Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2//
  3// Register map access API - SPI AVMM support
  4//
  5// Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
  6
  7#include <linux/module.h>
  8#include <linux/regmap.h>
  9#include <linux/spi/spi.h>
 10#include <linux/swab.h>
 11
 12/*
 13 * This driver implements the regmap operations for a generic SPI
 14 * master to access the registers of the spi slave chip which has an
 15 * Avalone bus in it.
 16 *
 17 * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
 18 * in the spi slave chip. The IP acts as a bridge to convert encoded streams of
 19 * bytes from the host to the internal register read/write on Avalon bus. In
 20 * order to issue register access requests to the slave chip, the host should
 21 * send formatted bytes that conform to the transfer protocol.
 22 * The transfer protocol contains 3 layers: transaction layer, packet layer
 23 * and physical layer.
 24 *
 25 * Reference Documents could be found at:
 26 * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
 27 *
 28 * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
 29 * introduction to the protocol.
 30 *
 31 * Chapter "Avalon Packets to Transactions Converter Core" describes
 32 * the transaction layer.
 33 *
 34 * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
 35 * describes the packet layer.
 36 *
 37 * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
 38 * physical layer.
 39 *
 40 *
 41 * When host issues a regmap read/write, the driver will transform the request
 42 * to byte stream layer by layer. It formats the register addr, value and
 43 * length to the transaction layer request, then converts the request to packet
 44 * layer bytes stream and then to physical layer bytes stream. Finally the
 45 * driver sends the formatted byte stream over SPI bus to the slave chip.
 46 *
 47 * The spi-avmm IP on the slave chip decodes the byte stream and initiates
 48 * register read/write on its internal Avalon bus, and then encodes the
 49 * response to byte stream and sends back to host.
 50 *
 51 * The driver receives the byte stream, reverses the 3 layers transformation,
 52 * and finally gets the response value (read out data for register read,
 53 * successful written size for register write).
 54 */
 55
 56#define PKT_SOP			0x7a
 57#define PKT_EOP			0x7b
 58#define PKT_CHANNEL		0x7c
 59#define PKT_ESC			0x7d
 60
 61#define PHY_IDLE		0x4a
 62#define PHY_ESC			0x4d
 63
 64#define TRANS_CODE_WRITE	0x0
 65#define TRANS_CODE_SEQ_WRITE	0x4
 66#define TRANS_CODE_READ		0x10
 67#define TRANS_CODE_SEQ_READ	0x14
 68#define TRANS_CODE_NO_TRANS	0x7f
 69
 70#define SPI_AVMM_XFER_TIMEOUT	(msecs_to_jiffies(200))
 71
 72/* slave's register addr is 32 bits */
 73#define SPI_AVMM_REG_SIZE		4UL
 74/* slave's register value is 32 bits */
 75#define SPI_AVMM_VAL_SIZE		4UL
 76
 77/*
 78 * max rx size could be larger. But considering the buffer consuming,
 79 * it is proper that we limit 1KB xfer at max.
 80 */
 81#define MAX_READ_CNT		256UL
 82#define MAX_WRITE_CNT		1UL
 83
 84struct trans_req_header {
 85	u8 code;
 86	u8 rsvd;
 87	__be16 size;
 88	__be32 addr;
 89} __packed;
 90
 91struct trans_resp_header {
 92	u8 r_code;
 93	u8 rsvd;
 94	__be16 size;
 95} __packed;
 96
 97#define TRANS_REQ_HD_SIZE	(sizeof(struct trans_req_header))
 98#define TRANS_RESP_HD_SIZE	(sizeof(struct trans_resp_header))
 99
100/*
101 * In transaction layer,
102 * the write request format is: Transaction request header + data
103 * the read request format is: Transaction request header
104 * the write response format is: Transaction response header
105 * the read response format is: pure data, no Transaction response header
106 */
107#define TRANS_WR_TX_SIZE(n)	(TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
108#define TRANS_RD_TX_SIZE	TRANS_REQ_HD_SIZE
109#define TRANS_TX_MAX		TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
110
111#define TRANS_RD_RX_SIZE(n)	(SPI_AVMM_VAL_SIZE * (n))
112#define TRANS_WR_RX_SIZE	TRANS_RESP_HD_SIZE
113#define TRANS_RX_MAX		TRANS_RD_RX_SIZE(MAX_READ_CNT)
114
115/* tx & rx share one transaction layer buffer */
116#define TRANS_BUF_SIZE		((TRANS_TX_MAX > TRANS_RX_MAX) ?	\
117				 TRANS_TX_MAX : TRANS_RX_MAX)
118
119/*
120 * In tx phase, the host prepares all the phy layer bytes of a request in the
121 * phy buffer and sends them in a batch.
122 *
123 * The packet layer and physical layer defines several special chars for
124 * various purpose, when a transaction layer byte hits one of these special
125 * chars, it should be escaped. The escape rule is, "Escape char first,
126 * following the byte XOR'ed with 0x20".
127 *
128 * This macro defines the max possible length of the phy data. In the worst
129 * case, all transaction layer bytes need to be escaped (so the data length
130 * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
131 * we should make sure the length is aligned to SPI BPW.
132 */
133#define PHY_TX_MAX		ALIGN(2 * TRANS_TX_MAX + 4, 4)
134
135/*
136 * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
137 * length of the rx bit stream is unpredictable. So the driver reads the words
138 * one by one, and parses each word immediately into transaction layer buffer.
139 * Only one word length of phy buffer is used for rx.
