Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef _BCACHE_UTIL_H
  4#define _BCACHE_UTIL_H
  5
  6#include <linux/blkdev.h>
  7#include <linux/closure.h>
  8#include <linux/errno.h>
  9#include <linux/kernel.h>
 10#include <linux/sched/clock.h>
 11#include <linux/llist.h>
 12#include <linux/ratelimit.h>
 13#include <linux/vmalloc.h>
 14#include <linux/workqueue.h>
 15#include <linux/crc64.h>
 16
 
 
 
 
 17struct closure;
 18
 19#ifdef CONFIG_BCACHE_DEBUG
 20
 21#define EBUG_ON(cond)			BUG_ON(cond)
 22#define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
 23#define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
 24
 25#else /* DEBUG */
 26
 27#define EBUG_ON(cond)		do { if (cond) do {} while (0); } while (0)
 28#define atomic_dec_bug(v)	atomic_dec(v)
 29#define atomic_inc_bug(v, i)	atomic_inc(v)
 30
 31#endif
 32
 33#define DECLARE_HEAP(type, name)					\
 34	struct {							\
 35		size_t size, used;					\
 36		type *data;						\
 37	} name
 38
 39#define init_heap(heap, _size, gfp)					\
 40({									\
 41	size_t _bytes;							\
 42	(heap)->used = 0;						\
 43	(heap)->size = (_size);						\
 44	_bytes = (heap)->size * sizeof(*(heap)->data);			\
 45	(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
 46	(heap)->data;							\
 47})
 48
 49#define free_heap(heap)							\
 50do {									\
 51	kvfree((heap)->data);						\
 52	(heap)->data = NULL;						\
 53} while (0)
 54
 55#define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
 56
 57#define heap_sift(h, i, cmp)						\
 58do {									\
 59	size_t _r, _j = i;						\
 60									\
 61	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
 62		_r = _j * 2 + 1;					\
 63		if (_r + 1 < (h)->used &&				\
 64		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
 65			_r++;						\
 66									\
 67		if (cmp((h)->data[_r], (h)->data[_j]))			\
 68			break;						\
 69		heap_swap(h, _r, _j);					\
 70	}								\
 71} while (0)
 72
 73#define heap_sift_down(h, i, cmp)					\
 74do {									\
 75	while (i) {							\
 76		size_t p = (i - 1) / 2;					\
 77		if (cmp((h)->data[i], (h)->data[p]))			\
 78			break;						\
 79		heap_swap(h, i, p);					\
 80		i = p;							\
 81	}								\
 82} while (0)
 83
 84#define heap_add(h, d, cmp)						\
 85({									\
 86	bool _r = !heap_full(h);					\
 87	if (_r) {							\
 88		size_t _i = (h)->used++;				\
 89		(h)->data[_i] = d;					\
 90									\
 91		heap_sift_down(h, _i, cmp);				\
 92		heap_sift(h, _i, cmp);					\
 93	}								\
 94	_r;								\
 95})
 96
 97#define heap_pop(h, d, cmp)						\
 98({									\
 99	bool _r = (h)->used;						\
100	if (_r) {							\
101		(d) = (h)->data[0];					\
102		(h)->used--;						\
103		heap_swap(h, 0, (h)->used);				\
104		heap_sift(h, 0, cmp);					\
105	}								\
106	_r;								\
107})
108
109#define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)
110
111#define heap_full(h)	((h)->used == (h)->size)
112
113#define DECLARE_FIFO(type, name)					\
114	struct {							\
115		size_t front, back, size, mask;				\
116		type *data;						\
117	} name
118
119#define fifo_for_each(c, fifo, iter)					\
120	for (iter = (fifo)->front;					\
121	     c = (fifo)->data[iter], iter != (fifo)->back;		\
122	     iter = (iter + 1) & (fifo)->mask)
123
124#define __init_fifo(fifo, gfp)						\
125({									\
126	size_t _allocated_size, _bytes;					\
127	BUG_ON(!(fifo)->size);						\
128									\
129	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
130	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
131									\
132	(fifo)->mask = _allocated_size - 1;				\
133	(fifo)->front = (fifo)->back = 0;				\
134									\
135	(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
136	(fifo)->data;							\
137})
138
139#define init_fifo_exact(fifo, _size, gfp)				\
140({									\
141	(fifo)->size = (_size);						\
142	__init_fifo(fifo, gfp);						\
143})
144
145#define init_fifo(fifo, _size, gfp)					\
146({									\
147	(fifo)->size = (_size);						\
148	if ((fifo)->size > 4)						\
149		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
