Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/acpi.h>
   8#include <linux/cache.h>
   9#include <linux/clk/clk-conf.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/export.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/highmem.h>
  17#include <linux/idr.h>
  18#include <linux/init.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/kthread.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/mutex.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/percpu.h>
  27#include <linux/platform_data/x86/apple.h>
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/property.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/sched/rt.h>
  33#include <linux/slab.h>
 
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-mem.h>
 
 
 
 
 
 
 
  36#include <uapi/linux/sched/types.h>
 
 
 
 
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
 
 
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
 121				   char *buf, size_t offset)
 122{
 123	u64 val = 0;
 124	int i;
 125
 126	for_each_possible_cpu(i) {
 127		const struct spi_statistics *pcpu_stats;
 128		u64_stats_t *field;
 129		unsigned int start;
 130		u64 inc;
 131
 132		pcpu_stats = per_cpu_ptr(stat, i);
 133		field = (void *)pcpu_stats + offset;
 134		do {
 135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
 136			inc = u64_stats_read(field);
 137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
 138		val += inc;
 139	}
 140	return sysfs_emit(buf, "%llu\n", val);
 141}
 142
 143#define SPI_STATISTICS_ATTRS(field, file)				\
 144static ssize_t spi_controller_##field##_show(struct device *dev,	\
 145					     struct device_attribute *attr, \
 146					     char *buf)			\
 147{									\
 148	struct spi_controller *ctlr = container_of(dev,			\
 149					 struct spi_controller, dev);	\
 150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 151}									\
 152static struct device_attribute dev_attr_spi_controller_##field = {	\
 153	.attr = { .name = file, .mode = 0444 },				\
 154	.show = spi_controller_##field##_show,				\
 155};									\
 156static ssize_t spi_device_##field##_show(struct device *dev,		\
 157					 struct device_attribute *attr,	\
 158					char *buf)			\
 159{									\
 160	struct spi_device *spi = to_spi_device(dev);			\
 161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 162}									\
 163static struct device_attribute dev_attr_spi_device_##field = {		\
 164	.attr = { .name = file, .mode = 0444 },				\
 165	.show = spi_device_##field##_show,				\
 166}
 167
 168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 170					    char *buf)			\
 171{									\
 172	return spi_emit_pcpu_stats(stat, buf,				\
 173			offsetof(struct spi_statistics, field));	\
 
 
 
 
 174}									\
 175SPI_STATISTICS_ATTRS(name, file)
 176
 177#define SPI_STATISTICS_SHOW(field)					\
 178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 179				 field)
 180
 181SPI_STATISTICS_SHOW(messages);
 182SPI_STATISTICS_SHOW(transfers);
 183SPI_STATISTICS_SHOW(errors);
 184SPI_STATISTICS_SHOW(timedout);
 185
 186SPI_STATISTICS_SHOW(spi_sync);
 187SPI_STATISTICS_SHOW(spi_sync_immediate);
 188SPI_STATISTICS_SHOW(spi_async);
 189
 190SPI_STATISTICS_SHOW(bytes);
 191SPI_STATISTICS_SHOW(bytes_rx);
 192SPI_STATISTICS_SHOW(bytes_tx);
 193
 194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 196				 "transfer_bytes_histo_" number,	\
 197				 transfer_bytes_histo[index])
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 215
 216SPI_STATISTICS_SHOW(transfers_split_maxsize);
 217
 218static struct attribute *spi_dev_attrs[] = {
 219	&dev_attr_modalias.attr,
 220	&dev_attr_driver_override.attr,
 221	NULL,
 222};
 223
 224static const struct attribute_group spi_dev_group = {
 225	.attrs  = spi_dev_attrs,
 226};
 227
 228static struct attribute *spi_device_statistics_attrs[] = {
 229	&dev_attr_spi_device_messages.attr,
 230	&dev_attr_spi_device_transfers.attr,
 231	&dev_attr_spi_device_errors.attr,
 232	&dev_attr_spi_device_timedout.attr,
 233	&dev_attr_spi_device_spi_sync.attr,
 234	&dev_attr_spi_device_spi_sync_immediate.attr,
 235	&dev_attr_spi_device_spi_async.attr,
 236	&dev_attr_spi_device_bytes.attr,
 237	&dev_attr_spi_device_bytes_rx.attr,
 238	&dev_attr_spi_device_bytes_tx.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 256	&dev_attr_spi_device_transfers_split_maxsize.attr,
 257	NULL,
 258};
 259
 260static const struct attribute_group spi_device_statistics_group = {
 261	.name  = "statistics",
 262	.attrs  = spi_device_statistics_attrs,
 263};
 264
 265static const struct attribute_group *spi_dev_groups[] = {
 266	&spi_dev_group,
 267	&spi_device_statistics_group,
 268	NULL,
 269};
 270
 271static struct attribute *spi_controller_statistics_attrs[] = {
 272	&dev_attr_spi_controller_messages.attr,
 273	&dev_attr_spi_controller_transfers.attr,
 274	&dev_attr_spi_controller_errors.attr,
 275	&dev_attr_spi_controller_timedout.attr,
 276	&dev_attr_spi_controller_spi_sync.attr,
 277	&dev_attr_spi_controller_spi_sync_immediate.attr,
 278	&dev_attr_spi_controller_spi_async.attr,
 279	&dev_attr_spi_controller_bytes.attr,
 280	&dev_attr_spi_controller_bytes_rx.attr,
 281	&dev_attr_spi_controller_bytes_tx.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 300	NULL,
 301};
 302
 303static const struct attribute_group spi_controller_statistics_group = {
 304	.name  = "statistics",
 305	.attrs  = spi_controller_statistics_attrs,
 306};
 307
 308static const struct attribute_group *spi_master_groups[] = {
 309	&spi_controller_statistics_group,
 310	NULL,
 311};
 312
 313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 314					      struct spi_transfer *xfer,
 315					      struct spi_controller *ctlr)
 316{
 
 317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 318	struct spi_statistics *stats;
 319
 320	if (l2len < 0)
 321		l2len = 0;
 322
 323	get_cpu();
 324	stats = this_cpu_ptr(pcpu_stats);
 325	u64_stats_update_begin(&stats->syncp);
 326
 327	u64_stats_inc(&stats->transfers);
 328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 329
 330	u64_stats_add(&stats->bytes, xfer->len);
 331	if ((xfer->tx_buf) &&
 332	    (xfer->tx_buf != ctlr->dummy_tx))
 333		u64_stats_add(&stats->bytes_tx, xfer->len);
 334	if ((xfer->rx_buf) &&
 335	    (xfer->rx_buf != ctlr->dummy_rx))
 336		u64_stats_add(&stats->bytes_rx, xfer->len);
 337
 338	u64_stats_update_end(&stats->syncp);
 339	put_cpu();
 340}
 
 341
 342/*
 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 344 * and the sysfs version makes coldplug work too.
 345 */
 346static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 
 
 347{
 348	while (id->name[0]) {
 349		if (!strcmp(name, id->name))
 350			return id;
 351		id++;
 352	}
 353	return NULL;
 354}
 355
 356const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 357{
 358	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 359
 360	return spi_match_id(sdrv->id_table, sdev->modalias);
 361}
 362EXPORT_SYMBOL_GPL(spi_get_device_id);
 363
 364const void *spi_get_device_match_data(const struct spi_device *sdev)
 365{
 366	const void *match;
 367
 368	match = device_get_match_data(&sdev->dev);
 369	if (match)
 370		return match;
 371
 372	return (const void *)spi_get_device_id(sdev)->driver_data;
 373}
 374EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 375
 376static int spi_match_device(struct device *dev, struct device_driver *drv)
 377{
 378	const struct spi_device	*spi = to_spi_device(dev);
 379	const struct spi_driver	*sdrv = to_spi_driver(drv);
 380
 381	/* Check override first, and if set, only use the named driver */
 382	if (spi->driver_override)
 383		return strcmp(spi->driver_override, drv->name) == 0;
 384
 385	/* Attempt an OF style match */
 386	if (of_driver_match_device(dev, drv))
 387		return 1;
 388
 389	/* Then try ACPI */
 390	if (acpi_driver_match_device(dev, drv))
 391		return 1;
 392
 393	if (sdrv->id_table)
 394		return !!spi_match_id(sdrv->id_table, spi->modalias);
 395
 396	return strcmp(spi->modalias, drv->name) == 0;
 397}
 398
 399static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
 400{
 401	const struct spi_device		*spi = to_spi_device(dev);
 402	int rc;
 403
 404	rc = acpi_device_uevent_modalias(dev, env);
 405	if (rc != -ENODEV)
 406		return rc;
 407
 408	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 409}
 410
 411static int spi_probe(struct device *dev)
 412{
 413	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 414	struct spi_device		*spi = to_spi_device(dev);
 415	int ret;
 416
 417	ret = of_clk_set_defaults(dev->of_node, false);
 418	if (ret)
 419		return ret;
 420
 421	if (dev->of_node) {
 422		spi->irq = of_irq_get(dev->of_node, 0);
 423		if (spi->irq == -EPROBE_DEFER)
 424			return -EPROBE_DEFER;
 425		if (spi->irq < 0)
 426			spi->irq = 0;
 427	}
 428
 429	ret = dev_pm_domain_attach(dev, true);
 430	if (ret)
 431		return ret;
 432
 433	if (sdrv->probe) {
 434		ret = sdrv->probe(spi);
 435		if (ret)
 436			dev_pm_domain_detach(dev, true);
 437	}
 438
 439	return ret;
 440}
 441
 442static void spi_remove(struct device *dev)
 443{
 444	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 445
 446	if (sdrv->remove)
 447		sdrv->remove(to_spi_device(dev));
 
 
 
 
 
 
 
 448
 449	dev_pm_domain_detach(dev, true);
 
 
 450}
 451
 452static void spi_shutdown(struct device *dev)
 453{
 454	if (dev->driver) {
 455		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 456
 457		if (sdrv->shutdown)
 458			sdrv->shutdown(to_spi_device(dev));
 459	}
 460}
 461
 462struct bus_type spi_bus_type = {
 463	.name		= "spi",
 464	.dev_groups	= spi_dev_groups,
 465	.match		= spi_match_device,
 466	.uevent		= spi_uevent,
 467	.probe		= spi_probe,
 468	.remove		= spi_remove,
 469	.shutdown	= spi_shutdown,
 470};
 471EXPORT_SYMBOL_GPL(spi_bus_type);
 472
 473/**
 474 * __spi_register_driver - register a SPI driver
 475 * @owner: owner module of the driver to register
 476 * @sdrv: the driver to register
 477 * Context: can sleep
 478 *
 479 * Return: zero on success, else a negative error code.
 480 */
 481int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 482{
 483	sdrv->driver.owner = owner;
 484	sdrv->driver.bus = &spi_bus_type;
 485
 486	/*
 487	 * For Really Good Reasons we use spi: modaliases not of:
 488	 * modaliases for DT so module autoloading won't work if we
 489	 * don't have a spi_device_id as well as a compatible string.
 490	 */
 491	if (sdrv->driver.of_match_table) {
 492		const struct of_device_id *of_id;
 493
 494		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 495		     of_id++) {
 496			const char *of_name;
 497
 498			/* Strip off any vendor prefix */
 499			of_name = strnchr(of_id->compatible,
 500					  sizeof(of_id->compatible), ',');
 501			if (of_name)
 502				of_name++;
 503			else
 504				of_name = of_id->compatible;
 505
 506			if (sdrv->id_table) {
 507				const struct spi_device_id *spi_id;
 508
 509				spi_id = spi_match_id(sdrv->id_table, of_name);
 510				if (spi_id)
 511					continue;
 512			} else {
 513				if (strcmp(sdrv->driver.name, of_name) == 0)
 514					continue;
 515			}
 516
 517			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 518				sdrv->driver.name, of_id->compatible);
 519		}
 520	}
 521
 522	return driver_register(&sdrv->driver);
 523}
 524EXPORT_SYMBOL_GPL(__spi_register_driver);
 525
 526/*-------------------------------------------------------------------------*/
 527
 528/*
 529 * SPI devices should normally not be created by SPI device drivers; that
 530 * would make them board-specific.  Similarly with SPI controller drivers.
 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 532 * with other readonly (flashable) information about mainboard devices.
 533 */
 534
 535struct boardinfo {
 536	struct list_head	list;
 537	struct spi_board_info	board_info;
 538};
 539
 540static LIST_HEAD(board_list);
 541static LIST_HEAD(spi_controller_list);
 542
 543/*
 544 * Used to protect add/del operation for board_info list and
 545 * spi_controller list, and their matching process also used
 546 * to protect object of type struct idr.
 547 */
 548static DEFINE_MUTEX(board_lock);
 549
 550/**
 551 * spi_alloc_device - Allocate a new SPI device
 552 * @ctlr: Controller to which device is connected
 553 * Context: can sleep
 554 *
 555 * Allows a driver to allocate and initialize a spi_device without
 556 * registering it immediately.  This allows a driver to directly
 557 * fill the spi_device with device parameters before calling
 558 * spi_add_device() on it.
 559 *
 560 * Caller is responsible to call spi_add_device() on the returned
 561 * spi_device structure to add it to the SPI controller.  If the caller
 562 * needs to discard the spi_device without adding it, then it should
 563 * call spi_dev_put() on it.
 564 *
 565 * Return: a pointer to the new device, or NULL.
 566 */
 567struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 568{
 569	struct spi_device	*spi;
 570
 571	if (!spi_controller_get(ctlr))
 572		return NULL;
 573
 574	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 575	if (!spi) {
 576		spi_controller_put(ctlr);
 577		return NULL;
 578	}
 579
 580	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 581	if (!spi->pcpu_statistics) {
 582		kfree(spi);
 583		spi_controller_put(ctlr);
 584		return NULL;
 585	}
 586
 587	spi->master = spi->controller = ctlr;
 588	spi->dev.parent = &ctlr->dev;
 589	spi->dev.bus = &spi_bus_type;
 590	spi->dev.release = spidev_release;
 
 591	spi->mode = ctlr->buswidth_override_bits;
 592
 
 
 593	device_initialize(&spi->dev);
 594	return spi;
 595}
 596EXPORT_SYMBOL_GPL(spi_alloc_device);
 597
 598static void spi_dev_set_name(struct spi_device *spi)
 599{
 600	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 601
 602	if (adev) {
 603		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 604		return;
 605	}
 606
 607	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 608		     spi_get_chipselect(spi, 0));
 609}
 610
 611static int spi_dev_check(struct device *dev, void *data)
 612{
 613	struct spi_device *spi = to_spi_device(dev);
 614	struct spi_device *new_spi = data;
 615	int idx, nw_idx;
 616	u8 cs, cs_nw;
 617
 618	if (spi->controller == new_spi->controller) {
 619		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 620			cs = spi_get_chipselect(spi, idx);
 621			for (nw_idx = 0; nw_idx < SPI_CS_CNT_MAX; nw_idx++) {
 622				cs_nw = spi_get_chipselect(new_spi, nw_idx);
 623				if (cs != 0xFF && cs_nw != 0xFF && cs == cs_nw) {
 624					dev_err(dev, "chipselect %d already in use\n", cs_nw);
 625					return -EBUSY;
 626				}
 627			}
 628		}
 629	}
 630	return 0;
 631}
 632
 633static void spi_cleanup(struct spi_device *spi)
 634{
 635	if (spi->controller->cleanup)
 636		spi->controller->cleanup(spi);
 637}
 638
 639static int __spi_add_device(struct spi_device *spi)
 640{
 641	struct spi_controller *ctlr = spi->controller;
 642	struct device *dev = ctlr->dev.parent;
 643	int status, idx, nw_idx;
 644	u8 cs, nw_cs;
 645
 646	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 647		/* Chipselects are numbered 0..max; validate. */
 648		cs = spi_get_chipselect(spi, idx);
 649		if (cs != 0xFF && cs >= ctlr->num_chipselect) {
 650			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
 651				ctlr->num_chipselect);
 652			return -EINVAL;
 653		}
 654	}
 655
 656	/*
 657	 * Make sure that multiple logical CS doesn't map to the same physical CS.
 658	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
 659	 */
 660	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 661		cs = spi_get_chipselect(spi, idx);
 662		for (nw_idx = idx + 1; nw_idx < SPI_CS_CNT_MAX; nw_idx++) {
 663			nw_cs = spi_get_chipselect(spi, nw_idx);
 664			if (cs != 0xFF && nw_cs != 0xFF && cs == nw_cs) {
 665				dev_err(dev, "chipselect %d already in use\n", nw_cs);
 666				return -EBUSY;
 667			}
 668		}
 669	}
 670
 671	/* Set the bus ID string */
 672	spi_dev_set_name(spi);
 673
 674	/*
 675	 * We need to make sure there's no other device with this
 676	 * chipselect **BEFORE** we call setup(), else we'll trash
 677	 * its configuration.
 678	 */
 679	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 680	if (status)
 
 
 681		return status;
 
 682
 683	/* Controller may unregister concurrently */
 684	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 685	    !device_is_registered(&ctlr->dev)) {
 686		return -ENODEV;
 687	}
 688
 689	if (ctlr->cs_gpiods) {
 690		u8 cs;
 691
 692		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 693			cs = spi_get_chipselect(spi, idx);
 694			if (cs != 0xFF)
 695				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
 696		}
 697	}
 698
 699	/*
 700	 * Drivers may modify this initial i/o setup, but will
 701	 * normally rely on the device being setup.  Devices
 702	 * using SPI_CS_HIGH can't coexist well otherwise...
 703	 */
 704	status = spi_setup(spi);
 705	if (status < 0) {
 706		dev_err(dev, "can't setup %s, status %d\n",
 707				dev_name(&spi->dev), status);
 708		return status;
 709	}
 710
 711	/* Device may be bound to an active driver when this returns */
 712	status = device_add(&spi->dev);
 713	if (status < 0) {
 714		dev_err(dev, "can't add %s, status %d\n",
 715				dev_name(&spi->dev), status);
 716		spi_cleanup(spi);
 717	} else {
 718		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 719	}
 720
 721	return status;
 722}
 723
 724/**
 725 * spi_add_device - Add spi_device allocated with spi_alloc_device
 726 * @spi: spi_device to register
 727 *
 728 * Companion function to spi_alloc_device.  Devices allocated with
 729 * spi_alloc_device can be added onto the SPI bus with this function.
 730 *
 731 * Return: 0 on success; negative errno on failure
 732 */
 733int spi_add_device(struct spi_device *spi)
 734{
 735	struct spi_controller *ctlr = spi->controller;
 
 736	int status;
 737
 
 
 
 
 
 
 
 738	/* Set the bus ID string */
 739	spi_dev_set_name(spi);
 740
 
 
 
 
 741	mutex_lock(&ctlr->add_lock);
 742	status = __spi_add_device(spi);
 743	mutex_unlock(&ctlr->add_lock);
 744	return status;
 745}
 746EXPORT_SYMBOL_GPL(spi_add_device);
 747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748/**
 749 * spi_new_device - instantiate one new SPI device
 750 * @ctlr: Controller to which device is connected
 751 * @chip: Describes the SPI device
 752 * Context: can sleep
 753 *
 754 * On typical mainboards, this is purely internal; and it's not needed
 755 * after board init creates the hard-wired devices.  Some development
 756 * platforms may not be able to use spi_register_board_info though, and
 757 * this is exported so that for example a USB or parport based adapter
 758 * driver could add devices (which it would learn about out-of-band).
 759 *
 760 * Return: the new device, or NULL.
 761 */
 762struct spi_device *spi_new_device(struct spi_controller *ctlr,
 763				  struct spi_board_info *chip)
 764{
 765	struct spi_device	*proxy;
 766	int			status;
 767	u8                      idx;
 768
 769	/*
 770	 * NOTE:  caller did any chip->bus_num checks necessary.
 771	 *
 772	 * Also, unless we change the return value convention to use
 773	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 774	 * suggests syslogged diagnostics are best here (ugh).
 775	 */
 776
 777	proxy = spi_alloc_device(ctlr);
 778	if (!proxy)
 779		return NULL;
 780
 781	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 782
 783	/*
 784	 * Zero(0) is a valid physical CS value and can be located at any
 785	 * logical CS in the spi->chip_select[]. If all the physical CS
 786	 * are initialized to 0 then It would be difficult to differentiate
 787	 * between a valid physical CS 0 & an unused logical CS whose physical
 788	 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
 789	 * Now all the unused logical CS will have 0xFF physical CS value & can be
 790	 * ignore while performing physical CS validity checks.
 791	 */
 792	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
 793		spi_set_chipselect(proxy, idx, 0xFF);
 794
 795	spi_set_chipselect(proxy, 0, chip->chip_select);
 796	proxy->max_speed_hz = chip->max_speed_hz;
 797	proxy->mode = chip->mode;
 798	proxy->irq = chip->irq;
 799	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 800	proxy->dev.platform_data = (void *) chip->platform_data;
 801	proxy->controller_data = chip->controller_data;
 802	proxy->controller_state = NULL;
 803	/*
 804	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
 805	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
 806	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
 807	 * spi->chip_select[0] will give the physical CS.
 808	 * By default spi->chip_select[0] will hold the physical CS number so, set
 809	 * spi->cs_index_mask as 0x01.
 810	 */
 811	proxy->cs_index_mask = 0x01;
 812
 813	if (chip->swnode) {
 814		status = device_add_software_node(&proxy->dev, chip->swnode);
 815		if (status) {
 816			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 817				chip->modalias, status);
 818			goto err_dev_put;
 819		}
 820	}
 821
 822	status = spi_add_device(proxy);
 823	if (status < 0)
 824		goto err_dev_put;
 825
 826	return proxy;
 827
 828err_dev_put:
 829	device_remove_software_node(&proxy->dev);
 830	spi_dev_put(proxy);
 831	return NULL;
 832}
 833EXPORT_SYMBOL_GPL(spi_new_device);
 834
 835/**
 836 * spi_unregister_device - unregister a single SPI device
 837 * @spi: spi_device to unregister
 838 *
 839 * Start making the passed SPI device vanish. Normally this would be handled
 840 * by spi_unregister_controller().
 841 */
 842void spi_unregister_device(struct spi_device *spi)
 843{
 844	if (!spi)
 845		return;
 846
 847	if (spi->dev.of_node) {
 848		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 849		of_node_put(spi->dev.of_node);
 850	}
 851	if (ACPI_COMPANION(&spi->dev))
 852		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 853	device_remove_software_node(&spi->dev);
 854	device_del(&spi->dev);
 855	spi_cleanup(spi);
 856	put_device(&spi->dev);
 857}
 858EXPORT_SYMBOL_GPL(spi_unregister_device);
 859
 860static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 861					      struct spi_board_info *bi)
 862{
 863	struct spi_device *dev;
 864
 865	if (ctlr->bus_num != bi->bus_num)
 866		return;
 867
 868	dev = spi_new_device(ctlr, bi);
 869	if (!dev)
 870		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 871			bi->modalias);
 872}
 873
 874/**
 875 * spi_register_board_info - register SPI devices for a given board
 876 * @info: array of chip descriptors
 877 * @n: how many descriptors are provided
 878 * Context: can sleep
 879 *
 880 * Board-specific early init code calls this (probably during arch_initcall)
 881 * with segments of the SPI device table.  Any device nodes are created later,
 882 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 883 * this table of devices forever, so that reloading a controller driver will
 884 * not make Linux forget about these hard-wired devices.
 885 *
 886 * Other code can also call this, e.g. a particular add-on board might provide
 887 * SPI devices through its expansion connector, so code initializing that board
 888 * would naturally declare its SPI devices.
 889 *
 890 * The board info passed can safely be __initdata ... but be careful of
 891 * any embedded pointers (platform_data, etc), they're copied as-is.
 892 *
 893 * Return: zero on success, else a negative error code.
 894 */
 895int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 896{
 897	struct boardinfo *bi;
 898	int i;
 899
 900	if (!n)
 901		return 0;
 902
 903	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 904	if (!bi)
 905		return -ENOMEM;
 906
 907	for (i = 0; i < n; i++, bi++, info++) {
 908		struct spi_controller *ctlr;
 909
 910		memcpy(&bi->board_info, info, sizeof(*info));
 911
 912		mutex_lock(&board_lock);
 913		list_add_tail(&bi->list, &board_list);
 914		list_for_each_entry(ctlr, &spi_controller_list, list)
 915			spi_match_controller_to_boardinfo(ctlr,
 916							  &bi->board_info);
 917		mutex_unlock(&board_lock);
 918	}
 919
 920	return 0;
 921}
 922
 923/*-------------------------------------------------------------------------*/
 924
 925/* Core methods for SPI resource management */
 926
 927/**
 928 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 929 *                 during the processing of a spi_message while using
 930 *                 spi_transfer_one
 931 * @spi:     the SPI device for which we allocate memory
 932 * @release: the release code to execute for this resource
 933 * @size:    size to alloc and return
 934 * @gfp:     GFP allocation flags
 935 *
 936 * Return: the pointer to the allocated data
 937 *
 938 * This may get enhanced in the future to allocate from a memory pool
 939 * of the @spi_device or @spi_controller to avoid repeated allocations.
 940 */
 941static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 942			   size_t size, gfp_t gfp)
 943{
 944	struct spi_res *sres;
 945
 946	sres = kzalloc(sizeof(*sres) + size, gfp);
 947	if (!sres)
 948		return NULL;
 949
 950	INIT_LIST_HEAD(&sres->entry);
 951	sres->release = release;
 952
 953	return sres->data;
 954}
 955
 956/**
 957 * spi_res_free - free an SPI resource
 958 * @res: pointer to the custom data of a resource
 959 */
 960static void spi_res_free(void *res)
 961{
 962	struct spi_res *sres = container_of(res, struct spi_res, data);
 963
 964	if (!res)
 965		return;
 966
 967	WARN_ON(!list_empty(&sres->entry));
 968	kfree(sres);
 969}
 970
 971/**
 972 * spi_res_add - add a spi_res to the spi_message
 973 * @message: the SPI message
 974 * @res:     the spi_resource
 975 */
 976static void spi_res_add(struct spi_message *message, void *res)
 977{
 978	struct spi_res *sres = container_of(res, struct spi_res, data);
 979
 980	WARN_ON(!list_empty(&sres->entry));
 981	list_add_tail(&sres->entry, &message->resources);
 982}
 983
 984/**
 985 * spi_res_release - release all SPI resources for this message
 986 * @ctlr:  the @spi_controller
 987 * @message: the @spi_message
 988 */
 989static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
 990{
 991	struct spi_res *res, *tmp;
 992
 993	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
 994		if (res->release)
 995			res->release(ctlr, message, res->data);
 996
 997		list_del(&res->entry);
 998
 999		kfree(res);
1000	}
1001}
1002
1003/*-------------------------------------------------------------------------*/
1004static inline bool spi_is_last_cs(struct spi_device *spi)
1005{
1006	u8 idx;
1007	bool last = false;
1008
1009	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1010		if ((spi->cs_index_mask >> idx) & 0x01) {
1011			if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1012				last = true;
1013		}
1014	}
1015	return last;
1016}
1017
1018
1019static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1020{
1021	bool activate = enable;
1022	u8 idx;
1023
1024	/*
1025	 * Avoid calling into the driver (or doing delays) if the chip select
1026	 * isn't actually changing from the last time this was called.
1027	 */
1028	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1029			spi_is_last_cs(spi)) ||
1030		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1031			!spi_is_last_cs(spi))) &&
1032	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1033		return;
1034
1035	trace_spi_set_cs(spi, activate);
1036
1037	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1038	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1039		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : -1;
1040	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1041
 
 
 
 
 
 
 
 
1042	if (spi->mode & SPI_CS_HIGH)
1043		enable = !enable;
1044
1045	if (spi_is_csgpiod(spi)) {
1046		if (!spi->controller->set_cs_timing && !activate)
1047			spi_delay_exec(&spi->cs_hold, NULL);
1048
1049		if (!(spi->mode & SPI_NO_CS)) {
1050			/*
1051			 * Historically ACPI has no means of the GPIO polarity and
1052			 * thus the SPISerialBus() resource defines it on the per-chip
1053			 * basis. In order to avoid a chain of negations, the GPIO
1054			 * polarity is considered being Active High. Even for the cases
1055			 * when _DSD() is involved (in the updated versions of ACPI)
1056			 * the GPIO CS polarity must be defined Active High to avoid
1057			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1058			 * into account.
1059			 */
1060			for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1061				if (((spi->cs_index_mask >> idx) & 0x01) &&
1062				    spi_get_csgpiod(spi, idx)) {
1063					if (has_acpi_companion(&spi->dev))
1064						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1065									 !enable);
1066					else
1067						/* Polarity handled by GPIO library */
1068						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1069									 activate);
1070
1071					if (activate)
1072						spi_delay_exec(&spi->cs_setup, NULL);
1073					else
1074						spi_delay_exec(&spi->cs_inactive, NULL);
1075				}
1076			}
1077		}
1078		/* Some SPI masters need both GPIO CS & slave_select */
1079		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1080		    spi->controller->set_cs)
1081			spi->controller->set_cs(spi, !enable);
1082
1083		if (!spi->controller->set_cs_timing) {
1084			if (activate)
1085				spi_delay_exec(&spi->cs_setup, NULL);
1086			else
1087				spi_delay_exec(&spi->cs_inactive, NULL);
1088		}
1089	} else if (spi->controller->set_cs) {
1090		spi->controller->set_cs(spi, !enable);
1091	}
 
 
 
 
 
 
1092}
1093
1094#ifdef CONFIG_HAS_DMA
1095static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1096			     struct sg_table *sgt, void *buf, size_t len,
1097			     enum dma_data_direction dir, unsigned long attrs)
1098{
1099	const bool vmalloced_buf = is_vmalloc_addr(buf);
1100	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1101#ifdef CONFIG_HIGHMEM
1102	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1103				(unsigned long)buf < (PKMAP_BASE +
1104					(LAST_PKMAP * PAGE_SIZE)));
1105#else
1106	const bool kmap_buf = false;
1107#endif
1108	int desc_len;
1109	int sgs;
1110	struct page *vm_page;
1111	struct scatterlist *sg;
1112	void *sg_buf;
1113	size_t min;
1114	int i, ret;
1115
1116	if (vmalloced_buf || kmap_buf) {
1117		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1118		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1119	} else if (virt_addr_valid(buf)) {
1120		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1121		sgs = DIV_ROUND_UP(len, desc_len);
1122	} else {
1123		return -EINVAL;
1124	}
1125
1126	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1127	if (ret != 0)
1128		return ret;
1129
1130	sg = &sgt->sgl[0];
1131	for (i = 0; i < sgs; i++) {
1132
1133		if (vmalloced_buf || kmap_buf) {
1134			/*
1135			 * Next scatterlist entry size is the minimum between
1136			 * the desc_len and the remaining buffer length that
1137			 * fits in a page.
1138			 */
1139			min = min_t(size_t, desc_len,
1140				    min_t(size_t, len,
1141					  PAGE_SIZE - offset_in_page(buf)));
1142			if (vmalloced_buf)
1143				vm_page = vmalloc_to_page(buf);
1144			else
1145				vm_page = kmap_to_page(buf);
1146			if (!vm_page) {
1147				sg_free_table(sgt);
1148				return -ENOMEM;
1149			}
1150			sg_set_page(sg, vm_page,
1151				    min, offset_in_page(buf));
1152		} else {
1153			min = min_t(size_t, len, desc_len);
1154			sg_buf = buf;
1155			sg_set_buf(sg, sg_buf, min);
1156		}
1157
1158		buf += min;
1159		len -= min;
1160		sg = sg_next(sg);
1161	}
1162
1163	ret = dma_map_sgtable(dev, sgt, dir, attrs);
 
 
1164	if (ret < 0) {
1165		sg_free_table(sgt);
1166		return ret;
1167	}
1168
1169	return 0;
1170}
1171
1172int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1173		struct sg_table *sgt, void *buf, size_t len,
1174		enum dma_data_direction dir)
1175{
1176	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1177}
1178
1179static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1180				struct device *dev, struct sg_table *sgt,
1181				enum dma_data_direction dir,
1182				unsigned long attrs)
1183{
1184	if (sgt->orig_nents) {
1185		dma_unmap_sgtable(dev, sgt, dir, attrs);
1186		sg_free_table(sgt);
1187		sgt->orig_nents = 0;
1188		sgt->nents = 0;
1189	}
1190}
1191
1192void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1193		   struct sg_table *sgt, enum dma_data_direction dir)
1194{
1195	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1196}
1197
1198static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1199{
1200	struct device *tx_dev, *rx_dev;
1201	struct spi_transfer *xfer;
1202	int ret;
1203
1204	if (!ctlr->can_dma)
1205		return 0;
1206
1207	if (ctlr->dma_tx)
1208		tx_dev = ctlr->dma_tx->device->dev;
1209	else if (ctlr->dma_map_dev)
1210		tx_dev = ctlr->dma_map_dev;
1211	else
1212		tx_dev = ctlr->dev.parent;
1213
1214	if (ctlr->dma_rx)
1215		rx_dev = ctlr->dma_rx->device->dev;
1216	else if (ctlr->dma_map_dev)
1217		rx_dev = ctlr->dma_map_dev;
1218	else
1219		rx_dev = ctlr->dev.parent;
1220
1221	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1222		/* The sync is done before each transfer. */
1223		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1224
1225		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1226			continue;
1227
1228		if (xfer->tx_buf != NULL) {
1229			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1230						(void *)xfer->tx_buf,
1231						xfer->len, DMA_TO_DEVICE,
1232						attrs);
1233			if (ret != 0)
1234				return ret;
1235		}
1236
1237		if (xfer->rx_buf != NULL) {
1238			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1239						xfer->rx_buf, xfer->len,
1240						DMA_FROM_DEVICE, attrs);
1241			if (ret != 0) {
1242				spi_unmap_buf_attrs(ctlr, tx_dev,
1243						&xfer->tx_sg, DMA_TO_DEVICE,
1244						attrs);
1245
1246				return ret;
1247			}
1248		}
1249	}
1250
1251	ctlr->cur_rx_dma_dev = rx_dev;
1252	ctlr->cur_tx_dma_dev = tx_dev;
1253	ctlr->cur_msg_mapped = true;
1254
1255	return 0;
1256}
1257
1258static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1259{
1260	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1261	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1262	struct spi_transfer *xfer;
 
