Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/devres.c - device resource management
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8
9#include <linux/device.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/percpu.h>
13
14#include <asm/sections.h>
15
16#include "base.h"
17#include "trace.h"
18
19struct devres_node {
20 struct list_head entry;
21 dr_release_t release;
22 const char *name;
23 size_t size;
24};
25
26struct devres {
27 struct devres_node node;
28 /*
29 * Some archs want to perform DMA into kmalloc caches
30 * and need a guaranteed alignment larger than
31 * the alignment of a 64-bit integer.
32 * Thus we use ARCH_DMA_MINALIGN for data[] which will force the same
33 * alignment for struct devres when allocated by kmalloc().
34 */
35 u8 __aligned(ARCH_DMA_MINALIGN) data[];
36};
37
38struct devres_group {
39 struct devres_node node[2];
40 void *id;
41 int color;
42 /* -- 8 pointers */
43};
44
45static void set_node_dbginfo(struct devres_node *node, const char *name,
46 size_t size)
47{
48 node->name = name;
49 node->size = size;
50}
51
52#ifdef CONFIG_DEBUG_DEVRES
53static int log_devres = 0;
54module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55
56static void devres_dbg(struct device *dev, struct devres_node *node,
57 const char *op)
58{
59 if (unlikely(log_devres))
60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 op, node, node->name, node->size);
62}
63#else /* CONFIG_DEBUG_DEVRES */
64#define devres_dbg(dev, node, op) do {} while (0)
65#endif /* CONFIG_DEBUG_DEVRES */
66
67static void devres_log(struct device *dev, struct devres_node *node,
68 const char *op)
69{
70 trace_devres_log(dev, op, node, node->name, node->size);
71 devres_dbg(dev, node, op);
72}
73
74/*
75 * Release functions for devres group. These callbacks are used only
76 * for identification.
77 */
78static void group_open_release(struct device *dev, void *res)
79{
80 /* noop */
81}
82
83static void group_close_release(struct device *dev, void *res)
84{
85 /* noop */
86}
87
88static struct devres_group * node_to_group(struct devres_node *node)
89{
90 if (node->release == &group_open_release)
91 return container_of(node, struct devres_group, node[0]);
92 if (node->release == &group_close_release)
93 return container_of(node, struct devres_group, node[1]);
94 return NULL;
95}
96
97static bool check_dr_size(size_t size, size_t *tot_size)
98{
99 /* We must catch any near-SIZE_MAX cases that could overflow. */
100 if (unlikely(check_add_overflow(sizeof(struct devres),
101 size, tot_size)))
102 return false;
103
104 /* Actually allocate the full kmalloc bucket size. */
105 *tot_size = kmalloc_size_roundup(*tot_size);
106
107 return true;
108}
109
110static __always_inline struct devres * alloc_dr(dr_release_t release,
111 size_t size, gfp_t gfp, int nid)
112{
113 size_t tot_size;
114 struct devres *dr;
115
116 if (!check_dr_size(size, &tot_size))
117 return NULL;
118
119 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
120 if (unlikely(!dr))
121 return NULL;
122
123 /* No need to clear memory twice */
124 if (!(gfp & __GFP_ZERO))
125 memset(dr, 0, offsetof(struct devres, data));
126
127 INIT_LIST_HEAD(&dr->node.entry);
128 dr->node.release = release;
129 return dr;
130}
131
132static void add_dr(struct device *dev, struct devres_node *node)
133{
134 devres_log(dev, node, "ADD");
135 BUG_ON(!list_empty(&node->entry));
136 list_add_tail(&node->entry, &dev->devres_head);
137}
138
139static void replace_dr(struct device *dev,
140 struct devres_node *old, struct devres_node *new)
141{
142 devres_log(dev, old, "REPLACE");
143 BUG_ON(!list_empty(&new->entry));
144 list_replace(&old->entry, &new->entry);
145}
146
147/**
148 * __devres_alloc_node - Allocate device resource data
149 * @release: Release function devres will be associated with
150 * @size: Allocation size
151 * @gfp: Allocation flags
152 * @nid: NUMA node
153 * @name: Name of the resource
154 *
155 * Allocate devres of @size bytes. The allocated area is zeroed, then
156 * associated with @release. The returned pointer can be passed to
157 * other devres_*() functions.
158 *
159 * RETURNS:
160 * Pointer to allocated devres on success, NULL on failure.
161 */
162void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
163 const char *name)
164{
165 struct devres *dr;
166
167 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
168 if (unlikely(!dr))
169 return NULL;
170 set_node_dbginfo(&dr->node, name, size);
171 return dr->data;
172}
173EXPORT_SYMBOL_GPL(__devres_alloc_node);
174
175/**
176 * devres_for_each_res - Resource iterator
177 * @dev: Device to iterate resource from
178 * @release: Look for resources associated with this release function
179 * @match: Match function (optional)
180 * @match_data: Data for the match function
181 * @fn: Function to be called for each matched resource.
182 * @data: Data for @fn, the 3rd parameter of @fn
183 *
184 * Call @fn for each devres of @dev which is associated with @release
185 * and for which @match returns 1.
186 *
187 * RETURNS:
188 * void
189 */
190void devres_for_each_res(struct device *dev, dr_release_t release,
191 dr_match_t match, void *match_data,
192 void (*fn)(struct device *, void *, void *),
193 void *data)
194{
195 struct devres_node *node;
196 struct devres_node *tmp;
197 unsigned long flags;
198
199 if (!fn)
200 return;
201
202 spin_lock_irqsave(&dev->devres_lock, flags);
203 list_for_each_entry_safe_reverse(node, tmp,
204 &dev->devres_head, entry) {
205 struct devres *dr = container_of(node, struct devres, node);
206
207 if (node->release != release)
208 continue;
209 if (match && !match(dev, dr->data, match_data))
210 continue;
211 fn(dev, dr->data, data);
212 }
213 spin_unlock_irqrestore(&dev->devres_lock, flags);
214}
215EXPORT_SYMBOL_GPL(devres_for_each_res);
216
217/**
218 * devres_free - Free device resource data
219 * @res: Pointer to devres data to free
220 *
221 * Free devres created with devres_alloc().
222 */
223void devres_free(void *res)
224{
225 if (res) {
226 struct devres *dr = container_of(res, struct devres, data);
227
228 BUG_ON(!list_empty(&dr->node.entry));
229 kfree(dr);
230 }
231}
232EXPORT_SYMBOL_GPL(devres_free);
233
234/**
235 * devres_add - Register device resource
236 * @dev: Device to add resource to
237 * @res: Resource to register
238 *
239 * Register devres @res to @dev. @res should have been allocated
240 * using devres_alloc(). On driver detach, the associated release
241 * function will be invoked and devres will be freed automatically.
242 */
243void devres_add(struct device *dev, void *res)
244{
245 struct devres *dr = container_of(res, struct devres, data);
246 unsigned long flags;
247
248 spin_lock_irqsave(&dev->devres_lock, flags);
249 add_dr(dev, &dr->node);
250 spin_unlock_irqrestore(&dev->devres_lock, flags);
251}
252EXPORT_SYMBOL_GPL(devres_add);
253
254static struct devres *find_dr(struct device *dev, dr_release_t release,
255 dr_match_t match, void *match_data)
256{
257 struct devres_node *node;
258
259 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
260 struct devres *dr = container_of(node, struct devres, node);
261
262 if (node->release != release)
263 continue;
264 if (match && !match(dev, dr->data, match_data))
265 continue;
266 return dr;
267 }
268
269 return NULL;
270}
271
272/**
273 * devres_find - Find device resource
274 * @dev: Device to lookup resource from
275 * @release: Look for resources associated with this release function
276 * @match: Match function (optional)
277 * @match_data: Data for the match function
278 *
279 * Find the latest devres of @dev which is associated with @release
280 * and for which @match returns 1. If @match is NULL, it's considered
281 * to match all.
282 *
283 * RETURNS:
284 * Pointer to found devres, NULL if not found.
285 */
286void * devres_find(struct device *dev, dr_release_t release,
287 dr_match_t match, void *match_data)
288{
289 struct devres *dr;
290 unsigned long flags;
291
292 spin_lock_irqsave(&dev->devres_lock, flags);
293 dr = find_dr(dev, release, match, match_data);
294 spin_unlock_irqrestore(&dev->devres_lock, flags);
295
296 if (dr)
297 return dr->data;
298 return NULL;
299}
300EXPORT_SYMBOL_GPL(devres_find);
301
302/**
303 * devres_get - Find devres, if non-existent, add one atomically
304 * @dev: Device to lookup or add devres for
305 * @new_res: Pointer to new initialized devres to add if not found
306 * @match: Match function (optional)
307 * @match_data: Data for the match function
308 *
309 * Find the latest devres of @dev which has the same release function
310 * as @new_res and for which @match return 1. If found, @new_res is
311 * freed; otherwise, @new_res is added atomically.
312 *
313 * RETURNS:
314 * Pointer to found or added devres.
