Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/kstrtox.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
 
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/blkdev.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sched/mm.h>
  30#include <linux/string_helpers.h>
  31#include <linux/swiotlb.h>
  32#include <linux/sysfs.h>
  33#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  34
  35#include "base.h"
  36#include "physical_location.h"
  37#include "power/power.h"
  38
 
 
 
 
 
 
 
 
 
 
 
 
 
  39/* Device links support. */
  40static LIST_HEAD(deferred_sync);
  41static unsigned int defer_sync_state_count = 1;
  42static DEFINE_MUTEX(fwnode_link_lock);
  43static bool fw_devlink_is_permissive(void);
  44static void __fw_devlink_link_to_consumers(struct device *dev);
  45static bool fw_devlink_drv_reg_done;
  46static bool fw_devlink_best_effort;
  47
  48/**
  49 * __fwnode_link_add - Create a link between two fwnode_handles.
  50 * @con: Consumer end of the link.
  51 * @sup: Supplier end of the link.
  52 * @flags: Link flags.
  53 *
  54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  55 * represents the detail that the firmware lists @sup fwnode as supplying a
  56 * resource to @con.
  57 *
  58 * The driver core will use the fwnode link to create a device link between the
  59 * two device objects corresponding to @con and @sup when they are created. The
  60 * driver core will automatically delete the fwnode link between @con and @sup
  61 * after doing that.
  62 *
  63 * Attempts to create duplicate links between the same pair of fwnode handles
  64 * are ignored and there is no reference counting.
  65 */
  66static int __fwnode_link_add(struct fwnode_handle *con,
  67			     struct fwnode_handle *sup, u8 flags)
  68{
  69	struct fwnode_link *link;
 
 
 
  70
  71	list_for_each_entry(link, &sup->consumers, s_hook)
  72		if (link->consumer == con) {
  73			link->flags |= flags;
  74			return 0;
  75		}
  76
  77	link = kzalloc(sizeof(*link), GFP_KERNEL);
  78	if (!link)
  79		return -ENOMEM;
 
 
  80
  81	link->supplier = sup;
  82	INIT_LIST_HEAD(&link->s_hook);
  83	link->consumer = con;
  84	INIT_LIST_HEAD(&link->c_hook);
  85	link->flags = flags;
  86
  87	list_add(&link->s_hook, &sup->consumers);
  88	list_add(&link->c_hook, &con->suppliers);
  89	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
  90		 con, sup);
  91
  92	return 0;
  93}
  94
  95int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  96{
  97	int ret;
  98
  99	mutex_lock(&fwnode_link_lock);
 100	ret = __fwnode_link_add(con, sup, 0);
 101	mutex_unlock(&fwnode_link_lock);
 102	return ret;
 103}
 104
 105/**
 106 * __fwnode_link_del - Delete a link between two fwnode_handles.
 107 * @link: the fwnode_link to be deleted
 108 *
 109 * The fwnode_link_lock needs to be held when this function is called.
 110 */
 111static void __fwnode_link_del(struct fwnode_link *link)
 112{
 113	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
 114		 link->consumer, link->supplier);
 115	list_del(&link->s_hook);
 116	list_del(&link->c_hook);
 117	kfree(link);
 118}
 119
 120/**
 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
 122 * @link: the fwnode_link to be marked
 123 *
 124 * The fwnode_link_lock needs to be held when this function is called.
 125 */
 126static void __fwnode_link_cycle(struct fwnode_link *link)
 127{
 128	pr_debug("%pfwf: cycle: depends on %pfwf\n",
 129		 link->consumer, link->supplier);
 130	link->flags |= FWLINK_FLAG_CYCLE;
 131}
 132
 133/**
 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 135 * @fwnode: fwnode whose supplier links need to be deleted
 136 *
 137 * Deletes all supplier links connecting directly to @fwnode.
 138 */
 139static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 140{
 141	struct fwnode_link *link, *tmp;
 142
 143	mutex_lock(&fwnode_link_lock);
 144	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
 145		__fwnode_link_del(link);
 
 
 
 146	mutex_unlock(&fwnode_link_lock);
 147}
 148
 149/**
 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 151 * @fwnode: fwnode whose consumer links need to be deleted
 152 *
 153 * Deletes all consumer links connecting directly to @fwnode.
 154 */
 155static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 156{
 157	struct fwnode_link *link, *tmp;
 158
 159	mutex_lock(&fwnode_link_lock);
 160	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
 161		__fwnode_link_del(link);
 
 
 
 162	mutex_unlock(&fwnode_link_lock);
 163}
 164
 165/**
 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 167 * @fwnode: fwnode whose links needs to be deleted
 168 *
 169 * Deletes all links connecting directly to a fwnode.
 170 */
 171void fwnode_links_purge(struct fwnode_handle *fwnode)
 172{
 173	fwnode_links_purge_suppliers(fwnode);
 174	fwnode_links_purge_consumers(fwnode);
 175}
 176
 177void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 178{
 179	struct fwnode_handle *child;
 180
 181	/* Don't purge consumer links of an added child */
 182	if (fwnode->dev)
 183		return;
 184
 185	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 186	fwnode_links_purge_consumers(fwnode);
 187
 188	fwnode_for_each_available_child_node(fwnode, child)
 189		fw_devlink_purge_absent_suppliers(child);
 190}
 191EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 192
 193/**
 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
 195 * @from: move consumers away from this fwnode
 196 * @to: move consumers to this fwnode
 197 *
 198 * Move all consumer links from @from fwnode to @to fwnode.
 199 */
 200static void __fwnode_links_move_consumers(struct fwnode_handle *from,
 201					  struct fwnode_handle *to)
 202{
 203	struct fwnode_link *link, *tmp;
 204
 205	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
 206		__fwnode_link_add(link->consumer, to, link->flags);
 207		__fwnode_link_del(link);
 208	}
 209}
 210
 211/**
 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
 213 * @fwnode: fwnode from which to pick up dangling consumers
 214 * @new_sup: fwnode of new supplier
 215 *
 216 * If the @fwnode has a corresponding struct device and the device supports
 217 * probing (that is, added to a bus), then we want to let fw_devlink create
 218 * MANAGED device links to this device, so leave @fwnode and its descendant's
 219 * fwnode links alone.
 220 *
 221 * Otherwise, move its consumers to the new supplier @new_sup.
 222 */
 223static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
 224						   struct fwnode_handle *new_sup)
 225{
 226	struct fwnode_handle *child;
 227
 228	if (fwnode->dev && fwnode->dev->bus)
 229		return;
 230
 231	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 232	__fwnode_links_move_consumers(fwnode, new_sup);
 233
 234	fwnode_for_each_available_child_node(fwnode, child)
 235		__fw_devlink_pickup_dangling_consumers(child, new_sup);
 236}
 237
 238static DEFINE_MUTEX(device_links_lock);
 239DEFINE_STATIC_SRCU(device_links_srcu);
 240
 241static inline void device_links_write_lock(void)
 242{
 243	mutex_lock(&device_links_lock);
 244}
 245
 246static inline void device_links_write_unlock(void)
 247{
 248	mutex_unlock(&device_links_lock);
 249}
 250
 251int device_links_read_lock(void) __acquires(&device_links_srcu)
 252{
 253	return srcu_read_lock(&device_links_srcu);
 254}
 255
 256void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 257{
 258	srcu_read_unlock(&device_links_srcu, idx);
 259}
 260
 261int device_links_read_lock_held(void)
 262{
 263	return srcu_read_lock_held(&device_links_srcu);
 264}
 265
 266static void device_link_synchronize_removal(void)
 267{
 268	synchronize_srcu(&device_links_srcu);
 269}
 270
 271static void device_link_remove_from_lists(struct device_link *link)
 272{
 273	list_del_rcu(&link->s_node);
 274	list_del_rcu(&link->c_node);
 275}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276
 277static bool device_is_ancestor(struct device *dev, struct device *target)
 278{
 279	while (target->parent) {
 280		target = target->parent;
 281		if (dev == target)
 282			return true;
 283	}
 284	return false;
 285}
 286
 287#define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
 288				 DL_FLAG_CYCLE | \
 289				 DL_FLAG_MANAGED)
 290static inline bool device_link_flag_is_sync_state_only(u32 flags)
 291{
 292	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
 293}
 294
 295/**
 296 * device_is_dependent - Check if one device depends on another one
 297 * @dev: Device to check dependencies for.
 298 * @target: Device to check against.
 299 *
 300 * Check if @target depends on @dev or any device dependent on it (its child or
 301 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 302 */
 303static int device_is_dependent(struct device *dev, void *target)
 304{
 305	struct device_link *link;
 306	int ret;
 307
 308	/*
 309	 * The "ancestors" check is needed to catch the case when the target
 310	 * device has not been completely initialized yet and it is still
 311	 * missing from the list of children of its parent device.
 312	 */
 313	if (dev == target || device_is_ancestor(dev, target))
 314		return 1;
 315
 316	ret = device_for_each_child(dev, target, device_is_dependent);
 317	if (ret)
 318		return ret;
 319
 320	list_for_each_entry(link, &dev->links.consumers, s_node) {
 321		if (device_link_flag_is_sync_state_only(link->flags))
 
 322			continue;
 323
 324		if (link->consumer == target)
 325			return 1;
 326
 327		ret = device_is_dependent(link->consumer, target);
 328		if (ret)
 329			break;
 330	}
 331	return ret;
 332}
 333
 334static void device_link_init_status(struct device_link *link,
 335				    struct device *consumer,
 336				    struct device *supplier)
 337{
 338	switch (supplier->links.status) {
 339	case DL_DEV_PROBING:
 340		switch (consumer->links.status) {
 341		case DL_DEV_PROBING:
 342			/*
 343			 * A consumer driver can create a link to a supplier
 344			 * that has not completed its probing yet as long as it
 345			 * knows that the supplier is already functional (for
 346			 * example, it has just acquired some resources from the
 347			 * supplier).
 348			 */
 349			link->status = DL_STATE_CONSUMER_PROBE;
 350			break;
 351		default:
 352			link->status = DL_STATE_DORMANT;
 353			break;
 354		}
 355		break;
 356	case DL_DEV_DRIVER_BOUND:
 357		switch (consumer->links.status) {
 358		case DL_DEV_PROBING:
 359			link->status = DL_STATE_CONSUMER_PROBE;
 360			break;
 361		case DL_DEV_DRIVER_BOUND:
 362			link->status = DL_STATE_ACTIVE;
 363			break;
 364		default:
 365			link->status = DL_STATE_AVAILABLE;
 366			break;
 367		}
 368		break;
 369	case DL_DEV_UNBINDING:
 370		link->status = DL_STATE_SUPPLIER_UNBIND;
 371		break;
 372	default:
 373		link->status = DL_STATE_DORMANT;
 374		break;
 375	}
 376}
 377
 378static int device_reorder_to_tail(struct device *dev, void *not_used)
 379{
 380	struct device_link *link;
 381
 382	/*
 383	 * Devices that have not been registered yet will be put to the ends
 384	 * of the lists during the registration, so skip them here.
 385	 */
 386	if (device_is_registered(dev))
 387		devices_kset_move_last(dev);
 388
 389	if (device_pm_initialized(dev))
 390		device_pm_move_last(dev);
 391
 392	device_for_each_child(dev, NULL, device_reorder_to_tail);
 393	list_for_each_entry(link, &dev->links.consumers, s_node) {
 394		if (device_link_flag_is_sync_state_only(link->flags))
 
