Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/firmware/memmap.c
4 * Copyright (C) 2008 SUSE LINUX Products GmbH
5 * by Bernhard Walle <bernhard.walle@gmx.de>
6 */
7
8#include <linux/string.h>
9#include <linux/firmware-map.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/types.h>
13#include <linux/memblock.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16
17/*
18 * Data types ------------------------------------------------------------------
19 */
20
21/*
22 * Firmware map entry. Because firmware memory maps are flat and not
23 * hierarchical, it's ok to organise them in a linked list. No parent
24 * information is necessary as for the resource tree.
25 */
26struct firmware_map_entry {
27 /*
28 * start and end must be u64 rather than resource_size_t, because e820
29 * resources can lie at addresses above 4G.
30 */
31 u64 start; /* start of the memory range */
32 u64 end; /* end of the memory range (incl.) */
33 const char *type; /* type of the memory range */
34 struct list_head list; /* entry for the linked list */
35 struct kobject kobj; /* kobject for each entry */
36};
37
38/*
39 * Forward declarations --------------------------------------------------------
40 */
41static ssize_t memmap_attr_show(struct kobject *kobj,
42 struct attribute *attr, char *buf);
43static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
44static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
45static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
46
47static struct firmware_map_entry * __meminit
48firmware_map_find_entry(u64 start, u64 end, const char *type);
49
50/*
51 * Static data -----------------------------------------------------------------
52 */
53
54struct memmap_attribute {
55 struct attribute attr;
56 ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
57};
58
59static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
60static struct memmap_attribute memmap_end_attr = __ATTR_RO(end);
61static struct memmap_attribute memmap_type_attr = __ATTR_RO(type);
62
63/*
64 * These are default attributes that are added for every memmap entry.
65 */
66static struct attribute *def_attrs[] = {
67 &memmap_start_attr.attr,
68 &memmap_end_attr.attr,
69 &memmap_type_attr.attr,
70 NULL
71};
72ATTRIBUTE_GROUPS(def);
73
74static const struct sysfs_ops memmap_attr_ops = {
75 .show = memmap_attr_show,
76};
77
78/* Firmware memory map entries. */
79static LIST_HEAD(map_entries);
80static DEFINE_SPINLOCK(map_entries_lock);
81
82/*
83 * For memory hotplug, there is no way to free memory map entries allocated
84 * by boot mem after the system is up. So when we hot-remove memory whose
85 * map entry is allocated by bootmem, we need to remember the storage and
86 * reuse it when the memory is hot-added again.
87 */
88static LIST_HEAD(map_entries_bootmem);
89static DEFINE_SPINLOCK(map_entries_bootmem_lock);
90
91
92static inline struct firmware_map_entry *
93to_memmap_entry(struct kobject *kobj)
94{
95 return container_of(kobj, struct firmware_map_entry, kobj);
96}
97
98static void __meminit release_firmware_map_entry(struct kobject *kobj)
99{
100 struct firmware_map_entry *entry = to_memmap_entry(kobj);
101
102 if (PageReserved(virt_to_page(entry))) {
103 /*
104 * Remember the storage allocated by bootmem, and reuse it when
105 * the memory is hot-added again. The entry will be added to
106 * map_entries_bootmem here, and deleted from &map_entries in
107 * firmware_map_remove_entry().
108 */
109 spin_lock(&map_entries_bootmem_lock);
110 list_add(&entry->list, &map_entries_bootmem);
111 spin_unlock(&map_entries_bootmem_lock);
112
113 return;
114 }
115
116 kfree(entry);
117}
118
119static struct kobj_type __refdata memmap_ktype = {
120 .release = release_firmware_map_entry,
121 .sysfs_ops = &memmap_attr_ops,
122 .default_groups = def_groups,
123};
124
125/*
126 * Registration functions ------------------------------------------------------
127 */
128
129/**
130 * firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
131 * @start: Start of the memory range.
132 * @end: End of the memory range (exclusive).
133 * @type: Type of the memory range.
134 * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
135 * entry.