140 */
141#define PHY_BUF_SIZE		PHY_TX_MAX
142
143/**
144 * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
145 *
146 * @spi: spi slave associated with this bridge.
147 * @word_len: bytes of word for spi transfer.
148 * @trans_len: length of valid data in trans_buf.
149 * @phy_len: length of valid data in phy_buf.
150 * @trans_buf: the bridge buffer for transaction layer data.
151 * @phy_buf: the bridge buffer for physical layer data.
152 * @swap_words: the word swapping cb for phy data. NULL if not needed.
153 *
154 * As a device's registers are implemented on the AVMM bus address space, it
155 * requires the driver to issue formatted requests to spi slave to AVMM bus
156 * master bridge to perform register access.
157 */
158struct spi_avmm_bridge {
159	struct spi_device *spi;
160	unsigned char word_len;
161	unsigned int trans_len;
162	unsigned int phy_len;
163	/* bridge buffer used in translation between protocol layers */
164	char trans_buf[TRANS_BUF_SIZE];
165	char phy_buf[PHY_BUF_SIZE];
166	void (*swap_words)(void *buf, unsigned int len);
167};
168
169static void br_swap_words_32(void *buf, unsigned int len)
170{
171	swab32_array(buf, len / 4);
 
 
 
 
 
 
 
172}
173
174/*
175 * Format transaction layer data in br->trans_buf according to the register
176 * access request, Store valid transaction layer data length in br->trans_len.
177 */
178static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
179			       u32 *wr_val, u32 count)
180{
181	struct trans_req_header *header;
182	unsigned int trans_len;
183	u8 code;
184	__le32 *data;
185	int i;
186
187	if (is_read) {
188		if (count == 1)
189			code = TRANS_CODE_READ;
190		else
191			code = TRANS_CODE_SEQ_READ;
192	} else {
193		if (count == 1)
194			code = TRANS_CODE_WRITE;
195		else
196			code = TRANS_CODE_SEQ_WRITE;
197	}
198
199	header = (struct trans_req_header *)br->trans_buf;
200	header->code = code;
201	header->rsvd = 0;
202	header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
203	header->addr = cpu_to_be32(reg);
204
205	trans_len = TRANS_REQ_HD_SIZE;
206
207	if (!is_read) {
208		trans_len += SPI_AVMM_VAL_SIZE * count;
209		if (trans_len > sizeof(br->trans_buf))
210			return -ENOMEM;
211
212		data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
213
214		for (i = 0; i < count; i++)
215			*data++ = cpu_to_le32(*wr_val++);
216	}
217
218	/* Store valid trans data length for next layer */
219	br->trans_len = trans_len;
220
221	return 0;
222}
223
224/*
225 * Convert transaction layer data (in br->trans_buf) to phy layer data, store
226 * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
227 * layer data length in br->phy_len.
228 *
229 * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
230 * with PHY_IDLE, then the slave will just drop them.
231 *
232 * The driver will not simply pad 4a at the tail. The concern is that driver
233 * will not store MISO data during tx phase, if the driver pads 4a at the tail,
234 * it is possible that if the slave is fast enough to response at the padding
235 * time. As a result these rx bytes are lost. In the following case, 7a,7c,00
236 * will lost.
237 * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
238 * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
239 *
240 * So the driver moves EOP and bytes after EOP to the end of the aligned size,
241 * then fill the hole with PHY_IDLE. As following:
242 * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
243 * after pad  ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
244 * Then if the slave will not get the entire packet before the tx phase is
245 * over, it can't responsed to anything either.
246 */
247static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
248{
249	char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
250	unsigned int aligned_phy_len, move_size;
251	bool need_esc = false;
252
253	tb = br->trans_buf;
254	tb_end = tb + br->trans_len;
255	pb = br->phy_buf;
256	pb_limit = pb + ARRAY_SIZE(br->phy_buf);
257
258	*pb++ = PKT_SOP;
259
260	/*
261	 * The driver doesn't support multiple channels so the channel number
262	 * is always 0.
263	 */
264	*pb++ = PKT_CHANNEL;
265	*pb++ = 0x0;
266
267	for (; pb < pb_limit && tb < tb_end; pb++) {
268		if (need_esc) {
269			*pb = *tb++ ^ 0x20;
270			need_esc = false;
271			continue;
272		}
273
274		/* EOP should be inserted before the last valid char */
275		if (tb == tb_end - 1 && !pb_eop) {
276			*pb = PKT_EOP;
277			pb_eop = pb;
278			continue;
279		}
280
281		/*
282		 * insert an ESCAPE char if the data value equals any special
283		 * char.
284		 */
285		switch (*tb) {
286		case PKT_SOP:
287		case PKT_EOP:
288		case PKT_CHANNEL:
289		case PKT_ESC:
290			*pb = PKT_ESC;
291			need_esc = true;
292			break;
293		case PHY_IDLE:
294		case PHY_ESC:
295			*pb = PHY_ESC;
296			need_esc = true;
297			break;
298		default:
299			*pb = *tb++;
300			break;
301		}
302	}
303
304	/* The phy buffer is used out but transaction layer data remains */
305	if (tb < tb_end)
306		return -ENOMEM;
307
308	/* Store valid phy data length for spi transfer */
309	br->phy_len = pb - br->phy_buf;
310
311	if (br->word_len == 1)
312		return 0;
313
314	/* Do phy buf padding if word_len > 1 byte. */
315	aligned_phy_len = ALIGN(br->phy_len, br->word_len);
316	if (aligned_phy_len > sizeof(br->phy_buf))
317		return -ENOMEM;
318
319	if (aligned_phy_len == br->phy_len)
320		return 0;
321
322	/* move EOP and bytes after EOP to the end of aligned size */
323	move_size = pb - pb_eop;
324	memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
325
326	/* fill the hole with PHY_IDLEs */
327	memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
328
329	/* update the phy data length */
330	br->phy_len = aligned_phy_len;
331
332	return 0;
333}
334
335/*
336 * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
337 * ignore rx in tx phase.