 395			continue;
 396		device_reorder_to_tail(link->consumer, NULL);
 397	}
 398
 399	return 0;
 400}
 401
 402/**
 403 * device_pm_move_to_tail - Move set of devices to the end of device lists
 404 * @dev: Device to move
 405 *
 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 407 *
 408 * It moves the @dev along with all of its children and all of its consumers
 409 * to the ends of the device_kset and dpm_list, recursively.
 410 */
 411void device_pm_move_to_tail(struct device *dev)
 412{
 413	int idx;
 414
 415	idx = device_links_read_lock();
 416	device_pm_lock();
 417	device_reorder_to_tail(dev, NULL);
 418	device_pm_unlock();
 419	device_links_read_unlock(idx);
 420}
 421
 422#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 423
 424static ssize_t status_show(struct device *dev,
 425			   struct device_attribute *attr, char *buf)
 426{
 427	const char *output;
 428
 429	switch (to_devlink(dev)->status) {
 430	case DL_STATE_NONE:
 431		output = "not tracked";
 432		break;
 433	case DL_STATE_DORMANT:
 434		output = "dormant";
 435		break;
 436	case DL_STATE_AVAILABLE:
 437		output = "available";
 438		break;
 439	case DL_STATE_CONSUMER_PROBE:
 440		output = "consumer probing";
 441		break;
 442	case DL_STATE_ACTIVE:
 443		output = "active";
 444		break;
 445	case DL_STATE_SUPPLIER_UNBIND:
 446		output = "supplier unbinding";
 447		break;
 448	default:
 449		output = "unknown";
 450		break;
 451	}
 452
 453	return sysfs_emit(buf, "%s\n", output);
 454}
 455static DEVICE_ATTR_RO(status);
 456
 457static ssize_t auto_remove_on_show(struct device *dev,
 458				   struct device_attribute *attr, char *buf)
 459{
 460	struct device_link *link = to_devlink(dev);
 461	const char *output;
 462
 463	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 464		output = "supplier unbind";
 465	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 466		output = "consumer unbind";
 467	else
 468		output = "never";
 469
 470	return sysfs_emit(buf, "%s\n", output);
 471}
 472static DEVICE_ATTR_RO(auto_remove_on);
 473
 474static ssize_t runtime_pm_show(struct device *dev,
 475			       struct device_attribute *attr, char *buf)
 476{
 477	struct device_link *link = to_devlink(dev);
 478
 479	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 480}
 481static DEVICE_ATTR_RO(runtime_pm);
 482
 483static ssize_t sync_state_only_show(struct device *dev,
 484				    struct device_attribute *attr, char *buf)
 485{
 486	struct device_link *link = to_devlink(dev);
 487
 488	return sysfs_emit(buf, "%d\n",
 489			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 490}
 491static DEVICE_ATTR_RO(sync_state_only);
 492
 493static struct attribute *devlink_attrs[] = {
 494	&dev_attr_status.attr,
 495	&dev_attr_auto_remove_on.attr,
 496	&dev_attr_runtime_pm.attr,
 497	&dev_attr_sync_state_only.attr,
 498	NULL,
 499};
 500ATTRIBUTE_GROUPS(devlink);
 501
 502static void device_link_release_fn(struct work_struct *work)
 503{
 504	struct device_link *link = container_of(work, struct device_link, rm_work);
 505
 506	/* Ensure that all references to the link object have been dropped. */
 507	device_link_synchronize_removal();
 508
 509	pm_runtime_release_supplier(link);
 510	/*
 511	 * If supplier_preactivated is set, the link has been dropped between
 512	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
 513	 * in __driver_probe_device().  In that case, drop the supplier's
 514	 * PM-runtime usage counter to remove the reference taken by
 515	 * pm_runtime_get_suppliers().
 516	 */
 517	if (link->supplier_preactivated)
 518		pm_runtime_put_noidle(link->supplier);
 519
 520	pm_request_idle(link->supplier);
 521
 522	put_device(link->consumer);
 523	put_device(link->supplier);
 524	kfree(link);
 525}
 526
 527static void devlink_dev_release(struct device *dev)
 528{
 529	struct device_link *link = to_devlink(dev);
 530
 531	INIT_WORK(&link->rm_work, device_link_release_fn);
 532	/*
 533	 * It may take a while to complete this work because of the SRCU
 534	 * synchronization in device_link_release_fn() and if the consumer or
 535	 * supplier devices get deleted when it runs, so put it into the "long"
 536	 * workqueue.
 537	 */
 538	queue_work(system_long_wq, &link->rm_work);
 539}
 540
 541static struct class devlink_class = {
 542	.name = "devlink",
 
 543	.dev_groups = devlink_groups,
 544	.dev_release = devlink_dev_release,
 545};
 546
 547static int devlink_add_symlinks(struct device *dev)
 
 548{
 549	int ret;
 550	size_t len;
 551	struct device_link *link = to_devlink(dev);
 552	struct device *sup = link->supplier;
 553	struct device *con = link->consumer;
 554	char *buf;
 555
 556	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 557		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 558	len += strlen(":");
 559	len += strlen("supplier:") + 1;
 560	buf = kzalloc(len, GFP_KERNEL);
 561	if (!buf)
 562		return -ENOMEM;
 563
 564	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 565	if (ret)
 566		goto out;
 567
 568	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 569	if (ret)
 570		goto err_con;
 571
 572	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 573	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 574	if (ret)
 575		goto err_con_dev;
 576
 577	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 578	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 579	if (ret)
 580		goto err_sup_dev;
 581
 582	goto out;
 583
 584err_sup_dev:
 585	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 586	sysfs_remove_link(&sup->kobj, buf);
 587err_con_dev:
 588	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 589err_con:
 590	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 591out:
 592	kfree(buf);
 593	return ret;
 594}
 595
 596static void devlink_remove_symlinks(struct device *dev)
 
 597{
 598	struct device_link *link = to_devlink(dev);
 599	size_t len;
 600	struct device *sup = link->supplier;
 601	struct device *con = link->consumer;
 602	char *buf;
 603
 604	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 605	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 606
 607	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 608		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 609	len += strlen(":");
 610	len += strlen("supplier:") + 1;
 611	buf = kzalloc(len, GFP_KERNEL);
 612	if (!buf) {
 613		WARN(1, "Unable to properly free device link symlinks!\n");
 614		return;
 615	}
 616
 617	if (device_is_registered(con)) {
 618		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 619		sysfs_remove_link(&con->kobj, buf);
 620	}
 621	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 622	sysfs_remove_link(&sup->kobj, buf);
 623	kfree(buf);
 624}
 625
 626static struct class_interface devlink_class_intf = {
 627	.class = &devlink_class,
 628	.add_dev = devlink_add_symlinks,
 629	.remove_dev = devlink_remove_symlinks,
 630};
 631
 632static int __init devlink_class_init(void)
 633{
 634	int ret;
 635
 636	ret = class_register(&devlink_class);
 637	if (ret)
 638		return ret;
 639
 640	ret = class_interface_register(&devlink_class_intf);
 641	if (ret)
 642		class_unregister(&devlink_class);
 643
 644	return ret;
 645}
 646postcore_initcall(devlink_class_init);
 647
 648#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 649			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 650			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 651			       DL_FLAG_SYNC_STATE_ONLY | \
 652			       DL_FLAG_INFERRED | \
 653			       DL_FLAG_CYCLE)
 654
 655#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 656			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 657
 658/**
 659 * device_link_add - Create a link between two devices.
 660 * @consumer: Consumer end of the link.
 661 * @supplier: Supplier end of the link.
 662 * @flags: Link flags.
 663 *
 664 * The caller is responsible for the proper synchronization of the link creation
 665 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 666 * runtime PM framework to take the link into account.  Second, if the
 667 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 668 * be forced into the active meta state and reference-counted upon the creation
 669 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 670 * ignored.
 671 *
 672 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 673 * expected to release the link returned by it directly with the help of either
 674 * device_link_del() or device_link_remove().
 675 *
 676 * If that flag is not set, however, the caller of this function is handing the
 677 * management of the link over to the driver core entirely and its return value
 678 * can only be used to check whether or not the link is present.  In that case,
 679 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 680 * flags can be used to indicate to the driver core when the link can be safely
 681 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 682 * that the link is not going to be used (by the given caller of this function)
 683 * after unbinding the consumer or supplier driver, respectively, from its
 684 * device, so the link can be deleted at that point.  If none of them is set,
 685 * the link will be maintained until one of the devices pointed to by it (either
 686 * the consumer or the supplier) is unregistered.
 687 *
 688 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 689 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 690 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 691 * be used to request the driver core to automatically probe for a consumer
 692 * driver after successfully binding a driver to the supplier device.
 693 *
 694 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 695 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 696 * the same time is invalid and will cause NULL to be returned upfront.
 697 * However, if a device link between the given @consumer and @supplier pair
 698 * exists already when this function is called for them, the existing link will
 699 * be returned regardless of its current type and status (the link's flags may
 700 * be modified then).  The caller of this function is then expected to treat
 701 * the link as though it has just been created, so (in particular) if
 702 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 703 * explicitly when not needed any more (as stated above).
 704 *
 705 * A side effect of the link creation is re-ordering of dpm_list and the
 706 * devices_kset list by moving the consumer device and all devices depending
 707 * on it to the ends of these lists (that does not happen to devices that have
 708 * not been registered when this function is called).
 709 *
 710 * The supplier device is required to be registered when this function is called
 711 * and NULL will be returned if that is not the case.  The consumer device need
 712 * not be registered, however.
 713 */
 714struct device_link *device_link_add(struct device *consumer,
 715				    struct device *supplier, u32 flags)
 716{
 717	struct device_link *link;
 718
 719	if (!consumer || !supplier || consumer == supplier ||
 720	    flags & ~DL_ADD_VALID_FLAGS ||
 721	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 
 
 722	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 723	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 724		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 725		return NULL;
 726
 727	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 728		if (pm_runtime_get_sync(supplier) < 0) {
 729			pm_runtime_put_noidle(supplier);
 730			return NULL;
 731		}
 732	}
 733
 734	if (!(flags & DL_FLAG_STATELESS))
 735		flags |= DL_FLAG_MANAGED;
 736
 737	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 738	    !device_link_flag_is_sync_state_only(flags))
 739		return NULL;
 740
 741	device_links_write_lock();
 742	device_pm_lock();
 743
 744	/*
 745	 * If the supplier has not been fully registered yet or there is a
 746	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 747	 * the supplier already in the graph, return NULL. If the link is a
 748	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 749	 * because it only affects sync_state() callbacks.
 750	 */
 751	if (!device_pm_initialized(supplier)
 752	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 753		  device_is_dependent(consumer, supplier))) {
 754		link = NULL;
 755		goto out;
 756	}
 757
 758	/*
 759	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 760	 * So, only create it if the consumer hasn't probed yet.
 761	 */
 762	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 763	    consumer->links.status != DL_DEV_NO_DRIVER &&
 764	    consumer->links.status != DL_DEV_PROBING) {
 765		link = NULL;
 766		goto out;
 767	}
 768
 769	/*
 770	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 771	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 772	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 773	 */
 774	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 775		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 776
 777	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 778		if (link->consumer != consumer)
 779			continue;
 780
 781		if (link->flags & DL_FLAG_INFERRED &&
 782		    !(flags & DL_FLAG_INFERRED))
 783			link->flags &= ~DL_FLAG_INFERRED;
 784
 785		if (flags & DL_FLAG_PM_RUNTIME) {
 786			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 787				pm_runtime_new_link(consumer);
 788				link->flags |= DL_FLAG_PM_RUNTIME;
 789			}
 790			if (flags & DL_FLAG_RPM_ACTIVE)
 791				refcount_inc(&link->rpm_active);
 792		}
 793
 794		if (flags & DL_FLAG_STATELESS) {
 795			kref_get(&link->kref);
 796			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 797			    !(link->flags & DL_FLAG_STATELESS)) {
 798				link->flags |= DL_FLAG_STATELESS;
 799				goto reorder;
 800			} else {
 801				link->flags |= DL_FLAG_STATELESS;
 802				goto out;
 803			}
 804		}
 805
 806		/*
 807		 * If the life time of the link following from the new flags is
 808		 * longer than indicated by the flags of the existing link,
 809		 * update the existing link to stay around longer.
 810		 */
 811		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 812			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 813				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 814				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 815			}
 816		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 817			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 818					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 819		}
 820		if (!(link->flags & DL_FLAG_MANAGED)) {
 821			kref_get(&link->kref);
 822			link->flags |= DL_FLAG_MANAGED;
 823			device_link_init_status(link, consumer, supplier);
 824		}
 825		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 826		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 827			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 828			goto reorder;
 829		}
 830
 831		goto out;
 832	}
 833
 834	link = kzalloc(sizeof(*link), GFP_KERNEL);
 835	if (!link)
 836		goto out;
 837
 838	refcount_set(&link->rpm_active, 1);
 839
 840	get_device(supplier);
 841	link->supplier = supplier;
 842	INIT_LIST_HEAD(&link->s_node);
 843	get_device(consumer);
 844	link->consumer = consumer;
 845	INIT_LIST_HEAD(&link->c_node);
 846	link->flags = flags;
 847	kref_init(&link->kref);
 848
 849	link->link_dev.class = &devlink_class;
 850	device_set_pm_not_required(&link->link_dev);
 851	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 852		     dev_bus_name(supplier), dev_name(supplier),
 853		     dev_bus_name(consumer), dev_name(consumer));
 854	if (device_register(&link->link_dev)) {
 855		put_device(&link->link_dev);
 
