Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_vf_lib_private.h"
   6#include "ice_base.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_flow.h"
  11#include "ice_eswitch.h"
  12#include "ice_virtchnl_allowlist.h"
  13#include "ice_flex_pipe.h"
  14#include "ice_vf_vsi_vlan_ops.h"
  15#include "ice_vlan.h"
  16
  17/**
  18 * ice_free_vf_entries - Free all VF entries from the hash table
  19 * @pf: pointer to the PF structure
 
 
 
 
 
 
  20 *
  21 * Iterate over the VF hash table, removing and releasing all VF entries.
  22 * Called during VF teardown or as cleanup during failed VF initialization.
 
  23 */
  24static void ice_free_vf_entries(struct ice_pf *pf)
 
 
  25{
  26	struct ice_vfs *vfs = &pf->vfs;
  27	struct hlist_node *tmp;
  28	struct ice_vf *vf;
  29	unsigned int bkt;
  30
  31	/* Remove all VFs from the hash table and release their main
  32	 * reference. Once all references to the VF are dropped, ice_put_vf()
  33	 * will call ice_release_vf which will remove the VF memory.
  34	 */
  35	lockdep_assert_held(&vfs->table_lock);
  36
  37	hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
  38		hash_del_rcu(&vf->entry);
  39		ice_put_vf(vf);
  40	}
  41}
  42
  43/**
  44 * ice_free_vf_res - Free a VF's resources
  45 * @vf: pointer to the VF info
  46 */
  47static void ice_free_vf_res(struct ice_vf *vf)
  48{
  49	struct ice_pf *pf = vf->pf;
  50	int i, last_vector_idx;
  51
  52	/* First, disable VF's configuration API to prevent OS from
  53	 * accessing the VF's VSI after it's freed or invalidated.
  54	 */
  55	clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
  56	ice_vf_fdir_exit(vf);
  57	/* free VF control VSI */
  58	if (vf->ctrl_vsi_idx != ICE_NO_VSI)
  59		ice_vf_ctrl_vsi_release(vf);
  60
  61	/* free VSI and disconnect it from the parent uplink */
  62	if (vf->lan_vsi_idx != ICE_NO_VSI) {
  63		ice_vf_vsi_release(vf);
  64		vf->num_mac = 0;
  65	}
  66
  67	last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
 
  68
  69	/* clear VF MDD event information */
  70	memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
  71	memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
  72
  73	/* Disable interrupts so that VF starts in a known state */
  74	for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
  75		wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
  76		ice_flush(&pf->hw);
  77	}
  78	/* reset some of the state variables keeping track of the resources */
  79	clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
  80	clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
  81}
  82
  83/**
  84 * ice_dis_vf_mappings
  85 * @vf: pointer to the VF structure
  86 */
  87static void ice_dis_vf_mappings(struct ice_vf *vf)
  88{
  89	struct ice_pf *pf = vf->pf;
  90	struct ice_vsi *vsi;
  91	struct device *dev;
  92	int first, last, v;
  93	struct ice_hw *hw;
  94
  95	hw = &pf->hw;
  96	vsi = ice_get_vf_vsi(vf);
  97	if (WARN_ON(!vsi))
  98		return;
  99
 100	dev = ice_pf_to_dev(pf);
 101	wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
 102	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
 103
 104	first = vf->first_vector_idx;
 105	last = first + vf->num_msix - 1;
 106	for (v = first; v <= last; v++) {
 107		u32 reg;
 108
 109		reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
 110		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
 111		wr32(hw, GLINT_VECT2FUNC(v), reg);
 112	}
 113
 114	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
 115		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
 116	else
 117		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 118
 119	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
 120		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
 121	else
 122		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 123}
 124
 125/**
 126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
 127 * @pf: pointer to the PF structure
 128 *
 129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
 130 * the pf->sriov_base_vector.
 131 *
 132 * Returns 0 on success, and -EINVAL on error.
 
 
 
 
 
 133 */
 134static int ice_sriov_free_msix_res(struct ice_pf *pf)
 135{
 136	if (!pf)
 137		return -EINVAL;
 138
 139	bitmap_free(pf->sriov_irq_bm);
 140	pf->sriov_irq_size = 0;
 141	pf->sriov_base_vector = 0;
 142
 143	return 0;
 144}
 145
 146/**
 147 * ice_free_vfs - Free all VFs
 148 * @pf: pointer to the PF structure
 149 */
 150void ice_free_vfs(struct ice_pf *pf)
 151{
 152	struct device *dev = ice_pf_to_dev(pf);
 153	struct ice_vfs *vfs = &pf->vfs;
 154	struct ice_hw *hw = &pf->hw;
 155	struct ice_vf *vf;
 156	unsigned int bkt;
 157
 158	if (!ice_has_vfs(pf))
 159		return;
 160
 161	while (test_and_set_bit(ICE_VF_DIS, pf->state))
 162		usleep_range(1000, 2000);
 163
 164	/* Disable IOV before freeing resources. This lets any VF drivers
 165	 * running in the host get themselves cleaned up before we yank
 166	 * the carpet out from underneath their feet.
 167	 */
 168	if (!pci_vfs_assigned(pf->pdev))
 169		pci_disable_sriov(pf->pdev);
 170	else
 171		dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
 172
 173	ice_eswitch_reserve_cp_queues(pf, -ice_get_num_vfs(pf));
 174
 175	mutex_lock(&vfs->table_lock);
 176
 177	ice_for_each_vf(pf, bkt, vf) {
 178		mutex_lock(&vf->cfg_lock);
 179
 180		ice_eswitch_detach(pf, vf);
 181		ice_dis_vf_qs(vf);
 182
 183		if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
 184			/* disable VF qp mappings and set VF disable state */
 185			ice_dis_vf_mappings(vf);
 186			set_bit(ICE_VF_STATE_DIS, vf->vf_states);
 187			ice_free_vf_res(vf);
 188		}
 189
 190		if (!pci_vfs_assigned(pf->pdev)) {
 191			u32 reg_idx, bit_idx;
 192
 193			reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
 194			bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
 195			wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 196		}
 197
 198		/* clear malicious info since the VF is getting released */
 199		list_del(&vf->mbx_info.list_entry);
 200
 201		mutex_unlock(&vf->cfg_lock);
 202	}
 203
 204	if (ice_sriov_free_msix_res(pf))
 205		dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
 206
 207	vfs->num_qps_per = 0;
 208	ice_free_vf_entries(pf);
 209
 210	mutex_unlock(&vfs->table_lock);
 211
 212	clear_bit(ICE_VF_DIS, pf->state);
 213	clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
 214}
 215
 216/**
 217 * ice_vf_vsi_setup - Set up a VF VSI
 218 * @vf: VF to setup VSI for
 219 *
 220 * Returns pointer to the successfully allocated VSI struct on success,
 221 * otherwise returns NULL on failure.
 222 */
 223static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
 224{
 225	struct ice_vsi_cfg_params params = {};
 226	struct ice_pf *pf = vf->pf;
 227	struct ice_vsi *vsi;
 228
 229	params.type = ICE_VSI_VF;
 230	params.pi = ice_vf_get_port_info(vf);
 231	params.vf = vf;
 232	params.flags = ICE_VSI_FLAG_INIT;
 233
 234	vsi = ice_vsi_setup(pf, &params);
 235
 236	if (!vsi) {
 237		dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
 238		ice_vf_invalidate_vsi(vf);
 239		return NULL;
 240	}
 241
 242	vf->lan_vsi_idx = vsi->idx;
 243	vf->lan_vsi_num = vsi->vsi_num;
 244
 245	return vsi;
 246}
 247
 248
 249/**
 250 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
 251 * @vf: VF to enable MSIX mappings for
 252 *
 253 * Some of the registers need to be indexed/configured using hardware global
 254 * device values and other registers need 0-based values, which represent PF
 255 * based values.
 256 */
 257static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
 258{
 259	int device_based_first_msix, device_based_last_msix;
 260	int pf_based_first_msix, pf_based_last_msix, v;
 261	struct ice_pf *pf = vf->pf;
 262	int device_based_vf_id;
 263	struct ice_hw *hw;
 264	u32 reg;
 265
 266	hw = &pf->hw;
 267	pf_based_first_msix = vf->first_vector_idx;
 268	pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
 269
 270	device_based_first_msix = pf_based_first_msix +
 271		pf->hw.func_caps.common_cap.msix_vector_first_id;
 272	device_based_last_msix =
 273		(device_based_first_msix + vf->num_msix) - 1;
 274	device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
 275
 276	reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
 277	      FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
 278	      VPINT_ALLOC_VALID_M;
 279	wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
 280
 281	reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
 282	      FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
 283	      VPINT_ALLOC_PCI_VALID_M;
 284	wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
 285
 286	/* map the interrupts to its functions */
 287	for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
 288		reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
 289		      FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
 290		wr32(hw, GLINT_VECT2FUNC(v), reg);
 291	}
 292
 293	/* Map mailbox interrupt to VF MSI-X vector 0 */
 294	wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
 295}
 296
 297/**
 298 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
 299 * @vf: VF to enable the mappings for
 300 * @max_txq: max Tx queues allowed on the VF's VSI
 301 * @max_rxq: max Rx queues allowed on the VF's VSI
 302 */
 303static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
 304{
 305	struct device *dev = ice_pf_to_dev(vf->pf);
 306	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
 307	struct ice_hw *hw = &vf->pf->hw;
 308	u32 reg;
 309
 310	if (WARN_ON(!vsi))
 311		return;
 312
 313	/* set regardless of mapping mode */
 314	wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
 315
 316	/* VF Tx queues allocation */
 317	if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 318		/* set the VF PF Tx queue range
 319		 * VFNUMQ value should be set to (number of queues - 1). A value
 320		 * of 0 means 1 queue and a value of 255 means 256 queues
 321		 */
 322		reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
 323		      FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
 324		wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
 325	} else {
 326		dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
 327	}
 328
 329	/* set regardless of mapping mode */
 330	wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
 331
 332	/* VF Rx queues allocation */
 333	if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
 334		/* set the VF PF Rx queue range
 335		 * VFNUMQ value should be set to (number of queues - 1). A value
 336		 * of 0 means 1 queue and a value of 255 means 256 queues
 337		 */
 338		reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
 339		      FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
 340		wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
 341	} else {
 342		dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
 343	}
 344}
 345
 346/**
 347 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
 348 * @vf: pointer to the VF structure
 349 */
 350static void ice_ena_vf_mappings(struct ice_vf *vf)
 351{
 352	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
 353
 354	if (WARN_ON(!vsi))
 355		return;
 356
 357	ice_ena_vf_msix_mappings(vf);
 358	ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
 359}
 360
 361/**
 362 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
 363 * @vf: VF to calculate the register index for
 364 * @q_vector: a q_vector associated to the VF
 365 */
 366int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
 367{
 368	if (!vf || !q_vector)
 369		return -EINVAL;
 370
 371	/* always add one to account for the OICR being the first MSIX */
 372	return vf->first_vector_idx + q_vector->v_idx + 1;
 373}
 374
 375/**
 376 * ice_sriov_set_msix_res - Set any used MSIX resources
 377 * @pf: pointer to PF structure
 378 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
 379 *
 380 * This function allows SR-IOV resources to be taken from the end of the PF's
 381 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
 382 * just set the pf->sriov_base_vector and return success.
 383 *
 384 * If there are not enough resources available, return an error. This should
 385 * always be caught by ice_set_per_vf_res().
 386 *
 387 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
 388 * in the PF's space available for SR-IOV.
 389 */
 390static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
 391{
 392	u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
 393	int vectors_used = ice_get_max_used_msix_vector(pf);
 394	int sriov_base_vector;
 395
 396	sriov_base_vector = total_vectors - num_msix_needed;
 397
 398	/* make sure we only grab irq_tracker entries from the list end and
 399	 * that we have enough available MSIX vectors
 400	 */
 401	if (sriov_base_vector < vectors_used)
 402		return -EINVAL;
 403
 404	pf->sriov_base_vector = sriov_base_vector;
 405
 406	return 0;
 407}
 408
 409/**
 410 * ice_set_per_vf_res - check if vectors and queues are available
 411 * @pf: pointer to the PF structure
 412 * @num_vfs: the number of SR-IOV VFs being configured
 
