Loading...
1/* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2/*
3 Written/copyright 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the SMC83c170/175 "EPIC" series, as used on the
13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Information and updates available at
21 http://www.scyld.com/network/epic100.html
22 [this link no longer provides anything useful -jgarzik]
23
24 ---------------------------------------------------------------------
25
26*/
27
28#define DRV_NAME "epic100"
29#define DRV_VERSION "2.1"
30#define DRV_RELDATE "Sept 11, 2006"
31
32/* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36
37/* Used to pass the full-duplex flag, etc. */
38#define MAX_UNITS 8 /* More are supported, limit only on options */
39static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
41
42/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43 Setting to > 1518 effectively disables this feature. */
44static int rx_copybreak;
45
46/* Operational parameters that are set at compile time. */
47
48/* Keep the ring sizes a power of two for operational efficiency.
49 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50 Making the Tx ring too large decreases the effectiveness of channel
51 bonding and packet priority.
52 There are no ill effects from too-large receive rings. */
53#define TX_RING_SIZE 256
54#define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */
55#define RX_RING_SIZE 256
56#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc)
57#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc)
58
59/* Operational parameters that usually are not changed. */
60/* Time in jiffies before concluding the transmitter is hung. */
61#define TX_TIMEOUT (2*HZ)
62
63#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
64
65/* Bytes transferred to chip before transmission starts. */
66/* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67#define TX_FIFO_THRESH 256
68#define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */
69
70#include <linux/module.h>
71#include <linux/kernel.h>
72#include <linux/string.h>
73#include <linux/timer.h>
74#include <linux/errno.h>
75#include <linux/ioport.h>
76#include <linux/interrupt.h>
77#include <linux/pci.h>
78#include <linux/delay.h>
79#include <linux/netdevice.h>
80#include <linux/etherdevice.h>
81#include <linux/skbuff.h>
82#include <linux/init.h>
83#include <linux/spinlock.h>
84#include <linux/ethtool.h>
85#include <linux/mii.h>
86#include <linux/crc32.h>
87#include <linux/bitops.h>
88#include <asm/io.h>
89#include <linux/uaccess.h>
90#include <asm/byteorder.h>
91
92/* These identify the driver base version and may not be removed. */
93static char version[] =
94DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>";
95static char version2[] =
96" (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")";
97
98MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
99MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
100MODULE_LICENSE("GPL");
101
102module_param(debug, int, 0);
103module_param(rx_copybreak, int, 0);
104module_param_array(options, int, NULL, 0);
105module_param_array(full_duplex, int, NULL, 0);
106MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
107MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
108MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
109MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
110
111/*
112 Theory of Operation
113
114I. Board Compatibility
115
116This device driver is designed for the SMC "EPIC/100", the SMC
117single-chip Ethernet controllers for PCI. This chip is used on
118the SMC EtherPower II boards.
119
120II. Board-specific settings
121
122PCI bus devices are configured by the system at boot time, so no jumpers
123need to be set on the board. The system BIOS will assign the
124PCI INTA signal to a (preferably otherwise unused) system IRQ line.
125Note: Kernel versions earlier than 1.3.73 do not support shared PCI
126interrupt lines.
127
128III. Driver operation
129
130IIIa. Ring buffers
131
132IVb. References
133
134http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf
135http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf
136http://scyld.com/expert/NWay.html
137http://www.national.com/pf/DP/DP83840A.html
138
139IVc. Errata
140
141*/
142
143
144enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
145
146#define EPIC_TOTAL_SIZE 0x100
147#define USE_IO_OPS 1
148
149#ifdef USE_IO_OPS
150#define EPIC_BAR 0
151#else
152#define EPIC_BAR 1
153#endif
154
155typedef enum {
156 SMSC_83C170_0,
157 SMSC_83C170,
158 SMSC_83C175,
159} chip_t;
160
161
162struct epic_chip_info {
163 const char *name;
164 int drv_flags; /* Driver use, intended as capability flags. */
165};
166
167
168/* indexed by chip_t */
169static const struct epic_chip_info pci_id_tbl[] = {
170 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN },
171 { "SMSC EPIC/100 83c170", TYPE2_INTR },
172 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN },
173};
174
175
176static const struct pci_device_id epic_pci_tbl[] = {
177 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
178 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
179 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
180 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
181 { 0,}
182};
183MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
184
185#define ew16(reg, val) iowrite16(val, ioaddr + (reg))
186#define ew32(reg, val) iowrite32(val, ioaddr + (reg))
187#define er8(reg) ioread8(ioaddr + (reg))
188#define er16(reg) ioread16(ioaddr + (reg))
189#define er32(reg) ioread32(ioaddr + (reg))
190
191/* Offsets to registers, using the (ugh) SMC names. */
192enum epic_registers {
193 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
194 PCIBurstCnt=0x18,
195 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */
196 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
197 LAN0=64, /* MAC address. */
198 MC0=80, /* Multicast filter table. */
199 RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
200 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
201};
202
203/* Interrupt register bits, using my own meaningful names. */
204enum IntrStatus {
205 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
206 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
207 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
208 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
209 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
210};
211enum CommandBits {
212 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
213 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
214};
215
216#define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */
217
218#define EpicNapiEvent (TxEmpty | TxDone | \
219 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
220#define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent)
221
222static const u16 media2miictl[16] = {
223 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0,
224 0, 0, 0, 0, 0, 0, 0, 0 };
225
226/*
227 * The EPIC100 Rx and Tx buffer descriptors. Note that these
228 * really ARE host-endian; it's not a misannotation. We tell
229 * the card to byteswap them internally on big-endian hosts -
230 * look for #ifdef __BIG_ENDIAN in epic_open().
231 */
232
233struct epic_tx_desc {
234 u32 txstatus;
235 u32 bufaddr;
236 u32 buflength;
237 u32 next;
238};
239
240struct epic_rx_desc {
241 u32 rxstatus;
242 u32 bufaddr;
243 u32 buflength;
244 u32 next;
245};
246
247enum desc_status_bits {
248 DescOwn=0x8000,
249};
250
251#define PRIV_ALIGN 15 /* Required alignment mask */
252struct epic_private {
253 struct epic_rx_desc *rx_ring;
254 struct epic_tx_desc *tx_ring;
255 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
256 struct sk_buff* tx_skbuff[TX_RING_SIZE];
257 /* The addresses of receive-in-place skbuffs. */
258 struct sk_buff* rx_skbuff[RX_RING_SIZE];
259
260 dma_addr_t tx_ring_dma;
261 dma_addr_t rx_ring_dma;
262
263 /* Ring pointers. */
264 spinlock_t lock; /* Group with Tx control cache line. */
265 spinlock_t napi_lock;
266 struct napi_struct napi;
267 unsigned int cur_tx, dirty_tx;
268
269 unsigned int cur_rx, dirty_rx;
270 u32 irq_mask;
271 unsigned int rx_buf_sz; /* Based on MTU+slack. */
272
273 void __iomem *ioaddr;
274 struct pci_dev *pci_dev; /* PCI bus location. */
275 int chip_id, chip_flags;
276
277 struct timer_list timer; /* Media selection timer. */
278 int tx_threshold;
279 unsigned char mc_filter[8];
280 signed char phys[4]; /* MII device addresses. */
281 u16 advertising; /* NWay media advertisement */
282 int mii_phy_cnt;
283 u32 ethtool_ops_nesting;
284 struct mii_if_info mii;
285 unsigned int tx_full:1; /* The Tx queue is full. */
286 unsigned int default_port:4; /* Last dev->if_port value. */
287};
288
289static int epic_open(struct net_device *dev);
290static int read_eeprom(struct epic_private *, int);
291static int mdio_read(struct net_device *dev, int phy_id, int location);
292static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
293static void epic_restart(struct net_device *dev);
294static void epic_timer(struct timer_list *t);
295static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue);
296static void epic_init_ring(struct net_device *dev);
297static netdev_tx_t epic_start_xmit(struct sk_buff *skb,
298 struct net_device *dev);
299static int epic_rx(struct net_device *dev, int budget);
300static int epic_poll(struct napi_struct *napi, int budget);
301static irqreturn_t epic_interrupt(int irq, void *dev_instance);
302static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
303static const struct ethtool_ops netdev_ethtool_ops;
304static int epic_close(struct net_device *dev);
305static struct net_device_stats *epic_get_stats(struct net_device *dev);
306static void set_rx_mode(struct net_device *dev);
307
308static const struct net_device_ops epic_netdev_ops = {
309 .ndo_open = epic_open,
310 .ndo_stop = epic_close,
311 .ndo_start_xmit = epic_start_xmit,
312 .ndo_tx_timeout = epic_tx_timeout,
313 .ndo_get_stats = epic_get_stats,
314 .ndo_set_rx_mode = set_rx_mode,
315 .ndo_eth_ioctl = netdev_ioctl,
316 .ndo_set_mac_address = eth_mac_addr,
317 .ndo_validate_addr = eth_validate_addr,
318};
319
320static int epic_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
321{
322 static int card_idx = -1;
323 void __iomem *ioaddr;
324 int chip_idx = (int) ent->driver_data;
325 struct net_device *dev;
326 struct epic_private *ep;
327 int i, ret, option = 0, duplex = 0;
328 __le16 addr[ETH_ALEN / 2];
329 void *ring_space;
330 dma_addr_t ring_dma;
331
332/* when built into the kernel, we only print version if device is found */
333#ifndef MODULE
334 pr_info_once("%s%s\n", version, version2);
335#endif
336
337 card_idx++;
338
339 ret = pci_enable_device(pdev);
340 if (ret)
341 goto out;
342
343 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
344 dev_err(&pdev->dev, "no PCI region space\n");
345 ret = -ENODEV;
346 goto err_out_disable;
347 }
348
349 pci_set_master(pdev);
350
351 ret = pci_request_regions(pdev, DRV_NAME);
352 if (ret < 0)
353 goto err_out_disable;
354
355 ret = -ENOMEM;
356
357 dev = alloc_etherdev(sizeof (*ep));
358 if (!dev)
359 goto err_out_free_res;
360
361 SET_NETDEV_DEV(dev, &pdev->dev);
362
363 ioaddr = pci_iomap(pdev, EPIC_BAR, 0);
364 if (!ioaddr) {
365 dev_err(&pdev->dev, "ioremap failed\n");
366 goto err_out_free_netdev;
367 }
368
369 pci_set_drvdata(pdev, dev);
370 ep = netdev_priv(dev);
371 ep->ioaddr = ioaddr;
372 ep->mii.dev = dev;
373 ep->mii.mdio_read = mdio_read;
374 ep->mii.mdio_write = mdio_write;
375 ep->mii.phy_id_mask = 0x1f;
376 ep->mii.reg_num_mask = 0x1f;
377
378 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
379 GFP_KERNEL);
380 if (!ring_space)
381 goto err_out_iounmap;
382 ep->tx_ring = ring_space;
383 ep->tx_ring_dma = ring_dma;
384
385 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
386 GFP_KERNEL);
387 if (!ring_space)
388 goto err_out_unmap_tx;
389 ep->rx_ring = ring_space;
390 ep->rx_ring_dma = ring_dma;
391
392 if (dev->mem_start) {
393 option = dev->mem_start;
394 duplex = (dev->mem_start & 16) ? 1 : 0;
395 } else if (card_idx >= 0 && card_idx < MAX_UNITS) {
396 if (options[card_idx] >= 0)
397 option = options[card_idx];
398 if (full_duplex[card_idx] >= 0)
399 duplex = full_duplex[card_idx];
400 }
401
402 spin_lock_init(&ep->lock);
403 spin_lock_init(&ep->napi_lock);
404
405 /* Bring the chip out of low-power mode. */
406 ew32(GENCTL, 0x4200);
407 /* Magic?! If we don't set this bit the MII interface won't work. */
408 /* This magic is documented in SMSC app note 7.15 */
409 for (i = 16; i > 0; i--)
410 ew32(TEST1, 0x0008);
411
412 /* Turn on the MII transceiver. */
413 ew32(MIICfg, 0x12);
414 if (chip_idx == 1)
415 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
416 ew32(GENCTL, 0x0200);
417
418 /* Note: the '175 does not have a serial EEPROM. */
419 for (i = 0; i < 3; i++)
420 addr[i] = cpu_to_le16(er16(LAN0 + i*4));
421 eth_hw_addr_set(dev, (u8 *)addr);
422
423 if (debug > 2) {
424 dev_dbg(&pdev->dev, "EEPROM contents:\n");
425 for (i = 0; i < 64; i++)
426 pr_cont(" %4.4x%s", read_eeprom(ep, i),
427 i % 16 == 15 ? "\n" : "");
428 }
429
430 ep->pci_dev = pdev;
431 ep->chip_id = chip_idx;
432 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
433 ep->irq_mask =
434 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
435 | CntFull | TxUnderrun | EpicNapiEvent;
436
437 /* Find the connected MII xcvrs.