 
 856		link = NULL;
 857		goto out;
 858	}
 859
 860	if (flags & DL_FLAG_PM_RUNTIME) {
 861		if (flags & DL_FLAG_RPM_ACTIVE)
 862			refcount_inc(&link->rpm_active);
 863
 864		pm_runtime_new_link(consumer);
 865	}
 866
 867	/* Determine the initial link state. */
 868	if (flags & DL_FLAG_STATELESS)
 869		link->status = DL_STATE_NONE;
 870	else
 871		device_link_init_status(link, consumer, supplier);
 872
 873	/*
 874	 * Some callers expect the link creation during consumer driver probe to
 875	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 876	 */
 877	if (link->status == DL_STATE_CONSUMER_PROBE &&
 878	    flags & DL_FLAG_PM_RUNTIME)
 879		pm_runtime_resume(supplier);
 880
 881	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 882	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 883
 884	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 885		dev_dbg(consumer,
 886			"Linked as a sync state only consumer to %s\n",
 887			dev_name(supplier));
 888		goto out;
 889	}
 890
 891reorder:
 892	/*
 893	 * Move the consumer and all of the devices depending on it to the end
 894	 * of dpm_list and the devices_kset list.
 895	 *
 896	 * It is necessary to hold dpm_list locked throughout all that or else
 897	 * we may end up suspending with a wrong ordering of it.
 898	 */
 899	device_reorder_to_tail(consumer, NULL);
 900
 901	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 902
 903out:
 904	device_pm_unlock();
 905	device_links_write_unlock();
 906
 907	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 908		pm_runtime_put(supplier);
 909
 910	return link;
 911}
 912EXPORT_SYMBOL_GPL(device_link_add);
 913
 914static void __device_link_del(struct kref *kref)
 915{
 916	struct device_link *link = container_of(kref, struct device_link, kref);
 917
 918	dev_dbg(link->consumer, "Dropping the link to %s\n",
 919		dev_name(link->supplier));
 920
 921	pm_runtime_drop_link(link);
 922
 923	device_link_remove_from_lists(link);
 924	device_unregister(&link->link_dev);
 925}
 926
 927static void device_link_put_kref(struct device_link *link)
 928{
 929	if (link->flags & DL_FLAG_STATELESS)
 930		kref_put(&link->kref, __device_link_del);
 931	else if (!device_is_registered(link->consumer))
 932		__device_link_del(&link->kref);
 933	else
 934		WARN(1, "Unable to drop a managed device link reference\n");
 935}
 936
 937/**
 938 * device_link_del - Delete a stateless link between two devices.
 939 * @link: Device link to delete.
 940 *
 941 * The caller must ensure proper synchronization of this function with runtime
 942 * PM.  If the link was added multiple times, it needs to be deleted as often.
 943 * Care is required for hotplugged devices:  Their links are purged on removal
 944 * and calling device_link_del() is then no longer allowed.
 945 */
 946void device_link_del(struct device_link *link)
 947{
 948	device_links_write_lock();
 949	device_link_put_kref(link);
 950	device_links_write_unlock();
 951}
 952EXPORT_SYMBOL_GPL(device_link_del);
 953
 954/**
 955 * device_link_remove - Delete a stateless link between two devices.
 956 * @consumer: Consumer end of the link.
 957 * @supplier: Supplier end of the link.
 958 *
 959 * The caller must ensure proper synchronization of this function with runtime
 960 * PM.
 961 */
 962void device_link_remove(void *consumer, struct device *supplier)
 963{
 964	struct device_link *link;
 965
 966	if (WARN_ON(consumer == supplier))
 967		return;
 968
 969	device_links_write_lock();
 970
 971	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 972		if (link->consumer == consumer) {
 973			device_link_put_kref(link);
 974			break;
 975		}
 976	}
 977
 978	device_links_write_unlock();
 979}
 980EXPORT_SYMBOL_GPL(device_link_remove);
 981
 982static void device_links_missing_supplier(struct device *dev)
 983{
 984	struct device_link *link;
 985
 986	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 987		if (link->status != DL_STATE_CONSUMER_PROBE)
 988			continue;
 989
 990		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 991			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 992		} else {
 993			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 994			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 995		}
 996	}
 997}
 998
 999static bool dev_is_best_effort(struct device *dev)
1000{
1001	return (fw_devlink_best_effort && dev->can_match) ||
1002		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1003}
1004
1005static struct fwnode_handle *fwnode_links_check_suppliers(
1006						struct fwnode_handle *fwnode)
1007{
1008	struct fwnode_link *link;
1009
1010	if (!fwnode || fw_devlink_is_permissive())
1011		return NULL;
1012
1013	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1014		if (!(link->flags & FWLINK_FLAG_CYCLE))
1015			return link->supplier;
1016
1017	return NULL;
1018}
1019
1020/**
1021 * device_links_check_suppliers - Check presence of supplier drivers.
1022 * @dev: Consumer device.
1023 *
1024 * Check links from this device to any suppliers.  Walk the list of the device's
1025 * links to suppliers and see if all of them are available.  If not, simply
1026 * return -EPROBE_DEFER.
1027 *
1028 * We need to guarantee that the supplier will not go away after the check has
1029 * been positive here.  It only can go away in __device_release_driver() and
1030 * that function  checks the device's links to consumers.  This means we need to
1031 * mark the link as "consumer probe in progress" to make the supplier removal
1032 * wait for us to complete (or bad things may happen).
1033 *
1034 * Links without the DL_FLAG_MANAGED flag set are ignored.
1035 */
1036int device_links_check_suppliers(struct device *dev)
1037{
1038	struct device_link *link;
1039	int ret = 0, fwnode_ret = 0;
1040	struct fwnode_handle *sup_fw;
1041
1042	/*
1043	 * Device waiting for supplier to become available is not allowed to
1044	 * probe.
1045	 */
1046	mutex_lock(&fwnode_link_lock);
1047	sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1048	if (sup_fw) {
1049		if (!dev_is_best_effort(dev)) {
1050			fwnode_ret = -EPROBE_DEFER;
1051			dev_err_probe(dev, -EPROBE_DEFER,
1052				    "wait for supplier %pfwf\n", sup_fw);
1053		} else {
1054			fwnode_ret = -EAGAIN;
1055		}
1056	}
1057	mutex_unlock(&fwnode_link_lock);
1058	if (fwnode_ret == -EPROBE_DEFER)
1059		return fwnode_ret;
1060
1061	device_links_write_lock();
1062
1063	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1064		if (!(link->flags & DL_FLAG_MANAGED))
1065			continue;
1066
1067		if (link->status != DL_STATE_AVAILABLE &&
1068		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1069
1070			if (dev_is_best_effort(dev) &&
1071			    link->flags & DL_FLAG_INFERRED &&
1072			    !link->supplier->can_match) {
1073				ret = -EAGAIN;
1074				continue;
1075			}
1076
1077			device_links_missing_supplier(dev);
1078			dev_err_probe(dev, -EPROBE_DEFER,
1079				      "supplier %s not ready\n",
1080				      dev_name(link->supplier));
1081			ret = -EPROBE_DEFER;
1082			break;
1083		}
1084		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1085	}
1086	dev->links.status = DL_DEV_PROBING;
1087
1088	device_links_write_unlock();
1089
1090	return ret ? ret : fwnode_ret;
1091}
1092
1093/**
1094 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1095 * @dev: Device to call sync_state() on
1096 * @list: List head to queue the @dev on
1097 *
1098 * Queues a device for a sync_state() callback when the device links write lock
1099 * isn't held. This allows the sync_state() execution flow to use device links
1100 * APIs.  The caller must ensure this function is called with
1101 * device_links_write_lock() held.
1102 *
1103 * This function does a get_device() to make sure the device is not freed while
1104 * on this list.
1105 *
1106 * So the caller must also ensure that device_links_flush_sync_list() is called
1107 * as soon as the caller releases device_links_write_lock().  This is necessary
1108 * to make sure the sync_state() is called in a timely fashion and the
1109 * put_device() is called on this device.
1110 */
1111static void __device_links_queue_sync_state(struct device *dev,
1112					    struct list_head *list)
1113{
1114	struct device_link *link;
1115
1116	if (!dev_has_sync_state(dev))
1117		return;
1118	if (dev->state_synced)
1119		return;
1120
1121	list_for_each_entry(link, &dev->links.consumers, s_node) {
1122		if (!(link->flags & DL_FLAG_MANAGED))
1123			continue;
1124		if (link->status != DL_STATE_ACTIVE)
1125			return;
1126	}
1127
1128	/*
1129	 * Set the flag here to avoid adding the same device to a list more
1130	 * than once. This can happen if new consumers get added to the device
1131	 * and probed before the list is flushed.
1132	 */
1133	dev->state_synced = true;
1134
1135	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1136		return;
1137
1138	get_device(dev);
1139	list_add_tail(&dev->links.defer_sync, list);
1140}
1141
1142/**
1143 * device_links_flush_sync_list - Call sync_state() on a list of devices
1144 * @list: List of devices to call sync_state() on
1145 * @dont_lock_dev: Device for which lock is already held by the caller
1146 *
1147 * Calls sync_state() on all the devices that have been queued for it. This
1148 * function is used in conjunction with __device_links_queue_sync_state(). The
1149 * @dont_lock_dev parameter is useful when this function is called from a
1150 * context where a device lock is already held.
1151 */
1152static void device_links_flush_sync_list(struct list_head *list,
1153					 struct device *dont_lock_dev)
1154{
1155	struct device *dev, *tmp;
1156
1157	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1158		list_del_init(&dev->links.defer_sync);
1159
1160		if (dev != dont_lock_dev)
1161			device_lock(dev);
1162
1163		dev_sync_state(dev);
 
 
 