 
 
 413 *
 414 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
 415 * get more vectors and can enable more queues per VF. Note that this does not
 416 * grab any vectors from the SW pool already allocated. Also note, that all
 417 * vector counts include one for each VF's miscellaneous interrupt vector
 418 * (i.e. OICR).
 419 *
 420 * Minimum VFs - 2 vectors, 1 queue pair
 421 * Small VFs - 5 vectors, 4 queue pairs
 422 * Medium VFs - 17 vectors, 16 queue pairs
 
 423 *
 424 * Second, determine number of queue pairs per VF by starting with a pre-defined
 425 * maximum each VF supports. If this is not possible, then we adjust based on
 426 * queue pairs available on the device.
 
 427 *
 428 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
 429 * by each VF during VF initialization and reset.
 430 */
 431static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
 432{
 433	int vectors_used = ice_get_max_used_msix_vector(pf);
 434	u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
 435	int msix_avail_per_vf, msix_avail_for_sriov;
 436	struct device *dev = ice_pf_to_dev(pf);
 437	int err;
 438
 439	lockdep_assert_held(&pf->vfs.table_lock);
 440
 441	if (!num_vfs)
 442		return -EINVAL;
 443
 444	/* determine MSI-X resources per VF */
 445	msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
 446		vectors_used;
 447	msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
 448	if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
 449		num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
 450	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
 451		num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
 452	} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
 453		num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
 454	} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
 455		num_msix_per_vf = ICE_MIN_INTR_PER_VF;
 456	} else {
 457		dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
 458			msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
 459			num_vfs);
 460		return -ENOSPC;
 461	}
 462
 463	num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
 464			ICE_MAX_RSS_QS_PER_VF);
 465	avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
 466	if (!avail_qs)
 467		num_txq = 0;
 468	else if (num_txq > avail_qs)
 469		num_txq = rounddown_pow_of_two(avail_qs);
 470
 471	num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
 472			ICE_MAX_RSS_QS_PER_VF);
 473	avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
 474	if (!avail_qs)
 475		num_rxq = 0;
 476	else if (num_rxq > avail_qs)
 477		num_rxq = rounddown_pow_of_two(avail_qs);
 478
 479	if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
 480		dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
 481			ICE_MIN_QS_PER_VF, num_vfs);
 482		return -ENOSPC;
 483	}
 484
 485	err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
 486	if (err) {
 487		dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
 488			num_vfs, err);
 489		return err;
 490	}
 491
 492	/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
 493	pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
 494	pf->vfs.num_msix_per = num_msix_per_vf;
 495	dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
 496		 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
 497
 498	return 0;
 499}
 500
 501/**
 502 * ice_sriov_get_irqs - get irqs for SR-IOV usacase
 503 * @pf: pointer to PF structure
 504 * @needed: number of irqs to get
 505 *
 506 * This returns the first MSI-X vector index in PF space that is used by this
 507 * VF. This index is used when accessing PF relative registers such as
 508 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
 509 * This will always be the OICR index in the AVF driver so any functionality
 510 * using vf->first_vector_idx for queue configuration_id: id of VF which will
 511 * use this irqs
 512 *
 513 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
 514 * allocated from the end of global irq index. First bit in sriov_irq_bm means
 515 * last irq index etc. It simplifies extension of SRIOV vectors.
 516 * They will be always located from sriov_base_vector to the last irq
 517 * index. While increasing/decreasing sriov_base_vector can be moved.
 518 */
 519static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
 520{
 521	int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
 522					     pf->sriov_irq_size, 0, needed, 0);
 523	/* conversion from number in bitmap to global irq index */
 524	int index = pf->sriov_irq_size - res - needed;
 525
 526	if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
 527		return -ENOENT;
 528
 529	bitmap_set(pf->sriov_irq_bm, res, needed);
 530	return index;
 531}
 532
 533/**
 534 * ice_sriov_free_irqs - free irqs used by the VF
 535 * @pf: pointer to PF structure
 536 * @vf: pointer to VF structure
 537 */
 538static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
 539{
 540	/* Move back from first vector index to first index in bitmap */
 541	int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
 542
 543	bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
 544	vf->first_vector_idx = 0;
 545}
 546
 547/**
 548 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
 549 * @vf: VF to initialize/setup the VSI for
 550 *
 551 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
 552 * VF VSI's broadcast filter and is only used during initial VF creation.
 553 */
 554static int ice_init_vf_vsi_res(struct ice_vf *vf)
 555{
 556	struct ice_pf *pf = vf->pf;
 557	struct ice_vsi *vsi;
 558	int err;
 559
 560	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
 561	if (vf->first_vector_idx < 0)
 562		return -ENOMEM;
 563
 564	vsi = ice_vf_vsi_setup(vf);
 565	if (!vsi)
 566		return -ENOMEM;
 567
 568	err = ice_vf_init_host_cfg(vf, vsi);
 569	if (err)
 570		goto release_vsi;
 571
 572	return 0;
 573
 574release_vsi:
 575	ice_vf_vsi_release(vf);
 576	return err;
 577}
 578
 579/**
 580 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
 581 * @pf: PF the VFs are associated with
 582 */
 583static int ice_start_vfs(struct ice_pf *pf)
 584{
 585	struct ice_hw *hw = &pf->hw;
 586	unsigned int bkt, it_cnt;
 587	struct ice_vf *vf;
 588	int retval;
 589
 590	lockdep_assert_held(&pf->vfs.table_lock);
 591
 592	it_cnt = 0;
 593	ice_for_each_vf(pf, bkt, vf) {
 594		vf->vf_ops->clear_reset_trigger(vf);
 595
 596		retval = ice_init_vf_vsi_res(vf);
 597		if (retval) {
 598			dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
 599				vf->vf_id, retval);
 600			goto teardown;
 601		}
 602
 603		retval = ice_eswitch_attach(pf, vf);
 604		if (retval) {
 605			dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
 606				vf->vf_id, retval);
 607			ice_vf_vsi_release(vf);
 608			goto teardown;
 609		}
 610
 611		set_bit(ICE_VF_STATE_INIT, vf->vf_states);
 612		ice_ena_vf_mappings(vf);
 613		wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 614		it_cnt++;
 615	}
 616
 617	ice_flush(hw);
 618	return 0;
 619
 620teardown:
 621	ice_for_each_vf(pf, bkt, vf) {
 622		if (it_cnt == 0)
 623			break;
 624
 625		ice_dis_vf_mappings(vf);
 626		ice_vf_vsi_release(vf);
 627		it_cnt--;
 628	}
 629
 630	return retval;
 631}
 632
 633/**
 634 * ice_sriov_free_vf - Free VF memory after all references are dropped
 635 * @vf: pointer to VF to free
 
 636 *
 637 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
 638 * structure has been dropped.
 639 */
 640static void ice_sriov_free_vf(struct ice_vf *vf)
 
 
 641{
 642	mutex_destroy(&vf->cfg_lock);
 