315 */
316void * devres_get(struct device *dev, void *new_res,
317 dr_match_t match, void *match_data)
318{
319 struct devres *new_dr = container_of(new_res, struct devres, data);
320 struct devres *dr;
321 unsigned long flags;
322
323 spin_lock_irqsave(&dev->devres_lock, flags);
324 dr = find_dr(dev, new_dr->node.release, match, match_data);
325 if (!dr) {
326 add_dr(dev, &new_dr->node);
327 dr = new_dr;
328 new_res = NULL;
329 }
330 spin_unlock_irqrestore(&dev->devres_lock, flags);
331 devres_free(new_res);
332
333 return dr->data;
334}
335EXPORT_SYMBOL_GPL(devres_get);
336
337/**
338 * devres_remove - Find a device resource and remove it
339 * @dev: Device to find resource from
340 * @release: Look for resources associated with this release function
341 * @match: Match function (optional)
342 * @match_data: Data for the match function
343 *
344 * Find the latest devres of @dev associated with @release and for
345 * which @match returns 1. If @match is NULL, it's considered to
346 * match all. If found, the resource is removed atomically and
347 * returned.
348 *
349 * RETURNS:
350 * Pointer to removed devres on success, NULL if not found.
351 */
352void * devres_remove(struct device *dev, dr_release_t release,
353 dr_match_t match, void *match_data)
354{
355 struct devres *dr;
356 unsigned long flags;
357
358 spin_lock_irqsave(&dev->devres_lock, flags);
359 dr = find_dr(dev, release, match, match_data);
360 if (dr) {
361 list_del_init(&dr->node.entry);
362 devres_log(dev, &dr->node, "REM");
363 }
364 spin_unlock_irqrestore(&dev->devres_lock, flags);
365
366 if (dr)
367 return dr->data;
368 return NULL;
369}
370EXPORT_SYMBOL_GPL(devres_remove);
371
372/**
373 * devres_destroy - Find a device resource and destroy it
374 * @dev: Device to find resource from
375 * @release: Look for resources associated with this release function
376 * @match: Match function (optional)
377 * @match_data: Data for the match function
378 *
379 * Find the latest devres of @dev associated with @release and for
380 * which @match returns 1. If @match is NULL, it's considered to
381 * match all. If found, the resource is removed atomically and freed.
382 *
383 * Note that the release function for the resource will not be called,
384 * only the devres-allocated data will be freed. The caller becomes
385 * responsible for freeing any other data.
386 *
387 * RETURNS:
388 * 0 if devres is found and freed, -ENOENT if not found.
389 */
390int devres_destroy(struct device *dev, dr_release_t release,
391 dr_match_t match, void *match_data)
392{
393 void *res;
394
395 res = devres_remove(dev, release, match, match_data);
396 if (unlikely(!res))
397 return -ENOENT;
398
399 devres_free(res);
400 return 0;
401}
402EXPORT_SYMBOL_GPL(devres_destroy);
403
404
405/**
406 * devres_release - Find a device resource and destroy it, calling release
407 * @dev: Device to find resource from
408 * @release: Look for resources associated with this release function
409 * @match: Match function (optional)
410 * @match_data: Data for the match function
411 *
412 * Find the latest devres of @dev associated with @release and for
413 * which @match returns 1. If @match is NULL, it's considered to
414 * match all. If found, the resource is removed atomically, the
415 * release function called and the resource freed.
416 *
417 * RETURNS:
418 * 0 if devres is found and freed, -ENOENT if not found.
419 */
420int devres_release(struct device *dev, dr_release_t release,
421 dr_match_t match, void *match_data)
422{
423 void *res;
424
425 res = devres_remove(dev, release, match, match_data);
426 if (unlikely(!res))
427 return -ENOENT;
428
429 (*release)(dev, res);
430 devres_free(res);
431 return 0;
432}
433EXPORT_SYMBOL_GPL(devres_release);
434
435static int remove_nodes(struct device *dev,
436 struct list_head *first, struct list_head *end,
437 struct list_head *todo)
438{
439 struct devres_node *node, *n;
440 int cnt = 0, nr_groups = 0;
441
442 /* First pass - move normal devres entries to @todo and clear
443 * devres_group colors.
444 */
445 node = list_entry(first, struct devres_node, entry);
446 list_for_each_entry_safe_from(node, n, end, entry) {
447 struct devres_group *grp;
448
449 grp = node_to_group(node);
450 if (grp) {
451 /* clear color of group markers in the first pass */
452 grp->color = 0;
453 nr_groups++;
454 } else {
455 /* regular devres entry */
456 if (&node->entry == first)
457 first = first->next;
458 list_move_tail(&node->entry, todo);
459 cnt++;
460 }
461 }
462
463 if (!nr_groups)
464 return cnt;
465
466 /* Second pass - Scan groups and color them. A group gets
467 * color value of two iff the group is wholly contained in
468 * [current node, end). That is, for a closed group, both opening
469 * and closing markers should be in the range, while just the
470 * opening marker is enough for an open group.
471 */
472 node = list_entry(first, struct devres_node, entry);
473 list_for_each_entry_safe_from(node, n, end, entry) {
474 struct devres_group *grp;
475
476 grp = node_to_group(node);
477 BUG_ON(!grp || list_empty(&grp->node[0].entry));
478
479 grp->color++;
480 if (list_empty(&grp->node[1].entry))
481 grp->color++;
482
483 BUG_ON(grp->color <= 0 || grp->color > 2);
484 if (grp->color == 2) {
485 /* No need to update current node or end. The removed
486 * nodes are always before both.
487 */
488 list_move_tail(&grp->node[0].entry, todo);
489 list_del_init(&grp->node[1].entry);
490 }
491 }
492
493 return cnt;
494}
495
496static void release_nodes(struct device *dev, struct list_head *todo)
497{
498 struct devres *dr, *tmp;
499
500 /* Release. Note that both devres and devres_group are
501 * handled as devres in the following loop. This is safe.
502 */
503 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
504 devres_log(dev, &dr->node, "REL");
505 dr->node.release(dev, dr->data);
506 kfree(dr);
507 }
508}
509
510/**
511 * devres_release_all - Release all managed resources
512 * @dev: Device to release resources for
513 *
514 * Release all resources associated with @dev. This function is
515 * called on driver detach.
516 */
517int devres_release_all(struct device *dev)
518{
519 unsigned long flags;
520 LIST_HEAD(todo);
521 int cnt;
522
523 /* Looks like an uninitialized device structure */
524 if (WARN_ON(dev->devres_head.next == NULL))
525 return -ENODEV;
526
527 /* Nothing to release if list is empty */
528 if (list_empty(&dev->devres_head))
529 return 0;
530
531 spin_lock_irqsave(&dev->devres_lock, flags);
532 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
533 spin_unlock_irqrestore(&dev->devres_lock, flags);
534
535 release_nodes(dev, &todo);
536 return cnt;
537}
538
539/**
540 * devres_open_group - Open a new devres group
541 * @dev: Device to open devres group for
542 * @id: Separator ID
543 * @gfp: Allocation flags
544 *
545 * Open a new devres group for @dev with @id. For @id, using a
546 * pointer to an object which won't be used for another group is
547 * recommended. If @id is NULL, address-wise unique ID is created.
548 *
549 * RETURNS:
550 * ID of the new group, NULL on failure.
551 */
552void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
553{
554 struct devres_group *grp;
555 unsigned long flags;
556
557 grp = kmalloc(sizeof(*grp), gfp);
558 if (unlikely(!grp))
559 return NULL;
560
561 grp->node[0].release = &group_open_release;
562 grp->node[1].release = &group_close_release;
563 INIT_LIST_HEAD(&grp->node[0].entry);
564 INIT_LIST_HEAD(&grp->node[1].entry);
565 set_node_dbginfo(&grp->node[0], "grp<", 0);
566 set_node_dbginfo(&grp->node[1], "grp>", 0);
567 grp->id = grp;
568 if (id)
569 grp->id = id;
570
571 spin_lock_irqsave(&dev->devres_lock, flags);
572 add_dr(dev, &grp->node[0]);
573 spin_unlock_irqrestore(&dev->devres_lock, flags);
574 return grp->id;
575}
576EXPORT_SYMBOL_GPL(devres_open_group);
577
578/* Find devres group with ID @id. If @id is NULL, look for the latest. */
579static struct devres_group * find_group(struct device *dev, void *id)
580{
581 struct devres_node *node;
582
583 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
584 struct devres_group *grp;
585
586 if (node->release != &group_open_release)
587 continue;
588
589 grp = container_of(node, struct devres_group, node[0]);
590
591 if (id) {
592 if (grp->id == id)
593 return grp;
594 } else if (list_empty(&grp->node[1].entry))
595 return grp;
596 }
597
598 return NULL;
599}
600
601/**
602 * devres_close_group - Close a devres group
603 * @dev: Device to close devres group for
604 * @id: ID of target group, can be NULL
605 *
606 * Close the group identified by @id. If @id is NULL, the latest open
607 * group is selected.
608 */
609void devres_close_group(struct device *dev, void *id)
610{
611 struct devres_group *grp;
612 unsigned long flags;
613
614 spin_lock_irqsave(&dev->devres_lock, flags);
615
616 grp = find_group(dev, id);
617 if (grp)
618 add_dr(dev, &grp->node[1]);
619 else
620 WARN_ON(1);
621
622 spin_unlock_irqrestore(&dev->devres_lock, flags);
623}
624EXPORT_SYMBOL_GPL(devres_close_group);
625
626/**
627 * devres_remove_group - Remove a devres group
628 * @dev: Device to remove group for
629 * @id: ID of target group, can be NULL
630 *
631 * Remove the group identified by @id. If @id is NULL, the latest
632 * open group is selected. Note that removing a group doesn't affect
633 * any other resources.