1164
1165		if (dev != dont_lock_dev)
1166			device_unlock(dev);
1167
1168		put_device(dev);
1169	}
1170}
1171
1172void device_links_supplier_sync_state_pause(void)
1173{
1174	device_links_write_lock();
1175	defer_sync_state_count++;
1176	device_links_write_unlock();
1177}
1178
1179void device_links_supplier_sync_state_resume(void)
1180{
1181	struct device *dev, *tmp;
1182	LIST_HEAD(sync_list);
1183
1184	device_links_write_lock();
1185	if (!defer_sync_state_count) {
1186		WARN(true, "Unmatched sync_state pause/resume!");
1187		goto out;
1188	}
1189	defer_sync_state_count--;
1190	if (defer_sync_state_count)
1191		goto out;
1192
1193	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1194		/*
1195		 * Delete from deferred_sync list before queuing it to
1196		 * sync_list because defer_sync is used for both lists.
1197		 */
1198		list_del_init(&dev->links.defer_sync);
1199		__device_links_queue_sync_state(dev, &sync_list);
1200	}
1201out:
1202	device_links_write_unlock();
1203
1204	device_links_flush_sync_list(&sync_list, NULL);
1205}
1206
1207static int sync_state_resume_initcall(void)
1208{
1209	device_links_supplier_sync_state_resume();
1210	return 0;
1211}
1212late_initcall(sync_state_resume_initcall);
1213
1214static void __device_links_supplier_defer_sync(struct device *sup)
1215{
1216	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1217		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1218}
1219
1220static void device_link_drop_managed(struct device_link *link)
1221{
1222	link->flags &= ~DL_FLAG_MANAGED;
1223	WRITE_ONCE(link->status, DL_STATE_NONE);
1224	kref_put(&link->kref, __device_link_del);
1225}
1226
1227static ssize_t waiting_for_supplier_show(struct device *dev,
1228					 struct device_attribute *attr,
1229					 char *buf)
1230{
1231	bool val;
1232
1233	device_lock(dev);
1234	mutex_lock(&fwnode_link_lock);
1235	val = !!fwnode_links_check_suppliers(dev->fwnode);
1236	mutex_unlock(&fwnode_link_lock);
1237	device_unlock(dev);
1238	return sysfs_emit(buf, "%u\n", val);
1239}
1240static DEVICE_ATTR_RO(waiting_for_supplier);
1241
1242/**
1243 * device_links_force_bind - Prepares device to be force bound
1244 * @dev: Consumer device.
1245 *
1246 * device_bind_driver() force binds a device to a driver without calling any
1247 * driver probe functions. So the consumer really isn't going to wait for any
1248 * supplier before it's bound to the driver. We still want the device link
1249 * states to be sensible when this happens.
1250 *
1251 * In preparation for device_bind_driver(), this function goes through each
1252 * supplier device links and checks if the supplier is bound. If it is, then
1253 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1254 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1255 */
1256void device_links_force_bind(struct device *dev)
1257{
1258	struct device_link *link, *ln;
1259
1260	device_links_write_lock();
1261
1262	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1263		if (!(link->flags & DL_FLAG_MANAGED))
1264			continue;
1265
1266		if (link->status != DL_STATE_AVAILABLE) {
1267			device_link_drop_managed(link);
1268			continue;
1269		}
1270		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1271	}
1272	dev->links.status = DL_DEV_PROBING;
1273
1274	device_links_write_unlock();
1275}
1276
1277/**
1278 * device_links_driver_bound - Update device links after probing its driver.
1279 * @dev: Device to update the links for.
1280 *
1281 * The probe has been successful, so update links from this device to any
1282 * consumers by changing their status to "available".
1283 *
1284 * Also change the status of @dev's links to suppliers to "active".
1285 *
1286 * Links without the DL_FLAG_MANAGED flag set are ignored.
1287 */
1288void device_links_driver_bound(struct device *dev)
1289{
1290	struct device_link *link, *ln;
1291	LIST_HEAD(sync_list);
1292
1293	/*
1294	 * If a device binds successfully, it's expected to have created all
1295	 * the device links it needs to or make new device links as it needs
1296	 * them. So, fw_devlink no longer needs to create device links to any
1297	 * of the device's suppliers.
1298	 *
1299	 * Also, if a child firmware node of this bound device is not added as a
1300	 * device by now, assume it is never going to be added. Make this bound
1301	 * device the fallback supplier to the dangling consumers of the child
1302	 * firmware node because this bound device is probably implementing the
1303	 * child firmware node functionality and we don't want the dangling
1304	 * consumers to defer probe indefinitely waiting for a device for the
1305	 * child firmware node.
1306	 */
1307	if (dev->fwnode && dev->fwnode->dev == dev) {
1308		struct fwnode_handle *child;
1309		fwnode_links_purge_suppliers(dev->fwnode);
1310		mutex_lock(&fwnode_link_lock);
1311		fwnode_for_each_available_child_node(dev->fwnode, child)
1312			__fw_devlink_pickup_dangling_consumers(child,
1313							       dev->fwnode);
1314		__fw_devlink_link_to_consumers(dev);
1315		mutex_unlock(&fwnode_link_lock);
1316	}
1317	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1318
1319	device_links_write_lock();
1320
1321	list_for_each_entry(link, &dev->links.consumers, s_node) {
1322		if (!(link->flags & DL_FLAG_MANAGED))
1323			continue;
1324
1325		/*
1326		 * Links created during consumer probe may be in the "consumer
1327		 * probe" state to start with if the supplier is still probing
1328		 * when they are created and they may become "active" if the
1329		 * consumer probe returns first.  Skip them here.
1330		 */
1331		if (link->status == DL_STATE_CONSUMER_PROBE ||
1332		    link->status == DL_STATE_ACTIVE)
1333			continue;
1334
1335		WARN_ON(link->status != DL_STATE_DORMANT);
1336		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1337
1338		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1339			driver_deferred_probe_add(link->consumer);
1340	}
1341
1342	if (defer_sync_state_count)
1343		__device_links_supplier_defer_sync(dev);
1344	else
1345		__device_links_queue_sync_state(dev, &sync_list);
1346
1347	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1348		struct device *supplier;
1349
1350		if (!(link->flags & DL_FLAG_MANAGED))
1351			continue;
1352
1353		supplier = link->supplier;
1354		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1355			/*
1356			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1357			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1358			 * save to drop the managed link completely.
1359			 */
1360			device_link_drop_managed(link);
1361		} else if (dev_is_best_effort(dev) &&
1362			   link->flags & DL_FLAG_INFERRED &&
1363			   link->status != DL_STATE_CONSUMER_PROBE &&
1364			   !link->supplier->can_match) {
1365			/*
1366			 * When dev_is_best_effort() is true, we ignore device
1367			 * links to suppliers that don't have a driver.  If the
1368			 * consumer device still managed to probe, there's no
1369			 * point in maintaining a device link in a weird state
1370			 * (consumer probed before supplier). So delete it.
1371			 */
1372			device_link_drop_managed(link);
1373		} else {
1374			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1375			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1376		}
1377
1378		/*
1379		 * This needs to be done even for the deleted
1380		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1381		 * device link that was preventing the supplier from getting a
1382		 * sync_state() call.
1383		 */
1384		if (defer_sync_state_count)
1385			__device_links_supplier_defer_sync(supplier);
1386		else
1387			__device_links_queue_sync_state(supplier, &sync_list);
1388	}
1389
1390	dev->links.status = DL_DEV_DRIVER_BOUND;
1391
1392	device_links_write_unlock();
1393
1394	device_links_flush_sync_list(&sync_list, dev);
1395}
1396
1397/**
1398 * __device_links_no_driver - Update links of a device without a driver.
1399 * @dev: Device without a drvier.
1400 *
1401 * Delete all non-persistent links from this device to any suppliers.
1402 *
1403 * Persistent links stay around, but their status is changed to "available",
1404 * unless they already are in the "supplier unbind in progress" state in which
1405 * case they need not be updated.
1406 *
1407 * Links without the DL_FLAG_MANAGED flag set are ignored.
1408 */
1409static void __device_links_no_driver(struct device *dev)
1410{
1411	struct device_link *link, *ln;
1412
1413	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1414		if (!(link->flags & DL_FLAG_MANAGED))
1415			continue;
1416
1417		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1418			device_link_drop_managed(link);
1419			continue;
1420		}
1421
1422		if (link->status != DL_STATE_CONSUMER_PROBE &&
1423		    link->status != DL_STATE_ACTIVE)
1424			continue;
1425
1426		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1427			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1428		} else {
1429			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1430			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1431		}
1432	}
1433
1434	dev->links.status = DL_DEV_NO_DRIVER;
1435}
1436
1437/**
1438 * device_links_no_driver - Update links after failing driver probe.
1439 * @dev: Device whose driver has just failed to probe.
1440 *
1441 * Clean up leftover links to consumers for @dev and invoke
1442 * %__device_links_no_driver() to update links to suppliers for it as
1443 * appropriate.
1444 *
1445 * Links without the DL_FLAG_MANAGED flag set are ignored.
1446 */
1447void device_links_no_driver(struct device *dev)
1448{
1449	struct device_link *link;
1450
1451	device_links_write_lock();
1452
1453	list_for_each_entry(link, &dev->links.consumers, s_node) {
1454		if (!(link->flags & DL_FLAG_MANAGED))
1455			continue;
1456
1457		/*
1458		 * The probe has failed, so if the status of the link is
1459		 * "consumer probe" or "active", it must have been added by
1460		 * a probing consumer while this device was still probing.
1461		 * Change its state to "dormant", as it represents a valid
1462		 * relationship, but it is not functionally meaningful.
1463		 */
1464		if (link->status == DL_STATE_CONSUMER_PROBE ||
1465		    link->status == DL_STATE_ACTIVE)
1466			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1467	}
1468
1469	__device_links_no_driver(dev);
1470
1471	device_links_write_unlock();
1472}
1473
1474/**
1475 * device_links_driver_cleanup - Update links after driver removal.
1476 * @dev: Device whose driver has just gone away.
1477 *
1478 * Update links to consumers for @dev by changing their status to "dormant" and
1479 * invoke %__device_links_no_driver() to update links to suppliers for it as
1480 * appropriate.
1481 *
1482 * Links without the DL_FLAG_MANAGED flag set are ignored.
1483 */
1484void device_links_driver_cleanup(struct device *dev)
1485{
1486	struct device_link *link, *ln;
1487
1488	device_links_write_lock();
1489
1490	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1491		if (!(link->flags & DL_FLAG_MANAGED))
1492			continue;
1493
1494		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1495		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1496
1497		/*
1498		 * autoremove the links between this @dev and its consumer
1499		 * devices that are not active, i.e. where the link state
1500		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1501		 */
1502		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1503		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1504			device_link_drop_managed(link);
1505
1506		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1507	}
1508
1509	list_del_init(&dev->links.defer_sync);
1510	__device_links_no_driver(dev);
1511
1512	device_links_write_unlock();
1513}
1514
1515/**
1516 * device_links_busy - Check if there are any busy links to consumers.
1517 * @dev: Device to check.
1518 *
1519 * Check each consumer of the device and return 'true' if its link's status
1520 * is one of "consumer probe" or "active" (meaning that the given consumer is
1521 * probing right now or its driver is present).  Otherwise, change the link
1522 * state to "supplier unbind" to prevent the consumer from being probed
1523 * successfully going forward.
1524 *
1525 * Return 'false' if there are no probing or active consumers.
1526 *
1527 * Links without the DL_FLAG_MANAGED flag set are ignored.
1528 */
1529bool device_links_busy(struct device *dev)
1530{
1531	struct device_link *link;
1532	bool ret = false;
1533
1534	device_links_write_lock();
1535
1536	list_for_each_entry(link, &dev->links.consumers, s_node) {
1537		if (!(link->flags & DL_FLAG_MANAGED))
1538			continue;
1539
1540		if (link->status == DL_STATE_CONSUMER_PROBE
1541		    || link->status == DL_STATE_ACTIVE) {
1542			ret = true;
1543			break;
1544		}
1545		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1546	}
1547
1548	dev->links.status = DL_DEV_UNBINDING;
1549
1550	device_links_write_unlock();
1551	return ret;
1552}
1553
1554/**
1555 * device_links_unbind_consumers - Force unbind consumers of the given device.
1556 * @dev: Device to unbind the consumers of.
1557 *
1558 * Walk the list of links to consumers for @dev and if any of them is in the
1559 * "consumer probe" state, wait for all device probes in progress to complete
1560 * and start over.
1561 *
1562 * If that's not the case, change the status of the link to "supplier unbind"
1563 * and check if the link was in the "active" state.  If so, force the consumer
1564 * driver to unbind and start over (the consumer will not re-probe as we have
1565 * changed the state of the link already).
1566 *
1567 * Links without the DL_FLAG_MANAGED flag set are ignored.
1568 */
1569void device_links_unbind_consumers(struct device *dev)
1570{
1571	struct device_link *link;
1572
1573 start:
1574	device_links_write_lock();
1575
1576	list_for_each_entry(link, &dev->links.consumers, s_node) {
1577		enum device_link_state status;
1578
1579		if (!(link->flags & DL_FLAG_MANAGED) ||
1580		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1581			continue;
1582
1583		status = link->status;
1584		if (status == DL_STATE_CONSUMER_PROBE) {
1585			device_links_write_unlock();
1586
1587			wait_for_device_probe();
1588			goto start;
1589		}
1590		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1591		if (status == DL_STATE_ACTIVE) {
1592			struct device *consumer = link->consumer;
1593
1594			get_device(consumer);
1595
1596			device_links_write_unlock();
1597
1598			device_release_driver_internal(consumer, NULL,
1599						       consumer->parent);
1600			put_device(consumer);
1601			goto start;
1602		}
1603	}
1604
1605	device_links_write_unlock();
1606}
1607
1608/**
1609 * device_links_purge - Delete existing links to other devices.
1610 * @dev: Target device.
1611 */
1612static void device_links_purge(struct device *dev)
1613{
1614	struct device_link *link, *ln;
1615
1616	if (dev->class == &devlink_class)
1617		return;
1618
1619	/*
1620	 * Delete all of the remaining links from this device to any other
1621	 * devices (either consumers or suppliers).
1622	 */
1623	device_links_write_lock();
1624
1625	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1626		WARN_ON(link->status == DL_STATE_ACTIVE);
1627		__device_link_del(&link->kref);
1628	}
1629
1630	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1631		WARN_ON(link->status != DL_STATE_DORMANT &&
1632			link->status != DL_STATE_NONE);
1633		__device_link_del(&link->kref);
1634	}
1635
1636	device_links_write_unlock();
1637}
1638
1639#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1640					 DL_FLAG_SYNC_STATE_ONLY)
1641#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1642					 DL_FLAG_AUTOPROBE_CONSUMER)
1643#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1644					 DL_FLAG_PM_RUNTIME)
1645
1646static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1647static int __init fw_devlink_setup(char *arg)
1648{
1649	if (!arg)
1650		return -EINVAL;
1651
1652	if (strcmp(arg, "off") == 0) {
1653		fw_devlink_flags = 0;
1654	} else if (strcmp(arg, "permissive") == 0) {
1655		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1656	} else if (strcmp(arg, "on") == 0) {
1657		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1658	} else if (strcmp(arg, "rpm") == 0) {
1659		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1660	}
1661	return 0;
1662}
1663early_param("fw_devlink", fw_devlink_setup);
1664
1665static bool fw_devlink_strict;
1666static int __init fw_devlink_strict_setup(char *arg)
1667{
1668	return kstrtobool(arg, &fw_devlink_strict);
1669}
1670early_param("fw_devlink.strict", fw_devlink_strict_setup);
1671
1672#define FW_DEVLINK_SYNC_STATE_STRICT	0
1673#define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1674
1675#ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1676static int fw_devlink_sync_state;
1677#else
1678static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1679#endif
1680
1681static int __init fw_devlink_sync_state_setup(char *arg)
1682{
1683	if (!arg)
1684		return -EINVAL;
1685
1686	if (strcmp(arg, "strict") == 0) {
1687		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1688		return 0;
1689	} else if (strcmp(arg, "timeout") == 0) {
1690		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1691		return 0;
1692	}
1693	return -EINVAL;
1694}
1695early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1696
1697static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1698{
1699	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1700		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1701
1702	return fw_devlink_flags;
1703}
1704
1705static bool fw_devlink_is_permissive(void)
1706{
1707	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1708}
1709
1710bool fw_devlink_is_strict(void)
1711{
1712	return fw_devlink_strict && !fw_devlink_is_permissive();
1713}
1714
1715static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1716{
1717	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1718		return;
1719
1720	fwnode_call_int_op(fwnode, add_links);
1721	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1722}
1723
1724static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1725{
1726	struct fwnode_handle *child = NULL;
1727
1728	fw_devlink_parse_fwnode(fwnode);
1729
1730	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1731		fw_devlink_parse_fwtree(child);
1732}
1733
1734static void fw_devlink_relax_link(struct device_link *link)
1735{
1736	if (!(link->flags & DL_FLAG_INFERRED))
1737		return;
1738
1739	if (device_link_flag_is_sync_state_only(link->flags))
1740		return;
1741
1742	pm_runtime_drop_link(link);
1743	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1744	dev_dbg(link->consumer, "Relaxing link with %s\n",
1745		dev_name(link->supplier));
1746}
1747
1748static int fw_devlink_no_driver(struct device *dev, void *data)
1749{
1750	struct device_link *link = to_devlink(dev);
1751
1752	if (!link->supplier->can_match)
1753		fw_devlink_relax_link(link);
1754
1755	return 0;
1756}
1757
1758void fw_devlink_drivers_done(void)
1759{
1760	fw_devlink_drv_reg_done = true;
1761	device_links_write_lock();
1762	class_for_each_device(&devlink_class, NULL, NULL,
1763			      fw_devlink_no_driver);
1764	device_links_write_unlock();
1765}
1766
1767static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1768{
1769	struct device_link *link = to_devlink(dev);
1770	struct device *sup = link->supplier;
1771
1772	if (!(link->flags & DL_FLAG_MANAGED) ||
1773	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1774	    !dev_has_sync_state(sup))
1775		return 0;
1776
1777	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1778		dev_warn(sup, "sync_state() pending due to %s\n",
1779			 dev_name(link->consumer));
1780		return 0;
1781	}
1782
1783	if (!list_empty(&sup->links.defer_sync))
1784		return 0;
1785
1786	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1787	sup->state_synced = true;
1788	get_device(sup);
1789	list_add_tail(&sup->links.defer_sync, data);
1790
1791	return 0;
1792}
1793
1794void fw_devlink_probing_done(void)
1795{
1796	LIST_HEAD(sync_list);
1797
1798	device_links_write_lock();
1799	class_for_each_device(&devlink_class, NULL, &sync_list,
1800			      fw_devlink_dev_sync_state);
1801	device_links_write_unlock();
1802	device_links_flush_sync_list(&sync_list, NULL);
1803}
1804
1805/**
1806 * wait_for_init_devices_probe - Try to probe any device needed for init
1807 *
1808 * Some devices might need to be probed and bound successfully before the kernel
1809 * boot sequence can finish and move on to init/userspace. For example, a
1810 * network interface might need to be bound to be able to mount a NFS rootfs.
1811 *
1812 * With fw_devlink=on by default, some of these devices might be blocked from
1813 * probing because they are waiting on a optional supplier that doesn't have a
1814 * driver. While fw_devlink will eventually identify such devices and unblock
1815 * the probing automatically, it might be too late by the time it unblocks the
1816 * probing of devices. For example, the IP4 autoconfig might timeout before
1817 * fw_devlink unblocks probing of the network interface.
1818 *
1819 * This function is available to temporarily try and probe all devices that have
1820 * a driver even if some of their suppliers haven't been added or don't have
1821 * drivers.
1822 *
1823 * The drivers can then decide which of the suppliers are optional vs mandatory
1824 * and probe the device if possible. By the time this function returns, all such
1825 * "best effort" probes are guaranteed to be completed. If a device successfully
1826 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1827 * device where the supplier hasn't yet probed successfully because they have to
1828 * be optional dependencies.
1829 *
1830 * Any devices that didn't successfully probe go back to being treated as if
1831 * this function was never called.
1832 *
1833 * This also means that some devices that aren't needed for init and could have
1834 * waited for their optional supplier to probe (when the supplier's module is
1835 * loaded later on) would end up probing prematurely with limited functionality.
1836 * So call this function only when boot would fail without it.
1837 */
1838void __init wait_for_init_devices_probe(void)
1839{
1840	if (!fw_devlink_flags || fw_devlink_is_permissive())
1841		return;
1842
1843	/*
1844	 * Wait for all ongoing probes to finish so that the "best effort" is
1845	 * only applied to devices that can't probe otherwise.
1846	 */
1847	wait_for_device_probe();
1848
1849	pr_info("Trying to probe devices needed for running init ...\n");
1850	fw_devlink_best_effort = true;
1851	driver_deferred_probe_trigger();
1852
1853	/*
1854	 * Wait for all "best effort" probes to finish before going back to
1855	 * normal enforcement.
1856	 */
1857	wait_for_device_probe();
1858	fw_devlink_best_effort = false;
1859}
1860
1861static void fw_devlink_unblock_consumers(struct device *dev)
1862{
1863	struct device_link *link;
1864
1865	if (!fw_devlink_flags || fw_devlink_is_permissive())
1866		return;
1867
1868	device_links_write_lock();
1869	list_for_each_entry(link, &dev->links.consumers, s_node)
1870		fw_devlink_relax_link(link);
1871	device_links_write_unlock();
1872}
1873
1874
1875static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1876{
1877	struct device *dev;
1878	bool ret;
1879
1880	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1881		return false;
1882
1883	dev = get_dev_from_fwnode(fwnode);
1884	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1885	put_device(dev);
1886
1887	return ret;
1888}
1889
1890static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1891{
1892	struct fwnode_handle *parent;
1893
1894	fwnode_for_each_parent_node(fwnode, parent) {
1895		if (fwnode_init_without_drv(parent)) {
1896			fwnode_handle_put(parent);
1897			return true;
1898		}
1899	}
1900
1901	return false;
1902}
1903
1904/**
1905 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1906 * @con: Potential consumer device.
1907 * @sup_handle: Potential supplier's fwnode.
1908 *
1909 * Needs to be called with fwnode_lock and device link lock held.
1910 *
1911 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1912 * depend on @con. This function can detect multiple cyles between @sup_handle
1913 * and @con. When such dependency cycles are found, convert all device links
1914 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1915 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1916 * converted into a device link in the future, they are created as
1917 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1918 * fw_devlink=permissive just between the devices in the cycle. We need to do
1919 * this because, at this point, fw_devlink can't tell which of these
1920 * dependencies is not a real dependency.
1921 *
1922 * Return true if one or more cycles were found. Otherwise, return false.
1923 */
1924static bool __fw_devlink_relax_cycles(struct device *con,
1925				 struct fwnode_handle *sup_handle)
1926{
1927	struct device *sup_dev = NULL, *par_dev = NULL;
1928	struct fwnode_link *link;
1929	struct device_link *dev_link;
1930	bool ret = false;
1931
1932	if (!sup_handle)
1933		return false;
1934
1935	/*
1936	 * We aren't trying to find all cycles. Just a cycle between con and
1937	 * sup_handle.
1938	 */
1939	if (sup_handle->flags & FWNODE_FLAG_VISITED)
1940		return false;
1941
1942	sup_handle->flags |= FWNODE_FLAG_VISITED;
1943
1944	sup_dev = get_dev_from_fwnode(sup_handle);
1945
1946	/* Termination condition. */
1947	if (sup_dev == con) {
1948		pr_debug("----- cycle: start -----\n");
1949		ret = true;
1950		goto out;
1951	}
1952
1953	/*
1954	 * If sup_dev is bound to a driver and @con hasn't started binding to a
1955	 * driver, sup_dev can't be a consumer of @con. So, no need to check
1956	 * further.
1957	 */
1958	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
1959	    con->links.status == DL_DEV_NO_DRIVER) {
1960		ret = false;
1961		goto out;
1962	}
1963
1964	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
1965		if (__fw_devlink_relax_cycles(con, link->supplier)) {
1966			__fwnode_link_cycle(link);
1967			ret = true;
1968		}
1969	}
1970
1971	/*
1972	 * Give priority to device parent over fwnode parent to account for any
1973	 * quirks in how fwnodes are converted to devices.
1974	 */
1975	if (sup_dev)
1976		par_dev = get_device(sup_dev->parent);
1977	else
1978		par_dev = fwnode_get_next_parent_dev(sup_handle);
1979
1980	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
1981		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
1982			 par_dev->fwnode);
1983		ret = true;
1984	}
1985
1986	if (!sup_dev)
1987		goto out;
 