 643
 644	kfree_rcu(vf, rcu);
 645}
 646
 647/**
 648 * ice_sriov_clear_reset_state - clears VF Reset status register
 649 * @vf: the vf to configure
 650 */
 651static void ice_sriov_clear_reset_state(struct ice_vf *vf)
 652{
 653	struct ice_hw *hw = &vf->pf->hw;
 654
 655	/* Clear the reset status register so that VF immediately sees that
 656	 * the device is resetting, even if hardware hasn't yet gotten around
 657	 * to clearing VFGEN_RSTAT for us.
 658	 */
 659	wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
 660}
 661
 662/**
 663 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
 664 * @vf: the vf to configure
 665 */
 666static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
 667{
 668	struct ice_pf *pf = vf->pf;
 669
 670	wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
 671	wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
 672}
 673
 674/**
 675 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
 676 * @vf: pointer to VF structure
 677 * @is_vflr: true if reset occurred due to VFLR
 678 *
 679 * Trigger and cleanup after a VF reset for a SR-IOV VF.
 680 */
 681static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
 682{
 683	struct ice_pf *pf = vf->pf;
 684	u32 reg, reg_idx, bit_idx;
 685	unsigned int vf_abs_id, i;
 686	struct device *dev;
 687	struct ice_hw *hw;
 688
 689	dev = ice_pf_to_dev(pf);
 690	hw = &pf->hw;
 691	vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
 692
 693	/* In the case of a VFLR, HW has already reset the VF and we just need
 694	 * to clean up. Otherwise we must first trigger the reset using the
 695	 * VFRTRIG register.
 696	 */
 697	if (!is_vflr) {
 698		reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 699		reg |= VPGEN_VFRTRIG_VFSWR_M;
 700		wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 701	}
 702
 703	/* clear the VFLR bit in GLGEN_VFLRSTAT */
 704	reg_idx = (vf_abs_id) / 32;
 705	bit_idx = (vf_abs_id) % 32;
 706	wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
 707	ice_flush(hw);
 708
 709	wr32(hw, PF_PCI_CIAA,
 710	     VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
 711	for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
 712		reg = rd32(hw, PF_PCI_CIAD);
 713		/* no transactions pending so stop polling */
 714		if ((reg & VF_TRANS_PENDING_M) == 0)
 715			break;
 716
 717		dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
 718		udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
 719	}
 720}
 721
 722/**
 723 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
 724 * @vf: pointer to VF structure
 725 *
 726 * Returns true when reset is successful, else returns false
 727 */
 728static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
 729{
 730	struct ice_pf *pf = vf->pf;
 731	unsigned int i;
 732	u32 reg;
 733
 734	for (i = 0; i < 10; i++) {
 735		/* VF reset requires driver to first reset the VF and then
 736		 * poll the status register to make sure that the reset
 737		 * completed successfully.
 738		 */
 739		reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
 740		if (reg & VPGEN_VFRSTAT_VFRD_M)
 741			return true;
 742
 743		/* only sleep if the reset is not done */
 744		usleep_range(10, 20);
 745	}
 746	return false;
 747}
 748
 749/**
 750 * ice_sriov_clear_reset_trigger - enable VF to access hardware
 751 * @vf: VF to enabled hardware access for
 752 */
 753static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
 754{
 755	struct ice_hw *hw = &vf->pf->hw;
 756	u32 reg;
 757
 758	reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
 759	reg &= ~VPGEN_VFRTRIG_VFSWR_M;
 760	wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
 761	ice_flush(hw);
 762}
 763
 764/**
 765 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
 766 * @vf: VF to perform tasks on
 767 */
 768static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
 769{
 770	ice_ena_vf_mappings(vf);
 771	wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
 772}
 773
 774static const struct ice_vf_ops ice_sriov_vf_ops = {
 775	.reset_type = ICE_VF_RESET,
 776	.free = ice_sriov_free_vf,
 777	.clear_reset_state = ice_sriov_clear_reset_state,
 778	.clear_mbx_register = ice_sriov_clear_mbx_register,
 779	.trigger_reset_register = ice_sriov_trigger_reset_register,
 780	.poll_reset_status = ice_sriov_poll_reset_status,
 781	.clear_reset_trigger = ice_sriov_clear_reset_trigger,
 782	.irq_close = NULL,
 783	.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
 784};
 785
 786/**
 787 * ice_create_vf_entries - Allocate and insert VF entries
 788 * @pf: pointer to the PF structure
 789 * @num_vfs: the number of VFs to allocate
 790 *
 791 * Allocate new VF entries and insert them into the hash table. Set some
 792 * basic default fields for initializing the new VFs.
 793 *
 794 * After this function exits, the hash table will have num_vfs entries
 795 * inserted.
 796 *
 797 * Returns 0 on success or an integer error code on failure.
 798 */
 799static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
 
 
 
 800{
 801	struct pci_dev *pdev = pf->pdev;
 802	struct ice_vfs *vfs = &pf->vfs;
 803	struct pci_dev *vfdev = NULL;
 804	struct ice_vf *vf;
 805	u16 vf_pdev_id;
 806	int err, pos;
 807
 808	lockdep_assert_held(&vfs->table_lock);
 809
 810	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
 811	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
 812
 813	for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
 814		vf = kzalloc(sizeof(*vf), GFP_KERNEL);
 815		if (!vf) {
 816			err = -ENOMEM;
 817			goto err_free_entries;
 818		}
 819		kref_init(&vf->refcnt);
 820
 821		vf->pf = pf;
 822		vf->vf_id = vf_id;
 823
 824		/* set sriov vf ops for VFs created during SRIOV flow */
 825		vf->vf_ops = &ice_sriov_vf_ops;
 826
 827		ice_initialize_vf_entry(vf);
 828
 829		do {
 830			vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
 831		} while (vfdev && vfdev->physfn != pdev);
 832		vf->vfdev = vfdev;
 833		vf->vf_sw_id = pf->first_sw;
 834
 835		pci_dev_get(vfdev);
 
 836
 837		/* set default number of MSI-X */
 838		vf->num_msix = pf->vfs.num_msix_per;
 839		vf->num_vf_qs = pf->vfs.num_qps_per;
 840		ice_vc_set_default_allowlist(vf);
 841
 842		hash_add_rcu(vfs->table, &vf->entry, vf_id);
 843	}
 844
 845	/* Decrement of refcount done by pci_get_device() inside the loop does
 846	 * not touch the last iteration's vfdev, so it has to be done manually
 847	 * to balance pci_dev_get() added within the loop.
 848	 */
 849	pci_dev_put(vfdev);
 850
 851	return 0;
 852
 853err_free_entries:
 854	ice_free_vf_entries(pf);
 855	return err;
 856}
 857
 858/**
 859 * ice_ena_vfs - enable VFs so they are ready to be used
 860 * @pf: pointer to the PF structure
 861 * @num_vfs: number of VFs to enable
 862 */
 863static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
 864{
 865	int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
 866	struct device *dev = ice_pf_to_dev(pf);
 867	struct ice_hw *hw = &pf->hw;
 868	int ret;
 869
 870	pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
 871	if (!pf->sriov_irq_bm)
 872		return -ENOMEM;
 873	pf->sriov_irq_size = total_vectors;
 874
 875	/* Disable global interrupt 0 so we don't try to handle the VFLR. */
 876	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
 877	     ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
 878	set_bit(ICE_OICR_INTR_DIS, pf->state);
 879	ice_flush(hw);
 880
 881	ret = pci_enable_sriov(pf->pdev, num_vfs);
 882	if (ret)
 883		goto err_unroll_intr;
 884
 885	mutex_lock(&pf->vfs.table_lock);
 886
 887	ret = ice_set_per_vf_res(pf, num_vfs);
 888	if (ret) {
 889		dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
 890			num_vfs, ret);
 891		goto err_unroll_sriov;
 892	}
 893
 894	ret = ice_create_vf_entries(pf, num_vfs);
 895	if (ret) {
 896		dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
 897			num_vfs);
 898		goto err_unroll_sriov;
 899	}
 900
 901	ice_eswitch_reserve_cp_queues(pf, num_vfs);
 902	ret = ice_start_vfs(pf);
 903	if (ret) {
 904		dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
 905		ret = -EAGAIN;
 906		goto err_unroll_vf_entries;
 907	}
 908
 909	clear_bit(ICE_VF_DIS, pf->state);
 910
 911	/* rearm global interrupts */
 912	if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
 913		ice_irq_dynamic_ena(hw, NULL, NULL);
 914
 915	mutex_unlock(&pf->vfs.table_lock);
 916
 917	return 0;
 918
 919err_unroll_vf_entries:
 920	ice_free_vf_entries(pf);
 921err_unroll_sriov:
 922	mutex_unlock(&pf->vfs.table_lock);
 923	pci_disable_sriov(pf->pdev);
 924err_unroll_intr:
 925	/* rearm interrupts here */
 926	ice_irq_dynamic_ena(hw, NULL, NULL);
 927	clear_bit(ICE_OICR_INTR_DIS, pf->state);
 928	bitmap_free(pf->sriov_irq_bm);
 929	return ret;
 930}
 931
 932/**
 933 * ice_pci_sriov_ena - Enable or change number of VFs
 934 * @pf: pointer to the PF structure
 935 * @num_vfs: number of VFs to allocate
 936 *
 937 * Returns 0 on success and negative on failure
 938 */
 939static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
 940{
 941	struct device *dev = ice_pf_to_dev(pf);
 942	int err;
 943
 944	if (!num_vfs) {
 945		ice_free_vfs(pf);
 946		return 0;
 947	}
 948
 949	if (num_vfs > pf->vfs.num_supported) {
 950		dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
 951			num_vfs, pf->vfs.num_supported);
 952		return -EOPNOTSUPP;
 953	}
 954
 955	dev_info(dev, "Enabling %d VFs\n", num_vfs);
 956	err = ice_ena_vfs(pf, num_vfs);
 957	if (err) {
 958		dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
 959		return err;
 960	}
 961
 962	set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
 963	return 0;
 964}
 965
 966/**
 967 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
 968 * @pf: PF to enabled SR-IOV on
 969 */
 970static int ice_check_sriov_allowed(struct ice_pf *pf)
 971{
 972	struct device *dev = ice_pf_to_dev(pf);
 973
 974	if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
 975		dev_err(dev, "This device is not capable of SR-IOV\n");
 976		return -EOPNOTSUPP;
 977	}
 978
 979	if (ice_is_safe_mode(pf)) {
 980		dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
 981		return -EOPNOTSUPP;
 982	}
 983
 984	if (!ice_pf_state_is_nominal(pf)) {
 985		dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
 986		return -EBUSY;
 987	}
 988
 989	return 0;
 
 
 
 
 
 
 