634 */
635void devres_remove_group(struct device *dev, void *id)
636{
637 struct devres_group *grp;
638 unsigned long flags;
639
640 spin_lock_irqsave(&dev->devres_lock, flags);
641
642 grp = find_group(dev, id);
643 if (grp) {
644 list_del_init(&grp->node[0].entry);
645 list_del_init(&grp->node[1].entry);
646 devres_log(dev, &grp->node[0], "REM");
647 } else
648 WARN_ON(1);
649
650 spin_unlock_irqrestore(&dev->devres_lock, flags);
651
652 kfree(grp);
653}
654EXPORT_SYMBOL_GPL(devres_remove_group);
655
656/**
657 * devres_release_group - Release resources in a devres group
658 * @dev: Device to release group for
659 * @id: ID of target group, can be NULL
660 *
661 * Release all resources in the group identified by @id. If @id is
662 * NULL, the latest open group is selected. The selected group and
663 * groups properly nested inside the selected group are removed.
664 *
665 * RETURNS:
666 * The number of released non-group resources.
667 */
668int devres_release_group(struct device *dev, void *id)
669{
670 struct devres_group *grp;
671 unsigned long flags;
672 LIST_HEAD(todo);
673 int cnt = 0;
674
675 spin_lock_irqsave(&dev->devres_lock, flags);
676
677 grp = find_group(dev, id);
678 if (grp) {
679 struct list_head *first = &grp->node[0].entry;
680 struct list_head *end = &dev->devres_head;
681
682 if (!list_empty(&grp->node[1].entry))
683 end = grp->node[1].entry.next;
684
685 cnt = remove_nodes(dev, first, end, &todo);
686 spin_unlock_irqrestore(&dev->devres_lock, flags);
687
688 release_nodes(dev, &todo);
689 } else {
690 WARN_ON(1);
691 spin_unlock_irqrestore(&dev->devres_lock, flags);
692 }
693
694 return cnt;
695}
696EXPORT_SYMBOL_GPL(devres_release_group);
697
698/*
699 * Custom devres actions allow inserting a simple function call
700 * into the teardown sequence.
701 */
702
703struct action_devres {
704 void *data;
705 void (*action)(void *);
706};
707
708static int devm_action_match(struct device *dev, void *res, void *p)
709{
710 struct action_devres *devres = res;
711 struct action_devres *target = p;
712
713 return devres->action == target->action &&
714 devres->data == target->data;
715}
716
717static void devm_action_release(struct device *dev, void *res)
718{
719 struct action_devres *devres = res;
720
721 devres->action(devres->data);
722}
723
724/**
725 * __devm_add_action() - add a custom action to list of managed resources
726 * @dev: Device that owns the action
727 * @action: Function that should be called
728 * @data: Pointer to data passed to @action implementation
729 * @name: Name of the resource (for debugging purposes)
730 *
731 * This adds a custom action to the list of managed resources so that
732 * it gets executed as part of standard resource unwinding.
733 */
734int __devm_add_action(struct device *dev, void (*action)(void *), void *data, const char *name)
735{
736 struct action_devres *devres;
737
738 devres = __devres_alloc_node(devm_action_release, sizeof(struct action_devres),
739 GFP_KERNEL, NUMA_NO_NODE, name);
740 if (!devres)
741 return -ENOMEM;
742
743 devres->data = data;
744 devres->action = action;
745
746 devres_add(dev, devres);
747 return 0;
748}
749EXPORT_SYMBOL_GPL(__devm_add_action);
750
751/**
752 * devm_remove_action() - removes previously added custom action
753 * @dev: Device that owns the action
754 * @action: Function implementing the action
755 * @data: Pointer to data passed to @action implementation
756 *
757 * Removes instance of @action previously added by devm_add_action().
758 * Both action and data should match one of the existing entries.
759 */
760void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
761{
762 struct action_devres devres = {
763 .data = data,
764 .action = action,
765 };
766
767 WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
768 &devres));
769}
770EXPORT_SYMBOL_GPL(devm_remove_action);
771
772/**
773 * devm_release_action() - release previously added custom action
774 * @dev: Device that owns the action
775 * @action: Function implementing the action
776 * @data: Pointer to data passed to @action implementation
777 *
778 * Releases and removes instance of @action previously added by
779 * devm_add_action(). Both action and data should match one of the
780 * existing entries.
781 */
782void devm_release_action(struct device *dev, void (*action)(void *), void *data)
783{
784 struct action_devres devres = {
785 .data = data,
786 .action = action,
787 };
788
789 WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
790 &devres));
791
792}
793EXPORT_SYMBOL_GPL(devm_release_action);
794
795/*
796 * Managed kmalloc/kfree
797 */
798static void devm_kmalloc_release(struct device *dev, void *res)
799{
800 /* noop */
801}
802
803static int devm_kmalloc_match(struct device *dev, void *res, void *data)
804{
805 return res == data;
806}
807
808/**
809 * devm_kmalloc - Resource-managed kmalloc
810 * @dev: Device to allocate memory for
811 * @size: Allocation size
812 * @gfp: Allocation gfp flags
813 *
814 * Managed kmalloc. Memory allocated with this function is
815 * automatically freed on driver detach. Like all other devres
816 * resources, guaranteed alignment is unsigned long long.
817 *
818 * RETURNS:
819 * Pointer to allocated memory on success, NULL on failure.
820 */
821void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
822{
823 struct devres *dr;
824
825 if (unlikely(!size))
826 return ZERO_SIZE_PTR;
827
828 /* use raw alloc_dr for kmalloc caller tracing */
829 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
830 if (unlikely(!dr))
831 return NULL;
832
833 /*
834 * This is named devm_kzalloc_release for historical reasons
835 * The initial implementation did not support kmalloc, only kzalloc
836 */
837 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
838 devres_add(dev, dr->data);
839 return dr->data;
840}
841EXPORT_SYMBOL_GPL(devm_kmalloc);
842
843/**
844 * devm_krealloc - Resource-managed krealloc()
845 * @dev: Device to re-allocate memory for
846 * @ptr: Pointer to the memory chunk to re-allocate
847 * @new_size: New allocation size
848 * @gfp: Allocation gfp flags
849 *
850 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
851 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
852 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
853 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
854 * change the order in which the release callback for the re-alloc'ed devres
855 * will be called (except when falling back to devm_kmalloc() or when freeing
856 * resources when new_size is zero). The contents of the memory are preserved
857 * up to the lesser of new and old sizes.
858 */
859void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
860{
861 size_t total_new_size, total_old_size;
862 struct devres *old_dr, *new_dr;
863 unsigned long flags;
864
865 if (unlikely(!new_size)) {
866 devm_kfree(dev, ptr);
867 return ZERO_SIZE_PTR;
868 }
869
870 if (unlikely(ZERO_OR_NULL_PTR(ptr)))
871 return devm_kmalloc(dev, new_size, gfp);
872
873 if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
874 /*
875 * We cannot reliably realloc a const string returned by
876 * devm_kstrdup_const().
877 */
878 return NULL;
879
880 if (!check_dr_size(new_size, &total_new_size))
881 return NULL;
882
883 total_old_size = ksize(container_of(ptr, struct devres, data));
884 if (total_old_size == 0) {
885 WARN(1, "Pointer doesn't point to dynamically allocated memory.");
886 return NULL;
887 }
888
889 /*
890 * If new size is smaller or equal to the actual number of bytes
891 * allocated previously - just return the same pointer.
892 */
893 if (total_new_size <= total_old_size)
894 return ptr;
895
896 /*
897 * Otherwise: allocate new, larger chunk. We need to allocate before
898 * taking the lock as most probably the caller uses GFP_KERNEL.
899 */
900 new_dr = alloc_dr(devm_kmalloc_release,
901 total_new_size, gfp, dev_to_node(dev));
902 if (!new_dr)
903 return NULL;
904
905 /*
906 * The spinlock protects the linked list against concurrent
907 * modifications but not the resource itself.
908 */
909 spin_lock_irqsave(&dev->devres_lock, flags);
910
911 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
912 if (!old_dr) {
913 spin_unlock_irqrestore(&dev->devres_lock, flags);
914 kfree(new_dr);
915 WARN(1, "Memory chunk not managed or managed by a different device.");
916 return NULL;
917 }
918
919 replace_dr(dev, &old_dr->node, &new_dr->node);
920
921 spin_unlock_irqrestore(&dev->devres_lock, flags);
922
923 /*
924 * We can copy the memory contents after releasing the lock as we're
925 * no longer modifying the list links.
926 */
927 memcpy(new_dr->data, old_dr->data,
928 total_old_size - offsetof(struct devres, data));
929 /*
930 * Same for releasing the old devres - it's now been removed from the
931 * list. This is also the reason why we must not use devm_kfree() - the
932 * links are no longer valid.
933 */
934 kfree(old_dr);
935
936 return new_dr->data;
937}
938EXPORT_SYMBOL_GPL(devm_krealloc);
939
940/**
941 * devm_kstrdup - Allocate resource managed space and
942 * copy an existing string into that.