 
1988
1989	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
1990		/*
1991		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
1992		 * such due to a cycle.
1993		 */
1994		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
1995		    !(dev_link->flags & DL_FLAG_CYCLE))
1996			continue;
1997
1998		if (__fw_devlink_relax_cycles(con,
1999					      dev_link->supplier->fwnode)) {
2000			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2001				 dev_link->supplier->fwnode);
2002			fw_devlink_relax_link(dev_link);
2003			dev_link->flags |= DL_FLAG_CYCLE;
2004			ret = true;
2005		}
2006	}
2007
2008out:
2009	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2010	put_device(sup_dev);
2011	put_device(par_dev);
2012	return ret;
2013}
2014
2015/**
2016 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2017 * @con: consumer device for the device link
2018 * @sup_handle: fwnode handle of supplier
2019 * @link: fwnode link that's being converted to a device link
2020 *
2021 * This function will try to create a device link between the consumer device
2022 * @con and the supplier device represented by @sup_handle.
2023 *
2024 * The supplier has to be provided as a fwnode because incorrect cycles in
2025 * fwnode links can sometimes cause the supplier device to never be created.
2026 * This function detects such cases and returns an error if it cannot create a
2027 * device link from the consumer to a missing supplier.
2028 *
2029 * Returns,
2030 * 0 on successfully creating a device link
2031 * -EINVAL if the device link cannot be created as expected
2032 * -EAGAIN if the device link cannot be created right now, but it may be
2033 *  possible to do that in the future
2034 */
2035static int fw_devlink_create_devlink(struct device *con,
2036				     struct fwnode_handle *sup_handle,
2037				     struct fwnode_link *link)
2038{
2039	struct device *sup_dev;
2040	int ret = 0;
2041	u32 flags;
2042
2043	if (con->fwnode == link->consumer)
2044		flags = fw_devlink_get_flags(link->flags);
2045	else
2046		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2047
2048	/*
2049	 * In some cases, a device P might also be a supplier to its child node
2050	 * C. However, this would defer the probe of C until the probe of P
2051	 * completes successfully. This is perfectly fine in the device driver
2052	 * model. device_add() doesn't guarantee probe completion of the device
2053	 * by the time it returns.
2054	 *
2055	 * However, there are a few drivers that assume C will finish probing
2056	 * as soon as it's added and before P finishes probing. So, we provide
2057	 * a flag to let fw_devlink know not to delay the probe of C until the
2058	 * probe of P completes successfully.
2059	 *
2060	 * When such a flag is set, we can't create device links where P is the
2061	 * supplier of C as that would delay the probe of C.
2062	 */
2063	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2064	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2065		return -EINVAL;
2066
2067	/*
2068	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2069	 * So, one might expect that cycle detection isn't necessary for them.
2070	 * However, if the device link was marked as SYNC_STATE_ONLY because
2071	 * it's part of a cycle, then we still need to do cycle detection. This
2072	 * is because the consumer and supplier might be part of multiple cycles
2073	 * and we need to detect all those cycles.
2074	 */
2075	if (!device_link_flag_is_sync_state_only(flags) ||
2076	    flags & DL_FLAG_CYCLE) {
2077		device_links_write_lock();
2078		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2079			__fwnode_link_cycle(link);
2080			flags = fw_devlink_get_flags(link->flags);
2081			pr_debug("----- cycle: end -----\n");
2082			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2083				 sup_handle);
2084		}
2085		device_links_write_unlock();
2086	}
2087
2088	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2089		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2090	else
2091		sup_dev = get_dev_from_fwnode(sup_handle);
2092
2093	if (sup_dev) {
2094		/*
2095		 * If it's one of those drivers that don't actually bind to
2096		 * their device using driver core, then don't wait on this
2097		 * supplier device indefinitely.
2098		 */
2099		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2100		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2101			dev_dbg(con,
2102				"Not linking %pfwf - dev might never probe\n",
2103				sup_handle);
2104			ret = -EINVAL;
2105			goto out;
2106		}
2107
2108		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2109			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2110				flags, dev_name(sup_dev));
 
 
 
 
 
 
 
 
 
 
2111			ret = -EINVAL;
2112		}
2113
2114		goto out;
2115	}
2116
 
 
 
 
2117	/*
2118	 * Supplier or supplier's ancestor already initialized without a struct
2119	 * device or being probed by a driver.
 