 
 990}
 991
 992/**
 993 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
 994 * @pdev: pointer to pci_dev struct
 995 *
 996 * The function is called via sysfs ops
 997 */
 998u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
 999{
1000	struct ice_pf *pf = pci_get_drvdata(pdev);
1001
1002	return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
1003}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004
1005static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
1006{
1007	if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1008		return -ENOMEM;
1009
1010	pf->sriov_base_vector -= move;
1011	return 0;
1012}
1013
1014static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1015{
1016	u16 vf_ids[ICE_MAX_SRIOV_VFS];
1017	struct ice_vf *tmp_vf;
1018	int to_remap = 0, bkt;
1019
1020	/* For better irqs usage try to remap irqs of VFs
1021	 * that aren't running yet
1022	 */
1023	ice_for_each_vf(pf, bkt, tmp_vf) {
1024		/* skip VF which is changing the number of MSI-X */
1025		if (restricted_id == tmp_vf->vf_id ||
1026		    test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1027			continue;
1028
1029		ice_dis_vf_mappings(tmp_vf);
1030		ice_sriov_free_irqs(pf, tmp_vf);
1031
1032		vf_ids[to_remap] = tmp_vf->vf_id;
1033		to_remap += 1;
1034	}
1035
1036	for (int i = 0; i < to_remap; i++) {
1037		tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1038		if (!tmp_vf)
1039			continue;
1040
1041		tmp_vf->first_vector_idx =
1042			ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1043		/* there is no need to rebuild VSI as we are only changing the
1044		 * vector indexes not amount of MSI-X or queues
 
 
 
 
 
 
 
 
 
 
1045		 */
1046		ice_ena_vf_mappings(tmp_vf);
1047		ice_put_vf(tmp_vf);
1048	}
1049}
1050
1051/**
1052 * ice_sriov_set_msix_vec_count
1053 * @vf_dev: pointer to pci_dev struct of VF device
1054 * @msix_vec_count: new value for MSI-X amount on this VF
1055 *
1056 * Set requested MSI-X, queues and registers for @vf_dev.
1057 *
1058 * First do some sanity checks like if there are any VFs, if the new value
1059 * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1060 * MSI-X and queues, rebuild VSI and enable new mapping.
1061 *
1062 * If it is possible (driver not binded to VF) try to remap also other VFs to
1063 * linearize irqs register usage.
1064 */
1065int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1066{
1067	struct pci_dev *pdev = pci_physfn(vf_dev);
1068	struct ice_pf *pf = pci_get_drvdata(pdev);
1069	u16 prev_msix, prev_queues, queues;
1070	bool needs_rebuild = false;
1071	struct ice_vsi *vsi;
1072	struct ice_vf *vf;
1073	int id;
1074
1075	if (!ice_get_num_vfs(pf))
1076		return -ENOENT;
1077
1078	if (!msix_vec_count)
1079		return 0;
1080
1081	queues = msix_vec_count;
1082	/* add 1 MSI-X for OICR */
1083	msix_vec_count += 1;
1084
1085	if (queues > min(ice_get_avail_txq_count(pf),
1086			 ice_get_avail_rxq_count(pf)))
1087		return -EINVAL;
1088
1089	if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1090		return -EINVAL;
1091
1092	/* Transition of PCI VF function number to function_id */
1093	for (id = 0; id < pci_num_vf(pdev); id++) {
1094		if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1095			break;
1096	}
1097
1098	if (id == pci_num_vf(pdev))
1099		return -ENOENT;
1100
1101	vf = ice_get_vf_by_id(pf, id);
1102
1103	if (!vf)
1104		return -ENOENT;
1105
1106	vsi = ice_get_vf_vsi(vf);
1107	if (!vsi)
1108		return -ENOENT;
1109
1110	prev_msix = vf->num_msix;
1111	prev_queues = vf->num_vf_qs;
1112
1113	if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1114		ice_put_vf(vf);
1115		return -ENOSPC;
1116	}
1117
1118	ice_dis_vf_mappings(vf);
1119	ice_sriov_free_irqs(pf, vf);
1120
1121	/* Remap all VFs beside the one is now configured */
1122	ice_sriov_remap_vectors(pf, vf->vf_id);
1123
1124	vf->num_msix = msix_vec_count;
1125	vf->num_vf_qs = queues;
1126	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1127	if (vf->first_vector_idx < 0)
1128		goto unroll;
1129
1130	if (ice_vf_reconfig_vsi(vf) || ice_vf_init_host_cfg(vf, vsi)) {
1131		/* Try to rebuild with previous values */
1132		needs_rebuild = true;
1133		goto unroll;
1134	}
1135
1136	dev_info(ice_pf_to_dev(pf),
1137		 "Changing VF %d resources to %d vectors and %d queues\n",
1138		 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1139
1140	ice_ena_vf_mappings(vf);
1141	ice_put_vf(vf);
1142
1143	return 0;
1144
1145unroll:
1146	dev_info(ice_pf_to_dev(pf),
1147		 "Can't set %d vectors on VF %d, falling back to %d\n",
1148		 vf->num_msix, vf->vf_id, prev_msix);
1149
1150	vf->num_msix = prev_msix;
1151	vf->num_vf_qs = prev_queues;
1152	vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1153	if (vf->first_vector_idx < 0)
1154		return -EINVAL;
1155
1156	if (needs_rebuild) {
1157		ice_vf_reconfig_vsi(vf);
1158		ice_vf_init_host_cfg(vf, vsi);
1159	}
1160
1161	ice_ena_vf_mappings(vf);
1162	ice_put_vf(vf);
1163
1164	return -EINVAL;
1165}
1166
1167/**
1168 * ice_sriov_configure - Enable or change number of VFs via sysfs
1169 * @pdev: pointer to a pci_dev structure
1170 * @num_vfs: number of VFs to allocate or 0 to free VFs
1171 *
1172 * This function is called when the user updates the number of VFs in sysfs. On
1173 * success return whatever num_vfs was set to by the caller. Return negative on
1174 * failure.
1175 */
1176int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1177{
1178	struct ice_pf *pf = pci_get_drvdata(pdev);
1179	struct device *dev = ice_pf_to_dev(pf);
1180	int err;
1181
1182	err = ice_check_sriov_allowed(pf);
1183	if (err)
1184		return err;
1185
1186	if (!num_vfs) {
1187		if (!pci_vfs_assigned(pdev)) {
1188			ice_free_vfs(pf);
1189			return 0;
1190		}
 
1191
1192		dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1193		return -EBUSY;
1194	}
1195
1196	err = ice_pci_sriov_ena(pf, num_vfs);
1197	if (err)
1198		return err;
1199
1200	return num_vfs;
1201}
1202
1203/**
1204 * ice_process_vflr_event - Free VF resources via IRQ calls
1205 * @pf: pointer to the PF structure
1206 *
1207 * called from the VFLR IRQ handler to
1208 * free up VF resources and state variables
1209 */
1210void ice_process_vflr_event(struct ice_pf *pf)
1211{
1212	struct ice_hw *hw = &pf->hw;
1213	struct ice_vf *vf;
1214	unsigned int bkt;
1215	u32 reg;
1216
1217	if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1218	    !ice_has_vfs(pf))
1219		return;
1220
1221	mutex_lock(&pf->vfs.table_lock);
1222	ice_for_each_vf(pf, bkt, vf) {
1223		u32 reg_idx, bit_idx;
1224
1225		reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1226		bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1227		/* read GLGEN_VFLRSTAT register to find out the flr VFs */
1228		reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1229		if (reg & BIT(bit_idx))
1230			/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1231			ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1232	}
1233	mutex_unlock(&pf->vfs.table_lock);
1234}
1235
1236/**
1237 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1238 * @pf: PF used to index all VFs
1239 * @pfq: queue index relative to the PF's function space
1240 *
1241 * If no VF is found who owns the pfq then return NULL, otherwise return a
1242 * pointer to the VF who owns the pfq
1243 *
1244 * If this function returns non-NULL, it acquires a reference count of the VF
1245 * structure. The caller is responsible for calling ice_put_vf() to drop this
1246 * reference.
1247 */
1248static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1249{
1250	struct ice_vf *vf;
1251	unsigned int bkt;
1252
1253	rcu_read_lock();
1254	ice_for_each_vf_rcu(pf, bkt, vf) {
1255		struct ice_vsi *vsi;
1256		u16 rxq_idx;
1257
1258		vsi = ice_get_vf_vsi(vf);
1259		if (!vsi)
1260			continue;
1261
1262		ice_for_each_rxq(vsi, rxq_idx)
1263			if (vsi->rxq_map[rxq_idx] == pfq) {
1264				struct ice_vf *found;
1265
1266				if (kref_get_unless_zero(&vf->refcnt))
1267					found = vf;
1268				else
1269					found = NULL;
1270				rcu_read_unlock();
1271				return found;
1272			}
1273	}
1274	rcu_read_unlock();
1275
1276	return NULL;
1277}
1278
1279/**
1280 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1281 * @pf: PF used for conversion
1282 * @globalq: global queue index used to convert to PF space queue index
1283 */
1284static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1285{
1286	return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1287}
1288
1289/**
1290 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1291 * @pf: PF that the LAN overflow event happened on
1292 * @event: structure holding the event information for the LAN overflow event
1293 *
1294 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1295 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1296 * reset on the offending VF.
1297 */
1298void
1299ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1300{
1301	u32 gldcb_rtctq, queue;
1302	struct ice_vf *vf;
1303
1304	gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1305	dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1306
1307	/* event returns device global Rx queue number */
1308	queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1309
1310	vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1311	if (!vf)
1312		return;
1313
1314	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1315	ice_put_vf(vf);
1316}
1317
1318/**
1319 * ice_set_vf_spoofchk
1320 * @netdev: network interface device structure
1321 * @vf_id: VF identifier
1322 * @ena: flag to enable or disable feature
 
 
1323 *
1324 * Enable or disable VF spoof checking
 
 
 