1263
1264	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1265		return 0;
1266
1267	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1268		/* The sync has already been done after each transfer. */
1269		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
 
 
 
 
 
 
1270
 
1271		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1272			continue;
1273
1274		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1275				    DMA_FROM_DEVICE, attrs);
1276		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1277				    DMA_TO_DEVICE, attrs);
1278	}
1279
1280	ctlr->cur_msg_mapped = false;
1281
1282	return 0;
1283}
1284
1285static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1286				    struct spi_transfer *xfer)
1287{
1288	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1289	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1290
1291	if (!ctlr->cur_msg_mapped)
1292		return;
1293
1294	if (xfer->tx_sg.orig_nents)
1295		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1296	if (xfer->rx_sg.orig_nents)
1297		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1298}
1299
1300static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1301				 struct spi_transfer *xfer)
1302{
1303	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1304	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1305
1306	if (!ctlr->cur_msg_mapped)
1307		return;
1308
1309	if (xfer->rx_sg.orig_nents)
1310		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1311	if (xfer->tx_sg.orig_nents)
1312		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1313}
1314#else /* !CONFIG_HAS_DMA */
1315static inline int __spi_map_msg(struct spi_controller *ctlr,
1316				struct spi_message *msg)
1317{
1318	return 0;
1319}
1320
1321static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1322				  struct spi_message *msg)
1323{
1324	return 0;
1325}
1326
1327static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1328				    struct spi_transfer *xfer)
1329{
1330}
1331
1332static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1333				 struct spi_transfer *xfer)
1334{
1335}
1336#endif /* !CONFIG_HAS_DMA */
1337
1338static inline int spi_unmap_msg(struct spi_controller *ctlr,
1339				struct spi_message *msg)
1340{
1341	struct spi_transfer *xfer;
1342
1343	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1344		/*
1345		 * Restore the original value of tx_buf or rx_buf if they are
1346		 * NULL.
1347		 */
1348		if (xfer->tx_buf == ctlr->dummy_tx)
1349			xfer->tx_buf = NULL;
1350		if (xfer->rx_buf == ctlr->dummy_rx)
1351			xfer->rx_buf = NULL;
1352	}
1353
1354	return __spi_unmap_msg(ctlr, msg);
1355}
1356
1357static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1358{
1359	struct spi_transfer *xfer;
1360	void *tmp;
1361	unsigned int max_tx, max_rx;
1362
1363	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1364		&& !(msg->spi->mode & SPI_3WIRE)) {
1365		max_tx = 0;
1366		max_rx = 0;
1367
1368		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1369			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1370			    !xfer->tx_buf)
1371				max_tx = max(xfer->len, max_tx);
1372			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1373			    !xfer->rx_buf)
1374				max_rx = max(xfer->len, max_rx);
1375		}
1376
1377		if (max_tx) {
1378			tmp = krealloc(ctlr->dummy_tx, max_tx,
1379				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1380			if (!tmp)
1381				return -ENOMEM;
1382			ctlr->dummy_tx = tmp;
 
1383		}
1384
1385		if (max_rx) {
1386			tmp = krealloc(ctlr->dummy_rx, max_rx,
1387				       GFP_KERNEL | GFP_DMA);
1388			if (!tmp)
1389				return -ENOMEM;
1390			ctlr->dummy_rx = tmp;
1391		}
1392
1393		if (max_tx || max_rx) {
1394			list_for_each_entry(xfer, &msg->transfers,
1395					    transfer_list) {
1396				if (!xfer->len)
1397					continue;
1398				if (!xfer->tx_buf)
1399					xfer->tx_buf = ctlr->dummy_tx;
1400				if (!xfer->rx_buf)
1401					xfer->rx_buf = ctlr->dummy_rx;
1402			}
1403		}
1404	}
1405
1406	return __spi_map_msg(ctlr, msg);
1407}
1408
1409static int spi_transfer_wait(struct spi_controller *ctlr,
1410			     struct spi_message *msg,
1411			     struct spi_transfer *xfer)
1412{
1413	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1414	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1415	u32 speed_hz = xfer->speed_hz;
1416	unsigned long long ms;
1417
1418	if (spi_controller_is_slave(ctlr)) {
1419		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1420			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1421			return -EINTR;
1422		}
1423	} else {
1424		if (!speed_hz)
1425			speed_hz = 100000;
1426
1427		/*
1428		 * For each byte we wait for 8 cycles of the SPI clock.
1429		 * Since speed is defined in Hz and we want milliseconds,
1430		 * use respective multiplier, but before the division,
1431		 * otherwise we may get 0 for short transfers.
1432		 */
1433		ms = 8LL * MSEC_PER_SEC * xfer->len;
1434		do_div(ms, speed_hz);
1435
1436		/*
1437		 * Increase it twice and add 200 ms tolerance, use
1438		 * predefined maximum in case of overflow.
1439		 */
1440		ms += ms + 200;
1441		if (ms > UINT_MAX)
1442			ms = UINT_MAX;
1443
1444		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1445						 msecs_to_jiffies(ms));
1446
1447		if (ms == 0) {
1448			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1449			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1450			dev_err(&msg->spi->dev,
1451				"SPI transfer timed out\n");
1452			return -ETIMEDOUT;
1453		}
1454
1455		if (xfer->error & SPI_TRANS_FAIL_IO)
1456			return -EIO;
1457	}
1458
1459	return 0;
1460}
1461
1462static void _spi_transfer_delay_ns(u32 ns)
1463{
1464	if (!ns)
1465		return;
1466	if (ns <= NSEC_PER_USEC) {
1467		ndelay(ns);
1468	} else {
1469		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1470
1471		if (us <= 10)
1472			udelay(us);
1473		else
1474			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1475	}
1476}
1477
1478int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1479{
1480	u32 delay = _delay->value;
1481	u32 unit = _delay->unit;
1482	u32 hz;
1483
1484	if (!delay)
1485		return 0;
1486
1487	switch (unit) {
1488	case SPI_DELAY_UNIT_USECS:
1489		delay *= NSEC_PER_USEC;
1490		break;
1491	case SPI_DELAY_UNIT_NSECS:
1492		/* Nothing to do here */
1493		break;
1494	case SPI_DELAY_UNIT_SCK:
1495		/* Clock cycles need to be obtained from spi_transfer */
1496		if (!xfer)
1497			return -EINVAL;
1498		/*
1499		 * If there is unknown effective speed, approximate it
1500		 * by underestimating with half of the requested Hz.
1501		 */
1502		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1503		if (!hz)
1504			return -EINVAL;
1505
1506		/* Convert delay to nanoseconds */
1507		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1508		break;
1509	default:
1510		return -EINVAL;
1511	}
1512
1513	return delay;
1514}
1515EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1516
1517int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1518{
1519	int delay;
1520
1521	might_sleep();
1522
1523	if (!_delay)
1524		return -EINVAL;
1525
1526	delay = spi_delay_to_ns(_delay, xfer);
1527	if (delay < 0)
1528		return delay;
1529
1530	_spi_transfer_delay_ns(delay);
1531
1532	return 0;
1533}
1534EXPORT_SYMBOL_GPL(spi_delay_exec);
1535
1536static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1537					  struct spi_transfer *xfer)
1538{
1539	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1540	u32 delay = xfer->cs_change_delay.value;
1541	u32 unit = xfer->cs_change_delay.unit;
1542	int ret;
1543
1544	/* Return early on "fast" mode - for everything but USECS */
1545	if (!delay) {
1546		if (unit == SPI_DELAY_UNIT_USECS)
1547			_spi_transfer_delay_ns(default_delay_ns);
1548		return;
1549	}
1550
1551	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1552	if (ret) {
1553		dev_err_once(&msg->spi->dev,
1554			     "Use of unsupported delay unit %i, using default of %luus\n",
1555			     unit, default_delay_ns / NSEC_PER_USEC);
1556		_spi_transfer_delay_ns(default_delay_ns);
1557	}
1558}
1559
1560void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1561						  struct spi_transfer *xfer)
1562{
1563	_spi_transfer_cs_change_delay(msg, xfer);
1564}
1565EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1566
1567/*
1568 * spi_transfer_one_message - Default implementation of transfer_one_message()
1569 *
1570 * This is a standard implementation of transfer_one_message() for
1571 * drivers which implement a transfer_one() operation.  It provides
1572 * standard handling of delays and chip select management.
1573 */
1574static int spi_transfer_one_message(struct spi_controller *ctlr,
1575				    struct spi_message *msg)
1576{
1577	struct spi_transfer *xfer;
1578	bool keep_cs = false;
1579	int ret = 0;
1580	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1581	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1582
1583	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1584	spi_set_cs(msg->spi, !xfer->cs_off, false);
1585
1586	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1587	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1588
1589	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1590		trace_spi_transfer_start(msg, xfer);
1591
1592		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1593		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1594
1595		if (!ctlr->ptp_sts_supported) {
1596			xfer->ptp_sts_word_pre = 0;
1597			ptp_read_system_prets(xfer->ptp_sts);
1598		}
1599
1600		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1601			reinit_completion(&ctlr->xfer_completion);
1602
1603fallback_pio:
1604			spi_dma_sync_for_device(ctlr, xfer);
1605			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1606			if (ret < 0) {
1607				spi_dma_sync_for_cpu(ctlr, xfer);
1608
1609				if (ctlr->cur_msg_mapped &&
1610				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1611					__spi_unmap_msg(ctlr, msg);
1612					ctlr->fallback = true;
1613					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1614					goto fallback_pio;
1615				}
1616
1617				SPI_STATISTICS_INCREMENT_FIELD(statm,
1618							       errors);
1619				SPI_STATISTICS_INCREMENT_FIELD(stats,
1620							       errors);
1621				dev_err(&msg->spi->dev,
1622					"SPI transfer failed: %d\n", ret);
1623				goto out;
1624			}
1625
1626			if (ret > 0) {
1627				ret = spi_transfer_wait(ctlr, msg, xfer);
1628				if (ret < 0)
1629					msg->status = ret;
1630			}
1631
1632			spi_dma_sync_for_cpu(ctlr, xfer);
1633		} else {
1634			if (xfer->len)
1635				dev_err(&msg->spi->dev,
1636					"Bufferless transfer has length %u\n",
1637					xfer->len);
1638		}
1639
1640		if (!ctlr->ptp_sts_supported) {
1641			ptp_read_system_postts(xfer->ptp_sts);
1642			xfer->ptp_sts_word_post = xfer->len;
1643		}
1644
1645		trace_spi_transfer_stop(msg, xfer);
1646
1647		if (msg->status != -EINPROGRESS)
1648			goto out;
1649
1650		spi_transfer_delay_exec(xfer);
1651
1652		if (xfer->cs_change) {
1653			if (list_is_last(&xfer->transfer_list,
1654					 &msg->transfers)) {
1655				keep_cs = true;
1656			} else {
1657				if (!xfer->cs_off)
1658					spi_set_cs(msg->spi, false, false);
1659				_spi_transfer_cs_change_delay(msg, xfer);
1660				if (!list_next_entry(xfer, transfer_list)->cs_off)
1661					spi_set_cs(msg->spi, true, false);
1662			}
1663		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1664			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1665			spi_set_cs(msg->spi, xfer->cs_off, false);
1666		}
1667
1668		msg->actual_length += xfer->len;
1669	}
1670
1671out:
1672	if (ret != 0 || !keep_cs)
1673		spi_set_cs(msg->spi, false, false);
1674
1675	if (msg->status == -EINPROGRESS)
1676		msg->status = ret;
1677
1678	if (msg->status && ctlr->handle_err)
1679		ctlr->handle_err(ctlr, msg);
1680
1681	spi_finalize_current_message(ctlr);
1682
1683	return ret;
1684}
1685
1686/**
1687 * spi_finalize_current_transfer - report completion of a transfer
1688 * @ctlr: the controller reporting completion
1689 *
1690 * Called by SPI drivers using the core transfer_one_message()
1691 * implementation to notify it that the current interrupt driven
1692 * transfer has finished and the next one may be scheduled.
1693 */
1694void spi_finalize_current_transfer(struct spi_controller *ctlr)
1695{
1696	complete(&ctlr->xfer_completion);
1697}
1698EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1699
1700static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1701{
1702	if (ctlr->auto_runtime_pm) {
1703		pm_runtime_mark_last_busy(ctlr->dev.parent);
1704		pm_runtime_put_autosuspend(ctlr->dev.parent);
1705	}
1706}
1707
1708static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1709		struct spi_message *msg, bool was_busy)
1710{
1711	struct spi_transfer *xfer;
1712	int ret;
1713
1714	if (!was_busy && ctlr->auto_runtime_pm) {
1715		ret = pm_runtime_get_sync(ctlr->dev.parent);
1716		if (ret < 0) {
1717			pm_runtime_put_noidle(ctlr->dev.parent);
1718			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1719				ret);
1720
1721			msg->status = ret;
1722			spi_finalize_current_message(ctlr);
1723
1724			return ret;
1725		}
1726	}
1727
1728	if (!was_busy)
1729		trace_spi_controller_busy(ctlr);
1730
1731	if (!was_busy && ctlr->prepare_transfer_hardware) {
1732		ret = ctlr->prepare_transfer_hardware(ctlr);
1733		if (ret) {
1734			dev_err(&ctlr->dev,
1735				"failed to prepare transfer hardware: %d\n",
1736				ret);
1737
1738			if (ctlr->auto_runtime_pm)
1739				pm_runtime_put(ctlr->dev.parent);
1740
1741			msg->status = ret;
1742			spi_finalize_current_message(ctlr);
1743
1744			return ret;
1745		}
1746	}
1747
1748	trace_spi_message_start(msg);
1749
1750	ret = spi_split_transfers_maxsize(ctlr, msg,
1751					  spi_max_transfer_size(msg->spi),
1752					  GFP_KERNEL | GFP_DMA);
1753	if (ret) {
1754		msg->status = ret;
1755		spi_finalize_current_message(ctlr);
1756		return ret;
1757	}
1758
1759	if (ctlr->prepare_message) {
1760		ret = ctlr->prepare_message(ctlr, msg);
1761		if (ret) {
1762			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1763				ret);
1764			msg->status = ret;
1765			spi_finalize_current_message(ctlr);
1766			return ret;
1767		}
1768		msg->prepared = true;
1769	}
1770
1771	ret = spi_map_msg(ctlr, msg);
1772	if (ret) {
1773		msg->status = ret;
1774		spi_finalize_current_message(ctlr);
1775		return ret;
1776	}
1777
1778	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1779		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1780			xfer->ptp_sts_word_pre = 0;
1781			ptp_read_system_prets(xfer->ptp_sts);
1782		}
1783	}
1784
1785	/*
1786	 * Drivers implementation of transfer_one_message() must arrange for
1787	 * spi_finalize_current_message() to get called. Most drivers will do
1788	 * this in the calling context, but some don't. For those cases, a
1789	 * completion is used to guarantee that this function does not return
1790	 * until spi_finalize_current_message() is done accessing
1791	 * ctlr->cur_msg.
1792	 * Use of the following two flags enable to opportunistically skip the
1793	 * use of the completion since its use involves expensive spin locks.
1794	 * In case of a race with the context that calls
1795	 * spi_finalize_current_message() the completion will always be used,
1796	 * due to strict ordering of these flags using barriers.
1797	 */
1798	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1799	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1800	reinit_completion(&ctlr->cur_msg_completion);
1801	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1802
1803	ret = ctlr->transfer_one_message(ctlr, msg);
1804	if (ret) {
1805		dev_err(&ctlr->dev,
1806			"failed to transfer one message from queue\n");
1807		return ret;
1808	}
1809
1810	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1811	smp_mb(); /* See spi_finalize_current_message()... */
1812	if (READ_ONCE(ctlr->cur_msg_incomplete))
1813		wait_for_completion(&ctlr->cur_msg_completion);
1814
1815	return 0;
1816}
1817
1818/**
1819 * __spi_pump_messages - function which processes SPI message queue
1820 * @ctlr: controller to process queue for
1821 * @in_kthread: true if we are in the context of the message pump thread
1822 *
1823 * This function checks if there is any SPI message in the queue that
1824 * needs processing and if so call out to the driver to initialize hardware
1825 * and transfer each message.
1826 *
1827 * Note that it is called both from the kthread itself and also from
1828 * inside spi_sync(); the queue extraction handling at the top of the
1829 * function should deal with this safely.
1830 */
1831static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1832{
 
1833	struct spi_message *msg;
1834	bool was_busy = false;
1835	unsigned long flags;
1836	int ret;
1837
1838	/* Take the I/O mutex */
1839	mutex_lock(&ctlr->io_mutex);
1840
1841	/* Lock queue */
1842	spin_lock_irqsave(&ctlr->queue_lock, flags);
1843
1844	/* Make sure we are not already running a message */
1845	if (ctlr->cur_msg)
1846		goto out_unlock;
 
 
 
 
 
 
 
 
 
1847
1848	/* Check if the queue is idle */
1849	if (list_empty(&ctlr->queue) || !ctlr->running) {
1850		if (!ctlr->busy)
1851			goto out_unlock;
 
 
1852
1853		/* Defer any non-atomic teardown to the thread */
1854		if (!in_kthread) {
1855			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1856			    !ctlr->unprepare_transfer_hardware) {
1857				spi_idle_runtime_pm(ctlr);
1858				ctlr->busy = false;
1859				ctlr->queue_empty = true;
1860				trace_spi_controller_idle(ctlr);
1861			} else {
1862				kthread_queue_work(ctlr->kworker,
1863						   &ctlr->pump_messages);
1864			}
1865			goto out_unlock;
 
1866		}
1867
1868		ctlr->busy = false;
 
1869		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1870
1871		kfree(ctlr->dummy_rx);
1872		ctlr->dummy_rx = NULL;
1873		kfree(ctlr->dummy_tx);
1874		ctlr->dummy_tx = NULL;
1875		if (ctlr->unprepare_transfer_hardware &&
1876		    ctlr->unprepare_transfer_hardware(ctlr))
1877			dev_err(&ctlr->dev,
1878				"failed to unprepare transfer hardware\n");
1879		spi_idle_runtime_pm(ctlr);
1880		trace_spi_controller_idle(ctlr);
1881
1882		spin_lock_irqsave(&ctlr->queue_lock, flags);
1883		ctlr->queue_empty = true;
1884		goto out_unlock;
 
1885	}
1886
1887	/* Extract head of queue */
1888	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1889	ctlr->cur_msg = msg;
1890
1891	list_del_init(&msg->queue);
1892	if (ctlr->busy)
1893		was_busy = true;
1894	else
1895		ctlr->busy = true;
1896	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1897
1898	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1899	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1900
1901	ctlr->cur_msg = NULL;
1902	ctlr->fallback = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904	mutex_unlock(&ctlr->io_mutex);
1905
1906	/* Prod the scheduler in case transfer_one() was busy waiting */
1907	if (!ret)
1908		cond_resched();
1909	return;
1910
1911out_unlock:
1912	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1913	mutex_unlock(&ctlr->io_mutex);
1914}
1915
1916/**
1917 * spi_pump_messages - kthread work function which processes spi message queue
1918 * @work: pointer to kthread work struct contained in the controller struct
1919 */
1920static void spi_pump_messages(struct kthread_work *work)
1921{
1922	struct spi_controller *ctlr =
1923		container_of(work, struct spi_controller, pump_messages);
1924
1925	__spi_pump_messages(ctlr, true);
1926}
1927
1928/**
1929 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
 
 
 
 
 
 
 
 
 
1930 * @ctlr: Pointer to the spi_controller structure of the driver
1931 * @xfer: Pointer to the transfer being timestamped
1932 * @progress: How many words (not bytes) have been transferred so far
1933 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1934 *	      transfer, for less jitter in time measurement. Only compatible
1935 *	      with PIO drivers. If true, must follow up with
1936 *	      spi_take_timestamp_post or otherwise system will crash.
1937 *	      WARNING: for fully predictable results, the CPU frequency must
1938 *	      also be under control (governor).
1939 *
1940 * This is a helper for drivers to collect the beginning of the TX timestamp
1941 * for the requested byte from the SPI transfer. The frequency with which this
1942 * function must be called (once per word, once for the whole transfer, once
1943 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1944 * greater than or equal to the requested byte at the time of the call. The
1945 * timestamp is only taken once, at the first such call. It is assumed that
1946 * the driver advances its @tx buffer pointer monotonically.
1947 */
1948void spi_take_timestamp_pre(struct spi_controller *ctlr,
1949			    struct spi_transfer *xfer,
1950			    size_t progress, bool irqs_off)
1951{
1952	if (!xfer->ptp_sts)
1953		return;
1954
1955	if (xfer->timestamped)
1956		return;
1957
1958	if (progress > xfer->ptp_sts_word_pre)
1959		return;
1960
1961	/* Capture the resolution of the timestamp */
1962	xfer->ptp_sts_word_pre = progress;
1963
1964	if (irqs_off) {
1965		local_irq_save(ctlr->irq_flags);
1966		preempt_disable();
1967	}
1968
1969	ptp_read_system_prets(xfer->ptp_sts);
1970}
1971EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1972
1973/**
1974 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
 
 
 
 
 
1975 * @ctlr: Pointer to the spi_controller structure of the driver
1976 * @xfer: Pointer to the transfer being timestamped
1977 * @progress: How many words (not bytes) have been transferred so far
1978 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1979 *
1980 * This is a helper for drivers to collect the end of the TX timestamp for
1981 * the requested byte from the SPI transfer. Can be called with an arbitrary
1982 * frequency: only the first call where @tx exceeds or is equal to the
1983 * requested word will be timestamped.
1984 */
1985void spi_take_timestamp_post(struct spi_controller *ctlr,
1986			     struct spi_transfer *xfer,
1987			     size_t progress, bool irqs_off)
1988{
1989	if (!xfer->ptp_sts)
1990		return;
1991
1992	if (xfer->timestamped)
1993		return;
1994
1995	if (progress < xfer->ptp_sts_word_post)
1996		return;
1997
1998	ptp_read_system_postts(xfer->ptp_sts);
1999
2000	if (irqs_off) {
2001		local_irq_restore(ctlr->irq_flags);
2002		preempt_enable();
2003	}
2004
2005	/* Capture the resolution of the timestamp */
2006	xfer->ptp_sts_word_post = progress;
2007
2008	xfer->timestamped = 1;
2009}
2010EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2011
2012/**
2013 * spi_set_thread_rt - set the controller to pump at realtime priority
2014 * @ctlr: controller to boost priority of
2015 *
2016 * This can be called because the controller requested realtime priority
2017 * (by setting the ->rt value before calling spi_register_controller()) or
2018 * because a device on the bus said that its transfers needed realtime
2019 * priority.
2020 *
2021 * NOTE: at the moment if any device on a bus says it needs realtime then
2022 * the thread will be at realtime priority for all transfers on that
2023 * controller.  If this eventually becomes a problem we may see if we can
2024 * find a way to boost the priority only temporarily during relevant
2025 * transfers.
2026 */
2027static void spi_set_thread_rt(struct spi_controller *ctlr)
2028{
2029	dev_info(&ctlr->dev,
2030		"will run message pump with realtime priority\n");
2031	sched_set_fifo(ctlr->kworker->task);
2032}
2033
2034static int spi_init_queue(struct spi_controller *ctlr)
2035{
2036	ctlr->running = false;
2037	ctlr->busy = false;
2038	ctlr->queue_empty = true;
2039
2040	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2041	if (IS_ERR(ctlr->kworker)) {
2042		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2043		return PTR_ERR(ctlr->kworker);
2044	}
2045
2046	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2047
2048	/*
2049	 * Controller config will indicate if this controller should run the
2050	 * message pump with high (realtime) priority to reduce the transfer
2051	 * latency on the bus by minimising the delay between a transfer
2052	 * request and the scheduling of the message pump thread. Without this
2053	 * setting the message pump thread will remain at default priority.
2054	 */
2055	if (ctlr->rt)
2056		spi_set_thread_rt(ctlr);
2057
2058	return 0;
2059}
2060
2061/**
2062 * spi_get_next_queued_message() - called by driver to check for queued
2063 * messages
2064 * @ctlr: the controller to check for queued messages
2065 *
2066 * If there are more messages in the queue, the next message is returned from
2067 * this call.
2068 *
2069 * Return: the next message in the queue, else NULL if the queue is empty.
2070 */
2071struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2072{
2073	struct spi_message *next;
2074	unsigned long flags;
2075
2076	/* Get a pointer to the next message, if any */
2077	spin_lock_irqsave(&ctlr->queue_lock, flags);
2078	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2079					queue);
2080	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2081
2082	return next;
2083}
2084EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2085
2086/**
2087 * spi_finalize_current_message() - the current message is complete
2088 * @ctlr: the controller to return the message to
2089 *
2090 * Called by the driver to notify the core that the message in the front of the
2091 * queue is complete and can be removed from the queue.
2092 */
2093void spi_finalize_current_message(struct spi_controller *ctlr)
2094{
2095	struct spi_transfer *xfer;
2096	struct spi_message *mesg;
 
2097	int ret;
2098
 
2099	mesg = ctlr->cur_msg;
 
2100
2101	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2102		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2103			ptp_read_system_postts(xfer->ptp_sts);
2104			xfer->ptp_sts_word_post = xfer->len;
2105		}
2106	}
2107
2108	if (unlikely(ctlr->ptp_sts_supported))
2109		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2110			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2111
2112	spi_unmap_msg(ctlr, mesg);
2113
2114	/*
2115	 * In the prepare_messages callback the SPI bus has the opportunity
2116	 * to split a transfer to smaller chunks.
2117	 *
2118	 * Release the split transfers here since spi_map_msg() is done on
2119	 * the split transfers.
2120	 */
2121	spi_res_release(ctlr, mesg);
2122
2123	if (mesg->prepared && ctlr->unprepare_message) {
2124		ret = ctlr->unprepare_message(ctlr, mesg);
2125		if (ret) {
2126			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2127				ret);
2128		}
2129	}
2130
2131	mesg->prepared = false;
2132
2133	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2134	smp_mb(); /* See __spi_pump_transfer_message()... */
2135	if (READ_ONCE(ctlr->cur_msg_need_completion))
2136		complete(&ctlr->cur_msg_completion);
2137
2138	trace_spi_message_done(mesg);
2139
2140	mesg->state = NULL;
2141	if (mesg->complete)
2142		mesg->complete(mesg->context);
2143}
2144EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2145
2146static int spi_start_queue(struct spi_controller *ctlr)
2147{
2148	unsigned long flags;
2149
2150	spin_lock_irqsave(&ctlr->queue_lock, flags);
2151
2152	if (ctlr->running || ctlr->busy) {
2153		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2154		return -EBUSY;
2155	}
2156
2157	ctlr->running = true;
2158	ctlr->cur_msg = NULL;
2159	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2160
2161	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2162
2163	return 0;
2164}
2165
2166static int spi_stop_queue(struct spi_controller *ctlr)
2167{
2168	unsigned long flags;
2169	unsigned limit = 500;
2170	int ret = 0;
2171
2172	spin_lock_irqsave(&ctlr->queue_lock, flags);
2173
2174	/*
2175	 * This is a bit lame, but is optimized for the common execution path.
2176	 * A wait_queue on the ctlr->busy could be used, but then the common
2177	 * execution path (pump_messages) would be required to call wake_up or
2178	 * friends on every SPI message. Do this instead.
2179	 */
2180	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2181		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2182		usleep_range(10000, 11000);
2183		spin_lock_irqsave(&ctlr->queue_lock, flags);
2184	}
2185
2186	if (!list_empty(&ctlr->queue) || ctlr->busy)
2187		ret = -EBUSY;
2188	else
2189		ctlr->running = false;
2190
2191	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2192
 
 
 
 
2193	return ret;
2194}
2195
2196static int spi_destroy_queue(struct spi_controller *ctlr)
2197{
2198	int ret;
2199
2200	ret = spi_stop_queue(ctlr);
2201
2202	/*
2203	 * kthread_flush_worker will block until all work is done.
2204	 * If the reason that stop_queue timed out is that the work will never
2205	 * finish, then it does no good to call flush/stop thread, so
2206	 * return anyway.
2207	 */
2208	if (ret) {
2209		dev_err(&ctlr->dev, "problem destroying queue\n");
2210		return ret;
2211	}
2212
2213	kthread_destroy_worker(ctlr->kworker);
2214
2215	return 0;
2216}
2217
2218static int __spi_queued_transfer(struct spi_device *spi,
2219				 struct spi_message *msg,
2220				 bool need_pump)
2221{
2222	struct spi_controller *ctlr = spi->controller;
2223	unsigned long flags;
2224
2225	spin_lock_irqsave(&ctlr->queue_lock, flags);
2226
2227	if (!ctlr->running) {
2228		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2229		return -ESHUTDOWN;
2230	}
2231	msg->actual_length = 0;
2232	msg->status = -EINPROGRESS;
2233
2234	list_add_tail(&msg->queue, &ctlr->queue);
2235	ctlr->queue_empty = false;
2236	if (!ctlr->busy && need_pump)
2237		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2238
2239	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2240	return 0;
2241}
2242
2243/**
2244 * spi_queued_transfer - transfer function for queued transfers
2245 * @spi: SPI device which is requesting transfer
2246 * @msg: SPI message which is to handled is queued to driver queue
2247 *
2248 * Return: zero on success, else a negative error code.
2249 */
2250static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2251{
2252	return __spi_queued_transfer(spi, msg, true);
2253}
2254
2255static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2256{
2257	int ret;
2258
2259	ctlr->transfer = spi_queued_transfer;
2260	if (!ctlr->transfer_one_message)
2261		ctlr->transfer_one_message = spi_transfer_one_message;
2262
2263	/* Initialize and start queue */
2264	ret = spi_init_queue(ctlr);
2265	if (ret) {
2266		dev_err(&ctlr->dev, "problem initializing queue\n");
2267		goto err_init_queue;
2268	}
2269	ctlr->queued = true;
2270	ret = spi_start_queue(ctlr);
2271	if (ret) {
2272		dev_err(&ctlr->dev, "problem starting queue\n");
2273		goto err_start_queue;
2274	}
2275
2276	return 0;
2277
2278err_start_queue:
2279	spi_destroy_queue(ctlr);
2280err_init_queue:
2281	return ret;
2282}
2283
2284/**
2285 * spi_flush_queue - Send all pending messages in the queue from the callers'
2286 *		     context
2287 * @ctlr: controller to process queue for
2288 *
2289 * This should be used when one wants to ensure all pending messages have been
2290 * sent before doing something. Is used by the spi-mem code to make sure SPI
2291 * memory operations do not preempt regular SPI transfers that have been queued
2292 * before the spi-mem operation.
2293 */
2294void spi_flush_queue(struct spi_controller *ctlr)
2295{
2296	if (ctlr->transfer == spi_queued_transfer)
2297		__spi_pump_messages(ctlr, false);
2298}
2299
2300/*-------------------------------------------------------------------------*/
2301
2302#if defined(CONFIG_OF)
2303static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2304				     struct spi_delay *delay, const char *prop)
2305{
2306	u32 value;
2307
2308	if (!of_property_read_u32(nc, prop, &value)) {
2309		if (value > U16_MAX) {
2310			delay->value = DIV_ROUND_UP(value, 1000);
2311			delay->unit = SPI_DELAY_UNIT_USECS;
2312		} else {
2313			delay->value = value;
2314			delay->unit = SPI_DELAY_UNIT_NSECS;
2315		}
2316	}
2317}
2318
2319static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2320			   struct device_node *nc)
2321{
2322	u32 value, cs[SPI_CS_CNT_MAX];
2323	int rc, idx;
2324
2325	/* Mode (clock phase/polarity/etc.) */
2326	if (of_property_read_bool(nc, "spi-cpha"))
2327		spi->mode |= SPI_CPHA;
2328	if (of_property_read_bool(nc, "spi-cpol"))
2329		spi->mode |= SPI_CPOL;
2330	if (of_property_read_bool(nc, "spi-3wire"))
2331		spi->mode |= SPI_3WIRE;
2332	if (of_property_read_bool(nc, "spi-lsb-first"))
2333		spi->mode |= SPI_LSB_FIRST;
2334	if (of_property_read_bool(nc, "spi-cs-high"))
2335		spi->mode |= SPI_CS_HIGH;
2336
2337	/* Device DUAL/QUAD mode */
2338	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2339		switch (value) {
2340		case 0:
2341			spi->mode |= SPI_NO_TX;
2342			break;
2343		case 1:
2344			break;
2345		case 2:
2346			spi->mode |= SPI_TX_DUAL;
2347			break;
2348		case 4:
2349			spi->mode |= SPI_TX_QUAD;
2350			break;
2351		case 8:
2352			spi->mode |= SPI_TX_OCTAL;
2353			break;
2354		default:
2355			dev_warn(&ctlr->dev,
2356				"spi-tx-bus-width %d not supported\n",
2357				value);
2358			break;
2359		}
2360	}
2361
2362	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2363		switch (value) {
2364		case 0:
2365			spi->mode |= SPI_NO_RX;
2366			break;
2367		case 1:
2368			break;
2369		case 2:
2370			spi->mode |= SPI_RX_DUAL;
2371			break;
2372		case 4:
2373			spi->mode |= SPI_RX_QUAD;
2374			break;
2375		case 8:
2376			spi->mode |= SPI_RX_OCTAL;
2377			break;
2378		default:
2379			dev_warn(&ctlr->dev,
2380				"spi-rx-bus-width %d not supported\n",
2381				value);
2382			break;
2383		}
2384	}
2385
2386	if (spi_controller_is_slave(ctlr)) {
2387		if (!of_node_name_eq(nc, "slave")) {
2388			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2389				nc);
2390			return -EINVAL;
2391		}
2392		return 0;
2393	}
2394
2395	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2396		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2397		return -EINVAL;
2398	}
2399
2400	/*
2401	 * Zero(0) is a valid physical CS value and can be located at any
2402	 * logical CS in the spi->chip_select[]. If all the physical CS
2403	 * are initialized to 0 then It would be difficult to differentiate
2404	 * between a valid physical CS 0 & an unused logical CS whose physical
2405	 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
2406	 * Now all the unused logical CS will have 0xFF physical CS value & can be
2407	 * ignore while performing physical CS validity checks.
2408	 */
2409	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
2410		spi_set_chipselect(spi, idx, 0xFF);
2411
2412	/* Device address */
2413	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2414						 SPI_CS_CNT_MAX);
2415	if (rc < 0) {
2416		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2417			nc, rc);
2418		return rc;
2419	}
2420	if (rc > ctlr->num_chipselect) {
2421		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2422			nc, rc);
2423		return rc;
2424	}
2425	if ((of_property_read_bool(nc, "parallel-memories")) &&
2426	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2427		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2428		return -EINVAL;
2429	}
2430	for (idx = 0; idx < rc; idx++)
2431		spi_set_chipselect(spi, idx, cs[idx]);
2432
2433	/*
2434	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
2435	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
2436	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
2437	 * spi->chip_select[0] will give the physical CS.
2438	 * By default spi->chip_select[0] will hold the physical CS number so, set
2439	 * spi->cs_index_mask as 0x01.
2440	 */
2441	spi->cs_index_mask = 0x01;
2442
2443	/* Device speed */
2444	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2445		spi->max_speed_hz = value;
2446
2447	/* Device CS delays */
2448	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2449	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2450	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2451
2452	return 0;
2453}
2454
2455static struct spi_device *
2456of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2457{
2458	struct spi_device *spi;
2459	int rc;
2460
2461	/* Alloc an spi_device */
2462	spi = spi_alloc_device(ctlr);
2463	if (!spi) {
2464		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2465		rc = -ENOMEM;
2466		goto err_out;
2467	}
2468
2469	/* Select device driver */
2470	rc = of_alias_from_compatible(nc, spi->modalias,
2471				      sizeof(spi->modalias));
2472	if (rc < 0) {
2473		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2474		goto err_out;
2475	}
2476
2477	rc = of_spi_parse_dt(ctlr, spi, nc);
2478	if (rc)
2479		goto err_out;
2480
2481	/* Store a pointer to the node in the device structure */
2482	of_node_get(nc);
2483
2484	device_set_node(&spi->dev, of_fwnode_handle(nc));
2485
2486	/* Register the new device */
2487	rc = spi_add_device(spi);
2488	if (rc) {
2489		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2490		goto err_of_node_put;
2491	}
2492
2493	return spi;
2494
2495err_of_node_put:
2496	of_node_put(nc);
2497err_out:
2498	spi_dev_put(spi);
2499	return ERR_PTR(rc);
2500}
2501
2502/**
2503 * of_register_spi_devices() - Register child devices onto the SPI bus
2504 * @ctlr:	Pointer to spi_controller device
2505 *
2506 * Registers an spi_device for each child node of controller node which
2507 * represents a valid SPI slave.
2508 */
2509static void of_register_spi_devices(struct spi_controller *ctlr)
2510{
2511	struct spi_device *spi;
2512	struct device_node *nc;
2513
 