2120	 */
2121	if (fwnode_init_without_drv(sup_handle) ||
2122	    fwnode_ancestor_init_without_drv(sup_handle)) {
2123		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2124			sup_handle);
2125		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126	}
2127
2128	ret = -EAGAIN;
2129out:
2130	put_device(sup_dev);
2131	return ret;
2132}
2133
2134/**
2135 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2136 * @dev: Device that needs to be linked to its consumers
2137 *
2138 * This function looks at all the consumer fwnodes of @dev and creates device
2139 * links between the consumer device and @dev (supplier).
2140 *
2141 * If the consumer device has not been added yet, then this function creates a
2142 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2143 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2144 * sync_state() callback before the real consumer device gets to be added and
2145 * then probed.
2146 *
2147 * Once device links are created from the real consumer to @dev (supplier), the
2148 * fwnode links are deleted.
2149 */
2150static void __fw_devlink_link_to_consumers(struct device *dev)
2151{
2152	struct fwnode_handle *fwnode = dev->fwnode;
2153	struct fwnode_link *link, *tmp;
2154
2155	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
 
2156		struct device *con_dev;
2157		bool own_link = true;
2158		int ret;
2159
2160		con_dev = get_dev_from_fwnode(link->consumer);
2161		/*
2162		 * If consumer device is not available yet, make a "proxy"
2163		 * SYNC_STATE_ONLY link from the consumer's parent device to
2164		 * the supplier device. This is necessary to make sure the
2165		 * supplier doesn't get a sync_state() callback before the real
2166		 * consumer can create a device link to the supplier.
2167		 *
2168		 * This proxy link step is needed to handle the case where the
2169		 * consumer's parent device is added before the supplier.
2170		 */
2171		if (!con_dev) {
2172			con_dev = fwnode_get_next_parent_dev(link->consumer);
2173			/*
2174			 * However, if the consumer's parent device is also the
2175			 * parent of the supplier, don't create a
2176			 * consumer-supplier link from the parent to its child
2177			 * device. Such a dependency is impossible.
2178			 */
2179			if (con_dev &&
2180			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2181				put_device(con_dev);
2182				con_dev = NULL;
2183			} else {
2184				own_link = false;
 
2185			}
2186		}
2187
2188		if (!con_dev)
2189			continue;
2190
2191		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2192		put_device(con_dev);
2193		if (!own_link || ret == -EAGAIN)
2194			continue;
2195
2196		__fwnode_link_del(link);
 
 
2197	}
2198}
2199
2200/**
2201 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2202 * @dev: The consumer device that needs to be linked to its suppliers
2203 * @fwnode: Root of the fwnode tree that is used to create device links
2204 *
2205 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2206 * @fwnode and creates device links between @dev (consumer) and all the
2207 * supplier devices of the entire fwnode tree at @fwnode.
2208 *
2209 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2210 * and the real suppliers of @dev. Once these device links are created, the
2211 * fwnode links are deleted.
 
 
 
2212 *
2213 * In addition, it also looks at all the suppliers of the entire fwnode tree
2214 * because some of the child devices of @dev that have not been added yet
2215 * (because @dev hasn't probed) might already have their suppliers added to
2216 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2217 * @dev (consumer) and these suppliers to make sure they don't execute their
2218 * sync_state() callbacks before these child devices have a chance to create
2219 * their device links. The fwnode links that correspond to the child devices
2220 * aren't delete because they are needed later to create the device links
2221 * between the real consumer and supplier devices.
2222 */
2223static void __fw_devlink_link_to_suppliers(struct device *dev,
2224					   struct fwnode_handle *fwnode)
2225{
2226	bool own_link = (dev->fwnode == fwnode);
2227	struct fwnode_link *link, *tmp;
2228	struct fwnode_handle *child = NULL;
 
 
 
 
 
 
2229
2230	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2231		int ret;
 
2232		struct fwnode_handle *sup = link->supplier;
2233
2234		ret = fw_devlink_create_devlink(dev, sup, link);
2235		if (!own_link || ret == -EAGAIN)
2236			continue;
2237
2238		__fwnode_link_del(link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239	}
2240
2241	/*
2242	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2243	 * all the descendants. This proxy link step is needed to handle the
2244	 * case where the supplier is added before the consumer's parent device
2245	 * (@dev).
2246	 */
2247	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2248		__fw_devlink_link_to_suppliers(dev, child);
2249}
2250
2251static void fw_devlink_link_device(struct device *dev)
2252{
2253	struct fwnode_handle *fwnode = dev->fwnode;
2254
2255	if (!fw_devlink_flags)
2256		return;
2257
2258	fw_devlink_parse_fwtree(fwnode);
2259
2260	mutex_lock(&fwnode_link_lock);
2261	__fw_devlink_link_to_consumers(dev);
2262	__fw_devlink_link_to_suppliers(dev, fwnode);
2263	mutex_unlock(&fwnode_link_lock);
2264}
2265
2266/* Device links support end. */
2267
2268int (*platform_notify)(struct device *dev) = NULL;
2269int (*platform_notify_remove)(struct device *dev) = NULL;
2270static struct kobject *dev_kobj;
2271
2272/* /sys/dev/char */
2273static struct kobject *sysfs_dev_char_kobj;
2274
2275/* /sys/dev/block */
2276static struct kobject *sysfs_dev_block_kobj;
2277
2278static DEFINE_MUTEX(device_hotplug_lock);
2279
2280void lock_device_hotplug(void)
2281{
2282	mutex_lock(&device_hotplug_lock);
2283}
2284
2285void unlock_device_hotplug(void)
2286{
2287	mutex_unlock(&device_hotplug_lock);
2288}
2289
2290int lock_device_hotplug_sysfs(void)
2291{
2292	if (mutex_trylock(&device_hotplug_lock))
2293		return 0;
2294
2295	/* Avoid busy looping (5 ms of sleep should do). */
2296	msleep(5);
2297	return restart_syscall();
2298}
2299
2300#ifdef CONFIG_BLOCK
2301static inline int device_is_not_partition(struct device *dev)
2302{
2303	return !(dev->type == &part_type);
2304}
2305#else
2306static inline int device_is_not_partition(struct device *dev)
2307{
2308	return 1;
2309}
2310#endif
2311
2312static void device_platform_notify(struct device *dev)
 
2313{
2314	acpi_device_notify(dev);
2315
2316	software_node_notify(dev);
 
 
2317
2318	if (platform_notify)
2319		platform_notify(dev);
2320}
2321
2322static void device_platform_notify_remove(struct device *dev)
2323{
2324	if (platform_notify_remove)
2325		platform_notify_remove(dev);
2326
2327	software_node_notify_remove(dev);
2328
2329	acpi_device_notify_remove(dev);
2330}
2331
2332/**
2333 * dev_driver_string - Return a device's driver name, if at all possible
2334 * @dev: struct device to get the name of
2335 *
2336 * Will return the device's driver's name if it is bound to a device.  If
2337 * the device is not bound to a driver, it will return the name of the bus
2338 * it is attached to.  If it is not attached to a bus either, an empty
2339 * string will be returned.
2340 */
2341const char *dev_driver_string(const struct device *dev)
2342{
2343	struct device_driver *drv;
2344
2345	/* dev->driver can change to NULL underneath us because of unbinding,
2346	 * so be careful about accessing it.  dev->bus and dev->class should
2347	 * never change once they are set, so they don't need special care.
2348	 */
2349	drv = READ_ONCE(dev->driver);
2350	return drv ? drv->name : dev_bus_name(dev);
2351}
2352EXPORT_SYMBOL(dev_driver_string);
2353
2354#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2355
2356static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2357			     char *buf)
2358{
2359	struct device_attribute *dev_attr = to_dev_attr(attr);
2360	struct device *dev = kobj_to_dev(kobj);
2361	ssize_t ret = -EIO;
2362
2363	if (dev_attr->show)
2364		ret = dev_attr->show(dev, dev_attr, buf);
2365	if (ret >= (ssize_t)PAGE_SIZE) {
2366		printk("dev_attr_show: %pS returned bad count\n",
2367				dev_attr->show);
2368	}
2369	return ret;
2370}
2371
2372static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2373			      const char *buf, size_t count)
2374{
2375	struct device_attribute *dev_attr = to_dev_attr(attr);
2376	struct device *dev = kobj_to_dev(kobj);
2377	ssize_t ret = -EIO;
2378
2379	if (dev_attr->store)
2380		ret = dev_attr->store(dev, dev_attr, buf, count);
2381	return ret;
2382}
2383
2384static const struct sysfs_ops dev_sysfs_ops = {
2385	.show	= dev_attr_show,
2386	.store	= dev_attr_store,
2387};
2388
2389#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2390
2391ssize_t device_store_ulong(struct device *dev,
2392			   struct device_attribute *attr,
2393			   const char *buf, size_t size)
2394{
2395	struct dev_ext_attribute *ea = to_ext_attr(attr);
2396	int ret;
2397	unsigned long new;
2398
2399	ret = kstrtoul(buf, 0, &new);
2400	if (ret)
2401		return ret;
2402	*(unsigned long *)(ea->var) = new;
2403	/* Always return full write size even if we didn't consume all */
2404	return size;
2405}
2406EXPORT_SYMBOL_GPL(device_store_ulong);
2407
2408ssize_t device_show_ulong(struct device *dev,
2409			  struct device_attribute *attr,
2410			  char *buf)
2411{
2412	struct dev_ext_attribute *ea = to_ext_attr(attr);
2413	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2414}
2415EXPORT_SYMBOL_GPL(device_show_ulong);
2416
2417ssize_t device_store_int(struct device *dev,
2418			 struct device_attribute *attr,
2419			 const char *buf, size_t size)
2420{
2421	struct dev_ext_attribute *ea = to_ext_attr(attr);
2422	int ret;
2423	long new;
2424
2425	ret = kstrtol(buf, 0, &new);
2426	if (ret)
2427		return ret;
2428
2429	if (new > INT_MAX || new < INT_MIN)
2430		return -EINVAL;
2431	*(int *)(ea->var) = new;
2432	/* Always return full write size even if we didn't consume all */
2433	return size;
2434}
2435EXPORT_SYMBOL_GPL(device_store_int);
2436
2437ssize_t device_show_int(struct device *dev,
2438			struct device_attribute *attr,
2439			char *buf)
2440{
2441	struct dev_ext_attribute *ea = to_ext_attr(attr);
2442
2443	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2444}
2445EXPORT_SYMBOL_GPL(device_show_int);
2446
2447ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2448			  const char *buf, size_t size)
2449{
2450	struct dev_ext_attribute *ea = to_ext_attr(attr);
2451
2452	if (kstrtobool(buf, ea->var) < 0)
2453		return -EINVAL;
2454
2455	return size;
2456}
2457EXPORT_SYMBOL_GPL(device_store_bool);
2458
2459ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2460			 char *buf)
2461{
2462	struct dev_ext_attribute *ea = to_ext_attr(attr);
2463
2464	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2465}
2466EXPORT_SYMBOL_GPL(device_show_bool);
2467
2468/**
2469 * device_release - free device structure.
2470 * @kobj: device's kobject.
2471 *
2472 * This is called once the reference count for the object
2473 * reaches 0. We forward the call to the device's release
2474 * method, which should handle actually freeing the structure.
2475 */
2476static void device_release(struct kobject *kobj)
2477{
2478	struct device *dev = kobj_to_dev(kobj);
2479	struct device_private *p = dev->p;
2480
2481	/*
2482	 * Some platform devices are driven without driver attached
2483	 * and managed resources may have been acquired.  Make sure
2484	 * all resources are released.
2485	 *
2486	 * Drivers still can add resources into device after device
2487	 * is deleted but alive, so release devres here to avoid
2488	 * possible memory leak.
2489	 */
2490	devres_release_all(dev);
2491
2492	kfree(dev->dma_range_map);
2493
2494	if (dev->release)
2495		dev->release(dev);
2496	else if (dev->type && dev->type->release)
2497		dev->type->release(dev);
2498	else if (dev->class && dev->class->dev_release)
2499		dev->class->dev_release(dev);
2500	else
2501		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2502			dev_name(dev));
2503	kfree(p);
2504}
2505
2506static const void *device_namespace(const struct kobject *kobj)
2507{
2508	const struct device *dev = kobj_to_dev(kobj);
2509	const void *ns = NULL;
2510
2511	if (dev->class && dev->class->ns_type)
2512		ns = dev->class->namespace(dev);
2513
2514	return ns;
2515}
2516
2517static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2518{
2519	const struct device *dev = kobj_to_dev(kobj);
2520
2521	if (dev->class && dev->class->get_ownership)
2522		dev->class->get_ownership(dev, uid, gid);
2523}
2524
2525static const struct kobj_type device_ktype = {
2526	.release	= device_release,
2527	.sysfs_ops	= &dev_sysfs_ops,
2528	.namespace	= device_namespace,
2529	.get_ownership	= device_get_ownership,
2530};
2531
2532
2533static int dev_uevent_filter(const struct kobject *kobj)
2534{
2535	const struct kobj_type *ktype = get_ktype(kobj);
2536
2537	if (ktype == &device_ktype) {
2538		const struct device *dev = kobj_to_dev(kobj);
2539		if (dev->bus)
2540			return 1;
2541		if (dev->class)
2542			return 1;
2543	}
2544	return 0;
2545}
2546
2547static const char *dev_uevent_name(const struct kobject *kobj)
2548{
2549	const struct device *dev = kobj_to_dev(kobj);
2550
2551	if (dev->bus)
2552		return dev->bus->name;
2553	if (dev->class)
2554		return dev->class->name;
2555	return NULL;
2556}
2557
2558static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
 