136 *
137 * Common implementation of firmware_map_add() and firmware_map_add_early()
138 * which expects a pre-allocated struct firmware_map_entry.
139 *
140 * Return: 0 always
141 */
142static int firmware_map_add_entry(u64 start, u64 end,
143 const char *type,
144 struct firmware_map_entry *entry)
145{
146 BUG_ON(start > end);
147
148 entry->start = start;
149 entry->end = end - 1;
150 entry->type = type;
151 INIT_LIST_HEAD(&entry->list);
152 kobject_init(&entry->kobj, &memmap_ktype);
153
154 spin_lock(&map_entries_lock);
155 list_add_tail(&entry->list, &map_entries);
156 spin_unlock(&map_entries_lock);
157
158 return 0;
159}
160
161/**
162 * firmware_map_remove_entry() - Does the real work to remove a firmware
163 * memmap entry.
164 * @entry: removed entry.
165 *
166 * The caller must hold map_entries_lock, and release it properly.
167 */
168static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
169{
170 list_del(&entry->list);
171}
172
173/*
174 * Add memmap entry on sysfs
175 */
176static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
177{
178 static int map_entries_nr;
179 static struct kset *mmap_kset;
180
181 if (entry->kobj.state_in_sysfs)
182 return -EEXIST;
183
184 if (!mmap_kset) {
185 mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
186 if (!mmap_kset)
187 return -ENOMEM;
188 }
189
190 entry->kobj.kset = mmap_kset;
191 if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
192 kobject_put(&entry->kobj);
193
194 return 0;
195}
196
197/*
198 * Remove memmap entry on sysfs
199 */
200static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
201{
202 kobject_put(&entry->kobj);
203}
204
205/**
206 * firmware_map_find_entry_in_list() - Search memmap entry in a given list.
207 * @start: Start of the memory range.
208 * @end: End of the memory range (exclusive).
209 * @type: Type of the memory range.
210 * @list: In which to find the entry.
211 *
212 * This function is to find the memmap entey of a given memory range in a
213 * given list. The caller must hold map_entries_lock, and must not release
214 * the lock until the processing of the returned entry has completed.
215 *
216 * Return: Pointer to the entry to be found on success, or NULL on failure.
217 */
218static struct firmware_map_entry * __meminit
219firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
220 struct list_head *list)
221{
222 struct firmware_map_entry *entry;
223
224 list_for_each_entry(entry, list, list)
225 if ((entry->start == start) && (entry->end == end) &&
226 (!strcmp(entry->type, type))) {
227 return entry;
228 }
229
230 return NULL;
231}
232
233/**
234 * firmware_map_find_entry() - Search memmap entry in map_entries.
235 * @start: Start of the memory range.
236 * @end: End of the memory range (exclusive).
237 * @type: Type of the memory range.
238 *
239 * This function is to find the memmap entey of a given memory range.
240 * The caller must hold map_entries_lock, and must not release the lock
241 * until the processing of the returned entry has completed.
242 *
243 * Return: Pointer to the entry to be found on success, or NULL on failure.
244 */
245static struct firmware_map_entry * __meminit
246firmware_map_find_entry(u64 start, u64 end, const char *type)
247{
248 return firmware_map_find_entry_in_list(start, end, type, &map_entries);
249}
250
251/**
252 * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
253 * @start: Start of the memory range.
254 * @end: End of the memory range (exclusive).
255 * @type: Type of the memory range.
256 *
257 * This function is similar to firmware_map_find_entry except that it find the
258 * given entry in map_entries_bootmem.
259 *
260 * Return: Pointer to the entry to be found on success, or NULL on failure.
261 */
262static struct firmware_map_entry * __meminit
263firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
264{
265 return firmware_map_find_entry_in_list(start, end, type,
266 &map_entries_bootmem);
267}
268
269/**
270 * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
271 * memory hotplug.
272 * @start: Start of the memory range.
273 * @end: End of the memory range (exclusive)
274 * @type: Type of the memory range.
275 *
276 * Adds a firmware mapping entry. This function is for memory hotplug, it is
277 * similar to function firmware_map_add_early(). The only difference is that
278 * it will create the syfs entry dynamically.