338 */
339static int br_do_tx(struct spi_avmm_bridge *br)
340{
341	/* reorder words for spi transfer */
342	if (br->swap_words)
343		br->swap_words(br->phy_buf, br->phy_len);
344
345	/* send all data in phy_buf  */
346	return spi_write(br->spi, br->phy_buf, br->phy_len);
347}
348
349/*
350 * This function read the rx byte stream from SPI word by word and convert
351 * them to transaction layer data in br->trans_buf. It also stores the length
352 * of rx transaction layer data in br->trans_len
353 *
354 * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
355 * prepare a fixed length buffer to receive all of the rx data in a batch. We
356 * have to read word by word and convert them to transaction layer data at
357 * once.
358 */
359static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
360{
361	bool eop_found = false, channel_found = false, esc_found = false;
362	bool valid_word = false, last_try = false;
363	struct device *dev = &br->spi->dev;
364	char *pb, *tb_limit, *tb = NULL;
365	unsigned long poll_timeout;
366	int ret, i;
367
368	tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
369	pb = br->phy_buf;
370	poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
371	while (tb < tb_limit) {
372		ret = spi_read(br->spi, pb, br->word_len);
373		if (ret)
374			return ret;
375
376		/* reorder the word back */
377		if (br->swap_words)
378			br->swap_words(pb, br->word_len);
379
380		valid_word = false;
381		for (i = 0; i < br->word_len; i++) {
382			/* drop everything before first SOP */
383			if (!tb && pb[i] != PKT_SOP)
384				continue;
385
386			/* drop PHY_IDLE */
387			if (pb[i] == PHY_IDLE)
388				continue;
389
390			valid_word = true;
391
392			/*
393			 * We don't support multiple channels, so error out if
394			 * a non-zero channel number is found.
395			 */
396			if (channel_found) {
397				if (pb[i] != 0) {
398					dev_err(dev, "%s channel num != 0\n",
399						__func__);
400					return -EFAULT;
401				}
402
403				channel_found = false;
404				continue;
405			}
406
407			switch (pb[i]) {
408			case PKT_SOP:
409				/*
410				 * reset the parsing if a second SOP appears.
411				 */
412				tb = br->trans_buf;
413				eop_found = false;
414				channel_found = false;
415				esc_found = false;
416				break;
417			case PKT_EOP:
418				/*
419				 * No special char is expected after ESC char.
420				 * No special char (except ESC & PHY_IDLE) is
421				 * expected after EOP char.
422				 *
423				 * The special chars are all dropped.
424				 */
425				if (esc_found || eop_found)
426					return -EFAULT;
427
428				eop_found = true;
429				break;
430			case PKT_CHANNEL:
431				if (esc_found || eop_found)
432					return -EFAULT;
433
434				channel_found = true;
435				break;
436			case PKT_ESC:
437			case PHY_ESC:
438				if (esc_found)
439					return -EFAULT;
440
441				esc_found = true;
442				break;
443			default:
444				/* Record the normal byte in trans_buf. */
445				if (esc_found) {
446					*tb++ = pb[i] ^ 0x20;
447					esc_found = false;
448				} else {
449					*tb++ = pb[i];
450				}
451
452				/*
453				 * We get the last normal byte after EOP, it is
454				 * time we finish. Normally the function should
455				 * return here.
456				 */
457				if (eop_found) {
458					br->trans_len = tb - br->trans_buf;
459					return 0;
460				}
461			}
462		}
463
464		if (valid_word) {
465			/* update poll timeout when we get valid word */
466			poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
467			last_try = false;
468		} else {
469			/*
470			 * We timeout when rx keeps invalid for some time. But
471			 * it is possible we are scheduled out for long time
472			 * after a spi_read. So when we are scheduled in, a SW
473			 * timeout happens. But actually HW may have worked fine and
474			 * has been ready long time ago. So we need to do an extra
475			 * read, if we get a valid word then we could continue rx,
476			 * otherwise real a HW issue happens.
477			 */
478			if (last_try)
479				return -ETIMEDOUT;
480
481			if (time_after(jiffies, poll_timeout))
482				last_try = true;
483		}
484	}
485
486	/*
487	 * We have used out all transfer layer buffer but cannot find the end
488	 * of the byte stream.
489	 */
490	dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
491		__func__);
492
493	return -EFAULT;
494}
495
496/*
497 * For read transactions, the avmm bus will directly return register values
498 * without transaction response header.
499 */
500static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
501				u32 *val, unsigned int expected_count)
502{
503	unsigned int i, trans_len = br->trans_len;
504	__le32 *data;
505
506	if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
507		return -EFAULT;
508
509	data = (__le32 *)br->trans_buf;
510	for (i = 0; i < expected_count; i++)
511		*val++ = le32_to_cpu(*data++);
512
513	return 0;
514}
515
516/*
517 * For write transactions, the slave will return a transaction response
518 * header.