 
 
2514	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2515		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2516			continue;
2517		spi = of_register_spi_device(ctlr, nc);
2518		if (IS_ERR(spi)) {
2519			dev_warn(&ctlr->dev,
2520				 "Failed to create SPI device for %pOF\n", nc);
2521			of_node_clear_flag(nc, OF_POPULATED);
2522		}
2523	}
2524}
2525#else
2526static void of_register_spi_devices(struct spi_controller *ctlr) { }
2527#endif
2528
2529/**
2530 * spi_new_ancillary_device() - Register ancillary SPI device
2531 * @spi:         Pointer to the main SPI device registering the ancillary device
2532 * @chip_select: Chip Select of the ancillary device
2533 *
2534 * Register an ancillary SPI device; for example some chips have a chip-select
2535 * for normal device usage and another one for setup/firmware upload.
2536 *
2537 * This may only be called from main SPI device's probe routine.
2538 *
2539 * Return: 0 on success; negative errno on failure
2540 */
2541struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2542					     u8 chip_select)
2543{
2544	struct spi_controller *ctlr = spi->controller;
2545	struct spi_device *ancillary;
2546	int rc = 0;
2547	u8 idx;
2548
2549	/* Alloc an spi_device */
2550	ancillary = spi_alloc_device(ctlr);
2551	if (!ancillary) {
2552		rc = -ENOMEM;
2553		goto err_out;
2554	}
2555
2556	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2557
2558	/*
2559	 * Zero(0) is a valid physical CS value and can be located at any
2560	 * logical CS in the spi->chip_select[]. If all the physical CS
2561	 * are initialized to 0 then It would be difficult to differentiate
2562	 * between a valid physical CS 0 & an unused logical CS whose physical
2563	 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
2564	 * Now all the unused logical CS will have 0xFF physical CS value & can be
2565	 * ignore while performing physical CS validity checks.
2566	 */
2567	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
2568		spi_set_chipselect(ancillary, idx, 0xFF);
2569
2570	/* Use provided chip-select for ancillary device */
2571	spi_set_chipselect(ancillary, 0, chip_select);
2572
2573	/* Take over SPI mode/speed from SPI main device */
2574	ancillary->max_speed_hz = spi->max_speed_hz;
2575	ancillary->mode = spi->mode;
2576	/*
2577	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
2578	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
2579	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
2580	 * spi->chip_select[0] will give the physical CS.
2581	 * By default spi->chip_select[0] will hold the physical CS number so, set
2582	 * spi->cs_index_mask as 0x01.
2583	 */
2584	ancillary->cs_index_mask = 0x01;
2585
2586	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2587
2588	/* Register the new device */
2589	rc = __spi_add_device(ancillary);
2590	if (rc) {
2591		dev_err(&spi->dev, "failed to register ancillary device\n");
2592		goto err_out;
2593	}
2594
2595	return ancillary;
2596
2597err_out:
2598	spi_dev_put(ancillary);
2599	return ERR_PTR(rc);
2600}
2601EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2602
2603#ifdef CONFIG_ACPI
2604struct acpi_spi_lookup {
2605	struct spi_controller 	*ctlr;
2606	u32			max_speed_hz;
2607	u32			mode;
2608	int			irq;
2609	u8			bits_per_word;
2610	u8			chip_select;
2611	int			n;
2612	int			index;
2613};
2614
2615static int acpi_spi_count(struct acpi_resource *ares, void *data)
2616{
2617	struct acpi_resource_spi_serialbus *sb;
2618	int *count = data;
2619
2620	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2621		return 1;
2622
2623	sb = &ares->data.spi_serial_bus;
2624	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2625		return 1;
2626
2627	*count = *count + 1;
2628
2629	return 1;
2630}
2631
2632/**
2633 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2634 * @adev:	ACPI device
2635 *
2636 * Return: the number of SpiSerialBus resources in the ACPI-device's
2637 * resource-list; or a negative error code.
2638 */
2639int acpi_spi_count_resources(struct acpi_device *adev)
2640{
2641	LIST_HEAD(r);
2642	int count = 0;
2643	int ret;
2644
2645	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2646	if (ret < 0)
2647		return ret;
2648
2649	acpi_dev_free_resource_list(&r);
2650
2651	return count;
2652}
2653EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2654
2655static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2656					    struct acpi_spi_lookup *lookup)
2657{
2658	const union acpi_object *obj;
2659
2660	if (!x86_apple_machine)
2661		return;
2662
2663	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2664	    && obj->buffer.length >= 4)
2665		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2666
2667	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2668	    && obj->buffer.length == 8)
2669		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2670
2671	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2672	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2673		lookup->mode |= SPI_LSB_FIRST;
2674
2675	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2676	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2677		lookup->mode |= SPI_CPOL;
2678
2679	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2680	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2681		lookup->mode |= SPI_CPHA;
2682}
2683
2684static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2685{
2686	struct acpi_spi_lookup *lookup = data;
2687	struct spi_controller *ctlr = lookup->ctlr;
2688
2689	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2690		struct acpi_resource_spi_serialbus *sb;
2691		acpi_handle parent_handle;
2692		acpi_status status;
2693
2694		sb = &ares->data.spi_serial_bus;
2695		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2696
2697			if (lookup->index != -1 && lookup->n++ != lookup->index)
2698				return 1;
2699
2700			status = acpi_get_handle(NULL,
2701						 sb->resource_source.string_ptr,
2702						 &parent_handle);
2703
2704			if (ACPI_FAILURE(status))
 
2705				return -ENODEV;
2706
2707			if (ctlr) {
2708				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2709					return -ENODEV;
2710			} else {
2711				struct acpi_device *adev;
2712
2713				adev = acpi_fetch_acpi_dev(parent_handle);
2714				if (!adev)
2715					return -ENODEV;
2716
2717				ctlr = acpi_spi_find_controller_by_adev(adev);
2718				if (!ctlr)
2719					return -EPROBE_DEFER;
2720
2721				lookup->ctlr = ctlr;
2722			}
2723
2724			/*
2725			 * ACPI DeviceSelection numbering is handled by the
2726			 * host controller driver in Windows and can vary
2727			 * from driver to driver. In Linux we always expect
2728			 * 0 .. max - 1 so we need to ask the driver to
2729			 * translate between the two schemes.
2730			 */
2731			if (ctlr->fw_translate_cs) {
2732				int cs = ctlr->fw_translate_cs(ctlr,
2733						sb->device_selection);
2734				if (cs < 0)
2735					return cs;
2736				lookup->chip_select = cs;
2737			} else {
2738				lookup->chip_select = sb->device_selection;
2739			}
2740
2741			lookup->max_speed_hz = sb->connection_speed;
2742			lookup->bits_per_word = sb->data_bit_length;
2743
2744			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2745				lookup->mode |= SPI_CPHA;
2746			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2747				lookup->mode |= SPI_CPOL;
2748			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2749				lookup->mode |= SPI_CS_HIGH;
2750		}
2751	} else if (lookup->irq < 0) {
2752		struct resource r;
2753
2754		if (acpi_dev_resource_interrupt(ares, 0, &r))
2755			lookup->irq = r.start;
2756	}
2757
2758	/* Always tell the ACPI core to skip this resource */
2759	return 1;
2760}
2761
2762/**
2763 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2764 * @ctlr: controller to which the spi device belongs
2765 * @adev: ACPI Device for the spi device
2766 * @index: Index of the spi resource inside the ACPI Node
2767 *
2768 * This should be used to allocate a new SPI device from and ACPI Device node.
2769 * The caller is responsible for calling spi_add_device to register the SPI device.
2770 *
2771 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2772 * using the resource.
2773 * If index is set to -1, index is not used.
2774 * Note: If index is -1, ctlr must be set.
2775 *
2776 * Return: a pointer to the new device, or ERR_PTR on error.
2777 */
2778struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2779					 struct acpi_device *adev,
2780					 int index)
2781{
2782	acpi_handle parent_handle = NULL;
2783	struct list_head resource_list;
2784	struct acpi_spi_lookup lookup = {};
2785	struct spi_device *spi;
2786	int ret;
2787	u8 idx;
2788
2789	if (!ctlr && index == -1)
2790		return ERR_PTR(-EINVAL);
 
2791
2792	lookup.ctlr		= ctlr;
2793	lookup.irq		= -1;
2794	lookup.index		= index;
2795	lookup.n		= 0;
2796
2797	INIT_LIST_HEAD(&resource_list);
2798	ret = acpi_dev_get_resources(adev, &resource_list,
2799				     acpi_spi_add_resource, &lookup);
2800	acpi_dev_free_resource_list(&resource_list);
2801
2802	if (ret < 0)
2803		/* Found SPI in _CRS but it points to another controller */
2804		return ERR_PTR(ret);
2805
2806	if (!lookup.max_speed_hz &&
2807	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2808	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2809		/* Apple does not use _CRS but nested devices for SPI slaves */
2810		acpi_spi_parse_apple_properties(adev, &lookup);
2811	}
2812
2813	if (!lookup.max_speed_hz)
2814		return ERR_PTR(-ENODEV);
2815
2816	spi = spi_alloc_device(lookup.ctlr);
2817	if (!spi) {
2818		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2819			dev_name(&adev->dev));
2820		return ERR_PTR(-ENOMEM);
2821	}
2822
2823	/*
2824	 * Zero(0) is a valid physical CS value and can be located at any
2825	 * logical CS in the spi->chip_select[]. If all the physical CS
2826	 * are initialized to 0 then It would be difficult to differentiate
2827	 * between a valid physical CS 0 & an unused logical CS whose physical
2828	 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
2829	 * Now all the unused logical CS will have 0xFF physical CS value & can be
2830	 * ignore while performing physical CS validity checks.
2831	 */
2832	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
2833		spi_set_chipselect(spi, idx, 0xFF);
2834
2835	ACPI_COMPANION_SET(&spi->dev, adev);
2836	spi->max_speed_hz	= lookup.max_speed_hz;
2837	spi->mode		|= lookup.mode;
2838	spi->irq		= lookup.irq;
2839	spi->bits_per_word	= lookup.bits_per_word;
2840	spi_set_chipselect(spi, 0, lookup.chip_select);
2841	/*
2842	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
2843	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
2844	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
2845	 * spi->chip_select[0] will give the physical CS.
2846	 * By default spi->chip_select[0] will hold the physical CS number so, set
2847	 * spi->cs_index_mask as 0x01.
2848	 */
2849	spi->cs_index_mask	= 0x01;
2850
2851	return spi;
2852}
2853EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2854
2855static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2856					    struct acpi_device *adev)
2857{
2858	struct spi_device *spi;
2859
2860	if (acpi_bus_get_status(adev) || !adev->status.present ||
2861	    acpi_device_enumerated(adev))
2862		return AE_OK;
2863
2864	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2865	if (IS_ERR(spi)) {
2866		if (PTR_ERR(spi) == -ENOMEM)
2867			return AE_NO_MEMORY;
2868		else
2869			return AE_OK;
2870	}
2871
2872	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2873			  sizeof(spi->modalias));
2874
2875	if (spi->irq < 0)
2876		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2877
2878	acpi_device_set_enumerated(adev);
2879
2880	adev->power.flags.ignore_parent = true;
2881	if (spi_add_device(spi)) {
2882		adev->power.flags.ignore_parent = false;
2883		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2884			dev_name(&adev->dev));
2885		spi_dev_put(spi);
2886	}
2887
2888	return AE_OK;
2889}
2890
2891static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2892				       void *data, void **return_value)
2893{
2894	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2895	struct spi_controller *ctlr = data;
 
2896
2897	if (!adev)
2898		return AE_OK;
2899
2900	return acpi_register_spi_device(ctlr, adev);
2901}
2902
2903#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2904
2905static void acpi_register_spi_devices(struct spi_controller *ctlr)
2906{
2907	acpi_status status;
2908	acpi_handle handle;
2909
2910	handle = ACPI_HANDLE(ctlr->dev.parent);
2911	if (!handle)
2912		return;
2913
2914	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2915				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2916				     acpi_spi_add_device, NULL, ctlr, NULL);
2917	if (ACPI_FAILURE(status))
2918		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2919}
2920#else
2921static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2922#endif /* CONFIG_ACPI */
2923
2924static void spi_controller_release(struct device *dev)
2925{
2926	struct spi_controller *ctlr;
2927
2928	ctlr = container_of(dev, struct spi_controller, dev);
2929	kfree(ctlr);
2930}
2931
2932static struct class spi_master_class = {
2933	.name		= "spi_master",
 
2934	.dev_release	= spi_controller_release,
2935	.dev_groups	= spi_master_groups,
2936};
2937
2938#ifdef CONFIG_SPI_SLAVE
2939/**
2940 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2941 *		     controller
2942 * @spi: device used for the current transfer
2943 */
2944int spi_slave_abort(struct spi_device *spi)
2945{
2946	struct spi_controller *ctlr = spi->controller;
2947
2948	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2949		return ctlr->slave_abort(ctlr);
2950
2951	return -ENOTSUPP;
2952}
2953EXPORT_SYMBOL_GPL(spi_slave_abort);
2954
2955int spi_target_abort(struct spi_device *spi)
2956{
2957	struct spi_controller *ctlr = spi->controller;
2958
2959	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2960		return ctlr->target_abort(ctlr);
2961
2962	return -ENOTSUPP;
2963}
2964EXPORT_SYMBOL_GPL(spi_target_abort);
2965
2966static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2967			  char *buf)
2968{
2969	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2970						   dev);
2971	struct device *child;
2972
2973	child = device_find_any_child(&ctlr->dev);
2974	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
 
2975}
2976
2977static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2978			   const char *buf, size_t count)
2979{
2980	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2981						   dev);
2982	struct spi_device *spi;
2983	struct device *child;
2984	char name[32];
2985	int rc;
2986
2987	rc = sscanf(buf, "%31s", name);
2988	if (rc != 1 || !name[0])
2989		return -EINVAL;
2990
2991	child = device_find_any_child(&ctlr->dev);
2992	if (child) {
2993		/* Remove registered slave */
2994		device_unregister(child);
2995		put_device(child);
2996	}
2997
2998	if (strcmp(name, "(null)")) {
2999		/* Register new slave */
3000		spi = spi_alloc_device(ctlr);
3001		if (!spi)
3002			return -ENOMEM;
3003
3004		strscpy(spi->modalias, name, sizeof(spi->modalias));
3005
3006		rc = spi_add_device(spi);
3007		if (rc) {
3008			spi_dev_put(spi);
3009			return rc;
3010		}
3011	}
3012
3013	return count;
3014}
3015
3016static DEVICE_ATTR_RW(slave);
3017
3018static struct attribute *spi_slave_attrs[] = {
3019	&dev_attr_slave.attr,
3020	NULL,
3021};
3022
3023static const struct attribute_group spi_slave_group = {
3024	.attrs = spi_slave_attrs,
3025};
3026
3027static const struct attribute_group *spi_slave_groups[] = {
3028	&spi_controller_statistics_group,
3029	&spi_slave_group,
3030	NULL,
3031};
3032
3033static struct class spi_slave_class = {
3034	.name		= "spi_slave",
 
3035	.dev_release	= spi_controller_release,
3036	.dev_groups	= spi_slave_groups,
3037};
3038#else
3039extern struct class spi_slave_class;	/* dummy */
3040#endif
3041
3042/**
3043 * __spi_alloc_controller - allocate an SPI master or slave controller
3044 * @dev: the controller, possibly using the platform_bus
3045 * @size: how much zeroed driver-private data to allocate; the pointer to this
3046 *	memory is in the driver_data field of the returned device, accessible
3047 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3048 *	drivers granting DMA access to portions of their private data need to
3049 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3050 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3051 *	slave (true) controller
3052 * Context: can sleep
3053 *
3054 * This call is used only by SPI controller drivers, which are the
3055 * only ones directly touching chip registers.  It's how they allocate
3056 * an spi_controller structure, prior to calling spi_register_controller().
3057 *
3058 * This must be called from context that can sleep.
3059 *
3060 * The caller is responsible for assigning the bus number and initializing the
3061 * controller's methods before calling spi_register_controller(); and (after
3062 * errors adding the device) calling spi_controller_put() to prevent a memory
3063 * leak.
3064 *
3065 * Return: the SPI controller structure on success, else NULL.
3066 */
3067struct spi_controller *__spi_alloc_controller(struct device *dev,
3068					      unsigned int size, bool slave)
3069{
3070	struct spi_controller	*ctlr;
3071	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3072
3073	if (!dev)
3074		return NULL;
3075
3076	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3077	if (!ctlr)
3078		return NULL;
3079
3080	device_initialize(&ctlr->dev);
3081	INIT_LIST_HEAD(&ctlr->queue);
3082	spin_lock_init(&ctlr->queue_lock);
3083	spin_lock_init(&ctlr->bus_lock_spinlock);
3084	mutex_init(&ctlr->bus_lock_mutex);
3085	mutex_init(&ctlr->io_mutex);
3086	mutex_init(&ctlr->add_lock);
3087	ctlr->bus_num = -1;
3088	ctlr->num_chipselect = 1;
3089	ctlr->slave = slave;
3090	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3091		ctlr->dev.class = &spi_slave_class;
3092	else
3093		ctlr->dev.class = &spi_master_class;
3094	ctlr->dev.parent = dev;
3095	pm_suspend_ignore_children(&ctlr->dev, true);
3096	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3097
3098	return ctlr;
3099}
3100EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3101
3102static void devm_spi_release_controller(struct device *dev, void *ctlr)
3103{
3104	spi_controller_put(*(struct spi_controller **)ctlr);
3105}
3106
3107/**
3108 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3109 * @dev: physical device of SPI controller
3110 * @size: how much zeroed driver-private data to allocate
3111 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3112 * Context: can sleep
3113 *
3114 * Allocate an SPI controller and automatically release a reference on it
3115 * when @dev is unbound from its driver.  Drivers are thus relieved from
3116 * having to call spi_controller_put().
3117 *
3118 * The arguments to this function are identical to __spi_alloc_controller().
3119 *
3120 * Return: the SPI controller structure on success, else NULL.
3121 */
3122struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3123						   unsigned int size,
3124						   bool slave)
3125{
3126	struct spi_controller **ptr, *ctlr;
3127
3128	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3129			   GFP_KERNEL);
3130	if (!ptr)
3131		return NULL;
3132
3133	ctlr = __spi_alloc_controller(dev, size, slave);
3134	if (ctlr) {
3135		ctlr->devm_allocated = true;
3136		*ptr = ctlr;
3137		devres_add(dev, ptr);
3138	} else {
3139		devres_free(ptr);
3140	}
3141
3142	return ctlr;
3143}
3144EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3146/**
3147 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3148 * @ctlr: The SPI master to grab GPIO descriptors for
3149 */
3150static int spi_get_gpio_descs(struct spi_controller *ctlr)
3151{
3152	int nb, i;
3153	struct gpio_desc **cs;
3154	struct device *dev = &ctlr->dev;
3155	unsigned long native_cs_mask = 0;
3156	unsigned int num_cs_gpios = 0;
3157
3158	nb = gpiod_count(dev, "cs");
3159	if (nb < 0) {
3160		/* No GPIOs at all is fine, else return the error */
3161		if (nb == -ENOENT)
3162			return 0;
3163		return nb;
3164	}
3165
3166	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3167
3168	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3169			  GFP_KERNEL);
3170	if (!cs)
3171		return -ENOMEM;
3172	ctlr->cs_gpiods = cs;
3173
3174	for (i = 0; i < nb; i++) {
3175		/*
3176		 * Most chipselects are active low, the inverted
3177		 * semantics are handled by special quirks in gpiolib,
3178		 * so initializing them GPIOD_OUT_LOW here means
3179		 * "unasserted", in most cases this will drive the physical
3180		 * line high.
3181		 */
3182		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3183						      GPIOD_OUT_LOW);
3184		if (IS_ERR(cs[i]))
3185			return PTR_ERR(cs[i]);
3186
3187		if (cs[i]) {
3188			/*
3189			 * If we find a CS GPIO, name it after the device and
3190			 * chip select line.
3191			 */
3192			char *gpioname;
3193
3194			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3195						  dev_name(dev), i);
3196			if (!gpioname)
3197				return -ENOMEM;
3198			gpiod_set_consumer_name(cs[i], gpioname);
3199			num_cs_gpios++;
3200			continue;
3201		}
3202
3203		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3204			dev_err(dev, "Invalid native chip select %d\n", i);
3205			return -EINVAL;
3206		}
3207		native_cs_mask |= BIT(i);
3208	}
3209
3210	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3211
3212	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3213	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3214		dev_err(dev, "No unused native chip select available\n");
3215		return -EINVAL;
3216	}
3217
3218	return 0;
3219}
3220
3221static int spi_controller_check_ops(struct spi_controller *ctlr)
3222{
3223	/*
3224	 * The controller may implement only the high-level SPI-memory like
3225	 * operations if it does not support regular SPI transfers, and this is
3226	 * valid use case.
3227	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3228	 * one of the ->transfer_xxx() method be implemented.
3229	 */
3230	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3231		if (!ctlr->transfer && !ctlr->transfer_one &&
3232		   !ctlr->transfer_one_message) {
3233			return -EINVAL;
3234		}
 
 
3235	}
3236
3237	return 0;
3238}
3239
3240/* Allocate dynamic bus number using Linux idr */
3241static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3242{
3243	int id;
3244
3245	mutex_lock(&board_lock);
3246	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3247	mutex_unlock(&board_lock);
3248	if (WARN(id < 0, "couldn't get idr"))
3249		return id == -ENOSPC ? -EBUSY : id;
3250	ctlr->bus_num = id;
3251	return 0;
3252}
3253
3254/**
3255 * spi_register_controller - register SPI master or slave controller
3256 * @ctlr: initialized master, originally from spi_alloc_master() or
3257 *	spi_alloc_slave()
3258 * Context: can sleep
3259 *
3260 * SPI controllers connect to their drivers using some non-SPI bus,
3261 * such as the platform bus.  The final stage of probe() in that code
3262 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3263 *
3264 * SPI controllers use board specific (often SOC specific) bus numbers,
3265 * and board-specific addressing for SPI devices combines those numbers
3266 * with chip select numbers.  Since SPI does not directly support dynamic
3267 * device identification, boards need configuration tables telling which
3268 * chip is at which address.
3269 *
3270 * This must be called from context that can sleep.  It returns zero on
3271 * success, else a negative error code (dropping the controller's refcount).
3272 * After a successful return, the caller is responsible for calling
3273 * spi_unregister_controller().
3274 *
3275 * Return: zero on success, else a negative error code.
3276 */
3277int spi_register_controller(struct spi_controller *ctlr)
3278{
3279	struct device		*dev = ctlr->dev.parent;
3280	struct boardinfo	*bi;
3281	int			first_dynamic;
3282	int			status;
3283	int			idx;
3284
3285	if (!dev)
3286		return -ENODEV;
3287
3288	/*
3289	 * Make sure all necessary hooks are implemented before registering
3290	 * the SPI controller.
3291	 */
3292	status = spi_controller_check_ops(ctlr);
3293	if (status)
3294		return status;
3295
3296	if (ctlr->bus_num < 0)
3297		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3298	if (ctlr->bus_num >= 0) {
3299		/* Devices with a fixed bus num must check-in with the num */
3300		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3301		if (status)
3302			return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3303	}
3304	if (ctlr->bus_num < 0) {
3305		first_dynamic = of_alias_get_highest_id("spi");
3306		if (first_dynamic < 0)
3307			first_dynamic = 0;
3308		else
3309			first_dynamic++;
3310
3311		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3312		if (status)
3313			return status;
 
 
 
 
3314	}
3315	ctlr->bus_lock_flag = 0;
3316	init_completion(&ctlr->xfer_completion);
3317	init_completion(&ctlr->cur_msg_completion);
3318	if (!ctlr->max_dma_len)
3319		ctlr->max_dma_len = INT_MAX;
3320
3321	/*
3322	 * Register the device, then userspace will see it.
3323	 * Registration fails if the bus ID is in use.
3324	 */
3325	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3326
3327	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3328		status = spi_get_gpio_descs(ctlr);
3329		if (status)
3330			goto free_bus_id;
3331		/*
3332		 * A controller using GPIO descriptors always
3333		 * supports SPI_CS_HIGH if need be.
3334		 */
3335		ctlr->mode_bits |= SPI_CS_HIGH;
 
 
 
 
 
 
 
3336	}
3337
3338	/*
3339	 * Even if it's just one always-selected device, there must
3340	 * be at least one chipselect.
3341	 */
3342	if (!ctlr->num_chipselect) {
3343		status = -EINVAL;
3344		goto free_bus_id;
3345	}
3346
3347	/* Setting last_cs to -1 means no chip selected */
3348	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3349		ctlr->last_cs[idx] = -1;
3350
3351	status = device_add(&ctlr->dev);
3352	if (status < 0)
3353		goto free_bus_id;
3354	dev_dbg(dev, "registered %s %s\n",
3355			spi_controller_is_slave(ctlr) ? "slave" : "master",
3356			dev_name(&ctlr->dev));
3357
3358	/*
3359	 * If we're using a queued driver, start the queue. Note that we don't
3360	 * need the queueing logic if the driver is only supporting high-level
3361	 * memory operations.
3362	 */
3363	if (ctlr->transfer) {
3364		dev_info(dev, "controller is unqueued, this is deprecated\n");
3365	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3366		status = spi_controller_initialize_queue(ctlr);
3367		if (status) {
3368			device_del(&ctlr->dev);
3369			goto free_bus_id;
3370		}
3371	}
3372	/* Add statistics */
3373	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3374	if (!ctlr->pcpu_statistics) {
3375		dev_err(dev, "Error allocating per-cpu statistics\n");
3376		status = -ENOMEM;
3377		goto destroy_queue;
3378	}
3379
3380	mutex_lock(&board_lock);
3381	list_add_tail(&ctlr->list, &spi_controller_list);
3382	list_for_each_entry(bi, &board_list, list)
3383		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3384	mutex_unlock(&board_lock);
3385
3386	/* Register devices from the device tree and ACPI */
3387	of_register_spi_devices(ctlr);
3388	acpi_register_spi_devices(ctlr);
3389	return status;
3390
3391destroy_queue:
3392	spi_destroy_queue(ctlr);
3393free_bus_id:
3394	mutex_lock(&board_lock);
3395	idr_remove(&spi_master_idr, ctlr->bus_num);
3396	mutex_unlock(&board_lock);
3397	return status;
3398}
3399EXPORT_SYMBOL_GPL(spi_register_controller);
3400
3401static void devm_spi_unregister(struct device *dev, void *res)
3402{
3403	spi_unregister_controller(*(struct spi_controller **)res);
3404}
3405
3406/**
3407 * devm_spi_register_controller - register managed SPI master or slave
3408 *	controller
3409 * @dev:    device managing SPI controller
3410 * @ctlr: initialized controller, originally from spi_alloc_master() or
3411 *	spi_alloc_slave()
3412 * Context: can sleep
3413 *
3414 * Register a SPI device as with spi_register_controller() which will
3415 * automatically be unregistered and freed.
3416 *
3417 * Return: zero on success, else a negative error code.
3418 */
3419int devm_spi_register_controller(struct device *dev,
3420				 struct spi_controller *ctlr)
3421{
3422	struct spi_controller **ptr;
3423	int ret;
3424
3425	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3426	if (!ptr)
3427		return -ENOMEM;
3428
3429	ret = spi_register_controller(ctlr);
3430	if (!ret) {
3431		*ptr = ctlr;
3432		devres_add(dev, ptr);
3433	} else {
3434		devres_free(ptr);
3435	}
3436
3437	return ret;
3438}
3439EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3440
3441static int __unregister(struct device *dev, void *null)
3442{
3443	spi_unregister_device(to_spi_device(dev));
3444	return 0;
3445}
3446
3447/**
3448 * spi_unregister_controller - unregister SPI master or slave controller
3449 * @ctlr: the controller being unregistered
3450 * Context: can sleep
3451 *
3452 * This call is used only by SPI controller drivers, which are the
3453 * only ones directly touching chip registers.
3454 *
3455 * This must be called from context that can sleep.
3456 *
3457 * Note that this function also drops a reference to the controller.
3458 */
3459void spi_unregister_controller(struct spi_controller *ctlr)
3460{
3461	struct spi_controller *found;
3462	int id = ctlr->bus_num;
3463
3464	/* Prevent addition of new devices, unregister existing ones */
3465	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3466		mutex_lock(&ctlr->add_lock);
3467
3468	device_for_each_child(&ctlr->dev, NULL, __unregister);
3469
3470	/* First make sure that this controller was ever added */
3471	mutex_lock(&board_lock);
3472	found = idr_find(&spi_master_idr, id);
3473	mutex_unlock(&board_lock);
3474	if (ctlr->queued) {
3475		if (spi_destroy_queue(ctlr))
3476			dev_err(&ctlr->dev, "queue remove failed\n");
3477	}
3478	mutex_lock(&board_lock);
3479	list_del(&ctlr->list);
3480	mutex_unlock(&board_lock);
3481
3482	device_del(&ctlr->dev);
3483
3484	/* Free bus id */
 
 
 
 
 
 
3485	mutex_lock(&board_lock);
3486	if (found == ctlr)
3487		idr_remove(&spi_master_idr, id);
3488	mutex_unlock(&board_lock);
3489
3490	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3491		mutex_unlock(&ctlr->add_lock);
3492
3493	/*
3494	 * Release the last reference on the controller if its driver
3495	 * has not yet been converted to devm_spi_alloc_master/slave().
3496	 */
3497	if (!ctlr->devm_allocated)
3498		put_device(&ctlr->dev);
3499}
3500EXPORT_SYMBOL_GPL(spi_unregister_controller);
3501
3502static inline int __spi_check_suspended(const struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3503{
3504	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
 
 
 
 
 
 
 
 
 
3505}
 
3506
3507static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3508{
3509	mutex_lock(&ctlr->bus_lock_mutex);
3510	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3511	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
3512}
3513
3514static inline void __spi_mark_resumed(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
3515{
3516	mutex_lock(&ctlr->bus_lock_mutex);
3517	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3518	mutex_unlock(&ctlr->bus_lock_mutex);
 
 
 