279 *
280 * Return: 0 on success, or -ENOMEM if no memory could be allocated.
281 */
282int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
283{
284 struct firmware_map_entry *entry;
285
286 entry = firmware_map_find_entry(start, end - 1, type);
287 if (entry)
288 return 0;
289
290 entry = firmware_map_find_entry_bootmem(start, end - 1, type);
291 if (!entry) {
292 entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
293 if (!entry)
294 return -ENOMEM;
295 } else {
296 /* Reuse storage allocated by bootmem. */
297 spin_lock(&map_entries_bootmem_lock);
298 list_del(&entry->list);
299 spin_unlock(&map_entries_bootmem_lock);
300
301 memset(entry, 0, sizeof(*entry));
302 }
303
304 firmware_map_add_entry(start, end, type, entry);
305 /* create the memmap entry */
306 add_sysfs_fw_map_entry(entry);
307
308 return 0;
309}
310
311/**
312 * firmware_map_add_early() - Adds a firmware mapping entry.
313 * @start: Start of the memory range.
314 * @end: End of the memory range.
315 * @type: Type of the memory range.
316 *
317 * Adds a firmware mapping entry. This function uses the bootmem allocator
318 * for memory allocation.
319 *
320 * That function must be called before late_initcall.
321 *
322 * Return: 0 on success, or -ENOMEM if no memory could be allocated.
323 */
324int __init firmware_map_add_early(u64 start, u64 end, const char *type)
325{
326 struct firmware_map_entry *entry;
327
328 entry = memblock_alloc(sizeof(struct firmware_map_entry),
329 SMP_CACHE_BYTES);
330 if (WARN_ON(!entry))
331 return -ENOMEM;
332
333 return firmware_map_add_entry(start, end, type, entry);
334}
335
336/**
337 * firmware_map_remove() - remove a firmware mapping entry
338 * @start: Start of the memory range.
339 * @end: End of the memory range.
340 * @type: Type of the memory range.
341 *
342 * removes a firmware mapping entry.
343 *
344 * Return: 0 on success, or -EINVAL if no entry.
345 */
346int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
347{
348 struct firmware_map_entry *entry;
349
350 spin_lock(&map_entries_lock);
351 entry = firmware_map_find_entry(start, end - 1, type);
352 if (!entry) {
353 spin_unlock(&map_entries_lock);
354 return -EINVAL;
355 }
356
357 firmware_map_remove_entry(entry);
358 spin_unlock(&map_entries_lock);
359
360 /* remove the memmap entry */
361 remove_sysfs_fw_map_entry(entry);
362
363 return 0;
364}
365
366/*
367 * Sysfs functions -------------------------------------------------------------
368 */
369
370static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
371{
372 return snprintf(buf, PAGE_SIZE, "0x%llx\n",
373 (unsigned long long)entry->start);
374}
375
376static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
377{
378 return snprintf(buf, PAGE_SIZE, "0x%llx\n",
379 (unsigned long long)entry->end);
380}
381
382static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
383{
384 return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
385}
386
387static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
388{
389 return container_of(attr, struct memmap_attribute, attr);
390}
391
392static ssize_t memmap_attr_show(struct kobject *kobj,
393 struct attribute *attr, char *buf)
394{
395 struct firmware_map_entry *entry = to_memmap_entry(kobj);
396 struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
397
398 return memmap_attr->show(entry, buf);
399}
400
401/*
402 * Initialises stuff and adds the entries in the map_entries list to
403 * sysfs. Important is that firmware_map_add() and firmware_map_add_early()
404 * must be called before late_initcall. That's just because that function
405 * is called as late_initcall() function, which means that if you call
406 * firmware_map_add() or firmware_map_add_early() afterwards, the entries
407 * are not added to sysfs.
