303{
1304	u32 ep_number;
1305
1306	INIT_LIST_HEAD(&udc->gadget.ep_list);
1307
1308	for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1309		struct xusb_ep *ep = &udc->ep[ep_number];
1310
1311		if (ep_number) {
1312			list_add_tail(&ep->ep_usb.ep_list,
1313				      &udc->gadget.ep_list);
1314			usb_ep_set_maxpacket_limit(&ep->ep_usb,
1315						  (unsigned short) ~0);
1316			snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1317			ep->ep_usb.name = ep->name;
1318			ep->ep_usb.ops = &xusb_ep_ops;
1319
1320			ep->ep_usb.caps.type_iso = true;
1321			ep->ep_usb.caps.type_bulk = true;
1322			ep->ep_usb.caps.type_int = true;
1323		} else {
1324			ep->ep_usb.name = ep0name;
1325			usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1326			ep->ep_usb.ops = &xusb_ep0_ops;
1327
1328			ep->ep_usb.caps.type_control = true;
1329		}
1330
1331		ep->ep_usb.caps.dir_in = true;
1332		ep->ep_usb.caps.dir_out = true;
1333
1334		ep->udc = udc;
1335		ep->epnumber = ep_number;
1336		ep->desc = NULL;
1337		/*
1338		 * The configuration register address offset between
1339		 * each endpoint is 0x10.
1340		 */
1341		ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1342		ep->is_in = 0;
1343		ep->is_iso = 0;
1344		ep->maxpacket = 0;
1345		xudc_epconfig(ep, udc);
1346
1347		/* Initialize one queue per endpoint */
1348		INIT_LIST_HEAD(&ep->queue);
1349	}
1350}
1351
1352/**
1353 * xudc_stop_activity - Stops any further activity on the device.
1354 * @udc: pointer to the usb device controller structure.
1355 */
1356static void xudc_stop_activity(struct xusb_udc *udc)
1357{
1358	int i;
1359	struct xusb_ep *ep;
1360
1361	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1362		ep = &udc->ep[i];
1363		xudc_nuke(ep, -ESHUTDOWN);
1364	}
1365}
1366
1367/**
1368 * xudc_start - Starts the device.
1369 * @gadget: pointer to the usb gadget structure
1370 * @driver: pointer to gadget driver structure
1371 *
1372 * Return: zero on success and error on failure
1373 */
1374static int xudc_start(struct usb_gadget *gadget,
1375		      struct usb_gadget_driver *driver)
1376{
1377	struct xusb_udc *udc	= to_udc(gadget);
1378	struct xusb_ep *ep0	= &udc->ep[XUSB_EP_NUMBER_ZERO];
1379	const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1380	unsigned long flags;
1381	int ret = 0;
1382
1383	spin_lock_irqsave(&udc->lock, flags);
1384
1385	if (udc->driver) {
1386		dev_err(udc->dev, "%s is already bound to %s\n",
1387			udc->gadget.name, udc->driver->driver.name);
1388		ret = -EBUSY;
1389		goto err;
1390	}
1391
1392	/* hook up the driver */
1393	udc->driver = driver;
1394	udc->gadget.speed = driver->max_speed;
1395
1396	/* Enable the control endpoint. */
1397	ret = __xudc_ep_enable(ep0, desc);
1398
1399	/* Set device address and remote wakeup to 0 */
1400	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1401	udc->remote_wkp = 0;
1402err:
1403	spin_unlock_irqrestore(&udc->lock, flags);
1404	return ret;
1405}
1406
1407/**
1408 * xudc_stop - stops the device.
1409 * @gadget: pointer to the usb gadget structure
1410 *
1411 * Return: zero always
1412 */
1413static int xudc_stop(struct usb_gadget *gadget)
1414{
1415	struct xusb_udc *udc = to_udc(gadget);
1416	unsigned long flags;
1417
1418	spin_lock_irqsave(&udc->lock, flags);
1419
1420	udc->gadget.speed = USB_SPEED_UNKNOWN;
1421	udc->driver = NULL;
1422
1423	/* Set device address and remote wakeup to 0 */
1424	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1425	udc->remote_wkp = 0;
1426
1427	xudc_stop_activity(udc);
1428
1429	spin_unlock_irqrestore(&udc->lock, flags);
1430
1431	return 0;
1432}
1433
1434static const struct usb_gadget_ops xusb_udc_ops = {
1435	.get_frame	= xudc_get_frame,
1436	.wakeup		= xudc_wakeup,
1437	.pullup		= xudc_pullup,
1438	.udc_start	= xudc_start,
1439	.udc_stop	= xudc_stop,
1440};
1441
1442/**
1443 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1444 * @udc: pointer to the udc structure.
1445 */
1446static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1447{
1448	struct xusb_ep *ep;
1449	u32 epcfgreg;
1450	int i;
1451
1452	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1453		ep = &udc->ep[i];
1454		epcfgreg = udc->read_fn(udc->addr + ep->offset);
1455		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1456		udc->write_fn(udc->addr, ep->offset, epcfgreg);
1457		if (ep->epnumber) {
1458			/* Reset the toggle bit.*/
1459			epcfgreg = udc->read_fn(udc->addr + ep->offset);
1460			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1461			udc->write_fn(udc->addr, ep->offset, epcfgreg);
1462		}
1463	}
1464}
1465
1466/**
1467 * xudc_startup_handler - The usb device controller interrupt handler.
1468 * @udc: pointer to the udc structure.
1469 * @intrstatus: The mask value containing the interrupt sources.
1470 *
1471 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1472 */
1473static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1474{
1475	u32 intrreg;
1476
1477	if (intrstatus & XUSB_STATUS_RESET_MASK) {
1478
1479		dev_dbg(udc->dev, "Reset\n");
1480
1481		if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1482			udc->gadget.speed = USB_SPEED_HIGH;
1483		else
1484			udc->gadget.speed = USB_SPEED_FULL;
1485
1486		xudc_stop_activity(udc);
1487		xudc_clear_stall_all_ep(udc);
1488		udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1489
1490		/* Set device address and remote wakeup to 0 */
1491		udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1492		udc->remote_wkp = 0;
1493
1494		/* Enable the suspend, resume and disconnect */
1495		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1496		intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1497			   XUSB_STATUS_DISCONNECT_MASK;
1498		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1499	}
1500	if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1501
1502		dev_dbg(udc->dev, "Suspend\n");
1503
1504		/* Enable the reset, resume and disconnect */
1505		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1506		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1507			   XUSB_STATUS_DISCONNECT_MASK;
1508		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1509
1510		udc->usb_state = USB_STATE_SUSPENDED;
1511
1512		if (udc->driver->suspend) {
1513			spin_unlock(&udc->lock);
1514			udc->driver->suspend(&udc->gadget);
1515			spin_lock(&udc->lock);
1516		}
1517	}
1518	if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1519		bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1520
1521		dev_WARN_ONCE(udc->dev, condition,
1522				"Resume IRQ while not suspended\n");
1523
1524		dev_dbg(udc->dev, "Resume\n");
1525
1526		/* Enable the reset, suspend and disconnect */
1527		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1528		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1529			   XUSB_STATUS_DISCONNECT_MASK;
1530		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1531
1532		udc->usb_state = 0;
1533
1534		if (udc->driver->resume) {
1535			spin_unlock(&udc->lock);
1536			udc->driver->resume(&udc->gadget);
1537			spin_lock(&udc->lock);
1538		}
1539	}
1540	if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1541
1542		dev_dbg(udc->dev, "Disconnect\n");
1543
1544		/* Enable the reset, resume and suspend */
1545		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1546		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1547			   XUSB_STATUS_SUSPEND_MASK;
1548		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1549
1550		if (udc->driver && udc->driver->disconnect) {
1551			spin_unlock(&udc->lock);
1552			udc->driver->disconnect(&udc->gadget);
1553			spin_lock(&udc->lock);
1554		}
1555	}
1556}
1557
1558/**
1559 * xudc_ep0_stall - Stall endpoint zero.
1560 * @udc: pointer to the udc structure.
1561 *
1562 * This function stalls endpoint zero.
1563 */
1564static void xudc_ep0_stall(struct xusb_udc *udc)
1565{
1566	u32 epcfgreg;
1567	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1568
1569	epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1570	epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1571	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1572}
1573
1574/**
1575 * xudc_setaddress - executes SET_ADDRESS command
1576 * @udc: pointer to the udc structure.
1577 *
1578 * This function executes USB SET_ADDRESS command
1579 */
1580static void xudc_setaddress(struct xusb_udc *udc)
1581{
1582	struct xusb_ep *ep0	= &udc->ep[0];
1583	struct xusb_req *req	= udc->req;
1584	int ret;
1585
1586	req->usb_req.length = 0;
1587	ret = __xudc_ep0_queue(ep0, req);
1588	if (ret == 0)
1589		return;
1590
1591	dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1592	xudc_ep0_stall(udc);
1593}
1594
1595/**
1596 * xudc_getstatus - executes GET_STATUS command
1597 * @udc: pointer to the udc structure.
1598 *
1599 * This function executes USB GET_STATUS command
1600 */
1601static void xudc_getstatus(struct xusb_udc *udc)
1602{
1603	struct xusb_ep *ep0	= &udc->ep[0];
1604	struct xusb_req *req	= udc->req;
1605	struct xusb_ep *target_ep;
1606	u16 status = 0;
1607	u32 epcfgreg;
1608	int epnum;
1609	u32 halt;
1610	int ret;
1611
1612	switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1613	case USB_RECIP_DEVICE:
1614		/* Get device status */
1615		status = 1 << USB_DEVICE_SELF_POWERED;
1616		if (udc->remote_wkp)
1617			status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1618		break;
1619	case USB_RECIP_INTERFACE:
1620		break;
1621	case USB_RECIP_ENDPOINT:
1622		epnum = le16_to_cpu(udc->setup.wIndex) & USB_ENDPOINT_NUMBER_MASK;
1623		if (epnum >= XUSB_MAX_ENDPOINTS)
1624			goto stall;
1625		target_ep = &udc->ep[epnum];
1626		epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1627		halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1628		if (le16_to_cpu(udc->setup.wIndex) & USB_DIR_IN) {
1629			if (!target_ep->is_in)
1630				goto stall;
1631		} else {
1632			if (target_ep->is_in)
1633				goto stall;
1634		}
1635		if (halt)
1636			status = 1 << USB_ENDPOINT_HALT;
1637		break;
1638	default:
1639		goto stall;
1640	}
1641
1642	req->usb_req.length = 2;
1643	*(__le16 *)req->usb_req.buf = cpu_to_le16(status);
1644	ret = __xudc_ep0_queue(ep0, req);
1645	if (ret == 0)
1646		return;
1647stall:
1648	dev_err(udc->dev, "Can't respond to getstatus request\n");
1649	xudc_ep0_stall(udc);
1650}
1651
1652/**
1653 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1654 * @udc: pointer to the usb device controller structure.
1655 *
1656 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1657 */
1658static void xudc_set_clear_feature(struct xusb_udc *udc)
1659{
1660	struct xusb_ep *ep0	= &udc->ep[0];
1661	struct xusb_req *req	= udc->req;
1662	struct xusb_ep *target_ep;
1663	u8 endpoint;
1664	u8 outinbit;
1665	u32 epcfgreg;
1666	int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1667	int ret;
1668
1669	switch (udc->setup.bRequestType) {
1670	case USB_RECIP_DEVICE:
1671		switch (le16_to_cpu(udc->setup.wValue)) {
1672		case USB_DEVICE_TEST_MODE:
1673			/*
1674			 * The Test Mode will be executed
1675			 * after the status phase.
1676			 */
1677			break;
1678		case USB_DEVICE_REMOTE_WAKEUP:
1679			if (flag)
1680				udc->remote_wkp = 1;
1681			else
1682				udc->remote_wkp = 0;
1683			break;
1684		default:
1685			xudc_ep0_stall(udc);
1686			break;
1687		}
1688		break;
1689	case USB_RECIP_ENDPOINT:
1690		if (!udc->setup.wValue) {
1691			endpoint = le16_to_cpu(udc->setup.wIndex) &
1692					       USB_ENDPOINT_NUMBER_MASK;
1693			if (endpoint >= XUSB_MAX_ENDPOINTS) {
1694				xudc_ep0_stall(udc);
1695				return;
1696			}
1697			target_ep = &udc->ep[endpoint];
1698			outinbit = le16_to_cpu(udc->setup.wIndex) &
1699					       USB_ENDPOINT_DIR_MASK;
1700			outinbit = outinbit >> 7;
1701
1702			/* Make sure direction matches.*/
1703			if (outinbit != target_ep->is_in) {
1704				xudc_ep0_stall(udc);
1705				return;
1706			}