150	__init_fifo(fifo, gfp);						\
151})
152
153#define free_fifo(fifo)							\
154do {									\
155	kvfree((fifo)->data);						\
156	(fifo)->data = NULL;						\
157} while (0)
158
159#define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
160#define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
161
162#define fifo_empty(fifo)	(!fifo_used(fifo))
163#define fifo_full(fifo)		(!fifo_free(fifo))
164
165#define fifo_front(fifo)	((fifo)->data[(fifo)->front])
166#define fifo_back(fifo)							\
167	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
168
169#define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
170
171#define fifo_push_back(fifo, i)						\
172({									\
173	bool _r = !fifo_full((fifo));					\
174	if (_r) {							\
175		(fifo)->data[(fifo)->back++] = (i);			\
176		(fifo)->back &= (fifo)->mask;				\
177	}								\
178	_r;								\
179})
180
181#define fifo_pop_front(fifo, i)						\
182({									\
183	bool _r = !fifo_empty((fifo));					\
184	if (_r) {							\
185		(i) = (fifo)->data[(fifo)->front++];			\
186		(fifo)->front &= (fifo)->mask;				\
187	}								\
188	_r;								\
189})
190
191#define fifo_push_front(fifo, i)					\
192({									\
193	bool _r = !fifo_full((fifo));					\
194	if (_r) {							\
195		--(fifo)->front;					\
196		(fifo)->front &= (fifo)->mask;				\
197		(fifo)->data[(fifo)->front] = (i);			\
198	}								\
199	_r;								\
200})
201
202#define fifo_pop_back(fifo, i)						\
203({									\
204	bool _r = !fifo_empty((fifo));					\
205	if (_r) {							\
206		--(fifo)->back;						\
207		(fifo)->back &= (fifo)->mask;				\
208		(i) = (fifo)->data[(fifo)->back]			\
209	}								\
210	_r;								\
211})
212
213#define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
214#define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
215
216#define fifo_swap(l, r)							\
217do {									\
218	swap((l)->front, (r)->front);					\
219	swap((l)->back, (r)->back);					\
220	swap((l)->size, (r)->size);					\
221	swap((l)->mask, (r)->mask);					\
222	swap((l)->data, (r)->data);					\
223} while (0)
224
225#define fifo_move(dest, src)						\
226do {									\
227	typeof(*((dest)->data)) _t;					\
228	while (!fifo_full(dest) &&					\
229	       fifo_pop(src, _t))					\
230		fifo_push(dest, _t);					\
231} while (0)
232
233/*
234 * Simple array based allocator - preallocates a number of elements and you can
235 * never allocate more than that, also has no locking.
236 *
237 * Handy because if you know you only need a fixed number of elements you don't
238 * have to worry about memory allocation failure, and sometimes a mempool isn't
239 * what you want.
240 *
241 * We treat the free elements as entries in a singly linked list, and the
242 * freelist as a stack - allocating and freeing push and pop off the freelist.
243 */
244
245#define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
246	struct {							\
247		type	*freelist;					\
248		type	data[size];					\
249	} name
250
251#define array_alloc(array)						\
252({									\
253	typeof((array)->freelist) _ret = (array)->freelist;		\
254									\
255	if (_ret)							\
256		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
257									\
258	_ret;								\
259})
260
261#define array_free(array, ptr)						\
262do {									\
263	typeof((array)->freelist) _ptr = ptr;				\
264									\
265	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
266	(array)->freelist = _ptr;					\
267} while (0)
268
269#define array_allocator_init(array)					\
270do {									\
271	typeof((array)->freelist) _i;					\
272									\
273	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
274	(array)->freelist = NULL;					\
275									\
276	for (_i = (array)->data;					\
277	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
278	     _i++)							\
279		array_free(array, _i);					\
280} while (0)
281
282#define array_freelist_empty(array)	((array)->freelist == NULL)
283
284#define ANYSINT_MAX(t)							\
285	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
286