943 * @dev: Device to allocate memory for
944 * @s: the string to duplicate
945 * @gfp: the GFP mask used in the devm_kmalloc() call when
946 * allocating memory
947 * RETURNS:
948 * Pointer to allocated string on success, NULL on failure.
949 */
950char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
951{
952 size_t size;
953 char *buf;
954
955 if (!s)
956 return NULL;
957
958 size = strlen(s) + 1;
959 buf = devm_kmalloc(dev, size, gfp);
960 if (buf)
961 memcpy(buf, s, size);
962 return buf;
963}
964EXPORT_SYMBOL_GPL(devm_kstrdup);
965
966/**
967 * devm_kstrdup_const - resource managed conditional string duplication
968 * @dev: device for which to duplicate the string
969 * @s: the string to duplicate
970 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
971 *
972 * Strings allocated by devm_kstrdup_const will be automatically freed when
973 * the associated device is detached.
974 *
975 * RETURNS:
976 * Source string if it is in .rodata section otherwise it falls back to
977 * devm_kstrdup.
978 */
979const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
980{
981 if (is_kernel_rodata((unsigned long)s))
982 return s;
983
984 return devm_kstrdup(dev, s, gfp);
985}
986EXPORT_SYMBOL_GPL(devm_kstrdup_const);
987
988/**
989 * devm_kvasprintf - Allocate resource managed space and format a string
990 * into that.
991 * @dev: Device to allocate memory for
992 * @gfp: the GFP mask used in the devm_kmalloc() call when
993 * allocating memory
994 * @fmt: The printf()-style format string
995 * @ap: Arguments for the format string
996 * RETURNS:
997 * Pointer to allocated string on success, NULL on failure.
998 */
999char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
1000 va_list ap)
1001{
1002 unsigned int len;
1003 char *p;
1004 va_list aq;
1005
1006 va_copy(aq, ap);
1007 len = vsnprintf(NULL, 0, fmt, aq);
1008 va_end(aq);
1009
1010 p = devm_kmalloc(dev, len+1, gfp);
1011 if (!p)
1012 return NULL;
1013
1014 vsnprintf(p, len+1, fmt, ap);
1015
1016 return p;
1017}
1018EXPORT_SYMBOL(devm_kvasprintf);
1019
1020/**
1021 * devm_kasprintf - Allocate resource managed space and format a string
1022 * into that.
1023 * @dev: Device to allocate memory for
1024 * @gfp: the GFP mask used in the devm_kmalloc() call when
1025 * allocating memory
1026 * @fmt: The printf()-style format string
1027 * @...: Arguments for the format string
1028 * RETURNS:
1029 * Pointer to allocated string on success, NULL on failure.
1030 */
1031char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1032{
1033 va_list ap;
1034 char *p;
1035
1036 va_start(ap, fmt);
1037 p = devm_kvasprintf(dev, gfp, fmt, ap);
1038 va_end(ap);
1039
1040 return p;
1041}
1042EXPORT_SYMBOL_GPL(devm_kasprintf);
1043
1044/**
1045 * devm_kfree - Resource-managed kfree
1046 * @dev: Device this memory belongs to
1047 * @p: Memory to free
1048 *
1049 * Free memory allocated with devm_kmalloc().
1050 */
1051void devm_kfree(struct device *dev, const void *p)
1052{
1053 int rc;
1054
1055 /*
1056 * Special cases: pointer to a string in .rodata returned by
1057 * devm_kstrdup_const() or NULL/ZERO ptr.
1058 */
1059 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1060 return;
1061
1062 rc = devres_destroy(dev, devm_kmalloc_release,
1063 devm_kmalloc_match, (void *)p);
1064 WARN_ON(rc);
1065}
1066EXPORT_SYMBOL_GPL(devm_kfree);
1067
1068/**
1069 * devm_kmemdup - Resource-managed kmemdup
1070 * @dev: Device this memory belongs to
1071 * @src: Memory region to duplicate
1072 * @len: Memory region length
1073 * @gfp: GFP mask to use
1074 *
1075 * Duplicate region of a memory using resource managed kmalloc
1076 */
1077void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1078{
1079 void *p;
1080
1081 p = devm_kmalloc(dev, len, gfp);
1082 if (p)
1083 memcpy(p, src, len);
1084
1085 return p;
1086}
1087EXPORT_SYMBOL_GPL(devm_kmemdup);
1088
1089struct pages_devres {
1090 unsigned long addr;
1091 unsigned int order;
1092};
1093
1094static int devm_pages_match(struct device *dev, void *res, void *p)
1095{
1096 struct pages_devres *devres = res;
1097 struct pages_devres *target = p;
1098
1099 return devres->addr == target->addr;
1100}
1101
1102static void devm_pages_release(struct device *dev, void *res)
1103{
1104 struct pages_devres *devres = res;
1105
1106 free_pages(devres->addr, devres->order);
1107}
1108
1109/**
1110 * devm_get_free_pages - Resource-managed __get_free_pages
1111 * @dev: Device to allocate memory for
1112 * @gfp_mask: Allocation gfp flags
1113 * @order: Allocation size is (1 << order) pages
1114 *
1115 * Managed get_free_pages. Memory allocated with this function is
1116 * automatically freed on driver detach.
1117 *
1118 * RETURNS:
1119 * Address of allocated memory on success, 0 on failure.
1120 */
1121
1122unsigned long devm_get_free_pages(struct device *dev,
1123 gfp_t gfp_mask, unsigned int order)
1124{
1125 struct pages_devres *devres;
1126 unsigned long addr;
1127
1128 addr = __get_free_pages(gfp_mask, order);
1129
1130 if (unlikely(!addr))
1131 return 0;
1132
1133 devres = devres_alloc(devm_pages_release,
1134 sizeof(struct pages_devres), GFP_KERNEL);
1135 if (unlikely(!devres)) {
1136 free_pages(addr, order);
1137 return 0;
1138 }
1139
1140 devres->addr = addr;
1141 devres->order = order;
1142
1143 devres_add(dev, devres);
1144 return addr;
1145}
1146EXPORT_SYMBOL_GPL(devm_get_free_pages);
1147
1148/**
1149 * devm_free_pages - Resource-managed free_pages
1150 * @dev: Device this memory belongs to
1151 * @addr: Memory to free
1152 *
1153 * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1154 * there is no need to supply the @order.
1155 */
1156void devm_free_pages(struct device *dev, unsigned long addr)
1157{
1158 struct pages_devres devres = { .addr = addr };
1159
1160 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1161 &devres));
1162}
1163EXPORT_SYMBOL_GPL(devm_free_pages);
1164
1165static void devm_percpu_release(struct device *dev, void *pdata)
1166{
1167 void __percpu *p;
1168
1169 p = *(void __percpu **)pdata;
1170 free_percpu(p);
1171}
1172
1173static int devm_percpu_match(struct device *dev, void *data, void *p)
1174{
1175 struct devres *devr = container_of(data, struct devres, data);
1176
1177 return *(void **)devr->data == p;
1178}
1179
1180/**
1181 * __devm_alloc_percpu - Resource-managed alloc_percpu
1182 * @dev: Device to allocate per-cpu memory for
1183 * @size: Size of per-cpu memory to allocate
1184 * @align: Alignment of per-cpu memory to allocate
1185 *
1186 * Managed alloc_percpu. Per-cpu memory allocated with this function is
1187 * automatically freed on driver detach.
1188 *
1189 * RETURNS:
1190 * Pointer to allocated memory on success, NULL on failure.
1191 */
1192void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1193 size_t align)
1194{
1195 void *p;
1196 void __percpu *pcpu;
1197
1198 pcpu = __alloc_percpu(size, align);
1199 if (!pcpu)
1200 return NULL;
1201
1202 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1203 if (!p) {
1204 free_percpu(pcpu);
1205 return NULL;
1206 }
1207
1208 *(void __percpu **)p = pcpu;
1209
1210 devres_add(dev, p);
1211
1212 return pcpu;
1213}
1214EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1215
1216/**
1217 * devm_free_percpu - Resource-managed free_percpu
1218 * @dev: Device this memory belongs to
1219 * @pdata: Per-cpu memory to free
1220 *
1221 * Free memory allocated with devm_alloc_percpu().
1222 */
1223void devm_free_percpu(struct device *dev, void __percpu *pdata)
1224{
1225 WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1226 (__force void *)pdata));
1227}
1228EXPORT_SYMBOL_GPL(devm_free_percpu);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/devres.c - device resource management
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8
9#include <linux/device.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/percpu.h>
13
14#include <asm/sections.h>
15
16#include "base.h"
17#include "trace.h"
18
19struct devres_node {
20 struct list_head entry;
21 dr_release_t release;
22 const char *name;
23 size_t size;
24};
25
26struct devres {
27 struct devres_node node;
28 /*
29 * Some archs want to perform DMA into kmalloc caches
30 * and need a guaranteed alignment larger than
31 * the alignment of a 64-bit integer.
32 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
33 * buffer alignment as if it was allocated by plain kmalloc().