1707			epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1708			if (!endpoint) {
1709				/* Clear the stall.*/
1710				epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1711				udc->write_fn(udc->addr,
1712					      target_ep->offset, epcfgreg);
1713			} else {
1714				if (flag) {
1715					epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1716					udc->write_fn(udc->addr,
1717						      target_ep->offset,
1718						      epcfgreg);
1719				} else {
1720					/* Unstall the endpoint.*/
1721					epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1722						XUSB_EP_CFG_DATA_TOGGLE_MASK);
1723					udc->write_fn(udc->addr,
1724						      target_ep->offset,
1725						      epcfgreg);
1726				}
1727			}
1728		}
1729		break;
1730	default:
1731		xudc_ep0_stall(udc);
1732		return;
1733	}
1734
1735	req->usb_req.length = 0;
1736	ret = __xudc_ep0_queue(ep0, req);
1737	if (ret == 0)
1738		return;
1739
1740	dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1741	xudc_ep0_stall(udc);
1742}
1743
1744/**
1745 * xudc_handle_setup - Processes the setup packet.
1746 * @udc: pointer to the usb device controller structure.
1747 *
1748 * Process setup packet and delegate to gadget layer.
1749 */
1750static void xudc_handle_setup(struct xusb_udc *udc)
1751	__must_hold(&udc->lock)
1752{
1753	struct xusb_ep *ep0 = &udc->ep[0];
1754	struct usb_ctrlrequest setup;
1755	u32 *ep0rambase;
1756
1757	/* Load up the chapter 9 command buffer.*/
1758	ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1759	memcpy_toio((void __iomem *)&setup, ep0rambase, 8);
1760
1761	udc->setup = setup;
1762	udc->setup.wValue = cpu_to_le16((u16 __force)setup.wValue);
1763	udc->setup.wIndex = cpu_to_le16((u16 __force)setup.wIndex);
1764	udc->setup.wLength = cpu_to_le16((u16 __force)setup.wLength);
1765
1766	/* Clear previous requests */
1767	xudc_nuke(ep0, -ECONNRESET);
1768
1769	if (udc->setup.bRequestType & USB_DIR_IN) {
1770		/* Execute the get command.*/
1771		udc->setupseqrx = STATUS_PHASE;
1772		udc->setupseqtx = DATA_PHASE;
1773	} else {
1774		/* Execute the put command.*/
1775		udc->setupseqrx = DATA_PHASE;
1776		udc->setupseqtx = STATUS_PHASE;
1777	}
1778
1779	switch (udc->setup.bRequest) {
1780	case USB_REQ_GET_STATUS:
1781		/* Data+Status phase form udc */
1782		if ((udc->setup.bRequestType &
1783				(USB_DIR_IN | USB_TYPE_MASK)) !=
1784				(USB_DIR_IN | USB_TYPE_STANDARD))
1785			break;
1786		xudc_getstatus(udc);
1787		return;
1788	case USB_REQ_SET_ADDRESS:
1789		/* Status phase from udc */
1790		if (udc->setup.bRequestType != (USB_DIR_OUT |
1791				USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1792			break;
1793		xudc_setaddress(udc);
1794		return;
1795	case USB_REQ_CLEAR_FEATURE:
1796	case USB_REQ_SET_FEATURE:
1797		/* Requests with no data phase, status phase from udc */
1798		if ((udc->setup.bRequestType & USB_TYPE_MASK)
1799				!= USB_TYPE_STANDARD)
1800			break;
1801		xudc_set_clear_feature(udc);
1802		return;
1803	default:
1804		break;
1805	}
1806
1807	spin_unlock(&udc->lock);
1808	if (udc->driver->setup(&udc->gadget, &setup) < 0)
1809		xudc_ep0_stall(udc);
1810	spin_lock(&udc->lock);
1811}
1812
1813/**
1814 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1815 * @udc: pointer to the usb device controller structure.
1816 */
1817static void xudc_ep0_out(struct xusb_udc *udc)
1818{
1819	struct xusb_ep *ep0 = &udc->ep[0];
1820	struct xusb_req *req;
1821	u8 *ep0rambase;
1822	unsigned int bytes_to_rx;
1823	void *buffer;
1824
1825	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1826
1827	switch (udc->setupseqrx) {
1828	case STATUS_PHASE:
1829		/*
1830		 * This resets both state machines for the next
1831		 * Setup packet.
1832		 */
1833		udc->setupseqrx = SETUP_PHASE;
1834		udc->setupseqtx = SETUP_PHASE;
1835		req->usb_req.actual = req->usb_req.length;
1836		xudc_done(ep0, req, 0);
1837		break;
1838	case DATA_PHASE:
1839		bytes_to_rx = udc->read_fn(udc->addr +
1840					   XUSB_EP_BUF0COUNT_OFFSET);
1841		/* Copy the data to be received from the DPRAM. */
1842		ep0rambase = (u8 __force *) (udc->addr +
1843			     (ep0->rambase << 2));
1844		buffer = req->usb_req.buf + req->usb_req.actual;
1845		req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1846		memcpy_toio((void __iomem *)buffer, ep0rambase, bytes_to_rx);
1847
1848		if (req->usb_req.length == req->usb_req.actual) {
1849			/* Data transfer completed get ready for Status stage */
1850			xudc_wrstatus(udc);
1851		} else {
1852			/* Enable EP0 buffer to receive data */
1853			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1854			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1855		}
1856		break;
1857	default:
1858		break;
1859	}
1860}
1861
1862/**
1863 * xudc_ep0_in - Processes the endpoint 0 IN token.
1864 * @udc: pointer to the usb device controller structure.
1865 */
1866static void xudc_ep0_in(struct xusb_udc *udc)
1867{
1868	struct xusb_ep *ep0 = &udc->ep[0];
1869	struct xusb_req *req;
1870	unsigned int bytes_to_tx;
1871	void *buffer;
1872	u32 epcfgreg;
1873	u16 count = 0;
1874	u16 length;
1875	u8 *ep0rambase;
1876	u8 test_mode = le16_to_cpu(udc->setup.wIndex) >> 8;
1877
1878	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1879	bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1880
1881	switch (udc->setupseqtx) {
1882	case STATUS_PHASE:
1883		switch (udc->setup.bRequest) {
1884		case USB_REQ_SET_ADDRESS:
1885			/* Set the address of the device.*/
1886			udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1887				      le16_to_cpu(udc->setup.wValue));
1888			break;
1889		case USB_REQ_SET_FEATURE:
1890			if (udc->setup.bRequestType ==
1891					USB_RECIP_DEVICE) {
1892				if (le16_to_cpu(udc->setup.wValue) ==
1893						USB_DEVICE_TEST_MODE)
1894					udc->write_fn(udc->addr,
1895						      XUSB_TESTMODE_OFFSET,
1896						      test_mode);
1897			}
1898			break;
1899		}
1900		req->usb_req.actual = req->usb_req.length;
1901		xudc_done(ep0, req, 0);
1902		break;
1903	case DATA_PHASE:
1904		if (!bytes_to_tx) {
1905			/*
1906			 * We're done with data transfer, next
1907			 * will be zero length OUT with data toggle of
1908			 * 1. Setup data_toggle.
1909			 */
1910			epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1911			epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1912			udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1913			udc->setupseqtx = STATUS_PHASE;
1914		} else {
1915			length = count = min_t(u32, bytes_to_tx,
1916					       EP0_MAX_PACKET);
1917			/* Copy the data to be transmitted into the DPRAM. */
1918			ep0rambase = (u8 __force *) (udc->addr +
1919				     (ep0->rambase << 2));
1920			buffer = req->usb_req.buf + req->usb_req.actual;
1921			req->usb_req.actual = req->usb_req.actual + length;
1922			memcpy_toio((void __iomem *)ep0rambase, buffer, length);
1923		}
1924		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1925		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1926		break;
1927	default:
1928		break;
1929	}
1930}
1931
1932/**
1933 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1934 * @udc: pointer to the udc structure.
1935 * @intrstatus:	It's the mask value for the interrupt sources on endpoint 0.
1936 *
1937 * Processes the commands received during enumeration phase.
1938 */
1939static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1940{
1941
1942	if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1943		xudc_handle_setup(udc);
1944	} else {
1945		if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1946			xudc_ep0_out(udc);
1947		else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1948			xudc_ep0_in(udc);
1949	}
1950}
1951
1952/**
1953 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1954 * @udc: pointer to the udc structure.
1955 * @epnum: End point number for which the interrupt is to be processed
1956 * @intrstatus:	mask value for interrupt sources of endpoints other
1957 *		than endpoint 0.
1958 *
1959 * Processes the buffer completion interrupts.
1960 */
1961static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1962				    u32 intrstatus)
1963{
1964
1965	struct xusb_req *req;
1966	struct xusb_ep *ep;
1967
1968	ep = &udc->ep[epnum];
1969	/* Process the End point interrupts.*/
1970	if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1971		ep->buffer0ready = 0;
1972	if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1973		ep->buffer1ready = false;
1974
1975	if (list_empty(&ep->queue))
1976		return;
1977
1978	req = list_first_entry(&ep->queue, struct xusb_req, queue);
1979
1980	if (ep->is_in)
1981		xudc_write_fifo(ep, req);
1982	else
1983		xudc_read_fifo(ep, req);
1984}
1985
1986/**
1987 * xudc_irq - The main interrupt handler.
1988 * @irq: The interrupt number.
1989 * @_udc: pointer to the usb device controller structure.
1990 *
1991 * Return: IRQ_HANDLED after the interrupt is handled.
1992 */
1993static irqreturn_t xudc_irq(int irq, void *_udc)
1994{
1995	struct xusb_udc *udc = _udc;
1996	u32 intrstatus;
1997	u32 ier;
1998	u8 index;
1999	u32 bufintr;
2000	unsigned long flags;
2001
2002	spin_lock_irqsave(&udc->lock, flags);
2003
2004	/*
2005	 * Event interrupts are level sensitive hence first disable
2006	 * IER, read ISR and figure out active interrupts.
2007	 */
2008	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2009	ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
2010	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2011
2012	/* Read the Interrupt Status Register.*/
2013	intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
2014
2015	/* Call the handler for the event interrupt.*/
2016	if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2017		/*
2018		 * Check if there is any action to be done for :
2019		 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2020		 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2021		 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2022		 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2023		 */
2024		xudc_startup_handler(udc, intrstatus);
2025	}
2026
2027	/* Check the buffer completion interrupts */
2028	if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2029		/* Enable Reset, Suspend, Resume and Disconnect  */
2030		ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2031		ier |= XUSB_STATUS_INTR_EVENT_MASK;
2032		udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2033
2034		if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2035			xudc_ctrl_ep_handler(udc, intrstatus);
2036
2037		for (index = 1; index < 8; index++) {
2038			bufintr = ((intrstatus &
2039				  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2040				  (index - 1))) || (intrstatus &
2041				  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2042				  (index - 1))));
2043			if (bufintr) {
2044				xudc_nonctrl_ep_handler(udc, index,
2045							intrstatus);
2046			}
2047		}
2048	}
2049
2050	spin_unlock_irqrestore(&udc->lock, flags);
2051	return IRQ_HANDLED;
2052}
2053
2054/**
2055 * xudc_probe - The device probe function for driver initialization.
2056 * @pdev: pointer to the platform device structure.
2057 *
2058 * Return: 0 for success and error value on failure
2059 */
2060static int xudc_probe(struct platform_device *pdev)
2061{
2062	struct device_node *np = pdev->dev.of_node;
2063	struct resource *res;
2064	struct xusb_udc *udc;
2065	int irq;
2066	int ret;
2067	u32 ier;
2068	u8 *buff;
2069
2070	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2071	if (!udc)
2072		return -ENOMEM;
2073
2074	/* Create a dummy request for GET_STATUS, SET_ADDRESS */
2075	udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2076				GFP_KERNEL);
2077	if (!udc->req)
2078		return -ENOMEM;
2079
2080	buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2081	if (!buff)
2082		return -ENOMEM;
2083
2084	udc->req->usb_req.buf = buff;
2085
2086	/* Map the registers */
2087	udc->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
 