519 */
520static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
521				unsigned int expected_count)
522{
523	unsigned int trans_len = br->trans_len;
524	struct trans_resp_header *resp;
525	u8 code;
526	u16 val_len;
527
528	if (trans_len != TRANS_RESP_HD_SIZE)
529		return -EFAULT;
530
531	resp = (struct trans_resp_header *)br->trans_buf;
532
533	code = resp->r_code ^ 0x80;
534	val_len = be16_to_cpu(resp->size);
535	if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
536		return -EFAULT;
537
538	/* error out if the trans code doesn't align with the val size */
539	if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
540	    (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
541		return -EFAULT;
542
543	return 0;
544}
545
546static int do_reg_access(void *context, bool is_read, unsigned int reg,
547			 unsigned int *value, unsigned int count)
548{
549	struct spi_avmm_bridge *br = context;
550	int ret;
551
552	/* invalidate bridge buffers first */
553	br->trans_len = 0;
554	br->phy_len = 0;
555
556	ret = br_trans_tx_prepare(br, is_read, reg, value, count);
557	if (ret)
558		return ret;
559
560	ret = br_pkt_phy_tx_prepare(br);
561	if (ret)
562		return ret;
563
564	ret = br_do_tx(br);
565	if (ret)
566		return ret;
567
568	ret = br_do_rx_and_pkt_phy_parse(br);
569	if (ret)
570		return ret;
571
572	if (is_read)
573		return br_rd_trans_rx_parse(br, value, count);
574	else
575		return br_wr_trans_rx_parse(br, count);
576}
577
578static int regmap_spi_avmm_gather_write(void *context,
579					const void *reg_buf, size_t reg_len,
580					const void *val_buf, size_t val_len)
581{
582	if (reg_len != SPI_AVMM_REG_SIZE)
583		return -EINVAL;
584
585	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
586		return -EINVAL;
587
588	return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
589			     val_len / SPI_AVMM_VAL_SIZE);
590}
591
592static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
593{
594	if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
595		return -EINVAL;
596
597	return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
598					    data + SPI_AVMM_REG_SIZE,
599					    bytes - SPI_AVMM_REG_SIZE);
600}
601
602static int regmap_spi_avmm_read(void *context,
603				const void *reg_buf, size_t reg_len,
604				void *val_buf, size_t val_len)
605{
606	if (reg_len != SPI_AVMM_REG_SIZE)
607		return -EINVAL;
608
609	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
610		return -EINVAL;
611
612	return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
613			     (val_len / SPI_AVMM_VAL_SIZE));
614}
615
616static struct spi_avmm_bridge *
617spi_avmm_bridge_ctx_gen(struct spi_device *spi)
618{
619	struct spi_avmm_bridge *br;
620
621	if (!spi)
622		return ERR_PTR(-ENODEV);
623
624	/* Only support BPW == 8 or 32 now. Try 32 BPW first. */
625	spi->mode = SPI_MODE_1;
626	spi->bits_per_word = 32;
627	if (spi_setup(spi)) {
628		spi->bits_per_word = 8;
629		if (spi_setup(spi))
630			return ERR_PTR(-EINVAL);
631	}
632
633	br = kzalloc(sizeof(*br), GFP_KERNEL);
634	if (!br)
635		return ERR_PTR(-ENOMEM);
636
637	br->spi = spi;
638	br->word_len = spi->bits_per_word / 8;
639	if (br->word_len == 4) {
640		/*
641		 * The protocol requires little endian byte order but MSB
642		 * first. So driver needs to swap the byte order word by word
643		 * if word length > 1.
644		 */
645		br->swap_words = br_swap_words_32;
646	}
647
648	return br;
649}
650
651static void spi_avmm_bridge_ctx_free(void *context)
652{
653	kfree(context);
654}
655
656static const struct regmap_bus regmap_spi_avmm_bus = {
657	.write = regmap_spi_avmm_write,
658	.gather_write = regmap_spi_avmm_gather_write,
659	.read = regmap_spi_avmm_read,
660	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
661	.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
662	.max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
663	.max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
664	.free_context = spi_avmm_bridge_ctx_free,
665};
666
667struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
668				      const struct regmap_config *config,
669				      struct lock_class_key *lock_key,
670				      const char *lock_name)
671{
672	struct spi_avmm_bridge *bridge;
673	struct regmap *map;
674
675	bridge = spi_avmm_bridge_ctx_gen(spi);
676	if (IS_ERR(bridge))
677		return ERR_CAST(bridge);
678
679	map = __regmap_init(&spi->dev, &regmap_spi_avmm_bus,
680			    bridge, config, lock_key, lock_name);
681	if (IS_ERR(map)) {
682		spi_avmm_bridge_ctx_free(bridge);
683		return ERR_CAST(map);
684	}
685
686	return map;
687}
688EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
689
690struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
691					   const struct regmap_config *config,
692					   struct lock_class_key *lock_key,
693					   const char *lock_name)
694{
695	struct spi_avmm_bridge *bridge;
696	struct regmap *map;
697
698	bridge = spi_avmm_bridge_ctx_gen(spi);
699	if (IS_ERR(bridge))
700		return ERR_CAST(bridge);
701
702	map = __devm_regmap_init(&spi->dev, &regmap_spi_avmm_bus,
703				 bridge, config, lock_key, lock_name);
704	if (IS_ERR(map)) {
705		spi_avmm_bridge_ctx_free(bridge);
706		return ERR_CAST(map);
707	}
708
709	return map;
710}
711EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
712
713MODULE_LICENSE("GPL v2");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2//
  3// Register map access API - SPI AVMM support
  4//
  5// Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
  6
  7#include <linux/module.h>
  8#include <linux/regmap.h>
  9#include <linux/spi/spi.h>
 
 10
 11/*
 12 * This driver implements the regmap operations for a generic SPI
 13 * master to access the registers of the spi slave chip which has an
 14 * Avalone bus in it.