34 */
35 u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
36};
37
38struct devres_group {
39 struct devres_node node[2];
40 void *id;
41 int color;
42 /* -- 8 pointers */
43};
44
45static void set_node_dbginfo(struct devres_node *node, const char *name,
46 size_t size)
47{
48 node->name = name;
49 node->size = size;
50}
51
52#ifdef CONFIG_DEBUG_DEVRES
53static int log_devres = 0;
54module_param_named(log, log_devres, int, S_IRUGO | S_IWUSR);
55
56static void devres_dbg(struct device *dev, struct devres_node *node,
57 const char *op)
58{
59 if (unlikely(log_devres))
60 dev_err(dev, "DEVRES %3s %p %s (%zu bytes)\n",
61 op, node, node->name, node->size);
62}
63#else /* CONFIG_DEBUG_DEVRES */
64#define devres_dbg(dev, node, op) do {} while (0)
65#endif /* CONFIG_DEBUG_DEVRES */
66
67static void devres_log(struct device *dev, struct devres_node *node,
68 const char *op)
69{
70 trace_devres_log(dev, op, node, node->name, node->size);
71 devres_dbg(dev, node, op);
72}
73
74/*
75 * Release functions for devres group. These callbacks are used only
76 * for identification.
77 */
78static void group_open_release(struct device *dev, void *res)
79{
80 /* noop */
81}
82
83static void group_close_release(struct device *dev, void *res)
84{
85 /* noop */
86}
87
88static struct devres_group * node_to_group(struct devres_node *node)
89{
90 if (node->release == &group_open_release)
91 return container_of(node, struct devres_group, node[0]);
92 if (node->release == &group_close_release)
93 return container_of(node, struct devres_group, node[1]);
94 return NULL;
95}
96
97static bool check_dr_size(size_t size, size_t *tot_size)
98{
99 /* We must catch any near-SIZE_MAX cases that could overflow. */
100 if (unlikely(check_add_overflow(sizeof(struct devres),
101 size, tot_size)))
102 return false;
103
104 return true;
105}
106
107static __always_inline struct devres * alloc_dr(dr_release_t release,
108 size_t size, gfp_t gfp, int nid)
109{
110 size_t tot_size;
111 struct devres *dr;
112
113 if (!check_dr_size(size, &tot_size))
114 return NULL;
115
116 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
117 if (unlikely(!dr))
118 return NULL;
119
120 memset(dr, 0, offsetof(struct devres, data));
121
122 INIT_LIST_HEAD(&dr->node.entry);
123 dr->node.release = release;
124 return dr;
125}
126
127static void add_dr(struct device *dev, struct devres_node *node)
128{
129 devres_log(dev, node, "ADD");
130 BUG_ON(!list_empty(&node->entry));
131 list_add_tail(&node->entry, &dev->devres_head);
132}
133
134static void replace_dr(struct device *dev,
135 struct devres_node *old, struct devres_node *new)
136{
137 devres_log(dev, old, "REPLACE");
138 BUG_ON(!list_empty(&new->entry));
139 list_replace(&old->entry, &new->entry);
140}
141
142/**
143 * __devres_alloc_node - Allocate device resource data
144 * @release: Release function devres will be associated with
145 * @size: Allocation size
146 * @gfp: Allocation flags
147 * @nid: NUMA node
148 * @name: Name of the resource
149 *
150 * Allocate devres of @size bytes. The allocated area is zeroed, then
151 * associated with @release. The returned pointer can be passed to
152 * other devres_*() functions.
153 *
154 * RETURNS:
155 * Pointer to allocated devres on success, NULL on failure.
156 */
157void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid,
158 const char *name)
159{
160 struct devres *dr;
161
162 dr = alloc_dr(release, size, gfp | __GFP_ZERO, nid);
163 if (unlikely(!dr))
164 return NULL;
165 set_node_dbginfo(&dr->node, name, size);
166 return dr->data;
167}
168EXPORT_SYMBOL_GPL(__devres_alloc_node);
169
170/**
171 * devres_for_each_res - Resource iterator
172 * @dev: Device to iterate resource from
173 * @release: Look for resources associated with this release function
174 * @match: Match function (optional)
175 * @match_data: Data for the match function
176 * @fn: Function to be called for each matched resource.
177 * @data: Data for @fn, the 3rd parameter of @fn
178 *
179 * Call @fn for each devres of @dev which is associated with @release
180 * and for which @match returns 1.
181 *
182 * RETURNS:
183 * void
184 */
185void devres_for_each_res(struct device *dev, dr_release_t release,
186 dr_match_t match, void *match_data,
187 void (*fn)(struct device *, void *, void *),
188 void *data)
189{
190 struct devres_node *node;
191 struct devres_node *tmp;
192 unsigned long flags;
193
194 if (!fn)
195 return;
196
197 spin_lock_irqsave(&dev->devres_lock, flags);
198 list_for_each_entry_safe_reverse(node, tmp,
199 &dev->devres_head, entry) {
200 struct devres *dr = container_of(node, struct devres, node);
201
202 if (node->release != release)
203 continue;
204 if (match && !match(dev, dr->data, match_data))
205 continue;
206 fn(dev, dr->data, data);
207 }
208 spin_unlock_irqrestore(&dev->devres_lock, flags);
209}
210EXPORT_SYMBOL_GPL(devres_for_each_res);
211
212/**
213 * devres_free - Free device resource data
214 * @res: Pointer to devres data to free
215 *
216 * Free devres created with devres_alloc().
217 */
218void devres_free(void *res)
219{
220 if (res) {
221 struct devres *dr = container_of(res, struct devres, data);
222
223 BUG_ON(!list_empty(&dr->node.entry));
224 kfree(dr);
225 }
226}
227EXPORT_SYMBOL_GPL(devres_free);
228
229/**
230 * devres_add - Register device resource
231 * @dev: Device to add resource to
232 * @res: Resource to register
233 *
234 * Register devres @res to @dev. @res should have been allocated
235 * using devres_alloc(). On driver detach, the associated release
236 * function will be invoked and devres will be freed automatically.
237 */
238void devres_add(struct device *dev, void *res)
239{
240 struct devres *dr = container_of(res, struct devres, data);
241 unsigned long flags;
242
243 spin_lock_irqsave(&dev->devres_lock, flags);
244 add_dr(dev, &dr->node);
245 spin_unlock_irqrestore(&dev->devres_lock, flags);
246}
247EXPORT_SYMBOL_GPL(devres_add);
248
249static struct devres *find_dr(struct device *dev, dr_release_t release,
250 dr_match_t match, void *match_data)
251{
252 struct devres_node *node;
253
254 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
255 struct devres *dr = container_of(node, struct devres, node);
256
257 if (node->release != release)
258 continue;
259 if (match && !match(dev, dr->data, match_data))
260 continue;
261 return dr;
262 }
263
264 return NULL;
265}
266
267/**
268 * devres_find - Find device resource
269 * @dev: Device to lookup resource from
270 * @release: Look for resources associated with this release function
271 * @match: Match function (optional)
272 * @match_data: Data for the match function
273 *
274 * Find the latest devres of @dev which is associated with @release
275 * and for which @match returns 1. If @match is NULL, it's considered
276 * to match all.
277 *
278 * RETURNS:
279 * Pointer to found devres, NULL if not found.
280 */
281void * devres_find(struct device *dev, dr_release_t release,
282 dr_match_t match, void *match_data)
283{
284 struct devres *dr;
285 unsigned long flags;
286
287 spin_lock_irqsave(&dev->devres_lock, flags);
288 dr = find_dr(dev, release, match, match_data);
289 spin_unlock_irqrestore(&dev->devres_lock, flags);
290
291 if (dr)
292 return dr->data;
293 return NULL;
294}
295EXPORT_SYMBOL_GPL(devres_find);
296
297/**
298 * devres_get - Find devres, if non-existent, add one atomically
299 * @dev: Device to lookup or add devres for
300 * @new_res: Pointer to new initialized devres to add if not found
301 * @match: Match function (optional)
302 * @match_data: Data for the match function
303 *
304 * Find the latest devres of @dev which has the same release function
305 * as @new_res and for which @match return 1. If found, @new_res is
306 * freed; otherwise, @new_res is added atomically.
307 *
308 * RETURNS:
309 * Pointer to found or added devres.
310 */
311void * devres_get(struct device *dev, void *new_res,
312 dr_match_t match, void *match_data)
313{
314 struct devres *new_dr = container_of(new_res, struct devres, data);
315 struct devres *dr;
316 unsigned long flags;
317
318 spin_lock_irqsave(&dev->devres_lock, flags);
319 dr = find_dr(dev, new_dr->node.release, match, match_data);
320 if (!dr) {
321 add_dr(dev, &new_dr->node);
322 dr = new_dr;
323 new_res = NULL;
324 }
325 spin_unlock_irqrestore(&dev->devres_lock, flags);
326 devres_free(new_res);
327
328 return dr->data;
329}
330EXPORT_SYMBOL_GPL(devres_get);
331
332/**
333 * devres_remove - Find a device resource and remove it
334 * @dev: Device to find resource from
335 * @release: Look for resources associated with this release function
336 * @match: Match function (optional)
337 * @match_data: Data for the match function
338 *
339 * Find the latest devres of @dev associated with @release and for
340 * which @match returns 1. If @match is NULL, it's considered to
341 * match all. If found, the resource is removed atomically and
342 * returned.
343 *
344 * RETURNS:
345 * Pointer to removed devres on success, NULL if not found.