2088	if (IS_ERR(udc->addr))
2089		return PTR_ERR(udc->addr);
2090
2091	irq = platform_get_irq(pdev, 0);
2092	if (irq < 0)
2093		return irq;
2094	ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2095			       dev_name(&pdev->dev), udc);
2096	if (ret < 0) {
2097		dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2098		goto fail;
2099	}
2100
2101	udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2102
2103	/* Setup gadget structure */
2104	udc->gadget.ops = &xusb_udc_ops;
2105	udc->gadget.max_speed = USB_SPEED_HIGH;
2106	udc->gadget.speed = USB_SPEED_UNKNOWN;
2107	udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2108	udc->gadget.name = driver_name;
2109
2110	udc->clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
2111	if (IS_ERR(udc->clk)) {
2112		if (PTR_ERR(udc->clk) != -ENOENT) {
2113			ret = PTR_ERR(udc->clk);
2114			goto fail;
2115		}
2116
2117		/*
2118		 * Clock framework support is optional, continue on,
2119		 * anyways if we don't find a matching clock
2120		 */
2121		dev_warn(&pdev->dev, "s_axi_aclk clock property is not found\n");
2122		udc->clk = NULL;
2123	}
2124
2125	ret = clk_prepare_enable(udc->clk);
2126	if (ret) {
2127		dev_err(&pdev->dev, "Unable to enable clock.\n");
2128		return ret;
2129	}
2130
2131	spin_lock_init(&udc->lock);
2132
2133	/* Check for IP endianness */
2134	udc->write_fn = xudc_write32_be;
2135	udc->read_fn = xudc_read32_be;
2136	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J);
2137	if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2138			!= USB_TEST_J) {
2139		udc->write_fn = xudc_write32;
2140		udc->read_fn = xudc_read32;
2141	}
2142	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2143
2144	xudc_eps_init(udc);
2145
2146	/* Set device address to 0.*/
2147	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2148
2149	ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2150	if (ret)
2151		goto err_disable_unprepare_clk;
2152
2153	udc->dev = &udc->gadget.dev;
2154
2155	/* Enable the interrupts.*/
2156	ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2157	      XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2158	      XUSB_STATUS_SETUP_PACKET_MASK |
2159	      XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2160
2161	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2162
2163	platform_set_drvdata(pdev, udc);
2164
2165	dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2166		 driver_name, (u32)res->start, udc->addr,
2167		 udc->dma_enabled ? "with DMA" : "without DMA");
2168
2169	return 0;
2170
2171err_disable_unprepare_clk:
2172	clk_disable_unprepare(udc->clk);
2173fail:
2174	dev_err(&pdev->dev, "probe failed, %d\n", ret);
2175	return ret;
2176}
2177
2178/**
2179 * xudc_remove - Releases the resources allocated during the initialization.
2180 * @pdev: pointer to the platform device structure.
2181 *
2182 * Return: 0 always
2183 */
2184static void xudc_remove(struct platform_device *pdev)
2185{
2186	struct xusb_udc *udc = platform_get_drvdata(pdev);
2187
2188	usb_del_gadget_udc(&udc->gadget);
2189	clk_disable_unprepare(udc->clk);
2190}
2191
2192#ifdef CONFIG_PM_SLEEP
2193static int xudc_suspend(struct device *dev)
2194{
2195	struct xusb_udc *udc;
2196	u32 crtlreg;
2197	unsigned long flags;
2198
2199	udc = dev_get_drvdata(dev);
2200
2201	spin_lock_irqsave(&udc->lock, flags);
2202
2203	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
2204	crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
2205
2206	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
2207
2208	spin_unlock_irqrestore(&udc->lock, flags);
2209	if (udc->driver && udc->driver->suspend)
2210		udc->driver->suspend(&udc->gadget);
2211
2212	clk_disable(udc->clk);
2213
2214	return 0;
2215}
2216
2217static int xudc_resume(struct device *dev)
2218{
2219	struct xusb_udc *udc;
2220	u32 crtlreg;
2221	unsigned long flags;
2222	int ret;
2223
2224	udc = dev_get_drvdata(dev);
2225
2226	ret = clk_enable(udc->clk);
2227	if (ret < 0)
2228		return ret;
2229
2230	spin_lock_irqsave(&udc->lock, flags);
2231
2232	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
2233	crtlreg |= XUSB_CONTROL_USB_READY_MASK;
2234
2235	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
2236
2237	spin_unlock_irqrestore(&udc->lock, flags);
2238
2239	return 0;
2240}
2241#endif /* CONFIG_PM_SLEEP */
2242
2243static const struct dev_pm_ops xudc_pm_ops = {
2244	SET_SYSTEM_SLEEP_PM_OPS(xudc_suspend, xudc_resume)
2245};
2246
2247/* Match table for of_platform binding */
2248static const struct of_device_id usb_of_match[] = {
2249	{ .compatible = "xlnx,usb2-device-4.00.a", },
2250	{ /* end of list */ },
2251};
2252MODULE_DEVICE_TABLE(of, usb_of_match);
2253
2254static struct platform_driver xudc_driver = {
2255	.driver = {
2256		.name = driver_name,
2257		.of_match_table = usb_of_match,
2258		.pm	= &xudc_pm_ops,
2259	},
2260	.probe = xudc_probe,
2261	.remove_new = xudc_remove,
2262};
2263
2264module_platform_driver(xudc_driver);
2265
2266MODULE_DESCRIPTION("Xilinx udc driver");
2267MODULE_AUTHOR("Xilinx, Inc");
2268MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Xilinx USB peripheral controller driver
   4 *
   5 * Copyright (C) 2004 by Thomas Rathbone
   6 * Copyright (C) 2005 by HP Labs
   7 * Copyright (C) 2005 by David Brownell
   8 * Copyright (C) 2010 - 2014 Xilinx, Inc.
   9 *
  10 * Some parts of this driver code is based on the driver for at91-series
  11 * USB peripheral controller (at91_udc.c).
  12 */
  13
 