2559{
2560	const struct device *dev = kobj_to_dev(kobj);
2561	int retval = 0;
2562
2563	/* add device node properties if present */
2564	if (MAJOR(dev->devt)) {
2565		const char *tmp;
2566		const char *name;
2567		umode_t mode = 0;
2568		kuid_t uid = GLOBAL_ROOT_UID;
2569		kgid_t gid = GLOBAL_ROOT_GID;
2570
2571		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2572		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2573		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2574		if (name) {
2575			add_uevent_var(env, "DEVNAME=%s", name);
2576			if (mode)
2577				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2578			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2579				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2580			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2581				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2582			kfree(tmp);
2583		}
2584	}
2585
2586	if (dev->type && dev->type->name)
2587		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2588
2589	if (dev->driver)
2590		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2591
2592	/* Add common DT information about the device */
2593	of_device_uevent(dev, env);
2594
2595	/* have the bus specific function add its stuff */
2596	if (dev->bus && dev->bus->uevent) {
2597		retval = dev->bus->uevent(dev, env);
2598		if (retval)
2599			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2600				 dev_name(dev), __func__, retval);
2601	}
2602
2603	/* have the class specific function add its stuff */
2604	if (dev->class && dev->class->dev_uevent) {
2605		retval = dev->class->dev_uevent(dev, env);
2606		if (retval)
2607			pr_debug("device: '%s': %s: class uevent() "
2608				 "returned %d\n", dev_name(dev),
2609				 __func__, retval);
2610	}
2611
2612	/* have the device type specific function add its stuff */
2613	if (dev->type && dev->type->uevent) {
2614		retval = dev->type->uevent(dev, env);
2615		if (retval)
2616			pr_debug("device: '%s': %s: dev_type uevent() "
2617				 "returned %d\n", dev_name(dev),
2618				 __func__, retval);
2619	}
2620
2621	return retval;
2622}
2623
2624static const struct kset_uevent_ops device_uevent_ops = {
2625	.filter =	dev_uevent_filter,
2626	.name =		dev_uevent_name,
2627	.uevent =	dev_uevent,
2628};
2629
2630static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2631			   char *buf)
2632{
2633	struct kobject *top_kobj;
2634	struct kset *kset;
2635	struct kobj_uevent_env *env = NULL;
2636	int i;
2637	int len = 0;
2638	int retval;
2639
2640	/* search the kset, the device belongs to */
2641	top_kobj = &dev->kobj;
2642	while (!top_kobj->kset && top_kobj->parent)
2643		top_kobj = top_kobj->parent;
2644	if (!top_kobj->kset)
2645		goto out;
2646
2647	kset = top_kobj->kset;
2648	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2649		goto out;
2650
2651	/* respect filter */
2652	if (kset->uevent_ops && kset->uevent_ops->filter)
2653		if (!kset->uevent_ops->filter(&dev->kobj))
2654			goto out;
2655
2656	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2657	if (!env)
2658		return -ENOMEM;
2659
2660	/* let the kset specific function add its keys */
2661	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2662	if (retval)
2663		goto out;
2664
2665	/* copy keys to file */
2666	for (i = 0; i < env->envp_idx; i++)
2667		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2668out:
2669	kfree(env);
2670	return len;
2671}
2672
2673static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2674			    const char *buf, size_t count)
2675{
2676	int rc;
2677
2678	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2679
2680	if (rc) {
2681		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2682		return rc;
2683	}
2684
2685	return count;
2686}
2687static DEVICE_ATTR_RW(uevent);
2688
2689static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2690			   char *buf)
2691{
2692	bool val;
2693
2694	device_lock(dev);
2695	val = !dev->offline;
2696	device_unlock(dev);
2697	return sysfs_emit(buf, "%u\n", val);
2698}
2699
2700static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2701			    const char *buf, size_t count)
2702{
2703	bool val;
2704	int ret;
2705
2706	ret = kstrtobool(buf, &val);
2707	if (ret < 0)
2708		return ret;
2709
2710	ret = lock_device_hotplug_sysfs();
2711	if (ret)
2712		return ret;
2713
2714	ret = val ? device_online(dev) : device_offline(dev);
2715	unlock_device_hotplug();
2716	return ret < 0 ? ret : count;
2717}
2718static DEVICE_ATTR_RW(online);
2719
2720static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2721			      char *buf)
2722{
2723	const char *loc;
2724
2725	switch (dev->removable) {
2726	case DEVICE_REMOVABLE:
2727		loc = "removable";
2728		break;
2729	case DEVICE_FIXED:
2730		loc = "fixed";
2731		break;
2732	default:
2733		loc = "unknown";
2734	}
2735	return sysfs_emit(buf, "%s\n", loc);
2736}
2737static DEVICE_ATTR_RO(removable);
2738
2739int device_add_groups(struct device *dev, const struct attribute_group **groups)
2740{
2741	return sysfs_create_groups(&dev->kobj, groups);
2742}
2743EXPORT_SYMBOL_GPL(device_add_groups);
2744
2745void device_remove_groups(struct device *dev,
2746			  const struct attribute_group **groups)
2747{
2748	sysfs_remove_groups(&dev->kobj, groups);
2749}
2750EXPORT_SYMBOL_GPL(device_remove_groups);
2751
2752union device_attr_group_devres {
2753	const struct attribute_group *group;
2754	const struct attribute_group **groups;
2755};
2756
 
 
 
 
 