438 Doing this in open() would allow detecting external xcvrs later, but
439 takes much time and no cards have external MII. */
440 {
441 int phy, phy_idx = 0;
442 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
443 int mii_status = mdio_read(dev, phy, MII_BMSR);
444 if (mii_status != 0xffff && mii_status != 0x0000) {
445 ep->phys[phy_idx++] = phy;
446 dev_info(&pdev->dev,
447 "MII transceiver #%d control "
448 "%4.4x status %4.4x.\n",
449 phy, mdio_read(dev, phy, 0), mii_status);
450 }
451 }
452 ep->mii_phy_cnt = phy_idx;
453 if (phy_idx != 0) {
454 phy = ep->phys[0];
455 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
456 dev_info(&pdev->dev,
457 "Autonegotiation advertising %4.4x link "
458 "partner %4.4x.\n",
459 ep->mii.advertising, mdio_read(dev, phy, 5));
460 } else if ( ! (ep->chip_flags & NO_MII)) {
461 dev_warn(&pdev->dev,
462 "***WARNING***: No MII transceiver found!\n");
463 /* Use the known PHY address of the EPII. */
464 ep->phys[0] = 3;
465 }
466 ep->mii.phy_id = ep->phys[0];
467 }
468
469 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
470 if (ep->chip_flags & MII_PWRDWN)
471 ew32(NVCTL, er32(NVCTL) & ~0x483c);
472 ew32(GENCTL, 0x0008);
473
474 /* The lower four bits are the media type. */
475 if (duplex) {
476 ep->mii.force_media = ep->mii.full_duplex = 1;
477 dev_info(&pdev->dev, "Forced full duplex requested.\n");
478 }
479 dev->if_port = ep->default_port = option;
480
481 /* The Epic-specific entries in the device structure. */
482 dev->netdev_ops = &epic_netdev_ops;
483 dev->ethtool_ops = &netdev_ethtool_ops;
484 dev->watchdog_timeo = TX_TIMEOUT;
485 netif_napi_add(dev, &ep->napi, epic_poll);
486
487 ret = register_netdev(dev);
488 if (ret < 0)
489 goto err_out_unmap_rx;
490
491 netdev_info(dev, "%s at %lx, IRQ %d, %pM\n",
492 pci_id_tbl[chip_idx].name,
493 (long)pci_resource_start(pdev, EPIC_BAR), pdev->irq,
494 dev->dev_addr);
495
496out:
497 return ret;
498
499err_out_unmap_rx:
500 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, ep->rx_ring,
501 ep->rx_ring_dma);
502err_out_unmap_tx:
503 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, ep->tx_ring,
504 ep->tx_ring_dma);
505err_out_iounmap:
506 pci_iounmap(pdev, ioaddr);
507err_out_free_netdev:
508 free_netdev(dev);
509err_out_free_res:
510 pci_release_regions(pdev);
511err_out_disable:
512 pci_disable_device(pdev);
513 goto out;
514}
515
516/* Serial EEPROM section. */
517
518/* EEPROM_Ctrl bits. */
519#define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
520#define EE_CS 0x02 /* EEPROM chip select. */
521#define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */
522#define EE_WRITE_0 0x01
523#define EE_WRITE_1 0x09
524#define EE_DATA_READ 0x10 /* EEPROM chip data out. */
525#define EE_ENB (0x0001 | EE_CS)
526
527/* Delay between EEPROM clock transitions.
528 This serves to flush the operation to the PCI bus.
529 */
530
531#define eeprom_delay() er32(EECTL)
532
533/* The EEPROM commands include the alway-set leading bit. */
534#define EE_WRITE_CMD (5 << 6)
535#define EE_READ64_CMD (6 << 6)
536#define EE_READ256_CMD (6 << 8)
537#define EE_ERASE_CMD (7 << 6)
538
539static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
540{
541 void __iomem *ioaddr = ep->ioaddr;
542
543 ew32(INTMASK, 0x00000000);
544}
545
546static inline void __epic_pci_commit(void __iomem *ioaddr)
547{
548#ifndef USE_IO_OPS
549 er32(INTMASK);
550#endif
551}
552
553static inline void epic_napi_irq_off(struct net_device *dev,
554 struct epic_private *ep)
555{
556 void __iomem *ioaddr = ep->ioaddr;
557
558 ew32(INTMASK, ep->irq_mask & ~EpicNapiEvent);
559 __epic_pci_commit(ioaddr);
560}
561
562static inline void epic_napi_irq_on(struct net_device *dev,
563 struct epic_private *ep)
564{
565 void __iomem *ioaddr = ep->ioaddr;
566
567 /* No need to commit possible posted write */
568 ew32(INTMASK, ep->irq_mask | EpicNapiEvent);
569}
570
571static int read_eeprom(struct epic_private *ep, int location)
572{
573 void __iomem *ioaddr = ep->ioaddr;
574 int i;
575 int retval = 0;
576 int read_cmd = location |
577 (er32(EECTL) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
578
579 ew32(EECTL, EE_ENB & ~EE_CS);
580 ew32(EECTL, EE_ENB);
581
582 /* Shift the read command bits out. */
583 for (i = 12; i >= 0; i--) {
584 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
585 ew32(EECTL, EE_ENB | dataval);
586 eeprom_delay();
587 ew32(EECTL, EE_ENB | dataval | EE_SHIFT_CLK);
588 eeprom_delay();
589 }
590 ew32(EECTL, EE_ENB);
591
592 for (i = 16; i > 0; i--) {
593 ew32(EECTL, EE_ENB | EE_SHIFT_CLK);
594 eeprom_delay();
595 retval = (retval << 1) | ((er32(EECTL) & EE_DATA_READ) ? 1 : 0);
596 ew32(EECTL, EE_ENB);
597 eeprom_delay();
598 }
599
600 /* Terminate the EEPROM access. */
601 ew32(EECTL, EE_ENB & ~EE_CS);
602 return retval;
603}
604
605#define MII_READOP 1
606#define MII_WRITEOP 2
607static int mdio_read(struct net_device *dev, int phy_id, int location)
608{
609 struct epic_private *ep = netdev_priv(dev);
610 void __iomem *ioaddr = ep->ioaddr;
611 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
612 int i;
613
614 ew32(MIICtrl, read_cmd);
615 /* Typical operation takes 25 loops. */
616 for (i = 400; i > 0; i--) {
617 barrier();
618 if ((er32(MIICtrl) & MII_READOP) == 0) {
619 /* Work around read failure bug. */
620 if (phy_id == 1 && location < 6 &&
621 er16(MIIData) == 0xffff) {
622 ew32(MIICtrl, read_cmd);
623 continue;
624 }
625 return er16(MIIData);
626 }
627 }
628 return 0xffff;
629}
630
631static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
632{
633 struct epic_private *ep = netdev_priv(dev);
634 void __iomem *ioaddr = ep->ioaddr;
635 int i;
636
637 ew16(MIIData, value);
638 ew32(MIICtrl, (phy_id << 9) | (loc << 4) | MII_WRITEOP);
639 for (i = 10000; i > 0; i--) {
640 barrier();
641 if ((er32(MIICtrl) & MII_WRITEOP) == 0)
642 break;
643 }
644}
645
646
647static int epic_open(struct net_device *dev)
648{
649 struct epic_private *ep = netdev_priv(dev);
650 void __iomem *ioaddr = ep->ioaddr;
651 const int irq = ep->pci_dev->irq;
652 int rc, i;
653
654 /* Soft reset the chip. */
655 ew32(GENCTL, 0x4001);
656
657 napi_enable(&ep->napi);
658 rc = request_irq(irq, epic_interrupt, IRQF_SHARED, dev->name, dev);
659 if (rc) {
660 napi_disable(&ep->napi);
661 return rc;
662 }
663
664 epic_init_ring(dev);
665
666 ew32(GENCTL, 0x4000);
667 /* This magic is documented in SMSC app note 7.15 */
668 for (i = 16; i > 0; i--)
669 ew32(TEST1, 0x0008);
670
671 /* Pull the chip out of low-power mode, enable interrupts, and set for
672 PCI read multiple. The MIIcfg setting and strange write order are
673 required by the details of which bits are reset and the transceiver
674 wiring on the Ositech CardBus card.
675 */
676#if 0
677 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12);
678#endif
679 if (ep->chip_flags & MII_PWRDWN)
680 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
681
682 /* Tell the chip to byteswap descriptors on big-endian hosts */
683#ifdef __BIG_ENDIAN
684 ew32(GENCTL, 0x4432 | (RX_FIFO_THRESH << 8));
685 er32(GENCTL);
686 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8));
687#else
688 ew32(GENCTL, 0x4412 | (RX_FIFO_THRESH << 8));
689 er32(GENCTL);
690 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8));
691#endif
692
693 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
694
695 for (i = 0; i < 3; i++)
696 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i]));
697
698 ep->tx_threshold = TX_FIFO_THRESH;
699 ew32(TxThresh, ep->tx_threshold);
700
701 if (media2miictl[dev->if_port & 15]) {
702 if (ep->mii_phy_cnt)
703 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
704 if (dev->if_port == 1) {
705 if (debug > 1)
706 netdev_info(dev, "Using the 10base2 transceiver, MII status %4.4x.\n",
707 mdio_read(dev, ep->phys[0], MII_BMSR));
708 }
709 } else {
710 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
711 if (mii_lpa != 0xffff) {
712 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
713 ep->mii.full_duplex = 1;
714 else if (! (mii_lpa & LPA_LPACK))
715 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
716 if (debug > 1)
717 netdev_info(dev, "Setting %s-duplex based on MII xcvr %d register read of %4.4x.\n",
718 ep->mii.full_duplex ? "full"
719 : "half",
720 ep->phys[0], mii_lpa);
721 }
722 }
723
724 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79);
725 ew32(PRxCDAR, ep->rx_ring_dma);
726 ew32(PTxCDAR, ep->tx_ring_dma);
727
728 /* Start the chip's Rx process. */
729 set_rx_mode(dev);
730 ew32(COMMAND, StartRx | RxQueued);
731
732 netif_start_queue(dev);
733
734 /* Enable interrupts by setting the interrupt mask. */
735 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull |
736 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) |
737 TxUnderrun);
738
739 if (debug > 1) {
740 netdev_dbg(dev, "epic_open() ioaddr %p IRQ %d status %4.4x %s-duplex.\n",
741 ioaddr, irq, er32(GENCTL),
742 ep->mii.full_duplex ? "full" : "half");
743 }
744
745 /* Set the timer to switch to check for link beat and perhaps switch
746 to an alternate media type. */
747 timer_setup(&ep->timer, epic_timer, 0);
748 ep->timer.expires = jiffies + 3*HZ;
749 add_timer(&ep->timer);
750
751 return rc;
752}
753
754/* Reset the chip to recover from a PCI transaction error.