  14#include <linux/delay.h>
  15#include <linux/device.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of_address.h>
  21#include <linux/of_device.h>
  22#include <linux/of_platform.h>
  23#include <linux/of_irq.h>
  24#include <linux/prefetch.h>
  25#include <linux/usb/ch9.h>
  26#include <linux/usb/gadget.h>
  27
  28/* Register offsets for the USB device.*/
  29#define XUSB_EP0_CONFIG_OFFSET		0x0000  /* EP0 Config Reg Offset */
  30#define XUSB_SETUP_PKT_ADDR_OFFSET	0x0080  /* Setup Packet Address */
  31#define XUSB_ADDRESS_OFFSET		0x0100  /* Address Register */
  32#define XUSB_CONTROL_OFFSET		0x0104  /* Control Register */
  33#define XUSB_STATUS_OFFSET		0x0108  /* Status Register */
  34#define XUSB_FRAMENUM_OFFSET		0x010C	/* Frame Number Register */
  35#define XUSB_IER_OFFSET			0x0110	/* Interrupt Enable Register */
  36#define XUSB_BUFFREADY_OFFSET		0x0114	/* Buffer Ready Register */
  37#define XUSB_TESTMODE_OFFSET		0x0118	/* Test Mode Register */
  38#define XUSB_DMA_RESET_OFFSET		0x0200  /* DMA Soft Reset Register */
  39#define XUSB_DMA_CONTROL_OFFSET		0x0204	/* DMA Control Register */
  40#define XUSB_DMA_DSAR_ADDR_OFFSET	0x0208	/* DMA source Address Reg */
  41#define XUSB_DMA_DDAR_ADDR_OFFSET	0x020C	/* DMA destination Addr Reg */
  42#define XUSB_DMA_LENGTH_OFFSET		0x0210	/* DMA Length Register */
  43#define XUSB_DMA_STATUS_OFFSET		0x0214	/* DMA Status Register */
  44
  45/* Endpoint Configuration Space offsets */
  46#define XUSB_EP_CFGSTATUS_OFFSET	0x00	/* Endpoint Config Status  */
  47#define XUSB_EP_BUF0COUNT_OFFSET	0x08	/* Buffer 0 Count */
  48#define XUSB_EP_BUF1COUNT_OFFSET	0x0C	/* Buffer 1 Count */
  49
  50#define XUSB_CONTROL_USB_READY_MASK	0x80000000 /* USB ready Mask */
  51#define XUSB_CONTROL_USB_RMTWAKE_MASK	0x40000000 /* Remote wake up mask */
  52
  53/* Interrupt register related masks.*/
  54#define XUSB_STATUS_GLOBAL_INTR_MASK	0x80000000 /* Global Intr Enable */
  55#define XUSB_STATUS_DMADONE_MASK	0x04000000 /* DMA done Mask */
  56#define XUSB_STATUS_DMAERR_MASK		0x02000000 /* DMA Error Mask */
  57#define XUSB_STATUS_DMABUSY_MASK	0x80000000 /* DMA Error Mask */
  58#define XUSB_STATUS_RESUME_MASK		0x01000000 /* USB Resume Mask */
  59#define XUSB_STATUS_RESET_MASK		0x00800000 /* USB Reset Mask */
  60#define XUSB_STATUS_SUSPEND_MASK	0x00400000 /* USB Suspend Mask */
  61#define XUSB_STATUS_DISCONNECT_MASK	0x00200000 /* USB Disconnect Mask */
  62#define XUSB_STATUS_FIFO_BUFF_RDY_MASK	0x00100000 /* FIFO Buff Ready Mask */
  63#define XUSB_STATUS_FIFO_BUFF_FREE_MASK	0x00080000 /* FIFO Buff Free Mask */
  64#define XUSB_STATUS_SETUP_PACKET_MASK	0x00040000 /* Setup packet received */
  65#define XUSB_STATUS_EP1_BUFF2_COMP_MASK	0x00000200 /* EP 1 Buff 2 Processed */
  66#define XUSB_STATUS_EP1_BUFF1_COMP_MASK	0x00000002 /* EP 1 Buff 1 Processed */
  67#define XUSB_STATUS_EP0_BUFF2_COMP_MASK	0x00000100 /* EP 0 Buff 2 Processed */
  68#define XUSB_STATUS_EP0_BUFF1_COMP_MASK	0x00000001 /* EP 0 Buff 1 Processed */
  69#define XUSB_STATUS_HIGH_SPEED_MASK	0x00010000 /* USB Speed Mask */
  70/* Suspend,Reset,Suspend and Disconnect Mask */
  71#define XUSB_STATUS_INTR_EVENT_MASK	0x01E00000
  72/* Buffers  completion Mask */
  73#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK	0x0000FEFF
  74/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
  75#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK	0x00000101
  76#define XUSB_STATUS_EP_BUFF2_SHIFT	8	   /* EP buffer offset */
  77
  78/* Endpoint Configuration Status Register */
  79#define XUSB_EP_CFG_VALID_MASK		0x80000000 /* Endpoint Valid bit */
  80#define XUSB_EP_CFG_STALL_MASK		0x40000000 /* Endpoint Stall bit */
  81#define XUSB_EP_CFG_DATA_TOGGLE_MASK	0x08000000 /* Endpoint Data toggle */
  82
  83/* USB device specific global configuration constants.*/
  84#define XUSB_MAX_ENDPOINTS		8	/* Maximum End Points */
  85#define XUSB_EP_NUMBER_ZERO		0	/* End point Zero */
  86/* DPRAM is the source address for DMA transfer */
  87#define XUSB_DMA_READ_FROM_DPRAM	0x80000000
  88#define XUSB_DMA_DMASR_BUSY		0x80000000 /* DMA busy */
  89#define XUSB_DMA_DMASR_ERROR		0x40000000 /* DMA Error */
  90/*
  91 * When this bit is set, the DMA buffer ready bit is set by hardware upon
  92 * DMA transfer completion.
  93 */
  94#define XUSB_DMA_BRR_CTRL		0x40000000 /* DMA bufready ctrl bit */
  95/* Phase States */
  96#define SETUP_PHASE			0x0000	/* Setup Phase */
  97#define DATA_PHASE			0x0001  /* Data Phase */
  98#define STATUS_PHASE			0x0002  /* Status Phase */
  99
 100#define EP0_MAX_PACKET		64 /* Endpoint 0 maximum packet length */
 101#define STATUSBUFF_SIZE		2  /* Buffer size for GET_STATUS command */
 102#define EPNAME_SIZE		4  /* Buffer size for endpoint name */
 103
 104/* container_of helper macros */
 105#define to_udc(g)	 container_of((g), struct xusb_udc, gadget)
 106#define to_xusb_ep(ep)	 container_of((ep), struct xusb_ep, ep_usb)
 107#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
 108
 109/**
 110 * struct xusb_req - Xilinx USB device request structure
 111 * @usb_req: Linux usb request structure
 112 * @queue: usb device request queue
 113 * @ep: pointer to xusb_endpoint structure
 114 */
 115struct xusb_req {
 116	struct usb_request usb_req;
 117	struct list_head queue;
 118	struct xusb_ep *ep;
 119};
 120
 121/**
 122 * struct xusb_ep - USB end point structure.
 123 * @ep_usb: usb endpoint instance
 124 * @queue: endpoint message queue
 125 * @udc: xilinx usb peripheral driver instance pointer
 126 * @desc: pointer to the usb endpoint descriptor
 127 * @rambase: the endpoint buffer address
 128 * @offset: the endpoint register offset value
 129 * @name: name of the endpoint
 130 * @epnumber: endpoint number
 131 * @maxpacket: maximum packet size the endpoint can store
 132 * @buffer0count: the size of the packet recieved in the first buffer
 133 * @buffer1count: the size of the packet received in the second buffer
 134 * @curbufnum: current buffer of endpoint that will be processed next
 135 * @buffer0ready: the busy state of first buffer
 136 * @buffer1ready: the busy state of second buffer
 137 * @is_in: endpoint direction (IN or OUT)
 138 * @is_iso: endpoint type(isochronous or non isochronous)
 139 */
 140struct xusb_ep {
 141	struct usb_ep ep_usb;
 142	struct list_head queue;
 143	struct xusb_udc *udc;
 144	const struct usb_endpoint_descriptor *desc;
 145	u32  rambase;
 146	u32  offset;
 147	char name[4];
 148	u16  epnumber;
 149	u16  maxpacket;
 150	u16  buffer0count;
 151	u16  buffer1count;
 152	u8   curbufnum;
 153	bool buffer0ready;
 154	bool buffer1ready;
 155	bool is_in;
 156	bool is_iso;
 157};
 158
 159/**
 160 * struct xusb_udc -  USB peripheral driver structure
 161 * @gadget: USB gadget driver instance
 162 * @ep: an array of endpoint structures
 163 * @driver: pointer to the usb gadget driver instance
 164 * @setup: usb_ctrlrequest structure for control requests
 165 * @req: pointer to dummy request for get status command
 166 * @dev: pointer to device structure in gadget
 167 * @usb_state: device in suspended state or not
 168 * @remote_wkp: remote wakeup enabled by host
 169 * @setupseqtx: tx status
 170 * @setupseqrx: rx status
 171 * @addr: the usb device base address
 172 * @lock: instance of spinlock
 173 * @dma_enabled: flag indicating whether the dma is included in the system
 