 
 
 
3519}
 
3520
3521int spi_controller_suspend(struct spi_controller *ctlr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3522{
3523	int ret = 0;
3524
3525	/* Basically no-ops for non-queued controllers */
3526	if (ctlr->queued) {
3527		ret = spi_stop_queue(ctlr);
3528		if (ret)
3529			dev_err(&ctlr->dev, "queue stop failed\n");
3530	}
3531
3532	__spi_mark_suspended(ctlr);
3533	return ret;
 
 
3534}
3535EXPORT_SYMBOL_GPL(spi_controller_suspend);
3536
3537int spi_controller_resume(struct spi_controller *ctlr)
 
 
 
 
 
3538{
3539	int ret = 0;
 
 
 
3540
3541	__spi_mark_resumed(ctlr);
 
 
 
3542
3543	if (ctlr->queued) {
3544		ret = spi_start_queue(ctlr);
3545		if (ret)
3546			dev_err(&ctlr->dev, "queue restart failed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3547	}
3548	return ret;
3549}
3550EXPORT_SYMBOL_GPL(spi_controller_resume);
3551
3552/*-------------------------------------------------------------------------*/
3553
3554/* Core methods for spi_message alterations */
3555
3556static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3557					    struct spi_message *msg,
3558					    void *res)
3559{
3560	struct spi_replaced_transfers *rxfer = res;
3561	size_t i;
3562
3563	/* Call extra callback if requested */
3564	if (rxfer->release)
3565		rxfer->release(ctlr, msg, res);
3566
3567	/* Insert replaced transfers back into the message */
3568	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3569
3570	/* Remove the formerly inserted entries */
3571	for (i = 0; i < rxfer->inserted; i++)
3572		list_del(&rxfer->inserted_transfers[i].transfer_list);
3573}
3574
3575/**
3576 * spi_replace_transfers - replace transfers with several transfers
3577 *                         and register change with spi_message.resources
3578 * @msg:           the spi_message we work upon
3579 * @xfer_first:    the first spi_transfer we want to replace
3580 * @remove:        number of transfers to remove
3581 * @insert:        the number of transfers we want to insert instead
3582 * @release:       extra release code necessary in some circumstances
3583 * @extradatasize: extra data to allocate (with alignment guarantees
3584 *                 of struct @spi_transfer)
3585 * @gfp:           gfp flags
3586 *
3587 * Returns: pointer to @spi_replaced_transfers,
3588 *          PTR_ERR(...) in case of errors.
3589 */
3590static struct spi_replaced_transfers *spi_replace_transfers(
3591	struct spi_message *msg,
3592	struct spi_transfer *xfer_first,
3593	size_t remove,
3594	size_t insert,
3595	spi_replaced_release_t release,
3596	size_t extradatasize,
3597	gfp_t gfp)
3598{
3599	struct spi_replaced_transfers *rxfer;
3600	struct spi_transfer *xfer;
3601	size_t i;
3602
3603	/* Allocate the structure using spi_res */
3604	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3605			      struct_size(rxfer, inserted_transfers, insert)
3606			      + extradatasize,
3607			      gfp);
3608	if (!rxfer)
3609		return ERR_PTR(-ENOMEM);
3610
3611	/* The release code to invoke before running the generic release */
3612	rxfer->release = release;
3613
3614	/* Assign extradata */
3615	if (extradatasize)
3616		rxfer->extradata =
3617			&rxfer->inserted_transfers[insert];
3618
3619	/* Init the replaced_transfers list */
3620	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3621
3622	/*
3623	 * Assign the list_entry after which we should reinsert
3624	 * the @replaced_transfers - it may be spi_message.messages!
3625	 */
3626	rxfer->replaced_after = xfer_first->transfer_list.prev;
3627
3628	/* Remove the requested number of transfers */
3629	for (i = 0; i < remove; i++) {
3630		/*
3631		 * If the entry after replaced_after it is msg->transfers
3632		 * then we have been requested to remove more transfers
3633		 * than are in the list.
3634		 */
3635		if (rxfer->replaced_after->next == &msg->transfers) {
3636			dev_err(&msg->spi->dev,
3637				"requested to remove more spi_transfers than are available\n");
3638			/* Insert replaced transfers back into the message */
3639			list_splice(&rxfer->replaced_transfers,
3640				    rxfer->replaced_after);
3641
3642			/* Free the spi_replace_transfer structure... */
3643			spi_res_free(rxfer);
3644
3645			/* ...and return with an error */
3646			return ERR_PTR(-EINVAL);
3647		}
3648
3649		/*
3650		 * Remove the entry after replaced_after from list of
3651		 * transfers and add it to list of replaced_transfers.
3652		 */
3653		list_move_tail(rxfer->replaced_after->next,
3654			       &rxfer->replaced_transfers);
3655	}
3656
3657	/*
3658	 * Create copy of the given xfer with identical settings
3659	 * based on the first transfer to get removed.
3660	 */
3661	for (i = 0; i < insert; i++) {
3662		/* We need to run in reverse order */
3663		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3664
3665		/* Copy all spi_transfer data */
3666		memcpy(xfer, xfer_first, sizeof(*xfer));
3667
3668		/* Add to list */
3669		list_add(&xfer->transfer_list, rxfer->replaced_after);
3670
3671		/* Clear cs_change and delay for all but the last */
3672		if (i) {
3673			xfer->cs_change = false;
3674			xfer->delay.value = 0;
3675		}
3676	}
3677
3678	/* Set up inserted... */
3679	rxfer->inserted = insert;
3680
3681	/* ...and register it with spi_res/spi_message */
3682	spi_res_add(msg, rxfer);
3683
3684	return rxfer;
3685}
 
3686
3687static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3688					struct spi_message *msg,
3689					struct spi_transfer **xferp,
3690					size_t maxsize,
3691					gfp_t gfp)
3692{
3693	struct spi_transfer *xfer = *xferp, *xfers;
3694	struct spi_replaced_transfers *srt;
3695	size_t offset;
3696	size_t count, i;
3697
3698	/* Calculate how many we have to replace */
3699	count = DIV_ROUND_UP(xfer->len, maxsize);
3700
3701	/* Create replacement */
3702	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3703	if (IS_ERR(srt))
3704		return PTR_ERR(srt);
3705	xfers = srt->inserted_transfers;
3706
3707	/*
3708	 * Now handle each of those newly inserted spi_transfers.
3709	 * Note that the replacements spi_transfers all are preset
3710	 * to the same values as *xferp, so tx_buf, rx_buf and len
3711	 * are all identical (as well as most others)
3712	 * so we just have to fix up len and the pointers.
3713	 *
3714	 * This also includes support for the depreciated
3715	 * spi_message.is_dma_mapped interface.
3716	 */
3717
3718	/*
3719	 * The first transfer just needs the length modified, so we
3720	 * run it outside the loop.
3721	 */
3722	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3723
3724	/* All the others need rx_buf/tx_buf also set */
3725	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3726		/* Update rx_buf, tx_buf and DMA */
3727		if (xfers[i].rx_buf)
3728			xfers[i].rx_buf += offset;
3729		if (xfers[i].rx_dma)
3730			xfers[i].rx_dma += offset;
3731		if (xfers[i].tx_buf)
3732			xfers[i].tx_buf += offset;
3733		if (xfers[i].tx_dma)
3734			xfers[i].tx_dma += offset;
3735
3736		/* Update length */
3737		xfers[i].len = min(maxsize, xfers[i].len - offset);
3738	}
3739
3740	/*
3741	 * We set up xferp to the last entry we have inserted,
3742	 * so that we skip those already split transfers.
3743	 */
3744	*xferp = &xfers[count - 1];
3745
3746	/* Increment statistics counters */
3747	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3748				       transfers_split_maxsize);
3749	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3750				       transfers_split_maxsize);
3751
3752	return 0;
3753}
3754
3755/**
3756 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3757 *                               when an individual transfer exceeds a
3758 *                               certain size
3759 * @ctlr:    the @spi_controller for this transfer
3760 * @msg:   the @spi_message to transform
3761 * @maxsize:  the maximum when to apply this
3762 * @gfp: GFP allocation flags
3763 *
3764 * Return: status of transformation
3765 */
3766int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3767				struct spi_message *msg,
3768				size_t maxsize,
3769				gfp_t gfp)
3770{
3771	struct spi_transfer *xfer;
3772	int ret;
3773
3774	/*
3775	 * Iterate over the transfer_list,
3776	 * but note that xfer is advanced to the last transfer inserted
3777	 * to avoid checking sizes again unnecessarily (also xfer does
3778	 * potentially belong to a different list by the time the
3779	 * replacement has happened).
3780	 */
3781	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3782		if (xfer->len > maxsize) {
3783			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3784							   maxsize, gfp);
3785			if (ret)
3786				return ret;
3787		}
3788	}
3789
3790	return 0;
3791}
3792EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3793
3794
3795/**
3796 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3797 *                                when an individual transfer exceeds a
3798 *                                certain number of SPI words
3799 * @ctlr:     the @spi_controller for this transfer
3800 * @msg:      the @spi_message to transform
3801 * @maxwords: the number of words to limit each transfer to
3802 * @gfp:      GFP allocation flags
3803 *
3804 * Return: status of transformation
3805 */
3806int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3807				 struct spi_message *msg,
3808				 size_t maxwords,
3809				 gfp_t gfp)
3810{
3811	struct spi_transfer *xfer;
3812
3813	/*
3814	 * Iterate over the transfer_list,
3815	 * but note that xfer is advanced to the last transfer inserted
3816	 * to avoid checking sizes again unnecessarily (also xfer does
3817	 * potentially belong to a different list by the time the
3818	 * replacement has happened).
3819	 */
3820	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3821		size_t maxsize;
3822		int ret;
3823
3824		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3825		if (xfer->len > maxsize) {
3826			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3827							   maxsize, gfp);
3828			if (ret)
3829				return ret;
3830		}
3831	}
3832
3833	return 0;
3834}
3835EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3836
3837/*-------------------------------------------------------------------------*/
3838
3839/*
3840 * Core methods for SPI controller protocol drivers. Some of the
3841 * other core methods are currently defined as inline functions.
3842 */
3843
3844static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3845					u8 bits_per_word)
3846{
3847	if (ctlr->bits_per_word_mask) {
3848		/* Only 32 bits fit in the mask */
3849		if (bits_per_word > 32)
3850			return -EINVAL;
3851		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3852			return -EINVAL;
3853	}
3854
3855	return 0;
3856}
3857
3858/**
3859 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3860 * @spi: the device that requires specific CS timing configuration
3861 *
3862 * Return: zero on success, else a negative error code.
3863 */
3864static int spi_set_cs_timing(struct spi_device *spi)
3865{
3866	struct device *parent = spi->controller->dev.parent;
3867	int status = 0;
3868
3869	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3870		if (spi->controller->auto_runtime_pm) {
3871			status = pm_runtime_get_sync(parent);
3872			if (status < 0) {
3873				pm_runtime_put_noidle(parent);
3874				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3875					status);
3876				return status;
3877			}
3878
3879			status = spi->controller->set_cs_timing(spi);
3880			pm_runtime_mark_last_busy(parent);
3881			pm_runtime_put_autosuspend(parent);
3882		} else {
3883			status = spi->controller->set_cs_timing(spi);
3884		}
3885	}
3886	return status;
3887}
3888
3889/**
3890 * spi_setup - setup SPI mode and clock rate
3891 * @spi: the device whose settings are being modified
3892 * Context: can sleep, and no requests are queued to the device
3893 *
3894 * SPI protocol drivers may need to update the transfer mode if the
3895 * device doesn't work with its default.  They may likewise need
3896 * to update clock rates or word sizes from initial values.  This function
3897 * changes those settings, and must be called from a context that can sleep.
3898 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3899 * effect the next time the device is selected and data is transferred to
3900 * or from it.  When this function returns, the SPI device is deselected.
3901 *
3902 * Note that this call will fail if the protocol driver specifies an option
3903 * that the underlying controller or its driver does not support.  For
3904 * example, not all hardware supports wire transfers using nine bit words,
3905 * LSB-first wire encoding, or active-high chipselects.
3906 *
3907 * Return: zero on success, else a negative error code.
3908 */
3909int spi_setup(struct spi_device *spi)
3910{
3911	unsigned	bad_bits, ugly_bits;
3912	int		status = 0;
3913
3914	/*
3915	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3916	 * are set at the same time.
3917	 */
3918	if ((hweight_long(spi->mode &
3919		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3920	    (hweight_long(spi->mode &
3921		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3922		dev_err(&spi->dev,
3923		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3924		return -EINVAL;
3925	}
3926	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
 
3927	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3928		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3929		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3930		return -EINVAL;
3931	/*
3932	 * Help drivers fail *cleanly* when they need options
3933	 * that aren't supported with their current controller.
3934	 * SPI_CS_WORD has a fallback software implementation,
3935	 * so it is ignored here.
3936	 */
3937	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3938				 SPI_NO_TX | SPI_NO_RX);
 
 
 
 
 
3939	ugly_bits = bad_bits &
3940		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3941		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3942	if (ugly_bits) {
3943		dev_warn(&spi->dev,
3944			 "setup: ignoring unsupported mode bits %x\n",
3945			 ugly_bits);
3946		spi->mode &= ~ugly_bits;
3947		bad_bits &= ~ugly_bits;
3948	}
3949	if (bad_bits) {
3950		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3951			bad_bits);
3952		return -EINVAL;
3953	}
3954
3955	if (!spi->bits_per_word) {
3956		spi->bits_per_word = 8;
3957	} else {
3958		/*
3959		 * Some controllers may not support the default 8 bits-per-word
3960		 * so only perform the check when this is explicitly provided.
3961		 */
3962		status = __spi_validate_bits_per_word(spi->controller,
3963						      spi->bits_per_word);
3964		if (status)
3965			return status;
3966	}
3967
3968	if (spi->controller->max_speed_hz &&
3969	    (!spi->max_speed_hz ||
3970	     spi->max_speed_hz > spi->controller->max_speed_hz))
3971		spi->max_speed_hz = spi->controller->max_speed_hz;
3972
3973	mutex_lock(&spi->controller->io_mutex);
3974
3975	if (spi->controller->setup) {
3976		status = spi->controller->setup(spi);
3977		if (status) {
3978			mutex_unlock(&spi->controller->io_mutex);
3979			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3980				status);
3981			return status;
3982		}
3983	}
3984
3985	status = spi_set_cs_timing(spi);
3986	if (status) {
3987		mutex_unlock(&spi->controller->io_mutex);
3988		return status;
3989	}
3990
3991	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3992		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3993		if (status < 0) {
3994			mutex_unlock(&spi->controller->io_mutex);
 
3995			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3996				status);
3997			return status;
3998		}
3999
4000		/*
4001		 * We do not want to return positive value from pm_runtime_get,
4002		 * there are many instances of devices calling spi_setup() and
4003		 * checking for a non-zero return value instead of a negative
4004		 * return value.
4005		 */
4006		status = 0;
4007
4008		spi_set_cs(spi, false, true);
4009		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4010		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4011	} else {
4012		spi_set_cs(spi, false, true);
4013	}
4014
4015	mutex_unlock(&spi->controller->io_mutex);
4016
4017	if (spi->rt && !spi->controller->rt) {
4018		spi->controller->rt = true;
4019		spi_set_thread_rt(spi->controller);
4020	}
4021
4022	trace_spi_setup(spi, status);
4023
4024	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4025			spi->mode & SPI_MODE_X_MASK,
4026			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4027			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4028			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4029			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4030			spi->bits_per_word, spi->max_speed_hz,
4031			status);
4032
4033	return status;
4034}
4035EXPORT_SYMBOL_GPL(spi_setup);
4036
4037static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4038				       struct spi_device *spi)
4039{
4040	int delay1, delay2;
4041
4042	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4043	if (delay1 < 0)
4044		return delay1;
4045
4046	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4047	if (delay2 < 0)
4048		return delay2;
4049
4050	if (delay1 < delay2)
4051		memcpy(&xfer->word_delay, &spi->word_delay,
4052		       sizeof(xfer->word_delay));
4053
4054	return 0;
4055}
4056
4057static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4058{
4059	struct spi_controller *ctlr = spi->controller;
4060	struct spi_transfer *xfer;
4061	int w_size;
4062
4063	if (list_empty(&message->transfers))
4064		return -EINVAL;
4065
4066	/*
4067	 * If an SPI controller does not support toggling the CS line on each
4068	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4069	 * for the CS line, we can emulate the CS-per-word hardware function by
4070	 * splitting transfers into one-word transfers and ensuring that
4071	 * cs_change is set for each transfer.
4072	 */
4073	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
4074					  spi_is_csgpiod(spi))) {
4075		size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
 
4076		int ret;
4077
 
 
4078		/* spi_split_transfers_maxsize() requires message->spi */
4079		message->spi = spi;
4080
4081		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
4082						  GFP_KERNEL);
4083		if (ret)
4084			return ret;
4085
4086		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4087			/* Don't change cs_change on the last entry in the list */
4088			if (list_is_last(&xfer->transfer_list, &message->transfers))
4089				break;
4090			xfer->cs_change = 1;
4091		}
4092	}
4093
4094	/*
4095	 * Half-duplex links include original MicroWire, and ones with
4096	 * only one data pin like SPI_3WIRE (switches direction) or where
4097	 * either MOSI or MISO is missing.  They can also be caused by
4098	 * software limitations.
4099	 */
4100	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4101	    (spi->mode & SPI_3WIRE)) {
4102		unsigned flags = ctlr->flags;
4103
4104		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4105			if (xfer->rx_buf && xfer->tx_buf)
4106				return -EINVAL;
4107			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4108				return -EINVAL;
4109			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4110				return -EINVAL;
4111		}
4112	}
4113
4114	/*
4115	 * Set transfer bits_per_word and max speed as spi device default if
4116	 * it is not set for this transfer.
4117	 * Set transfer tx_nbits and rx_nbits as single transfer default
4118	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4119	 * Ensure transfer word_delay is at least as long as that required by
4120	 * device itself.
4121	 */
4122	message->frame_length = 0;
4123	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4124		xfer->effective_speed_hz = 0;
4125		message->frame_length += xfer->len;
4126		if (!xfer->bits_per_word)
4127			xfer->bits_per_word = spi->bits_per_word;
4128
4129		if (!xfer->speed_hz)
4130			xfer->speed_hz = spi->max_speed_hz;
4131
4132		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4133			xfer->speed_hz = ctlr->max_speed_hz;
4134
4135		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4136			return -EINVAL;
4137
4138		/*
4139		 * SPI transfer length should be multiple of SPI word size
4140		 * where SPI word size should be power-of-two multiple.
4141		 */
4142		if (xfer->bits_per_word <= 8)
4143			w_size = 1;
4144		else if (xfer->bits_per_word <= 16)
4145			w_size = 2;
4146		else
4147			w_size = 4;
4148
4149		/* No partial transfers accepted */
4150		if (xfer->len % w_size)
4151			return -EINVAL;
4152
4153		if (xfer->speed_hz && ctlr->min_speed_hz &&
4154		    xfer->speed_hz < ctlr->min_speed_hz)
4155			return -EINVAL;
4156
4157		if (xfer->tx_buf && !xfer->tx_nbits)
4158			xfer->tx_nbits = SPI_NBITS_SINGLE;
4159		if (xfer->rx_buf && !xfer->rx_nbits)
4160			xfer->rx_nbits = SPI_NBITS_SINGLE;
4161		/*
4162		 * Check transfer tx/rx_nbits:
4163		 * 1. check the value matches one of single, dual and quad
4164		 * 2. check tx/rx_nbits match the mode in spi_device
4165		 */
4166		if (xfer->tx_buf) {
4167			if (spi->mode & SPI_NO_TX)
4168				return -EINVAL;
4169			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4170				xfer->tx_nbits != SPI_NBITS_DUAL &&
4171				xfer->tx_nbits != SPI_NBITS_QUAD)
4172				return -EINVAL;
4173			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4174				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4175				return -EINVAL;
4176			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4177				!(spi->mode & SPI_TX_QUAD))
4178				return -EINVAL;
4179		}
4180		/* Check transfer rx_nbits */
4181		if (xfer->rx_buf) {
4182			if (spi->mode & SPI_NO_RX)
4183				return -EINVAL;
4184			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4185				xfer->rx_nbits != SPI_NBITS_DUAL &&
4186				xfer->rx_nbits != SPI_NBITS_QUAD)
4187				return -EINVAL;
4188			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4189				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4190				return -EINVAL;
4191			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4192				!(spi->mode & SPI_RX_QUAD))
4193				return -EINVAL;
4194		}
4195
4196		if (_spi_xfer_word_delay_update(xfer, spi))
4197			return -EINVAL;
4198	}
4199
4200	message->status = -EINPROGRESS;
4201
4202	return 0;
4203}
4204
4205static int __spi_async(struct spi_device *spi, struct spi_message *message)
4206{
4207	struct spi_controller *ctlr = spi->controller;
4208	struct spi_transfer *xfer;
4209
4210	/*
4211	 * Some controllers do not support doing regular SPI transfers. Return
4212	 * ENOTSUPP when this is the case.
4213	 */
4214	if (!ctlr->transfer)
4215		return -ENOTSUPP;
4216
4217	message->spi = spi;
4218
4219	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4220	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4221
4222	trace_spi_message_submit(message);
4223
4224	if (!ctlr->ptp_sts_supported) {
4225		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4226			xfer->ptp_sts_word_pre = 0;
4227			ptp_read_system_prets(xfer->ptp_sts);
4228		}
4229	}
4230
4231	return ctlr->transfer(spi, message);
4232}
4233
4234/**
4235 * spi_async - asynchronous SPI transfer
4236 * @spi: device with which data will be exchanged
4237 * @message: describes the data transfers, including completion callback
4238 * Context: any (IRQs may be blocked, etc)
4239 *
4240 * This call may be used in_irq and other contexts which can't sleep,
4241 * as well as from task contexts which can sleep.
4242 *
4243 * The completion callback is invoked in a context which can't sleep.
4244 * Before that invocation, the value of message->status is undefined.
4245 * When the callback is issued, message->status holds either zero (to
4246 * indicate complete success) or a negative error code.  After that
4247 * callback returns, the driver which issued the transfer request may
4248 * deallocate the associated memory; it's no longer in use by any SPI
4249 * core or controller driver code.
4250 *
4251 * Note that although all messages to a spi_device are handled in
4252 * FIFO order, messages may go to different devices in other orders.
4253 * Some device might be higher priority, or have various "hard" access
4254 * time requirements, for example.
4255 *
4256 * On detection of any fault during the transfer, processing of
4257 * the entire message is aborted, and the device is deselected.
4258 * Until returning from the associated message completion callback,
4259 * no other spi_message queued to that device will be processed.
4260 * (This rule applies equally to all the synchronous transfer calls,
4261 * which are wrappers around this core asynchronous primitive.)
4262 *
4263 * Return: zero on success, else a negative error code.
4264 */
4265int spi_async(struct spi_device *spi, struct spi_message *message)
4266{
4267	struct spi_controller *ctlr = spi->controller;
4268	int ret;
4269	unsigned long flags;
4270
4271	ret = __spi_validate(spi, message);
4272	if (ret != 0)
4273		return ret;
4274
4275	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4276
4277	if (ctlr->bus_lock_flag)
4278		ret = -EBUSY;
4279	else
4280		ret = __spi_async(spi, message);
4281
4282	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4283
4284	return ret;
4285}
4286EXPORT_SYMBOL_GPL(spi_async);
4287
4288/**
4289 * spi_async_locked - version of spi_async with exclusive bus usage
4290 * @spi: device with which data will be exchanged
4291 * @message: describes the data transfers, including completion callback
4292 * Context: any (IRQs may be blocked, etc)
4293 *
4294 * This call may be used in_irq and other contexts which can't sleep,
4295 * as well as from task contexts which can sleep.
4296 *
4297 * The completion callback is invoked in a context which can't sleep.
4298 * Before that invocation, the value of message->status is undefined.
4299 * When the callback is issued, message->status holds either zero (to
4300 * indicate complete success) or a negative error code.  After that
4301 * callback returns, the driver which issued the transfer request may
4302 * deallocate the associated memory; it's no longer in use by any SPI
4303 * core or controller driver code.
4304 *
4305 * Note that although all messages to a spi_device are handled in
4306 * FIFO order, messages may go to different devices in other orders.
4307 * Some device might be higher priority, or have various "hard" access
4308 * time requirements, for example.
4309 *
4310 * On detection of any fault during the transfer, processing of
4311 * the entire message is aborted, and the device is deselected.
4312 * Until returning from the associated message completion callback,
4313 * no other spi_message queued to that device will be processed.
4314 * (This rule applies equally to all the synchronous transfer calls,
4315 * which are wrappers around this core asynchronous primitive.)
4316 *
4317 * Return: zero on success, else a negative error code.
4318 */
4319static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4320{
4321	struct spi_controller *ctlr = spi->controller;
4322	int ret;
4323	unsigned long flags;
4324
4325	ret = __spi_validate(spi, message);
4326	if (ret != 0)
4327		return ret;
4328
4329	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4330
4331	ret = __spi_async(spi, message);
4332
4333	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4334
4335	return ret;
4336
4337}
4338
4339static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4340{
4341	bool was_busy;
4342	int ret;
4343
4344	mutex_lock(&ctlr->io_mutex);
4345
4346	was_busy = ctlr->busy;
4347
4348	ctlr->cur_msg = msg;
4349	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4350	if (ret)
4351		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4352	ctlr->cur_msg = NULL;
4353	ctlr->fallback = false;
4354
4355	if (!was_busy) {
4356		kfree(ctlr->dummy_rx);
4357		ctlr->dummy_rx = NULL;
4358		kfree(ctlr->dummy_tx);
4359		ctlr->dummy_tx = NULL;
4360		if (ctlr->unprepare_transfer_hardware &&
4361		    ctlr->unprepare_transfer_hardware(ctlr))
4362			dev_err(&ctlr->dev,
4363				"failed to unprepare transfer hardware\n");
4364		spi_idle_runtime_pm(ctlr);
4365	}
4366
4367	mutex_unlock(&ctlr->io_mutex);
4368}
4369
4370/*-------------------------------------------------------------------------*/
4371
4372/*
4373 * Utility methods for SPI protocol drivers, layered on
4374 * top of the core.  Some other utility methods are defined as
4375 * inline functions.
4376 */
4377
4378static void spi_complete(void *arg)
4379{
4380	complete(arg);
4381}
4382
4383static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4384{
4385	DECLARE_COMPLETION_ONSTACK(done);
4386	int status;
4387	struct spi_controller *ctlr = spi->controller;
4388
4389	if (__spi_check_suspended(ctlr)) {
4390		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4391		return -ESHUTDOWN;
4392	}
4393
4394	status = __spi_validate(spi, message);
4395	if (status != 0)
4396		return status;
4397
 
 
4398	message->spi = spi;
4399
4400	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4401	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4402
4403	/*
4404	 * Checking queue_empty here only guarantees async/sync message
4405	 * ordering when coming from the same context. It does not need to
4406	 * guard against reentrancy from a different context. The io_mutex
4407	 * will catch those cases.
4408	 */
4409	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4410		message->actual_length = 0;
4411		message->status = -EINPROGRESS;
4412
4413		trace_spi_message_submit(message);
4414
4415		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4416		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4417
4418		__spi_transfer_message_noqueue(ctlr, message);
4419
4420		return message->status;
 
 
4421	}
4422
4423	/*
4424	 * There are messages in the async queue that could have originated
4425	 * from the same context, so we need to preserve ordering.
4426	 * Therefor we send the message to the async queue and wait until they
4427	 * are completed.
4428	 */
4429	message->complete = spi_complete;
4430	message->context = &done;
4431	status = spi_async_locked(spi, message);
4432	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
4433		wait_for_completion(&done);
4434		status = message->status;
4435	}
4436	message->context = NULL;
4437
4438	return status;
4439}
4440
4441/**
4442 * spi_sync - blocking/synchronous SPI data transfers
4443 * @spi: device with which data will be exchanged
4444 * @message: describes the data transfers
4445 * Context: can sleep
4446 *
4447 * This call may only be used from a context that may sleep.  The sleep
4448 * is non-interruptible, and has no timeout.  Low-overhead controller
4449 * drivers may DMA directly into and out of the message buffers.
4450 *
4451 * Note that the SPI device's chip select is active during the message,
4452 * and then is normally disabled between messages.  Drivers for some
4453 * frequently-used devices may want to minimize costs of selecting a chip,
4454 * by leaving it selected in anticipation that the next message will go
4455 * to the same chip.  (That may increase power usage.)
4456 *
4457 * Also, the caller is guaranteeing that the memory associated with the
4458 * message will not be freed before this call returns.
4459 *
4460 * Return: zero on success, else a negative error code.
4461 */
4462int spi_sync(struct spi_device *spi, struct spi_message *message)
4463{
4464	int ret;
4465
4466	mutex_lock(&spi->controller->bus_lock_mutex);
4467	ret = __spi_sync(spi, message);
4468	mutex_unlock(&spi->controller->bus_lock_mutex);
4469
4470	return ret;
4471}
4472EXPORT_SYMBOL_GPL(spi_sync);
4473
4474/**
4475 * spi_sync_locked - version of spi_sync with exclusive bus usage
4476 * @spi: device with which data will be exchanged
4477 * @message: describes the data transfers
4478 * Context: can sleep
4479 *
4480 * This call may only be used from a context that may sleep.  The sleep
4481 * is non-interruptible, and has no timeout.  Low-overhead controller
4482 * drivers may DMA directly into and out of the message buffers.
4483 *
4484 * This call should be used by drivers that require exclusive access to the
4485 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4486 * be released by a spi_bus_unlock call when the exclusive access is over.
4487 *
4488 * Return: zero on success, else a negative error code.
4489 */
4490int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4491{
4492	return __spi_sync(spi, message);
4493}
4494EXPORT_SYMBOL_GPL(spi_sync_locked);
4495
4496/**
4497 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4498 * @ctlr: SPI bus master that should be locked for exclusive bus access
4499 * Context: can sleep
4500 *
4501 * This call may only be used from a context that may sleep.  The sleep
4502 * is non-interruptible, and has no timeout.
4503 *
4504 * This call should be used by drivers that require exclusive access to the
4505 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4506 * exclusive access is over. Data transfer must be done by spi_sync_locked
4507 * and spi_async_locked calls when the SPI bus lock is held.
4508 *
4509 * Return: always zero.
4510 */
4511int spi_bus_lock(struct spi_controller *ctlr)
4512{
4513	unsigned long flags;
4514
4515	mutex_lock(&ctlr->bus_lock_mutex);
4516
4517	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4518	ctlr->bus_lock_flag = 1;
4519	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4520
4521	/* Mutex remains locked until spi_bus_unlock() is called */
4522
4523	return 0;
4524}
4525EXPORT_SYMBOL_GPL(spi_bus_lock);
4526
4527/**
4528 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4529 * @ctlr: SPI bus master that was locked for exclusive bus access
4530 * Context: can sleep
4531 *
4532 * This call may only be used from a context that may sleep.  The sleep
4533 * is non-interruptible, and has no timeout.
4534 *
4535 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4536 * call.
4537 *
4538 * Return: always zero.
4539 */
4540int spi_bus_unlock(struct spi_controller *ctlr)
4541{
4542	ctlr->bus_lock_flag = 0;
4543
4544	mutex_unlock(&ctlr->bus_lock_mutex);
4545
4546	return 0;
4547}
4548EXPORT_SYMBOL_GPL(spi_bus_unlock);
4549
4550/* Portable code must never pass more than 32 bytes */
4551#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4552
4553static u8	*buf;
4554
4555/**
4556 * spi_write_then_read - SPI synchronous write followed by read
4557 * @spi: device with which data will be exchanged
4558 * @txbuf: data to be written (need not be DMA-safe)
4559 * @n_tx: size of txbuf, in bytes
4560 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4561 * @n_rx: size of rxbuf, in bytes
4562 * Context: can sleep
4563 *
4564 * This performs a half duplex MicroWire style transaction with the
4565 * device, sending txbuf and then reading rxbuf.  The return value
4566 * is zero for success, else a negative errno status code.
4567 * This call may only be used from a context that may sleep.
4568 *
4569 * Parameters to this routine are always copied using a small buffer.
4570 * Performance-sensitive or bulk transfer code should instead use
4571 * spi_{async,sync}() calls with DMA-safe buffers.
4572 *
4573 * Return: zero on success, else a negative error code.
4574 */
4575int spi_write_then_read(struct spi_device *spi,
4576		const void *txbuf, unsigned n_tx,
4577		void *rxbuf, unsigned n_rx)
4578{
4579	static DEFINE_MUTEX(lock);
4580
4581	int			status;
4582	struct spi_message	message;
4583	struct spi_transfer	x[2];
4584	u8			*local_buf;
4585
4586	/*
4587	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4588	 * copying here, (as a pure convenience thing), but we can
4589	 * keep heap costs out of the hot path unless someone else is
4590	 * using the pre-allocated buffer or the transfer is too large.
4591	 */
4592	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4593		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4594				    GFP_KERNEL | GFP_DMA);
4595		if (!local_buf)
4596			return -ENOMEM;
4597	} else {
4598		local_buf = buf;
4599	}
4600
4601	spi_message_init(&message);
4602	memset(x, 0, sizeof(x));
4603	if (n_tx) {
4604		x[0].len = n_tx;
4605		spi_message_add_tail(&x[0], &message);
4606	}
4607	if (n_rx) {
4608		x[1].len = n_rx;
4609		spi_message_add_tail(&x[1], &message);
4610	}
4611
4612	memcpy(local_buf, txbuf, n_tx);
4613	x[0].tx_buf = local_buf;
4614	x[1].rx_buf = local_buf + n_tx;
4615
4616	/* Do the I/O */
4617	status = spi_sync(spi, &message);
4618	if (status == 0)
4619		memcpy(rxbuf, x[1].rx_buf, n_rx);
4620
4621	if (x[0].tx_buf == buf)
4622		mutex_unlock(&lock);
4623	else
4624		kfree(local_buf);
4625
4626	return status;
4627}
4628EXPORT_SYMBOL_GPL(spi_write_then_read);
4629
4630/*-------------------------------------------------------------------------*/
4631
4632#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4633/* Must call put_device() when done with returned spi_device device */
4634static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4635{
4636	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4637
4638	return dev ? to_spi_device(dev) : NULL;
4639}
 