755 This may occur at interrupt time. */
756static void epic_pause(struct net_device *dev)
757{
758 struct net_device_stats *stats = &dev->stats;
759 struct epic_private *ep = netdev_priv(dev);
760 void __iomem *ioaddr = ep->ioaddr;
761
762 netif_stop_queue (dev);
763
764 /* Disable interrupts by clearing the interrupt mask. */
765 ew32(INTMASK, 0x00000000);
766 /* Stop the chip's Tx and Rx DMA processes. */
767 ew16(COMMAND, StopRx | StopTxDMA | StopRxDMA);
768
769 /* Update the error counts. */
770 if (er16(COMMAND) != 0xffff) {
771 stats->rx_missed_errors += er8(MPCNT);
772 stats->rx_frame_errors += er8(ALICNT);
773 stats->rx_crc_errors += er8(CRCCNT);
774 }
775
776 /* Remove the packets on the Rx queue. */
777 epic_rx(dev, RX_RING_SIZE);
778}
779
780static void epic_restart(struct net_device *dev)
781{
782 struct epic_private *ep = netdev_priv(dev);
783 void __iomem *ioaddr = ep->ioaddr;
784 int i;
785
786 /* Soft reset the chip. */
787 ew32(GENCTL, 0x4001);
788
789 netdev_dbg(dev, "Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
790 ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
791 udelay(1);
792
793 /* This magic is documented in SMSC app note 7.15 */
794 for (i = 16; i > 0; i--)
795 ew32(TEST1, 0x0008);
796
797#ifdef __BIG_ENDIAN
798 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8));
799#else
800 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8));
801#endif
802 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12);
803 if (ep->chip_flags & MII_PWRDWN)
804 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
805
806 for (i = 0; i < 3; i++)
807 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i]));
808
809 ep->tx_threshold = TX_FIFO_THRESH;
810 ew32(TxThresh, ep->tx_threshold);
811 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79);
812 ew32(PRxCDAR, ep->rx_ring_dma +
813 (ep->cur_rx % RX_RING_SIZE) * sizeof(struct epic_rx_desc));
814 ew32(PTxCDAR, ep->tx_ring_dma +
815 (ep->dirty_tx % TX_RING_SIZE) * sizeof(struct epic_tx_desc));
816
817 /* Start the chip's Rx process. */
818 set_rx_mode(dev);
819 ew32(COMMAND, StartRx | RxQueued);
820
821 /* Enable interrupts by setting the interrupt mask. */
822 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull |
823 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) |
824 TxUnderrun);
825
826 netdev_dbg(dev, "epic_restart() done, cmd status %4.4x, ctl %4.4x interrupt %4.4x.\n",
827 er32(COMMAND), er32(GENCTL), er32(INTSTAT));
828}
829
830static void check_media(struct net_device *dev)
831{
832 struct epic_private *ep = netdev_priv(dev);
833 void __iomem *ioaddr = ep->ioaddr;
834 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
835 int negotiated = mii_lpa & ep->mii.advertising;
836 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
837
838 if (ep->mii.force_media)
839 return;
840 if (mii_lpa == 0xffff) /* Bogus read */
841 return;
842 if (ep->mii.full_duplex != duplex) {
843 ep->mii.full_duplex = duplex;
844 netdev_info(dev, "Setting %s-duplex based on MII #%d link partner capability of %4.4x.\n",
845 ep->mii.full_duplex ? "full" : "half",
846 ep->phys[0], mii_lpa);
847 ew32(TxCtrl, ep->mii.full_duplex ? 0x7F : 0x79);
848 }
849}
850
851static void epic_timer(struct timer_list *t)
852{
853 struct epic_private *ep = from_timer(ep, t, timer);
854 struct net_device *dev = ep->mii.dev;
855 void __iomem *ioaddr = ep->ioaddr;
856 int next_tick = 5*HZ;
857
858 if (debug > 3) {
859 netdev_dbg(dev, "Media monitor tick, Tx status %8.8x.\n",
860 er32(TxSTAT));
861 netdev_dbg(dev, "Other registers are IntMask %4.4x IntStatus %4.4x RxStatus %4.4x.\n",
862 er32(INTMASK), er32(INTSTAT), er32(RxSTAT));
863 }
864
865 check_media(dev);
866
867 ep->timer.expires = jiffies + next_tick;
868 add_timer(&ep->timer);
869}
870
871static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue)
872{
873 struct epic_private *ep = netdev_priv(dev);
874 void __iomem *ioaddr = ep->ioaddr;
875
876 if (debug > 0) {
877 netdev_warn(dev, "Transmit timeout using MII device, Tx status %4.4x.\n",
878 er16(TxSTAT));
879 if (debug > 1) {
880 netdev_dbg(dev, "Tx indices: dirty_tx %d, cur_tx %d.\n",
881 ep->dirty_tx, ep->cur_tx);
882 }
883 }
884 if (er16(TxSTAT) & 0x10) { /* Tx FIFO underflow. */
885 dev->stats.tx_fifo_errors++;
886 ew32(COMMAND, RestartTx);
887 } else {
888 epic_restart(dev);
889 ew32(COMMAND, TxQueued);
890 }
891
892 netif_trans_update(dev); /* prevent tx timeout */
893 dev->stats.tx_errors++;
894 if (!ep->tx_full)
895 netif_wake_queue(dev);
896}
897
898/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
899static void epic_init_ring(struct net_device *dev)
900{
901 struct epic_private *ep = netdev_priv(dev);
902 int i;
903
904 ep->tx_full = 0;
905 ep->dirty_tx = ep->cur_tx = 0;
906 ep->cur_rx = ep->dirty_rx = 0;
907 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
908
909 /* Initialize all Rx descriptors. */
910 for (i = 0; i < RX_RING_SIZE; i++) {
911 ep->rx_ring[i].rxstatus = 0;
912 ep->rx_ring[i].buflength = ep->rx_buf_sz;
913 ep->rx_ring[i].next = ep->rx_ring_dma +
914 (i+1)*sizeof(struct epic_rx_desc);
915 ep->rx_skbuff[i] = NULL;
916 }
917 /* Mark the last entry as wrapping the ring. */
918 ep->rx_ring[i-1].next = ep->rx_ring_dma;
919
920 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
921 for (i = 0; i < RX_RING_SIZE; i++) {
922 struct sk_buff *skb = netdev_alloc_skb(dev, ep->rx_buf_sz + 2);
923 ep->rx_skbuff[i] = skb;
924 if (skb == NULL)
925 break;
926 skb_reserve(skb, 2); /* 16 byte align the IP header. */
927 ep->rx_ring[i].bufaddr = dma_map_single(&ep->pci_dev->dev,
928 skb->data,
929 ep->rx_buf_sz,
930 DMA_FROM_DEVICE);
931 ep->rx_ring[i].rxstatus = DescOwn;
932 }
933 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
934
935 /* The Tx buffer descriptor is filled in as needed, but we
936 do need to clear the ownership bit. */
937 for (i = 0; i < TX_RING_SIZE; i++) {
938 ep->tx_skbuff[i] = NULL;
939 ep->tx_ring[i].txstatus = 0x0000;
940 ep->tx_ring[i].next = ep->tx_ring_dma +
941 (i+1)*sizeof(struct epic_tx_desc);
942 }
943 ep->tx_ring[i-1].next = ep->tx_ring_dma;
944}
945
946static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
947{
948 struct epic_private *ep = netdev_priv(dev);
949 void __iomem *ioaddr = ep->ioaddr;
950 int entry, free_count;
951 u32 ctrl_word;
952 unsigned long flags;
953
954 if (skb_padto(skb, ETH_ZLEN))
955 return NETDEV_TX_OK;
956
957 /* Caution: the write order is important here, set the field with the
958 "ownership" bit last. */
959
960 /* Calculate the next Tx descriptor entry. */
961 spin_lock_irqsave(&ep->lock, flags);
962 free_count = ep->cur_tx - ep->dirty_tx;
963 entry = ep->cur_tx % TX_RING_SIZE;
964
965 ep->tx_skbuff[entry] = skb;
966 ep->tx_ring[entry].bufaddr = dma_map_single(&ep->pci_dev->dev,
967 skb->data, skb->len,
968 DMA_TO_DEVICE);
969 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
970 ctrl_word = 0x100000; /* No interrupt */
971 } else if (free_count == TX_QUEUE_LEN/2) {
972 ctrl_word = 0x140000; /* Tx-done intr. */
973 } else if (free_count < TX_QUEUE_LEN - 1) {
974 ctrl_word = 0x100000; /* No Tx-done intr. */
975 } else {
976 /* Leave room for an additional entry. */
977 ctrl_word = 0x140000; /* Tx-done intr. */
978 ep->tx_full = 1;
979 }
980 ep->tx_ring[entry].buflength = ctrl_word | skb->len;
981 ep->tx_ring[entry].txstatus =
982 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
983 | DescOwn;
984
985 ep->cur_tx++;
986 if (ep->tx_full)
987 netif_stop_queue(dev);
988
989 spin_unlock_irqrestore(&ep->lock, flags);
990 /* Trigger an immediate transmit demand. */
991 ew32(COMMAND, TxQueued);
992
993 if (debug > 4)
994 netdev_dbg(dev, "Queued Tx packet size %d to slot %d, flag %2.2x Tx status %8.8x.\n",
995 skb->len, entry, ctrl_word, er32(TxSTAT));
996
997 return NETDEV_TX_OK;
998}
999
1000static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
1001 int status)
1002{
1003 struct net_device_stats *stats = &dev->stats;
1004
1005#ifndef final_version
1006 /* There was an major error, log it. */
1007 if (debug > 1)
1008 netdev_dbg(dev, "Transmit error, Tx status %8.8x.\n",
1009 status);
1010#endif
1011 stats->tx_errors++;
1012 if (status & 0x1050)
1013 stats->tx_aborted_errors++;
1014 if (status & 0x0008)
1015 stats->tx_carrier_errors++;
1016 if (status & 0x0040)
1017 stats->tx_window_errors++;
1018 if (status & 0x0010)
1019 stats->tx_fifo_errors++;
1020}
1021
1022static void epic_tx(struct net_device *dev, struct epic_private *ep)
1023{
1024 unsigned int dirty_tx, cur_tx;
1025
1026 /*
1027 * Note: if this lock becomes a problem we can narrow the locked
1028 * region at the cost of occasionally grabbing the lock more times.
1029 */
1030 cur_tx = ep->cur_tx;
1031 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1032 struct sk_buff *skb;
1033 int entry = dirty_tx % TX_RING_SIZE;
1034 int txstatus = ep->tx_ring[entry].txstatus;
1035
1036 if (txstatus & DescOwn)
1037 break; /* It still hasn't been Txed */
1038
1039 if (likely(txstatus & 0x0001)) {
1040 dev->stats.collisions += (txstatus >> 8) & 15;
1041 dev->stats.tx_packets++;
1042 dev->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1043 } else
1044 epic_tx_error(dev, ep, txstatus);
1045
1046 /* Free the original skb. */
1047 skb = ep->tx_skbuff[entry];
1048 dma_unmap_single(&ep->pci_dev->dev,
1049 ep->tx_ring[entry].bufaddr, skb->len,
1050 DMA_TO_DEVICE);
1051 dev_consume_skb_irq(skb);
1052 ep->tx_skbuff[entry] = NULL;
1053 }
1054
1055#ifndef final_version
1056 if (cur_tx - dirty_tx > TX_RING_SIZE) {
1057 netdev_warn(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1058 dirty_tx, cur_tx, ep->tx_full);
1059 dirty_tx += TX_RING_SIZE;
1060 }
1061#endif
1062 ep->dirty_tx = dirty_tx;
1063 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1064 /* The ring is no longer full, allow new TX entries. */
1065 ep->tx_full = 0;
1066 netif_wake_queue(dev);
1067 }
1068}
1069
1070/* The interrupt handler does all of the Rx thread work and cleans up
1071 after the Tx thread. */
1072static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1073{
1074 struct net_device *dev = dev_instance;
1075 struct epic_private *ep = netdev_priv(dev);
1076 void __iomem *ioaddr = ep->ioaddr;
1077 unsigned int handled = 0;
1078 int status;
1079
1080 status = er32(INTSTAT);
1081 /* Acknowledge all of the current interrupt sources ASAP. */
1082 ew32(INTSTAT, status & EpicNormalEvent);
1083
1084 if (debug > 4) {
1085 netdev_dbg(dev, "Interrupt, status=%#8.8x new intstat=%#8.8x.\n",
1086 status, er32(INTSTAT));
1087 }
1088
1089 if ((status & IntrSummary) == 0)
1090 goto out;
1091
1092 handled = 1;
1093
1094 if (status & EpicNapiEvent) {
1095 spin_lock(&ep->napi_lock);
1096 if (napi_schedule_prep(&ep->napi)) {
1097 epic_napi_irq_off(dev, ep);
1098 __napi_schedule(&ep->napi);
1099 }
1100 spin_unlock(&ep->napi_lock);
1101 }
1102 status &= ~EpicNapiEvent;
1103
1104 /* Check uncommon events all at once. */
1105 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1106 struct net_device_stats *stats = &dev->stats;
1107
1108 if (status == EpicRemoved)
1109 goto out;
1110
1111 /* Always update the error counts to avoid overhead later. */
1112 stats->rx_missed_errors += er8(MPCNT);
1113 stats->rx_frame_errors += er8(ALICNT);
1114 stats->rx_crc_errors += er8(CRCCNT);
1115
1116 if (status & TxUnderrun) { /* Tx FIFO underflow. */
1117 stats->tx_fifo_errors++;
1118 ew32(TxThresh, ep->tx_threshold += 128);
1119 /* Restart the transmit process. */
1120 ew32(COMMAND, RestartTx);
1121 }
1122 if (status & PCIBusErr170) {
1123 netdev_err(dev, "PCI Bus Error! status %4.4x.\n",
1124 status);
1125 epic_pause(dev);
1126 epic_restart(dev);
1127 }
1128 /* Clear all error sources. */
1129 ew32(INTSTAT, status & 0x7f18);
1130 }
1131
1132out:
1133 if (debug > 3) {
1134 netdev_dbg(dev, "exit interrupt, intr_status=%#4.4x.\n",
1135 status);
1136 }
1137
1138 return IRQ_RETVAL(handled);
1139}
1140
1141static int epic_rx(struct net_device *dev, int budget)
1142{
1143 struct epic_private *ep = netdev_priv(dev);
1144 int entry = ep->cur_rx % RX_RING_SIZE;
1145 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1146 int work_done = 0;
1147
1148 if (debug > 4)
1149 netdev_dbg(dev, " In epic_rx(), entry %d %8.8x.\n", entry,
1150 ep->rx_ring[entry].rxstatus);
1151
1152 if (rx_work_limit > budget)
1153 rx_work_limit = budget;
1154
1155 /* If we own the next entry, it's a new packet. Send it up. */
1156 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) {
1157 int status = ep->rx_ring[entry].rxstatus;
1158
1159 if (debug > 4)
1160 netdev_dbg(dev, " epic_rx() status was %8.8x.\n",
1161 status);
1162 if (--rx_work_limit < 0)
1163 break;
1164 if (status & 0x2006) {
1165 if (debug > 2)
1166 netdev_dbg(dev, "epic_rx() error status was %8.8x.\n",
1167 status);
1168 if (status & 0x2000) {
1169 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %4.4x!\n",
1170 status);
1171 dev->stats.rx_length_errors++;
1172 } else if (status & 0x0006)
1173 /* Rx Frame errors are counted in hardware. */
1174 dev->stats.rx_errors++;
1175 } else {
1176 /* Malloc up new buffer, compatible with net-2e. */