 174 * @read_fn: function pointer to read device registers
 175 * @write_fn: function pointer to write to device registers
 176 */
 177struct xusb_udc {
 178	struct usb_gadget gadget;
 179	struct xusb_ep ep[8];
 180	struct usb_gadget_driver *driver;
 181	struct usb_ctrlrequest setup;
 182	struct xusb_req *req;
 183	struct device *dev;
 184	u32 usb_state;
 185	u32 remote_wkp;
 186	u32 setupseqtx;
 187	u32 setupseqrx;
 188	void __iomem *addr;
 189	spinlock_t lock;
 190	bool dma_enabled;
 
 191
 192	unsigned int (*read_fn)(void __iomem *);
 193	void (*write_fn)(void __iomem *, u32, u32);
 194};
 195
 196/* Endpoint buffer start addresses in the core */
 197static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
 198			  0x1600 };
 199
 200static const char driver_name[] = "xilinx-udc";
 201static const char ep0name[] = "ep0";
 202
 203/* Control endpoint configuration.*/
 204static const struct usb_endpoint_descriptor config_bulk_out_desc = {
 205	.bLength		= USB_DT_ENDPOINT_SIZE,
 206	.bDescriptorType	= USB_DT_ENDPOINT,
 207	.bEndpointAddress	= USB_DIR_OUT,
 208	.bmAttributes		= USB_ENDPOINT_XFER_BULK,
 209	.wMaxPacketSize		= cpu_to_le16(EP0_MAX_PACKET),
 210};
 211
 212/**
 213 * xudc_write32 - little endian write to device registers
 214 * @addr: base addr of device registers
 215 * @offset: register offset
 216 * @val: data to be written
 217 */
 218static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
 219{
 220	iowrite32(val, addr + offset);
 221}
 222
 223/**
 224 * xudc_read32 - little endian read from device registers
 225 * @addr: addr of device register
 226 * Return: value at addr
 227 */
 228static unsigned int xudc_read32(void __iomem *addr)
 229{
 230	return ioread32(addr);
 231}
 232
 233/**
 234 * xudc_write32_be - big endian write to device registers
 235 * @addr: base addr of device registers
 236 * @offset: register offset
 237 * @val: data to be written
 238 */
 239static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
 240{
 241	iowrite32be(val, addr + offset);
 242}
 243
 244/**
 245 * xudc_read32_be - big endian read from device registers
 246 * @addr: addr of device register
 247 * Return: value at addr
 248 */
 249static unsigned int xudc_read32_be(void __iomem *addr)
 250{
 251	return ioread32be(addr);
 252}
 253
 254/**
 255 * xudc_wrstatus - Sets up the usb device status stages.
 256 * @udc: pointer to the usb device controller structure.
 257 */
 258static void xudc_wrstatus(struct xusb_udc *udc)
 259{
 260	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
 261	u32 epcfgreg;
 262
 263	epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
 264				XUSB_EP_CFG_DATA_TOGGLE_MASK;
 265	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
 266	udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
 267	udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
 268}
 269
 270/**
 271 * xudc_epconfig - Configures the given endpoint.
 272 * @ep: pointer to the usb device endpoint structure.
 273 * @udc: pointer to the usb peripheral controller structure.
 274 *
 275 * This function configures a specific endpoint with the given configuration
 276 * data.
 277 */
 278static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
 279{
 280	u32 epcfgreg;
 281
 282	/*
 283	 * Configure the end point direction, type, Max Packet Size and the
 284	 * EP buffer location.
 285	 */
 286	epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
 287		   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
 288	udc->write_fn(udc->addr, ep->offset, epcfgreg);
 289
 290	/* Set the Buffer count and the Buffer ready bits.*/
 291	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
 292		      ep->buffer0count);
 293	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
 294		      ep->buffer1count);
 295	if (ep->buffer0ready)
 296		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 297			      1 << ep->epnumber);
 298	if (ep->buffer1ready)
 299		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 300			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 301}
 302
 303/**
 304 * xudc_start_dma - Starts DMA transfer.
 305 * @ep: pointer to the usb device endpoint structure.
 306 * @src: DMA source address.
 307 * @dst: DMA destination address.
 308 * @length: number of bytes to transfer.
 309 *
 310 * Return: 0 on success, error code on failure
 311 *
 312 * This function starts DMA transfer by writing to DMA source,
 313 * destination and lenth registers.
 314 */
 315static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
 316			  dma_addr_t dst, u32 length)
 317{
 318	struct xusb_udc *udc = ep->udc;
 319	int rc = 0;
 320	u32 timeout = 500;
 321	u32 reg;
 322
 323	/*
 324	 * Set the addresses in the DMA source and
 325	 * destination registers and then set the length
 326	 * into the DMA length register.
 327	 */
 328	udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
 329	udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
 330	udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
 331
 332	/*
 333	 * Wait till DMA transaction is complete and
 334	 * check whether the DMA transaction was
 335	 * successful.
 336	 */
 337	do {
 338		reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
 339		if (!(reg &  XUSB_DMA_DMASR_BUSY))
 340			break;
 341
 342		/*
 343		 * We can't sleep here, because it's also called from
 344		 * interrupt context.
 345		 */
 346		timeout--;
 347		if (!timeout) {
 348			dev_err(udc->dev, "DMA timeout\n");
 349			return -ETIMEDOUT;
 350		}
 351		udelay(1);
 352	} while (1);
 353
 354	if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
 355			  XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
 356		dev_err(udc->dev, "DMA Error\n");
 357		rc = -EINVAL;
 358	}
 359
 360	return rc;
 361}
 362
 363/**
 364 * xudc_dma_send - Sends IN data using DMA.
 365 * @ep: pointer to the usb device endpoint structure.
 366 * @req: pointer to the usb request structure.
 367 * @buffer: pointer to data to be sent.
 368 * @length: number of bytes to send.
 369 *
 370 * Return: 0 on success, -EAGAIN if no buffer is free and error
 371 *	   code on failure.
 372 *
 373 * This function sends data using DMA.
 374 */
 375static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
 376			 u8 *buffer, u32 length)
 377{
 378	u32 *eprambase;
 379	dma_addr_t src;
 380	dma_addr_t dst;
 381	struct xusb_udc *udc = ep->udc;
 382
 383	src = req->usb_req.dma + req->usb_req.actual;
 384	if (req->usb_req.length)
 385		dma_sync_single_for_device(udc->dev, src,
 386					   length, DMA_TO_DEVICE);
 387	if (!ep->curbufnum && !ep->buffer0ready) {
 388		/* Get the Buffer address and copy the transmit data.*/
 389		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 390		dst = virt_to_phys(eprambase);
 391		udc->write_fn(udc->addr, ep->offset +
 392			      XUSB_EP_BUF0COUNT_OFFSET, length);
 393		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 394			      XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
 395		ep->buffer0ready = 1;
 396		ep->curbufnum = 1;
 397	} else if (ep->curbufnum && !ep->buffer1ready) {
 398		/* Get the Buffer address and copy the transmit data.*/
 399		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 400			     ep->ep_usb.maxpacket);
 401		dst = virt_to_phys(eprambase);
 402		udc->write_fn(udc->addr, ep->offset +
 403			      XUSB_EP_BUF1COUNT_OFFSET, length);
 404		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 405			      XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
 406			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 407		ep->buffer1ready = 1;
 408		ep->curbufnum = 0;
 409	} else {
 410		/* None of ping pong buffers are ready currently .*/
 411		return -EAGAIN;
 412	}
 413
 414	return xudc_start_dma(ep, src, dst, length);
 415}
 416
 417/**
 418 * xudc_dma_receive - Receives OUT data using DMA.
 419 * @ep: pointer to the usb device endpoint structure.
 420 * @req: pointer to the usb request structure.
 421 * @buffer: pointer to storage buffer of received data.
 422 * @length: number of bytes to receive.
 423 *
 424 * Return: 0 on success, -EAGAIN if no buffer is free and error
 425 *	   code on failure.
 426 *
 427 * This function receives data using DMA.
 428 */
 429static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
 430			    u8 *buffer, u32 length)
 431{
 432	u32 *eprambase;
 433	dma_addr_t src;
 434	dma_addr_t dst;
 435	struct xusb_udc *udc = ep->udc;
 436
 437	dst = req->usb_req.dma + req->usb_req.actual;
 438	if (!ep->curbufnum && !ep->buffer0ready) {
 439		/* Get the Buffer address and copy the transmit data */
 440		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 441		src = virt_to_phys(eprambase);
 442		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 443			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 444			      (1 << ep->epnumber));
 445		ep->buffer0ready = 1;
 446		ep->curbufnum = 1;
 447	} else if (ep->curbufnum && !ep->buffer1ready) {
 448		/* Get the Buffer address and copy the transmit data */
 449		eprambase = (u32 __force *)(udc->addr +
 450			     ep->rambase + ep->ep_usb.maxpacket);
 451		src = virt_to_phys(eprambase);
 452		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
 453			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
 454			      (1 << (ep->epnumber +
 455			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 456		ep->buffer1ready = 1;
 457		ep->curbufnum = 0;
 458	} else {
 459		/* None of the ping-pong buffers are ready currently */
 460		return -EAGAIN;
 461	}
 462
 463	return xudc_start_dma(ep, src, dst, length);
 464}
 465
 466/**
 467 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
 468 * @ep: pointer to the usb endpoint configuration structure.
 469 * @req: pointer to the usb request structure.
 470 * @bufferptr: pointer to buffer containing the data to be sent.
 471 * @bufferlen: The number of data bytes to be sent.
 472 *
 473 * Return: 0 on success, -EAGAIN if no buffer is free.
 474 *
 475 * This function copies the transmit/receive data to/from the end point buffer
 476 * and enables the buffer for transmission/reception.
 477 */
 478static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
 479		       u8 *bufferptr, u32 bufferlen)
 480{
 481	u32 *eprambase;
 482	u32 bytestosend;
 483	int rc = 0;
 484	struct xusb_udc *udc = ep->udc;
 485
 486	bytestosend = bufferlen;
 487	if (udc->dma_enabled) {
 488		if (ep->is_in)
 489			rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
 490		else
 491			rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
 492		return rc;
 493	}
 494	/* Put the transmit buffer into the correct ping-pong buffer.*/
 495	if (!ep->curbufnum && !ep->buffer0ready) {
 496		/* Get the Buffer address and copy the transmit data.*/
 497		eprambase = (u32 __force *)(udc->addr + ep->rambase);
 498		if (ep->is_in) {
 499			memcpy(eprambase, bufferptr, bytestosend);
 
 500			udc->write_fn(udc->addr, ep->offset +
 501				      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
 502		} else {
 503			memcpy(bufferptr, eprambase, bytestosend);
 
 504		}
 505		/*
 506		 * Enable the buffer for transmission.
 507		 */
 508		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 509			      1 << ep->epnumber);
 510		ep->buffer0ready = 1;
 511		ep->curbufnum = 1;
 512	} else if (ep->curbufnum && !ep->buffer1ready) {
 513		/* Get the Buffer address and copy the transmit data.*/
 514		eprambase = (u32 __force *)(udc->addr + ep->rambase +
 515			     ep->ep_usb.maxpacket);
 516		if (ep->is_in) {
 517			memcpy(eprambase, bufferptr, bytestosend);
 
 518			udc->write_fn(udc->addr, ep->offset +
 519				      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
 520		} else {
 521			memcpy(bufferptr, eprambase, bytestosend);
 