287int bch_strtoint_h(const char *cp, int *res);
288int bch_strtouint_h(const char *cp, unsigned int *res);
289int bch_strtoll_h(const char *cp, long long *res);
290int bch_strtoull_h(const char *cp, unsigned long long *res);
291
292static inline int bch_strtol_h(const char *cp, long *res)
293{
294#if BITS_PER_LONG == 32
295	return bch_strtoint_h(cp, (int *) res);
296#else
297	return bch_strtoll_h(cp, (long long *) res);
298#endif
299}
300
301static inline int bch_strtoul_h(const char *cp, long *res)
302{
303#if BITS_PER_LONG == 32
304	return bch_strtouint_h(cp, (unsigned int *) res);
305#else
306	return bch_strtoull_h(cp, (unsigned long long *) res);
307#endif
308}
309
310#define strtoi_h(cp, res)						\
311	(__builtin_types_compatible_p(typeof(*res), int)		\
312	? bch_strtoint_h(cp, (void *) res)				\
313	: __builtin_types_compatible_p(typeof(*res), long)		\
314	? bch_strtol_h(cp, (void *) res)				\
315	: __builtin_types_compatible_p(typeof(*res), long long)		\
316	? bch_strtoll_h(cp, (void *) res)				\
317	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
318	? bch_strtouint_h(cp, (void *) res)				\
319	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
320	? bch_strtoul_h(cp, (void *) res)				\
321	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
322	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
323
324#define strtoul_safe(cp, var)						\
325({									\
326	unsigned long _v;						\
327	int _r = kstrtoul(cp, 10, &_v);					\
328	if (!_r)							\
329		var = _v;						\
330	_r;								\
331})
332
333#define strtoul_safe_clamp(cp, var, min, max)				\
334({									\
335	unsigned long _v;						\
336	int _r = kstrtoul(cp, 10, &_v);					\
337	if (!_r)							\
338		var = clamp_t(typeof(var), _v, min, max);		\
339	_r;								\
340})
341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342ssize_t bch_hprint(char *buf, int64_t v);
343
344bool bch_is_zero(const char *p, size_t n);
345int bch_parse_uuid(const char *s, char *uuid);
346
347struct time_stats {
348	spinlock_t	lock;
349	/*
350	 * all fields are in nanoseconds, averages are ewmas stored left shifted
351	 * by 8
352	 */
353	uint64_t	max_duration;
354	uint64_t	average_duration;
355	uint64_t	average_frequency;
356	uint64_t	last;
357};
358
359void bch_time_stats_update(struct time_stats *stats, uint64_t time);
360
361static inline unsigned int local_clock_us(void)
362{
363	return local_clock() >> 10;
364}
365
366#define NSEC_PER_ns			1L
367#define NSEC_PER_us			NSEC_PER_USEC
368#define NSEC_PER_ms			NSEC_PER_MSEC
369#define NSEC_PER_sec			NSEC_PER_SEC
370
371#define __print_time_stat(stats, name, stat, units)			\
372	sysfs_print(name ## _ ## stat ## _ ## units,			\
373		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
374
375#define sysfs_print_time_stats(stats, name,				\
376			       frequency_units,				\
377			       duration_units)				\
378do {									\
379	__print_time_stat(stats, name,					\
380			  average_frequency,	frequency_units);	\
381	__print_time_stat(stats, name,					\
382			  average_duration,	duration_units);	\
383	sysfs_print(name ## _ ##max_duration ## _ ## duration_units,	\
384			div_u64((stats)->max_duration,			\
385				NSEC_PER_ ## duration_units));		\
386									\
387	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
388		    ? div_s64(local_clock() - (stats)->last,		\
389			      NSEC_PER_ ## frequency_units)		\
390		    : -1LL);						\
391} while (0)
392
393#define sysfs_time_stats_attribute(name,				\
394				   frequency_units,			\
395				   duration_units)			\
396read_attribute(name ## _average_frequency_ ## frequency_units);		\
397read_attribute(name ## _average_duration_ ## duration_units);		\
398read_attribute(name ## _max_duration_ ## duration_units);		\
399read_attribute(name ## _last_ ## frequency_units)
400
401#define sysfs_time_stats_attribute_list(name,				\
402					frequency_units,		\
403					duration_units)			\
404&sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
405&sysfs_ ## name ## _average_duration_ ## duration_units,		\
406&sysfs_ ## name ## _max_duration_ ## duration_units,			\