 15 *
 16 * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
 17 * in the spi slave chip. The IP acts as a bridge to convert encoded streams of
 18 * bytes from the host to the internal register read/write on Avalon bus. In
 19 * order to issue register access requests to the slave chip, the host should
 20 * send formatted bytes that conform to the transfer protocol.
 21 * The transfer protocol contains 3 layers: transaction layer, packet layer
 22 * and physical layer.
 23 *
 24 * Reference Documents could be found at:
 25 * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
 26 *
 27 * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
 28 * introduction to the protocol.
 29 *
 30 * Chapter "Avalon Packets to Transactions Converter Core" describes
 31 * the transaction layer.
 32 *
 33 * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
 34 * describes the packet layer.
 35 *
 36 * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
 37 * physical layer.
 38 *
 39 *
 40 * When host issues a regmap read/write, the driver will transform the request
 41 * to byte stream layer by layer. It formats the register addr, value and
 42 * length to the transaction layer request, then converts the request to packet
 43 * layer bytes stream and then to physical layer bytes stream. Finally the
 44 * driver sends the formatted byte stream over SPI bus to the slave chip.
 45 *
 46 * The spi-avmm IP on the slave chip decodes the byte stream and initiates
 47 * register read/write on its internal Avalon bus, and then encodes the
 48 * response to byte stream and sends back to host.
 49 *
 50 * The driver receives the byte stream, reverses the 3 layers transformation,
 51 * and finally gets the response value (read out data for register read,
 52 * successful written size for register write).
 53 */
 54
 55#define PKT_SOP			0x7a
 56#define PKT_EOP			0x7b
 57#define PKT_CHANNEL		0x7c
 58#define PKT_ESC			0x7d
 59
 60#define PHY_IDLE		0x4a
 61#define PHY_ESC			0x4d
 62
 63#define TRANS_CODE_WRITE	0x0
 64#define TRANS_CODE_SEQ_WRITE	0x4
 65#define TRANS_CODE_READ		0x10
 66#define TRANS_CODE_SEQ_READ	0x14
 67#define TRANS_CODE_NO_TRANS	0x7f
 68
 69#define SPI_AVMM_XFER_TIMEOUT	(msecs_to_jiffies(200))
 70
 71/* slave's register addr is 32 bits */
 72#define SPI_AVMM_REG_SIZE		4UL
 73/* slave's register value is 32 bits */
 74#define SPI_AVMM_VAL_SIZE		4UL
 75
 76/*
 77 * max rx size could be larger. But considering the buffer consuming,
 78 * it is proper that we limit 1KB xfer at max.
 79 */
 80#define MAX_READ_CNT		256UL
 81#define MAX_WRITE_CNT		1UL
 82
 83struct trans_req_header {
 84	u8 code;
 85	u8 rsvd;
 86	__be16 size;
 87	__be32 addr;
 88} __packed;
 89
 90struct trans_resp_header {
 91	u8 r_code;
 92	u8 rsvd;
 93	__be16 size;
 94} __packed;
 95
 96#define TRANS_REQ_HD_SIZE	(sizeof(struct trans_req_header))
 97#define TRANS_RESP_HD_SIZE	(sizeof(struct trans_resp_header))
 98
 99/*
100 * In transaction layer,
101 * the write request format is: Transaction request header + data
102 * the read request format is: Transaction request header
103 * the write response format is: Transaction response header
104 * the read response format is: pure data, no Transaction response header
105 */
106#define TRANS_WR_TX_SIZE(n)	(TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
107#define TRANS_RD_TX_SIZE	TRANS_REQ_HD_SIZE
108#define TRANS_TX_MAX		TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
109
110#define TRANS_RD_RX_SIZE(n)	(SPI_AVMM_VAL_SIZE * (n))
111#define TRANS_WR_RX_SIZE	TRANS_RESP_HD_SIZE
112#define TRANS_RX_MAX		TRANS_RD_RX_SIZE(MAX_READ_CNT)
113
114/* tx & rx share one transaction layer buffer */
115#define TRANS_BUF_SIZE		((TRANS_TX_MAX > TRANS_RX_MAX) ?	\
116				 TRANS_TX_MAX : TRANS_RX_MAX)
117
118/*
119 * In tx phase, the host prepares all the phy layer bytes of a request in the
120 * phy buffer and sends them in a batch.
121 *
122 * The packet layer and physical layer defines several special chars for
123 * various purpose, when a transaction layer byte hits one of these special
124 * chars, it should be escaped. The escape rule is, "Escape char first,
125 * following the byte XOR'ed with 0x20".
126 *
127 * This macro defines the max possible length of the phy data. In the worst
128 * case, all transaction layer bytes need to be escaped (so the data length
129 * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
130 * we should make sure the length is aligned to SPI BPW.
131 */
132#define PHY_TX_MAX		ALIGN(2 * TRANS_TX_MAX + 4, 4)
133
134/*
135 * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
136 * length of the rx bit stream is unpredictable. So the driver reads the words
137 * one by one, and parses each word immediately into transaction layer buffer.
138 * Only one word length of phy buffer is used for rx.