 522		}
 523		/*
 524		 * Enable the buffer for transmission.
 525		 */
 526		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 527			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
 528		ep->buffer1ready = 1;
 529		ep->curbufnum = 0;
 530	} else {
 531		/* None of the ping-pong buffers are ready currently */
 532		return -EAGAIN;
 533	}
 534	return rc;
 535}
 536
 537/**
 538 * xudc_done - Exeutes the endpoint data transfer completion tasks.
 539 * @ep: pointer to the usb device endpoint structure.
 540 * @req: pointer to the usb request structure.
 541 * @status: Status of the data transfer.
 542 *
 543 * Deletes the message from the queue and updates data transfer completion
 544 * status.
 545 */
 546static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
 547{
 548	struct xusb_udc *udc = ep->udc;
 549
 550	list_del_init(&req->queue);
 551
 552	if (req->usb_req.status == -EINPROGRESS)
 553		req->usb_req.status = status;
 554	else
 555		status = req->usb_req.status;
 556
 557	if (status && status != -ESHUTDOWN)
 558		dev_dbg(udc->dev, "%s done %p, status %d\n",
 559			ep->ep_usb.name, req, status);
 560	/* unmap request if DMA is present*/
 561	if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
 562		usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
 563					 ep->is_in);
 564
 565	if (req->usb_req.complete) {
 566		spin_unlock(&udc->lock);
 567		req->usb_req.complete(&ep->ep_usb, &req->usb_req);
 568		spin_lock(&udc->lock);
 569	}
 570}
 571
 572/**
 573 * xudc_read_fifo - Reads the data from the given endpoint buffer.
 574 * @ep: pointer to the usb device endpoint structure.
 575 * @req: pointer to the usb request structure.
 576 *
 577 * Return: 0 if request is completed and -EAGAIN if not completed.
 578 *
 579 * Pulls OUT packet data from the endpoint buffer.
 580 */
 581static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
 582{
 583	u8 *buf;
 584	u32 is_short, count, bufferspace;
 585	u8 bufoffset;
 586	u8 two_pkts = 0;
 587	int ret;
 588	int retval = -EAGAIN;
 589	struct xusb_udc *udc = ep->udc;
 590
 591	if (ep->buffer0ready && ep->buffer1ready) {
 592		dev_dbg(udc->dev, "Packet NOT ready!\n");
 593		return retval;
 594	}
 595top:
 596	if (ep->curbufnum)
 597		bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
 598	else
 599		bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
 600
 601	count = udc->read_fn(udc->addr + ep->offset + bufoffset);
 602
 603	if (!ep->buffer0ready && !ep->buffer1ready)
 604		two_pkts = 1;
 605
 606	buf = req->usb_req.buf + req->usb_req.actual;
 607	prefetchw(buf);
 608	bufferspace = req->usb_req.length - req->usb_req.actual;
 609	is_short = count < ep->ep_usb.maxpacket;
 610
 611	if (unlikely(!bufferspace)) {
 612		/*
 613		 * This happens when the driver's buffer
 614		 * is smaller than what the host sent.
 615		 * discard the extra data.
 616		 */
 617		if (req->usb_req.status != -EOVERFLOW)
 618			dev_dbg(udc->dev, "%s overflow %d\n",
 619				ep->ep_usb.name, count);
 620		req->usb_req.status = -EOVERFLOW;
 621		xudc_done(ep, req, -EOVERFLOW);
 622		return 0;
 623	}
 624
 625	ret = xudc_eptxrx(ep, req, buf, count);
 626	switch (ret) {
 627	case 0:
 628		req->usb_req.actual += min(count, bufferspace);
 629		dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
 630			ep->ep_usb.name, count, is_short ? "/S" : "", req,
 631			req->usb_req.actual, req->usb_req.length);
 632		bufferspace -= count;
 633		/* Completion */
 634		if ((req->usb_req.actual == req->usb_req.length) || is_short) {
 635			if (udc->dma_enabled && req->usb_req.length)
 636				dma_sync_single_for_cpu(udc->dev,
 637							req->usb_req.dma,
 638							req->usb_req.actual,
 639							DMA_FROM_DEVICE);
 640			xudc_done(ep, req, 0);
 641			return 0;
 642		}
 643		if (two_pkts) {
 644			two_pkts = 0;
 645			goto top;
 646		}
 647		break;
 648	case -EAGAIN:
 649		dev_dbg(udc->dev, "receive busy\n");
 650		break;
 651	case -EINVAL:
 652	case -ETIMEDOUT:
 653		/* DMA error, dequeue the request */
 654		xudc_done(ep, req, -ECONNRESET);
 655		retval = 0;
 656		break;
 657	}
 658
 659	return retval;
 660}
 661
 662/**
 663 * xudc_write_fifo - Writes data into the given endpoint buffer.
 664 * @ep: pointer to the usb device endpoint structure.
 665 * @req: pointer to the usb request structure.
 666 *
 667 * Return: 0 if request is completed and -EAGAIN if not completed.
 668 *
 669 * Loads endpoint buffer for an IN packet.
 670 */
 671static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
 672{
 673	u32 max;
 674	u32 length;
 675	int ret;
 676	int retval = -EAGAIN;
 677	struct xusb_udc *udc = ep->udc;
 678	int is_last, is_short = 0;
 679	u8 *buf;
 680
 681	max = le16_to_cpu(ep->desc->wMaxPacketSize);
 682	buf = req->usb_req.buf + req->usb_req.actual;
 683	prefetch(buf);
 684	length = req->usb_req.length - req->usb_req.actual;
 685	length = min(length, max);
 686
 687	ret = xudc_eptxrx(ep, req, buf, length);
 688	switch (ret) {
 689	case 0:
 690		req->usb_req.actual += length;
 691		if (unlikely(length != max)) {
 692			is_last = is_short = 1;
 693		} else {
 694			if (likely(req->usb_req.length !=
 695				   req->usb_req.actual) || req->usb_req.zero)
 696				is_last = 0;
 697			else
 698				is_last = 1;
 699		}
 700		dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
 701			__func__, ep->ep_usb.name, length, is_last ? "/L" : "",
 702			is_short ? "/S" : "",
 703			req->usb_req.length - req->usb_req.actual, req);
 704		/* completion */
 705		if (is_last) {
 706			xudc_done(ep, req, 0);
 707			retval = 0;
 708		}
 709		break;
 710	case -EAGAIN:
 711		dev_dbg(udc->dev, "Send busy\n");
 712		break;
 713	case -EINVAL:
 714	case -ETIMEDOUT:
 715		/* DMA error, dequeue the request */
 716		xudc_done(ep, req, -ECONNRESET);
 717		retval = 0;
 718		break;
 719	}
 720
 721	return retval;
 722}
 723
 724/**
 725 * xudc_nuke - Cleans up the data transfer message list.
 726 * @ep: pointer to the usb device endpoint structure.
 727 * @status: Status of the data transfer.
 728 */
 729static void xudc_nuke(struct xusb_ep *ep, int status)
 730{
 731	struct xusb_req *req;
 732
 733	while (!list_empty(&ep->queue)) {
 734		req = list_first_entry(&ep->queue, struct xusb_req, queue);
 735		xudc_done(ep, req, status);
 736	}
 737}
 738
 739/**
 740 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
 741 * @_ep: pointer to the usb device endpoint structure.
 742 * @value: value to indicate stall/unstall.
 743 *
 744 * Return: 0 for success and error value on failure
 745 */
 746static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
 747{
 748	struct xusb_ep *ep = to_xusb_ep(_ep);
 749	struct xusb_udc *udc;
 750	unsigned long flags;
 751	u32 epcfgreg;
 752
 753	if (!_ep || (!ep->desc && ep->epnumber)) {
 754		pr_debug("%s: bad ep or descriptor\n", __func__);
 755		return -EINVAL;
 756	}
 757	udc = ep->udc;
 758
 759	if (ep->is_in && (!list_empty(&ep->queue)) && value) {
 760		dev_dbg(udc->dev, "requests pending can't halt\n");
 761		return -EAGAIN;
 762	}
 763
 764	if (ep->buffer0ready || ep->buffer1ready) {
 765		dev_dbg(udc->dev, "HW buffers busy can't halt\n");
 766		return -EAGAIN;
 767	}
 768
 769	spin_lock_irqsave(&udc->lock, flags);
 770
 771	if (value) {
 772		/* Stall the device.*/
 773		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 774		epcfgreg |= XUSB_EP_CFG_STALL_MASK;
 775		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 776	} else {
 777		/* Unstall the device.*/
 778		epcfgreg = udc->read_fn(udc->addr + ep->offset);
 779		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
 780		udc->write_fn(udc->addr, ep->offset, epcfgreg);
 781		if (ep->epnumber) {
 782			/* Reset the toggle bit.*/
 783			epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
 784			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
 785			udc->write_fn(udc->addr, ep->offset, epcfgreg);
 786		}
 787	}
 788
 789	spin_unlock_irqrestore(&udc->lock, flags);
 790	return 0;
 791}
 792
 793/**
 794 * __xudc_ep_enable - Enables the given endpoint.
 795 * @ep: pointer to the xusb endpoint structure.
 796 * @desc: pointer to usb endpoint descriptor.
 797 *
 798 * Return: 0 for success and error value on failure
 799 */
 800static int __xudc_ep_enable(struct xusb_ep *ep,
 801			    const struct usb_endpoint_descriptor *desc)
 802{
 803	struct xusb_udc *udc = ep->udc;
 804	u32 tmp;
 805	u32 epcfg;
 806	u32 ier;
 807	u16 maxpacket;
 808
 809	ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
 810	/* Bit 3...0:endpoint number */
 811	ep->epnumber = (desc->bEndpointAddress & 0x0f);
 812	ep->desc = desc;
 813	ep->ep_usb.desc = desc;
 814	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
 815	ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
 816
 817	switch (tmp) {
 818	case USB_ENDPOINT_XFER_CONTROL:
 819		dev_dbg(udc->dev, "only one control endpoint\n");
 820		/* NON- ISO */
 821		ep->is_iso = 0;
 822		return -EINVAL;
 823	case USB_ENDPOINT_XFER_INT:
 824		/* NON- ISO */
 825		ep->is_iso = 0;
 826		if (maxpacket > 64) {
 827			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 828			return -EINVAL;
 829		}
 830		break;
 831	case USB_ENDPOINT_XFER_BULK:
 832		/* NON- ISO */
 833		ep->is_iso = 0;
 834		if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
 835				maxpacket <= 512)) {
 836			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
 837			return -EINVAL;
 838		}
 839		break;
 840	case USB_ENDPOINT_XFER_ISOC:
 841		/* ISO */
 842		ep->is_iso = 1;
 843		break;
 844	}
 845
 846	ep->buffer0ready = false;
 847	ep->buffer1ready = false;
 848	ep->curbufnum = 0;
 849	ep->rambase = rambase[ep->epnumber];
 850	xudc_epconfig(ep, udc);
 851
 852	dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
 853		ep->epnumber, maxpacket);
 854
 855	/* Enable the End point.*/
 856	epcfg = udc->read_fn(udc->addr + ep->offset);
 857	epcfg |= XUSB_EP_CFG_VALID_MASK;
 858	udc->write_fn(udc->addr, ep->offset, epcfg);
 859	if (ep->epnumber)
 860		ep->rambase <<= 2;
 861
 862	/* Enable buffer completion interrupts for endpoint */
 863	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
 864	ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
 865	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
 866
 867	/* for OUT endpoint set buffers ready to receive */
 868	if (ep->epnumber && !ep->is_in) {
 869		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 870			      1 << ep->epnumber);
 871		ep->buffer0ready = true;
 872		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
 873			     (1 << (ep->epnumber +
 874			      XUSB_STATUS_EP_BUFF2_SHIFT)));
 875		ep->buffer1ready = true;
 876	}
 877
 878	return 0;
 879}
 880
 881/**
 882 * xudc_ep_enable - Enables the given endpoint.
 883 * @_ep: pointer to the usb endpoint structure.
 884 * @desc: pointer to usb endpoint descriptor.
 885 *
 886 * Return: 0 for success and error value on failure
 887 */
 888static int xudc_ep_enable(struct usb_ep *_ep,
 889			  const struct usb_endpoint_descriptor *desc)
 890{
 891	struct xusb_ep *ep;
 892	struct xusb_udc *udc;
 893	unsigned long flags;
 894	int ret;
 895
 896	if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
 897		pr_debug("%s: bad ep or descriptor\n", __func__);
 898		return -EINVAL;
 899	}
 900
 901	ep = to_xusb_ep(_ep);
 902	udc = ep->udc;
 903
 904	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
 905		dev_dbg(udc->dev, "bogus device state\n");
 906		return -ESHUTDOWN;
 907	}
 908
 909	spin_lock_irqsave(&udc->lock, flags);
 910	ret = __xudc_ep_enable(ep, desc);
 911	spin_unlock_irqrestore(&udc->lock, flags);
 912
 913	return ret;
 914}
 915
 916/**
 917 * xudc_ep_disable - Disables the given endpoint.
 918 * @_ep: pointer to the usb endpoint structure.
 919 *
 920 * Return: 0 for success and error value on failure
 921 */
 922static int xudc_ep_disable(struct usb_ep *_ep)
 923{
 924	struct xusb_ep *ep;
 925	unsigned long flags;
 926	u32 epcfg;
 927	struct xusb_udc *udc;
 928
 929	if (!_ep) {
 930		pr_debug("%s: invalid ep\n", __func__);
 931		return -EINVAL;
 932	}
 933
 934	ep = to_xusb_ep(_ep);
 935	udc = ep->udc;
 936
 937	spin_lock_irqsave(&udc->lock, flags);
 938
 939	xudc_nuke(ep, -ESHUTDOWN);
 940
 941	/* Restore the endpoint's pristine config */
 942	ep->desc = NULL;
 943	ep->ep_usb.desc = NULL;
 944
 945	dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
 946	/* Disable the endpoint.*/
 947	epcfg = udc->read_fn(udc->addr + ep->offset);
 948	epcfg &= ~XUSB_EP_CFG_VALID_MASK;
 949	udc->write_fn(udc->addr, ep->offset, epcfg);
 950
 951	spin_unlock_irqrestore(&udc->lock, flags);
 952	return 0;
 953}
 954
 955/**
 956 * xudc_ep_alloc_request - Initializes the request queue.
 957 * @_ep: pointer to the usb endpoint structure.
 958 * @gfp_flags: Flags related to the request call.
 959 *
 960 * Return: pointer to request structure on success and a NULL on failure.
 961 */
 962static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
 963						 gfp_t gfp_flags)
 964{
 965	struct xusb_ep *ep = to_xusb_ep(_ep);
 966	struct xusb_req *req;
 967
 968	req = kzalloc(sizeof(*req), gfp_flags);
 969	if (!req)
 970		return NULL;
 971
 972	req->ep = ep;
 973	INIT_LIST_HEAD(&req->queue);
 974	return &req->usb_req;
 975}
 976
 977/**
 978 * xudc_free_request - Releases the request from queue.
 979 * @_ep: pointer to the usb device endpoint structure.
 980 * @_req: pointer to the usb request structure.
 981 */
 982static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
 983{
 984	struct xusb_req *req = to_xusb_req(_req);
 985
 986	kfree(req);
 987}
 988
 989/**
 990 * __xudc_ep0_queue - Adds the request to endpoint 0 queue.
 991 * @ep0: pointer to the xusb endpoint 0 structure.
 992 * @req: pointer to the xusb request structure.
 993 *
 994 * Return: 0 for success and error value on failure
 995 */
 996static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
 997{
 998	struct xusb_udc *udc = ep0->udc;
 999	u32 length;
1000	u8 *corebuf;
1001
1002	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1003		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1004		return -EINVAL;
1005	}
1006	if (!list_empty(&ep0->queue)) {
1007		dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1008		return -EBUSY;
1009	}
1010
1011	req->usb_req.status = -EINPROGRESS;
1012	req->usb_req.actual = 0;
1013
1014	list_add_tail(&req->queue, &ep0->queue);
1015
1016	if (udc->setup.bRequestType & USB_DIR_IN) {
1017		prefetch(req->usb_req.buf);
1018		length = req->usb_req.length;
1019		corebuf = (void __force *) ((ep0->rambase << 2) +
1020			   udc->addr);
1021		length = req->usb_req.actual = min_t(u32, length,
1022						     EP0_MAX_PACKET);
1023		memcpy(corebuf, req->usb_req.buf, length);
1024		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1025		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1026	} else {
1027		if (udc->setup.wLength) {
1028			/* Enable EP0 buffer to receive data */
1029			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1030			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031		} else {
1032			xudc_wrstatus(udc);
1033		}
1034	}
1035
1036	return 0;
1037}
1038
1039/**
1040 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1041 * @_ep: pointer to the usb endpoint 0 structure.
1042 * @_req: pointer to the usb request structure.
1043 * @gfp_flags: Flags related to the request call.
1044 *
1045 * Return: 0 for success and error value on failure
1046 */
1047static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1048			  gfp_t gfp_flags)
1049{
1050	struct xusb_req *req	= to_xusb_req(_req);
1051	struct xusb_ep	*ep0	= to_xusb_ep(_ep);
1052	struct xusb_udc *udc	= ep0->udc;
1053	unsigned long flags;
1054	int ret;
1055
1056	spin_lock_irqsave(&udc->lock, flags);
1057	ret = __xudc_ep0_queue(ep0, req);
1058	spin_unlock_irqrestore(&udc->lock, flags);
1059
1060	return ret;
1061}
1062
1063/**
1064 * xudc_ep_queue - Adds the request to endpoint queue.
1065 * @_ep: pointer to the usb endpoint structure.
1066 * @_req: pointer to the usb request structure.
1067 * @gfp_flags: Flags related to the request call.
1068 *
1069 * Return: 0 for success and error value on failure
1070 */
1071static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1072			 gfp_t gfp_flags)
1073{
1074	struct xusb_req *req = to_xusb_req(_req);
1075	struct xusb_ep	*ep  = to_xusb_ep(_ep);
1076	struct xusb_udc *udc = ep->udc;
1077	int  ret;
1078	unsigned long flags;
1079
1080	if (!ep->desc) {
1081		dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1082			__func__, ep->name);
1083		return -ESHUTDOWN;
1084	}
1085
1086	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1087		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1088		return -EINVAL;
1089	}
1090
1091	spin_lock_irqsave(&udc->lock, flags);
1092
1093	_req->status = -EINPROGRESS;
1094	_req->actual = 0;
1095
1096	if (udc->dma_enabled) {
1097		ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1098					     ep->is_in);
1099		if (ret) {
1100			dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1101				ep->epnumber);
1102			spin_unlock_irqrestore(&udc->lock, flags);
1103			return -EAGAIN;
1104		}
1105	}
1106
1107	if (list_empty(&ep->queue)) {
1108		if (ep->is_in) {
1109			dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1110			if (!xudc_write_fifo(ep, req))
1111				req = NULL;
1112		} else {
1113			dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1114			if (!xudc_read_fifo(ep, req))
1115				req = NULL;
1116		}
1117	}
1118
1119	if (req != NULL)
1120		list_add_tail(&req->queue, &ep->queue);
1121
1122	spin_unlock_irqrestore(&udc->lock, flags);
1123	return 0;
1124}
1125
1126/**
1127 * xudc_ep_dequeue - Removes the request from the queue.
1128 * @_ep: pointer to the usb device endpoint structure.
1129 * @_req: pointer to the usb request structure.
1130 *
1131 * Return: 0 for success and error value on failure
1132 */
1133static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1134{
1135	struct xusb_ep *ep	= to_xusb_ep(_ep);
1136	struct xusb_req *req	= to_xusb_req(_req);
 