 
1325 */
1326int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
 
 
1327{
1328	struct ice_netdev_priv *np = netdev_priv(netdev);
1329	struct ice_pf *pf = np->vsi->back;
1330	struct ice_vsi *vf_vsi;
1331	struct device *dev;
1332	struct ice_vf *vf;
1333	int ret;
1334
1335	dev = ice_pf_to_dev(pf);
1336
1337	vf = ice_get_vf_by_id(pf, vf_id);
1338	if (!vf)
1339		return -EINVAL;
1340
1341	ret = ice_check_vf_ready_for_cfg(vf);
1342	if (ret)
1343		goto out_put_vf;
1344
1345	vf_vsi = ice_get_vf_vsi(vf);
1346	if (!vf_vsi) {
1347		netdev_err(netdev, "VSI %d for VF %d is null\n",
1348			   vf->lan_vsi_idx, vf->vf_id);
1349		ret = -EINVAL;
1350		goto out_put_vf;
1351	}
1352
1353	if (vf_vsi->type != ICE_VSI_VF) {
1354		netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1355			   vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1356		ret = -ENODEV;
1357		goto out_put_vf;
1358	}
1359
1360	if (ena == vf->spoofchk) {
1361		dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1362		ret = 0;
1363		goto out_put_vf;
1364	}
1365
1366	ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1367	if (ret)
1368		dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1369			ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1370	else
1371		vf->spoofchk = ena;
1372
1373out_put_vf:
1374	ice_put_vf(vf);
1375	return ret;
1376}
1377
1378/**
1379 * ice_get_vf_cfg
1380 * @netdev: network interface device structure
1381 * @vf_id: VF identifier
1382 * @ivi: VF configuration structure
1383 *
1384 * return VF configuration
1385 */
1386int
1387ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1388{
1389	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1390	struct ice_vf *vf;
1391	int ret;
1392
1393	vf = ice_get_vf_by_id(pf, vf_id);
1394	if (!vf)
1395		return -EINVAL;
1396
1397	ret = ice_check_vf_ready_for_cfg(vf);
1398	if (ret)
1399		goto out_put_vf;
1400
1401	ivi->vf = vf_id;
1402	ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1403
1404	/* VF configuration for VLAN and applicable QoS */
1405	ivi->vlan = ice_vf_get_port_vlan_id(vf);
1406	ivi->qos = ice_vf_get_port_vlan_prio(vf);
1407	if (ice_vf_is_port_vlan_ena(vf))
1408		ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1409
1410	ivi->trusted = vf->trusted;
1411	ivi->spoofchk = vf->spoofchk;
1412	if (!vf->link_forced)
1413		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1414	else if (vf->link_up)
1415		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1416	else
1417		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1418	ivi->max_tx_rate = vf->max_tx_rate;
1419	ivi->min_tx_rate = vf->min_tx_rate;
1420
1421out_put_vf:
1422	ice_put_vf(vf);
1423	return ret;
1424}
1425
1426/**
1427 * ice_set_vf_mac
1428 * @netdev: network interface device structure
1429 * @vf_id: VF identifier
1430 * @mac: MAC address
 
1431 *
1432 * program VF MAC address
 
 
 
 
 
1433 */
1434int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
 
 
1435{
1436	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1437	struct ice_vf *vf;
1438	int ret;
1439
1440	if (is_multicast_ether_addr(mac)) {
1441		netdev_err(netdev, "%pM not a valid unicast address\n", mac);
1442		return -EINVAL;
1443	}
1444
1445	vf = ice_get_vf_by_id(pf, vf_id);
1446	if (!vf)
1447		return -EINVAL;
1448
1449	/* nothing left to do, unicast MAC already set */
1450	if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1451	    ether_addr_equal(vf->hw_lan_addr, mac)) {
1452		ret = 0;
1453		goto out_put_vf;
1454	}
1455
1456	ret = ice_check_vf_ready_for_cfg(vf);
1457	if (ret)
1458		goto out_put_vf;
1459
1460	mutex_lock(&vf->cfg_lock);
 
1461
1462	/* VF is notified of its new MAC via the PF's response to the
1463	 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
 
 
 
1464	 */
1465	ether_addr_copy(vf->dev_lan_addr, mac);
1466	ether_addr_copy(vf->hw_lan_addr, mac);
1467	if (is_zero_ether_addr(mac)) {
1468		/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1469		vf->pf_set_mac = false;
1470		netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1471			    vf->vf_id);
1472	} else {
1473		/* PF will add MAC rule for the VF */
1474		vf->pf_set_mac = true;
1475		netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1476			    mac, vf_id);
1477	}
1478
1479	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1480	mutex_unlock(&vf->cfg_lock);
1481
1482out_put_vf:
1483	ice_put_vf(vf);
1484	return ret;
1485}
1486
1487/**
1488 * ice_set_vf_trust
1489 * @netdev: network interface device structure
1490 * @vf_id: VF identifier
1491 * @trusted: Boolean value to enable/disable trusted VF
1492 *
1493 * Enable or disable a given VF as trusted
1494 */
1495int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1496{
1497	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1498	struct ice_vf *vf;
1499	int ret;
1500
1501	vf = ice_get_vf_by_id(pf, vf_id);
1502	if (!vf)
1503		return -EINVAL;
1504
1505	if (ice_is_eswitch_mode_switchdev(pf)) {
1506		dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1507		return -EOPNOTSUPP;
1508	}
1509
1510	ret = ice_check_vf_ready_for_cfg(vf);
1511	if (ret)
1512		goto out_put_vf;
1513
1514	/* Check if already trusted */
1515	if (trusted == vf->trusted) {
1516		ret = 0;
1517		goto out_put_vf;
1518	}
1519
1520	mutex_lock(&vf->cfg_lock);
1521
1522	vf->trusted = trusted;
1523	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1524	dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1525		 vf_id, trusted ? "" : "un");
1526
1527	mutex_unlock(&vf->cfg_lock);
1528
1529out_put_vf:
1530	ice_put_vf(vf);
1531	return ret;
1532}
1533
1534/**
1535 * ice_set_vf_link_state
1536 * @netdev: network interface device structure
1537 * @vf_id: VF identifier
1538 * @link_state: required link state
1539 *
1540 * Set VF's link state, irrespective of physical link state status
1541 */
1542int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1543{
1544	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1545	struct ice_vf *vf;
1546	int ret;
1547
1548	vf = ice_get_vf_by_id(pf, vf_id);
1549	if (!vf)
1550		return -EINVAL;
1551
1552	ret = ice_check_vf_ready_for_cfg(vf);
1553	if (ret)
1554		goto out_put_vf;
1555
1556	switch (link_state) {
1557	case IFLA_VF_LINK_STATE_AUTO:
1558		vf->link_forced = false;
1559		break;
1560	case IFLA_VF_LINK_STATE_ENABLE:
1561		vf->link_forced = true;
1562		vf->link_up = true;
1563		break;
1564	case IFLA_VF_LINK_STATE_DISABLE:
1565		vf->link_forced = true;
1566		vf->link_up = false;
1567		break;
1568	default:
1569		ret = -EINVAL;
1570		goto out_put_vf;
1571	}
1572
1573	ice_vc_notify_vf_link_state(vf);
1574
1575out_put_vf:
1576	ice_put_vf(vf);
1577	return ret;
1578}
1579
1580/**
1581 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1582 * @pf: PF associated with VFs
1583 */
1584static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1585{
1586	struct ice_vf *vf;
1587	unsigned int bkt;
1588	int rate = 0;
1589
1590	rcu_read_lock();
1591	ice_for_each_vf_rcu(pf, bkt, vf)
1592		rate += vf->min_tx_rate;
1593	rcu_read_unlock();
1594
1595	return rate;
1596}
1597
1598/**
1599 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1600 * @vf: VF trying to configure min_tx_rate
1601 * @min_tx_rate: min Tx rate in Mbps
1602 *
1603 * Check if the min_tx_rate being passed in will cause oversubscription of total
1604 * min_tx_rate based on the current link speed and all other VFs configured
1605 * min_tx_rate
1606 *
1607 * Return true if the passed min_tx_rate would cause oversubscription, else
1608 * return false
1609 */
1610static bool
1611ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1612{
1613	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1614	int all_vfs_min_tx_rate;
1615	int link_speed_mbps;
1616
1617	if (WARN_ON(!vsi))
1618		return false;
1619
1620	link_speed_mbps = ice_get_link_speed_mbps(vsi);
1621	all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1622
1623	/* this VF's previous rate is being overwritten */
1624	all_vfs_min_tx_rate -= vf->min_tx_rate;
1625
1626	if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1627		dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1628			min_tx_rate, vf->vf_id,
1629			all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1630			link_speed_mbps);
1631		return true;
1632	}
1633
1634	return false;
1635}
1636
1637/**
1638 * ice_set_vf_bw - set min/max VF bandwidth
1639 * @netdev: network interface device structure
1640 * @vf_id: VF identifier
1641 * @min_tx_rate: Minimum Tx rate in Mbps
1642 * @max_tx_rate: Maximum Tx rate in Mbps
1643 */
1644int
1645ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1646	      int max_tx_rate)
1647{
1648	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1649	struct ice_vsi *vsi;
1650	struct device *dev;
1651	struct ice_vf *vf;
1652	int ret;
1653
1654	dev = ice_pf_to_dev(pf);
1655
1656	vf = ice_get_vf_by_id(pf, vf_id);
1657	if (!vf)
1658		return -EINVAL;
1659
1660	ret = ice_check_vf_ready_for_cfg(vf);
1661	if (ret)
1662		goto out_put_vf;
1663
1664	vsi = ice_get_vf_vsi(vf);
1665	if (!vsi) {
1666		ret = -EINVAL;
1667		goto out_put_vf;
1668	}
1669
1670	if (min_tx_rate && ice_is_dcb_active(pf)) {
1671		dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1672		ret = -EOPNOTSUPP;
1673		goto out_put_vf;
1674	}
1675
1676	if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1677		ret = -EINVAL;
1678		goto out_put_vf;
1679	}
1680
1681	if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1682		ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1683		if (ret) {
1684			dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1685				vf->vf_id);
1686			goto out_put_vf;
1687		}
1688
1689		vf->min_tx_rate = min_tx_rate;
1690	}
1691
1692	if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1693		ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1694		if (ret) {
1695			dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1696				vf->vf_id);
1697			goto out_put_vf;
1698		}
1699
1700		vf->max_tx_rate = max_tx_rate;
1701	}
1702
1703out_put_vf:
1704	ice_put_vf(vf);
1705	return ret;
1706}
1707
1708/**
1709 * ice_get_vf_stats - populate some stats for the VF
1710 * @netdev: the netdev of the PF
1711 * @vf_id: the host OS identifier (0-255)
1712 * @vf_stats: pointer to the OS memory to be initialized
1713 */
1714int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1715		     struct ifla_vf_stats *vf_stats)
1716{
1717	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1718	struct ice_eth_stats *stats;
1719	struct ice_vsi *vsi;
1720	struct ice_vf *vf;
1721	int ret;
1722
1723	vf = ice_get_vf_by_id(pf, vf_id);
1724	if (!vf)
1725		return -EINVAL;
1726
1727	ret = ice_check_vf_ready_for_cfg(vf);
1728	if (ret)
1729		goto out_put_vf;
1730
1731	vsi = ice_get_vf_vsi(vf);
1732	if (!vsi) {
1733		ret = -EINVAL;
1734		goto out_put_vf;
1735	}
1736
1737	ice_update_eth_stats(vsi);
1738	stats = &vsi->eth_stats;
1739
1740	memset(vf_stats, 0, sizeof(*vf_stats));
1741
1742	vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1743		stats->rx_multicast;
1744	vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1745		stats->tx_multicast;
1746	vf_stats->rx_bytes   = stats->rx_bytes;
1747	vf_stats->tx_bytes   = stats->tx_bytes;
1748	vf_stats->broadcast  = stats->rx_broadcast;
1749	vf_stats->multicast  = stats->rx_multicast;
1750	vf_stats->rx_dropped = stats->rx_discards;
1751	vf_stats->tx_dropped = stats->tx_discards;
1752
1753out_put_vf:
1754	ice_put_vf(vf);
1755	return ret;
1756}
1757
1758/**
1759 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1760 * @hw: hardware structure used to check the VLAN mode
1761 * @vlan_proto: VLAN TPID being checked
1762 *
1763 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1764 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1765 * Mode (SVM), then only ETH_P_8021Q is supported.
1766 */
1767static bool
1768ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1769{
1770	bool is_supported = false;
1771
1772	switch (vlan_proto) {
1773	case ETH_P_8021Q:
1774		is_supported = true;
1775		break;
1776	case ETH_P_8021AD:
1777		if (ice_is_dvm_ena(hw))
1778			is_supported = true;
1779		break;
1780	}
1781
1782	return is_supported;
1783}
1784
1785/**
1786 * ice_set_vf_port_vlan
1787 * @netdev: network interface device structure
1788 * @vf_id: VF identifier
1789 * @vlan_id: VLAN ID being set
1790 * @qos: priority setting
1791 * @vlan_proto: VLAN protocol
1792 *
1793 * program VF Port VLAN ID and/or QoS
 