139 */
140#define PHY_BUF_SIZE		PHY_TX_MAX
141
142/**
143 * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
144 *
145 * @spi: spi slave associated with this bridge.
146 * @word_len: bytes of word for spi transfer.
147 * @trans_len: length of valid data in trans_buf.
148 * @phy_len: length of valid data in phy_buf.
149 * @trans_buf: the bridge buffer for transaction layer data.
150 * @phy_buf: the bridge buffer for physical layer data.
151 * @swap_words: the word swapping cb for phy data. NULL if not needed.
152 *
153 * As a device's registers are implemented on the AVMM bus address space, it
154 * requires the driver to issue formatted requests to spi slave to AVMM bus
155 * master bridge to perform register access.
156 */
157struct spi_avmm_bridge {
158	struct spi_device *spi;
159	unsigned char word_len;
160	unsigned int trans_len;
161	unsigned int phy_len;
162	/* bridge buffer used in translation between protocol layers */
163	char trans_buf[TRANS_BUF_SIZE];
164	char phy_buf[PHY_BUF_SIZE];
165	void (*swap_words)(char *buf, unsigned int len);
166};
167
168static void br_swap_words_32(char *buf, unsigned int len)
169{
170	u32 *p = (u32 *)buf;
171	unsigned int count;
172
173	count = len / 4;
174	while (count--) {
175		*p = swab32p(p);
176		p++;
177	}
178}
179
180/*
181 * Format transaction layer data in br->trans_buf according to the register
182 * access request, Store valid transaction layer data length in br->trans_len.
183 */
184static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
185			       u32 *wr_val, u32 count)
186{
187	struct trans_req_header *header;
188	unsigned int trans_len;
189	u8 code;
190	__le32 *data;
191	int i;
192
193	if (is_read) {
194		if (count == 1)
195			code = TRANS_CODE_READ;
196		else
197			code = TRANS_CODE_SEQ_READ;
198	} else {
199		if (count == 1)
200			code = TRANS_CODE_WRITE;
201		else
202			code = TRANS_CODE_SEQ_WRITE;
203	}
204
205	header = (struct trans_req_header *)br->trans_buf;
206	header->code = code;
207	header->rsvd = 0;
208	header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
209	header->addr = cpu_to_be32(reg);
210
211	trans_len = TRANS_REQ_HD_SIZE;
212
213	if (!is_read) {
214		trans_len += SPI_AVMM_VAL_SIZE * count;
215		if (trans_len > sizeof(br->trans_buf))
216			return -ENOMEM;
217
218		data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
219
220		for (i = 0; i < count; i++)
221			*data++ = cpu_to_le32(*wr_val++);
222	}
223
224	/* Store valid trans data length for next layer */
225	br->trans_len = trans_len;
226
227	return 0;
228}
229
230/*
231 * Convert transaction layer data (in br->trans_buf) to phy layer data, store
232 * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
233 * layer data length in br->phy_len.
234 *
235 * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
236 * with PHY_IDLE, then the slave will just drop them.
237 *
238 * The driver will not simply pad 4a at the tail. The concern is that driver
239 * will not store MISO data during tx phase, if the driver pads 4a at the tail,
240 * it is possible that if the slave is fast enough to response at the padding
241 * time. As a result these rx bytes are lost. In the following case, 7a,7c,00
242 * will lost.
243 * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
244 * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
245 *
246 * So the driver moves EOP and bytes after EOP to the end of the aligned size,
247 * then fill the hole with PHY_IDLE. As following:
248 * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
249 * after pad  ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
250 * Then if the slave will not get the entire packet before the tx phase is
251 * over, it can't responsed to anything either.
252 */
253static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
254{
255	char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
256	unsigned int aligned_phy_len, move_size;
257	bool need_esc = false;
258
259	tb = br->trans_buf;
260	tb_end = tb + br->trans_len;
261	pb = br->phy_buf;
262	pb_limit = pb + ARRAY_SIZE(br->phy_buf);
263
264	*pb++ = PKT_SOP;
265
266	/*
267	 * The driver doesn't support multiple channels so the channel number
268	 * is always 0.
269	 */
270	*pb++ = PKT_CHANNEL;
271	*pb++ = 0x0;
272
273	for (; pb < pb_limit && tb < tb_end; pb++) {
274		if (need_esc) {
275			*pb = *tb++ ^ 0x20;
276			need_esc = false;
277			continue;
278		}
279
280		/* EOP should be inserted before the last valid char */
281		if (tb == tb_end - 1 && !pb_eop) {
282			*pb = PKT_EOP;
283			pb_eop = pb;
284			continue;
285		}
286
287		/*
288		 * insert an ESCAPE char if the data value equals any special
289		 * char.
290		 */
291		switch (*tb) {
292		case PKT_SOP:
293		case PKT_EOP:
294		case PKT_CHANNEL:
295		case PKT_ESC:
296			*pb = PKT_ESC;
297			need_esc = true;
298			break;
299		case PHY_IDLE:
300		case PHY_ESC:
301			*pb = PHY_ESC;
302			need_esc = true;
303			break;
304		default:
305			*pb = *tb++;
306			break;
307		}
308	}
309
310	/* The phy buffer is used out but transaction layer data remains */
311	if (tb < tb_end)
312		return -ENOMEM;
313
314	/* Store valid phy data length for spi transfer */
315	br->phy_len = pb - br->phy_buf;
316
317	if (br->word_len == 1)
318		return 0;
319
320	/* Do phy buf padding if word_len > 1 byte. */
321	aligned_phy_len = ALIGN(br->phy_len, br->word_len);
322	if (aligned_phy_len > sizeof(br->phy_buf))
323		return -ENOMEM;
324
325	if (aligned_phy_len == br->phy_len)
326		return 0;
327
328	/* move EOP and bytes after EOP to the end of aligned size */
329	move_size = pb - pb_eop;
330	memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
331
332	/* fill the hole with PHY_IDLEs */
333	memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
334
335	/* update the phy data length */
336	br->phy_len = aligned_phy_len;
337
338	return 0;
339}
340
341/*
342 * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
343 * ignore rx in tx phase.