408 */
409static int __init firmware_memmap_init(void)
410{
411 struct firmware_map_entry *entry;
412
413 list_for_each_entry(entry, &map_entries, list)
414 add_sysfs_fw_map_entry(entry);
415
416 return 0;
417}
418late_initcall(firmware_memmap_init);
419
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/firmware/memmap.c
4 * Copyright (C) 2008 SUSE LINUX Products GmbH
5 * by Bernhard Walle <bernhard.walle@gmx.de>
6 */
7
8#include <linux/string.h>
9#include <linux/firmware-map.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/types.h>
13#include <linux/memblock.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16
17/*
18 * Data types ------------------------------------------------------------------
19 */
20
21/*
22 * Firmware map entry. Because firmware memory maps are flat and not
23 * hierarchical, it's ok to organise them in a linked list. No parent
24 * information is necessary as for the resource tree.
25 */
26struct firmware_map_entry {
27 /*
28 * start and end must be u64 rather than resource_size_t, because e820
29 * resources can lie at addresses above 4G.
30 */
31 u64 start; /* start of the memory range */
32 u64 end; /* end of the memory range (incl.) */
33 const char *type; /* type of the memory range */
34 struct list_head list; /* entry for the linked list */
35 struct kobject kobj; /* kobject for each entry */
36};
37
38/*
39 * Forward declarations --------------------------------------------------------
40 */
41static ssize_t memmap_attr_show(struct kobject *kobj,
42 struct attribute *attr, char *buf);
43static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
44static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
45static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
46
47static struct firmware_map_entry * __meminit
48firmware_map_find_entry(u64 start, u64 end, const char *type);
49
50/*
51 * Static data -----------------------------------------------------------------
52 */
53
54struct memmap_attribute {
55 struct attribute attr;
56 ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
57};
58
59static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
60static struct memmap_attribute memmap_end_attr = __ATTR_RO(end);
61static struct memmap_attribute memmap_type_attr = __ATTR_RO(type);
62
63/*
64 * These are default attributes that are added for every memmap entry.
65 */
66static struct attribute *def_attrs[] = {
67 &memmap_start_attr.attr,
68 &memmap_end_attr.attr,
69 &memmap_type_attr.attr,
70 NULL
71};
72
73static const struct sysfs_ops memmap_attr_ops = {
74 .show = memmap_attr_show,
75};
76
77/* Firmware memory map entries. */
78static LIST_HEAD(map_entries);
79static DEFINE_SPINLOCK(map_entries_lock);
80
81/*
82 * For memory hotplug, there is no way to free memory map entries allocated
83 * by boot mem after the system is up. So when we hot-remove memory whose
84 * map entry is allocated by bootmem, we need to remember the storage and
85 * reuse it when the memory is hot-added again.
86 */
87static LIST_HEAD(map_entries_bootmem);
88static DEFINE_SPINLOCK(map_entries_bootmem_lock);
89
90
91static inline struct firmware_map_entry *
92to_memmap_entry(struct kobject *kobj)
93{
94 return container_of(kobj, struct firmware_map_entry, kobj);
95}
96
97static void __meminit release_firmware_map_entry(struct kobject *kobj)
98{
99 struct firmware_map_entry *entry = to_memmap_entry(kobj);
100
101 if (PageReserved(virt_to_page(entry))) {
102 /*
103 * Remember the storage allocated by bootmem, and reuse it when
104 * the memory is hot-added again. The entry will be added to
105 * map_entries_bootmem here, and deleted from &map_entries in
106 * firmware_map_remove_entry().
107 */
108 spin_lock(&map_entries_bootmem_lock);
109 list_add(&entry->list, &map_entries_bootmem);
110 spin_unlock(&map_entries_bootmem_lock);
111
112 return;
113 }
114
115 kfree(entry);
116}
117
118static struct kobj_type __refdata memmap_ktype = {
119 .release = release_firmware_map_entry,
120 .sysfs_ops = &memmap_attr_ops,
121 .default_attrs = def_attrs,
122};
123
124/*
125 * Registration functions ------------------------------------------------------
126 */
127
128/**
129 * firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
130 * @start: Start of the memory range.
131 * @end: End of the memory range (exclusive).
132 * @type: Type of the memory range.
133 * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
134 * entry.
135 *
136 * Common implementation of firmware_map_add() and firmware_map_add_early()
137 * which expects a pre-allocated struct firmware_map_entry.