 
1794 */
1795int
1796ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1797		     __be16 vlan_proto)
1798{
1799	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1800	u16 local_vlan_proto = ntohs(vlan_proto);
1801	struct device *dev;
1802	struct ice_vf *vf;
1803	int ret;
1804
1805	dev = ice_pf_to_dev(pf);
1806
1807	if (vlan_id >= VLAN_N_VID || qos > 7) {
1808		dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1809			vf_id, vlan_id, qos);
1810		return -EINVAL;
1811	}
1812
1813	if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1814		dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1815			local_vlan_proto);
1816		return -EPROTONOSUPPORT;
1817	}
1818
1819	vf = ice_get_vf_by_id(pf, vf_id);
1820	if (!vf)
1821		return -EINVAL;
1822
1823	ret = ice_check_vf_ready_for_cfg(vf);
1824	if (ret)
1825		goto out_put_vf;
1826
1827	if (ice_vf_get_port_vlan_prio(vf) == qos &&
1828	    ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1829	    ice_vf_get_port_vlan_id(vf) == vlan_id) {
1830		/* duplicate request, so just return success */
1831		dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1832			vlan_id, qos, local_vlan_proto);
1833		ret = 0;
1834		goto out_put_vf;
1835	}
1836
1837	mutex_lock(&vf->cfg_lock);
1838
1839	vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1840	if (ice_vf_is_port_vlan_ena(vf))
1841		dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1842			 vlan_id, qos, local_vlan_proto, vf_id);
1843	else
1844		dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1845
1846	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1847	mutex_unlock(&vf->cfg_lock);
 
 
 
1848
1849out_put_vf:
1850	ice_put_vf(vf);
1851	return ret;
1852}
1853
1854/**
1855 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1856 * @vf: pointer to the VF structure
1857 */
1858void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1859{
1860	struct ice_pf *pf = vf->pf;
1861	struct device *dev;
1862
1863	dev = ice_pf_to_dev(pf);
 
 
 
 
1864
1865	dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1866		 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1867		 vf->dev_lan_addr,
1868		 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1869			  ? "on" : "off");
1870}
1871
1872/**
1873 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1874 * @pf: pointer to the PF structure
1875 *
1876 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1877 */
1878void ice_print_vfs_mdd_events(struct ice_pf *pf)
1879{
1880	struct device *dev = ice_pf_to_dev(pf);
1881	struct ice_hw *hw = &pf->hw;
1882	struct ice_vf *vf;
1883	unsigned int bkt;
1884
1885	/* check that there are pending MDD events to print */
1886	if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1887		return;
1888
1889	/* VF MDD event logs are rate limited to one second intervals */
1890	if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1891		return;
1892
1893	pf->vfs.last_printed_mdd_jiffies = jiffies;
1894
1895	mutex_lock(&pf->vfs.table_lock);
1896	ice_for_each_vf(pf, bkt, vf) {
1897		/* only print Rx MDD event message if there are new events */
1898		if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1899			vf->mdd_rx_events.last_printed =
1900							vf->mdd_rx_events.count;
1901			ice_print_vf_rx_mdd_event(vf);
1902		}
1903
1904		/* only print Tx MDD event message if there are new events */
1905		if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1906			vf->mdd_tx_events.last_printed =
1907							vf->mdd_tx_events.count;
1908
1909			dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
1910				 vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
1911				 vf->dev_lan_addr);
1912		}
1913	}
1914	mutex_unlock(&pf->vfs.table_lock);
1915}
1916
1917/**
1918 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1919 * @pf: pointer to the PF structure
1920 *
1921 * Called when recovering from a PF FLR to restore interrupt capability to
1922 * the VFs.
1923 */
1924void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1925{
1926	struct ice_vf *vf;
1927	u32 bkt;
1928
1929	ice_for_each_vf(pf, bkt, vf)
1930		pci_restore_msi_state(vf->vfdev);
1931}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright (c) 2018, Intel Corporation. */
  3
  4#include "ice_common.h"
  5#include "ice_sriov.h"
 
 
 
 
 
 
 
 
 
 
  6
  7/**
  8 * ice_aq_send_msg_to_vf
  9 * @hw: pointer to the hardware structure
 10 * @vfid: VF ID to send msg
 11 * @v_opcode: opcodes for VF-PF communication
 12 * @v_retval: return error code
 13 * @msg: pointer to the msg buffer
 14 * @msglen: msg length
 15 * @cd: pointer to command details
 16 *
 17 * Send message to VF driver (0x0802) using mailbox
 18 * queue and asynchronously sending message via
 19 * ice_sq_send_cmd() function
 20 */
 21enum ice_status
 22ice_aq_send_msg_to_vf(struct ice_hw *hw, u16 vfid, u32 v_opcode, u32 v_retval,
 23		      u8 *msg, u16 msglen, struct ice_sq_cd *cd)
 24{
 25	struct ice_aqc_pf_vf_msg *cmd;
 26	struct ice_aq_desc desc;
 
 
 
 
 
 
 
 
 27
 28	ice_fill_dflt_direct_cmd_desc(&desc, ice_mbx_opc_send_msg_to_vf);
 
 
 
 
 29
 30	cmd = &desc.params.virt;
 31	cmd->id = cpu_to_le32(vfid);
 
 
 
 
 
 
 32
 33	desc.cookie_high = cpu_to_le32(v_opcode);
 34	desc.cookie_low = cpu_to_le32(v_retval);
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36	if (msglen)
 37		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 38
 39	return ice_sq_send_cmd(hw, &hw->mailboxq, &desc, msg, msglen, cd);
 
 
 
 
 
 
 
 
 
 
 
 40}
 41
 42/**
 43 * ice_conv_link_speed_to_virtchnl
 44 * @adv_link_support: determines the format of the returned link speed
 45 * @link_speed: variable containing the link_speed to be converted
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46 *
 47 * Convert link speed supported by HW to link speed supported by virtchnl.
 48 * If adv_link_support is true, then return link speed in Mbps. Else return
 49 * link speed as a VIRTCHNL_LINK_SPEED_* casted to a u32. Note that the caller
 50 * needs to cast back to an enum virtchnl_link_speed in the case where
 51 * adv_link_support is false, but when adv_link_support is true the caller can
 52 * expect the speed in Mbps.
 53 */
 54u32 ice_conv_link_speed_to_virtchnl(bool adv_link_support, u16 link_speed)
 55{
 56	u32 speed;
 