344 */
345static int br_do_tx(struct spi_avmm_bridge *br)
346{
347	/* reorder words for spi transfer */
348	if (br->swap_words)
349		br->swap_words(br->phy_buf, br->phy_len);
350
351	/* send all data in phy_buf  */
352	return spi_write(br->spi, br->phy_buf, br->phy_len);
353}
354
355/*
356 * This function read the rx byte stream from SPI word by word and convert
357 * them to transaction layer data in br->trans_buf. It also stores the length
358 * of rx transaction layer data in br->trans_len
359 *
360 * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
361 * prepare a fixed length buffer to receive all of the rx data in a batch. We
362 * have to read word by word and convert them to transaction layer data at
363 * once.
364 */
365static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
366{
367	bool eop_found = false, channel_found = false, esc_found = false;
368	bool valid_word = false, last_try = false;
369	struct device *dev = &br->spi->dev;
370	char *pb, *tb_limit, *tb = NULL;
371	unsigned long poll_timeout;
372	int ret, i;
373
374	tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
375	pb = br->phy_buf;
376	poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
377	while (tb < tb_limit) {
378		ret = spi_read(br->spi, pb, br->word_len);
379		if (ret)
380			return ret;
381
382		/* reorder the word back */
383		if (br->swap_words)
384			br->swap_words(pb, br->word_len);
385
386		valid_word = false;
387		for (i = 0; i < br->word_len; i++) {
388			/* drop everything before first SOP */
389			if (!tb && pb[i] != PKT_SOP)
390				continue;
391
392			/* drop PHY_IDLE */
393			if (pb[i] == PHY_IDLE)
394				continue;
395
396			valid_word = true;
397
398			/*
399			 * We don't support multiple channels, so error out if
400			 * a non-zero channel number is found.
401			 */
402			if (channel_found) {
403				if (pb[i] != 0) {
404					dev_err(dev, "%s channel num != 0\n",
405						__func__);
406					return -EFAULT;
407				}
408
409				channel_found = false;
410				continue;
411			}
412
413			switch (pb[i]) {
414			case PKT_SOP:
415				/*
416				 * reset the parsing if a second SOP appears.
417				 */
418				tb = br->trans_buf;
419				eop_found = false;
420				channel_found = false;
421				esc_found = false;
422				break;
423			case PKT_EOP:
424				/*
425				 * No special char is expected after ESC char.
426				 * No special char (except ESC & PHY_IDLE) is
427				 * expected after EOP char.
428				 *
429				 * The special chars are all dropped.
430				 */
431				if (esc_found || eop_found)
432					return -EFAULT;
433
434				eop_found = true;
435				break;
436			case PKT_CHANNEL:
437				if (esc_found || eop_found)
438					return -EFAULT;
439
440				channel_found = true;
441				break;
442			case PKT_ESC:
443			case PHY_ESC:
444				if (esc_found)
445					return -EFAULT;
446
447				esc_found = true;
448				break;
449			default:
450				/* Record the normal byte in trans_buf. */
451				if (esc_found) {
452					*tb++ = pb[i] ^ 0x20;
453					esc_found = false;
454				} else {
455					*tb++ = pb[i];
456				}
457
458				/*
459				 * We get the last normal byte after EOP, it is
460				 * time we finish. Normally the function should
461				 * return here.
462				 */
463				if (eop_found) {
464					br->trans_len = tb - br->trans_buf;
465					return 0;
466				}
467			}
468		}
469
470		if (valid_word) {
471			/* update poll timeout when we get valid word */
472			poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
473			last_try = false;
474		} else {
475			/*
476			 * We timeout when rx keeps invalid for some time. But
477			 * it is possible we are scheduled out for long time
478			 * after a spi_read. So when we are scheduled in, a SW
479			 * timeout happens. But actually HW may have worked fine and
480			 * has been ready long time ago. So we need to do an extra
481			 * read, if we get a valid word then we could continue rx,
482			 * otherwise real a HW issue happens.
483			 */
484			if (last_try)
485				return -ETIMEDOUT;
486
487			if (time_after(jiffies, poll_timeout))
488				last_try = true;
489		}
490	}
491
492	/*
493	 * We have used out all transfer layer buffer but cannot find the end
494	 * of the byte stream.
495	 */
496	dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
497		__func__);
498
499	return -EFAULT;
500}
501
502/*
503 * For read transactions, the avmm bus will directly return register values
504 * without transaction response header.
505 */
506static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
507				u32 *val, unsigned int expected_count)
508{
509	unsigned int i, trans_len = br->trans_len;
510	__le32 *data;
511
512	if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
513		return -EFAULT;
514
515	data = (__le32 *)br->trans_buf;
516	for (i = 0; i < expected_count; i++)
517		*val++ = le32_to_cpu(*data++);
518
519	return 0;
520}
521
522/*
523 * For write transactions, the slave will return a transaction response
524 * header.