346 */
347void * devres_remove(struct device *dev, dr_release_t release,
348 dr_match_t match, void *match_data)
349{
350 struct devres *dr;
351 unsigned long flags;
352
353 spin_lock_irqsave(&dev->devres_lock, flags);
354 dr = find_dr(dev, release, match, match_data);
355 if (dr) {
356 list_del_init(&dr->node.entry);
357 devres_log(dev, &dr->node, "REM");
358 }
359 spin_unlock_irqrestore(&dev->devres_lock, flags);
360
361 if (dr)
362 return dr->data;
363 return NULL;
364}
365EXPORT_SYMBOL_GPL(devres_remove);
366
367/**
368 * devres_destroy - Find a device resource and destroy it
369 * @dev: Device to find resource from
370 * @release: Look for resources associated with this release function
371 * @match: Match function (optional)
372 * @match_data: Data for the match function
373 *
374 * Find the latest devres of @dev associated with @release and for
375 * which @match returns 1. If @match is NULL, it's considered to
376 * match all. If found, the resource is removed atomically and freed.
377 *
378 * Note that the release function for the resource will not be called,
379 * only the devres-allocated data will be freed. The caller becomes
380 * responsible for freeing any other data.
381 *
382 * RETURNS:
383 * 0 if devres is found and freed, -ENOENT if not found.
384 */
385int devres_destroy(struct device *dev, dr_release_t release,
386 dr_match_t match, void *match_data)
387{
388 void *res;
389
390 res = devres_remove(dev, release, match, match_data);
391 if (unlikely(!res))
392 return -ENOENT;
393
394 devres_free(res);
395 return 0;
396}
397EXPORT_SYMBOL_GPL(devres_destroy);
398
399
400/**
401 * devres_release - Find a device resource and destroy it, calling release
402 * @dev: Device to find resource from
403 * @release: Look for resources associated with this release function
404 * @match: Match function (optional)
405 * @match_data: Data for the match function
406 *
407 * Find the latest devres of @dev associated with @release and for
408 * which @match returns 1. If @match is NULL, it's considered to
409 * match all. If found, the resource is removed atomically, the
410 * release function called and the resource freed.
411 *
412 * RETURNS:
413 * 0 if devres is found and freed, -ENOENT if not found.
414 */
415int devres_release(struct device *dev, dr_release_t release,
416 dr_match_t match, void *match_data)
417{
418 void *res;
419
420 res = devres_remove(dev, release, match, match_data);
421 if (unlikely(!res))
422 return -ENOENT;
423
424 (*release)(dev, res);
425 devres_free(res);
426 return 0;
427}
428EXPORT_SYMBOL_GPL(devres_release);
429
430static int remove_nodes(struct device *dev,
431 struct list_head *first, struct list_head *end,
432 struct list_head *todo)
433{
434 struct devres_node *node, *n;
435 int cnt = 0, nr_groups = 0;
436
437 /* First pass - move normal devres entries to @todo and clear
438 * devres_group colors.
439 */
440 node = list_entry(first, struct devres_node, entry);
441 list_for_each_entry_safe_from(node, n, end, entry) {
442 struct devres_group *grp;
443
444 grp = node_to_group(node);
445 if (grp) {
446 /* clear color of group markers in the first pass */
447 grp->color = 0;
448 nr_groups++;
449 } else {
450 /* regular devres entry */
451 if (&node->entry == first)
452 first = first->next;
453 list_move_tail(&node->entry, todo);
454 cnt++;
455 }
456 }
457
458 if (!nr_groups)
459 return cnt;
460
461 /* Second pass - Scan groups and color them. A group gets
462 * color value of two iff the group is wholly contained in
463 * [current node, end). That is, for a closed group, both opening
464 * and closing markers should be in the range, while just the
465 * opening marker is enough for an open group.
466 */
467 node = list_entry(first, struct devres_node, entry);
468 list_for_each_entry_safe_from(node, n, end, entry) {
469 struct devres_group *grp;
470
471 grp = node_to_group(node);
472 BUG_ON(!grp || list_empty(&grp->node[0].entry));
473
474 grp->color++;
475 if (list_empty(&grp->node[1].entry))
476 grp->color++;
477
478 BUG_ON(grp->color <= 0 || grp->color > 2);
479 if (grp->color == 2) {
480 /* No need to update current node or end. The removed
481 * nodes are always before both.
482 */
483 list_move_tail(&grp->node[0].entry, todo);
484 list_del_init(&grp->node[1].entry);
485 }
486 }
487
488 return cnt;
489}
490
491static void release_nodes(struct device *dev, struct list_head *todo)
492{
493 struct devres *dr, *tmp;
494
495 /* Release. Note that both devres and devres_group are
496 * handled as devres in the following loop. This is safe.
497 */
498 list_for_each_entry_safe_reverse(dr, tmp, todo, node.entry) {
499 devres_log(dev, &dr->node, "REL");
500 dr->node.release(dev, dr->data);
501 kfree(dr);
502 }
503}
504
505/**
506 * devres_release_all - Release all managed resources
507 * @dev: Device to release resources for
508 *
509 * Release all resources associated with @dev. This function is
510 * called on driver detach.
511 */
512int devres_release_all(struct device *dev)
513{
514 unsigned long flags;
515 LIST_HEAD(todo);
516 int cnt;
517
518 /* Looks like an uninitialized device structure */
519 if (WARN_ON(dev->devres_head.next == NULL))
520 return -ENODEV;
521
522 /* Nothing to release if list is empty */
523 if (list_empty(&dev->devres_head))
524 return 0;
525
526 spin_lock_irqsave(&dev->devres_lock, flags);
527 cnt = remove_nodes(dev, dev->devres_head.next, &dev->devres_head, &todo);
528 spin_unlock_irqrestore(&dev->devres_lock, flags);
529
530 release_nodes(dev, &todo);
531 return cnt;
532}
533
534/**
535 * devres_open_group - Open a new devres group
536 * @dev: Device to open devres group for
537 * @id: Separator ID
538 * @gfp: Allocation flags
539 *
540 * Open a new devres group for @dev with @id. For @id, using a
541 * pointer to an object which won't be used for another group is
542 * recommended. If @id is NULL, address-wise unique ID is created.
543 *
544 * RETURNS:
545 * ID of the new group, NULL on failure.
546 */
547void * devres_open_group(struct device *dev, void *id, gfp_t gfp)
548{
549 struct devres_group *grp;
550 unsigned long flags;
551
552 grp = kmalloc(sizeof(*grp), gfp);
553 if (unlikely(!grp))
554 return NULL;
555
556 grp->node[0].release = &group_open_release;
557 grp->node[1].release = &group_close_release;
558 INIT_LIST_HEAD(&grp->node[0].entry);
559 INIT_LIST_HEAD(&grp->node[1].entry);
560 set_node_dbginfo(&grp->node[0], "grp<", 0);
561 set_node_dbginfo(&grp->node[1], "grp>", 0);
562 grp->id = grp;
563 if (id)
564 grp->id = id;
565
566 spin_lock_irqsave(&dev->devres_lock, flags);
567 add_dr(dev, &grp->node[0]);
568 spin_unlock_irqrestore(&dev->devres_lock, flags);
569 return grp->id;
570}
571EXPORT_SYMBOL_GPL(devres_open_group);
572
573/* Find devres group with ID @id. If @id is NULL, look for the latest. */
574static struct devres_group * find_group(struct device *dev, void *id)
575{
576 struct devres_node *node;
577
578 list_for_each_entry_reverse(node, &dev->devres_head, entry) {
579 struct devres_group *grp;
580
581 if (node->release != &group_open_release)
582 continue;
583
584 grp = container_of(node, struct devres_group, node[0]);
585
586 if (id) {
587 if (grp->id == id)
588 return grp;
589 } else if (list_empty(&grp->node[1].entry))
590 return grp;
591 }
592
593 return NULL;
594}
595
596/**
597 * devres_close_group - Close a devres group
598 * @dev: Device to close devres group for
599 * @id: ID of target group, can be NULL
600 *
601 * Close the group identified by @id. If @id is NULL, the latest open
602 * group is selected.
603 */
604void devres_close_group(struct device *dev, void *id)
605{
606 struct devres_group *grp;
607 unsigned long flags;
608
609 spin_lock_irqsave(&dev->devres_lock, flags);
610
611 grp = find_group(dev, id);
612 if (grp)
613 add_dr(dev, &grp->node[1]);
614 else
615 WARN_ON(1);
616
617 spin_unlock_irqrestore(&dev->devres_lock, flags);
618}
619EXPORT_SYMBOL_GPL(devres_close_group);
620
621/**
622 * devres_remove_group - Remove a devres group
623 * @dev: Device to remove group for
624 * @id: ID of target group, can be NULL
625 *
626 * Remove the group identified by @id. If @id is NULL, the latest
627 * open group is selected. Note that removing a group doesn't affect
628 * any other resources.