 57
 58	if (adv_link_support)
 59		switch (link_speed) {
 60		case ICE_AQ_LINK_SPEED_10MB:
 61			speed = ICE_LINK_SPEED_10MBPS;
 62			break;
 63		case ICE_AQ_LINK_SPEED_100MB:
 64			speed = ICE_LINK_SPEED_100MBPS;
 65			break;
 66		case ICE_AQ_LINK_SPEED_1000MB:
 67			speed = ICE_LINK_SPEED_1000MBPS;
 68			break;
 69		case ICE_AQ_LINK_SPEED_2500MB:
 70			speed = ICE_LINK_SPEED_2500MBPS;
 71			break;
 72		case ICE_AQ_LINK_SPEED_5GB:
 73			speed = ICE_LINK_SPEED_5000MBPS;
 74			break;
 75		case ICE_AQ_LINK_SPEED_10GB:
 76			speed = ICE_LINK_SPEED_10000MBPS;
 77			break;
 78		case ICE_AQ_LINK_SPEED_20GB:
 79			speed = ICE_LINK_SPEED_20000MBPS;
 80			break;
 81		case ICE_AQ_LINK_SPEED_25GB:
 82			speed = ICE_LINK_SPEED_25000MBPS;
 83			break;
 84		case ICE_AQ_LINK_SPEED_40GB:
 85			speed = ICE_LINK_SPEED_40000MBPS;
 86			break;
 87		case ICE_AQ_LINK_SPEED_50GB:
 88			speed = ICE_LINK_SPEED_50000MBPS;
 89			break;
 90		case ICE_AQ_LINK_SPEED_100GB:
 91			speed = ICE_LINK_SPEED_100000MBPS;
 92			break;
 93		default:
 94			speed = ICE_LINK_SPEED_UNKNOWN;
 95			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96		}
 97	else
 98		/* Virtchnl speeds are not defined for every speed supported in
 99		 * the hardware. To maintain compatibility with older AVF
100		 * drivers, while reporting the speed the new speed values are
101		 * resolved to the closest known virtchnl speeds
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102		 */
103		switch (link_speed) {
104		case ICE_AQ_LINK_SPEED_10MB:
105		case ICE_AQ_LINK_SPEED_100MB:
106			speed = (u32)VIRTCHNL_LINK_SPEED_100MB;
107			break;
108		case ICE_AQ_LINK_SPEED_1000MB:
109		case ICE_AQ_LINK_SPEED_2500MB:
110		case ICE_AQ_LINK_SPEED_5GB:
111			speed = (u32)VIRTCHNL_LINK_SPEED_1GB;
112			break;
113		case ICE_AQ_LINK_SPEED_10GB:
114			speed = (u32)VIRTCHNL_LINK_SPEED_10GB;
115			break;
116		case ICE_AQ_LINK_SPEED_20GB:
117			speed = (u32)VIRTCHNL_LINK_SPEED_20GB;
118			break;
119		case ICE_AQ_LINK_SPEED_25GB:
120			speed = (u32)VIRTCHNL_LINK_SPEED_25GB;
121			break;
122		case ICE_AQ_LINK_SPEED_40GB:
123		case ICE_AQ_LINK_SPEED_50GB:
124		case ICE_AQ_LINK_SPEED_100GB:
125			speed = (u32)VIRTCHNL_LINK_SPEED_40GB;
126			break;
127		default:
128			speed = (u32)VIRTCHNL_LINK_SPEED_UNKNOWN;
129			break;
130		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
132	return speed;
133}
134
135/* The mailbox overflow detection algorithm helps to check if there
136 * is a possibility of a malicious VF transmitting too many MBX messages to the
137 * PF.
138 * 1. The mailbox snapshot structure, ice_mbx_snapshot, is initialized during
139 * driver initialization in ice_init_hw() using ice_mbx_init_snapshot().
140 * The struct ice_mbx_snapshot helps to track and traverse a static window of
141 * messages within the mailbox queue while looking for a malicious VF.
142 *
143 * 2. When the caller starts processing its mailbox queue in response to an
144 * interrupt, the structure ice_mbx_snapshot is expected to be cleared before
145 * the algorithm can be run for the first time for that interrupt. This can be
146 * done via ice_mbx_reset_snapshot().
 
147 *
148 * 3. For every message read by the caller from the MBX Queue, the caller must
149 * call the detection algorithm's entry function ice_mbx_vf_state_handler().
150 * Before every call to ice_mbx_vf_state_handler() the struct ice_mbx_data is
151 * filled as it is required to be passed to the algorithm.
152 *
153 * 4. Every time a message is read from the MBX queue, a VFId is received which
154 * is passed to the state handler. The boolean output is_malvf of the state
155 * handler ice_mbx_vf_state_handler() serves as an indicator to the caller
156 * whether this VF is malicious or not.
157 *
158 * 5. When a VF is identified to be malicious, the caller can send a message
159 * to the system administrator. The caller can invoke ice_mbx_report_malvf()
160 * to help determine if a malicious VF is to be reported or not. This function
161 * requires the caller to maintain a global bitmap to track all malicious VFs
162 * and pass that to ice_mbx_report_malvf() along with the VFID which was identified
163 * to be malicious by ice_mbx_vf_state_handler().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164 *
165 * 6. The global bitmap maintained by PF can be cleared completely if PF is in
166 * reset or the bit corresponding to a VF can be cleared if that VF is in reset.
167 * When a VF is shut down and brought back up, we assume that the new VF
168 * brought up is not malicious and hence report it if found malicious.
 
 
169 *
170 * 7. The function ice_mbx_reset_snapshot() is called to reset the information
171 * in ice_mbx_snapshot for every new mailbox interrupt handled.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172 *
173 * 8. The memory allocated for variables in ice_mbx_snapshot is de-allocated
174 * when driver is unloaded.
175 */
176#define ICE_RQ_DATA_MASK(rq_data) ((rq_data) & PF_MBX_ARQH_ARQH_M)
177/* Using the highest value for an unsigned 16-bit value 0xFFFF to indicate that
178 * the max messages check must be ignored in the algorithm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179 */
180#define ICE_IGNORE_MAX_MSG_CNT	0xFFFF
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
182/**
183 * ice_mbx_traverse - Pass through mailbox snapshot
184 * @hw: pointer to the HW struct
185 * @new_state: new algorithm state
186 *
187 * Traversing the mailbox static snapshot without checking
188 * for malicious VFs.
189 */
190static void
191ice_mbx_traverse(struct ice_hw *hw,
192		 enum ice_mbx_snapshot_state *new_state)
193{
194	struct ice_mbx_snap_buffer_data *snap_buf;
195	u32 num_iterations;
196
197	snap_buf = &hw->mbx_snapshot.mbx_buf;
 
 
 
 
 
 
 
 
 
198
199	/* As mailbox buffer is circular, applying a mask
200	 * on the incremented iteration count.
 
201	 */
202	num_iterations = ICE_RQ_DATA_MASK(++snap_buf->num_iterations);
 
 
 
 
 
 
 
 
 
203
204	/* Checking either of the below conditions to exit snapshot traversal:
205	 * Condition-1: If the number of iterations in the mailbox is equal to
206	 * the mailbox head which would indicate that we have reached the end
207	 * of the static snapshot.
208	 * Condition-2: If the maximum messages serviced in the mailbox for a
209	 * given interrupt is the highest possible value then there is no need
210	 * to check if the number of messages processed is equal to it. If not
211	 * check if the number of messages processed is greater than or equal
212	 * to the maximum number of mailbox entries serviced in current work item.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213	 */
214	if (num_iterations == snap_buf->head ||
215	    (snap_buf->max_num_msgs_mbx < ICE_IGNORE_MAX_MSG_CNT &&
216	     ++snap_buf->num_msg_proc >= snap_buf->max_num_msgs_mbx))
217		*new_state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218}
219
220/**
221 * ice_mbx_detect_malvf - Detect malicious VF in snapshot
222 * @hw: pointer to the HW struct
223 * @vf_id: relative virtual function ID
224 * @new_state: new algorithm state
225 * @is_malvf: boolean output to indicate if VF is malicious
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226 *
227 * This function tracks the number of asynchronous messages
228 * sent per VF and marks the VF as malicious if it exceeds
229 * the permissible number of messages to send.
 
230 */
231static enum ice_status
232ice_mbx_detect_malvf(struct ice_hw *hw, u16 vf_id,
233		     enum ice_mbx_snapshot_state *new_state,
234		     bool *is_malvf)
235{
236	struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237
238	if (vf_id >= snap->mbx_vf.vfcntr_len)
239		return ICE_ERR_OUT_OF_RANGE;
 
 
 
240
241	/* increment the message count in the VF array */
242	snap->mbx_vf.vf_cntr[vf_id]++;
243
244	if (snap->mbx_vf.vf_cntr[vf_id] >= ICE_ASYNC_VF_MSG_THRESHOLD)
245		*is_malvf = true;
 
 
246
247	/* continue to iterate through the mailbox snapshot */
248	ice_mbx_traverse(hw, new_state);
 
 
 
 
 
 
249
250	return 0;
 
 
 
 
251}
252
253/**
254 * ice_mbx_reset_snapshot - Reset mailbox snapshot structure
255 * @snap: pointer to mailbox snapshot structure in the ice_hw struct
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256 *
257 * Reset the mailbox snapshot structure and clear VF counter array.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258 */
259static void ice_mbx_reset_snapshot(struct ice_mbx_snapshot *snap)
260{
261	u32 vfcntr_len;
 
 
 
 
 
 
 
 
 
 
262
263	if (!snap || !snap->mbx_vf.vf_cntr)
264		return;
 
 
265
266	/* Clear VF counters. */
267	vfcntr_len = snap->mbx_vf.vfcntr_len;
268	if (vfcntr_len)
269		memset(snap->mbx_vf.vf_cntr, 0,
270		       (vfcntr_len * sizeof(*snap->mbx_vf.vf_cntr)));
271
272	/* Reset mailbox snapshot for a new capture. */
273	memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
274	snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
275}
276
277/**
278 * ice_mbx_vf_state_handler - Handle states of the overflow algorithm
279 * @hw: pointer to the HW struct
280 * @mbx_data: pointer to structure containing mailbox data
281 * @vf_id: relative virtual function (VF) ID
282 * @is_malvf: boolean output to indicate if VF is malicious
283 *
284 * The function serves as an entry point for the malicious VF
285 * detection algorithm by handling the different states and state
286 * transitions of the algorithm:
287 * New snapshot: This state is entered when creating a new static
288 * snapshot. The data from any previous mailbox snapshot is
289 * cleared and a new capture of the mailbox head and tail is
290 * logged. This will be the new static snapshot to detect
291 * asynchronous messages sent by VFs. On capturing the snapshot
292 * and depending on whether the number of pending messages in that
293 * snapshot exceed the watermark value, the state machine enters
294 * traverse or detect states.
295 * Traverse: If pending message count is below watermark then iterate
296 * through the snapshot without any action on VF.
297 * Detect: If pending message count exceeds watermark traverse
298 * the static snapshot and look for a malicious VF.
299 */
300enum ice_status
301ice_mbx_vf_state_handler(struct ice_hw *hw,
302			 struct ice_mbx_data *mbx_data, u16 vf_id,
303			 bool *is_malvf)
304{
305	struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
306	struct ice_mbx_snap_buffer_data *snap_buf;
307	struct ice_ctl_q_info *cq = &hw->mailboxq;
308	enum ice_mbx_snapshot_state new_state;
309	enum ice_status status = 0;
310
311	if (!is_malvf || !mbx_data)
312		return ICE_ERR_BAD_PTR;
 
 
 
 
 
 
313
314	/* When entering the mailbox state machine assume that the VF
315	 * is not malicious until detected.
 