1177 /* Omit the four octet CRC from the length. */
1178 short pkt_len = (status >> 16) - 4;
1179 struct sk_buff *skb;
1180
1181 if (pkt_len > PKT_BUF_SZ - 4) {
1182 netdev_err(dev, "Oversized Ethernet frame, status %x %d bytes.\n",
1183 status, pkt_len);
1184 pkt_len = 1514;
1185 }
1186 /* Check if the packet is long enough to accept without copying
1187 to a minimally-sized skbuff. */
1188 if (pkt_len < rx_copybreak &&
1189 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1190 skb_reserve(skb, 2); /* 16 byte align the IP header */
1191 dma_sync_single_for_cpu(&ep->pci_dev->dev,
1192 ep->rx_ring[entry].bufaddr,
1193 ep->rx_buf_sz,
1194 DMA_FROM_DEVICE);
1195 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1196 skb_put(skb, pkt_len);
1197 dma_sync_single_for_device(&ep->pci_dev->dev,
1198 ep->rx_ring[entry].bufaddr,
1199 ep->rx_buf_sz,
1200 DMA_FROM_DEVICE);
1201 } else {
1202 dma_unmap_single(&ep->pci_dev->dev,
1203 ep->rx_ring[entry].bufaddr,
1204 ep->rx_buf_sz,
1205 DMA_FROM_DEVICE);
1206 skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1207 ep->rx_skbuff[entry] = NULL;
1208 }
1209 skb->protocol = eth_type_trans(skb, dev);
1210 netif_receive_skb(skb);
1211 dev->stats.rx_packets++;
1212 dev->stats.rx_bytes += pkt_len;
1213 }
1214 work_done++;
1215 entry = (++ep->cur_rx) % RX_RING_SIZE;
1216 }
1217
1218 /* Refill the Rx ring buffers. */
1219 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1220 entry = ep->dirty_rx % RX_RING_SIZE;
1221 if (ep->rx_skbuff[entry] == NULL) {
1222 struct sk_buff *skb;
1223 skb = ep->rx_skbuff[entry] = netdev_alloc_skb(dev, ep->rx_buf_sz + 2);
1224 if (skb == NULL)
1225 break;
1226 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1227 ep->rx_ring[entry].bufaddr = dma_map_single(&ep->pci_dev->dev,
1228 skb->data,
1229 ep->rx_buf_sz,
1230 DMA_FROM_DEVICE);
1231 work_done++;
1232 }
1233 /* AV: shouldn't we add a barrier here? */
1234 ep->rx_ring[entry].rxstatus = DescOwn;
1235 }
1236 return work_done;
1237}
1238
1239static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1240{
1241 void __iomem *ioaddr = ep->ioaddr;
1242 int status;
1243
1244 status = er32(INTSTAT);
1245
1246 if (status == EpicRemoved)
1247 return;
1248 if (status & RxOverflow) /* Missed a Rx frame. */
1249 dev->stats.rx_errors++;
1250 if (status & (RxOverflow | RxFull))
1251 ew16(COMMAND, RxQueued);
1252}
1253
1254static int epic_poll(struct napi_struct *napi, int budget)
1255{
1256 struct epic_private *ep = container_of(napi, struct epic_private, napi);
1257 struct net_device *dev = ep->mii.dev;
1258 void __iomem *ioaddr = ep->ioaddr;
1259 int work_done;
1260
1261 epic_tx(dev, ep);
1262
1263 work_done = epic_rx(dev, budget);
1264
1265 epic_rx_err(dev, ep);
1266
1267 if (work_done < budget && napi_complete_done(napi, work_done)) {
1268 unsigned long flags;
1269
1270 spin_lock_irqsave(&ep->napi_lock, flags);
1271
1272 ew32(INTSTAT, EpicNapiEvent);
1273 epic_napi_irq_on(dev, ep);
1274 spin_unlock_irqrestore(&ep->napi_lock, flags);
1275 }
1276
1277 return work_done;
1278}
1279
1280static int epic_close(struct net_device *dev)
1281{
1282 struct epic_private *ep = netdev_priv(dev);
1283 struct pci_dev *pdev = ep->pci_dev;
1284 void __iomem *ioaddr = ep->ioaddr;
1285 struct sk_buff *skb;
1286 int i;
1287
1288 netif_stop_queue(dev);
1289 napi_disable(&ep->napi);
1290
1291 if (debug > 1)
1292 netdev_dbg(dev, "Shutting down ethercard, status was %2.2x.\n",
1293 er32(INTSTAT));
1294
1295 del_timer_sync(&ep->timer);
1296
1297 epic_disable_int(dev, ep);
1298
1299 free_irq(pdev->irq, dev);
1300
1301 epic_pause(dev);
1302
1303 /* Free all the skbuffs in the Rx queue. */
1304 for (i = 0; i < RX_RING_SIZE; i++) {
1305 skb = ep->rx_skbuff[i];
1306 ep->rx_skbuff[i] = NULL;
1307 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */
1308 ep->rx_ring[i].buflength = 0;
1309 if (skb) {
1310 dma_unmap_single(&pdev->dev, ep->rx_ring[i].bufaddr,
1311 ep->rx_buf_sz, DMA_FROM_DEVICE);
1312 dev_kfree_skb(skb);
1313 }
1314 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1315 }
1316 for (i = 0; i < TX_RING_SIZE; i++) {
1317 skb = ep->tx_skbuff[i];
1318 ep->tx_skbuff[i] = NULL;
1319 if (!skb)
1320 continue;
1321 dma_unmap_single(&pdev->dev, ep->tx_ring[i].bufaddr, skb->len,
1322 DMA_TO_DEVICE);
1323 dev_kfree_skb(skb);
1324 }
1325
1326 /* Green! Leave the chip in low-power mode. */
1327 ew32(GENCTL, 0x0008);
1328
1329 return 0;
1330}
1331
1332static struct net_device_stats *epic_get_stats(struct net_device *dev)
1333{
1334 struct epic_private *ep = netdev_priv(dev);
1335 void __iomem *ioaddr = ep->ioaddr;
1336
1337 if (netif_running(dev)) {
1338 struct net_device_stats *stats = &dev->stats;
1339
1340 stats->rx_missed_errors += er8(MPCNT);
1341 stats->rx_frame_errors += er8(ALICNT);
1342 stats->rx_crc_errors += er8(CRCCNT);
1343 }
1344
1345 return &dev->stats;
1346}
1347
1348/* Set or clear the multicast filter for this adaptor.
1349 Note that we only use exclusion around actually queueing the
1350 new frame, not around filling ep->setup_frame. This is non-deterministic
1351 when re-entered but still correct. */
1352
1353static void set_rx_mode(struct net_device *dev)
1354{
1355 struct epic_private *ep = netdev_priv(dev);
1356 void __iomem *ioaddr = ep->ioaddr;
1357 unsigned char mc_filter[8]; /* Multicast hash filter */
1358 int i;
1359
1360 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1361 ew32(RxCtrl, 0x002c);
1362 /* Unconditionally log net taps. */
1363 memset(mc_filter, 0xff, sizeof(mc_filter));
1364 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) {
1365 /* There is apparently a chip bug, so the multicast filter
1366 is never enabled. */
1367 /* Too many to filter perfectly -- accept all multicasts. */
1368 memset(mc_filter, 0xff, sizeof(mc_filter));
1369 ew32(RxCtrl, 0x000c);
1370 } else if (netdev_mc_empty(dev)) {
1371 ew32(RxCtrl, 0x0004);
1372 return;
1373 } else { /* Never executed, for now. */
1374 struct netdev_hw_addr *ha;
1375
1376 memset(mc_filter, 0, sizeof(mc_filter));
1377 netdev_for_each_mc_addr(ha, dev) {
1378 unsigned int bit_nr =
1379 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f;
1380 mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1381 }
1382 }
1383 /* ToDo: perhaps we need to stop the Tx and Rx process here? */
1384 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1385 for (i = 0; i < 4; i++)
1386 ew16(MC0 + i*4, ((u16 *)mc_filter)[i]);
1387 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1388 }
1389}
1390
1391static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1392{
1393 struct epic_private *np = netdev_priv(dev);
1394
1395 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1396 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1397 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1398}
1399
1400static int netdev_get_link_ksettings(struct net_device *dev,
1401 struct ethtool_link_ksettings *cmd)
1402{
1403 struct epic_private *np = netdev_priv(dev);
1404
1405 spin_lock_irq(&np->lock);
1406 mii_ethtool_get_link_ksettings(&np->mii, cmd);
1407 spin_unlock_irq(&np->lock);
1408
1409 return 0;
1410}
1411
1412static int netdev_set_link_ksettings(struct net_device *dev,
1413 const struct ethtool_link_ksettings *cmd)
1414{
1415 struct epic_private *np = netdev_priv(dev);
1416 int rc;
1417
1418 spin_lock_irq(&np->lock);
1419 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1420 spin_unlock_irq(&np->lock);
1421
1422 return rc;
1423}
1424
1425static int netdev_nway_reset(struct net_device *dev)
1426{
1427 struct epic_private *np = netdev_priv(dev);
1428 return mii_nway_restart(&np->mii);
1429}
1430
1431static u32 netdev_get_link(struct net_device *dev)
1432{
1433 struct epic_private *np = netdev_priv(dev);
1434 return mii_link_ok(&np->mii);
1435}
1436
1437static u32 netdev_get_msglevel(struct net_device *dev)
1438{
1439 return debug;
1440}
1441
1442static void netdev_set_msglevel(struct net_device *dev, u32 value)
1443{
1444 debug = value;
1445}
1446
1447static int ethtool_begin(struct net_device *dev)
1448{
1449 struct epic_private *ep = netdev_priv(dev);
1450 void __iomem *ioaddr = ep->ioaddr;
1451
1452 if (ep->ethtool_ops_nesting == U32_MAX)
1453 return -EBUSY;
1454 /* power-up, if interface is down */
1455 if (!ep->ethtool_ops_nesting++ && !netif_running(dev)) {
1456 ew32(GENCTL, 0x0200);
1457 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
1458 }
1459 return 0;
1460}
1461
1462static void ethtool_complete(struct net_device *dev)
1463{
1464 struct epic_private *ep = netdev_priv(dev);
1465 void __iomem *ioaddr = ep->ioaddr;
1466
1467 /* power-down, if interface is down */
1468 if (!--ep->ethtool_ops_nesting && !netif_running(dev)) {
1469 ew32(GENCTL, 0x0008);
1470 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000);
1471 }
1472}
1473
1474static const struct ethtool_ops netdev_ethtool_ops = {
1475 .get_drvinfo = netdev_get_drvinfo,
1476 .nway_reset = netdev_nway_reset,
1477 .get_link = netdev_get_link,
1478 .get_msglevel = netdev_get_msglevel,
1479 .set_msglevel = netdev_set_msglevel,
1480 .begin = ethtool_begin,
1481 .complete = ethtool_complete,
1482 .get_link_ksettings = netdev_get_link_ksettings,
1483 .set_link_ksettings = netdev_set_link_ksettings,
1484};
1485
1486static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1487{
1488 struct epic_private *np = netdev_priv(dev);
1489 void __iomem *ioaddr = np->ioaddr;
1490 struct mii_ioctl_data *data = if_mii(rq);
1491 int rc;
1492
1493 /* power-up, if interface is down */
1494 if (! netif_running(dev)) {
1495 ew32(GENCTL, 0x0200);
1496 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
1497 }
1498
1499 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1500 spin_lock_irq(&np->lock);
1501 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1502 spin_unlock_irq(&np->lock);
1503
1504 /* power-down, if interface is down */
1505 if (! netif_running(dev)) {
1506 ew32(GENCTL, 0x0008);
1507 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000);
1508 }
1509 return rc;
1510}
1511
1512
1513static void epic_remove_one(struct pci_dev *pdev)
1514{
1515 struct net_device *dev = pci_get_drvdata(pdev);
1516 struct epic_private *ep = netdev_priv(dev);
1517
1518 unregister_netdev(dev);
1519 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, ep->tx_ring,
1520 ep->tx_ring_dma);
1521 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, ep->rx_ring,
1522 ep->rx_ring_dma);
1523 pci_iounmap(pdev, ep->ioaddr);
1524 free_netdev(dev);
1525 pci_release_regions(pdev);
1526 pci_disable_device(pdev);
1527 /* pci_power_off(pdev, -1); */
1528}
1529
1530static int __maybe_unused epic_suspend(struct device *dev_d)
1531{
1532 struct net_device *dev = dev_get_drvdata(dev_d);
1533 struct epic_private *ep = netdev_priv(dev);
1534 void __iomem *ioaddr = ep->ioaddr;
1535
1536 if (!netif_running(dev))
1537 return 0;
1538 epic_pause(dev);
1539 /* Put the chip into low-power mode. */
1540 ew32(GENCTL, 0x0008);
1541 /* pci_power_off(pdev, -1); */
1542 return 0;
1543}
1544
1545
1546static int __maybe_unused epic_resume(struct device *dev_d)
1547{
1548 struct net_device *dev = dev_get_drvdata(dev_d);
1549
1550 if (!netif_running(dev))
1551 return 0;
1552 epic_restart(dev);
1553 /* pci_power_on(pdev); */
1554 return 0;
1555}
1556
1557static SIMPLE_DEV_PM_OPS(epic_pm_ops, epic_suspend, epic_resume);
1558
1559static struct pci_driver epic_driver = {
1560 .name = DRV_NAME,
1561 .id_table = epic_pci_tbl,
1562 .probe = epic_init_one,
1563 .remove = epic_remove_one,
1564 .driver.pm = &epic_pm_ops,
1565};
1566
1567
1568static int __init epic_init (void)
1569{
1570/* when a module, this is printed whether or not devices are found in probe */
1571#ifdef MODULE
1572 pr_info("%s%s\n", version, version2);
1573#endif
1574
1575 return pci_register_driver(&epic_driver);
1576}
1577
1578
1579static void __exit epic_cleanup (void)
1580{
1581 pci_unregister_driver (&epic_driver);
1582}
1583
1584
1585module_init(epic_init);
1586module_exit(epic_cleanup);
1/* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2/*
3 Written/copyright 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the SMC83c170/175 "EPIC" series, as used on the
13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Information and updates available at
21 http://www.scyld.com/network/epic100.html
22 [this link no longer provides anything useful -jgarzik]
23
24 ---------------------------------------------------------------------
25
26*/
27
28#define DRV_NAME "epic100"
29#define DRV_VERSION "2.1"
30#define DRV_RELDATE "Sept 11, 2006"
31
32/* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36
37/* Used to pass the full-duplex flag, etc. */
38#define MAX_UNITS 8 /* More are supported, limit only on options */
39static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
41
42/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43 Setting to > 1518 effectively disables this feature. */
44static int rx_copybreak;
45
46/* Operational parameters that are set at compile time. */
47
48/* Keep the ring sizes a power of two for operational efficiency.