1137	struct xusb_udc *udc	= ep->udc;
1138	unsigned long flags;
1139
1140	spin_lock_irqsave(&udc->lock, flags);
1141	/* Make sure it's actually queued on this endpoint */
1142	list_for_each_entry(req, &ep->queue, queue) {
1143		if (&req->usb_req == _req)
1144			break;
 
 
1145	}
1146	if (&req->usb_req != _req) {
1147		spin_unlock_irqrestore(&udc->lock, flags);
1148		return -EINVAL;
1149	}
1150	xudc_done(ep, req, -ECONNRESET);
1151	spin_unlock_irqrestore(&udc->lock, flags);
1152
1153	return 0;
1154}
1155
1156/**
1157 * xudc_ep0_enable - Enables the given endpoint.
1158 * @ep: pointer to the usb endpoint structure.
1159 * @desc: pointer to usb endpoint descriptor.
1160 *
1161 * Return: error always.
1162 *
1163 * endpoint 0 enable should not be called by gadget layer.
1164 */
1165static int xudc_ep0_enable(struct usb_ep *ep,
1166			   const struct usb_endpoint_descriptor *desc)
1167{
1168	return -EINVAL;
1169}
1170
1171/**
1172 * xudc_ep0_disable - Disables the given endpoint.
1173 * @ep: pointer to the usb endpoint structure.
1174 *
1175 * Return: error always.
1176 *
1177 * endpoint 0 disable should not be called by gadget layer.
1178 */
1179static int xudc_ep0_disable(struct usb_ep *ep)
1180{
1181	return -EINVAL;
1182}
1183
1184static const struct usb_ep_ops xusb_ep0_ops = {
1185	.enable		= xudc_ep0_enable,
1186	.disable	= xudc_ep0_disable,
1187	.alloc_request	= xudc_ep_alloc_request,
1188	.free_request	= xudc_free_request,
1189	.queue		= xudc_ep0_queue,
1190	.dequeue	= xudc_ep_dequeue,
1191	.set_halt	= xudc_ep_set_halt,
1192};
1193
1194static const struct usb_ep_ops xusb_ep_ops = {
1195	.enable		= xudc_ep_enable,
1196	.disable	= xudc_ep_disable,
1197	.alloc_request	= xudc_ep_alloc_request,
1198	.free_request	= xudc_free_request,
1199	.queue		= xudc_ep_queue,
1200	.dequeue	= xudc_ep_dequeue,
1201	.set_halt	= xudc_ep_set_halt,
1202};
1203
1204/**
1205 * xudc_get_frame - Reads the current usb frame number.
1206 * @gadget: pointer to the usb gadget structure.
1207 *
1208 * Return: current frame number for success and error value on failure.
1209 */
1210static int xudc_get_frame(struct usb_gadget *gadget)
1211{
1212	struct xusb_udc *udc;
1213	int frame;
1214
1215	if (!gadget)
1216		return -ENODEV;
1217
1218	udc = to_udc(gadget);
1219	frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1220	return frame;
1221}
1222
1223/**
1224 * xudc_wakeup - Send remote wakeup signal to host
1225 * @gadget: pointer to the usb gadget structure.
1226 *
1227 * Return: 0 on success and error on failure
1228 */
1229static int xudc_wakeup(struct usb_gadget *gadget)
1230{
1231	struct xusb_udc *udc = to_udc(gadget);
1232	u32 crtlreg;
1233	int status = -EINVAL;
1234	unsigned long flags;
1235
1236	spin_lock_irqsave(&udc->lock, flags);
1237
1238	/* Remote wake up not enabled by host */
1239	if (!udc->remote_wkp)
1240		goto done;
1241
1242	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1243	crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1244	/* set remote wake up bit */
1245	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1246	/*
1247	 * wait for a while and reset remote wake up bit since this bit
1248	 * is not cleared by HW after sending remote wakeup to host.
1249	 */
1250	mdelay(2);
1251
1252	crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1253	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254	status = 0;
1255done:
1256	spin_unlock_irqrestore(&udc->lock, flags);
1257	return status;
1258}
1259
1260/**
1261 * xudc_pullup - start/stop USB traffic
1262 * @gadget: pointer to the usb gadget structure.
1263 * @is_on: flag to start or stop
1264 *
1265 * Return: 0 always
1266 *
1267 * This function starts/stops SIE engine of IP based on is_on.
1268 */
1269static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1270{
1271	struct xusb_udc *udc = to_udc(gadget);
1272	unsigned long flags;
1273	u32 crtlreg;
1274
1275	spin_lock_irqsave(&udc->lock, flags);
1276
1277	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1278	if (is_on)
1279		crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1280	else
1281		crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1282
1283	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1284
1285	spin_unlock_irqrestore(&udc->lock, flags);
1286
1287	return 0;
1288}
1289
1290/**
1291 * xudc_eps_init - initialize endpoints.
1292 * @udc: pointer to the usb device controller structure.
1293 */
1294static void xudc_eps_init(struct xusb_udc *udc)
1295{
1296	u32 ep_number;
1297
1298	INIT_LIST_HEAD(&udc->gadget.ep_list);
1299
1300	for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1301		struct xusb_ep *ep = &udc->ep[ep_number];
1302
1303		if (ep_number) {
1304			list_add_tail(&ep->ep_usb.ep_list,
1305				      &udc->gadget.ep_list);
1306			usb_ep_set_maxpacket_limit(&ep->ep_usb,
1307						  (unsigned short) ~0);
1308			snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1309			ep->ep_usb.name = ep->name;
1310			ep->ep_usb.ops = &xusb_ep_ops;
1311
1312			ep->ep_usb.caps.type_iso = true;
1313			ep->ep_usb.caps.type_bulk = true;
1314			ep->ep_usb.caps.type_int = true;
1315		} else {
1316			ep->ep_usb.name = ep0name;
1317			usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1318			ep->ep_usb.ops = &xusb_ep0_ops;
1319
1320			ep->ep_usb.caps.type_control = true;
1321		}
1322
1323		ep->ep_usb.caps.dir_in = true;
1324		ep->ep_usb.caps.dir_out = true;
1325
1326		ep->udc = udc;
1327		ep->epnumber = ep_number;
1328		ep->desc = NULL;
1329		/*
1330		 * The configuration register address offset between
1331		 * each endpoint is 0x10.
1332		 */
1333		ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1334		ep->is_in = 0;
1335		ep->is_iso = 0;
1336		ep->maxpacket = 0;
1337		xudc_epconfig(ep, udc);
1338
1339		/* Initialize one queue per endpoint */
1340		INIT_LIST_HEAD(&ep->queue);
1341	}
1342}
1343
1344/**
1345 * xudc_stop_activity - Stops any further activity on the device.
1346 * @udc: pointer to the usb device controller structure.
1347 */
1348static void xudc_stop_activity(struct xusb_udc *udc)
1349{
1350	int i;
1351	struct xusb_ep *ep;
1352
1353	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1354		ep = &udc->ep[i];
1355		xudc_nuke(ep, -ESHUTDOWN);
1356	}
1357}
1358
1359/**
1360 * xudc_start - Starts the device.
1361 * @gadget: pointer to the usb gadget structure
1362 * @driver: pointer to gadget driver structure
1363 *
1364 * Return: zero on success and error on failure
1365 */
1366static int xudc_start(struct usb_gadget *gadget,
1367		      struct usb_gadget_driver *driver)
1368{
1369	struct xusb_udc *udc	= to_udc(gadget);
1370	struct xusb_ep *ep0	= &udc->ep[XUSB_EP_NUMBER_ZERO];
1371	const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1372	unsigned long flags;
1373	int ret = 0;
1374
1375	spin_lock_irqsave(&udc->lock, flags);
1376
1377	if (udc->driver) {
1378		dev_err(udc->dev, "%s is already bound to %s\n",
1379			udc->gadget.name, udc->driver->driver.name);
1380		ret = -EBUSY;
1381		goto err;
1382	}
1383
1384	/* hook up the driver */
1385	udc->driver = driver;
1386	udc->gadget.speed = driver->max_speed;
1387
1388	/* Enable the control endpoint. */
1389	ret = __xudc_ep_enable(ep0, desc);
1390
1391	/* Set device address and remote wakeup to 0 */
1392	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1393	udc->remote_wkp = 0;
1394err:
1395	spin_unlock_irqrestore(&udc->lock, flags);
1396	return ret;
1397}
1398
1399/**
1400 * xudc_stop - stops the device.
1401 * @gadget: pointer to the usb gadget structure
1402 *
1403 * Return: zero always
1404 */
1405static int xudc_stop(struct usb_gadget *gadget)
1406{
1407	struct xusb_udc *udc = to_udc(gadget);
1408	unsigned long flags;
1409
1410	spin_lock_irqsave(&udc->lock, flags);
1411
1412	udc->gadget.speed = USB_SPEED_UNKNOWN;
1413	udc->driver = NULL;
1414
1415	/* Set device address and remote wakeup to 0 */
1416	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1417	udc->remote_wkp = 0;
1418
1419	xudc_stop_activity(udc);
1420
1421	spin_unlock_irqrestore(&udc->lock, flags);
1422
1423	return 0;
1424}
1425
1426static const struct usb_gadget_ops xusb_udc_ops = {
1427	.get_frame	= xudc_get_frame,
1428	.wakeup		= xudc_wakeup,
1429	.pullup		= xudc_pullup,
1430	.udc_start	= xudc_start,
1431	.udc_stop	= xudc_stop,
1432};
1433
1434/**
1435 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1436 * @udc: pointer to the udc structure.
1437 */
1438static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1439{
1440	struct xusb_ep *ep;
1441	u32 epcfgreg;
1442	int i;
1443
1444	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1445		ep = &udc->ep[i];
1446		epcfgreg = udc->read_fn(udc->addr + ep->offset);
1447		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1448		udc->write_fn(udc->addr, ep->offset, epcfgreg);
1449		if (ep->epnumber) {
1450			/* Reset the toggle bit.*/
1451			epcfgreg = udc->read_fn(udc->addr + ep->offset);
1452			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1453			udc->write_fn(udc->addr, ep->offset, epcfgreg);
1454		}
1455	}
1456}
1457
1458/**
1459 * xudc_startup_handler - The usb device controller interrupt handler.
1460 * @udc: pointer to the udc structure.
1461 * @intrstatus: The mask value containing the interrupt sources.
1462 *
1463 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1464 */
1465static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1466{
1467	u32 intrreg;
1468
1469	if (intrstatus & XUSB_STATUS_RESET_MASK) {
1470
1471		dev_dbg(udc->dev, "Reset\n");
1472
1473		if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1474			udc->gadget.speed = USB_SPEED_HIGH;
1475		else
1476			udc->gadget.speed = USB_SPEED_FULL;
1477
1478		xudc_stop_activity(udc);
1479		xudc_clear_stall_all_ep(udc);
1480		udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1481
1482		/* Set device address and remote wakeup to 0 */
1483		udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1484		udc->remote_wkp = 0;
1485
1486		/* Enable the suspend, resume and disconnect */
1487		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1488		intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1489			   XUSB_STATUS_DISCONNECT_MASK;
1490		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1491	}
1492	if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1493
1494		dev_dbg(udc->dev, "Suspend\n");
1495
1496		/* Enable the reset, resume and disconnect */
1497		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1498		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1499			   XUSB_STATUS_DISCONNECT_MASK;
1500		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1501
1502		udc->usb_state = USB_STATE_SUSPENDED;
1503
1504		if (udc->driver->suspend) {
1505			spin_unlock(&udc->lock);
1506			udc->driver->suspend(&udc->gadget);
1507			spin_lock(&udc->lock);
1508		}
1509	}
1510	if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1511		bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1512
1513		dev_WARN_ONCE(udc->dev, condition,
1514				"Resume IRQ while not suspended\n");
1515
1516		dev_dbg(udc->dev, "Resume\n");
1517
1518		/* Enable the reset, suspend and disconnect */
1519		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1520		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1521			   XUSB_STATUS_DISCONNECT_MASK;
1522		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1523
1524		udc->usb_state = 0;
1525
1526		if (udc->driver->resume) {
1527			spin_unlock(&udc->lock);
1528			udc->driver->resume(&udc->gadget);
1529			spin_lock(&udc->lock);
1530		}
1531	}
1532	if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1533
1534		dev_dbg(udc->dev, "Disconnect\n");
1535
1536		/* Enable the reset, resume and suspend */
1537		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1538		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1539			   XUSB_STATUS_SUSPEND_MASK;
1540		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1541
1542		if (udc->driver && udc->driver->disconnect) {
1543			spin_unlock(&udc->lock);
1544			udc->driver->disconnect(&udc->gadget);
1545			spin_lock(&udc->lock);
1546		}
1547	}
1548}
1549
1550/**
1551 * xudc_ep0_stall - Stall endpoint zero.
1552 * @udc: pointer to the udc structure.
1553 *
1554 * This function stalls endpoint zero.
1555 */
1556static void xudc_ep0_stall(struct xusb_udc *udc)
1557{
1558	u32 epcfgreg;
1559	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1560
1561	epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1562	epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1563	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1564}
1565
1566/**
1567 * xudc_setaddress - executes SET_ADDRESS command
1568 * @udc: pointer to the udc structure.
1569 *
1570 * This function executes USB SET_ADDRESS command
1571 */
1572static void xudc_setaddress(struct xusb_udc *udc)
1573{
1574	struct xusb_ep *ep0	= &udc->ep[0];
1575	struct xusb_req *req	= udc->req;
1576	int ret;
1577
1578	req->usb_req.length = 0;
1579	ret = __xudc_ep0_queue(ep0, req);
1580	if (ret == 0)
1581		return;
1582
1583	dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1584	xudc_ep0_stall(udc);
1585}
1586
1587/**
1588 * xudc_getstatus - executes GET_STATUS command
1589 * @udc: pointer to the udc structure.
1590 *
1591 * This function executes USB GET_STATUS command
1592 */
1593static void xudc_getstatus(struct xusb_udc *udc)
1594{
1595	struct xusb_ep *ep0	= &udc->ep[0];
1596	struct xusb_req *req	= udc->req;
1597	struct xusb_ep *target_ep;
1598	u16 status = 0;
1599	u32 epcfgreg;
1600	int epnum;
1601	u32 halt;
1602	int ret;
1603
1604	switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1605	case USB_RECIP_DEVICE:
1606		/* Get device status */
1607		status = 1 << USB_DEVICE_SELF_POWERED;
1608		if (udc->remote_wkp)
1609			status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1610		break;
1611	case USB_RECIP_INTERFACE:
1612		break;
1613	case USB_RECIP_ENDPOINT:
1614		epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
 
 
1615		target_ep = &udc->ep[epnum];
1616		epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1617		halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1618		if (udc->setup.wIndex & USB_DIR_IN) {
1619			if (!target_ep->is_in)
1620				goto stall;
1621		} else {
1622			if (target_ep->is_in)
1623				goto stall;
1624		}
1625		if (halt)
1626			status = 1 << USB_ENDPOINT_HALT;
1627		break;
1628	default:
1629		goto stall;
1630	}
1631
1632	req->usb_req.length = 2;
1633	*(u16 *)req->usb_req.buf = cpu_to_le16(status);
1634	ret = __xudc_ep0_queue(ep0, req);
1635	if (ret == 0)
1636		return;
1637stall:
1638	dev_err(udc->dev, "Can't respond to getstatus request\n");
1639	xudc_ep0_stall(udc);
1640}
1641
1642/**
1643 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1644 * @udc: pointer to the usb device controller structure.
1645 *
1646 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1647 */
1648static void xudc_set_clear_feature(struct xusb_udc *udc)
1649{
1650	struct xusb_ep *ep0	= &udc->ep[0];
1651	struct xusb_req *req	= udc->req;
1652	struct xusb_ep *target_ep;
1653	u8 endpoint;
1654	u8 outinbit;
1655	u32 epcfgreg;
1656	int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1657	int ret;
1658
1659	switch (udc->setup.bRequestType) {
1660	case USB_RECIP_DEVICE:
1661		switch (udc->setup.wValue) {
1662		case USB_DEVICE_TEST_MODE:
1663			/*
1664			 * The Test Mode will be executed
1665			 * after the status phase.
1666			 */
1667			break;
1668		case USB_DEVICE_REMOTE_WAKEUP:
1669			if (flag)
1670				udc->remote_wkp = 1;
1671			else
1672				udc->remote_wkp = 0;
1673			break;
1674		default:
1675			xudc_ep0_stall(udc);
1676			break;
1677		}
1678		break;
1679	case USB_RECIP_ENDPOINT:
1680		if (!udc->setup.wValue) {
1681			endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
 
 
 
 
 
1682			target_ep = &udc->ep[endpoint];
1683			outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
 