525 */
526static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
527				unsigned int expected_count)
528{
529	unsigned int trans_len = br->trans_len;
530	struct trans_resp_header *resp;
531	u8 code;
532	u16 val_len;
533
534	if (trans_len != TRANS_RESP_HD_SIZE)
535		return -EFAULT;
536
537	resp = (struct trans_resp_header *)br->trans_buf;
538
539	code = resp->r_code ^ 0x80;
540	val_len = be16_to_cpu(resp->size);
541	if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
542		return -EFAULT;
543
544	/* error out if the trans code doesn't align with the val size */
545	if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
546	    (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
547		return -EFAULT;
548
549	return 0;
550}
551
552static int do_reg_access(void *context, bool is_read, unsigned int reg,
553			 unsigned int *value, unsigned int count)
554{
555	struct spi_avmm_bridge *br = context;
556	int ret;
557
558	/* invalidate bridge buffers first */
559	br->trans_len = 0;
560	br->phy_len = 0;
561
562	ret = br_trans_tx_prepare(br, is_read, reg, value, count);
563	if (ret)
564		return ret;
565
566	ret = br_pkt_phy_tx_prepare(br);
567	if (ret)
568		return ret;
569
570	ret = br_do_tx(br);
571	if (ret)
572		return ret;
573
574	ret = br_do_rx_and_pkt_phy_parse(br);
575	if (ret)
576		return ret;
577
578	if (is_read)
579		return br_rd_trans_rx_parse(br, value, count);
580	else
581		return br_wr_trans_rx_parse(br, count);
582}
583
584static int regmap_spi_avmm_gather_write(void *context,
585					const void *reg_buf, size_t reg_len,
586					const void *val_buf, size_t val_len)
587{
588	if (reg_len != SPI_AVMM_REG_SIZE)
589		return -EINVAL;
590
591	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
592		return -EINVAL;
593
594	return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
595			     val_len / SPI_AVMM_VAL_SIZE);
596}
597
598static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
599{
600	if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
601		return -EINVAL;
602
603	return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
604					    data + SPI_AVMM_REG_SIZE,
605					    bytes - SPI_AVMM_REG_SIZE);
606}
607
608static int regmap_spi_avmm_read(void *context,
609				const void *reg_buf, size_t reg_len,
610				void *val_buf, size_t val_len)
611{
612	if (reg_len != SPI_AVMM_REG_SIZE)
613		return -EINVAL;
614
615	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
616		return -EINVAL;
617
618	return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
619			     (val_len / SPI_AVMM_VAL_SIZE));
620}
621
622static struct spi_avmm_bridge *
623spi_avmm_bridge_ctx_gen(struct spi_device *spi)
624{
625	struct spi_avmm_bridge *br;
626
627	if (!spi)
628		return ERR_PTR(-ENODEV);
629
630	/* Only support BPW == 8 or 32 now. Try 32 BPW first. */
631	spi->mode = SPI_MODE_1;
632	spi->bits_per_word = 32;
633	if (spi_setup(spi)) {
634		spi->bits_per_word = 8;
635		if (spi_setup(spi))
636			return ERR_PTR(-EINVAL);
637	}
638
639	br = kzalloc(sizeof(*br), GFP_KERNEL);
640	if (!br)
641		return ERR_PTR(-ENOMEM);
642
643	br->spi = spi;
644	br->word_len = spi->bits_per_word / 8;
645	if (br->word_len == 4) {
646		/*
647		 * The protocol requires little endian byte order but MSB
648		 * first. So driver needs to swap the byte order word by word
649		 * if word length > 1.
650		 */
651		br->swap_words = br_swap_words_32;
652	}
653
654	return br;
655}
656
657static void spi_avmm_bridge_ctx_free(void *context)
658{
659	kfree(context);
660}
661
662static const struct regmap_bus regmap_spi_avmm_bus = {
663	.write = regmap_spi_avmm_write,
664	.gather_write = regmap_spi_avmm_gather_write,
665	.read = regmap_spi_avmm_read,
666	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
667	.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
668	.max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
669	.max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
670	.free_context = spi_avmm_bridge_ctx_free,
671};
672
673struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
674				      const struct regmap_config *config,
675				      struct lock_class_key *lock_key,
676				      const char *lock_name)
677{
678	struct spi_avmm_bridge *bridge;
679	struct regmap *map;
680
681	bridge = spi_avmm_bridge_ctx_gen(spi);
682	if (IS_ERR(bridge))
683		return ERR_CAST(bridge);
684
685	map = __regmap_init(&spi->dev, &regmap_spi_avmm_bus,
686			    bridge, config, lock_key, lock_name);
687	if (IS_ERR(map)) {
688		spi_avmm_bridge_ctx_free(bridge);
689		return ERR_CAST(map);
690	}
691
692	return map;
693}
694EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
695
696struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
697					   const struct regmap_config *config,
698					   struct lock_class_key *lock_key,
699					   const char *lock_name)
700{
701	struct spi_avmm_bridge *bridge;
702	struct regmap *map;
703
704	bridge = spi_avmm_bridge_ctx_gen(spi);
705	if (IS_ERR(bridge))
706		return ERR_CAST(bridge);
707
708	map = __devm_regmap_init(&spi->dev, &regmap_spi_avmm_bus,
709				 bridge, config, lock_key, lock_name);
710	if (IS_ERR(map)) {
711		spi_avmm_bridge_ctx_free(bridge);
712		return ERR_CAST(map);
713	}
714
715	return map;
716}
717EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
718
719MODULE_LICENSE("GPL v2");