 
4640
4641/* The spi controllers are not using spi_bus, so we find it with another way */
 
4642static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4643{
4644	struct device *dev;
4645
4646	dev = class_find_device_by_of_node(&spi_master_class, node);
4647	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4648		dev = class_find_device_by_of_node(&spi_slave_class, node);
4649	if (!dev)
4650		return NULL;
4651
4652	/* Reference got in class_find_device */
4653	return container_of(dev, struct spi_controller, dev);
4654}
4655
4656static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4657			 void *arg)
4658{
4659	struct of_reconfig_data *rd = arg;
4660	struct spi_controller *ctlr;
4661	struct spi_device *spi;
4662
4663	switch (of_reconfig_get_state_change(action, arg)) {
4664	case OF_RECONFIG_CHANGE_ADD:
4665		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4666		if (ctlr == NULL)
4667			return NOTIFY_OK;	/* Not for us */
4668
4669		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4670			put_device(&ctlr->dev);
4671			return NOTIFY_OK;
4672		}
4673
4674		/*
4675		 * Clear the flag before adding the device so that fw_devlink
4676		 * doesn't skip adding consumers to this device.
4677		 */
4678		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4679		spi = of_register_spi_device(ctlr, rd->dn);
4680		put_device(&ctlr->dev);
4681
4682		if (IS_ERR(spi)) {
4683			pr_err("%s: failed to create for '%pOF'\n",
4684					__func__, rd->dn);
4685			of_node_clear_flag(rd->dn, OF_POPULATED);
4686			return notifier_from_errno(PTR_ERR(spi));
4687		}
4688		break;
4689
4690	case OF_RECONFIG_CHANGE_REMOVE:
4691		/* Already depopulated? */
4692		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4693			return NOTIFY_OK;
4694
4695		/* Find our device by node */
4696		spi = of_find_spi_device_by_node(rd->dn);
4697		if (spi == NULL)
4698			return NOTIFY_OK;	/* No? not meant for us */
4699
4700		/* Unregister takes one ref away */
4701		spi_unregister_device(spi);
4702
4703		/* And put the reference of the find */
4704		put_device(&spi->dev);
4705		break;
4706	}
4707
4708	return NOTIFY_OK;
4709}
4710
4711static struct notifier_block spi_of_notifier = {
4712	.notifier_call = of_spi_notify,
4713};
4714#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4715extern struct notifier_block spi_of_notifier;
4716#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4717
4718#if IS_ENABLED(CONFIG_ACPI)
4719static int spi_acpi_controller_match(struct device *dev, const void *data)
4720{
4721	return ACPI_COMPANION(dev->parent) == data;
4722}
4723
4724struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4725{
4726	struct device *dev;
4727
4728	dev = class_find_device(&spi_master_class, NULL, adev,
4729				spi_acpi_controller_match);
4730	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4731		dev = class_find_device(&spi_slave_class, NULL, adev,
4732					spi_acpi_controller_match);
4733	if (!dev)
4734		return NULL;
4735
4736	return container_of(dev, struct spi_controller, dev);
4737}
4738EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4739
4740static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4741{
4742	struct device *dev;
4743
4744	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4745	return to_spi_device(dev);
4746}
4747
4748static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4749			   void *arg)
4750{
4751	struct acpi_device *adev = arg;
4752	struct spi_controller *ctlr;
4753	struct spi_device *spi;
4754
4755	switch (value) {
4756	case ACPI_RECONFIG_DEVICE_ADD:
4757		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4758		if (!ctlr)
4759			break;
4760
4761		acpi_register_spi_device(ctlr, adev);
4762		put_device(&ctlr->dev);
4763		break;
4764	case ACPI_RECONFIG_DEVICE_REMOVE:
4765		if (!acpi_device_enumerated(adev))
4766			break;
4767
4768		spi = acpi_spi_find_device_by_adev(adev);
4769		if (!spi)
4770			break;
4771
4772		spi_unregister_device(spi);
4773		put_device(&spi->dev);
4774		break;
4775	}
4776
4777	return NOTIFY_OK;
4778}
4779
4780static struct notifier_block spi_acpi_notifier = {
4781	.notifier_call = acpi_spi_notify,
4782};
4783#else
4784extern struct notifier_block spi_acpi_notifier;
4785#endif
4786
4787static int __init spi_init(void)
4788{
4789	int	status;
4790
4791	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4792	if (!buf) {
4793		status = -ENOMEM;
4794		goto err0;
4795	}
4796
4797	status = bus_register(&spi_bus_type);
4798	if (status < 0)
4799		goto err1;
4800
4801	status = class_register(&spi_master_class);
4802	if (status < 0)
4803		goto err2;
4804
4805	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4806		status = class_register(&spi_slave_class);
4807		if (status < 0)
4808			goto err3;
4809	}
4810
4811	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4812		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4813	if (IS_ENABLED(CONFIG_ACPI))
4814		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4815
4816	return 0;
4817
4818err3:
4819	class_unregister(&spi_master_class);
4820err2:
4821	bus_unregister(&spi_bus_type);
4822err1:
4823	kfree(buf);
4824	buf = NULL;
4825err0:
4826	return status;
4827}
4828
4829/*
4830 * A board_info is normally registered in arch_initcall(),
4831 * but even essential drivers wait till later.
4832 *
4833 * REVISIT only boardinfo really needs static linking. The rest (device and
4834 * driver registration) _could_ be dynamically linked (modular) ... Costs
4835 * include needing to have boardinfo data structures be much more public.
4836 */
4837postcore_initcall(spi_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/kernel.h>
 
 
 
   8#include <linux/device.h>
 
 
 
 
 
 
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
 
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
 
 
 
 
 
 
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
  50	spi_controller_put(spi->controller);
  51	kfree(spi->driver_override);
 
  52	kfree(spi);
  53}
  54
  55static ssize_t
  56modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  57{
  58	const struct spi_device	*spi = to_spi_device(dev);
  59	int len;
  60
  61	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  62	if (len != -ENODEV)
  63		return len;
  64
  65	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  66}
  67static DEVICE_ATTR_RO(modalias);
  68
  69static ssize_t driver_override_store(struct device *dev,
  70				     struct device_attribute *a,
  71				     const char *buf, size_t count)
  72{
  73	struct spi_device *spi = to_spi_device(dev);
  74	const char *end = memchr(buf, '\n', count);
  75	const size_t len = end ? end - buf : count;
  76	const char *driver_override, *old;
  77
  78	/* We need to keep extra room for a newline when displaying value */
  79	if (len >= (PAGE_SIZE - 1))
  80		return -EINVAL;
  81
  82	driver_override = kstrndup(buf, len, GFP_KERNEL);
  83	if (!driver_override)
  84		return -ENOMEM;
  85
  86	device_lock(dev);
  87	old = spi->driver_override;
  88	if (len) {
  89		spi->driver_override = driver_override;
  90	} else {
  91		/* Empty string, disable driver override */
  92		spi->driver_override = NULL;
  93		kfree(driver_override);
  94	}
  95	device_unlock(dev);
  96	kfree(old);
  97
  98	return count;
  99}
 100
 101static ssize_t driver_override_show(struct device *dev,
 102				    struct device_attribute *a, char *buf)
 103{
 104	const struct spi_device *spi = to_spi_device(dev);
 105	ssize_t len;
 106
 107	device_lock(dev);
 108	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 109	device_unlock(dev);
 110	return len;
 111}
 112static DEVICE_ATTR_RW(driver_override);
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114#define SPI_STATISTICS_ATTRS(field, file)				\
 115static ssize_t spi_controller_##field##_show(struct device *dev,	\
 116					     struct device_attribute *attr, \
 117					     char *buf)			\
 118{									\
 119	struct spi_controller *ctlr = container_of(dev,			\
 120					 struct spi_controller, dev);	\
 121	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 122}									\
 123static struct device_attribute dev_attr_spi_controller_##field = {	\
 124	.attr = { .name = file, .mode = 0444 },				\
 125	.show = spi_controller_##field##_show,				\
 126};									\
 127static ssize_t spi_device_##field##_show(struct device *dev,		\
 128					 struct device_attribute *attr,	\
 129					char *buf)			\
 130{									\
 131	struct spi_device *spi = to_spi_device(dev);			\
 132	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 133}									\
 134static struct device_attribute dev_attr_spi_device_##field = {		\
 135	.attr = { .name = file, .mode = 0444 },				\
 136	.show = spi_device_##field##_show,				\
 137}
 138
 139#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 140static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 141					    char *buf)			\
 142{									\
 143	unsigned long flags;						\
 144	ssize_t len;							\
 145	spin_lock_irqsave(&stat->lock, flags);				\
 146	len = sprintf(buf, format_string, stat->field);			\
 147	spin_unlock_irqrestore(&stat->lock, flags);			\
 148	return len;							\
 149}									\
 150SPI_STATISTICS_ATTRS(name, file)
 151
 152#define SPI_STATISTICS_SHOW(field, format_string)			\
 153	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 154				 field, format_string)
 155
 156SPI_STATISTICS_SHOW(messages, "%lu");
 157SPI_STATISTICS_SHOW(transfers, "%lu");
 158SPI_STATISTICS_SHOW(errors, "%lu");
 159SPI_STATISTICS_SHOW(timedout, "%lu");
 160
 161SPI_STATISTICS_SHOW(spi_sync, "%lu");
 162SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 163SPI_STATISTICS_SHOW(spi_async, "%lu");
 164
 165SPI_STATISTICS_SHOW(bytes, "%llu");
 166SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 167SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 168
 169#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 170	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 171				 "transfer_bytes_histo_" number,	\
 172				 transfer_bytes_histo[index],  "%lu")
 173SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 174SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 175SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 176SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 190
 191SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 192
 193static struct attribute *spi_dev_attrs[] = {
 194	&dev_attr_modalias.attr,
 195	&dev_attr_driver_override.attr,
 196	NULL,
 197};
 198
 199static const struct attribute_group spi_dev_group = {
 200	.attrs  = spi_dev_attrs,
 201};
 202
 203static struct attribute *spi_device_statistics_attrs[] = {
 204	&dev_attr_spi_device_messages.attr,
 205	&dev_attr_spi_device_transfers.attr,
 206	&dev_attr_spi_device_errors.attr,
 207	&dev_attr_spi_device_timedout.attr,
 208	&dev_attr_spi_device_spi_sync.attr,
 209	&dev_attr_spi_device_spi_sync_immediate.attr,
 210	&dev_attr_spi_device_spi_async.attr,
 211	&dev_attr_spi_device_bytes.attr,
 212	&dev_attr_spi_device_bytes_rx.attr,
 213	&dev_attr_spi_device_bytes_tx.attr,
 214	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 215	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 216	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 217	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 231	&dev_attr_spi_device_transfers_split_maxsize.attr,
 232	NULL,
 233};
 234
 235static const struct attribute_group spi_device_statistics_group = {
 236	.name  = "statistics",
 237	.attrs  = spi_device_statistics_attrs,
 238};
 239
 240static const struct attribute_group *spi_dev_groups[] = {
 241	&spi_dev_group,
 242	&spi_device_statistics_group,
 243	NULL,
 244};
 245
 246static struct attribute *spi_controller_statistics_attrs[] = {
 247	&dev_attr_spi_controller_messages.attr,
 248	&dev_attr_spi_controller_transfers.attr,
 249	&dev_attr_spi_controller_errors.attr,
 250	&dev_attr_spi_controller_timedout.attr,
 251	&dev_attr_spi_controller_spi_sync.attr,
 252	&dev_attr_spi_controller_spi_sync_immediate.attr,
 253	&dev_attr_spi_controller_spi_async.attr,
 254	&dev_attr_spi_controller_bytes.attr,
 255	&dev_attr_spi_controller_bytes_rx.attr,
 256	&dev_attr_spi_controller_bytes_tx.attr,
 257	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 258	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 259	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 260	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 274	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 275	NULL,
 276};
 277
 278static const struct attribute_group spi_controller_statistics_group = {
 279	.name  = "statistics",
 280	.attrs  = spi_controller_statistics_attrs,
 281};
 282
 283static const struct attribute_group *spi_master_groups[] = {
 284	&spi_controller_statistics_group,
 285	NULL,
 286};
 287
 288void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 289				       struct spi_transfer *xfer,
 290				       struct spi_controller *ctlr)
 291{
 292	unsigned long flags;
 293	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 
 294
 295	if (l2len < 0)
 296		l2len = 0;
 297
 298	spin_lock_irqsave(&stats->lock, flags);
 
 
 299
 300	stats->transfers++;
 301	stats->transfer_bytes_histo[l2len]++;
 302
 303	stats->bytes += xfer->len;
 304	if ((xfer->tx_buf) &&
 305	    (xfer->tx_buf != ctlr->dummy_tx))
 306		stats->bytes_tx += xfer->len;
 307	if ((xfer->rx_buf) &&
 308	    (xfer->rx_buf != ctlr->dummy_rx))
 309		stats->bytes_rx += xfer->len;
 310
 311	spin_unlock_irqrestore(&stats->lock, flags);
 
 312}
 313EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 314
 315/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 
 316 * and the sysfs version makes coldplug work too.
 317 */
 318
 319static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 320						const struct spi_device *sdev)
 321{
 322	while (id->name[0]) {
 323		if (!strcmp(sdev->modalias, id->name))
 324			return id;
 325		id++;
 326	}
 327	return NULL;
 328}
 329
 330const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 331{
 332	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 333
 334	return spi_match_id(sdrv->id_table, sdev);
 335}
 336EXPORT_SYMBOL_GPL(spi_get_device_id);
 337
 
 
 
 
 
 
 
 
 
 
 
 
 338static int spi_match_device(struct device *dev, struct device_driver *drv)
 339{
 340	const struct spi_device	*spi = to_spi_device(dev);
 341	const struct spi_driver	*sdrv = to_spi_driver(drv);
 342
 343	/* Check override first, and if set, only use the named driver */
 344	if (spi->driver_override)
 345		return strcmp(spi->driver_override, drv->name) == 0;
 346
 347	/* Attempt an OF style match */
 348	if (of_driver_match_device(dev, drv))
 349		return 1;
 350
 351	/* Then try ACPI */
 352	if (acpi_driver_match_device(dev, drv))
 353		return 1;
 354
 355	if (sdrv->id_table)
 356		return !!spi_match_id(sdrv->id_table, spi);
 357
 358	return strcmp(spi->modalias, drv->name) == 0;
 359}
 360
 361static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 362{
 363	const struct spi_device		*spi = to_spi_device(dev);
 364	int rc;
 365
 366	rc = acpi_device_uevent_modalias(dev, env);
 367	if (rc != -ENODEV)
 368		return rc;
 369
 370	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 371}
 372
 373static int spi_probe(struct device *dev)
 374{
 375	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 376	struct spi_device		*spi = to_spi_device(dev);
 377	int ret;
 378
 379	ret = of_clk_set_defaults(dev->of_node, false);
 380	if (ret)
 381		return ret;
 382
 383	if (dev->of_node) {
 384		spi->irq = of_irq_get(dev->of_node, 0);
 385		if (spi->irq == -EPROBE_DEFER)
 386			return -EPROBE_DEFER;
 387		if (spi->irq < 0)
 388			spi->irq = 0;
 389	}
 390
 391	ret = dev_pm_domain_attach(dev, true);
 392	if (ret)
 393		return ret;
 394
 395	if (sdrv->probe) {
 396		ret = sdrv->probe(spi);
 397		if (ret)
 398			dev_pm_domain_detach(dev, true);
 399	}
 400
 401	return ret;
 402}
 403
 404static int spi_remove(struct device *dev)
 405{
 406	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 407
 408	if (sdrv->remove) {
 409		int ret;
 410
 411		ret = sdrv->remove(to_spi_device(dev));
 412		if (ret)
 413			dev_warn(dev,
 414				 "Failed to unbind driver (%pe), ignoring\n",
 415				 ERR_PTR(ret));
 416	}
 417
 418	dev_pm_domain_detach(dev, true);
 419
 420	return 0;
 421}
 422
 423static void spi_shutdown(struct device *dev)
 424{
 425	if (dev->driver) {
 426		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 427
 428		if (sdrv->shutdown)
 429			sdrv->shutdown(to_spi_device(dev));
 430	}
 431}
 432
 433struct bus_type spi_bus_type = {
 434	.name		= "spi",
 435	.dev_groups	= spi_dev_groups,
 436	.match		= spi_match_device,
 437	.uevent		= spi_uevent,
 438	.probe		= spi_probe,
 439	.remove		= spi_remove,
 440	.shutdown	= spi_shutdown,
 441};
 442EXPORT_SYMBOL_GPL(spi_bus_type);
 443
 444/**
 445 * __spi_register_driver - register a SPI driver
 446 * @owner: owner module of the driver to register
 447 * @sdrv: the driver to register
 448 * Context: can sleep
 449 *
 450 * Return: zero on success, else a negative error code.
 451 */
 452int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 453{
 454	sdrv->driver.owner = owner;
 455	sdrv->driver.bus = &spi_bus_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456	return driver_register(&sdrv->driver);
 457}
 458EXPORT_SYMBOL_GPL(__spi_register_driver);
 459
 460/*-------------------------------------------------------------------------*/
 461
 462/* SPI devices should normally not be created by SPI device drivers; that
 
 463 * would make them board-specific.  Similarly with SPI controller drivers.
 464 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 465 * with other readonly (flashable) information about mainboard devices.
 466 */
 467
 468struct boardinfo {
 469	struct list_head	list;
 470	struct spi_board_info	board_info;
 471};
 472
 473static LIST_HEAD(board_list);
 474static LIST_HEAD(spi_controller_list);
 475
 476/*
 477 * Used to protect add/del operation for board_info list and
 478 * spi_controller list, and their matching process
 479 * also used to protect object of type struct idr
 480 */
 481static DEFINE_MUTEX(board_lock);
 482
 483/**
 484 * spi_alloc_device - Allocate a new SPI device
 485 * @ctlr: Controller to which device is connected
 486 * Context: can sleep
 487 *
 488 * Allows a driver to allocate and initialize a spi_device without
 489 * registering it immediately.  This allows a driver to directly
 490 * fill the spi_device with device parameters before calling
 491 * spi_add_device() on it.
 492 *
 493 * Caller is responsible to call spi_add_device() on the returned
 494 * spi_device structure to add it to the SPI controller.  If the caller
 495 * needs to discard the spi_device without adding it, then it should
 496 * call spi_dev_put() on it.
 497 *
 498 * Return: a pointer to the new device, or NULL.
 499 */
 500struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 501{
 502	struct spi_device	*spi;
 503
 504	if (!spi_controller_get(ctlr))
 505		return NULL;
 506
 507	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 508	if (!spi) {
 509		spi_controller_put(ctlr);
 510		return NULL;
 511	}
 512
 
 
 
 
 
 
 
 513	spi->master = spi->controller = ctlr;
 514	spi->dev.parent = &ctlr->dev;
 515	spi->dev.bus = &spi_bus_type;
 516	spi->dev.release = spidev_release;
 517	spi->cs_gpio = -ENOENT;
 518	spi->mode = ctlr->buswidth_override_bits;
 519
 520	spin_lock_init(&spi->statistics.lock);
 521
 522	device_initialize(&spi->dev);
 523	return spi;
 524}
 525EXPORT_SYMBOL_GPL(spi_alloc_device);
 526
 527static void spi_dev_set_name(struct spi_device *spi)
 528{
 529	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 530
 531	if (adev) {
 532		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 533		return;
 534	}
 535
 536	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 537		     spi->chip_select);
 538}
 539
 540static int spi_dev_check(struct device *dev, void *data)
 541{
 542	struct spi_device *spi = to_spi_device(dev);
 543	struct spi_device *new_spi = data;
 
 
 544
 545	if (spi->controller == new_spi->controller &&
 546	    spi->chip_select == new_spi->chip_select)
 547		return -EBUSY;
 
 
 
 
 
 
 
 
 
 548	return 0;
 549}
 550
 551static void spi_cleanup(struct spi_device *spi)
 552{
 553	if (spi->controller->cleanup)
 554		spi->controller->cleanup(spi);
 555}
 556
 557static int __spi_add_device(struct spi_device *spi)
 558{
 559	struct spi_controller *ctlr = spi->controller;
 560	struct device *dev = ctlr->dev.parent;
 561	int status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562
 
 
 
 
 
 563	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 564	if (status) {
 565		dev_err(dev, "chipselect %d already in use\n",
 566				spi->chip_select);
 567		return status;
 568	}
 569
 570	/* Controller may unregister concurrently */
 571	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 572	    !device_is_registered(&ctlr->dev)) {
 573		return -ENODEV;
 574	}
 575
 576	/* Descriptors take precedence */
 577	if (ctlr->cs_gpiods)
 578		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 579	else if (ctlr->cs_gpios)
 580		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 
 
 
 
 581
 582	/* Drivers may modify this initial i/o setup, but will
 
 583	 * normally rely on the device being setup.  Devices
 584	 * using SPI_CS_HIGH can't coexist well otherwise...
 585	 */
 586	status = spi_setup(spi);
 587	if (status < 0) {
 588		dev_err(dev, "can't setup %s, status %d\n",
 589				dev_name(&spi->dev), status);
 590		return status;
 591	}
 592
 593	/* Device may be bound to an active driver when this returns */
 594	status = device_add(&spi->dev);
 595	if (status < 0) {
 596		dev_err(dev, "can't add %s, status %d\n",
 597				dev_name(&spi->dev), status);
 598		spi_cleanup(spi);
 599	} else {
 600		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 601	}
 602
 603	return status;
 604}
 605
 606/**
 607 * spi_add_device - Add spi_device allocated with spi_alloc_device
 608 * @spi: spi_device to register
 609 *
 610 * Companion function to spi_alloc_device.  Devices allocated with
 611 * spi_alloc_device can be added onto the spi bus with this function.
 612 *
 613 * Return: 0 on success; negative errno on failure
 614 */
 615int spi_add_device(struct spi_device *spi)
 616{
 617	struct spi_controller *ctlr = spi->controller;
 618	struct device *dev = ctlr->dev.parent;
 619	int status;
 620
 621	/* Chipselects are numbered 0..max; validate. */
 622	if (spi->chip_select >= ctlr->num_chipselect) {
 623		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 624			ctlr->num_chipselect);
 625		return -EINVAL;
 626	}
 627
 628	/* Set the bus ID string */
 629	spi_dev_set_name(spi);
 630
 631	/* We need to make sure there's no other device with this
 632	 * chipselect **BEFORE** we call setup(), else we'll trash
 633	 * its configuration.  Lock against concurrent add() calls.
 634	 */
 635	mutex_lock(&ctlr->add_lock);
 636	status = __spi_add_device(spi);
 637	mutex_unlock(&ctlr->add_lock);
 638	return status;
 639}
 640EXPORT_SYMBOL_GPL(spi_add_device);
 641
 642static int spi_add_device_locked(struct spi_device *spi)
 643{
 644	struct spi_controller *ctlr = spi->controller;
 645	struct device *dev = ctlr->dev.parent;
 646
 647	/* Chipselects are numbered 0..max; validate. */
 648	if (spi->chip_select >= ctlr->num_chipselect) {
 649		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 650			ctlr->num_chipselect);
 651		return -EINVAL;
 652	}
 653
 654	/* Set the bus ID string */
 655	spi_dev_set_name(spi);
 656
 657	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
 658	return __spi_add_device(spi);
 659}
 660
 661/**
 662 * spi_new_device - instantiate one new SPI device
 663 * @ctlr: Controller to which device is connected
 664 * @chip: Describes the SPI device
 665 * Context: can sleep
 666 *
 667 * On typical mainboards, this is purely internal; and it's not needed
 668 * after board init creates the hard-wired devices.  Some development
 669 * platforms may not be able to use spi_register_board_info though, and
 670 * this is exported so that for example a USB or parport based adapter
 671 * driver could add devices (which it would learn about out-of-band).
 672 *
 673 * Return: the new device, or NULL.
 674 */
 675struct spi_device *spi_new_device(struct spi_controller *ctlr,
 676				  struct spi_board_info *chip)
 677{
 678	struct spi_device	*proxy;
 679	int			status;
 
 680
 681	/* NOTE:  caller did any chip->bus_num checks necessary.
 
 682	 *
 683	 * Also, unless we change the return value convention to use
 684	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 685	 * suggests syslogged diagnostics are best here (ugh).
 686	 */
 687
 688	proxy = spi_alloc_device(ctlr);
 689	if (!proxy)
 690		return NULL;
 691
 692	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 693
 694	proxy->chip_select = chip->chip_select;
 
 
 
 
 
 
 
 
 
 
 
 
 695	proxy->max_speed_hz = chip->max_speed_hz;
 696	proxy->mode = chip->mode;
 697	proxy->irq = chip->irq;
 698	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 699	proxy->dev.platform_data = (void *) chip->platform_data;
 700	proxy->controller_data = chip->controller_data;
 701	proxy->controller_state = NULL;
 
 
 
 
 
 
 
 
 
 702
 703	if (chip->swnode) {
 704		status = device_add_software_node(&proxy->dev, chip->swnode);
 705		if (status) {
 706			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 707				chip->modalias, status);
 708			goto err_dev_put;
 709		}
 710	}
 711
 712	status = spi_add_device(proxy);
 713	if (status < 0)
 714		goto err_dev_put;
 715
 716	return proxy;
 717
 718err_dev_put:
 719	device_remove_software_node(&proxy->dev);
 720	spi_dev_put(proxy);
 721	return NULL;
 722}
 723EXPORT_SYMBOL_GPL(spi_new_device);
 724
 725/**
 726 * spi_unregister_device - unregister a single SPI device
 727 * @spi: spi_device to unregister
 728 *
 729 * Start making the passed SPI device vanish. Normally this would be handled
 730 * by spi_unregister_controller().
 731 */
 732void spi_unregister_device(struct spi_device *spi)
 733{
 734	if (!spi)
 735		return;
 736
 737	if (spi->dev.of_node) {
 738		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 739		of_node_put(spi->dev.of_node);
 740	}
 741	if (ACPI_COMPANION(&spi->dev))
 742		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 743	device_remove_software_node(&spi->dev);
 744	device_del(&spi->dev);
 745	spi_cleanup(spi);
 746	put_device(&spi->dev);
 747}
 748EXPORT_SYMBOL_GPL(spi_unregister_device);
 749
 750static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 751					      struct spi_board_info *bi)
 752{
 753	struct spi_device *dev;
 754
 755	if (ctlr->bus_num != bi->bus_num)
 756		return;
 757
 758	dev = spi_new_device(ctlr, bi);
 759	if (!dev)
 760		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 761			bi->modalias);
 762}
 763
 764/**
 765 * spi_register_board_info - register SPI devices for a given board
 766 * @info: array of chip descriptors
 767 * @n: how many descriptors are provided
 768 * Context: can sleep
 769 *
 770 * Board-specific early init code calls this (probably during arch_initcall)
 771 * with segments of the SPI device table.  Any device nodes are created later,
 772 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 773 * this table of devices forever, so that reloading a controller driver will
 774 * not make Linux forget about these hard-wired devices.
 775 *
 776 * Other code can also call this, e.g. a particular add-on board might provide
 777 * SPI devices through its expansion connector, so code initializing that board
 778 * would naturally declare its SPI devices.
 779 *
 780 * The board info passed can safely be __initdata ... but be careful of
 781 * any embedded pointers (platform_data, etc), they're copied as-is.
 782 *
 783 * Return: zero on success, else a negative error code.
 784 */
 785int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 786{
 787	struct boardinfo *bi;
 788	int i;
 789
 790	if (!n)
 791		return 0;
 792
 793	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 794	if (!bi)
 795		return -ENOMEM;
 796
 797	for (i = 0; i < n; i++, bi++, info++) {
 798		struct spi_controller *ctlr;
 799
 800		memcpy(&bi->board_info, info, sizeof(*info));
 801
 802		mutex_lock(&board_lock);
 803		list_add_tail(&bi->list, &board_list);
 804		list_for_each_entry(ctlr, &spi_controller_list, list)
 805			spi_match_controller_to_boardinfo(ctlr,
 806							  &bi->board_info);
 807		mutex_unlock(&board_lock);
 808	}
 809
 810	return 0;
 811}
 812
 813/*-------------------------------------------------------------------------*/
 814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
 816{
 817	bool activate = enable;
 
 818
 819	/*
 820	 * Avoid calling into the driver (or doing delays) if the chip select
 821	 * isn't actually changing from the last time this was called.
 822	 */
 823	if (!force && (spi->controller->last_cs_enable == enable) &&
 
 
 
 824	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
 825		return;
 826
 827	trace_spi_set_cs(spi, activate);
 828
 829	spi->controller->last_cs_enable = enable;
 
 
 830	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
 831
 832	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
 833	    !spi->controller->set_cs_timing) {
 834		if (activate)
 835			spi_delay_exec(&spi->controller->cs_setup, NULL);
 836		else
 837			spi_delay_exec(&spi->controller->cs_hold, NULL);
 838	}
 839
 840	if (spi->mode & SPI_CS_HIGH)
 841		enable = !enable;
 842
 843	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 
 
 
 844		if (!(spi->mode & SPI_NO_CS)) {
 845			if (spi->cs_gpiod) {
 846				/*
 847				 * Historically ACPI has no means of the GPIO polarity and
 848				 * thus the SPISerialBus() resource defines it on the per-chip
 849				 * basis. In order to avoid a chain of negations, the GPIO
 850				 * polarity is considered being Active High. Even for the cases
 851				 * when _DSD() is involved (in the updated versions of ACPI)
 852				 * the GPIO CS polarity must be defined Active High to avoid
 853				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
 854				 * into account.
 855				 */
 856				if (has_acpi_companion(&spi->dev))
 857					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
 858				else
 859					/* Polarity handled by GPIO library */
 860					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
 861			} else {
 862				/*
 863				 * invert the enable line, as active low is
 864				 * default for SPI.
 865				 */
 866				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 
 
 
 
 867			}
 868		}
 869		/* Some SPI masters need both GPIO CS & slave_select */
 870		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 871		    spi->controller->set_cs)
 872			spi->controller->set_cs(spi, !enable);
 
 
 
 
 
 
 
 873	} else if (spi->controller->set_cs) {
 874		spi->controller->set_cs(spi, !enable);
 875	}
 876
 877	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
 878	    !spi->controller->set_cs_timing) {
 879		if (!activate)
 880			spi_delay_exec(&spi->controller->cs_inactive, NULL);
 881	}
 882}
 883
 884#ifdef CONFIG_HAS_DMA
 885int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 886		struct sg_table *sgt, void *buf, size_t len,
 887		enum dma_data_direction dir)
 888{
 889	const bool vmalloced_buf = is_vmalloc_addr(buf);
 890	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 891#ifdef CONFIG_HIGHMEM
 892	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 893				(unsigned long)buf < (PKMAP_BASE +
 894					(LAST_PKMAP * PAGE_SIZE)));
 895#else
 896	const bool kmap_buf = false;
 897#endif
 898	int desc_len;
 899	int sgs;
 900	struct page *vm_page;
 901	struct scatterlist *sg;
 902	void *sg_buf;
 903	size_t min;
 904	int i, ret;
 905
 906	if (vmalloced_buf || kmap_buf) {
 907		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 908		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 909	} else if (virt_addr_valid(buf)) {
 910		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 911		sgs = DIV_ROUND_UP(len, desc_len);
 912	} else {
 913		return -EINVAL;
 914	}
 915
 916	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 917	if (ret != 0)
 918		return ret;
 919
 920	sg = &sgt->sgl[0];
 921	for (i = 0; i < sgs; i++) {
 922
 923		if (vmalloced_buf || kmap_buf) {
 924			/*
 925			 * Next scatterlist entry size is the minimum between
 926			 * the desc_len and the remaining buffer length that
 927			 * fits in a page.
 928			 */
 929			min = min_t(size_t, desc_len,
 930				    min_t(size_t, len,
 931					  PAGE_SIZE - offset_in_page(buf)));
 932			if (vmalloced_buf)
 933				vm_page = vmalloc_to_page(buf);
 934			else
 935				vm_page = kmap_to_page(buf);
 936			if (!vm_page) {
 937				sg_free_table(sgt);
 938				return -ENOMEM;
 939			}
 940			sg_set_page(sg, vm_page,
 941				    min, offset_in_page(buf));
 942		} else {
 943			min = min_t(size_t, len, desc_len);
 944			sg_buf = buf;
 945			sg_set_buf(sg, sg_buf, min);
 946		}
 947
 948		buf += min;
 949		len -= min;
 950		sg = sg_next(sg);
 951	}
 952
 953	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 954	if (!ret)
 955		ret = -ENOMEM;
 956	if (ret < 0) {
 957		sg_free_table(sgt);
 958		return ret;
 959	}
 960
 961	sgt->nents = ret;
 
 962
 963	return 0;
 
 
 
 
 964}
 965
 966void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 967		   struct sg_table *sgt, enum dma_data_direction dir)
 
 
 968{
 969	if (sgt->orig_nents) {
 970		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 971		sg_free_table(sgt);
 
 
 972	}
 973}
 974
 
 
 
 
 