407&sysfs_ ## name ## _last_ ## frequency_units,
408
409#define ewma_add(ewma, val, weight, factor)				\
410({									\
411	(ewma) *= (weight) - 1;						\
412	(ewma) += (val) << factor;					\
413	(ewma) /= (weight);						\
414	(ewma) >> factor;						\
415})
416
417struct bch_ratelimit {
418	/* Next time we want to do some work, in nanoseconds */
419	uint64_t		next;
420
421	/*
422	 * Rate at which we want to do work, in units per second
423	 * The units here correspond to the units passed to bch_next_delay()
424	 */
425	atomic_long_t		rate;
426};
427
428static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
429{
430	d->next = local_clock();
431}
432
433uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
434
435#define __DIV_SAFE(n, d, zero)						\
436({									\
437	typeof(n) _n = (n);						\
438	typeof(d) _d = (d);						\
439	_d ? _n / _d : zero;						\
440})
441
442#define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
443
444#define container_of_or_null(ptr, type, member)				\
445({									\
446	typeof(ptr) _ptr = ptr;						\
447	_ptr ? container_of(_ptr, type, member) : NULL;			\
448})
449
450#define RB_INSERT(root, new, member, cmp)				\
451({									\
452	__label__ dup;							\
453	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
454	typeof(new) this;						\
455	int res, ret = -1;						\
456									\
457	while (*n) {							\
458		parent = *n;						\
459		this = container_of(*n, typeof(*(new)), member);	\
460		res = cmp(new, this);					\
461		if (!res)						\
462			goto dup;					\
463		n = res < 0						\
464			? &(*n)->rb_left				\
465			: &(*n)->rb_right;				\
466	}								\
467									\
468	rb_link_node(&(new)->member, parent, n);			\
469	rb_insert_color(&(new)->member, root);				\
470	ret = 0;							\
471dup:									\
472	ret;								\
473})
474
475#define RB_SEARCH(root, search, member, cmp)				\
476({									\
477	struct rb_node *n = (root)->rb_node;				\
478	typeof(&(search)) this, ret = NULL;				\
479	int res;							\
480									\
481	while (n) {							\
482		this = container_of(n, typeof(search), member);		\
483		res = cmp(&(search), this);				\
484		if (!res) {						\
485			ret = this;					\
486			break;						\
487		}							\
488		n = res < 0						\
489			? n->rb_left					\
490			: n->rb_right;					\
491	}								\
492	ret;								\
493})
494
495#define RB_GREATER(root, search, member, cmp)				\
496({									\
497	struct rb_node *n = (root)->rb_node;				\
498	typeof(&(search)) this, ret = NULL;				\
499	int res;							\
500									\
501	while (n) {							\
502		this = container_of(n, typeof(search), member);		\
503		res = cmp(&(search), this);				\
504		if (res < 0) {						\
505			ret = this;					\
506			n = n->rb_left;					\
507		} else							\
508			n = n->rb_right;				\
509	}								\
510	ret;								\
511})
512
513#define RB_FIRST(root, type, member)					\
514	container_of_or_null(rb_first(root), type, member)
515
516#define RB_LAST(root, type, member)					\
517	container_of_or_null(rb_last(root), type, member)
518
519#define RB_NEXT(ptr, member)						\
520	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
521
522#define RB_PREV(ptr, member)						\
523	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
524
525static inline uint64_t bch_crc64(const void *p, size_t len)
526{
527	uint64_t crc = 0xffffffffffffffffULL;
528
529	crc = crc64_be(crc, p, len);
530	return crc ^ 0xffffffffffffffffULL;
531}
532
 
 
 
 
 
 
 
 
533/*
534 * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
535 * frac_bits), with the less-significant bits filled in by linear
536 * interpolation.
537 *
538 * This can also be interpreted as a floating-point number format,
539 * where the low frac_bits are the mantissa (with implicit leading
540 * 1 bit), and the more significant bits are the exponent.
541 * The return value is 1.mantissa * 2^exponent.
542 *
543 * The way this is used, fract_bits is 6 and the largest possible
544 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
545 * so the maximum output is 0x1fc00.