629 */
630void devres_remove_group(struct device *dev, void *id)
631{
632 struct devres_group *grp;
633 unsigned long flags;
634
635 spin_lock_irqsave(&dev->devres_lock, flags);
636
637 grp = find_group(dev, id);
638 if (grp) {
639 list_del_init(&grp->node[0].entry);
640 list_del_init(&grp->node[1].entry);
641 devres_log(dev, &grp->node[0], "REM");
642 } else
643 WARN_ON(1);
644
645 spin_unlock_irqrestore(&dev->devres_lock, flags);
646
647 kfree(grp);
648}
649EXPORT_SYMBOL_GPL(devres_remove_group);
650
651/**
652 * devres_release_group - Release resources in a devres group
653 * @dev: Device to release group for
654 * @id: ID of target group, can be NULL
655 *
656 * Release all resources in the group identified by @id. If @id is
657 * NULL, the latest open group is selected. The selected group and
658 * groups properly nested inside the selected group are removed.
659 *
660 * RETURNS:
661 * The number of released non-group resources.
662 */
663int devres_release_group(struct device *dev, void *id)
664{
665 struct devres_group *grp;
666 unsigned long flags;
667 LIST_HEAD(todo);
668 int cnt = 0;
669
670 spin_lock_irqsave(&dev->devres_lock, flags);
671
672 grp = find_group(dev, id);
673 if (grp) {
674 struct list_head *first = &grp->node[0].entry;
675 struct list_head *end = &dev->devres_head;
676
677 if (!list_empty(&grp->node[1].entry))
678 end = grp->node[1].entry.next;
679
680 cnt = remove_nodes(dev, first, end, &todo);
681 spin_unlock_irqrestore(&dev->devres_lock, flags);
682
683 release_nodes(dev, &todo);
684 } else {
685 WARN_ON(1);
686 spin_unlock_irqrestore(&dev->devres_lock, flags);
687 }
688
689 return cnt;
690}
691EXPORT_SYMBOL_GPL(devres_release_group);
692
693/*
694 * Custom devres actions allow inserting a simple function call
695 * into the teadown sequence.
696 */
697
698struct action_devres {
699 void *data;
700 void (*action)(void *);
701};
702
703static int devm_action_match(struct device *dev, void *res, void *p)
704{
705 struct action_devres *devres = res;
706 struct action_devres *target = p;
707
708 return devres->action == target->action &&
709 devres->data == target->data;
710}
711
712static void devm_action_release(struct device *dev, void *res)
713{
714 struct action_devres *devres = res;
715
716 devres->action(devres->data);
717}
718
719/**
720 * devm_add_action() - add a custom action to list of managed resources
721 * @dev: Device that owns the action
722 * @action: Function that should be called
723 * @data: Pointer to data passed to @action implementation
724 *
725 * This adds a custom action to the list of managed resources so that
726 * it gets executed as part of standard resource unwinding.
727 */
728int devm_add_action(struct device *dev, void (*action)(void *), void *data)
729{
730 struct action_devres *devres;
731
732 devres = devres_alloc(devm_action_release,
733 sizeof(struct action_devres), GFP_KERNEL);
734 if (!devres)
735 return -ENOMEM;
736
737 devres->data = data;
738 devres->action = action;
739
740 devres_add(dev, devres);
741 return 0;
742}
743EXPORT_SYMBOL_GPL(devm_add_action);
744
745/**
746 * devm_remove_action() - removes previously added custom action
747 * @dev: Device that owns the action
748 * @action: Function implementing the action
749 * @data: Pointer to data passed to @action implementation
750 *
751 * Removes instance of @action previously added by devm_add_action().
752 * Both action and data should match one of the existing entries.
753 */
754void devm_remove_action(struct device *dev, void (*action)(void *), void *data)
755{
756 struct action_devres devres = {
757 .data = data,
758 .action = action,
759 };
760
761 WARN_ON(devres_destroy(dev, devm_action_release, devm_action_match,
762 &devres));
763}
764EXPORT_SYMBOL_GPL(devm_remove_action);
765
766/**
767 * devm_release_action() - release previously added custom action
768 * @dev: Device that owns the action
769 * @action: Function implementing the action
770 * @data: Pointer to data passed to @action implementation
771 *
772 * Releases and removes instance of @action previously added by
773 * devm_add_action(). Both action and data should match one of the
774 * existing entries.
775 */
776void devm_release_action(struct device *dev, void (*action)(void *), void *data)
777{
778 struct action_devres devres = {
779 .data = data,
780 .action = action,
781 };
782
783 WARN_ON(devres_release(dev, devm_action_release, devm_action_match,
784 &devres));
785
786}
787EXPORT_SYMBOL_GPL(devm_release_action);
788
789/*
790 * Managed kmalloc/kfree
791 */
792static void devm_kmalloc_release(struct device *dev, void *res)
793{
794 /* noop */
795}
796
797static int devm_kmalloc_match(struct device *dev, void *res, void *data)
798{
799 return res == data;
800}
801
802/**
803 * devm_kmalloc - Resource-managed kmalloc
804 * @dev: Device to allocate memory for
805 * @size: Allocation size
806 * @gfp: Allocation gfp flags
807 *
808 * Managed kmalloc. Memory allocated with this function is
809 * automatically freed on driver detach. Like all other devres
810 * resources, guaranteed alignment is unsigned long long.
811 *
812 * RETURNS:
813 * Pointer to allocated memory on success, NULL on failure.
814 */
815void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)
816{
817 struct devres *dr;
818
819 if (unlikely(!size))
820 return ZERO_SIZE_PTR;
821
822 /* use raw alloc_dr for kmalloc caller tracing */
823 dr = alloc_dr(devm_kmalloc_release, size, gfp, dev_to_node(dev));
824 if (unlikely(!dr))
825 return NULL;
826
827 /*
828 * This is named devm_kzalloc_release for historical reasons
829 * The initial implementation did not support kmalloc, only kzalloc
830 */
831 set_node_dbginfo(&dr->node, "devm_kzalloc_release", size);
832 devres_add(dev, dr->data);
833 return dr->data;
834}
835EXPORT_SYMBOL_GPL(devm_kmalloc);
836
837/**
838 * devm_krealloc - Resource-managed krealloc()
839 * @dev: Device to re-allocate memory for
840 * @ptr: Pointer to the memory chunk to re-allocate
841 * @new_size: New allocation size
842 * @gfp: Allocation gfp flags
843 *
844 * Managed krealloc(). Resizes the memory chunk allocated with devm_kmalloc().
845 * Behaves similarly to regular krealloc(): if @ptr is NULL or ZERO_SIZE_PTR,
846 * it's the equivalent of devm_kmalloc(). If new_size is zero, it frees the
847 * previously allocated memory and returns ZERO_SIZE_PTR. This function doesn't
848 * change the order in which the release callback for the re-alloc'ed devres
849 * will be called (except when falling back to devm_kmalloc() or when freeing
850 * resources when new_size is zero). The contents of the memory are preserved
851 * up to the lesser of new and old sizes.
852 */
853void *devm_krealloc(struct device *dev, void *ptr, size_t new_size, gfp_t gfp)
854{
855 size_t total_new_size, total_old_size;
856 struct devres *old_dr, *new_dr;
857 unsigned long flags;
858
859 if (unlikely(!new_size)) {
860 devm_kfree(dev, ptr);
861 return ZERO_SIZE_PTR;
862 }
863
864 if (unlikely(ZERO_OR_NULL_PTR(ptr)))
865 return devm_kmalloc(dev, new_size, gfp);
866
867 if (WARN_ON(is_kernel_rodata((unsigned long)ptr)))
868 /*
869 * We cannot reliably realloc a const string returned by
870 * devm_kstrdup_const().
871 */
872 return NULL;
873
874 if (!check_dr_size(new_size, &total_new_size))
875 return NULL;
876
877 total_old_size = ksize(container_of(ptr, struct devres, data));
878 if (total_old_size == 0) {
879 WARN(1, "Pointer doesn't point to dynamically allocated memory.");
880 return NULL;
881 }
882
883 /*
884 * If new size is smaller or equal to the actual number of bytes
885 * allocated previously - just return the same pointer.
886 */
887 if (total_new_size <= total_old_size)
888 return ptr;
889
890 /*
891 * Otherwise: allocate new, larger chunk. We need to allocate before
892 * taking the lock as most probably the caller uses GFP_KERNEL.
893 */
894 new_dr = alloc_dr(devm_kmalloc_release,
895 total_new_size, gfp, dev_to_node(dev));
896 if (!new_dr)
897 return NULL;
898
899 /*
900 * The spinlock protects the linked list against concurrent
901 * modifications but not the resource itself.
902 */
903 spin_lock_irqsave(&dev->devres_lock, flags);
904
905 old_dr = find_dr(dev, devm_kmalloc_release, devm_kmalloc_match, ptr);
906 if (!old_dr) {
907 spin_unlock_irqrestore(&dev->devres_lock, flags);
908 kfree(new_dr);
909 WARN(1, "Memory chunk not managed or managed by a different device.");
910 return NULL;
911 }
912
913 replace_dr(dev, &old_dr->node, &new_dr->node);
914
915 spin_unlock_irqrestore(&dev->devres_lock, flags);
916
917 /*
918 * We can copy the memory contents after releasing the lock as we're
919 * no longer modyfing the list links.
920 */
921 memcpy(new_dr->data, old_dr->data,
922 total_old_size - offsetof(struct devres, data));
923 /*
924 * Same for releasing the old devres - it's now been removed from the
925 * list. This is also the reason why we must not use devm_kfree() - the
926 * links are no longer valid.