 
 975static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 976{
 977	struct device *tx_dev, *rx_dev;
 978	struct spi_transfer *xfer;
 979	int ret;
 980
 981	if (!ctlr->can_dma)
 982		return 0;
 983
 984	if (ctlr->dma_tx)
 985		tx_dev = ctlr->dma_tx->device->dev;
 986	else if (ctlr->dma_map_dev)
 987		tx_dev = ctlr->dma_map_dev;
 988	else
 989		tx_dev = ctlr->dev.parent;
 990
 991	if (ctlr->dma_rx)
 992		rx_dev = ctlr->dma_rx->device->dev;
 993	else if (ctlr->dma_map_dev)
 994		rx_dev = ctlr->dma_map_dev;
 995	else
 996		rx_dev = ctlr->dev.parent;
 997
 998	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
 
 999		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1000			continue;
1001
1002		if (xfer->tx_buf != NULL) {
1003			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1004					  (void *)xfer->tx_buf, xfer->len,
1005					  DMA_TO_DEVICE);
 
1006			if (ret != 0)
1007				return ret;
1008		}
1009
1010		if (xfer->rx_buf != NULL) {
1011			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1012					  xfer->rx_buf, xfer->len,
1013					  DMA_FROM_DEVICE);
1014			if (ret != 0) {
1015				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1016					      DMA_TO_DEVICE);
 
 
1017				return ret;
1018			}
1019		}
1020	}
1021
 
 
1022	ctlr->cur_msg_mapped = true;
1023
1024	return 0;
1025}
1026
1027static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1028{
 
 
1029	struct spi_transfer *xfer;
1030	struct device *tx_dev, *rx_dev;
1031
1032	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1033		return 0;
1034
1035	if (ctlr->dma_tx)
1036		tx_dev = ctlr->dma_tx->device->dev;
1037	else
1038		tx_dev = ctlr->dev.parent;
1039
1040	if (ctlr->dma_rx)
1041		rx_dev = ctlr->dma_rx->device->dev;
1042	else
1043		rx_dev = ctlr->dev.parent;
1044
1045	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1046		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1047			continue;
1048
1049		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1050		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 
 
1051	}
1052
1053	ctlr->cur_msg_mapped = false;
1054
1055	return 0;
1056}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057#else /* !CONFIG_HAS_DMA */
1058static inline int __spi_map_msg(struct spi_controller *ctlr,
1059				struct spi_message *msg)
1060{
1061	return 0;
1062}
1063
1064static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1065				  struct spi_message *msg)
1066{
1067	return 0;
1068}
 
 
 
 
 
 
 
 
 
 
1069#endif /* !CONFIG_HAS_DMA */
1070
1071static inline int spi_unmap_msg(struct spi_controller *ctlr,
1072				struct spi_message *msg)
1073{
1074	struct spi_transfer *xfer;
1075
1076	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1077		/*
1078		 * Restore the original value of tx_buf or rx_buf if they are
1079		 * NULL.
1080		 */
1081		if (xfer->tx_buf == ctlr->dummy_tx)
1082			xfer->tx_buf = NULL;
1083		if (xfer->rx_buf == ctlr->dummy_rx)
1084			xfer->rx_buf = NULL;
1085	}
1086
1087	return __spi_unmap_msg(ctlr, msg);
1088}
1089
1090static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1091{
1092	struct spi_transfer *xfer;
1093	void *tmp;
1094	unsigned int max_tx, max_rx;
1095
1096	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1097		&& !(msg->spi->mode & SPI_3WIRE)) {
1098		max_tx = 0;
1099		max_rx = 0;
1100
1101		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1102			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1103			    !xfer->tx_buf)
1104				max_tx = max(xfer->len, max_tx);
1105			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1106			    !xfer->rx_buf)
1107				max_rx = max(xfer->len, max_rx);
1108		}
1109
1110		if (max_tx) {
1111			tmp = krealloc(ctlr->dummy_tx, max_tx,
1112				       GFP_KERNEL | GFP_DMA);
1113			if (!tmp)
1114				return -ENOMEM;
1115			ctlr->dummy_tx = tmp;
1116			memset(tmp, 0, max_tx);
1117		}
1118
1119		if (max_rx) {
1120			tmp = krealloc(ctlr->dummy_rx, max_rx,
1121				       GFP_KERNEL | GFP_DMA);
1122			if (!tmp)
1123				return -ENOMEM;
1124			ctlr->dummy_rx = tmp;
1125		}
1126
1127		if (max_tx || max_rx) {
1128			list_for_each_entry(xfer, &msg->transfers,
1129					    transfer_list) {
1130				if (!xfer->len)
1131					continue;
1132				if (!xfer->tx_buf)
1133					xfer->tx_buf = ctlr->dummy_tx;
1134				if (!xfer->rx_buf)
1135					xfer->rx_buf = ctlr->dummy_rx;
1136			}
1137		}
1138	}
1139
1140	return __spi_map_msg(ctlr, msg);
1141}
1142
1143static int spi_transfer_wait(struct spi_controller *ctlr,
1144			     struct spi_message *msg,
1145			     struct spi_transfer *xfer)
1146{
1147	struct spi_statistics *statm = &ctlr->statistics;
1148	struct spi_statistics *stats = &msg->spi->statistics;
1149	u32 speed_hz = xfer->speed_hz;
1150	unsigned long long ms;
1151
1152	if (spi_controller_is_slave(ctlr)) {
1153		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1154			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1155			return -EINTR;
1156		}
1157	} else {
1158		if (!speed_hz)
1159			speed_hz = 100000;
1160
1161		/*
1162		 * For each byte we wait for 8 cycles of the SPI clock.
1163		 * Since speed is defined in Hz and we want milliseconds,
1164		 * use respective multiplier, but before the division,
1165		 * otherwise we may get 0 for short transfers.
1166		 */
1167		ms = 8LL * MSEC_PER_SEC * xfer->len;
1168		do_div(ms, speed_hz);
1169
1170		/*
1171		 * Increase it twice and add 200 ms tolerance, use
1172		 * predefined maximum in case of overflow.
1173		 */
1174		ms += ms + 200;
1175		if (ms > UINT_MAX)
1176			ms = UINT_MAX;
1177
1178		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1179						 msecs_to_jiffies(ms));
1180
1181		if (ms == 0) {
1182			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1183			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1184			dev_err(&msg->spi->dev,
1185				"SPI transfer timed out\n");
1186			return -ETIMEDOUT;
1187		}
 
 
 
1188	}
1189
1190	return 0;
1191}
1192
1193static void _spi_transfer_delay_ns(u32 ns)
1194{
1195	if (!ns)
1196		return;
1197	if (ns <= NSEC_PER_USEC) {
1198		ndelay(ns);
1199	} else {
1200		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1201
1202		if (us <= 10)
1203			udelay(us);
1204		else
1205			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1206	}
1207}
1208
1209int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1210{
1211	u32 delay = _delay->value;
1212	u32 unit = _delay->unit;
1213	u32 hz;
1214
1215	if (!delay)
1216		return 0;
1217
1218	switch (unit) {
1219	case SPI_DELAY_UNIT_USECS:
1220		delay *= NSEC_PER_USEC;
1221		break;
1222	case SPI_DELAY_UNIT_NSECS:
1223		/* Nothing to do here */
1224		break;
1225	case SPI_DELAY_UNIT_SCK:
1226		/* clock cycles need to be obtained from spi_transfer */
1227		if (!xfer)
1228			return -EINVAL;
1229		/*
1230		 * If there is unknown effective speed, approximate it
1231		 * by underestimating with half of the requested hz.
1232		 */
1233		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1234		if (!hz)
1235			return -EINVAL;
1236
1237		/* Convert delay to nanoseconds */
1238		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1239		break;
1240	default:
1241		return -EINVAL;
1242	}
1243
1244	return delay;
1245}
1246EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1247
1248int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1249{
1250	int delay;
1251
1252	might_sleep();
1253
1254	if (!_delay)
1255		return -EINVAL;
1256
1257	delay = spi_delay_to_ns(_delay, xfer);
1258	if (delay < 0)
1259		return delay;
1260
1261	_spi_transfer_delay_ns(delay);
1262
1263	return 0;
1264}
1265EXPORT_SYMBOL_GPL(spi_delay_exec);
1266
1267static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1268					  struct spi_transfer *xfer)
1269{
1270	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1271	u32 delay = xfer->cs_change_delay.value;
1272	u32 unit = xfer->cs_change_delay.unit;
1273	int ret;
1274
1275	/* return early on "fast" mode - for everything but USECS */
1276	if (!delay) {
1277		if (unit == SPI_DELAY_UNIT_USECS)
1278			_spi_transfer_delay_ns(default_delay_ns);
1279		return;
1280	}
1281
1282	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1283	if (ret) {
1284		dev_err_once(&msg->spi->dev,
1285			     "Use of unsupported delay unit %i, using default of %luus\n",
1286			     unit, default_delay_ns / NSEC_PER_USEC);
1287		_spi_transfer_delay_ns(default_delay_ns);
1288	}
1289}
1290
 
 
 
 
 
 
 
1291/*
1292 * spi_transfer_one_message - Default implementation of transfer_one_message()
1293 *
1294 * This is a standard implementation of transfer_one_message() for
1295 * drivers which implement a transfer_one() operation.  It provides
1296 * standard handling of delays and chip select management.
1297 */
1298static int spi_transfer_one_message(struct spi_controller *ctlr,
1299				    struct spi_message *msg)
1300{
1301	struct spi_transfer *xfer;
1302	bool keep_cs = false;
1303	int ret = 0;
1304	struct spi_statistics *statm = &ctlr->statistics;
1305	struct spi_statistics *stats = &msg->spi->statistics;
1306
1307	spi_set_cs(msg->spi, true, false);
 
1308
1309	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1310	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1311
1312	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1313		trace_spi_transfer_start(msg, xfer);
1314
1315		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1316		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1317
1318		if (!ctlr->ptp_sts_supported) {
1319			xfer->ptp_sts_word_pre = 0;
1320			ptp_read_system_prets(xfer->ptp_sts);
1321		}
1322
1323		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1324			reinit_completion(&ctlr->xfer_completion);
1325
1326fallback_pio:
 
1327			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1328			if (ret < 0) {
 
 
1329				if (ctlr->cur_msg_mapped &&
1330				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1331					__spi_unmap_msg(ctlr, msg);
1332					ctlr->fallback = true;
1333					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1334					goto fallback_pio;
1335				}
1336
1337				SPI_STATISTICS_INCREMENT_FIELD(statm,
1338							       errors);
1339				SPI_STATISTICS_INCREMENT_FIELD(stats,
1340							       errors);
1341				dev_err(&msg->spi->dev,
1342					"SPI transfer failed: %d\n", ret);
1343				goto out;
1344			}
1345
1346			if (ret > 0) {
1347				ret = spi_transfer_wait(ctlr, msg, xfer);
1348				if (ret < 0)
1349					msg->status = ret;
1350			}
 
 
1351		} else {
1352			if (xfer->len)
1353				dev_err(&msg->spi->dev,
1354					"Bufferless transfer has length %u\n",
1355					xfer->len);
1356		}
1357
1358		if (!ctlr->ptp_sts_supported) {
1359			ptp_read_system_postts(xfer->ptp_sts);
1360			xfer->ptp_sts_word_post = xfer->len;
1361		}
1362
1363		trace_spi_transfer_stop(msg, xfer);
1364
1365		if (msg->status != -EINPROGRESS)
1366			goto out;
1367
1368		spi_transfer_delay_exec(xfer);
1369
1370		if (xfer->cs_change) {
1371			if (list_is_last(&xfer->transfer_list,
1372					 &msg->transfers)) {
1373				keep_cs = true;
1374			} else {
1375				spi_set_cs(msg->spi, false, false);
 
1376				_spi_transfer_cs_change_delay(msg, xfer);
1377				spi_set_cs(msg->spi, true, false);
 
1378			}
 
 
 
1379		}
1380
1381		msg->actual_length += xfer->len;
1382	}
1383
1384out:
1385	if (ret != 0 || !keep_cs)
1386		spi_set_cs(msg->spi, false, false);
1387
1388	if (msg->status == -EINPROGRESS)
1389		msg->status = ret;
1390
1391	if (msg->status && ctlr->handle_err)
1392		ctlr->handle_err(ctlr, msg);
1393
1394	spi_finalize_current_message(ctlr);
1395
1396	return ret;
1397}
1398
1399/**
1400 * spi_finalize_current_transfer - report completion of a transfer
1401 * @ctlr: the controller reporting completion
1402 *
1403 * Called by SPI drivers using the core transfer_one_message()
1404 * implementation to notify it that the current interrupt driven
1405 * transfer has finished and the next one may be scheduled.
1406 */
1407void spi_finalize_current_transfer(struct spi_controller *ctlr)
1408{
1409	complete(&ctlr->xfer_completion);
1410}
1411EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1412
1413static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1414{
1415	if (ctlr->auto_runtime_pm) {
1416		pm_runtime_mark_last_busy(ctlr->dev.parent);
1417		pm_runtime_put_autosuspend(ctlr->dev.parent);
1418	}
1419}
1420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421/**
1422 * __spi_pump_messages - function which processes spi message queue
1423 * @ctlr: controller to process queue for
1424 * @in_kthread: true if we are in the context of the message pump thread
1425 *
1426 * This function checks if there is any spi message in the queue that
1427 * needs processing and if so call out to the driver to initialize hardware
1428 * and transfer each message.
1429 *
1430 * Note that it is called both from the kthread itself and also from
1431 * inside spi_sync(); the queue extraction handling at the top of the
1432 * function should deal with this safely.
1433 */
1434static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1435{
1436	struct spi_transfer *xfer;
1437	struct spi_message *msg;
1438	bool was_busy = false;
1439	unsigned long flags;
1440	int ret;
1441
 
 
 
1442	/* Lock queue */
1443	spin_lock_irqsave(&ctlr->queue_lock, flags);
1444
1445	/* Make sure we are not already running a message */
1446	if (ctlr->cur_msg) {
1447		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1448		return;
1449	}
1450
1451	/* If another context is idling the device then defer */
1452	if (ctlr->idling) {
1453		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1454		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1455		return;
1456	}
1457
1458	/* Check if the queue is idle */
1459	if (list_empty(&ctlr->queue) || !ctlr->running) {
1460		if (!ctlr->busy) {
1461			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1462			return;
1463		}
1464
1465		/* Defer any non-atomic teardown to the thread */
1466		if (!in_kthread) {
1467			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1468			    !ctlr->unprepare_transfer_hardware) {
1469				spi_idle_runtime_pm(ctlr);
1470				ctlr->busy = false;
 
1471				trace_spi_controller_idle(ctlr);
1472			} else {
1473				kthread_queue_work(ctlr->kworker,
1474						   &ctlr->pump_messages);
1475			}
1476			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1477			return;
1478		}
1479
1480		ctlr->busy = false;
1481		ctlr->idling = true;
1482		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1483
1484		kfree(ctlr->dummy_rx);
1485		ctlr->dummy_rx = NULL;
1486		kfree(ctlr->dummy_tx);
1487		ctlr->dummy_tx = NULL;
1488		if (ctlr->unprepare_transfer_hardware &&
1489		    ctlr->unprepare_transfer_hardware(ctlr))
1490			dev_err(&ctlr->dev,
1491				"failed to unprepare transfer hardware\n");
1492		spi_idle_runtime_pm(ctlr);
1493		trace_spi_controller_idle(ctlr);
1494
1495		spin_lock_irqsave(&ctlr->queue_lock, flags);
1496		ctlr->idling = false;
1497		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1498		return;
1499	}
1500
1501	/* Extract head of queue */
1502	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1503	ctlr->cur_msg = msg;
1504
1505	list_del_init(&msg->queue);
1506	if (ctlr->busy)
1507		was_busy = true;
1508	else
1509		ctlr->busy = true;
1510	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1511
1512	mutex_lock(&ctlr->io_mutex);
 
1513
1514	if (!was_busy && ctlr->auto_runtime_pm) {
1515		ret = pm_runtime_get_sync(ctlr->dev.parent);
1516		if (ret < 0) {
1517			pm_runtime_put_noidle(ctlr->dev.parent);
1518			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1519				ret);
1520			mutex_unlock(&ctlr->io_mutex);
1521			return;
1522		}
1523	}
1524
1525	if (!was_busy)
1526		trace_spi_controller_busy(ctlr);
1527
1528	if (!was_busy && ctlr->prepare_transfer_hardware) {
1529		ret = ctlr->prepare_transfer_hardware(ctlr);
1530		if (ret) {
1531			dev_err(&ctlr->dev,
1532				"failed to prepare transfer hardware: %d\n",
1533				ret);
1534
1535			if (ctlr->auto_runtime_pm)
1536				pm_runtime_put(ctlr->dev.parent);
1537
1538			msg->status = ret;
1539			spi_finalize_current_message(ctlr);
1540
1541			mutex_unlock(&ctlr->io_mutex);
1542			return;
1543		}
1544	}
1545
1546	trace_spi_message_start(msg);
1547
1548	if (ctlr->prepare_message) {
1549		ret = ctlr->prepare_message(ctlr, msg);
1550		if (ret) {
1551			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1552				ret);
1553			msg->status = ret;
1554			spi_finalize_current_message(ctlr);
1555			goto out;
1556		}
1557		ctlr->cur_msg_prepared = true;
1558	}
1559
1560	ret = spi_map_msg(ctlr, msg);
1561	if (ret) {
1562		msg->status = ret;
1563		spi_finalize_current_message(ctlr);
1564		goto out;
1565	}
1566
1567	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1568		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1569			xfer->ptp_sts_word_pre = 0;
1570			ptp_read_system_prets(xfer->ptp_sts);
1571		}
1572	}
1573
1574	ret = ctlr->transfer_one_message(ctlr, msg);
1575	if (ret) {
1576		dev_err(&ctlr->dev,
1577			"failed to transfer one message from queue\n");
1578		goto out;
1579	}
1580
1581out:
1582	mutex_unlock(&ctlr->io_mutex);
1583
1584	/* Prod the scheduler in case transfer_one() was busy waiting */
1585	if (!ret)
1586		cond_resched();
 
 
 
 
 
1587}
1588
1589/**
1590 * spi_pump_messages - kthread work function which processes spi message queue
1591 * @work: pointer to kthread work struct contained in the controller struct
1592 */
1593static void spi_pump_messages(struct kthread_work *work)
1594{
1595	struct spi_controller *ctlr =
1596		container_of(work, struct spi_controller, pump_messages);
1597
1598	__spi_pump_messages(ctlr, true);
1599}
1600
1601/**
1602 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1603 *			    TX timestamp for the requested byte from the SPI
1604 *			    transfer. The frequency with which this function
1605 *			    must be called (once per word, once for the whole
1606 *			    transfer, once per batch of words etc) is arbitrary
1607 *			    as long as the @tx buffer offset is greater than or
1608 *			    equal to the requested byte at the time of the
1609 *			    call. The timestamp is only taken once, at the
1610 *			    first such call. It is assumed that the driver
1611 *			    advances its @tx buffer pointer monotonically.
1612 * @ctlr: Pointer to the spi_controller structure of the driver
1613 * @xfer: Pointer to the transfer being timestamped
1614 * @progress: How many words (not bytes) have been transferred so far
1615 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1616 *	      transfer, for less jitter in time measurement. Only compatible
1617 *	      with PIO drivers. If true, must follow up with
1618 *	      spi_take_timestamp_post or otherwise system will crash.
1619 *	      WARNING: for fully predictable results, the CPU frequency must
1620 *	      also be under control (governor).
 
 
 
 
 
 
 
 
1621 */
1622void spi_take_timestamp_pre(struct spi_controller *ctlr,
1623			    struct spi_transfer *xfer,
1624			    size_t progress, bool irqs_off)
1625{
1626	if (!xfer->ptp_sts)
1627		return;
1628
1629	if (xfer->timestamped)
1630		return;
1631
1632	if (progress > xfer->ptp_sts_word_pre)
1633		return;
1634
1635	/* Capture the resolution of the timestamp */
1636	xfer->ptp_sts_word_pre = progress;
1637
1638	if (irqs_off) {
1639		local_irq_save(ctlr->irq_flags);
1640		preempt_disable();
1641	}
1642
1643	ptp_read_system_prets(xfer->ptp_sts);
1644}
1645EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1646
1647/**
1648 * spi_take_timestamp_post - helper for drivers to collect the end of the
1649 *			     TX timestamp for the requested byte from the SPI
1650 *			     transfer. Can be called with an arbitrary
1651 *			     frequency: only the first call where @tx exceeds
1652 *			     or is equal to the requested word will be
1653 *			     timestamped.
1654 * @ctlr: Pointer to the spi_controller structure of the driver
1655 * @xfer: Pointer to the transfer being timestamped
1656 * @progress: How many words (not bytes) have been transferred so far
1657 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
 
 
 
 
 
1658 */
1659void spi_take_timestamp_post(struct spi_controller *ctlr,
1660			     struct spi_transfer *xfer,
1661			     size_t progress, bool irqs_off)
1662{
1663	if (!xfer->ptp_sts)
1664		return;
1665
1666	if (xfer->timestamped)
1667		return;
1668
1669	if (progress < xfer->ptp_sts_word_post)
1670		return;
1671
1672	ptp_read_system_postts(xfer->ptp_sts);
1673
1674	if (irqs_off) {
1675		local_irq_restore(ctlr->irq_flags);
1676		preempt_enable();
1677	}
1678
1679	/* Capture the resolution of the timestamp */
1680	xfer->ptp_sts_word_post = progress;
1681
1682	xfer->timestamped = true;
1683}
1684EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1685
1686/**
1687 * spi_set_thread_rt - set the controller to pump at realtime priority
1688 * @ctlr: controller to boost priority of
1689 *
1690 * This can be called because the controller requested realtime priority
1691 * (by setting the ->rt value before calling spi_register_controller()) or
1692 * because a device on the bus said that its transfers needed realtime
1693 * priority.
1694 *
1695 * NOTE: at the moment if any device on a bus says it needs realtime then
1696 * the thread will be at realtime priority for all transfers on that
1697 * controller.  If this eventually becomes a problem we may see if we can
1698 * find a way to boost the priority only temporarily during relevant
1699 * transfers.
1700 */
1701static void spi_set_thread_rt(struct spi_controller *ctlr)
1702{
1703	dev_info(&ctlr->dev,
1704		"will run message pump with realtime priority\n");
1705	sched_set_fifo(ctlr->kworker->task);
1706}
1707
1708static int spi_init_queue(struct spi_controller *ctlr)
1709{
1710	ctlr->running = false;
1711	ctlr->busy = false;
 
1712
1713	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1714	if (IS_ERR(ctlr->kworker)) {
1715		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1716		return PTR_ERR(ctlr->kworker);
1717	}
1718
1719	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1720
1721	/*
1722	 * Controller config will indicate if this controller should run the
1723	 * message pump with high (realtime) priority to reduce the transfer
1724	 * latency on the bus by minimising the delay between a transfer
1725	 * request and the scheduling of the message pump thread. Without this
1726	 * setting the message pump thread will remain at default priority.
1727	 */
1728	if (ctlr->rt)
1729		spi_set_thread_rt(ctlr);
1730
1731	return 0;
1732}
1733
1734/**
1735 * spi_get_next_queued_message() - called by driver to check for queued
1736 * messages
1737 * @ctlr: the controller to check for queued messages
1738 *
1739 * If there are more messages in the queue, the next message is returned from
1740 * this call.
1741 *
1742 * Return: the next message in the queue, else NULL if the queue is empty.
1743 */
1744struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1745{
1746	struct spi_message *next;
1747	unsigned long flags;
1748
1749	/* get a pointer to the next message, if any */
1750	spin_lock_irqsave(&ctlr->queue_lock, flags);
1751	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1752					queue);
1753	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1754
1755	return next;
1756}
1757EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1758
1759/**
1760 * spi_finalize_current_message() - the current message is complete
1761 * @ctlr: the controller to return the message to
1762 *
1763 * Called by the driver to notify the core that the message in the front of the
1764 * queue is complete and can be removed from the queue.
1765 */
1766void spi_finalize_current_message(struct spi_controller *ctlr)
1767{
1768	struct spi_transfer *xfer;
1769	struct spi_message *mesg;
1770	unsigned long flags;
1771	int ret;
1772
1773	spin_lock_irqsave(&ctlr->queue_lock, flags);
1774	mesg = ctlr->cur_msg;
1775	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1776
1777	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1778		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1779			ptp_read_system_postts(xfer->ptp_sts);
1780			xfer->ptp_sts_word_post = xfer->len;
1781		}
1782	}
1783
1784	if (unlikely(ctlr->ptp_sts_supported))
1785		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1786			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1787
1788	spi_unmap_msg(ctlr, mesg);
1789
1790	/* In the prepare_messages callback the spi bus has the opportunity to
1791	 * split a transfer to smaller chunks.
1792	 * Release splited transfers here since spi_map_msg is done on the
1793	 * splited transfers.
 
 
1794	 */
1795	spi_res_release(ctlr, mesg);
1796
1797	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1798		ret = ctlr->unprepare_message(ctlr, mesg);
1799		if (ret) {
1800			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1801				ret);
1802		}
1803	}
1804
1805	spin_lock_irqsave(&ctlr->queue_lock, flags);
1806	ctlr->cur_msg = NULL;
1807	ctlr->cur_msg_prepared = false;
1808	ctlr->fallback = false;
1809	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1810	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1811
1812	trace_spi_message_done(mesg);
1813
1814	mesg->state = NULL;
1815	if (mesg->complete)
1816		mesg->complete(mesg->context);
1817}
1818EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1819
1820static int spi_start_queue(struct spi_controller *ctlr)
1821{
1822	unsigned long flags;
1823
1824	spin_lock_irqsave(&ctlr->queue_lock, flags);
1825
1826	if (ctlr->running || ctlr->busy) {
1827		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1828		return -EBUSY;
1829	}
1830
1831	ctlr->running = true;
1832	ctlr->cur_msg = NULL;
1833	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1834
1835	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1836
1837	return 0;
1838}
1839
1840static int spi_stop_queue(struct spi_controller *ctlr)
1841{
1842	unsigned long flags;
1843	unsigned limit = 500;
1844	int ret = 0;
1845
1846	spin_lock_irqsave(&ctlr->queue_lock, flags);
1847
1848	/*
1849	 * This is a bit lame, but is optimized for the common execution path.
1850	 * A wait_queue on the ctlr->busy could be used, but then the common
1851	 * execution path (pump_messages) would be required to call wake_up or
1852	 * friends on every SPI message. Do this instead.
1853	 */
1854	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1855		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1856		usleep_range(10000, 11000);
1857		spin_lock_irqsave(&ctlr->queue_lock, flags);
1858	}
1859
1860	if (!list_empty(&ctlr->queue) || ctlr->busy)
1861		ret = -EBUSY;
1862	else
1863		ctlr->running = false;
1864
1865	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1866
1867	if (ret) {
1868		dev_warn(&ctlr->dev, "could not stop message queue\n");
1869		return ret;
1870	}
1871	return ret;
1872}
1873
1874static int spi_destroy_queue(struct spi_controller *ctlr)
1875{
1876	int ret;
1877
1878	ret = spi_stop_queue(ctlr);
1879
1880	/*
1881	 * kthread_flush_worker will block until all work is done.
1882	 * If the reason that stop_queue timed out is that the work will never
1883	 * finish, then it does no good to call flush/stop thread, so
1884	 * return anyway.
1885	 */
1886	if (ret) {
1887		dev_err(&ctlr->dev, "problem destroying queue\n");
1888		return ret;
1889	}
1890
1891	kthread_destroy_worker(ctlr->kworker);
1892
1893	return 0;
1894}
1895
1896static int __spi_queued_transfer(struct spi_device *spi,
1897				 struct spi_message *msg,
1898				 bool need_pump)
1899{
1900	struct spi_controller *ctlr = spi->controller;
1901	unsigned long flags;
1902
1903	spin_lock_irqsave(&ctlr->queue_lock, flags);
1904
1905	if (!ctlr->running) {
1906		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1907		return -ESHUTDOWN;
1908	}
1909	msg->actual_length = 0;
1910	msg->status = -EINPROGRESS;
1911
1912	list_add_tail(&msg->queue, &ctlr->queue);
 
1913	if (!ctlr->busy && need_pump)
1914		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1915
1916	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1917	return 0;
1918}
1919
1920/**
1921 * spi_queued_transfer - transfer function for queued transfers
1922 * @spi: spi device which is requesting transfer
1923 * @msg: spi message which is to handled is queued to driver queue
1924 *
1925 * Return: zero on success, else a negative error code.
1926 */
1927static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1928{
1929	return __spi_queued_transfer(spi, msg, true);
1930}
1931
1932static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1933{
1934	int ret;
1935
1936	ctlr->transfer = spi_queued_transfer;
1937	if (!ctlr->transfer_one_message)
1938		ctlr->transfer_one_message = spi_transfer_one_message;
1939
1940	/* Initialize and start queue */
1941	ret = spi_init_queue(ctlr);
1942	if (ret) {
1943		dev_err(&ctlr->dev, "problem initializing queue\n");
1944		goto err_init_queue;
1945	}
1946	ctlr->queued = true;
1947	ret = spi_start_queue(ctlr);
1948	if (ret) {
1949		dev_err(&ctlr->dev, "problem starting queue\n");
1950		goto err_start_queue;
1951	}
1952
1953	return 0;
1954
1955err_start_queue:
1956	spi_destroy_queue(ctlr);
1957err_init_queue:
1958	return ret;
1959}
1960
1961/**
1962 * spi_flush_queue - Send all pending messages in the queue from the callers'
1963 *		     context
1964 * @ctlr: controller to process queue for
1965 *
1966 * This should be used when one wants to ensure all pending messages have been
1967 * sent before doing something. Is used by the spi-mem code to make sure SPI
1968 * memory operations do not preempt regular SPI transfers that have been queued
1969 * before the spi-mem operation.
1970 */
1971void spi_flush_queue(struct spi_controller *ctlr)
1972{
1973	if (ctlr->transfer == spi_queued_transfer)
1974		__spi_pump_messages(ctlr, false);
1975}
1976
1977/*-------------------------------------------------------------------------*/
1978
1979#if defined(CONFIG_OF)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1981			   struct device_node *nc)
1982{
1983	u32 value;
1984	int rc;
1985
1986	/* Mode (clock phase/polarity/etc.) */
1987	if (of_property_read_bool(nc, "spi-cpha"))
1988		spi->mode |= SPI_CPHA;
1989	if (of_property_read_bool(nc, "spi-cpol"))
1990		spi->mode |= SPI_CPOL;
1991	if (of_property_read_bool(nc, "spi-3wire"))
1992		spi->mode |= SPI_3WIRE;
1993	if (of_property_read_bool(nc, "spi-lsb-first"))
1994		spi->mode |= SPI_LSB_FIRST;
1995	if (of_property_read_bool(nc, "spi-cs-high"))
1996		spi->mode |= SPI_CS_HIGH;
1997
1998	/* Device DUAL/QUAD mode */
1999	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2000		switch (value) {
2001		case 0:
2002			spi->mode |= SPI_NO_TX;
2003			break;
2004		case 1:
2005			break;
2006		case 2:
2007			spi->mode |= SPI_TX_DUAL;
2008			break;
2009		case 4:
2010			spi->mode |= SPI_TX_QUAD;
2011			break;
2012		case 8:
2013			spi->mode |= SPI_TX_OCTAL;
2014			break;
2015		default:
2016			dev_warn(&ctlr->dev,
2017				"spi-tx-bus-width %d not supported\n",
2018				value);
2019			break;
2020		}
2021	}
2022
2023	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2024		switch (value) {
2025		case 0:
2026			spi->mode |= SPI_NO_RX;
2027			break;
2028		case 1:
2029			break;
2030		case 2:
2031			spi->mode |= SPI_RX_DUAL;
2032			break;
2033		case 4:
2034			spi->mode |= SPI_RX_QUAD;
2035			break;
2036		case 8:
2037			spi->mode |= SPI_RX_OCTAL;
2038			break;
2039		default:
2040			dev_warn(&ctlr->dev,
2041				"spi-rx-bus-width %d not supported\n",
2042				value);
2043			break;
2044		}
2045	}
2046
2047	if (spi_controller_is_slave(ctlr)) {
2048		if (!of_node_name_eq(nc, "slave")) {
2049			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2050				nc);
2051			return -EINVAL;
2052		}
2053		return 0;
2054	}
2055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056	/* Device address */
2057	rc = of_property_read_u32(nc, "reg", &value);
2058	if (rc) {
 
2059		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2060			nc, rc);
2061		return rc;
2062	}
2063	spi->chip_select = value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2064
2065	/* Device speed */
2066	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2067		spi->max_speed_hz = value;
2068
 
 
 
 
 