49 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50 Making the Tx ring too large decreases the effectiveness of channel
51 bonding and packet priority.
52 There are no ill effects from too-large receive rings. */
53#define TX_RING_SIZE 256
54#define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */
55#define RX_RING_SIZE 256
56#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc)
57#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc)
58
59/* Operational parameters that usually are not changed. */
60/* Time in jiffies before concluding the transmitter is hung. */
61#define TX_TIMEOUT (2*HZ)
62
63#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
64
65/* Bytes transferred to chip before transmission starts. */
66/* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67#define TX_FIFO_THRESH 256
68#define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */
69
70#include <linux/module.h>
71#include <linux/kernel.h>
72#include <linux/string.h>
73#include <linux/timer.h>
74#include <linux/errno.h>
75#include <linux/ioport.h>
76#include <linux/interrupt.h>
77#include <linux/pci.h>
78#include <linux/delay.h>
79#include <linux/netdevice.h>
80#include <linux/etherdevice.h>
81#include <linux/skbuff.h>
82#include <linux/init.h>
83#include <linux/spinlock.h>
84#include <linux/ethtool.h>
85#include <linux/mii.h>
86#include <linux/crc32.h>
87#include <linux/bitops.h>
88#include <asm/io.h>
89#include <linux/uaccess.h>
90#include <asm/byteorder.h>
91
92/* These identify the driver base version and may not be removed. */
93static char version[] =
94DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>";
95static char version2[] =
96" (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")";
97
98MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
99MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
100MODULE_LICENSE("GPL");
101
102module_param(debug, int, 0);
103module_param(rx_copybreak, int, 0);
104module_param_array(options, int, NULL, 0);
105module_param_array(full_duplex, int, NULL, 0);
106MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
107MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
108MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
109MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
110
111/*
112 Theory of Operation
113
114I. Board Compatibility
115
116This device driver is designed for the SMC "EPIC/100", the SMC
117single-chip Ethernet controllers for PCI. This chip is used on
118the SMC EtherPower II boards.
119
120II. Board-specific settings
121
122PCI bus devices are configured by the system at boot time, so no jumpers
123need to be set on the board. The system BIOS will assign the
124PCI INTA signal to a (preferably otherwise unused) system IRQ line.
125Note: Kernel versions earlier than 1.3.73 do not support shared PCI
126interrupt lines.
127
128III. Driver operation
129
130IIIa. Ring buffers
131
132IVb. References
133
134http://www.smsc.com/media/Downloads_Public/discontinued/83c171.pdf
135http://www.smsc.com/media/Downloads_Public/discontinued/83c175.pdf
136http://scyld.com/expert/NWay.html
137http://www.national.com/pf/DP/DP83840A.html
138
139IVc. Errata
140
141*/
142
143
144enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
145
146#define EPIC_TOTAL_SIZE 0x100
147#define USE_IO_OPS 1
148
149#ifdef USE_IO_OPS
150#define EPIC_BAR 0
151#else
152#define EPIC_BAR 1
153#endif
154
155typedef enum {
156 SMSC_83C170_0,
157 SMSC_83C170,
158 SMSC_83C175,
159} chip_t;
160
161
162struct epic_chip_info {
163 const char *name;
164 int drv_flags; /* Driver use, intended as capability flags. */
165};
166
167
168/* indexed by chip_t */
169static const struct epic_chip_info pci_id_tbl[] = {
170 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN },
171 { "SMSC EPIC/100 83c170", TYPE2_INTR },
172 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN },
173};
174
175
176static const struct pci_device_id epic_pci_tbl[] = {
177 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
178 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
179 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
180 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
181 { 0,}
182};
183MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
184
185#define ew16(reg, val) iowrite16(val, ioaddr + (reg))
186#define ew32(reg, val) iowrite32(val, ioaddr + (reg))
187#define er8(reg) ioread8(ioaddr + (reg))
188#define er16(reg) ioread16(ioaddr + (reg))
189#define er32(reg) ioread32(ioaddr + (reg))
190
191/* Offsets to registers, using the (ugh) SMC names. */
192enum epic_registers {
193 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
194 PCIBurstCnt=0x18,
195 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */
196 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
197 LAN0=64, /* MAC address. */
198 MC0=80, /* Multicast filter table. */
199 RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
200 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
201};
202
203/* Interrupt register bits, using my own meaningful names. */
204enum IntrStatus {
205 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
206 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
207 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
208 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
209 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
210};
211enum CommandBits {
212 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
213 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
214};
215
216#define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */
217
218#define EpicNapiEvent (TxEmpty | TxDone | \
219 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
220#define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent)
221
222static const u16 media2miictl[16] = {
223 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0,
224 0, 0, 0, 0, 0, 0, 0, 0 };
225
226/*
227 * The EPIC100 Rx and Tx buffer descriptors. Note that these
228 * really ARE host-endian; it's not a misannotation. We tell
229 * the card to byteswap them internally on big-endian hosts -
230 * look for #ifdef __BIG_ENDIAN in epic_open().
231 */
232
233struct epic_tx_desc {
234 u32 txstatus;
235 u32 bufaddr;
236 u32 buflength;
237 u32 next;
238};
239
240struct epic_rx_desc {
241 u32 rxstatus;
242 u32 bufaddr;
243 u32 buflength;
244 u32 next;
245};
246
247enum desc_status_bits {
248 DescOwn=0x8000,
249};
250
251#define PRIV_ALIGN 15 /* Required alignment mask */
252struct epic_private {
253 struct epic_rx_desc *rx_ring;
254 struct epic_tx_desc *tx_ring;
255 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
256 struct sk_buff* tx_skbuff[TX_RING_SIZE];
257 /* The addresses of receive-in-place skbuffs. */
258 struct sk_buff* rx_skbuff[RX_RING_SIZE];
259
260 dma_addr_t tx_ring_dma;
261 dma_addr_t rx_ring_dma;
262
263 /* Ring pointers. */
264 spinlock_t lock; /* Group with Tx control cache line. */
265 spinlock_t napi_lock;
266 struct napi_struct napi;
267 unsigned int cur_tx, dirty_tx;
268
269 unsigned int cur_rx, dirty_rx;
270 u32 irq_mask;
271 unsigned int rx_buf_sz; /* Based on MTU+slack. */
272
273 void __iomem *ioaddr;
274 struct pci_dev *pci_dev; /* PCI bus location. */
275 int chip_id, chip_flags;
276
277 struct timer_list timer; /* Media selection timer. */
278 int tx_threshold;
279 unsigned char mc_filter[8];
280 signed char phys[4]; /* MII device addresses. */
281 u16 advertising; /* NWay media advertisement */
282 int mii_phy_cnt;
283 u32 ethtool_ops_nesting;
284 struct mii_if_info mii;
285 unsigned int tx_full:1; /* The Tx queue is full. */
286 unsigned int default_port:4; /* Last dev->if_port value. */
287};
288
289static int epic_open(struct net_device *dev);
290static int read_eeprom(struct epic_private *, int);
291static int mdio_read(struct net_device *dev, int phy_id, int location);
292static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
293static void epic_restart(struct net_device *dev);
294static void epic_timer(struct timer_list *t);
295static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue);
296static void epic_init_ring(struct net_device *dev);
297static netdev_tx_t epic_start_xmit(struct sk_buff *skb,
298 struct net_device *dev);
299static int epic_rx(struct net_device *dev, int budget);
300static int epic_poll(struct napi_struct *napi, int budget);
301static irqreturn_t epic_interrupt(int irq, void *dev_instance);
302static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
303static const struct ethtool_ops netdev_ethtool_ops;
304static int epic_close(struct net_device *dev);
305static struct net_device_stats *epic_get_stats(struct net_device *dev);
306static void set_rx_mode(struct net_device *dev);
307
308static const struct net_device_ops epic_netdev_ops = {
309 .ndo_open = epic_open,
310 .ndo_stop = epic_close,
311 .ndo_start_xmit = epic_start_xmit,
312 .ndo_tx_timeout = epic_tx_timeout,
313 .ndo_get_stats = epic_get_stats,
314 .ndo_set_rx_mode = set_rx_mode,
315 .ndo_do_ioctl = netdev_ioctl,
316 .ndo_set_mac_address = eth_mac_addr,
317 .ndo_validate_addr = eth_validate_addr,
318};
319
320static int epic_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
321{
322 static int card_idx = -1;
323 void __iomem *ioaddr;
324 int chip_idx = (int) ent->driver_data;
325 struct net_device *dev;
326 struct epic_private *ep;
327 int i, ret, option = 0, duplex = 0;
328 void *ring_space;
329 dma_addr_t ring_dma;
330
331/* when built into the kernel, we only print version if device is found */
332#ifndef MODULE
333 pr_info_once("%s%s\n", version, version2);
334#endif
335
336 card_idx++;
337
338 ret = pci_enable_device(pdev);
339 if (ret)
340 goto out;
341
342 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
343 dev_err(&pdev->dev, "no PCI region space\n");
344 ret = -ENODEV;
345 goto err_out_disable;
346 }
347
348 pci_set_master(pdev);
349
350 ret = pci_request_regions(pdev, DRV_NAME);
351 if (ret < 0)
352 goto err_out_disable;
353
354 ret = -ENOMEM;
355
356 dev = alloc_etherdev(sizeof (*ep));
357 if (!dev)
358 goto err_out_free_res;
359
360 SET_NETDEV_DEV(dev, &pdev->dev);
361
362 ioaddr = pci_iomap(pdev, EPIC_BAR, 0);
363 if (!ioaddr) {
364 dev_err(&pdev->dev, "ioremap failed\n");
365 goto err_out_free_netdev;
366 }
367
368 pci_set_drvdata(pdev, dev);
369 ep = netdev_priv(dev);
370 ep->ioaddr = ioaddr;
371 ep->mii.dev = dev;
372 ep->mii.mdio_read = mdio_read;
373 ep->mii.mdio_write = mdio_write;
374 ep->mii.phy_id_mask = 0x1f;
375 ep->mii.reg_num_mask = 0x1f;
376
377 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
378 GFP_KERNEL);
379 if (!ring_space)
380 goto err_out_iounmap;
381 ep->tx_ring = ring_space;
382 ep->tx_ring_dma = ring_dma;
383
384 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
385 GFP_KERNEL);
386 if (!ring_space)
387 goto err_out_unmap_tx;
388 ep->rx_ring = ring_space;
389 ep->rx_ring_dma = ring_dma;
390
391 if (dev->mem_start) {
392 option = dev->mem_start;
393 duplex = (dev->mem_start & 16) ? 1 : 0;
394 } else if (card_idx >= 0 && card_idx < MAX_UNITS) {
395 if (options[card_idx] >= 0)
396 option = options[card_idx];
397 if (full_duplex[card_idx] >= 0)
398 duplex = full_duplex[card_idx];
399 }
400
401 spin_lock_init(&ep->lock);
402 spin_lock_init(&ep->napi_lock);
403
404 /* Bring the chip out of low-power mode. */
405 ew32(GENCTL, 0x4200);
406 /* Magic?! If we don't set this bit the MII interface won't work. */
407 /* This magic is documented in SMSC app note 7.15 */
408 for (i = 16; i > 0; i--)
409 ew32(TEST1, 0x0008);
410
411 /* Turn on the MII transceiver. */
412 ew32(MIICfg, 0x12);
413 if (chip_idx == 1)
414 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
415 ew32(GENCTL, 0x0200);
416
417 /* Note: the '175 does not have a serial EEPROM. */
418 for (i = 0; i < 3; i++)
419 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(er16(LAN0 + i*4));
420
421 if (debug > 2) {
422 dev_dbg(&pdev->dev, "EEPROM contents:\n");
423 for (i = 0; i < 64; i++)
424 pr_cont(" %4.4x%s", read_eeprom(ep, i),
425 i % 16 == 15 ? "\n" : "");
426 }
427
428 ep->pci_dev = pdev;
429 ep->chip_id = chip_idx;
430 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
431 ep->irq_mask =
432 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
433 | CntFull | TxUnderrun | EpicNapiEvent;
434
435 /* Find the connected MII xcvrs.