 
 
 
 
 
316	 */
317	*is_malvf = false;
 
 
 
 
318
319	 /* Checking if max messages allowed to be processed while servicing current
320	  * interrupt is not less than the defined AVF message threshold.
321	  */
322	if (mbx_data->max_num_msgs_mbx <= ICE_ASYNC_VF_MSG_THRESHOLD)
323		return ICE_ERR_INVAL_SIZE;
324
325	/* The watermark value should not be lesser than the threshold limit
326	 * set for the number of asynchronous messages a VF can send to mailbox
327	 * nor should it be greater than the maximum number of messages in the
328	 * mailbox serviced in current interrupt.
329	 */
330	if (mbx_data->async_watermark_val < ICE_ASYNC_VF_MSG_THRESHOLD ||
331	    mbx_data->async_watermark_val > mbx_data->max_num_msgs_mbx)
332		return ICE_ERR_PARAM;
333
334	new_state = ICE_MAL_VF_DETECT_STATE_INVALID;
335	snap_buf = &snap->mbx_buf;
336
337	switch (snap_buf->state) {
338	case ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT:
339		/* Clear any previously held data in mailbox snapshot structure. */
340		ice_mbx_reset_snapshot(snap);
341
342		/* Collect the pending ARQ count, number of messages processed and
343		 * the maximum number of messages allowed to be processed from the
344		 * Mailbox for current interrupt.
345		 */
346		snap_buf->num_pending_arq = mbx_data->num_pending_arq;
347		snap_buf->num_msg_proc = mbx_data->num_msg_proc;
348		snap_buf->max_num_msgs_mbx = mbx_data->max_num_msgs_mbx;
349
350		/* Capture a new static snapshot of the mailbox by logging the
351		 * head and tail of snapshot and set num_iterations to the tail
352		 * value to mark the start of the iteration through the snapshot.
353		 */
354		snap_buf->head = ICE_RQ_DATA_MASK(cq->rq.next_to_clean +
355						  mbx_data->num_pending_arq);
356		snap_buf->tail = ICE_RQ_DATA_MASK(cq->rq.next_to_clean - 1);
357		snap_buf->num_iterations = snap_buf->tail;
358
359		/* Pending ARQ messages returned by ice_clean_rq_elem
360		 * is the difference between the head and tail of the
361		 * mailbox queue. Comparing this value against the watermark
362		 * helps to check if we potentially have malicious VFs.
363		 */
364		if (snap_buf->num_pending_arq >=
365		    mbx_data->async_watermark_val) {
366			new_state = ICE_MAL_VF_DETECT_STATE_DETECT;
367			status = ice_mbx_detect_malvf(hw, vf_id, &new_state, is_malvf);
368		} else {
369			new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE;
370			ice_mbx_traverse(hw, &new_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371		}
372		break;
373
374	case ICE_MAL_VF_DETECT_STATE_TRAVERSE:
375		new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE;
376		ice_mbx_traverse(hw, &new_state);
377		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378
379	case ICE_MAL_VF_DETECT_STATE_DETECT:
380		new_state = ICE_MAL_VF_DETECT_STATE_DETECT;
381		status = ice_mbx_detect_malvf(hw, vf_id, &new_state, is_malvf);
382		break;
 
 
 
 
 
 
 
 
 
 
 
 
383
384	default:
385		new_state = ICE_MAL_VF_DETECT_STATE_INVALID;
386		status = ICE_ERR_CFG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388
389	snap_buf->state = new_state;
 
390
391	return status;
 
 
 
 
 
 
 
 
392}
393
394/**
395 * ice_mbx_report_malvf - Track and note malicious VF
396 * @hw: pointer to the HW struct
397 * @all_malvfs: all malicious VFs tracked by PF
398 * @bitmap_len: length of bitmap in bits
399 * @vf_id: relative virtual function ID of the malicious VF
400 * @report_malvf: boolean to indicate if malicious VF must be reported
401 *
402 * This function will update a bitmap that keeps track of the malicious
403 * VFs attached to the PF. A malicious VF must be reported only once if
404 * discovered between VF resets or loading so the function checks
405 * the input vf_id against the bitmap to verify if the VF has been
406 * detected in any previous mailbox iterations.
407 */
408enum ice_status
409ice_mbx_report_malvf(struct ice_hw *hw, unsigned long *all_malvfs,
410		     u16 bitmap_len, u16 vf_id, bool *report_malvf)
411{
412	if (!all_malvfs || !report_malvf)
413		return ICE_ERR_PARAM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414
415	*report_malvf = false;
 
 
 
 
 
416
417	if (bitmap_len < hw->mbx_snapshot.mbx_vf.vfcntr_len)
418		return ICE_ERR_INVAL_SIZE;
 
 
 
419
420	if (vf_id >= bitmap_len)
421		return ICE_ERR_OUT_OF_RANGE;
 
 
 
 
422
423	/* If the vf_id is found in the bitmap set bit and boolean to true */
424	if (!test_and_set_bit(vf_id, all_malvfs))
425		*report_malvf = true;
 
426
427	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428}
429
430/**
431 * ice_mbx_clear_malvf - Clear VF bitmap and counter for VF ID
432 * @snap: pointer to the mailbox snapshot structure
433 * @all_malvfs: all malicious VFs tracked by PF
434 * @bitmap_len: length of bitmap in bits
435 * @vf_id: relative virtual function ID of the malicious VF
436 *
437 * In case of a VF reset, this function can be called to clear
438 * the bit corresponding to the VF ID in the bitmap tracking all
439 * malicious VFs attached to the PF. The function also clears the
440 * VF counter array at the index of the VF ID. This is to ensure
441 * that the new VF loaded is not considered malicious before going
442 * through the overflow detection algorithm.
443 */
444enum ice_status
445ice_mbx_clear_malvf(struct ice_mbx_snapshot *snap, unsigned long *all_malvfs,
446		    u16 bitmap_len, u16 vf_id)
447{
448	if (!snap || !all_malvfs)
449		return ICE_ERR_PARAM;
 
 
 
 
 
 
450
451	if (bitmap_len < snap->mbx_vf.vfcntr_len)
452		return ICE_ERR_INVAL_SIZE;
 
 
 
 
 
 
 
 
453
454	/* Ensure VF ID value is not larger than bitmap or VF counter length */
455	if (vf_id >= bitmap_len || vf_id >= snap->mbx_vf.vfcntr_len)
456		return ICE_ERR_OUT_OF_RANGE;
457
458	/* Clear VF ID bit in the bitmap tracking malicious VFs attached to PF */
459	clear_bit(vf_id, all_malvfs);
460
461	/* Clear the VF counter in the mailbox snapshot structure for that VF ID.
462	 * This is to ensure that if a VF is unloaded and a new one brought back
463	 * up with the same VF ID for a snapshot currently in traversal or detect
464	 * state the counter for that VF ID does not increment on top of existing
465	 * values in the mailbox overflow detection algorithm.
466	 */
467	snap->mbx_vf.vf_cntr[vf_id] = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468
469	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470}
471
472/**
473 * ice_mbx_init_snapshot - Initialize mailbox snapshot structure
474 * @hw: pointer to the hardware structure
475 * @vf_count: number of VFs allocated on a PF
476 *
477 * Clear the mailbox snapshot structure and allocate memory
478 * for the VF counter array based on the number of VFs allocated
479 * on that PF.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480 *
481 * Assumption: This function will assume ice_get_caps() has already been
482 * called to ensure that the vf_count can be compared against the number
483 * of VFs supported as defined in the functional capabilities of the device.
484 */
485enum ice_status ice_mbx_init_snapshot(struct ice_hw *hw, u16 vf_count)
 
 
486{
487	struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
 
 
 
 
 
 
 
 
 
 
 
 
488
489	/* Ensure that the number of VFs allocated is non-zero and
490	 * is not greater than the number of supported VFs defined in
491	 * the functional capabilities of the PF.
492	 */
493	if (!vf_count || vf_count > hw->func_caps.num_allocd_vfs)
494		return ICE_ERR_INVAL_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496	snap->mbx_vf.vf_cntr = devm_kcalloc(ice_hw_to_dev(hw), vf_count,
497					    sizeof(*snap->mbx_vf.vf_cntr),
498					    GFP_KERNEL);
499	if (!snap->mbx_vf.vf_cntr)
500		return ICE_ERR_NO_MEMORY;
501
502	/* Setting the VF counter length to the number of allocated
503	 * VFs for given PF's functional capabilities.
504	 */
505	snap->mbx_vf.vfcntr_len = vf_count;
 
 
 
 
 
 
 
 
 
506
507	/* Clear mbx_buf in the mailbox snaphot structure and setting the
508	 * mailbox snapshot state to a new capture.
509	 */
510	memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
511	snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
512
513	return 0;
 
 
 
 
514}
515
516/**
517 * ice_mbx_deinit_snapshot - Free mailbox snapshot structure
518 * @hw: pointer to the hardware structure
519 *
520 * Clear the mailbox snapshot structure and free the VF counter array.
521 */
522void ice_mbx_deinit_snapshot(struct ice_hw *hw)
523{
524	struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
 
 
 
525
526	/* Free VF counter array and reset VF counter length */
527	devm_kfree(ice_hw_to_dev(hw), snap->mbx_vf.vf_cntr);
528	snap->mbx_vf.vfcntr_len = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529
530	/* Clear mbx_buf in the mailbox snaphot structure */
531	memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
532}