546 */
547static inline unsigned int fract_exp_two(unsigned int x,
548					 unsigned int fract_bits)
549{
550	unsigned int mantissa = 1 << fract_bits;	/* Implicit bit */
551
552	mantissa += x & (mantissa - 1);
553	x >>= fract_bits;	/* The exponent */
554	/* Largest intermediate value 0x7f0000 */
555	return mantissa << x >> fract_bits;
556}
557
558void bch_bio_map(struct bio *bio, void *base);
559int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
560
 
 
 
 
561#endif /* _BCACHE_UTIL_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3#ifndef _BCACHE_UTIL_H
  4#define _BCACHE_UTIL_H
  5
  6#include <linux/blkdev.h>
 
  7#include <linux/errno.h>
  8#include <linux/kernel.h>
  9#include <linux/sched/clock.h>
 10#include <linux/llist.h>
 11#include <linux/ratelimit.h>
 12#include <linux/vmalloc.h>
 13#include <linux/workqueue.h>
 14#include <linux/crc64.h>
 15
 16#include "closure.h"
 17
 18#define PAGE_SECTORS		(PAGE_SIZE / 512)
 19
 20struct closure;
 21
 22#ifdef CONFIG_BCACHE_DEBUG
 23
 24#define EBUG_ON(cond)			BUG_ON(cond)
 25#define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
 26#define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
 27
 28#else /* DEBUG */
 29
 30#define EBUG_ON(cond)		do { if (cond) do {} while (0); } while (0)
 31#define atomic_dec_bug(v)	atomic_dec(v)
 32#define atomic_inc_bug(v, i)	atomic_inc(v)
 33
 34#endif
 35
 36#define DECLARE_HEAP(type, name)					\
 37	struct {							\
 38		size_t size, used;					\
 39		type *data;						\
 40	} name
 41
 42#define init_heap(heap, _size, gfp)					\
 43({									\
 44	size_t _bytes;							\
 45	(heap)->used = 0;						\
 46	(heap)->size = (_size);						\
 47	_bytes = (heap)->size * sizeof(*(heap)->data);			\
 48	(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
 49	(heap)->data;							\
 50})
 51
 52#define free_heap(heap)							\
 53do {									\
 54	kvfree((heap)->data);						\
 55	(heap)->data = NULL;						\
 56} while (0)
 57
 58#define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
 59
 60#define heap_sift(h, i, cmp)						\
 61do {									\
 62	size_t _r, _j = i;						\
 63									\
 64	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
 65		_r = _j * 2 + 1;					\
 66		if (_r + 1 < (h)->used &&				\
 67		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
 68			_r++;						\
 69									\
 70		if (cmp((h)->data[_r], (h)->data[_j]))			\
 71			break;						\
 72		heap_swap(h, _r, _j);					\
 73	}								\
 74} while (0)
 75
 76#define heap_sift_down(h, i, cmp)					\
 77do {									\
 78	while (i) {							\
 79		size_t p = (i - 1) / 2;					\
 80		if (cmp((h)->data[i], (h)->data[p]))			\
 81			break;						\
 82		heap_swap(h, i, p);					\
 83		i = p;							\
 84	}								\
 85} while (0)
 86
 87#define heap_add(h, d, cmp)						\
 88({									\
 89	bool _r = !heap_full(h);					\
 90	if (_r) {							\
 91		size_t _i = (h)->used++;				\
 92		(h)->data[_i] = d;					\
 93									\
 94		heap_sift_down(h, _i, cmp);				\
 95		heap_sift(h, _i, cmp);					\
 96	}								\
 97	_r;								\
 98})
 99
100#define heap_pop(h, d, cmp)						\
101({									\
102	bool _r = (h)->used;						\
103	if (_r) {							\
104		(d) = (h)->data[0];					\
105		(h)->used--;						\
106		heap_swap(h, 0, (h)->used);				\
107		heap_sift(h, 0, cmp);					\
108	}								\
109	_r;								\
110})
111
112#define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)
113
114#define heap_full(h)	((h)->used == (h)->size)
115
116#define DECLARE_FIFO(type, name)					\
117	struct {							\
118		size_t front, back, size, mask;				\
119		type *data;						\
120	} name
121
122#define fifo_for_each(c, fifo, iter)					\
123	for (iter = (fifo)->front;					\
124	     c = (fifo)->data[iter], iter != (fifo)->back;		\
125	     iter = (iter + 1) & (fifo)->mask)
126
127#define __init_fifo(fifo, gfp)						\
128({									\
129	size_t _allocated_size, _bytes;					\
130	BUG_ON(!(fifo)->size);						\
131									\
132	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
133	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
134									\
135	(fifo)->mask = _allocated_size - 1;				\
136	(fifo)->front = (fifo)->back = 0;				\
137									\
138	(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL);		\
139	(fifo)->data;							\
140})
141
142#define init_fifo_exact(fifo, _size, gfp)				\
143({									\
144	(fifo)->size = (_size);						\
145	__init_fifo(fifo, gfp);						\
146})
147
148#define init_fifo(fifo, _size, gfp)					\
149({									\
150	(fifo)->size = (_size);						\
151	if ((fifo)->size > 4)						\