436 Doing this in open() would allow detecting external xcvrs later, but
437 takes much time and no cards have external MII. */
438 {
439 int phy, phy_idx = 0;
440 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
441 int mii_status = mdio_read(dev, phy, MII_BMSR);
442 if (mii_status != 0xffff && mii_status != 0x0000) {
443 ep->phys[phy_idx++] = phy;
444 dev_info(&pdev->dev,
445 "MII transceiver #%d control "
446 "%4.4x status %4.4x.\n",
447 phy, mdio_read(dev, phy, 0), mii_status);
448 }
449 }
450 ep->mii_phy_cnt = phy_idx;
451 if (phy_idx != 0) {
452 phy = ep->phys[0];
453 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
454 dev_info(&pdev->dev,
455 "Autonegotiation advertising %4.4x link "
456 "partner %4.4x.\n",
457 ep->mii.advertising, mdio_read(dev, phy, 5));
458 } else if ( ! (ep->chip_flags & NO_MII)) {
459 dev_warn(&pdev->dev,
460 "***WARNING***: No MII transceiver found!\n");
461 /* Use the known PHY address of the EPII. */
462 ep->phys[0] = 3;
463 }
464 ep->mii.phy_id = ep->phys[0];
465 }
466
467 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
468 if (ep->chip_flags & MII_PWRDWN)
469 ew32(NVCTL, er32(NVCTL) & ~0x483c);
470 ew32(GENCTL, 0x0008);
471
472 /* The lower four bits are the media type. */
473 if (duplex) {
474 ep->mii.force_media = ep->mii.full_duplex = 1;
475 dev_info(&pdev->dev, "Forced full duplex requested.\n");
476 }
477 dev->if_port = ep->default_port = option;
478
479 /* The Epic-specific entries in the device structure. */
480 dev->netdev_ops = &epic_netdev_ops;
481 dev->ethtool_ops = &netdev_ethtool_ops;
482 dev->watchdog_timeo = TX_TIMEOUT;
483 netif_napi_add(dev, &ep->napi, epic_poll, 64);
484
485 ret = register_netdev(dev);
486 if (ret < 0)
487 goto err_out_unmap_rx;
488
489 netdev_info(dev, "%s at %lx, IRQ %d, %pM\n",
490 pci_id_tbl[chip_idx].name,
491 (long)pci_resource_start(pdev, EPIC_BAR), pdev->irq,
492 dev->dev_addr);
493
494out:
495 return ret;
496
497err_out_unmap_rx:
498 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, ep->rx_ring,
499 ep->rx_ring_dma);
500err_out_unmap_tx:
501 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, ep->tx_ring,
502 ep->tx_ring_dma);
503err_out_iounmap:
504 pci_iounmap(pdev, ioaddr);
505err_out_free_netdev:
506 free_netdev(dev);
507err_out_free_res:
508 pci_release_regions(pdev);
509err_out_disable:
510 pci_disable_device(pdev);
511 goto out;
512}
513
514/* Serial EEPROM section. */
515
516/* EEPROM_Ctrl bits. */
517#define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
518#define EE_CS 0x02 /* EEPROM chip select. */
519#define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */
520#define EE_WRITE_0 0x01
521#define EE_WRITE_1 0x09
522#define EE_DATA_READ 0x10 /* EEPROM chip data out. */
523#define EE_ENB (0x0001 | EE_CS)
524
525/* Delay between EEPROM clock transitions.
526 This serves to flush the operation to the PCI bus.
527 */
528
529#define eeprom_delay() er32(EECTL)
530
531/* The EEPROM commands include the alway-set leading bit. */
532#define EE_WRITE_CMD (5 << 6)
533#define EE_READ64_CMD (6 << 6)
534#define EE_READ256_CMD (6 << 8)
535#define EE_ERASE_CMD (7 << 6)
536
537static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
538{
539 void __iomem *ioaddr = ep->ioaddr;
540
541 ew32(INTMASK, 0x00000000);
542}
543
544static inline void __epic_pci_commit(void __iomem *ioaddr)
545{
546#ifndef USE_IO_OPS
547 er32(INTMASK);
548#endif
549}
550
551static inline void epic_napi_irq_off(struct net_device *dev,
552 struct epic_private *ep)
553{
554 void __iomem *ioaddr = ep->ioaddr;
555
556 ew32(INTMASK, ep->irq_mask & ~EpicNapiEvent);
557 __epic_pci_commit(ioaddr);
558}
559
560static inline void epic_napi_irq_on(struct net_device *dev,
561 struct epic_private *ep)
562{
563 void __iomem *ioaddr = ep->ioaddr;
564
565 /* No need to commit possible posted write */
566 ew32(INTMASK, ep->irq_mask | EpicNapiEvent);
567}
568
569static int read_eeprom(struct epic_private *ep, int location)
570{
571 void __iomem *ioaddr = ep->ioaddr;
572 int i;
573 int retval = 0;
574 int read_cmd = location |
575 (er32(EECTL) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
576
577 ew32(EECTL, EE_ENB & ~EE_CS);
578 ew32(EECTL, EE_ENB);
579
580 /* Shift the read command bits out. */
581 for (i = 12; i >= 0; i--) {
582 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
583 ew32(EECTL, EE_ENB | dataval);
584 eeprom_delay();
585 ew32(EECTL, EE_ENB | dataval | EE_SHIFT_CLK);
586 eeprom_delay();
587 }
588 ew32(EECTL, EE_ENB);
589
590 for (i = 16; i > 0; i--) {
591 ew32(EECTL, EE_ENB | EE_SHIFT_CLK);
592 eeprom_delay();
593 retval = (retval << 1) | ((er32(EECTL) & EE_DATA_READ) ? 1 : 0);
594 ew32(EECTL, EE_ENB);
595 eeprom_delay();
596 }
597
598 /* Terminate the EEPROM access. */
599 ew32(EECTL, EE_ENB & ~EE_CS);
600 return retval;
601}
602
603#define MII_READOP 1
604#define MII_WRITEOP 2
605static int mdio_read(struct net_device *dev, int phy_id, int location)
606{
607 struct epic_private *ep = netdev_priv(dev);
608 void __iomem *ioaddr = ep->ioaddr;
609 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
610 int i;
611
612 ew32(MIICtrl, read_cmd);
613 /* Typical operation takes 25 loops. */
614 for (i = 400; i > 0; i--) {
615 barrier();
616 if ((er32(MIICtrl) & MII_READOP) == 0) {
617 /* Work around read failure bug. */
618 if (phy_id == 1 && location < 6 &&
619 er16(MIIData) == 0xffff) {
620 ew32(MIICtrl, read_cmd);
621 continue;
622 }
623 return er16(MIIData);
624 }
625 }
626 return 0xffff;
627}
628
629static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
630{
631 struct epic_private *ep = netdev_priv(dev);
632 void __iomem *ioaddr = ep->ioaddr;
633 int i;
634
635 ew16(MIIData, value);
636 ew32(MIICtrl, (phy_id << 9) | (loc << 4) | MII_WRITEOP);
637 for (i = 10000; i > 0; i--) {
638 barrier();
639 if ((er32(MIICtrl) & MII_WRITEOP) == 0)
640 break;
641 }
642}
643
644
645static int epic_open(struct net_device *dev)
646{
647 struct epic_private *ep = netdev_priv(dev);
648 void __iomem *ioaddr = ep->ioaddr;
649 const int irq = ep->pci_dev->irq;
650 int rc, i;
651
652 /* Soft reset the chip. */
653 ew32(GENCTL, 0x4001);
654
655 napi_enable(&ep->napi);
656 rc = request_irq(irq, epic_interrupt, IRQF_SHARED, dev->name, dev);
657 if (rc) {
658 napi_disable(&ep->napi);
659 return rc;
660 }
661
662 epic_init_ring(dev);
663
664 ew32(GENCTL, 0x4000);
665 /* This magic is documented in SMSC app note 7.15 */
666 for (i = 16; i > 0; i--)
667 ew32(TEST1, 0x0008);
668
669 /* Pull the chip out of low-power mode, enable interrupts, and set for
670 PCI read multiple. The MIIcfg setting and strange write order are
671 required by the details of which bits are reset and the transceiver
672 wiring on the Ositech CardBus card.
673 */
674#if 0
675 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12);
676#endif
677 if (ep->chip_flags & MII_PWRDWN)
678 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
679
680 /* Tell the chip to byteswap descriptors on big-endian hosts */
681#ifdef __BIG_ENDIAN
682 ew32(GENCTL, 0x4432 | (RX_FIFO_THRESH << 8));
683 er32(GENCTL);
684 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8));
685#else
686 ew32(GENCTL, 0x4412 | (RX_FIFO_THRESH << 8));
687 er32(GENCTL);
688 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8));
689#endif
690
691 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
692
693 for (i = 0; i < 3; i++)
694 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i]));
695
696 ep->tx_threshold = TX_FIFO_THRESH;
697 ew32(TxThresh, ep->tx_threshold);
698
699 if (media2miictl[dev->if_port & 15]) {
700 if (ep->mii_phy_cnt)
701 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
702 if (dev->if_port == 1) {
703 if (debug > 1)
704 netdev_info(dev, "Using the 10base2 transceiver, MII status %4.4x.\n",
705 mdio_read(dev, ep->phys[0], MII_BMSR));
706 }
707 } else {
708 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
709 if (mii_lpa != 0xffff) {
710 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
711 ep->mii.full_duplex = 1;
712 else if (! (mii_lpa & LPA_LPACK))
713 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
714 if (debug > 1)
715 netdev_info(dev, "Setting %s-duplex based on MII xcvr %d register read of %4.4x.\n",
716 ep->mii.full_duplex ? "full"
717 : "half",
718 ep->phys[0], mii_lpa);
719 }
720 }
721
722 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79);
723 ew32(PRxCDAR, ep->rx_ring_dma);
724 ew32(PTxCDAR, ep->tx_ring_dma);
725
726 /* Start the chip's Rx process. */
727 set_rx_mode(dev);
728 ew32(COMMAND, StartRx | RxQueued);
729
730 netif_start_queue(dev);
731
732 /* Enable interrupts by setting the interrupt mask. */
733 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull |
734 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) |
735 TxUnderrun);
736
737 if (debug > 1) {
738 netdev_dbg(dev, "epic_open() ioaddr %p IRQ %d status %4.4x %s-duplex.\n",
739 ioaddr, irq, er32(GENCTL),
740 ep->mii.full_duplex ? "full" : "half");
741 }
742
743 /* Set the timer to switch to check for link beat and perhaps switch
744 to an alternate media type. */
745 timer_setup(&ep->timer, epic_timer, 0);
746 ep->timer.expires = jiffies + 3*HZ;
747 add_timer(&ep->timer);
748
749 return rc;
750}
751
752/* Reset the chip to recover from a PCI transaction error.