138 *
139 * Return: 0 always
140 */
141static int firmware_map_add_entry(u64 start, u64 end,
142 const char *type,
143 struct firmware_map_entry *entry)
144{
145 BUG_ON(start > end);
146
147 entry->start = start;
148 entry->end = end - 1;
149 entry->type = type;
150 INIT_LIST_HEAD(&entry->list);
151 kobject_init(&entry->kobj, &memmap_ktype);
152
153 spin_lock(&map_entries_lock);
154 list_add_tail(&entry->list, &map_entries);
155 spin_unlock(&map_entries_lock);
156
157 return 0;
158}
159
160/**
161 * firmware_map_remove_entry() - Does the real work to remove a firmware
162 * memmap entry.
163 * @entry: removed entry.
164 *
165 * The caller must hold map_entries_lock, and release it properly.
166 */
167static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
168{
169 list_del(&entry->list);
170}
171
172/*
173 * Add memmap entry on sysfs
174 */
175static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
176{
177 static int map_entries_nr;
178 static struct kset *mmap_kset;
179
180 if (entry->kobj.state_in_sysfs)
181 return -EEXIST;
182
183 if (!mmap_kset) {
184 mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
185 if (!mmap_kset)
186 return -ENOMEM;
187 }
188
189 entry->kobj.kset = mmap_kset;
190 if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
191 kobject_put(&entry->kobj);
192
193 return 0;
194}
195
196/*
197 * Remove memmap entry on sysfs
198 */
199static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
200{
201 kobject_put(&entry->kobj);
202}
203
204/**
205 * firmware_map_find_entry_in_list() - Search memmap entry in a given list.
206 * @start: Start of the memory range.
207 * @end: End of the memory range (exclusive).
208 * @type: Type of the memory range.
209 * @list: In which to find the entry.
210 *
211 * This function is to find the memmap entey of a given memory range in a
212 * given list. The caller must hold map_entries_lock, and must not release
213 * the lock until the processing of the returned entry has completed.
214 *
215 * Return: Pointer to the entry to be found on success, or NULL on failure.
216 */
217static struct firmware_map_entry * __meminit
218firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
219 struct list_head *list)
220{
221 struct firmware_map_entry *entry;
222
223 list_for_each_entry(entry, list, list)
224 if ((entry->start == start) && (entry->end == end) &&
225 (!strcmp(entry->type, type))) {
226 return entry;
227 }
228
229 return NULL;
230}
231
232/**
233 * firmware_map_find_entry() - Search memmap entry in map_entries.
234 * @start: Start of the memory range.
235 * @end: End of the memory range (exclusive).
236 * @type: Type of the memory range.
237 *
238 * This function is to find the memmap entey of a given memory range.
239 * The caller must hold map_entries_lock, and must not release the lock
240 * until the processing of the returned entry has completed.
241 *
242 * Return: Pointer to the entry to be found on success, or NULL on failure.
243 */
244static struct firmware_map_entry * __meminit
245firmware_map_find_entry(u64 start, u64 end, const char *type)
246{
247 return firmware_map_find_entry_in_list(start, end, type, &map_entries);
248}
249
250/**
251 * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
252 * @start: Start of the memory range.
253 * @end: End of the memory range (exclusive).
254 * @type: Type of the memory range.
255 *
256 * This function is similar to firmware_map_find_entry except that it find the
257 * given entry in map_entries_bootmem.
258 *
259 * Return: Pointer to the entry to be found on success, or NULL on failure.
260 */
261static struct firmware_map_entry * __meminit
262firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
263{
264 return firmware_map_find_entry_in_list(start, end, type,
265 &map_entries_bootmem);
266}
267
268/**
269 * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
270 * memory hotplug.
271 * @start: Start of the memory range.
272 * @end: End of the memory range (exclusive)
273 * @type: Type of the memory range.
274 *
275 * Adds a firmware mapping entry. This function is for memory hotplug, it is
276 * similar to function firmware_map_add_early(). The only difference is that
277 * it will create the syfs entry dynamically.