152		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
153	__init_fifo(fifo, gfp);						\
154})
155
156#define free_fifo(fifo)							\
157do {									\
158	kvfree((fifo)->data);						\
159	(fifo)->data = NULL;						\
160} while (0)
161
162#define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
163#define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
164
165#define fifo_empty(fifo)	(!fifo_used(fifo))
166#define fifo_full(fifo)		(!fifo_free(fifo))
167
168#define fifo_front(fifo)	((fifo)->data[(fifo)->front])
169#define fifo_back(fifo)							\
170	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
171
172#define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
173
174#define fifo_push_back(fifo, i)						\
175({									\
176	bool _r = !fifo_full((fifo));					\
177	if (_r) {							\
178		(fifo)->data[(fifo)->back++] = (i);			\
179		(fifo)->back &= (fifo)->mask;				\
180	}								\
181	_r;								\
182})
183
184#define fifo_pop_front(fifo, i)						\
185({									\
186	bool _r = !fifo_empty((fifo));					\
187	if (_r) {							\
188		(i) = (fifo)->data[(fifo)->front++];			\
189		(fifo)->front &= (fifo)->mask;				\
190	}								\
191	_r;								\
192})
193
194#define fifo_push_front(fifo, i)					\
195({									\
196	bool _r = !fifo_full((fifo));					\
197	if (_r) {							\
198		--(fifo)->front;					\
199		(fifo)->front &= (fifo)->mask;				\
200		(fifo)->data[(fifo)->front] = (i);			\
201	}								\
202	_r;								\
203})
204
205#define fifo_pop_back(fifo, i)						\
206({									\
207	bool _r = !fifo_empty((fifo));					\
208	if (_r) {							\
209		--(fifo)->back;						\
210		(fifo)->back &= (fifo)->mask;				\
211		(i) = (fifo)->data[(fifo)->back]			\
212	}								\
213	_r;								\
214})
215
216#define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
217#define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
218
219#define fifo_swap(l, r)							\
220do {									\
221	swap((l)->front, (r)->front);					\
222	swap((l)->back, (r)->back);					\
223	swap((l)->size, (r)->size);					\
224	swap((l)->mask, (r)->mask);					\
225	swap((l)->data, (r)->data);					\
226} while (0)
227
228#define fifo_move(dest, src)						\
229do {									\
230	typeof(*((dest)->data)) _t;					\
231	while (!fifo_full(dest) &&					\
232	       fifo_pop(src, _t))					\
233		fifo_push(dest, _t);					\
234} while (0)
235
236/*
237 * Simple array based allocator - preallocates a number of elements and you can
238 * never allocate more than that, also has no locking.
239 *
240 * Handy because if you know you only need a fixed number of elements you don't
241 * have to worry about memory allocation failure, and sometimes a mempool isn't
242 * what you want.
243 *
244 * We treat the free elements as entries in a singly linked list, and the
245 * freelist as a stack - allocating and freeing push and pop off the freelist.
246 */
247
248#define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
249	struct {							\
250		type	*freelist;					\
251		type	data[size];					\
252	} name
253
254#define array_alloc(array)						\
255({									\
256	typeof((array)->freelist) _ret = (array)->freelist;		\
257									\
258	if (_ret)							\
259		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
260									\
261	_ret;								\
262})
263
264#define array_free(array, ptr)						\
265do {									\
266	typeof((array)->freelist) _ptr = ptr;				\
267									\
268	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
269	(array)->freelist = _ptr;					\
270} while (0)
271
272#define array_allocator_init(array)					\
273do {									\
274	typeof((array)->freelist) _i;					\
275									\
276	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
277	(array)->freelist = NULL;					\
278									\
279	for (_i = (array)->data;					\
280	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
281	     _i++)							\
282		array_free(array, _i);					\
283} while (0)
284
285#define array_freelist_empty(array)	((array)->freelist == NULL)
286
287#define ANYSINT_MAX(t)							\
288	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
289
290int bch_strtoint_h(const char *cp, int *res);
291int bch_strtouint_h(const char *cp, unsigned int *res);
292int bch_strtoll_h(const char *cp, long long *res);
293int bch_strtoull_h(const char *cp, unsigned long long *res);
294
295static inline int bch_strtol_h(const char *cp, long *res)
296{
297#if BITS_PER_LONG == 32
298	return bch_strtoint_h(cp, (int *) res);
299#else
300	return bch_strtoll_h(cp, (long long *) res);
301#endif
302}
303