927 */
928 kfree(old_dr);
929
930 return new_dr->data;
931}
932EXPORT_SYMBOL_GPL(devm_krealloc);
933
934/**
935 * devm_kstrdup - Allocate resource managed space and
936 * copy an existing string into that.
937 * @dev: Device to allocate memory for
938 * @s: the string to duplicate
939 * @gfp: the GFP mask used in the devm_kmalloc() call when
940 * allocating memory
941 * RETURNS:
942 * Pointer to allocated string on success, NULL on failure.
943 */
944char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)
945{
946 size_t size;
947 char *buf;
948
949 if (!s)
950 return NULL;
951
952 size = strlen(s) + 1;
953 buf = devm_kmalloc(dev, size, gfp);
954 if (buf)
955 memcpy(buf, s, size);
956 return buf;
957}
958EXPORT_SYMBOL_GPL(devm_kstrdup);
959
960/**
961 * devm_kstrdup_const - resource managed conditional string duplication
962 * @dev: device for which to duplicate the string
963 * @s: the string to duplicate
964 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
965 *
966 * Strings allocated by devm_kstrdup_const will be automatically freed when
967 * the associated device is detached.
968 *
969 * RETURNS:
970 * Source string if it is in .rodata section otherwise it falls back to
971 * devm_kstrdup.
972 */
973const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)
974{
975 if (is_kernel_rodata((unsigned long)s))
976 return s;
977
978 return devm_kstrdup(dev, s, gfp);
979}
980EXPORT_SYMBOL_GPL(devm_kstrdup_const);
981
982/**
983 * devm_kvasprintf - Allocate resource managed space and format a string
984 * into that.
985 * @dev: Device to allocate memory for
986 * @gfp: the GFP mask used in the devm_kmalloc() call when
987 * allocating memory
988 * @fmt: The printf()-style format string
989 * @ap: Arguments for the format string
990 * RETURNS:
991 * Pointer to allocated string on success, NULL on failure.
992 */
993char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
994 va_list ap)
995{
996 unsigned int len;
997 char *p;
998 va_list aq;
999
1000 va_copy(aq, ap);
1001 len = vsnprintf(NULL, 0, fmt, aq);
1002 va_end(aq);
1003
1004 p = devm_kmalloc(dev, len+1, gfp);
1005 if (!p)
1006 return NULL;
1007
1008 vsnprintf(p, len+1, fmt, ap);
1009
1010 return p;
1011}
1012EXPORT_SYMBOL(devm_kvasprintf);
1013
1014/**
1015 * devm_kasprintf - Allocate resource managed space and format a string
1016 * into that.
1017 * @dev: Device to allocate memory for
1018 * @gfp: the GFP mask used in the devm_kmalloc() call when
1019 * allocating memory
1020 * @fmt: The printf()-style format string
1021 * @...: Arguments for the format string
1022 * RETURNS:
1023 * Pointer to allocated string on success, NULL on failure.
1024 */
1025char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)
1026{
1027 va_list ap;
1028 char *p;
1029
1030 va_start(ap, fmt);
1031 p = devm_kvasprintf(dev, gfp, fmt, ap);
1032 va_end(ap);
1033
1034 return p;
1035}
1036EXPORT_SYMBOL_GPL(devm_kasprintf);
1037
1038/**
1039 * devm_kfree - Resource-managed kfree
1040 * @dev: Device this memory belongs to
1041 * @p: Memory to free
1042 *
1043 * Free memory allocated with devm_kmalloc().
1044 */
1045void devm_kfree(struct device *dev, const void *p)
1046{
1047 int rc;
1048
1049 /*
1050 * Special cases: pointer to a string in .rodata returned by
1051 * devm_kstrdup_const() or NULL/ZERO ptr.
1052 */
1053 if (unlikely(is_kernel_rodata((unsigned long)p) || ZERO_OR_NULL_PTR(p)))
1054 return;
1055
1056 rc = devres_destroy(dev, devm_kmalloc_release,
1057 devm_kmalloc_match, (void *)p);
1058 WARN_ON(rc);
1059}
1060EXPORT_SYMBOL_GPL(devm_kfree);
1061
1062/**
1063 * devm_kmemdup - Resource-managed kmemdup
1064 * @dev: Device this memory belongs to
1065 * @src: Memory region to duplicate
1066 * @len: Memory region length
1067 * @gfp: GFP mask to use
1068 *
1069 * Duplicate region of a memory using resource managed kmalloc
1070 */
1071void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)
1072{
1073 void *p;
1074
1075 p = devm_kmalloc(dev, len, gfp);
1076 if (p)
1077 memcpy(p, src, len);
1078
1079 return p;
1080}
1081EXPORT_SYMBOL_GPL(devm_kmemdup);
1082
1083struct pages_devres {
1084 unsigned long addr;
1085 unsigned int order;
1086};
1087
1088static int devm_pages_match(struct device *dev, void *res, void *p)
1089{
1090 struct pages_devres *devres = res;
1091 struct pages_devres *target = p;
1092
1093 return devres->addr == target->addr;
1094}
1095
1096static void devm_pages_release(struct device *dev, void *res)
1097{
1098 struct pages_devres *devres = res;
1099
1100 free_pages(devres->addr, devres->order);
1101}
1102
1103/**
1104 * devm_get_free_pages - Resource-managed __get_free_pages
1105 * @dev: Device to allocate memory for
1106 * @gfp_mask: Allocation gfp flags
1107 * @order: Allocation size is (1 << order) pages
1108 *
1109 * Managed get_free_pages. Memory allocated with this function is
1110 * automatically freed on driver detach.
1111 *
1112 * RETURNS:
1113 * Address of allocated memory on success, 0 on failure.
1114 */
1115
1116unsigned long devm_get_free_pages(struct device *dev,
1117 gfp_t gfp_mask, unsigned int order)
1118{
1119 struct pages_devres *devres;
1120 unsigned long addr;
1121
1122 addr = __get_free_pages(gfp_mask, order);
1123
1124 if (unlikely(!addr))
1125 return 0;
1126
1127 devres = devres_alloc(devm_pages_release,
1128 sizeof(struct pages_devres), GFP_KERNEL);
1129 if (unlikely(!devres)) {
1130 free_pages(addr, order);
1131 return 0;
1132 }
1133
1134 devres->addr = addr;
1135 devres->order = order;
1136
1137 devres_add(dev, devres);
1138 return addr;
1139}
1140EXPORT_SYMBOL_GPL(devm_get_free_pages);
1141
1142/**
1143 * devm_free_pages - Resource-managed free_pages
1144 * @dev: Device this memory belongs to
1145 * @addr: Memory to free
1146 *
1147 * Free memory allocated with devm_get_free_pages(). Unlike free_pages,
1148 * there is no need to supply the @order.
1149 */
1150void devm_free_pages(struct device *dev, unsigned long addr)
1151{
1152 struct pages_devres devres = { .addr = addr };
1153
1154 WARN_ON(devres_release(dev, devm_pages_release, devm_pages_match,
1155 &devres));
1156}
1157EXPORT_SYMBOL_GPL(devm_free_pages);
1158
1159static void devm_percpu_release(struct device *dev, void *pdata)
1160{
1161 void __percpu *p;
1162
1163 p = *(void __percpu **)pdata;
1164 free_percpu(p);
1165}
1166
1167static int devm_percpu_match(struct device *dev, void *data, void *p)
1168{
1169 struct devres *devr = container_of(data, struct devres, data);
1170
1171 return *(void **)devr->data == p;
1172}
1173
1174/**
1175 * __devm_alloc_percpu - Resource-managed alloc_percpu
1176 * @dev: Device to allocate per-cpu memory for
1177 * @size: Size of per-cpu memory to allocate
1178 * @align: Alignment of per-cpu memory to allocate
1179 *
1180 * Managed alloc_percpu. Per-cpu memory allocated with this function is
1181 * automatically freed on driver detach.
1182 *
1183 * RETURNS:
1184 * Pointer to allocated memory on success, NULL on failure.
1185 */
1186void __percpu *__devm_alloc_percpu(struct device *dev, size_t size,
1187 size_t align)
1188{
1189 void *p;
1190 void __percpu *pcpu;
1191
1192 pcpu = __alloc_percpu(size, align);
1193 if (!pcpu)
1194 return NULL;
1195
1196 p = devres_alloc(devm_percpu_release, sizeof(void *), GFP_KERNEL);
1197 if (!p) {
1198 free_percpu(pcpu);
1199 return NULL;
1200 }
1201
1202 *(void __percpu **)p = pcpu;
1203
1204 devres_add(dev, p);
1205
1206 return pcpu;
1207}
1208EXPORT_SYMBOL_GPL(__devm_alloc_percpu);
1209
1210/**
1211 * devm_free_percpu - Resource-managed free_percpu
1212 * @dev: Device this memory belongs to
1213 * @pdata: Per-cpu memory to free
1214 *
1215 * Free memory allocated with devm_alloc_percpu().
1216 */
1217void devm_free_percpu(struct device *dev, void __percpu *pdata)
1218{
1219 WARN_ON(devres_destroy(dev, devm_percpu_release, devm_percpu_match,
1220 (__force void *)pdata));
1221}
1222EXPORT_SYMBOL_GPL(devm_free_percpu);