753 This may occur at interrupt time. */
754static void epic_pause(struct net_device *dev)
755{
756 struct net_device_stats *stats = &dev->stats;
757 struct epic_private *ep = netdev_priv(dev);
758 void __iomem *ioaddr = ep->ioaddr;
759
760 netif_stop_queue (dev);
761
762 /* Disable interrupts by clearing the interrupt mask. */
763 ew32(INTMASK, 0x00000000);
764 /* Stop the chip's Tx and Rx DMA processes. */
765 ew16(COMMAND, StopRx | StopTxDMA | StopRxDMA);
766
767 /* Update the error counts. */
768 if (er16(COMMAND) != 0xffff) {
769 stats->rx_missed_errors += er8(MPCNT);
770 stats->rx_frame_errors += er8(ALICNT);
771 stats->rx_crc_errors += er8(CRCCNT);
772 }
773
774 /* Remove the packets on the Rx queue. */
775 epic_rx(dev, RX_RING_SIZE);
776}
777
778static void epic_restart(struct net_device *dev)
779{
780 struct epic_private *ep = netdev_priv(dev);
781 void __iomem *ioaddr = ep->ioaddr;
782 int i;
783
784 /* Soft reset the chip. */
785 ew32(GENCTL, 0x4001);
786
787 netdev_dbg(dev, "Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
788 ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
789 udelay(1);
790
791 /* This magic is documented in SMSC app note 7.15 */
792 for (i = 16; i > 0; i--)
793 ew32(TEST1, 0x0008);
794
795#ifdef __BIG_ENDIAN
796 ew32(GENCTL, 0x0432 | (RX_FIFO_THRESH << 8));
797#else
798 ew32(GENCTL, 0x0412 | (RX_FIFO_THRESH << 8));
799#endif
800 ew32(MIICfg, dev->if_port == 1 ? 0x13 : 0x12);
801 if (ep->chip_flags & MII_PWRDWN)
802 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
803
804 for (i = 0; i < 3; i++)
805 ew32(LAN0 + i*4, le16_to_cpu(((__le16*)dev->dev_addr)[i]));
806
807 ep->tx_threshold = TX_FIFO_THRESH;
808 ew32(TxThresh, ep->tx_threshold);
809 ew32(TxCtrl, ep->mii.full_duplex ? 0x7f : 0x79);
810 ew32(PRxCDAR, ep->rx_ring_dma +
811 (ep->cur_rx % RX_RING_SIZE) * sizeof(struct epic_rx_desc));
812 ew32(PTxCDAR, ep->tx_ring_dma +
813 (ep->dirty_tx % TX_RING_SIZE) * sizeof(struct epic_tx_desc));
814
815 /* Start the chip's Rx process. */
816 set_rx_mode(dev);
817 ew32(COMMAND, StartRx | RxQueued);
818
819 /* Enable interrupts by setting the interrupt mask. */
820 ew32(INTMASK, RxError | RxHeader | EpicNapiEvent | CntFull |
821 ((ep->chip_flags & TYPE2_INTR) ? PCIBusErr175 : PCIBusErr170) |
822 TxUnderrun);
823
824 netdev_dbg(dev, "epic_restart() done, cmd status %4.4x, ctl %4.4x interrupt %4.4x.\n",
825 er32(COMMAND), er32(GENCTL), er32(INTSTAT));
826}
827
828static void check_media(struct net_device *dev)
829{
830 struct epic_private *ep = netdev_priv(dev);
831 void __iomem *ioaddr = ep->ioaddr;
832 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
833 int negotiated = mii_lpa & ep->mii.advertising;
834 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
835
836 if (ep->mii.force_media)
837 return;
838 if (mii_lpa == 0xffff) /* Bogus read */
839 return;
840 if (ep->mii.full_duplex != duplex) {
841 ep->mii.full_duplex = duplex;
842 netdev_info(dev, "Setting %s-duplex based on MII #%d link partner capability of %4.4x.\n",
843 ep->mii.full_duplex ? "full" : "half",
844 ep->phys[0], mii_lpa);
845 ew32(TxCtrl, ep->mii.full_duplex ? 0x7F : 0x79);
846 }
847}
848
849static void epic_timer(struct timer_list *t)
850{
851 struct epic_private *ep = from_timer(ep, t, timer);
852 struct net_device *dev = ep->mii.dev;
853 void __iomem *ioaddr = ep->ioaddr;
854 int next_tick = 5*HZ;
855
856 if (debug > 3) {
857 netdev_dbg(dev, "Media monitor tick, Tx status %8.8x.\n",
858 er32(TxSTAT));
859 netdev_dbg(dev, "Other registers are IntMask %4.4x IntStatus %4.4x RxStatus %4.4x.\n",
860 er32(INTMASK), er32(INTSTAT), er32(RxSTAT));
861 }
862
863 check_media(dev);
864
865 ep->timer.expires = jiffies + next_tick;
866 add_timer(&ep->timer);
867}
868
869static void epic_tx_timeout(struct net_device *dev, unsigned int txqueue)
870{
871 struct epic_private *ep = netdev_priv(dev);
872 void __iomem *ioaddr = ep->ioaddr;
873
874 if (debug > 0) {
875 netdev_warn(dev, "Transmit timeout using MII device, Tx status %4.4x.\n",
876 er16(TxSTAT));
877 if (debug > 1) {
878 netdev_dbg(dev, "Tx indices: dirty_tx %d, cur_tx %d.\n",
879 ep->dirty_tx, ep->cur_tx);
880 }
881 }
882 if (er16(TxSTAT) & 0x10) { /* Tx FIFO underflow. */
883 dev->stats.tx_fifo_errors++;
884 ew32(COMMAND, RestartTx);
885 } else {
886 epic_restart(dev);
887 ew32(COMMAND, TxQueued);
888 }
889
890 netif_trans_update(dev); /* prevent tx timeout */
891 dev->stats.tx_errors++;
892 if (!ep->tx_full)
893 netif_wake_queue(dev);
894}
895
896/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
897static void epic_init_ring(struct net_device *dev)
898{
899 struct epic_private *ep = netdev_priv(dev);
900 int i;
901
902 ep->tx_full = 0;
903 ep->dirty_tx = ep->cur_tx = 0;
904 ep->cur_rx = ep->dirty_rx = 0;
905 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
906
907 /* Initialize all Rx descriptors. */
908 for (i = 0; i < RX_RING_SIZE; i++) {
909 ep->rx_ring[i].rxstatus = 0;
910 ep->rx_ring[i].buflength = ep->rx_buf_sz;
911 ep->rx_ring[i].next = ep->rx_ring_dma +
912 (i+1)*sizeof(struct epic_rx_desc);
913 ep->rx_skbuff[i] = NULL;
914 }
915 /* Mark the last entry as wrapping the ring. */
916 ep->rx_ring[i-1].next = ep->rx_ring_dma;
917
918 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
919 for (i = 0; i < RX_RING_SIZE; i++) {
920 struct sk_buff *skb = netdev_alloc_skb(dev, ep->rx_buf_sz + 2);
921 ep->rx_skbuff[i] = skb;
922 if (skb == NULL)
923 break;
924 skb_reserve(skb, 2); /* 16 byte align the IP header. */
925 ep->rx_ring[i].bufaddr = dma_map_single(&ep->pci_dev->dev,
926 skb->data,
927 ep->rx_buf_sz,
928 DMA_FROM_DEVICE);
929 ep->rx_ring[i].rxstatus = DescOwn;
930 }
931 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
932
933 /* The Tx buffer descriptor is filled in as needed, but we
934 do need to clear the ownership bit. */
935 for (i = 0; i < TX_RING_SIZE; i++) {
936 ep->tx_skbuff[i] = NULL;
937 ep->tx_ring[i].txstatus = 0x0000;
938 ep->tx_ring[i].next = ep->tx_ring_dma +
939 (i+1)*sizeof(struct epic_tx_desc);
940 }
941 ep->tx_ring[i-1].next = ep->tx_ring_dma;
942}
943
944static netdev_tx_t epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
945{
946 struct epic_private *ep = netdev_priv(dev);
947 void __iomem *ioaddr = ep->ioaddr;
948 int entry, free_count;
949 u32 ctrl_word;
950 unsigned long flags;
951
952 if (skb_padto(skb, ETH_ZLEN))
953 return NETDEV_TX_OK;
954
955 /* Caution: the write order is important here, set the field with the
956 "ownership" bit last. */
957
958 /* Calculate the next Tx descriptor entry. */
959 spin_lock_irqsave(&ep->lock, flags);
960 free_count = ep->cur_tx - ep->dirty_tx;
961 entry = ep->cur_tx % TX_RING_SIZE;
962
963 ep->tx_skbuff[entry] = skb;
964 ep->tx_ring[entry].bufaddr = dma_map_single(&ep->pci_dev->dev,
965 skb->data, skb->len,
966 DMA_TO_DEVICE);
967 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
968 ctrl_word = 0x100000; /* No interrupt */
969 } else if (free_count == TX_QUEUE_LEN/2) {
970 ctrl_word = 0x140000; /* Tx-done intr. */
971 } else if (free_count < TX_QUEUE_LEN - 1) {
972 ctrl_word = 0x100000; /* No Tx-done intr. */
973 } else {
974 /* Leave room for an additional entry. */
975 ctrl_word = 0x140000; /* Tx-done intr. */
976 ep->tx_full = 1;
977 }
978 ep->tx_ring[entry].buflength = ctrl_word | skb->len;
979 ep->tx_ring[entry].txstatus =
980 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
981 | DescOwn;
982
983 ep->cur_tx++;
984 if (ep->tx_full)
985 netif_stop_queue(dev);
986
987 spin_unlock_irqrestore(&ep->lock, flags);
988 /* Trigger an immediate transmit demand. */
989 ew32(COMMAND, TxQueued);
990
991 if (debug > 4)
992 netdev_dbg(dev, "Queued Tx packet size %d to slot %d, flag %2.2x Tx status %8.8x.\n",
993 skb->len, entry, ctrl_word, er32(TxSTAT));
994
995 return NETDEV_TX_OK;
996}
997
998static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
999 int status)
1000{
1001 struct net_device_stats *stats = &dev->stats;
1002
1003#ifndef final_version
1004 /* There was an major error, log it. */
1005 if (debug > 1)
1006 netdev_dbg(dev, "Transmit error, Tx status %8.8x.\n",
1007 status);
1008#endif
1009 stats->tx_errors++;
1010 if (status & 0x1050)
1011 stats->tx_aborted_errors++;
1012 if (status & 0x0008)
1013 stats->tx_carrier_errors++;
1014 if (status & 0x0040)
1015 stats->tx_window_errors++;
1016 if (status & 0x0010)
1017 stats->tx_fifo_errors++;
1018}
1019
1020static void epic_tx(struct net_device *dev, struct epic_private *ep)
1021{
1022 unsigned int dirty_tx, cur_tx;
1023
1024 /*
1025 * Note: if this lock becomes a problem we can narrow the locked
1026 * region at the cost of occasionally grabbing the lock more times.
1027 */
1028 cur_tx = ep->cur_tx;
1029 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1030 struct sk_buff *skb;
1031 int entry = dirty_tx % TX_RING_SIZE;
1032 int txstatus = ep->tx_ring[entry].txstatus;
1033
1034 if (txstatus & DescOwn)
1035 break; /* It still hasn't been Txed */
1036
1037 if (likely(txstatus & 0x0001)) {
1038 dev->stats.collisions += (txstatus >> 8) & 15;
1039 dev->stats.tx_packets++;
1040 dev->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1041 } else
1042 epic_tx_error(dev, ep, txstatus);
1043
1044 /* Free the original skb. */
1045 skb = ep->tx_skbuff[entry];
1046 dma_unmap_single(&ep->pci_dev->dev,
1047 ep->tx_ring[entry].bufaddr, skb->len,
1048 DMA_TO_DEVICE);
1049 dev_consume_skb_irq(skb);
1050 ep->tx_skbuff[entry] = NULL;
1051 }
1052
1053#ifndef final_version
1054 if (cur_tx - dirty_tx > TX_RING_SIZE) {
1055 netdev_warn(dev, "Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1056 dirty_tx, cur_tx, ep->tx_full);
1057 dirty_tx += TX_RING_SIZE;
1058 }
1059#endif
1060 ep->dirty_tx = dirty_tx;
1061 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1062 /* The ring is no longer full, allow new TX entries. */
1063 ep->tx_full = 0;
1064 netif_wake_queue(dev);
1065 }
1066}
1067
1068/* The interrupt handler does all of the Rx thread work and cleans up
1069 after the Tx thread. */
1070static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1071{
1072 struct net_device *dev = dev_instance;
1073 struct epic_private *ep = netdev_priv(dev);
1074 void __iomem *ioaddr = ep->ioaddr;
1075 unsigned int handled = 0;
1076 int status;
1077
1078 status = er32(INTSTAT);
1079 /* Acknowledge all of the current interrupt sources ASAP. */
1080 ew32(INTSTAT, status & EpicNormalEvent);
1081
1082 if (debug > 4) {
1083 netdev_dbg(dev, "Interrupt, status=%#8.8x new intstat=%#8.8x.\n",
1084 status, er32(INTSTAT));
1085 }
1086
1087 if ((status & IntrSummary) == 0)
1088 goto out;
1089
1090 handled = 1;
1091
1092 if (status & EpicNapiEvent) {
1093 spin_lock(&ep->napi_lock);
1094 if (napi_schedule_prep(&ep->napi)) {
1095 epic_napi_irq_off(dev, ep);
1096 __napi_schedule(&ep->napi);
1097 }
1098 spin_unlock(&ep->napi_lock);
1099 }
1100 status &= ~EpicNapiEvent;
1101
1102 /* Check uncommon events all at once. */
1103 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1104 struct net_device_stats *stats = &dev->stats;
1105
1106 if (status == EpicRemoved)
1107 goto out;
1108
1109 /* Always update the error counts to avoid overhead later. */
1110 stats->rx_missed_errors += er8(MPCNT);
1111 stats->rx_frame_errors += er8(ALICNT);
1112 stats->rx_crc_errors += er8(CRCCNT);
1113
1114 if (status & TxUnderrun) { /* Tx FIFO underflow. */
1115 stats->tx_fifo_errors++;
1116 ew32(TxThresh, ep->tx_threshold += 128);
1117 /* Restart the transmit process. */
1118 ew32(COMMAND, RestartTx);
1119 }
1120 if (status & PCIBusErr170) {
1121 netdev_err(dev, "PCI Bus Error! status %4.4x.\n",
1122 status);
1123 epic_pause(dev);
1124 epic_restart(dev);
1125 }
1126 /* Clear all error sources. */
1127 ew32(INTSTAT, status & 0x7f18);
1128 }
1129
1130out:
1131 if (debug > 3) {
1132 netdev_dbg(dev, "exit interrupt, intr_status=%#4.4x.\n",
1133 status);
1134 }
1135
1136 return IRQ_RETVAL(handled);
1137}
1138
1139static int epic_rx(struct net_device *dev, int budget)
1140{
1141 struct epic_private *ep = netdev_priv(dev);
1142 int entry = ep->cur_rx % RX_RING_SIZE;
1143 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1144 int work_done = 0;
1145
1146 if (debug > 4)
1147 netdev_dbg(dev, " In epic_rx(), entry %d %8.8x.\n", entry,
1148 ep->rx_ring[entry].rxstatus);
1149
1150 if (rx_work_limit > budget)
1151 rx_work_limit = budget;
1152
1153 /* If we own the next entry, it's a new packet. Send it up. */
1154 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) {
1155 int status = ep->rx_ring[entry].rxstatus;
1156
1157 if (debug > 4)