304static inline int bch_strtoul_h(const char *cp, long *res)
305{
306#if BITS_PER_LONG == 32
307	return bch_strtouint_h(cp, (unsigned int *) res);
308#else
309	return bch_strtoull_h(cp, (unsigned long long *) res);
310#endif
311}
312
313#define strtoi_h(cp, res)						\
314	(__builtin_types_compatible_p(typeof(*res), int)		\
315	? bch_strtoint_h(cp, (void *) res)				\
316	: __builtin_types_compatible_p(typeof(*res), long)		\
317	? bch_strtol_h(cp, (void *) res)				\
318	: __builtin_types_compatible_p(typeof(*res), long long)		\
319	? bch_strtoll_h(cp, (void *) res)				\
320	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
321	? bch_strtouint_h(cp, (void *) res)				\
322	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
323	? bch_strtoul_h(cp, (void *) res)				\
324	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
325	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
326
327#define strtoul_safe(cp, var)						\
328({									\
329	unsigned long _v;						\
330	int _r = kstrtoul(cp, 10, &_v);					\
331	if (!_r)							\
332		var = _v;						\
333	_r;								\
334})
335
336#define strtoul_safe_clamp(cp, var, min, max)				\
337({									\
338	unsigned long _v;						\
339	int _r = kstrtoul(cp, 10, &_v);					\
340	if (!_r)							\
341		var = clamp_t(typeof(var), _v, min, max);		\
342	_r;								\
343})
344
345#define snprint(buf, size, var)						\
346	snprintf(buf, size,						\
347		__builtin_types_compatible_p(typeof(var), int)		\
348		     ? "%i\n" :						\
349		__builtin_types_compatible_p(typeof(var), unsigned int)	\
350		     ? "%u\n" :						\
351		__builtin_types_compatible_p(typeof(var), long)		\
352		     ? "%li\n" :					\
353		__builtin_types_compatible_p(typeof(var), unsigned long)\
354		     ? "%lu\n" :					\
355		__builtin_types_compatible_p(typeof(var), int64_t)	\
356		     ? "%lli\n" :					\
357		__builtin_types_compatible_p(typeof(var), uint64_t)	\
358		     ? "%llu\n" :					\
359		__builtin_types_compatible_p(typeof(var), const char *)	\
360		     ? "%s\n" : "%i\n", var)
361
362ssize_t bch_hprint(char *buf, int64_t v);
363
364bool bch_is_zero(const char *p, size_t n);
365int bch_parse_uuid(const char *s, char *uuid);
366
367struct time_stats {
368	spinlock_t	lock;
369	/*
370	 * all fields are in nanoseconds, averages are ewmas stored left shifted
371	 * by 8
372	 */
373	uint64_t	max_duration;
374	uint64_t	average_duration;
375	uint64_t	average_frequency;
376	uint64_t	last;
377};
378
379void bch_time_stats_update(struct time_stats *stats, uint64_t time);
380
381static inline unsigned int local_clock_us(void)
382{
383	return local_clock() >> 10;
384}
385
386#define NSEC_PER_ns			1L
387#define NSEC_PER_us			NSEC_PER_USEC
388#define NSEC_PER_ms			NSEC_PER_MSEC
389#define NSEC_PER_sec			NSEC_PER_SEC
390
391#define __print_time_stat(stats, name, stat, units)			\
392	sysfs_print(name ## _ ## stat ## _ ## units,			\
393		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
394
395#define sysfs_print_time_stats(stats, name,				\
396			       frequency_units,				\
397			       duration_units)				\
398do {									\
399	__print_time_stat(stats, name,					\
400			  average_frequency,	frequency_units);	\
401	__print_time_stat(stats, name,					\
402			  average_duration,	duration_units);	\
403	sysfs_print(name ## _ ##max_duration ## _ ## duration_units,	\
404			div_u64((stats)->max_duration,			\
405				NSEC_PER_ ## duration_units));		\
406									\
407	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
408		    ? div_s64(local_clock() - (stats)->last,		\
409			      NSEC_PER_ ## frequency_units)		\
410		    : -1LL);						\
411} while (0)
412
413#define sysfs_time_stats_attribute(name,				\
414				   frequency_units,			\
415				   duration_units)			\
416read_attribute(name ## _average_frequency_ ## frequency_units);		\
417read_attribute(name ## _average_duration_ ## duration_units);		\
418read_attribute(name ## _max_duration_ ## duration_units);		\
419read_attribute(name ## _last_ ## frequency_units)
420
421#define sysfs_time_stats_attribute_list(name,				\
422					frequency_units,		\
423					duration_units)			\
424&sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
425&sysfs_ ## name ## _average_duration_ ## duration_units,		\
426&sysfs_ ## name ## _max_duration_ ## duration_units,			\
427&sysfs_ ## name ## _last_ ## frequency_units,
428
429#define ewma_add(ewma, val, weight, factor)				\
430({									\
431	(ewma) *= (weight) - 1;						\
432	(ewma) += (val) << factor;					\
433	(ewma) /= (weight);						\
434	(ewma) >> factor;						\