2069	return 0;
2070}
2071
2072static struct spi_device *
2073of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2074{
2075	struct spi_device *spi;
2076	int rc;
2077
2078	/* Alloc an spi_device */
2079	spi = spi_alloc_device(ctlr);
2080	if (!spi) {
2081		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2082		rc = -ENOMEM;
2083		goto err_out;
2084	}
2085
2086	/* Select device driver */
2087	rc = of_modalias_node(nc, spi->modalias,
2088				sizeof(spi->modalias));
2089	if (rc < 0) {
2090		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2091		goto err_out;
2092	}
2093
2094	rc = of_spi_parse_dt(ctlr, spi, nc);
2095	if (rc)
2096		goto err_out;
2097
2098	/* Store a pointer to the node in the device structure */
2099	of_node_get(nc);
2100	spi->dev.of_node = nc;
2101	spi->dev.fwnode = of_fwnode_handle(nc);
2102
2103	/* Register the new device */
2104	rc = spi_add_device(spi);
2105	if (rc) {
2106		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2107		goto err_of_node_put;
2108	}
2109
2110	return spi;
2111
2112err_of_node_put:
2113	of_node_put(nc);
2114err_out:
2115	spi_dev_put(spi);
2116	return ERR_PTR(rc);
2117}
2118
2119/**
2120 * of_register_spi_devices() - Register child devices onto the SPI bus
2121 * @ctlr:	Pointer to spi_controller device
2122 *
2123 * Registers an spi_device for each child node of controller node which
2124 * represents a valid SPI slave.
2125 */
2126static void of_register_spi_devices(struct spi_controller *ctlr)
2127{
2128	struct spi_device *spi;
2129	struct device_node *nc;
2130
2131	if (!ctlr->dev.of_node)
2132		return;
2133
2134	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2135		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2136			continue;
2137		spi = of_register_spi_device(ctlr, nc);
2138		if (IS_ERR(spi)) {
2139			dev_warn(&ctlr->dev,
2140				 "Failed to create SPI device for %pOF\n", nc);
2141			of_node_clear_flag(nc, OF_POPULATED);
2142		}
2143	}
2144}
2145#else
2146static void of_register_spi_devices(struct spi_controller *ctlr) { }
2147#endif
2148
2149/**
2150 * spi_new_ancillary_device() - Register ancillary SPI device
2151 * @spi:         Pointer to the main SPI device registering the ancillary device
2152 * @chip_select: Chip Select of the ancillary device
2153 *
2154 * Register an ancillary SPI device; for example some chips have a chip-select
2155 * for normal device usage and another one for setup/firmware upload.
2156 *
2157 * This may only be called from main SPI device's probe routine.
2158 *
2159 * Return: 0 on success; negative errno on failure
2160 */
2161struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2162					     u8 chip_select)
2163{
 
2164	struct spi_device *ancillary;
2165	int rc = 0;
 
2166
2167	/* Alloc an spi_device */
2168	ancillary = spi_alloc_device(spi->controller);
2169	if (!ancillary) {
2170		rc = -ENOMEM;
2171		goto err_out;
2172	}
2173
2174	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
 
 
 
 
 
 
 
 
 
 
 
 
2175
2176	/* Use provided chip-select for ancillary device */
2177	ancillary->chip_select = chip_select;
2178
2179	/* Take over SPI mode/speed from SPI main device */
2180	ancillary->max_speed_hz = spi->max_speed_hz;
2181	ancillary->mode = spi->mode;
 
 
 
 
 
 
 
 
 
 
 
2182
2183	/* Register the new device */
2184	rc = spi_add_device_locked(ancillary);
2185	if (rc) {
2186		dev_err(&spi->dev, "failed to register ancillary device\n");
2187		goto err_out;
2188	}
2189
2190	return ancillary;
2191
2192err_out:
2193	spi_dev_put(ancillary);
2194	return ERR_PTR(rc);
2195}
2196EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2197
2198#ifdef CONFIG_ACPI
2199struct acpi_spi_lookup {
2200	struct spi_controller 	*ctlr;
2201	u32			max_speed_hz;
2202	u32			mode;
2203	int			irq;
2204	u8			bits_per_word;
2205	u8			chip_select;
 
 
2206};
2207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2208static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2209					    struct acpi_spi_lookup *lookup)
2210{
2211	const union acpi_object *obj;
2212
2213	if (!x86_apple_machine)
2214		return;
2215
2216	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2217	    && obj->buffer.length >= 4)
2218		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2219
2220	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2221	    && obj->buffer.length == 8)
2222		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2223
2224	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2225	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2226		lookup->mode |= SPI_LSB_FIRST;
2227
2228	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2229	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2230		lookup->mode |= SPI_CPOL;
2231
2232	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2233	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2234		lookup->mode |= SPI_CPHA;
2235}
2236
2237static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2238{
2239	struct acpi_spi_lookup *lookup = data;
2240	struct spi_controller *ctlr = lookup->ctlr;
2241
2242	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2243		struct acpi_resource_spi_serialbus *sb;
2244		acpi_handle parent_handle;
2245		acpi_status status;
2246
2247		sb = &ares->data.spi_serial_bus;
2248		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2249
 
 
 
2250			status = acpi_get_handle(NULL,
2251						 sb->resource_source.string_ptr,
2252						 &parent_handle);
2253
2254			if (ACPI_FAILURE(status) ||
2255			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2256				return -ENODEV;
2257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258			/*
2259			 * ACPI DeviceSelection numbering is handled by the
2260			 * host controller driver in Windows and can vary
2261			 * from driver to driver. In Linux we always expect
2262			 * 0 .. max - 1 so we need to ask the driver to
2263			 * translate between the two schemes.
2264			 */
2265			if (ctlr->fw_translate_cs) {
2266				int cs = ctlr->fw_translate_cs(ctlr,
2267						sb->device_selection);
2268				if (cs < 0)
2269					return cs;
2270				lookup->chip_select = cs;
2271			} else {
2272				lookup->chip_select = sb->device_selection;
2273			}
2274
2275			lookup->max_speed_hz = sb->connection_speed;
2276			lookup->bits_per_word = sb->data_bit_length;
2277
2278			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2279				lookup->mode |= SPI_CPHA;
2280			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2281				lookup->mode |= SPI_CPOL;
2282			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2283				lookup->mode |= SPI_CS_HIGH;
2284		}
2285	} else if (lookup->irq < 0) {
2286		struct resource r;
2287
2288		if (acpi_dev_resource_interrupt(ares, 0, &r))
2289			lookup->irq = r.start;
2290	}
2291
2292	/* Always tell the ACPI core to skip this resource */
2293	return 1;
2294}
2295
2296static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2297					    struct acpi_device *adev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2298{
2299	acpi_handle parent_handle = NULL;
2300	struct list_head resource_list;
2301	struct acpi_spi_lookup lookup = {};
2302	struct spi_device *spi;
2303	int ret;
 
2304
2305	if (acpi_bus_get_status(adev) || !adev->status.present ||
2306	    acpi_device_enumerated(adev))
2307		return AE_OK;
2308
2309	lookup.ctlr		= ctlr;
2310	lookup.irq		= -1;
 
 
2311
2312	INIT_LIST_HEAD(&resource_list);
2313	ret = acpi_dev_get_resources(adev, &resource_list,
2314				     acpi_spi_add_resource, &lookup);
2315	acpi_dev_free_resource_list(&resource_list);
2316
2317	if (ret < 0)
2318		/* found SPI in _CRS but it points to another controller */
2319		return AE_OK;
2320
2321	if (!lookup.max_speed_hz &&
2322	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2323	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2324		/* Apple does not use _CRS but nested devices for SPI slaves */
2325		acpi_spi_parse_apple_properties(adev, &lookup);
2326	}
2327
2328	if (!lookup.max_speed_hz)
2329		return AE_OK;
2330
2331	spi = spi_alloc_device(ctlr);
2332	if (!spi) {
2333		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2334			dev_name(&adev->dev));
2335		return AE_NO_MEMORY;
2336	}
2337
 
 
 
 
 
 
 
 
 
 
 
2338
2339	ACPI_COMPANION_SET(&spi->dev, adev);
2340	spi->max_speed_hz	= lookup.max_speed_hz;
2341	spi->mode		|= lookup.mode;
2342	spi->irq		= lookup.irq;
2343	spi->bits_per_word	= lookup.bits_per_word;
2344	spi->chip_select	= lookup.chip_select;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345
2346	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2347			  sizeof(spi->modalias));
2348
2349	if (spi->irq < 0)
2350		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2351
2352	acpi_device_set_enumerated(adev);
2353
2354	adev->power.flags.ignore_parent = true;
2355	if (spi_add_device(spi)) {
2356		adev->power.flags.ignore_parent = false;
2357		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2358			dev_name(&adev->dev));
2359		spi_dev_put(spi);
2360	}
2361
2362	return AE_OK;
2363}
2364
2365static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2366				       void *data, void **return_value)
2367{
 
2368	struct spi_controller *ctlr = data;
2369	struct acpi_device *adev;
2370
2371	if (acpi_bus_get_device(handle, &adev))
2372		return AE_OK;
2373
2374	return acpi_register_spi_device(ctlr, adev);
2375}
2376
2377#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2378
2379static void acpi_register_spi_devices(struct spi_controller *ctlr)
2380{
2381	acpi_status status;
2382	acpi_handle handle;
2383
2384	handle = ACPI_HANDLE(ctlr->dev.parent);
2385	if (!handle)
2386		return;
2387
2388	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2389				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2390				     acpi_spi_add_device, NULL, ctlr, NULL);
2391	if (ACPI_FAILURE(status))
2392		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2393}
2394#else
2395static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2396#endif /* CONFIG_ACPI */
2397
2398static void spi_controller_release(struct device *dev)
2399{
2400	struct spi_controller *ctlr;
2401
2402	ctlr = container_of(dev, struct spi_controller, dev);
2403	kfree(ctlr);
2404}
2405
2406static struct class spi_master_class = {
2407	.name		= "spi_master",
2408	.owner		= THIS_MODULE,
2409	.dev_release	= spi_controller_release,
2410	.dev_groups	= spi_master_groups,
2411};
2412
2413#ifdef CONFIG_SPI_SLAVE
2414/**
2415 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2416 *		     controller
2417 * @spi: device used for the current transfer
2418 */
2419int spi_slave_abort(struct spi_device *spi)
2420{
2421	struct spi_controller *ctlr = spi->controller;
2422
2423	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2424		return ctlr->slave_abort(ctlr);
2425
2426	return -ENOTSUPP;
2427}
2428EXPORT_SYMBOL_GPL(spi_slave_abort);
2429
2430static int match_true(struct device *dev, void *data)
2431{
2432	return 1;
 
 
 
 
 
2433}
 
2434
2435static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2436			  char *buf)
2437{
2438	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2439						   dev);
2440	struct device *child;
2441
2442	child = device_find_child(&ctlr->dev, NULL, match_true);
2443	return sprintf(buf, "%s\n",
2444		       child ? to_spi_device(child)->modalias : NULL);
2445}
2446
2447static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2448			   const char *buf, size_t count)
2449{
2450	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2451						   dev);
2452	struct spi_device *spi;
2453	struct device *child;
2454	char name[32];
2455	int rc;
2456
2457	rc = sscanf(buf, "%31s", name);
2458	if (rc != 1 || !name[0])
2459		return -EINVAL;
2460
2461	child = device_find_child(&ctlr->dev, NULL, match_true);
2462	if (child) {
2463		/* Remove registered slave */
2464		device_unregister(child);
2465		put_device(child);
2466	}
2467
2468	if (strcmp(name, "(null)")) {
2469		/* Register new slave */
2470		spi = spi_alloc_device(ctlr);
2471		if (!spi)
2472			return -ENOMEM;
2473
2474		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2475
2476		rc = spi_add_device(spi);
2477		if (rc) {
2478			spi_dev_put(spi);
2479			return rc;
2480		}
2481	}
2482
2483	return count;
2484}
2485
2486static DEVICE_ATTR_RW(slave);
2487
2488static struct attribute *spi_slave_attrs[] = {
2489	&dev_attr_slave.attr,
2490	NULL,
2491};
2492
2493static const struct attribute_group spi_slave_group = {
2494	.attrs = spi_slave_attrs,
2495};
2496
2497static const struct attribute_group *spi_slave_groups[] = {
2498	&spi_controller_statistics_group,
2499	&spi_slave_group,
2500	NULL,
2501};
2502
2503static struct class spi_slave_class = {
2504	.name		= "spi_slave",
2505	.owner		= THIS_MODULE,
2506	.dev_release	= spi_controller_release,
2507	.dev_groups	= spi_slave_groups,
2508};
2509#else
2510extern struct class spi_slave_class;	/* dummy */
2511#endif
2512
2513/**
2514 * __spi_alloc_controller - allocate an SPI master or slave controller
2515 * @dev: the controller, possibly using the platform_bus
2516 * @size: how much zeroed driver-private data to allocate; the pointer to this
2517 *	memory is in the driver_data field of the returned device, accessible
2518 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2519 *	drivers granting DMA access to portions of their private data need to
2520 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2521 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2522 *	slave (true) controller
2523 * Context: can sleep
2524 *
2525 * This call is used only by SPI controller drivers, which are the
2526 * only ones directly touching chip registers.  It's how they allocate
2527 * an spi_controller structure, prior to calling spi_register_controller().
2528 *
2529 * This must be called from context that can sleep.
2530 *
2531 * The caller is responsible for assigning the bus number and initializing the
2532 * controller's methods before calling spi_register_controller(); and (after
2533 * errors adding the device) calling spi_controller_put() to prevent a memory
2534 * leak.
2535 *
2536 * Return: the SPI controller structure on success, else NULL.
2537 */
2538struct spi_controller *__spi_alloc_controller(struct device *dev,
2539					      unsigned int size, bool slave)
2540{
2541	struct spi_controller	*ctlr;
2542	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2543
2544	if (!dev)
2545		return NULL;
2546
2547	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2548	if (!ctlr)
2549		return NULL;
2550
2551	device_initialize(&ctlr->dev);
2552	INIT_LIST_HEAD(&ctlr->queue);
2553	spin_lock_init(&ctlr->queue_lock);
2554	spin_lock_init(&ctlr->bus_lock_spinlock);
2555	mutex_init(&ctlr->bus_lock_mutex);
2556	mutex_init(&ctlr->io_mutex);
2557	mutex_init(&ctlr->add_lock);
2558	ctlr->bus_num = -1;
2559	ctlr->num_chipselect = 1;
2560	ctlr->slave = slave;
2561	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2562		ctlr->dev.class = &spi_slave_class;
2563	else
2564		ctlr->dev.class = &spi_master_class;
2565	ctlr->dev.parent = dev;
2566	pm_suspend_ignore_children(&ctlr->dev, true);
2567	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2568
2569	return ctlr;
2570}
2571EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2572
2573static void devm_spi_release_controller(struct device *dev, void *ctlr)
2574{
2575	spi_controller_put(*(struct spi_controller **)ctlr);
2576}
2577
2578/**
2579 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2580 * @dev: physical device of SPI controller
2581 * @size: how much zeroed driver-private data to allocate
2582 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2583 * Context: can sleep
2584 *
2585 * Allocate an SPI controller and automatically release a reference on it
2586 * when @dev is unbound from its driver.  Drivers are thus relieved from
2587 * having to call spi_controller_put().
2588 *
2589 * The arguments to this function are identical to __spi_alloc_controller().
2590 *
2591 * Return: the SPI controller structure on success, else NULL.
2592 */
2593struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2594						   unsigned int size,
2595						   bool slave)
2596{
2597	struct spi_controller **ptr, *ctlr;
2598
2599	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2600			   GFP_KERNEL);
2601	if (!ptr)
2602		return NULL;
2603
2604	ctlr = __spi_alloc_controller(dev, size, slave);
2605	if (ctlr) {
2606		ctlr->devm_allocated = true;
2607		*ptr = ctlr;
2608		devres_add(dev, ptr);
2609	} else {
2610		devres_free(ptr);
2611	}
2612
2613	return ctlr;
2614}
2615EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2616
2617#ifdef CONFIG_OF
2618static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2619{
2620	int nb, i, *cs;
2621	struct device_node *np = ctlr->dev.of_node;
2622
2623	if (!np)
2624		return 0;
2625
2626	nb = of_gpio_named_count(np, "cs-gpios");
2627	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2628
2629	/* Return error only for an incorrectly formed cs-gpios property */
2630	if (nb == 0 || nb == -ENOENT)
2631		return 0;
2632	else if (nb < 0)
2633		return nb;
2634
2635	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2636			  GFP_KERNEL);
2637	ctlr->cs_gpios = cs;
2638
2639	if (!ctlr->cs_gpios)
2640		return -ENOMEM;
2641
2642	for (i = 0; i < ctlr->num_chipselect; i++)
2643		cs[i] = -ENOENT;
2644
2645	for (i = 0; i < nb; i++)
2646		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2647
2648	return 0;
2649}
2650#else
2651static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2652{
2653	return 0;
2654}
2655#endif
2656
2657/**
2658 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2659 * @ctlr: The SPI master to grab GPIO descriptors for
2660 */
2661static int spi_get_gpio_descs(struct spi_controller *ctlr)
2662{
2663	int nb, i;
2664	struct gpio_desc **cs;
2665	struct device *dev = &ctlr->dev;
2666	unsigned long native_cs_mask = 0;
2667	unsigned int num_cs_gpios = 0;
2668
2669	nb = gpiod_count(dev, "cs");
2670	if (nb < 0) {
2671		/* No GPIOs at all is fine, else return the error */
2672		if (nb == -ENOENT)
2673			return 0;
2674		return nb;
2675	}
2676
2677	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2678
2679	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2680			  GFP_KERNEL);
2681	if (!cs)
2682		return -ENOMEM;
2683	ctlr->cs_gpiods = cs;
2684
2685	for (i = 0; i < nb; i++) {
2686		/*
2687		 * Most chipselects are active low, the inverted
2688		 * semantics are handled by special quirks in gpiolib,
2689		 * so initializing them GPIOD_OUT_LOW here means
2690		 * "unasserted", in most cases this will drive the physical
2691		 * line high.
2692		 */
2693		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2694						      GPIOD_OUT_LOW);
2695		if (IS_ERR(cs[i]))
2696			return PTR_ERR(cs[i]);
2697
2698		if (cs[i]) {
2699			/*
2700			 * If we find a CS GPIO, name it after the device and
2701			 * chip select line.
2702			 */
2703			char *gpioname;
2704
2705			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2706						  dev_name(dev), i);
2707			if (!gpioname)
2708				return -ENOMEM;
2709			gpiod_set_consumer_name(cs[i], gpioname);
2710			num_cs_gpios++;
2711			continue;
2712		}
2713
2714		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2715			dev_err(dev, "Invalid native chip select %d\n", i);
2716			return -EINVAL;
2717		}
2718		native_cs_mask |= BIT(i);
2719	}
2720
2721	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2722
2723	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2724	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2725		dev_err(dev, "No unused native chip select available\n");
2726		return -EINVAL;
2727	}
2728
2729	return 0;
2730}
2731
2732static int spi_controller_check_ops(struct spi_controller *ctlr)
2733{
2734	/*
2735	 * The controller may implement only the high-level SPI-memory like
2736	 * operations if it does not support regular SPI transfers, and this is
2737	 * valid use case.
2738	 * If ->mem_ops is NULL, we request that at least one of the
2739	 * ->transfer_xxx() method be implemented.
2740	 */
2741	if (ctlr->mem_ops) {
2742		if (!ctlr->mem_ops->exec_op)
 
2743			return -EINVAL;
2744	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2745		   !ctlr->transfer_one_message) {
2746		return -EINVAL;
2747	}
2748
2749	return 0;
2750}
2751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752/**
2753 * spi_register_controller - register SPI master or slave controller
2754 * @ctlr: initialized master, originally from spi_alloc_master() or
2755 *	spi_alloc_slave()
2756 * Context: can sleep
2757 *
2758 * SPI controllers connect to their drivers using some non-SPI bus,
2759 * such as the platform bus.  The final stage of probe() in that code
2760 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2761 *
2762 * SPI controllers use board specific (often SOC specific) bus numbers,
2763 * and board-specific addressing for SPI devices combines those numbers
2764 * with chip select numbers.  Since SPI does not directly support dynamic
2765 * device identification, boards need configuration tables telling which
2766 * chip is at which address.
2767 *
2768 * This must be called from context that can sleep.  It returns zero on
2769 * success, else a negative error code (dropping the controller's refcount).
2770 * After a successful return, the caller is responsible for calling
2771 * spi_unregister_controller().
2772 *
2773 * Return: zero on success, else a negative error code.
2774 */
2775int spi_register_controller(struct spi_controller *ctlr)
2776{
2777	struct device		*dev = ctlr->dev.parent;
2778	struct boardinfo	*bi;
 
2779	int			status;
2780	int			id, first_dynamic;
2781
2782	if (!dev)
2783		return -ENODEV;
2784
2785	/*
2786	 * Make sure all necessary hooks are implemented before registering
2787	 * the SPI controller.
2788	 */
2789	status = spi_controller_check_ops(ctlr);
2790	if (status)
2791		return status;
2792
 
 
2793	if (ctlr->bus_num >= 0) {
2794		/* devices with a fixed bus num must check-in with the num */
2795		mutex_lock(&board_lock);
2796		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2797			ctlr->bus_num + 1, GFP_KERNEL);
2798		mutex_unlock(&board_lock);
2799		if (WARN(id < 0, "couldn't get idr"))
2800			return id == -ENOSPC ? -EBUSY : id;
2801		ctlr->bus_num = id;
2802	} else if (ctlr->dev.of_node) {
2803		/* allocate dynamic bus number using Linux idr */
2804		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2805		if (id >= 0) {
2806			ctlr->bus_num = id;
2807			mutex_lock(&board_lock);
2808			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2809				       ctlr->bus_num + 1, GFP_KERNEL);
2810			mutex_unlock(&board_lock);
2811			if (WARN(id < 0, "couldn't get idr"))
2812				return id == -ENOSPC ? -EBUSY : id;
2813		}
2814	}
2815	if (ctlr->bus_num < 0) {
2816		first_dynamic = of_alias_get_highest_id("spi");
2817		if (first_dynamic < 0)
2818			first_dynamic = 0;
2819		else
2820			first_dynamic++;
2821
2822		mutex_lock(&board_lock);
2823		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2824			       0, GFP_KERNEL);
2825		mutex_unlock(&board_lock);
2826		if (WARN(id < 0, "couldn't get idr"))
2827			return id;
2828		ctlr->bus_num = id;
2829	}
2830	ctlr->bus_lock_flag = 0;
2831	init_completion(&ctlr->xfer_completion);
 
2832	if (!ctlr->max_dma_len)
2833		ctlr->max_dma_len = INT_MAX;
2834
2835	/* register the device, then userspace will see it.
2836	 * registration fails if the bus ID is in use.
 
2837	 */
2838	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2839
2840	if (!spi_controller_is_slave(ctlr)) {
2841		if (ctlr->use_gpio_descriptors) {
2842			status = spi_get_gpio_descs(ctlr);
2843			if (status)
2844				goto free_bus_id;
2845			/*
2846			 * A controller using GPIO descriptors always
2847			 * supports SPI_CS_HIGH if need be.
2848			 */
2849			ctlr->mode_bits |= SPI_CS_HIGH;
2850		} else {
2851			/* Legacy code path for GPIOs from DT */
2852			status = of_spi_get_gpio_numbers(ctlr);
2853			if (status)
2854				goto free_bus_id;
2855		}
2856	}
2857
2858	/*
2859	 * Even if it's just one always-selected device, there must
2860	 * be at least one chipselect.
2861	 */
2862	if (!ctlr->num_chipselect) {
2863		status = -EINVAL;
2864		goto free_bus_id;
2865	}
2866
 
 
 
 
2867	status = device_add(&ctlr->dev);
2868	if (status < 0)
2869		goto free_bus_id;
2870	dev_dbg(dev, "registered %s %s\n",
2871			spi_controller_is_slave(ctlr) ? "slave" : "master",
2872			dev_name(&ctlr->dev));
2873
2874	/*
2875	 * If we're using a queued driver, start the queue. Note that we don't
2876	 * need the queueing logic if the driver is only supporting high-level
2877	 * memory operations.
2878	 */
2879	if (ctlr->transfer) {
2880		dev_info(dev, "controller is unqueued, this is deprecated\n");
2881	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2882		status = spi_controller_initialize_queue(ctlr);
2883		if (status) {
2884			device_del(&ctlr->dev);
2885			goto free_bus_id;
2886		}
2887	}
2888	/* add statistics */
2889	spin_lock_init(&ctlr->statistics.lock);
 
 
 
 
 
2890
2891	mutex_lock(&board_lock);
2892	list_add_tail(&ctlr->list, &spi_controller_list);
2893	list_for_each_entry(bi, &board_list, list)
2894		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2895	mutex_unlock(&board_lock);
2896
2897	/* Register devices from the device tree and ACPI */
2898	of_register_spi_devices(ctlr);
2899	acpi_register_spi_devices(ctlr);
2900	return status;
2901
 
 
2902free_bus_id:
2903	mutex_lock(&board_lock);
2904	idr_remove(&spi_master_idr, ctlr->bus_num);
2905	mutex_unlock(&board_lock);
2906	return status;
2907}
2908EXPORT_SYMBOL_GPL(spi_register_controller);
2909
2910static void devm_spi_unregister(void *ctlr)
2911{
2912	spi_unregister_controller(ctlr);
2913}
2914
2915/**
2916 * devm_spi_register_controller - register managed SPI master or slave
2917 *	controller
2918 * @dev:    device managing SPI controller
2919 * @ctlr: initialized controller, originally from spi_alloc_master() or
2920 *	spi_alloc_slave()
2921 * Context: can sleep
2922 *
2923 * Register a SPI device as with spi_register_controller() which will
2924 * automatically be unregistered and freed.
2925 *
2926 * Return: zero on success, else a negative error code.
2927 */
2928int devm_spi_register_controller(struct device *dev,
2929				 struct spi_controller *ctlr)
2930{
 
2931	int ret;
2932
 
 
 
 
2933	ret = spi_register_controller(ctlr);
2934	if (ret)
2935		return ret;
 
 
 
 
2936
2937	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2938}
2939EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2940
2941static int __unregister(struct device *dev, void *null)
2942{
2943	spi_unregister_device(to_spi_device(dev));
2944	return 0;
2945}
2946
2947/**
2948 * spi_unregister_controller - unregister SPI master or slave controller
2949 * @ctlr: the controller being unregistered
2950 * Context: can sleep
2951 *
2952 * This call is used only by SPI controller drivers, which are the
2953 * only ones directly touching chip registers.
2954 *
2955 * This must be called from context that can sleep.
2956 *
2957 * Note that this function also drops a reference to the controller.
2958 */
2959void spi_unregister_controller(struct spi_controller *ctlr)
2960{
2961	struct spi_controller *found;
2962	int id = ctlr->bus_num;
2963
2964	/* Prevent addition of new devices, unregister existing ones */
2965	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2966		mutex_lock(&ctlr->add_lock);
2967
2968	device_for_each_child(&ctlr->dev, NULL, __unregister);
2969
2970	/* First make sure that this controller was ever added */
2971	mutex_lock(&board_lock);
2972	found = idr_find(&spi_master_idr, id);
2973	mutex_unlock(&board_lock);
2974	if (ctlr->queued) {
2975		if (spi_destroy_queue(ctlr))
2976			dev_err(&ctlr->dev, "queue remove failed\n");
2977	}
2978	mutex_lock(&board_lock);
2979	list_del(&ctlr->list);
2980	mutex_unlock(&board_lock);
2981
2982	device_del(&ctlr->dev);
2983
2984	/* Release the last reference on the controller if its driver
2985	 * has not yet been converted to devm_spi_alloc_master/slave().
2986	 */
2987	if (!ctlr->devm_allocated)
2988		put_device(&ctlr->dev);
2989
2990	/* free bus id */
2991	mutex_lock(&board_lock);
2992	if (found == ctlr)
2993		idr_remove(&spi_master_idr, id);
2994	mutex_unlock(&board_lock);
2995
2996	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2997		mutex_unlock(&ctlr->add_lock);
 
 
 
 
 
 
 
2998}
2999EXPORT_SYMBOL_GPL(spi_unregister_controller);
3000
3001int spi_controller_suspend(struct spi_controller *ctlr)
3002{
3003	int ret;
3004
3005	/* Basically no-ops for non-queued controllers */
3006	if (!ctlr->queued)
3007		return 0;
3008
3009	ret = spi_stop_queue(ctlr);
3010	if (ret)
3011		dev_err(&ctlr->dev, "queue stop failed\n");
3012
3013	return ret;
3014}
3015EXPORT_SYMBOL_GPL(spi_controller_suspend);
3016
3017int spi_controller_resume(struct spi_controller *ctlr)
3018{
3019	int ret;
3020
3021	if (!ctlr->queued)
3022		return 0;
3023
3024	ret = spi_start_queue(ctlr);
3025	if (ret)
3026		dev_err(&ctlr->dev, "queue restart failed\n");
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(spi_controller_resume);
3031
3032static int __spi_controller_match(struct device *dev, const void *data)
3033{
3034	struct spi_controller *ctlr;
3035	const u16 *bus_num = data;
3036
3037	ctlr = container_of(dev, struct spi_controller, dev);
3038	return ctlr->bus_num == *bus_num;
3039}
3040
3041/**
3042 * spi_busnum_to_master - look up master associated with bus_num
3043 * @bus_num: the master's bus number
3044 * Context: can sleep
3045 *
3046 * This call may be used with devices that are registered after
3047 * arch init time.  It returns a refcounted pointer to the relevant
3048 * spi_controller (which the caller must release), or NULL if there is
3049 * no such master registered.
3050 *
3051 * Return: the SPI master structure on success, else NULL.
3052 */
3053struct spi_controller *spi_busnum_to_master(u16 bus_num)
3054{
3055	struct device		*dev;
3056	struct spi_controller	*ctlr = NULL;
3057
3058	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3059				__spi_controller_match);
3060	if (dev)
3061		ctlr = container_of(dev, struct spi_controller, dev);
3062	/* reference got in class_find_device */
3063	return ctlr;
3064}
3065EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3066
3067/*-------------------------------------------------------------------------*/
3068
3069/* Core methods for SPI resource management */
3070
3071/**
3072 * spi_res_alloc - allocate a spi resource that is life-cycle managed
3073 *                 during the processing of a spi_message while using
3074 *                 spi_transfer_one
3075 * @spi:     the spi device for which we allocate memory
3076 * @release: the release code to execute for this resource
3077 * @size:    size to alloc and return
3078 * @gfp:     GFP allocation flags
3079 *
3080 * Return: the pointer to the allocated data
3081 *
3082 * This may get enhanced in the future to allocate from a memory pool
3083 * of the @spi_device or @spi_controller to avoid repeated allocations.
3084 */
3085void *spi_res_alloc(struct spi_device *spi,
3086		    spi_res_release_t release,
3087		    size_t size, gfp_t gfp)
3088{
3089	struct spi_res *sres;
3090
3091	sres = kzalloc(sizeof(*sres) + size, gfp);
3092	if (!sres)
3093		return NULL;
 
 
 
3094
3095	INIT_LIST_HEAD(&sres->entry);
3096	sres->release = release;
3097
3098	return sres->data;
3099}
3100EXPORT_SYMBOL_GPL(spi_res_alloc);
3101
3102/**
3103 * spi_res_free - free an spi resource
3104 * @res: pointer to the custom data of a resource
3105 *
3106 */
3107void spi_res_free(void *res)
3108{
3109	struct spi_res *sres = container_of(res, struct spi_res, data);
3110
3111	if (!res)
3112		return;
3113
3114	WARN_ON(!list_empty(&sres->entry));
3115	kfree(sres);
3116}
3117EXPORT_SYMBOL_GPL(spi_res_free);
3118
3119/**
3120 * spi_res_add - add a spi_res to the spi_message
3121 * @message: the spi message
3122 * @res:     the spi_resource
3123 */
3124void spi_res_add(struct spi_message *message, void *res)
3125{
3126	struct spi_res *sres = container_of(res, struct spi_res, data);
3127
3128	WARN_ON(!list_empty(&sres->entry));
3129	list_add_tail(&sres->entry, &message->resources);
3130}
3131EXPORT_SYMBOL_GPL(spi_res_add);
3132
3133/**
3134 * spi_res_release - release all spi resources for this message
3135 * @ctlr:  the @spi_controller
3136 * @message: the @spi_message
3137 */
3138void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3139{
3140	struct spi_res *res, *tmp;
3141
3142	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3143		if (res->release)
3144			res->release(ctlr, message, res->data);
3145
3146		list_del(&res->entry);
3147
3148		kfree(res);
3149	}
 
3150}
3151EXPORT_SYMBOL_GPL(spi_res_release);
3152
3153/*-------------------------------------------------------------------------*/
3154
3155/* Core methods for spi_message alterations */
3156
3157static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3158					    struct spi_message *msg,
3159					    void *res)
3160{
3161	struct spi_replaced_transfers *rxfer = res;
3162	size_t i;
3163
3164	/* call extra callback if requested */
3165	if (rxfer->release)
3166		rxfer->release(ctlr, msg, res);
3167
3168	/* insert replaced transfers back into the message */
3169	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3170
3171	/* remove the formerly inserted entries */
3172	for (i = 0; i < rxfer->inserted; i++)
3173		list_del(&rxfer->inserted_transfers[i].transfer_list);
3174}
3175
3176/**
3177 * spi_replace_transfers - replace transfers with several transfers
3178 *                         and register change with spi_message.resources
3179 * @msg:           the spi_message we work upon
3180 * @xfer_first:    the first spi_transfer we want to replace
3181 * @remove:        number of transfers to remove
3182 * @insert:        the number of transfers we want to insert instead
3183 * @release:       extra release code necessary in some circumstances
3184 * @extradatasize: extra data to allocate (with alignment guarantees
3185 *                 of struct @spi_transfer)
3186 * @gfp:           gfp flags
3187 *
3188 * Returns: pointer to @spi_replaced_transfers,
3189 *          PTR_ERR(...) in case of errors.
3190 */
3191struct spi_replaced_transfers *spi_replace_transfers(
3192	struct spi_message *msg,
3193	struct spi_transfer *xfer_first,
3194	size_t remove,
3195	size_t insert,
3196	spi_replaced_release_t release,
3197	size_t extradatasize,
3198	gfp_t gfp)
3199{
3200	struct spi_replaced_transfers *rxfer;
3201	struct spi_transfer *xfer;
3202	size_t i;
3203
3204	/* allocate the structure using spi_res */
3205	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3206			      struct_size(rxfer, inserted_transfers, insert)
3207			      + extradatasize,
3208			      gfp);
3209	if (!rxfer)
3210		return ERR_PTR(-ENOMEM);
3211
3212	/* the release code to invoke before running the generic release */
3213	rxfer->release = release;
3214
3215	/* assign extradata */
3216	if (extradatasize)
3217		rxfer->extradata =
3218			&rxfer->inserted_transfers[insert];
3219
3220	/* init the replaced_transfers list */
3221	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3222
3223	/* assign the list_entry after which we should reinsert
 