278 *
279 * Return: 0 on success, or -ENOMEM if no memory could be allocated.
280 */
281int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
282{
283 struct firmware_map_entry *entry;
284
285 entry = firmware_map_find_entry(start, end - 1, type);
286 if (entry)
287 return 0;
288
289 entry = firmware_map_find_entry_bootmem(start, end - 1, type);
290 if (!entry) {
291 entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
292 if (!entry)
293 return -ENOMEM;
294 } else {
295 /* Reuse storage allocated by bootmem. */
296 spin_lock(&map_entries_bootmem_lock);
297 list_del(&entry->list);
298 spin_unlock(&map_entries_bootmem_lock);
299
300 memset(entry, 0, sizeof(*entry));
301 }
302
303 firmware_map_add_entry(start, end, type, entry);
304 /* create the memmap entry */
305 add_sysfs_fw_map_entry(entry);
306
307 return 0;
308}
309
310/**
311 * firmware_map_add_early() - Adds a firmware mapping entry.
312 * @start: Start of the memory range.
313 * @end: End of the memory range.
314 * @type: Type of the memory range.
315 *
316 * Adds a firmware mapping entry. This function uses the bootmem allocator
317 * for memory allocation.
318 *
319 * That function must be called before late_initcall.
320 *
321 * Return: 0 on success, or -ENOMEM if no memory could be allocated.
322 */
323int __init firmware_map_add_early(u64 start, u64 end, const char *type)
324{
325 struct firmware_map_entry *entry;
326
327 entry = memblock_alloc(sizeof(struct firmware_map_entry),
328 SMP_CACHE_BYTES);
329 if (WARN_ON(!entry))
330 return -ENOMEM;
331
332 return firmware_map_add_entry(start, end, type, entry);
333}
334
335/**
336 * firmware_map_remove() - remove a firmware mapping entry
337 * @start: Start of the memory range.
338 * @end: End of the memory range.
339 * @type: Type of the memory range.
340 *
341 * removes a firmware mapping entry.
342 *
343 * Return: 0 on success, or -EINVAL if no entry.
344 */
345int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
346{
347 struct firmware_map_entry *entry;
348
349 spin_lock(&map_entries_lock);
350 entry = firmware_map_find_entry(start, end - 1, type);
351 if (!entry) {
352 spin_unlock(&map_entries_lock);
353 return -EINVAL;
354 }
355
356 firmware_map_remove_entry(entry);
357 spin_unlock(&map_entries_lock);
358
359 /* remove the memmap entry */
360 remove_sysfs_fw_map_entry(entry);
361
362 return 0;
363}
364
365/*
366 * Sysfs functions -------------------------------------------------------------
367 */
368
369static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
370{
371 return snprintf(buf, PAGE_SIZE, "0x%llx\n",
372 (unsigned long long)entry->start);
373}
374
375static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
376{
377 return snprintf(buf, PAGE_SIZE, "0x%llx\n",
378 (unsigned long long)entry->end);
379}
380
381static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
382{
383 return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
384}
385
386static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
387{
388 return container_of(attr, struct memmap_attribute, attr);
389}
390
391static ssize_t memmap_attr_show(struct kobject *kobj,
392 struct attribute *attr, char *buf)
393{
394 struct firmware_map_entry *entry = to_memmap_entry(kobj);
395 struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
396
397 return memmap_attr->show(entry, buf);
398}
399
400/*
401 * Initialises stuff and adds the entries in the map_entries list to
402 * sysfs. Important is that firmware_map_add() and firmware_map_add_early()
403 * must be called before late_initcall. That's just because that function
404 * is called as late_initcall() function, which means that if you call
405 * firmware_map_add() or firmware_map_add_early() afterwards, the entries
406 * are not added to sysfs.
407 */
408static int __init firmware_memmap_init(void)
409{
410 struct firmware_map_entry *entry;
411
412 list_for_each_entry(entry, &map_entries, list)
413 add_sysfs_fw_map_entry(entry);
414
415 return 0;
416}
417late_initcall(firmware_memmap_init);
418