435})
436
437struct bch_ratelimit {
438	/* Next time we want to do some work, in nanoseconds */
439	uint64_t		next;
440
441	/*
442	 * Rate at which we want to do work, in units per second
443	 * The units here correspond to the units passed to bch_next_delay()
444	 */
445	atomic_long_t		rate;
446};
447
448static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
449{
450	d->next = local_clock();
451}
452
453uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
454
455#define __DIV_SAFE(n, d, zero)						\
456({									\
457	typeof(n) _n = (n);						\
458	typeof(d) _d = (d);						\
459	_d ? _n / _d : zero;						\
460})
461
462#define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
463
464#define container_of_or_null(ptr, type, member)				\
465({									\
466	typeof(ptr) _ptr = ptr;						\
467	_ptr ? container_of(_ptr, type, member) : NULL;			\
468})
469
470#define RB_INSERT(root, new, member, cmp)				\
471({									\
472	__label__ dup;							\
473	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
474	typeof(new) this;						\
475	int res, ret = -1;						\
476									\
477	while (*n) {							\
478		parent = *n;						\
479		this = container_of(*n, typeof(*(new)), member);	\
480		res = cmp(new, this);					\
481		if (!res)						\
482			goto dup;					\
483		n = res < 0						\
484			? &(*n)->rb_left				\
485			: &(*n)->rb_right;				\
486	}								\
487									\
488	rb_link_node(&(new)->member, parent, n);			\
489	rb_insert_color(&(new)->member, root);				\
490	ret = 0;							\
491dup:									\
492	ret;								\
493})
494
495#define RB_SEARCH(root, search, member, cmp)				\
496({									\
497	struct rb_node *n = (root)->rb_node;				\
498	typeof(&(search)) this, ret = NULL;				\
499	int res;							\
500									\
501	while (n) {							\
502		this = container_of(n, typeof(search), member);		\
503		res = cmp(&(search), this);				\
504		if (!res) {						\
505			ret = this;					\
506			break;						\
507		}							\
508		n = res < 0						\
509			? n->rb_left					\
510			: n->rb_right;					\
511	}								\
512	ret;								\
513})
514
515#define RB_GREATER(root, search, member, cmp)				\
516({									\
517	struct rb_node *n = (root)->rb_node;				\
518	typeof(&(search)) this, ret = NULL;				\
519	int res;							\
520									\
521	while (n) {							\
522		this = container_of(n, typeof(search), member);		\
523		res = cmp(&(search), this);				\
524		if (res < 0) {						\
525			ret = this;					\
526			n = n->rb_left;					\
527		} else							\
528			n = n->rb_right;				\
529	}								\
530	ret;								\
531})
532
533#define RB_FIRST(root, type, member)					\
534	container_of_or_null(rb_first(root), type, member)
535
536#define RB_LAST(root, type, member)					\
537	container_of_or_null(rb_last(root), type, member)
538
539#define RB_NEXT(ptr, member)						\
540	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
541
542#define RB_PREV(ptr, member)						\
543	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
544
545static inline uint64_t bch_crc64(const void *p, size_t len)
546{
547	uint64_t crc = 0xffffffffffffffffULL;
548
549	crc = crc64_be(crc, p, len);
550	return crc ^ 0xffffffffffffffffULL;
551}
552
553static inline uint64_t bch_crc64_update(uint64_t crc,
554					const void *p,
555					size_t len)
556{
557	crc = crc64_be(crc, p, len);
558	return crc;
559}
560
561/*
562 * A stepwise-linear pseudo-exponential.  This returns 1 << (x >>
563 * frac_bits), with the less-significant bits filled in by linear
564 * interpolation.
565 *
566 * This can also be interpreted as a floating-point number format,
567 * where the low frac_bits are the mantissa (with implicit leading
568 * 1 bit), and the more significant bits are the exponent.
569 * The return value is 1.mantissa * 2^exponent.
570 *
571 * The way this is used, fract_bits is 6 and the largest possible
572 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
573 * so the maximum output is 0x1fc00.
574 */
575static inline unsigned int fract_exp_two(unsigned int x,
576					 unsigned int fract_bits)
577{
578	unsigned int mantissa = 1 << fract_bits;	/* Implicit bit */
579
580	mantissa += x & (mantissa - 1);
581	x >>= fract_bits;	/* The exponent */
582	/* Largest intermediate value 0x7f0000 */
583	return mantissa << x >> fract_bits;
584}
585
586void bch_bio_map(struct bio *bio, void *base);
587int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
588
589static inline sector_t bdev_sectors(struct block_device *bdev)
590{
591	return bdev->bd_inode->i_size >> 9;
592}
593#endif /* _BCACHE_UTIL_H */