3224	 * the @replaced_transfers - it may be spi_message.messages!
3225	 */
3226	rxfer->replaced_after = xfer_first->transfer_list.prev;
3227
3228	/* remove the requested number of transfers */
3229	for (i = 0; i < remove; i++) {
3230		/* if the entry after replaced_after it is msg->transfers
 
3231		 * then we have been requested to remove more transfers
3232		 * than are in the list
3233		 */
3234		if (rxfer->replaced_after->next == &msg->transfers) {
3235			dev_err(&msg->spi->dev,
3236				"requested to remove more spi_transfers than are available\n");
3237			/* insert replaced transfers back into the message */
3238			list_splice(&rxfer->replaced_transfers,
3239				    rxfer->replaced_after);
3240
3241			/* free the spi_replace_transfer structure */
3242			spi_res_free(rxfer);
3243
3244			/* and return with an error */
3245			return ERR_PTR(-EINVAL);
3246		}
3247
3248		/* remove the entry after replaced_after from list of
3249		 * transfers and add it to list of replaced_transfers
 
3250		 */
3251		list_move_tail(rxfer->replaced_after->next,
3252			       &rxfer->replaced_transfers);
3253	}
3254
3255	/* create copy of the given xfer with identical settings
3256	 * based on the first transfer to get removed
 
3257	 */
3258	for (i = 0; i < insert; i++) {
3259		/* we need to run in reverse order */
3260		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3261
3262		/* copy all spi_transfer data */
3263		memcpy(xfer, xfer_first, sizeof(*xfer));
3264
3265		/* add to list */
3266		list_add(&xfer->transfer_list, rxfer->replaced_after);
3267
3268		/* clear cs_change and delay for all but the last */
3269		if (i) {
3270			xfer->cs_change = false;
3271			xfer->delay.value = 0;
3272		}
3273	}
3274
3275	/* set up inserted */
3276	rxfer->inserted = insert;
3277
3278	/* and register it with spi_res/spi_message */
3279	spi_res_add(msg, rxfer);
3280
3281	return rxfer;
3282}
3283EXPORT_SYMBOL_GPL(spi_replace_transfers);
3284
3285static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3286					struct spi_message *msg,
3287					struct spi_transfer **xferp,
3288					size_t maxsize,
3289					gfp_t gfp)
3290{
3291	struct spi_transfer *xfer = *xferp, *xfers;
3292	struct spi_replaced_transfers *srt;
3293	size_t offset;
3294	size_t count, i;
3295
3296	/* calculate how many we have to replace */
3297	count = DIV_ROUND_UP(xfer->len, maxsize);
3298
3299	/* create replacement */
3300	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3301	if (IS_ERR(srt))
3302		return PTR_ERR(srt);
3303	xfers = srt->inserted_transfers;
3304
3305	/* now handle each of those newly inserted spi_transfers
3306	 * note that the replacements spi_transfers all are preset
 
3307	 * to the same values as *xferp, so tx_buf, rx_buf and len
3308	 * are all identical (as well as most others)
3309	 * so we just have to fix up len and the pointers.
3310	 *
3311	 * this also includes support for the depreciated
3312	 * spi_message.is_dma_mapped interface
3313	 */
3314
3315	/* the first transfer just needs the length modified, so we
3316	 * run it outside the loop
 
3317	 */
3318	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3319
3320	/* all the others need rx_buf/tx_buf also set */
3321	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3322		/* update rx_buf, tx_buf and dma */
3323		if (xfers[i].rx_buf)
3324			xfers[i].rx_buf += offset;
3325		if (xfers[i].rx_dma)
3326			xfers[i].rx_dma += offset;
3327		if (xfers[i].tx_buf)
3328			xfers[i].tx_buf += offset;
3329		if (xfers[i].tx_dma)
3330			xfers[i].tx_dma += offset;
3331
3332		/* update length */
3333		xfers[i].len = min(maxsize, xfers[i].len - offset);
3334	}
3335
3336	/* we set up xferp to the last entry we have inserted,
3337	 * so that we skip those already split transfers
 
3338	 */
3339	*xferp = &xfers[count - 1];
3340
3341	/* increment statistics counters */
3342	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3343				       transfers_split_maxsize);
3344	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3345				       transfers_split_maxsize);
3346
3347	return 0;
3348}
3349
3350/**
3351 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3352 *                               when an individual transfer exceeds a
3353 *                               certain size
3354 * @ctlr:    the @spi_controller for this transfer
3355 * @msg:   the @spi_message to transform
3356 * @maxsize:  the maximum when to apply this
3357 * @gfp: GFP allocation flags
3358 *
3359 * Return: status of transformation
3360 */
3361int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3362				struct spi_message *msg,
3363				size_t maxsize,
3364				gfp_t gfp)
3365{
3366	struct spi_transfer *xfer;
3367	int ret;
3368
3369	/* iterate over the transfer_list,
 
3370	 * but note that xfer is advanced to the last transfer inserted
3371	 * to avoid checking sizes again unnecessarily (also xfer does
3372	 * potentiall belong to a different list by the time the
3373	 * replacement has happened
3374	 */
3375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3376		if (xfer->len > maxsize) {
3377			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3378							   maxsize, gfp);
3379			if (ret)
3380				return ret;
3381		}
3382	}
3383
3384	return 0;
3385}
3386EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388/*-------------------------------------------------------------------------*/
3389
3390/* Core methods for SPI controller protocol drivers.  Some of the
 
3391 * other core methods are currently defined as inline functions.
3392 */
3393
3394static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3395					u8 bits_per_word)
3396{
3397	if (ctlr->bits_per_word_mask) {
3398		/* Only 32 bits fit in the mask */
3399		if (bits_per_word > 32)
3400			return -EINVAL;
3401		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3402			return -EINVAL;
3403	}
3404
3405	return 0;
3406}
3407
3408/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409 * spi_setup - setup SPI mode and clock rate
3410 * @spi: the device whose settings are being modified
3411 * Context: can sleep, and no requests are queued to the device
3412 *
3413 * SPI protocol drivers may need to update the transfer mode if the
3414 * device doesn't work with its default.  They may likewise need
3415 * to update clock rates or word sizes from initial values.  This function
3416 * changes those settings, and must be called from a context that can sleep.
3417 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3418 * effect the next time the device is selected and data is transferred to
3419 * or from it.  When this function returns, the spi device is deselected.
3420 *
3421 * Note that this call will fail if the protocol driver specifies an option
3422 * that the underlying controller or its driver does not support.  For
3423 * example, not all hardware supports wire transfers using nine bit words,
3424 * LSB-first wire encoding, or active-high chipselects.
3425 *
3426 * Return: zero on success, else a negative error code.
3427 */
3428int spi_setup(struct spi_device *spi)
3429{
3430	unsigned	bad_bits, ugly_bits;
3431	int		status;
3432
3433	/*
3434	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3435	 * are set at the same time
3436	 */
3437	if ((hweight_long(spi->mode &
3438		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3439	    (hweight_long(spi->mode &
3440		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3441		dev_err(&spi->dev,
3442		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3443		return -EINVAL;
3444	}
3445	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3446	 */
3447	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3448		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3449		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3450		return -EINVAL;
3451	/* help drivers fail *cleanly* when they need options
3452	 * that aren't supported with their current controller
 
3453	 * SPI_CS_WORD has a fallback software implementation,
3454	 * so it is ignored here.
3455	 */
3456	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3457				 SPI_NO_TX | SPI_NO_RX);
3458	/* nothing prevents from working with active-high CS in case if it
3459	 * is driven by GPIO.
3460	 */
3461	if (gpio_is_valid(spi->cs_gpio))
3462		bad_bits &= ~SPI_CS_HIGH;
3463	ugly_bits = bad_bits &
3464		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3465		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3466	if (ugly_bits) {
3467		dev_warn(&spi->dev,
3468			 "setup: ignoring unsupported mode bits %x\n",
3469			 ugly_bits);
3470		spi->mode &= ~ugly_bits;
3471		bad_bits &= ~ugly_bits;
3472	}
3473	if (bad_bits) {
3474		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3475			bad_bits);
3476		return -EINVAL;
3477	}
3478
3479	if (!spi->bits_per_word)
3480		spi->bits_per_word = 8;
3481
3482	status = __spi_validate_bits_per_word(spi->controller,
3483					      spi->bits_per_word);
3484	if (status)
3485		return status;
 
 
 
 
 
3486
3487	if (spi->controller->max_speed_hz &&
3488	    (!spi->max_speed_hz ||
3489	     spi->max_speed_hz > spi->controller->max_speed_hz))
3490		spi->max_speed_hz = spi->controller->max_speed_hz;
3491
3492	mutex_lock(&spi->controller->io_mutex);
3493
3494	if (spi->controller->setup) {
3495		status = spi->controller->setup(spi);
3496		if (status) {
3497			mutex_unlock(&spi->controller->io_mutex);
3498			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3499				status);
3500			return status;
3501		}
3502	}
3503
 
 
 
 
 
 
3504	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3505		status = pm_runtime_get_sync(spi->controller->dev.parent);
3506		if (status < 0) {
3507			mutex_unlock(&spi->controller->io_mutex);
3508			pm_runtime_put_noidle(spi->controller->dev.parent);
3509			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3510				status);
3511			return status;
3512		}
3513
3514		/*
3515		 * We do not want to return positive value from pm_runtime_get,
3516		 * there are many instances of devices calling spi_setup() and
3517		 * checking for a non-zero return value instead of a negative
3518		 * return value.
3519		 */
3520		status = 0;
3521
3522		spi_set_cs(spi, false, true);
3523		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3524		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3525	} else {
3526		spi_set_cs(spi, false, true);
3527	}
3528
3529	mutex_unlock(&spi->controller->io_mutex);
3530
3531	if (spi->rt && !spi->controller->rt) {
3532		spi->controller->rt = true;
3533		spi_set_thread_rt(spi->controller);
3534	}
3535
3536	trace_spi_setup(spi, status);
3537
3538	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3539			spi->mode & SPI_MODE_X_MASK,
3540			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3541			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3542			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3543			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3544			spi->bits_per_word, spi->max_speed_hz,
3545			status);
3546
3547	return status;
3548}
3549EXPORT_SYMBOL_GPL(spi_setup);
3550
3551static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3552				       struct spi_device *spi)
3553{
3554	int delay1, delay2;
3555
3556	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3557	if (delay1 < 0)
3558		return delay1;
3559
3560	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3561	if (delay2 < 0)
3562		return delay2;
3563
3564	if (delay1 < delay2)
3565		memcpy(&xfer->word_delay, &spi->word_delay,
3566		       sizeof(xfer->word_delay));
3567
3568	return 0;
3569}
3570
3571static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3572{
3573	struct spi_controller *ctlr = spi->controller;
3574	struct spi_transfer *xfer;
3575	int w_size;
3576
3577	if (list_empty(&message->transfers))
3578		return -EINVAL;
3579
3580	/* If an SPI controller does not support toggling the CS line on each
 
3581	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3582	 * for the CS line, we can emulate the CS-per-word hardware function by
3583	 * splitting transfers into one-word transfers and ensuring that
3584	 * cs_change is set for each transfer.
3585	 */
3586	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3587					  spi->cs_gpiod ||
3588					  gpio_is_valid(spi->cs_gpio))) {
3589		size_t maxsize;
3590		int ret;
3591
3592		maxsize = (spi->bits_per_word + 7) / 8;
3593
3594		/* spi_split_transfers_maxsize() requires message->spi */
3595		message->spi = spi;
3596
3597		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3598						  GFP_KERNEL);
3599		if (ret)
3600			return ret;
3601
3602		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3603			/* don't change cs_change on the last entry in the list */
3604			if (list_is_last(&xfer->transfer_list, &message->transfers))
3605				break;
3606			xfer->cs_change = 1;
3607		}
3608	}
3609
3610	/* Half-duplex links include original MicroWire, and ones with
 
3611	 * only one data pin like SPI_3WIRE (switches direction) or where
3612	 * either MOSI or MISO is missing.  They can also be caused by
3613	 * software limitations.
3614	 */
3615	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3616	    (spi->mode & SPI_3WIRE)) {
3617		unsigned flags = ctlr->flags;
3618
3619		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3620			if (xfer->rx_buf && xfer->tx_buf)
3621				return -EINVAL;
3622			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3623				return -EINVAL;
3624			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3625				return -EINVAL;
3626		}
3627	}
3628
3629	/**
3630	 * Set transfer bits_per_word and max speed as spi device default if
3631	 * it is not set for this transfer.
3632	 * Set transfer tx_nbits and rx_nbits as single transfer default
3633	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3634	 * Ensure transfer word_delay is at least as long as that required by
3635	 * device itself.
3636	 */
3637	message->frame_length = 0;
3638	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3639		xfer->effective_speed_hz = 0;
3640		message->frame_length += xfer->len;
3641		if (!xfer->bits_per_word)
3642			xfer->bits_per_word = spi->bits_per_word;
3643
3644		if (!xfer->speed_hz)
3645			xfer->speed_hz = spi->max_speed_hz;
3646
3647		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3648			xfer->speed_hz = ctlr->max_speed_hz;
3649
3650		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3651			return -EINVAL;
3652
3653		/*
3654		 * SPI transfer length should be multiple of SPI word size
3655		 * where SPI word size should be power-of-two multiple
3656		 */
3657		if (xfer->bits_per_word <= 8)
3658			w_size = 1;
3659		else if (xfer->bits_per_word <= 16)
3660			w_size = 2;
3661		else
3662			w_size = 4;
3663
3664		/* No partial transfers accepted */
3665		if (xfer->len % w_size)
3666			return -EINVAL;
3667
3668		if (xfer->speed_hz && ctlr->min_speed_hz &&
3669		    xfer->speed_hz < ctlr->min_speed_hz)
3670			return -EINVAL;
3671
3672		if (xfer->tx_buf && !xfer->tx_nbits)
3673			xfer->tx_nbits = SPI_NBITS_SINGLE;
3674		if (xfer->rx_buf && !xfer->rx_nbits)
3675			xfer->rx_nbits = SPI_NBITS_SINGLE;
3676		/* check transfer tx/rx_nbits:
 
3677		 * 1. check the value matches one of single, dual and quad
3678		 * 2. check tx/rx_nbits match the mode in spi_device
3679		 */
3680		if (xfer->tx_buf) {
3681			if (spi->mode & SPI_NO_TX)
3682				return -EINVAL;
3683			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3684				xfer->tx_nbits != SPI_NBITS_DUAL &&
3685				xfer->tx_nbits != SPI_NBITS_QUAD)
3686				return -EINVAL;
3687			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3688				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3689				return -EINVAL;
3690			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3691				!(spi->mode & SPI_TX_QUAD))
3692				return -EINVAL;
3693		}
3694		/* check transfer rx_nbits */
3695		if (xfer->rx_buf) {
3696			if (spi->mode & SPI_NO_RX)
3697				return -EINVAL;
3698			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3699				xfer->rx_nbits != SPI_NBITS_DUAL &&
3700				xfer->rx_nbits != SPI_NBITS_QUAD)
3701				return -EINVAL;
3702			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3703				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3704				return -EINVAL;
3705			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3706				!(spi->mode & SPI_RX_QUAD))
3707				return -EINVAL;
3708		}
3709
3710		if (_spi_xfer_word_delay_update(xfer, spi))
3711			return -EINVAL;
3712	}
3713
3714	message->status = -EINPROGRESS;
3715
3716	return 0;
3717}
3718
3719static int __spi_async(struct spi_device *spi, struct spi_message *message)
3720{
3721	struct spi_controller *ctlr = spi->controller;
3722	struct spi_transfer *xfer;
3723
3724	/*
3725	 * Some controllers do not support doing regular SPI transfers. Return
3726	 * ENOTSUPP when this is the case.
3727	 */
3728	if (!ctlr->transfer)
3729		return -ENOTSUPP;
3730
3731	message->spi = spi;
3732
3733	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3734	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3735
3736	trace_spi_message_submit(message);
3737
3738	if (!ctlr->ptp_sts_supported) {
3739		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3740			xfer->ptp_sts_word_pre = 0;
3741			ptp_read_system_prets(xfer->ptp_sts);
3742		}
3743	}
3744
3745	return ctlr->transfer(spi, message);
3746}
3747
3748/**
3749 * spi_async - asynchronous SPI transfer
3750 * @spi: device with which data will be exchanged
3751 * @message: describes the data transfers, including completion callback
3752 * Context: any (irqs may be blocked, etc)
3753 *
3754 * This call may be used in_irq and other contexts which can't sleep,
3755 * as well as from task contexts which can sleep.
3756 *
3757 * The completion callback is invoked in a context which can't sleep.
3758 * Before that invocation, the value of message->status is undefined.
3759 * When the callback is issued, message->status holds either zero (to
3760 * indicate complete success) or a negative error code.  After that
3761 * callback returns, the driver which issued the transfer request may
3762 * deallocate the associated memory; it's no longer in use by any SPI
3763 * core or controller driver code.
3764 *
3765 * Note that although all messages to a spi_device are handled in
3766 * FIFO order, messages may go to different devices in other orders.
3767 * Some device might be higher priority, or have various "hard" access
3768 * time requirements, for example.
3769 *
3770 * On detection of any fault during the transfer, processing of
3771 * the entire message is aborted, and the device is deselected.
3772 * Until returning from the associated message completion callback,
3773 * no other spi_message queued to that device will be processed.
3774 * (This rule applies equally to all the synchronous transfer calls,
3775 * which are wrappers around this core asynchronous primitive.)
3776 *
3777 * Return: zero on success, else a negative error code.
3778 */
3779int spi_async(struct spi_device *spi, struct spi_message *message)
3780{
3781	struct spi_controller *ctlr = spi->controller;
3782	int ret;
3783	unsigned long flags;
3784
3785	ret = __spi_validate(spi, message);
3786	if (ret != 0)
3787		return ret;
3788
3789	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3790
3791	if (ctlr->bus_lock_flag)
3792		ret = -EBUSY;
3793	else
3794		ret = __spi_async(spi, message);
3795
3796	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3797
3798	return ret;
3799}
3800EXPORT_SYMBOL_GPL(spi_async);
3801
3802/**
3803 * spi_async_locked - version of spi_async with exclusive bus usage
3804 * @spi: device with which data will be exchanged
3805 * @message: describes the data transfers, including completion callback
3806 * Context: any (irqs may be blocked, etc)
3807 *
3808 * This call may be used in_irq and other contexts which can't sleep,
3809 * as well as from task contexts which can sleep.
3810 *
3811 * The completion callback is invoked in a context which can't sleep.
3812 * Before that invocation, the value of message->status is undefined.
3813 * When the callback is issued, message->status holds either zero (to
3814 * indicate complete success) or a negative error code.  After that
3815 * callback returns, the driver which issued the transfer request may
3816 * deallocate the associated memory; it's no longer in use by any SPI
3817 * core or controller driver code.
3818 *
3819 * Note that although all messages to a spi_device are handled in
3820 * FIFO order, messages may go to different devices in other orders.
3821 * Some device might be higher priority, or have various "hard" access
3822 * time requirements, for example.
3823 *
3824 * On detection of any fault during the transfer, processing of
3825 * the entire message is aborted, and the device is deselected.
3826 * Until returning from the associated message completion callback,
3827 * no other spi_message queued to that device will be processed.
3828 * (This rule applies equally to all the synchronous transfer calls,
3829 * which are wrappers around this core asynchronous primitive.)
3830 *
3831 * Return: zero on success, else a negative error code.
3832 */
3833int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3834{
3835	struct spi_controller *ctlr = spi->controller;
3836	int ret;
3837	unsigned long flags;
3838
3839	ret = __spi_validate(spi, message);
3840	if (ret != 0)
3841		return ret;
3842
3843	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3844
3845	ret = __spi_async(spi, message);
3846
3847	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3848
3849	return ret;
3850
3851}
3852EXPORT_SYMBOL_GPL(spi_async_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3853
3854/*-------------------------------------------------------------------------*/
3855
3856/* Utility methods for SPI protocol drivers, layered on
 
3857 * top of the core.  Some other utility methods are defined as
3858 * inline functions.
3859 */
3860
3861static void spi_complete(void *arg)
3862{
3863	complete(arg);
3864}
3865
3866static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3867{
3868	DECLARE_COMPLETION_ONSTACK(done);
3869	int status;
3870	struct spi_controller *ctlr = spi->controller;
3871	unsigned long flags;
 
 
 
 
3872
3873	status = __spi_validate(spi, message);
3874	if (status != 0)
3875		return status;
3876
3877	message->complete = spi_complete;
3878	message->context = &done;
3879	message->spi = spi;
3880
3881	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3882	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3883
3884	/* If we're not using the legacy transfer method then we will
3885	 * try to transfer in the calling context so special case.
3886	 * This code would be less tricky if we could remove the
3887	 * support for driver implemented message queues.
 
3888	 */
3889	if (ctlr->transfer == spi_queued_transfer) {
3890		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
 
3891
3892		trace_spi_message_submit(message);
3893
3894		status = __spi_queued_transfer(spi, message, false);
 
 
 
3895
3896		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3897	} else {
3898		status = spi_async_locked(spi, message);
3899	}
3900
 
 
 
 
 
 
 
 
 
3901	if (status == 0) {
3902		/* Push out the messages in the calling context if we
3903		 * can.
3904		 */
3905		if (ctlr->transfer == spi_queued_transfer) {
3906			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3907						       spi_sync_immediate);
3908			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3909						       spi_sync_immediate);
3910			__spi_pump_messages(ctlr, false);
3911		}
3912
3913		wait_for_completion(&done);
3914		status = message->status;
3915	}
3916	message->context = NULL;
 
3917	return status;
3918}
3919
3920/**
3921 * spi_sync - blocking/synchronous SPI data transfers
3922 * @spi: device with which data will be exchanged
3923 * @message: describes the data transfers
3924 * Context: can sleep
3925 *
3926 * This call may only be used from a context that may sleep.  The sleep
3927 * is non-interruptible, and has no timeout.  Low-overhead controller
3928 * drivers may DMA directly into and out of the message buffers.
3929 *
3930 * Note that the SPI device's chip select is active during the message,
3931 * and then is normally disabled between messages.  Drivers for some
3932 * frequently-used devices may want to minimize costs of selecting a chip,
3933 * by leaving it selected in anticipation that the next message will go
3934 * to the same chip.  (That may increase power usage.)
3935 *
3936 * Also, the caller is guaranteeing that the memory associated with the
3937 * message will not be freed before this call returns.
3938 *
3939 * Return: zero on success, else a negative error code.
3940 */
3941int spi_sync(struct spi_device *spi, struct spi_message *message)
3942{
3943	int ret;
3944
3945	mutex_lock(&spi->controller->bus_lock_mutex);
3946	ret = __spi_sync(spi, message);
3947	mutex_unlock(&spi->controller->bus_lock_mutex);
3948
3949	return ret;
3950}
3951EXPORT_SYMBOL_GPL(spi_sync);
3952
3953/**
3954 * spi_sync_locked - version of spi_sync with exclusive bus usage
3955 * @spi: device with which data will be exchanged
3956 * @message: describes the data transfers
3957 * Context: can sleep
3958 *
3959 * This call may only be used from a context that may sleep.  The sleep
3960 * is non-interruptible, and has no timeout.  Low-overhead controller
3961 * drivers may DMA directly into and out of the message buffers.
3962 *
3963 * This call should be used by drivers that require exclusive access to the
3964 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3965 * be released by a spi_bus_unlock call when the exclusive access is over.
3966 *
3967 * Return: zero on success, else a negative error code.
3968 */
3969int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3970{
3971	return __spi_sync(spi, message);
3972}
3973EXPORT_SYMBOL_GPL(spi_sync_locked);
3974
3975/**
3976 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3977 * @ctlr: SPI bus master that should be locked for exclusive bus access
3978 * Context: can sleep
3979 *
3980 * This call may only be used from a context that may sleep.  The sleep
3981 * is non-interruptible, and has no timeout.
3982 *
3983 * This call should be used by drivers that require exclusive access to the
3984 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3985 * exclusive access is over. Data transfer must be done by spi_sync_locked
3986 * and spi_async_locked calls when the SPI bus lock is held.
3987 *
3988 * Return: always zero.
3989 */
3990int spi_bus_lock(struct spi_controller *ctlr)
3991{
3992	unsigned long flags;
3993
3994	mutex_lock(&ctlr->bus_lock_mutex);
3995
3996	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3997	ctlr->bus_lock_flag = 1;
3998	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3999
4000	/* mutex remains locked until spi_bus_unlock is called */
4001
4002	return 0;
4003}
4004EXPORT_SYMBOL_GPL(spi_bus_lock);
4005
4006/**
4007 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4008 * @ctlr: SPI bus master that was locked for exclusive bus access
4009 * Context: can sleep
4010 *
4011 * This call may only be used from a context that may sleep.  The sleep
4012 * is non-interruptible, and has no timeout.
4013 *
4014 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4015 * call.
4016 *
4017 * Return: always zero.
4018 */
4019int spi_bus_unlock(struct spi_controller *ctlr)
4020{
4021	ctlr->bus_lock_flag = 0;
4022
4023	mutex_unlock(&ctlr->bus_lock_mutex);
4024
4025	return 0;
4026}
4027EXPORT_SYMBOL_GPL(spi_bus_unlock);
4028
4029/* portable code must never pass more than 32 bytes */
4030#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4031
4032static u8	*buf;
4033
4034/**
4035 * spi_write_then_read - SPI synchronous write followed by read
4036 * @spi: device with which data will be exchanged
4037 * @txbuf: data to be written (need not be dma-safe)
4038 * @n_tx: size of txbuf, in bytes
4039 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4040 * @n_rx: size of rxbuf, in bytes
4041 * Context: can sleep
4042 *
4043 * This performs a half duplex MicroWire style transaction with the
4044 * device, sending txbuf and then reading rxbuf.  The return value
4045 * is zero for success, else a negative errno status code.
4046 * This call may only be used from a context that may sleep.
4047 *
4048 * Parameters to this routine are always copied using a small buffer.
4049 * Performance-sensitive or bulk transfer code should instead use
4050 * spi_{async,sync}() calls with dma-safe buffers.
4051 *
4052 * Return: zero on success, else a negative error code.
4053 */
4054int spi_write_then_read(struct spi_device *spi,
4055		const void *txbuf, unsigned n_tx,
4056		void *rxbuf, unsigned n_rx)
4057{
4058	static DEFINE_MUTEX(lock);
4059
4060	int			status;
4061	struct spi_message	message;
4062	struct spi_transfer	x[2];
4063	u8			*local_buf;
4064
4065	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
 
4066	 * copying here, (as a pure convenience thing), but we can
4067	 * keep heap costs out of the hot path unless someone else is
4068	 * using the pre-allocated buffer or the transfer is too large.
4069	 */
4070	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4071		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4072				    GFP_KERNEL | GFP_DMA);
4073		if (!local_buf)
4074			return -ENOMEM;
4075	} else {
4076		local_buf = buf;
4077	}
4078
4079	spi_message_init(&message);
4080	memset(x, 0, sizeof(x));
4081	if (n_tx) {
4082		x[0].len = n_tx;
4083		spi_message_add_tail(&x[0], &message);
4084	}
4085	if (n_rx) {
4086		x[1].len = n_rx;
4087		spi_message_add_tail(&x[1], &message);
4088	}
4089
4090	memcpy(local_buf, txbuf, n_tx);
4091	x[0].tx_buf = local_buf;
4092	x[1].rx_buf = local_buf + n_tx;
4093
4094	/* do the i/o */
4095	status = spi_sync(spi, &message);
4096	if (status == 0)
4097		memcpy(rxbuf, x[1].rx_buf, n_rx);
4098
4099	if (x[0].tx_buf == buf)
4100		mutex_unlock(&lock);
4101	else
4102		kfree(local_buf);
4103
4104	return status;
4105}
4106EXPORT_SYMBOL_GPL(spi_write_then_read);
4107
4108/*-------------------------------------------------------------------------*/
4109
4110#if IS_ENABLED(CONFIG_OF)
4111/* must call put_device() when done with returned spi_device device */
4112struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4113{
4114	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4115
4116	return dev ? to_spi_device(dev) : NULL;
4117}
4118EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4119#endif /* IS_ENABLED(CONFIG_OF) */
4120
4121#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4122/* the spi controllers are not using spi_bus, so we find it with another way */
4123static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4124{
4125	struct device *dev;
4126
4127	dev = class_find_device_by_of_node(&spi_master_class, node);
4128	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4129		dev = class_find_device_by_of_node(&spi_slave_class, node);
4130	if (!dev)
4131		return NULL;
4132
4133	/* reference got in class_find_device */
4134	return container_of(dev, struct spi_controller, dev);
4135}
4136
4137static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4138			 void *arg)
4139{
4140	struct of_reconfig_data *rd = arg;
4141	struct spi_controller *ctlr;
4142	struct spi_device *spi;
4143
4144	switch (of_reconfig_get_state_change(action, arg)) {
4145	case OF_RECONFIG_CHANGE_ADD:
4146		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4147		if (ctlr == NULL)
4148			return NOTIFY_OK;	/* not for us */
4149
4150		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4151			put_device(&ctlr->dev);
4152			return NOTIFY_OK;
4153		}
4154
 
 
 
 
 
4155		spi = of_register_spi_device(ctlr, rd->dn);
4156		put_device(&ctlr->dev);
4157
4158		if (IS_ERR(spi)) {
4159			pr_err("%s: failed to create for '%pOF'\n",
4160					__func__, rd->dn);
4161			of_node_clear_flag(rd->dn, OF_POPULATED);
4162			return notifier_from_errno(PTR_ERR(spi));
4163		}
4164		break;
4165
4166	case OF_RECONFIG_CHANGE_REMOVE:
4167		/* already depopulated? */
4168		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4169			return NOTIFY_OK;
4170
4171		/* find our device by node */
4172		spi = of_find_spi_device_by_node(rd->dn);
4173		if (spi == NULL)
4174			return NOTIFY_OK;	/* no? not meant for us */
4175
4176		/* unregister takes one ref away */
4177		spi_unregister_device(spi);
4178
4179		/* and put the reference of the find */
4180		put_device(&spi->dev);
4181		break;
4182	}
4183
4184	return NOTIFY_OK;
4185}
4186
4187static struct notifier_block spi_of_notifier = {
4188	.notifier_call = of_spi_notify,
4189};
4190#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4191extern struct notifier_block spi_of_notifier;
4192#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4193
4194#if IS_ENABLED(CONFIG_ACPI)
4195static int spi_acpi_controller_match(struct device *dev, const void *data)
4196{
4197	return ACPI_COMPANION(dev->parent) == data;
4198}
4199
4200static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4201{
4202	struct device *dev;
4203
4204	dev = class_find_device(&spi_master_class, NULL, adev,
4205				spi_acpi_controller_match);
4206	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4207		dev = class_find_device(&spi_slave_class, NULL, adev,
4208					spi_acpi_controller_match);
4209	if (!dev)
4210		return NULL;
4211
4212	return container_of(dev, struct spi_controller, dev);
4213}
 
4214
4215static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4216{
4217	struct device *dev;
4218
4219	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4220	return to_spi_device(dev);
4221}
4222
4223static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4224			   void *arg)
4225{
4226	struct acpi_device *adev = arg;
4227	struct spi_controller *ctlr;
4228	struct spi_device *spi;
4229
4230	switch (value) {
4231	case ACPI_RECONFIG_DEVICE_ADD:
4232		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4233		if (!ctlr)
4234			break;
4235
4236		acpi_register_spi_device(ctlr, adev);
4237		put_device(&ctlr->dev);
4238		break;
4239	case ACPI_RECONFIG_DEVICE_REMOVE:
4240		if (!acpi_device_enumerated(adev))
4241			break;
4242
4243		spi = acpi_spi_find_device_by_adev(adev);
4244		if (!spi)
4245			break;
4246
4247		spi_unregister_device(spi);
4248		put_device(&spi->dev);
4249		break;
4250	}
4251
4252	return NOTIFY_OK;
4253}
4254
4255static struct notifier_block spi_acpi_notifier = {
4256	.notifier_call = acpi_spi_notify,
4257};
4258#else
4259extern struct notifier_block spi_acpi_notifier;
4260#endif
4261
4262static int __init spi_init(void)
4263{
4264	int	status;
4265
4266	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4267	if (!buf) {
4268		status = -ENOMEM;
4269		goto err0;
4270	}
4271
4272	status = bus_register(&spi_bus_type);
4273	if (status < 0)
4274		goto err1;
4275
4276	status = class_register(&spi_master_class);
4277	if (status < 0)
4278		goto err2;
4279
4280	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4281		status = class_register(&spi_slave_class);
4282		if (status < 0)
4283			goto err3;
4284	}
4285
4286	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4287		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4288	if (IS_ENABLED(CONFIG_ACPI))
4289		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4290
4291	return 0;
4292
4293err3:
4294	class_unregister(&spi_master_class);
4295err2:
4296	bus_unregister(&spi_bus_type);
4297err1:
4298	kfree(buf);
4299	buf = NULL;
4300err0:
4301	return status;
4302}
4303
4304/* board_info is normally registered in arch_initcall(),
4305 * but even essential drivers wait till later
 
4306 *
4307 * REVISIT only boardinfo really needs static linking. the rest (device and
4308 * driver registration) _could_ be dynamically linked (modular) ... costs
4309 * include needing to have boardinfo data structures be much more public.
4310 */
4311postcore_initcall(spi_init);