1684			outinbit = outinbit >> 7;
1685
1686			/* Make sure direction matches.*/
1687			if (outinbit != target_ep->is_in) {
1688				xudc_ep0_stall(udc);
1689				return;
1690			}
1691			epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1692			if (!endpoint) {
1693				/* Clear the stall.*/
1694				epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1695				udc->write_fn(udc->addr,
1696					      target_ep->offset, epcfgreg);
1697			} else {
1698				if (flag) {
1699					epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1700					udc->write_fn(udc->addr,
1701						      target_ep->offset,
1702						      epcfgreg);
1703				} else {
1704					/* Unstall the endpoint.*/
1705					epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1706						XUSB_EP_CFG_DATA_TOGGLE_MASK);
1707					udc->write_fn(udc->addr,
1708						      target_ep->offset,
1709						      epcfgreg);
1710				}
1711			}
1712		}
1713		break;
1714	default:
1715		xudc_ep0_stall(udc);
1716		return;
1717	}
1718
1719	req->usb_req.length = 0;
1720	ret = __xudc_ep0_queue(ep0, req);
1721	if (ret == 0)
1722		return;
1723
1724	dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1725	xudc_ep0_stall(udc);
1726}
1727
1728/**
1729 * xudc_handle_setup - Processes the setup packet.
1730 * @udc: pointer to the usb device controller structure.
1731 *
1732 * Process setup packet and delegate to gadget layer.
1733 */
1734static void xudc_handle_setup(struct xusb_udc *udc)
1735	__must_hold(&udc->lock)
1736{
1737	struct xusb_ep *ep0 = &udc->ep[0];
1738	struct usb_ctrlrequest setup;
1739	u32 *ep0rambase;
1740
1741	/* Load up the chapter 9 command buffer.*/
1742	ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1743	memcpy(&setup, ep0rambase, 8);
1744
1745	udc->setup = setup;
1746	udc->setup.wValue = cpu_to_le16(setup.wValue);
1747	udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1748	udc->setup.wLength = cpu_to_le16(setup.wLength);
1749
1750	/* Clear previous requests */
1751	xudc_nuke(ep0, -ECONNRESET);
1752
1753	if (udc->setup.bRequestType & USB_DIR_IN) {
1754		/* Execute the get command.*/
1755		udc->setupseqrx = STATUS_PHASE;
1756		udc->setupseqtx = DATA_PHASE;
1757	} else {
1758		/* Execute the put command.*/
1759		udc->setupseqrx = DATA_PHASE;
1760		udc->setupseqtx = STATUS_PHASE;
1761	}
1762
1763	switch (udc->setup.bRequest) {
1764	case USB_REQ_GET_STATUS:
1765		/* Data+Status phase form udc */
1766		if ((udc->setup.bRequestType &
1767				(USB_DIR_IN | USB_TYPE_MASK)) !=
1768				(USB_DIR_IN | USB_TYPE_STANDARD))
1769			break;
1770		xudc_getstatus(udc);
1771		return;
1772	case USB_REQ_SET_ADDRESS:
1773		/* Status phase from udc */
1774		if (udc->setup.bRequestType != (USB_DIR_OUT |
1775				USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1776			break;
1777		xudc_setaddress(udc);
1778		return;
1779	case USB_REQ_CLEAR_FEATURE:
1780	case USB_REQ_SET_FEATURE:
1781		/* Requests with no data phase, status phase from udc */
1782		if ((udc->setup.bRequestType & USB_TYPE_MASK)
1783				!= USB_TYPE_STANDARD)
1784			break;
1785		xudc_set_clear_feature(udc);
1786		return;
1787	default:
1788		break;
1789	}
1790
1791	spin_unlock(&udc->lock);
1792	if (udc->driver->setup(&udc->gadget, &setup) < 0)
1793		xudc_ep0_stall(udc);
1794	spin_lock(&udc->lock);
1795}
1796
1797/**
1798 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1799 * @udc: pointer to the usb device controller structure.
1800 */
1801static void xudc_ep0_out(struct xusb_udc *udc)
1802{
1803	struct xusb_ep *ep0 = &udc->ep[0];
1804	struct xusb_req *req;
1805	u8 *ep0rambase;
1806	unsigned int bytes_to_rx;
1807	void *buffer;
1808
1809	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1810
1811	switch (udc->setupseqrx) {
1812	case STATUS_PHASE:
1813		/*
1814		 * This resets both state machines for the next
1815		 * Setup packet.
1816		 */
1817		udc->setupseqrx = SETUP_PHASE;
1818		udc->setupseqtx = SETUP_PHASE;
1819		req->usb_req.actual = req->usb_req.length;
1820		xudc_done(ep0, req, 0);
1821		break;
1822	case DATA_PHASE:
1823		bytes_to_rx = udc->read_fn(udc->addr +
1824					   XUSB_EP_BUF0COUNT_OFFSET);
1825		/* Copy the data to be received from the DPRAM. */
1826		ep0rambase = (u8 __force *) (udc->addr +
1827			     (ep0->rambase << 2));
1828		buffer = req->usb_req.buf + req->usb_req.actual;
1829		req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1830		memcpy(buffer, ep0rambase, bytes_to_rx);
1831
1832		if (req->usb_req.length == req->usb_req.actual) {
1833			/* Data transfer completed get ready for Status stage */
1834			xudc_wrstatus(udc);
1835		} else {
1836			/* Enable EP0 buffer to receive data */
1837			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1838			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1839		}
1840		break;
1841	default:
1842		break;
1843	}
1844}
1845
1846/**
1847 * xudc_ep0_in - Processes the endpoint 0 IN token.
1848 * @udc: pointer to the usb device controller structure.
1849 */
1850static void xudc_ep0_in(struct xusb_udc *udc)
1851{
1852	struct xusb_ep *ep0 = &udc->ep[0];
1853	struct xusb_req *req;
1854	unsigned int bytes_to_tx;
1855	void *buffer;
1856	u32 epcfgreg;
1857	u16 count = 0;
1858	u16 length;
1859	u8 *ep0rambase;
1860	u8 test_mode = udc->setup.wIndex >> 8;
1861
1862	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1863	bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1864
1865	switch (udc->setupseqtx) {
1866	case STATUS_PHASE:
1867		switch (udc->setup.bRequest) {
1868		case USB_REQ_SET_ADDRESS:
1869			/* Set the address of the device.*/
1870			udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1871				      udc->setup.wValue);
1872			break;
1873		case USB_REQ_SET_FEATURE:
1874			if (udc->setup.bRequestType ==
1875					USB_RECIP_DEVICE) {
1876				if (udc->setup.wValue ==
1877						USB_DEVICE_TEST_MODE)
1878					udc->write_fn(udc->addr,
1879						      XUSB_TESTMODE_OFFSET,
1880						      test_mode);
1881			}
1882			break;
1883		}
1884		req->usb_req.actual = req->usb_req.length;
1885		xudc_done(ep0, req, 0);
1886		break;
1887	case DATA_PHASE:
1888		if (!bytes_to_tx) {
1889			/*
1890			 * We're done with data transfer, next
1891			 * will be zero length OUT with data toggle of
1892			 * 1. Setup data_toggle.
1893			 */
1894			epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1895			epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1896			udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1897			udc->setupseqtx = STATUS_PHASE;
1898		} else {
1899			length = count = min_t(u32, bytes_to_tx,
1900					       EP0_MAX_PACKET);
1901			/* Copy the data to be transmitted into the DPRAM. */
1902			ep0rambase = (u8 __force *) (udc->addr +
1903				     (ep0->rambase << 2));
1904			buffer = req->usb_req.buf + req->usb_req.actual;
1905			req->usb_req.actual = req->usb_req.actual + length;
1906			memcpy(ep0rambase, buffer, length);
1907		}
1908		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1909		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1910		break;
1911	default:
1912		break;
1913	}
1914}
1915
1916/**
1917 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1918 * @udc: pointer to the udc structure.
1919 * @intrstatus:	It's the mask value for the interrupt sources on endpoint 0.
1920 *
1921 * Processes the commands received during enumeration phase.
1922 */
1923static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1924{
1925
1926	if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1927		xudc_handle_setup(udc);
1928	} else {
1929		if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1930			xudc_ep0_out(udc);
1931		else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1932			xudc_ep0_in(udc);
1933	}
1934}
1935
1936/**
1937 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1938 * @udc: pointer to the udc structure.
1939 * @epnum: End point number for which the interrupt is to be processed
1940 * @intrstatus:	mask value for interrupt sources of endpoints other
1941 *		than endpoint 0.
1942 *
1943 * Processes the buffer completion interrupts.
1944 */
1945static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1946				    u32 intrstatus)
1947{
1948
1949	struct xusb_req *req;
1950	struct xusb_ep *ep;
1951
1952	ep = &udc->ep[epnum];
1953	/* Process the End point interrupts.*/
1954	if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1955		ep->buffer0ready = 0;
1956	if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1957		ep->buffer1ready = false;
1958
1959	if (list_empty(&ep->queue))
1960		return;
1961
1962	req = list_first_entry(&ep->queue, struct xusb_req, queue);
1963
1964	if (ep->is_in)
1965		xudc_write_fifo(ep, req);
1966	else
1967		xudc_read_fifo(ep, req);
1968}
1969
1970/**
1971 * xudc_irq - The main interrupt handler.
1972 * @irq: The interrupt number.
1973 * @_udc: pointer to the usb device controller structure.
1974 *
1975 * Return: IRQ_HANDLED after the interrupt is handled.
1976 */
1977static irqreturn_t xudc_irq(int irq, void *_udc)
1978{
1979	struct xusb_udc *udc = _udc;
1980	u32 intrstatus;
1981	u32 ier;
1982	u8 index;
1983	u32 bufintr;
1984	unsigned long flags;
1985
1986	spin_lock_irqsave(&udc->lock, flags);
1987
1988	/*
1989	 * Event interrupts are level sensitive hence first disable
1990	 * IER, read ISR and figure out active interrupts.
1991	 */
1992	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1993	ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
1994	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
1995
1996	/* Read the Interrupt Status Register.*/
1997	intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
1998
1999	/* Call the handler for the event interrupt.*/
2000	if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2001		/*
2002		 * Check if there is any action to be done for :
2003		 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2004		 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2005		 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2006		 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2007		 */
2008		xudc_startup_handler(udc, intrstatus);
2009	}
2010
2011	/* Check the buffer completion interrupts */
2012	if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2013		/* Enable Reset, Suspend, Resume and Disconnect  */
2014		ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2015		ier |= XUSB_STATUS_INTR_EVENT_MASK;
2016		udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2017
2018		if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2019			xudc_ctrl_ep_handler(udc, intrstatus);
2020
2021		for (index = 1; index < 8; index++) {
2022			bufintr = ((intrstatus &
2023				  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2024				  (index - 1))) || (intrstatus &
2025				  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2026				  (index - 1))));
2027			if (bufintr) {
2028				xudc_nonctrl_ep_handler(udc, index,
2029							intrstatus);
2030			}
2031		}
2032	}
2033
2034	spin_unlock_irqrestore(&udc->lock, flags);
2035	return IRQ_HANDLED;
2036}
2037
2038/**
2039 * xudc_probe - The device probe function for driver initialization.
2040 * @pdev: pointer to the platform device structure.
2041 *
2042 * Return: 0 for success and error value on failure
2043 */
2044static int xudc_probe(struct platform_device *pdev)
2045{
2046	struct device_node *np = pdev->dev.of_node;
2047	struct resource *res;
2048	struct xusb_udc *udc;
2049	int irq;
2050	int ret;
2051	u32 ier;
2052	u8 *buff;
2053
2054	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2055	if (!udc)
2056		return -ENOMEM;
2057
2058	/* Create a dummy request for GET_STATUS, SET_ADDRESS */
2059	udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2060				GFP_KERNEL);
2061	if (!udc->req)
2062		return -ENOMEM;
2063
2064	buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2065	if (!buff)
2066		return -ENOMEM;
2067
2068	udc->req->usb_req.buf = buff;
2069
2070	/* Map the registers */
2071	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2072	udc->addr = devm_ioremap_resource(&pdev->dev, res);
2073	if (IS_ERR(udc->addr))
2074		return PTR_ERR(udc->addr);
2075
2076	irq = platform_get_irq(pdev, 0);
2077	if (irq < 0)
2078		return irq;
2079	ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2080			       dev_name(&pdev->dev), udc);
2081	if (ret < 0) {
2082		dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2083		goto fail;
2084	}
2085
2086	udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2087
2088	/* Setup gadget structure */
2089	udc->gadget.ops = &xusb_udc_ops;
2090	udc->gadget.max_speed = USB_SPEED_HIGH;
2091	udc->gadget.speed = USB_SPEED_UNKNOWN;
2092	udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2093	udc->gadget.name = driver_name;
2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095	spin_lock_init(&udc->lock);
2096
2097	/* Check for IP endianness */
2098	udc->write_fn = xudc_write32_be;
2099	udc->read_fn = xudc_read32_be;
2100	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, USB_TEST_J);
2101	if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2102			!= USB_TEST_J) {
2103		udc->write_fn = xudc_write32;
2104		udc->read_fn = xudc_read32;
2105	}
2106	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2107
2108	xudc_eps_init(udc);
2109
2110	/* Set device address to 0.*/
2111	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2112
2113	ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2114	if (ret)
2115		goto fail;
2116
2117	udc->dev = &udc->gadget.dev;
2118
2119	/* Enable the interrupts.*/
2120	ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2121	      XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2122	      XUSB_STATUS_SETUP_PACKET_MASK |
2123	      XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2124
2125	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2126
2127	platform_set_drvdata(pdev, udc);
2128
2129	dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2130		 driver_name, (u32)res->start, udc->addr,
2131		 udc->dma_enabled ? "with DMA" : "without DMA");
2132
2133	return 0;
 
 
 
2134fail:
2135	dev_err(&pdev->dev, "probe failed, %d\n", ret);
2136	return ret;
2137}
2138
2139/**
2140 * xudc_remove - Releases the resources allocated during the initialization.
2141 * @pdev: pointer to the platform device structure.
2142 *
2143 * Return: 0 always
2144 */
2145static int xudc_remove(struct platform_device *pdev)
2146{
2147	struct xusb_udc *udc = platform_get_drvdata(pdev);
2148
2149	usb_del_gadget_udc(&udc->gadget);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2150
2151	return 0;
2152}
2153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154/* Match table for of_platform binding */
2155static const struct of_device_id usb_of_match[] = {
2156	{ .compatible = "xlnx,usb2-device-4.00.a", },
2157	{ /* end of list */ },
2158};
2159MODULE_DEVICE_TABLE(of, usb_of_match);
2160
2161static struct platform_driver xudc_driver = {
2162	.driver = {
2163		.name = driver_name,
2164		.of_match_table = usb_of_match,
 
2165	},
2166	.probe = xudc_probe,
2167	.remove = xudc_remove,
2168};
2169
2170module_platform_driver(xudc_driver);
2171
2172MODULE_DESCRIPTION("Xilinx udc driver");
2173MODULE_AUTHOR("Xilinx, Inc");
2174MODULE_LICENSE("GPL");