1158 netdev_dbg(dev, " epic_rx() status was %8.8x.\n",
1159 status);
1160 if (--rx_work_limit < 0)
1161 break;
1162 if (status & 0x2006) {
1163 if (debug > 2)
1164 netdev_dbg(dev, "epic_rx() error status was %8.8x.\n",
1165 status);
1166 if (status & 0x2000) {
1167 netdev_warn(dev, "Oversized Ethernet frame spanned multiple buffers, status %4.4x!\n",
1168 status);
1169 dev->stats.rx_length_errors++;
1170 } else if (status & 0x0006)
1171 /* Rx Frame errors are counted in hardware. */
1172 dev->stats.rx_errors++;
1173 } else {
1174 /* Malloc up new buffer, compatible with net-2e. */
1175 /* Omit the four octet CRC from the length. */
1176 short pkt_len = (status >> 16) - 4;
1177 struct sk_buff *skb;
1178
1179 if (pkt_len > PKT_BUF_SZ - 4) {
1180 netdev_err(dev, "Oversized Ethernet frame, status %x %d bytes.\n",
1181 status, pkt_len);
1182 pkt_len = 1514;
1183 }
1184 /* Check if the packet is long enough to accept without copying
1185 to a minimally-sized skbuff. */
1186 if (pkt_len < rx_copybreak &&
1187 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1188 skb_reserve(skb, 2); /* 16 byte align the IP header */
1189 dma_sync_single_for_cpu(&ep->pci_dev->dev,
1190 ep->rx_ring[entry].bufaddr,
1191 ep->rx_buf_sz,
1192 DMA_FROM_DEVICE);
1193 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1194 skb_put(skb, pkt_len);
1195 dma_sync_single_for_device(&ep->pci_dev->dev,
1196 ep->rx_ring[entry].bufaddr,
1197 ep->rx_buf_sz,
1198 DMA_FROM_DEVICE);
1199 } else {
1200 dma_unmap_single(&ep->pci_dev->dev,
1201 ep->rx_ring[entry].bufaddr,
1202 ep->rx_buf_sz,
1203 DMA_FROM_DEVICE);
1204 skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1205 ep->rx_skbuff[entry] = NULL;
1206 }
1207 skb->protocol = eth_type_trans(skb, dev);
1208 netif_receive_skb(skb);
1209 dev->stats.rx_packets++;
1210 dev->stats.rx_bytes += pkt_len;
1211 }
1212 work_done++;
1213 entry = (++ep->cur_rx) % RX_RING_SIZE;
1214 }
1215
1216 /* Refill the Rx ring buffers. */
1217 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1218 entry = ep->dirty_rx % RX_RING_SIZE;
1219 if (ep->rx_skbuff[entry] == NULL) {
1220 struct sk_buff *skb;
1221 skb = ep->rx_skbuff[entry] = netdev_alloc_skb(dev, ep->rx_buf_sz + 2);
1222 if (skb == NULL)
1223 break;
1224 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1225 ep->rx_ring[entry].bufaddr = dma_map_single(&ep->pci_dev->dev,
1226 skb->data,
1227 ep->rx_buf_sz,
1228 DMA_FROM_DEVICE);
1229 work_done++;
1230 }
1231 /* AV: shouldn't we add a barrier here? */
1232 ep->rx_ring[entry].rxstatus = DescOwn;
1233 }
1234 return work_done;
1235}
1236
1237static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1238{
1239 void __iomem *ioaddr = ep->ioaddr;
1240 int status;
1241
1242 status = er32(INTSTAT);
1243
1244 if (status == EpicRemoved)
1245 return;
1246 if (status & RxOverflow) /* Missed a Rx frame. */
1247 dev->stats.rx_errors++;
1248 if (status & (RxOverflow | RxFull))
1249 ew16(COMMAND, RxQueued);
1250}
1251
1252static int epic_poll(struct napi_struct *napi, int budget)
1253{
1254 struct epic_private *ep = container_of(napi, struct epic_private, napi);
1255 struct net_device *dev = ep->mii.dev;
1256 void __iomem *ioaddr = ep->ioaddr;
1257 int work_done;
1258
1259 epic_tx(dev, ep);
1260
1261 work_done = epic_rx(dev, budget);
1262
1263 epic_rx_err(dev, ep);
1264
1265 if (work_done < budget && napi_complete_done(napi, work_done)) {
1266 unsigned long flags;
1267
1268 spin_lock_irqsave(&ep->napi_lock, flags);
1269
1270 ew32(INTSTAT, EpicNapiEvent);
1271 epic_napi_irq_on(dev, ep);
1272 spin_unlock_irqrestore(&ep->napi_lock, flags);
1273 }
1274
1275 return work_done;
1276}
1277
1278static int epic_close(struct net_device *dev)
1279{
1280 struct epic_private *ep = netdev_priv(dev);
1281 struct pci_dev *pdev = ep->pci_dev;
1282 void __iomem *ioaddr = ep->ioaddr;
1283 struct sk_buff *skb;
1284 int i;
1285
1286 netif_stop_queue(dev);
1287 napi_disable(&ep->napi);
1288
1289 if (debug > 1)
1290 netdev_dbg(dev, "Shutting down ethercard, status was %2.2x.\n",
1291 er32(INTSTAT));
1292
1293 del_timer_sync(&ep->timer);
1294
1295 epic_disable_int(dev, ep);
1296
1297 free_irq(pdev->irq, dev);
1298
1299 epic_pause(dev);
1300
1301 /* Free all the skbuffs in the Rx queue. */
1302 for (i = 0; i < RX_RING_SIZE; i++) {
1303 skb = ep->rx_skbuff[i];
1304 ep->rx_skbuff[i] = NULL;
1305 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */
1306 ep->rx_ring[i].buflength = 0;
1307 if (skb) {
1308 dma_unmap_single(&pdev->dev, ep->rx_ring[i].bufaddr,
1309 ep->rx_buf_sz, DMA_FROM_DEVICE);
1310 dev_kfree_skb(skb);
1311 }
1312 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1313 }
1314 for (i = 0; i < TX_RING_SIZE; i++) {
1315 skb = ep->tx_skbuff[i];
1316 ep->tx_skbuff[i] = NULL;
1317 if (!skb)
1318 continue;
1319 dma_unmap_single(&pdev->dev, ep->tx_ring[i].bufaddr, skb->len,
1320 DMA_TO_DEVICE);
1321 dev_kfree_skb(skb);
1322 }
1323
1324 /* Green! Leave the chip in low-power mode. */
1325 ew32(GENCTL, 0x0008);
1326
1327 return 0;
1328}
1329
1330static struct net_device_stats *epic_get_stats(struct net_device *dev)
1331{
1332 struct epic_private *ep = netdev_priv(dev);
1333 void __iomem *ioaddr = ep->ioaddr;
1334
1335 if (netif_running(dev)) {
1336 struct net_device_stats *stats = &dev->stats;
1337
1338 stats->rx_missed_errors += er8(MPCNT);
1339 stats->rx_frame_errors += er8(ALICNT);
1340 stats->rx_crc_errors += er8(CRCCNT);
1341 }
1342
1343 return &dev->stats;
1344}
1345
1346/* Set or clear the multicast filter for this adaptor.
1347 Note that we only use exclusion around actually queueing the
1348 new frame, not around filling ep->setup_frame. This is non-deterministic
1349 when re-entered but still correct. */
1350
1351static void set_rx_mode(struct net_device *dev)
1352{
1353 struct epic_private *ep = netdev_priv(dev);
1354 void __iomem *ioaddr = ep->ioaddr;
1355 unsigned char mc_filter[8]; /* Multicast hash filter */
1356 int i;
1357
1358 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1359 ew32(RxCtrl, 0x002c);
1360 /* Unconditionally log net taps. */
1361 memset(mc_filter, 0xff, sizeof(mc_filter));
1362 } else if ((!netdev_mc_empty(dev)) || (dev->flags & IFF_ALLMULTI)) {
1363 /* There is apparently a chip bug, so the multicast filter
1364 is never enabled. */
1365 /* Too many to filter perfectly -- accept all multicasts. */
1366 memset(mc_filter, 0xff, sizeof(mc_filter));
1367 ew32(RxCtrl, 0x000c);
1368 } else if (netdev_mc_empty(dev)) {
1369 ew32(RxCtrl, 0x0004);
1370 return;
1371 } else { /* Never executed, for now. */
1372 struct netdev_hw_addr *ha;
1373
1374 memset(mc_filter, 0, sizeof(mc_filter));
1375 netdev_for_each_mc_addr(ha, dev) {
1376 unsigned int bit_nr =
1377 ether_crc_le(ETH_ALEN, ha->addr) & 0x3f;
1378 mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1379 }
1380 }
1381 /* ToDo: perhaps we need to stop the Tx and Rx process here? */
1382 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1383 for (i = 0; i < 4; i++)
1384 ew16(MC0 + i*4, ((u16 *)mc_filter)[i]);
1385 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1386 }
1387}
1388
1389static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1390{
1391 struct epic_private *np = netdev_priv(dev);
1392
1393 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1394 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1395 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1396}
1397
1398static int netdev_get_link_ksettings(struct net_device *dev,
1399 struct ethtool_link_ksettings *cmd)
1400{
1401 struct epic_private *np = netdev_priv(dev);
1402
1403 spin_lock_irq(&np->lock);
1404 mii_ethtool_get_link_ksettings(&np->mii, cmd);
1405 spin_unlock_irq(&np->lock);
1406
1407 return 0;
1408}
1409
1410static int netdev_set_link_ksettings(struct net_device *dev,
1411 const struct ethtool_link_ksettings *cmd)
1412{
1413 struct epic_private *np = netdev_priv(dev);
1414 int rc;
1415
1416 spin_lock_irq(&np->lock);
1417 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1418 spin_unlock_irq(&np->lock);
1419
1420 return rc;
1421}
1422
1423static int netdev_nway_reset(struct net_device *dev)
1424{
1425 struct epic_private *np = netdev_priv(dev);
1426 return mii_nway_restart(&np->mii);
1427}
1428
1429static u32 netdev_get_link(struct net_device *dev)
1430{
1431 struct epic_private *np = netdev_priv(dev);
1432 return mii_link_ok(&np->mii);
1433}
1434
1435static u32 netdev_get_msglevel(struct net_device *dev)
1436{
1437 return debug;
1438}
1439
1440static void netdev_set_msglevel(struct net_device *dev, u32 value)
1441{
1442 debug = value;
1443}
1444
1445static int ethtool_begin(struct net_device *dev)
1446{
1447 struct epic_private *ep = netdev_priv(dev);
1448 void __iomem *ioaddr = ep->ioaddr;
1449
1450 if (ep->ethtool_ops_nesting == U32_MAX)
1451 return -EBUSY;
1452 /* power-up, if interface is down */
1453 if (!ep->ethtool_ops_nesting++ && !netif_running(dev)) {
1454 ew32(GENCTL, 0x0200);
1455 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
1456 }
1457 return 0;
1458}
1459
1460static void ethtool_complete(struct net_device *dev)
1461{
1462 struct epic_private *ep = netdev_priv(dev);
1463 void __iomem *ioaddr = ep->ioaddr;
1464
1465 /* power-down, if interface is down */
1466 if (!--ep->ethtool_ops_nesting && !netif_running(dev)) {
1467 ew32(GENCTL, 0x0008);
1468 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000);
1469 }
1470}
1471
1472static const struct ethtool_ops netdev_ethtool_ops = {
1473 .get_drvinfo = netdev_get_drvinfo,
1474 .nway_reset = netdev_nway_reset,
1475 .get_link = netdev_get_link,
1476 .get_msglevel = netdev_get_msglevel,
1477 .set_msglevel = netdev_set_msglevel,
1478 .begin = ethtool_begin,
1479 .complete = ethtool_complete,
1480 .get_link_ksettings = netdev_get_link_ksettings,
1481 .set_link_ksettings = netdev_set_link_ksettings,
1482};
1483
1484static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1485{
1486 struct epic_private *np = netdev_priv(dev);
1487 void __iomem *ioaddr = np->ioaddr;
1488 struct mii_ioctl_data *data = if_mii(rq);
1489 int rc;
1490
1491 /* power-up, if interface is down */
1492 if (! netif_running(dev)) {
1493 ew32(GENCTL, 0x0200);
1494 ew32(NVCTL, (er32(NVCTL) & ~0x003c) | 0x4800);
1495 }
1496
1497 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1498 spin_lock_irq(&np->lock);
1499 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1500 spin_unlock_irq(&np->lock);
1501
1502 /* power-down, if interface is down */
1503 if (! netif_running(dev)) {
1504 ew32(GENCTL, 0x0008);
1505 ew32(NVCTL, (er32(NVCTL) & ~0x483c) | 0x0000);
1506 }
1507 return rc;
1508}
1509
1510
1511static void epic_remove_one(struct pci_dev *pdev)
1512{
1513 struct net_device *dev = pci_get_drvdata(pdev);
1514 struct epic_private *ep = netdev_priv(dev);
1515
1516 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, ep->tx_ring,
1517 ep->tx_ring_dma);
1518 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, ep->rx_ring,
1519 ep->rx_ring_dma);
1520 unregister_netdev(dev);
1521 pci_iounmap(pdev, ep->ioaddr);
1522 pci_release_regions(pdev);
1523 free_netdev(dev);
1524 pci_disable_device(pdev);
1525 /* pci_power_off(pdev, -1); */
1526}
1527
1528static int __maybe_unused epic_suspend(struct device *dev_d)
1529{
1530 struct net_device *dev = dev_get_drvdata(dev_d);
1531 struct epic_private *ep = netdev_priv(dev);
1532 void __iomem *ioaddr = ep->ioaddr;
1533
1534 if (!netif_running(dev))
1535 return 0;
1536 epic_pause(dev);
1537 /* Put the chip into low-power mode. */
1538 ew32(GENCTL, 0x0008);
1539 /* pci_power_off(pdev, -1); */
1540 return 0;
1541}
1542
1543
1544static int __maybe_unused epic_resume(struct device *dev_d)
1545{
1546 struct net_device *dev = dev_get_drvdata(dev_d);
1547
1548 if (!netif_running(dev))
1549 return 0;
1550 epic_restart(dev);
1551 /* pci_power_on(pdev); */
1552 return 0;
1553}
1554
1555static SIMPLE_DEV_PM_OPS(epic_pm_ops, epic_suspend, epic_resume);
1556
1557static struct pci_driver epic_driver = {
1558 .name = DRV_NAME,
1559 .id_table = epic_pci_tbl,
1560 .probe = epic_init_one,
1561 .remove = epic_remove_one,
1562 .driver.pm = &epic_pm_ops,
1563};
1564
1565
1566static int __init epic_init (void)
1567{
1568/* when a module, this is printed whether or not devices are found in probe */
1569#ifdef MODULE
1570 pr_info("%s%s\n", version, version2);
1571#endif
1572
1573 return pci_register_driver(&epic_driver);
1574}
1575
1576
1577static void __exit epic_cleanup (void)
1578{
1579 pci_unregister_driver (&epic_driver);
1580}
1581
1582
1583module_init(epic_init);
1584module_exit(epic_cleanup);