2757static void devm_attr_group_remove(struct device *dev, void *res)
2758{
2759	union device_attr_group_devres *devres = res;
2760	const struct attribute_group *group = devres->group;
2761
2762	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2763	sysfs_remove_group(&dev->kobj, group);
2764}
2765
2766static void devm_attr_groups_remove(struct device *dev, void *res)
2767{
2768	union device_attr_group_devres *devres = res;
2769	const struct attribute_group **groups = devres->groups;
2770
2771	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2772	sysfs_remove_groups(&dev->kobj, groups);
2773}
2774
2775/**
2776 * devm_device_add_group - given a device, create a managed attribute group
2777 * @dev:	The device to create the group for
2778 * @grp:	The attribute group to create
2779 *
2780 * This function creates a group for the first time.  It will explicitly
2781 * warn and error if any of the attribute files being created already exist.
2782 *
2783 * Returns 0 on success or error code on failure.
2784 */
2785int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2786{
2787	union device_attr_group_devres *devres;
2788	int error;
2789
2790	devres = devres_alloc(devm_attr_group_remove,
2791			      sizeof(*devres), GFP_KERNEL);
2792	if (!devres)
2793		return -ENOMEM;
2794
2795	error = sysfs_create_group(&dev->kobj, grp);
2796	if (error) {
2797		devres_free(devres);
2798		return error;
2799	}
2800
2801	devres->group = grp;
2802	devres_add(dev, devres);
2803	return 0;
2804}
2805EXPORT_SYMBOL_GPL(devm_device_add_group);
2806
2807/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808 * devm_device_add_groups - create a bunch of managed attribute groups
2809 * @dev:	The device to create the group for
2810 * @groups:	The attribute groups to create, NULL terminated
2811 *
2812 * This function creates a bunch of managed attribute groups.  If an error
2813 * occurs when creating a group, all previously created groups will be
2814 * removed, unwinding everything back to the original state when this
2815 * function was called.  It will explicitly warn and error if any of the
2816 * attribute files being created already exist.
2817 *
2818 * Returns 0 on success or error code from sysfs_create_group on failure.
2819 */
2820int devm_device_add_groups(struct device *dev,
2821			   const struct attribute_group **groups)
2822{
2823	union device_attr_group_devres *devres;
2824	int error;
2825
2826	devres = devres_alloc(devm_attr_groups_remove,
2827			      sizeof(*devres), GFP_KERNEL);
2828	if (!devres)
2829		return -ENOMEM;
2830
2831	error = sysfs_create_groups(&dev->kobj, groups);
2832	if (error) {
2833		devres_free(devres);
2834		return error;
2835	}
2836
2837	devres->groups = groups;
2838	devres_add(dev, devres);
2839	return 0;
2840}
2841EXPORT_SYMBOL_GPL(devm_device_add_groups);
2842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2843static int device_add_attrs(struct device *dev)
2844{
2845	const struct class *class = dev->class;
2846	const struct device_type *type = dev->type;
2847	int error;
2848
2849	if (class) {
2850		error = device_add_groups(dev, class->dev_groups);
2851		if (error)
2852			return error;
2853	}
2854
2855	if (type) {
2856		error = device_add_groups(dev, type->groups);
2857		if (error)
2858			goto err_remove_class_groups;
2859	}
2860
2861	error = device_add_groups(dev, dev->groups);
2862	if (error)
2863		goto err_remove_type_groups;
2864
2865	if (device_supports_offline(dev) && !dev->offline_disabled) {
2866		error = device_create_file(dev, &dev_attr_online);
2867		if (error)
2868			goto err_remove_dev_groups;
2869	}
2870
2871	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2872		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2873		if (error)
2874			goto err_remove_dev_online;
2875	}
2876
2877	if (dev_removable_is_valid(dev)) {
2878		error = device_create_file(dev, &dev_attr_removable);
2879		if (error)
2880			goto err_remove_dev_waiting_for_supplier;
2881	}
2882
2883	if (dev_add_physical_location(dev)) {
2884		error = device_add_group(dev,
2885			&dev_attr_physical_location_group);
2886		if (error)
2887			goto err_remove_dev_removable;
2888	}
2889
2890	return 0;
2891
2892 err_remove_dev_removable:
2893	device_remove_file(dev, &dev_attr_removable);
2894 err_remove_dev_waiting_for_supplier:
2895	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2896 err_remove_dev_online:
2897	device_remove_file(dev, &dev_attr_online);
2898 err_remove_dev_groups:
2899	device_remove_groups(dev, dev->groups);
2900 err_remove_type_groups:
2901	if (type)
2902		device_remove_groups(dev, type->groups);
2903 err_remove_class_groups:
2904	if (class)
2905		device_remove_groups(dev, class->dev_groups);
2906
2907	return error;
2908}
2909
2910static void device_remove_attrs(struct device *dev)
2911{
2912	const struct class *class = dev->class;
2913	const struct device_type *type = dev->type;
2914
2915	if (dev->physical_location) {
2916		device_remove_group(dev, &dev_attr_physical_location_group);
2917		kfree(dev->physical_location);
2918	}
2919
2920	device_remove_file(dev, &dev_attr_removable);
2921	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2922	device_remove_file(dev, &dev_attr_online);
2923	device_remove_groups(dev, dev->groups);
2924
2925	if (type)
2926		device_remove_groups(dev, type->groups);
2927
2928	if (class)
2929		device_remove_groups(dev, class->dev_groups);
2930}
2931
2932static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2933			char *buf)
2934{
2935	return print_dev_t(buf, dev->devt);
2936}
2937static DEVICE_ATTR_RO(dev);
2938
2939/* /sys/devices/ */
2940struct kset *devices_kset;
2941
2942/**
2943 * devices_kset_move_before - Move device in the devices_kset's list.
2944 * @deva: Device to move.
2945 * @devb: Device @deva should come before.
2946 */
2947static void devices_kset_move_before(struct device *deva, struct device *devb)
2948{
2949	if (!devices_kset)
2950		return;
2951	pr_debug("devices_kset: Moving %s before %s\n",
2952		 dev_name(deva), dev_name(devb));
2953	spin_lock(&devices_kset->list_lock);
2954	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2955	spin_unlock(&devices_kset->list_lock);
2956}
2957
2958/**
2959 * devices_kset_move_after - Move device in the devices_kset's list.
2960 * @deva: Device to move
2961 * @devb: Device @deva should come after.
2962 */
2963static void devices_kset_move_after(struct device *deva, struct device *devb)
2964{
2965	if (!devices_kset)
2966		return;
2967	pr_debug("devices_kset: Moving %s after %s\n",
2968		 dev_name(deva), dev_name(devb));
2969	spin_lock(&devices_kset->list_lock);
2970	list_move(&deva->kobj.entry, &devb->kobj.entry);
2971	spin_unlock(&devices_kset->list_lock);
2972}
2973
2974/**
2975 * devices_kset_move_last - move the device to the end of devices_kset's list.
2976 * @dev: device to move
2977 */
2978void devices_kset_move_last(struct device *dev)
2979{
2980	if (!devices_kset)
2981		return;
2982	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2983	spin_lock(&devices_kset->list_lock);
2984	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2985	spin_unlock(&devices_kset->list_lock);
2986}
2987
2988/**
2989 * device_create_file - create sysfs attribute file for device.
2990 * @dev: device.
2991 * @attr: device attribute descriptor.
2992 */
2993int device_create_file(struct device *dev,
2994		       const struct device_attribute *attr)
2995{
2996	int error = 0;
2997
2998	if (dev) {
2999		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3000			"Attribute %s: write permission without 'store'\n",
3001			attr->attr.name);
3002		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3003			"Attribute %s: read permission without 'show'\n",
3004			attr->attr.name);
3005		error = sysfs_create_file(&dev->kobj, &attr->attr);
3006	}
3007
3008	return error;
3009}
3010EXPORT_SYMBOL_GPL(device_create_file);
3011
3012/**
3013 * device_remove_file - remove sysfs attribute file.
3014 * @dev: device.
3015 * @attr: device attribute descriptor.
3016 */
3017void device_remove_file(struct device *dev,
3018			const struct device_attribute *attr)
3019{
3020	if (dev)
3021		sysfs_remove_file(&dev->kobj, &attr->attr);
3022}
3023EXPORT_SYMBOL_GPL(device_remove_file);
3024
3025/**
3026 * device_remove_file_self - remove sysfs attribute file from its own method.
3027 * @dev: device.
3028 * @attr: device attribute descriptor.
3029 *
3030 * See kernfs_remove_self() for details.
3031 */
3032bool device_remove_file_self(struct device *dev,
3033			     const struct device_attribute *attr)
3034{
3035	if (dev)
3036		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3037	else
3038		return false;
3039}
3040EXPORT_SYMBOL_GPL(device_remove_file_self);
3041
3042/**
3043 * device_create_bin_file - create sysfs binary attribute file for device.
3044 * @dev: device.
3045 * @attr: device binary attribute descriptor.
3046 */
3047int device_create_bin_file(struct device *dev,
3048			   const struct bin_attribute *attr)
3049{
3050	int error = -EINVAL;
3051	if (dev)
3052		error = sysfs_create_bin_file(&dev->kobj, attr);
3053	return error;
3054}
3055EXPORT_SYMBOL_GPL(device_create_bin_file);
3056
3057/**
3058 * device_remove_bin_file - remove sysfs binary attribute file
3059 * @dev: device.
3060 * @attr: device binary attribute descriptor.
3061 */
3062void device_remove_bin_file(struct device *dev,
3063			    const struct bin_attribute *attr)
3064{
3065	if (dev)
3066		sysfs_remove_bin_file(&dev->kobj, attr);
3067}
3068EXPORT_SYMBOL_GPL(device_remove_bin_file);
3069
3070static void klist_children_get(struct klist_node *n)
3071{
3072	struct device_private *p = to_device_private_parent(n);
3073	struct device *dev = p->device;
3074
3075	get_device(dev);
3076}
3077
3078static void klist_children_put(struct klist_node *n)
3079{
3080	struct device_private *p = to_device_private_parent(n);
3081	struct device *dev = p->device;
3082
3083	put_device(dev);
3084}
3085
3086/**
3087 * device_initialize - init device structure.
3088 * @dev: device.
3089 *
3090 * This prepares the device for use by other layers by initializing
3091 * its fields.
3092 * It is the first half of device_register(), if called by
3093 * that function, though it can also be called separately, so one
3094 * may use @dev's fields. In particular, get_device()/put_device()
3095 * may be used for reference counting of @dev after calling this
3096 * function.
3097 *
3098 * All fields in @dev must be initialized by the caller to 0, except
3099 * for those explicitly set to some other value.  The simplest
3100 * approach is to use kzalloc() to allocate the structure containing
3101 * @dev.
3102 *
3103 * NOTE: Use put_device() to give up your reference instead of freeing
3104 * @dev directly once you have called this function.
3105 */
3106void device_initialize(struct device *dev)
3107{
3108	dev->kobj.kset = devices_kset;
3109	kobject_init(&dev->kobj, &device_ktype);
3110	INIT_LIST_HEAD(&dev->dma_pools);
3111	mutex_init(&dev->mutex);
 
 
 
3112	lockdep_set_novalidate_class(&dev->mutex);
3113	spin_lock_init(&dev->devres_lock);
3114	INIT_LIST_HEAD(&dev->devres_head);
3115	device_pm_init(dev);
3116	set_dev_node(dev, NUMA_NO_NODE);
 
 
 
 
3117	INIT_LIST_HEAD(&dev->links.consumers);
3118	INIT_LIST_HEAD(&dev->links.suppliers);
3119	INIT_LIST_HEAD(&dev->links.defer_sync);
3120	dev->links.status = DL_DEV_NO_DRIVER;
3121#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3122    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3123    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3124	dev->dma_coherent = dma_default_coherent;
3125#endif
3126	swiotlb_dev_init(dev);
3127}
3128EXPORT_SYMBOL_GPL(device_initialize);
3129
3130struct kobject *virtual_device_parent(struct device *dev)
3131{
3132	static struct kobject *virtual_dir = NULL;
3133
3134	if (!virtual_dir)
3135		virtual_dir = kobject_create_and_add("virtual",
3136						     &devices_kset->kobj);
3137
3138	return virtual_dir;
3139}
3140
3141struct class_dir {
3142	struct kobject kobj;
3143	const struct class *class;
3144};
3145
3146#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3147
3148static void class_dir_release(struct kobject *kobj)
3149{
3150	struct class_dir *dir = to_class_dir(kobj);
3151	kfree(dir);
3152}
3153
3154static const
3155struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3156{
3157	const struct class_dir *dir = to_class_dir(kobj);
3158	return dir->class->ns_type;
3159}
3160
3161static const struct kobj_type class_dir_ktype = {
3162	.release	= class_dir_release,
3163	.sysfs_ops	= &kobj_sysfs_ops,
3164	.child_ns_type	= class_dir_child_ns_type
3165};
3166
3167static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3168						struct kobject *parent_kobj)
3169{
3170	struct class_dir *dir;
3171	int retval;
3172
3173	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3174	if (!dir)
3175		return ERR_PTR(-ENOMEM);
3176
3177	dir->class = sp->class;
3178	kobject_init(&dir->kobj, &class_dir_ktype);
3179
3180	dir->kobj.kset = &sp->glue_dirs;
3181
3182	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3183	if (retval < 0) {
3184		kobject_put(&dir->kobj);
3185		return ERR_PTR(retval);
3186	}
3187	return &dir->kobj;
3188}
3189
3190static DEFINE_MUTEX(gdp_mutex);
3191
3192static struct kobject *get_device_parent(struct device *dev,
3193					 struct device *parent)
3194{
3195	struct subsys_private *sp = class_to_subsys(dev->class);
3196	struct kobject *kobj = NULL;
3197
3198	if (sp) {
3199		struct kobject *parent_kobj;
3200		struct kobject *k;
3201
 
 
 
 
 
 
 
 
 
3202		/*
3203		 * If we have no parent, we live in "virtual".
3204		 * Class-devices with a non class-device as parent, live
3205		 * in a "glue" directory to prevent namespace collisions.
3206		 */
3207		if (parent == NULL)
3208			parent_kobj = virtual_device_parent(dev);
3209		else if (parent->class && !dev->class->ns_type) {
3210			subsys_put(sp);
3211			return &parent->kobj;
3212		} else {
3213			parent_kobj = &parent->kobj;
3214		}
3215
3216		mutex_lock(&gdp_mutex);
3217
3218		/* find our class-directory at the parent and reference it */
3219		spin_lock(&sp->glue_dirs.list_lock);
3220		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3221			if (k->parent == parent_kobj) {
3222				kobj = kobject_get(k);
3223				break;
3224			}
3225		spin_unlock(&sp->glue_dirs.list_lock);
3226		if (kobj) {
3227			mutex_unlock(&gdp_mutex);
3228			subsys_put(sp);
3229			return kobj;
3230		}
3231
3232		/* or create a new class-directory at the parent device */
3233		k = class_dir_create_and_add(sp, parent_kobj);
3234		/* do not emit an uevent for this simple "glue" directory */
3235		mutex_unlock(&gdp_mutex);
3236		subsys_put(sp);
3237		return k;
3238	}
3239
3240	/* subsystems can specify a default root directory for their devices */
3241	if (!parent && dev->bus) {
3242		struct device *dev_root = bus_get_dev_root(dev->bus);
3243
3244		if (dev_root) {
3245			kobj = &dev_root->kobj;
3246			put_device(dev_root);
3247			return kobj;
3248		}
3249	}
3250
3251	if (parent)
3252		return &parent->kobj;
3253	return NULL;
3254}
3255
3256static inline bool live_in_glue_dir(struct kobject *kobj,
3257				    struct device *dev)
3258{
3259	struct subsys_private *sp;
3260	bool retval;
3261
3262	if (!kobj || !dev->class)
3263		return false;
3264
3265	sp = class_to_subsys(dev->class);
3266	if (!sp)
3267		return false;
3268
3269	if (kobj->kset == &sp->glue_dirs)
3270		retval = true;
3271	else
3272		retval = false;
3273
3274	subsys_put(sp);
3275	return retval;
3276}
3277
3278static inline struct kobject *get_glue_dir(struct device *dev)
3279{
3280	return dev->kobj.parent;
3281}
3282
3283/**
3284 * kobject_has_children - Returns whether a kobject has children.
3285 * @kobj: the object to test
3286 *
3287 * This will return whether a kobject has other kobjects as children.
3288 *
3289 * It does NOT account for the presence of attribute files, only sub
3290 * directories. It also assumes there is no concurrent addition or
3291 * removal of such children, and thus relies on external locking.
3292 */
3293static inline bool kobject_has_children(struct kobject *kobj)
3294{
3295	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3296
3297	return kobj->sd && kobj->sd->dir.subdirs;
3298}
3299
3300/*
3301 * make sure cleaning up dir as the last step, we need to make
3302 * sure .release handler of kobject is run with holding the
3303 * global lock
3304 */
3305static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3306{
3307	unsigned int ref;
3308
3309	/* see if we live in a "glue" directory */
3310	if (!live_in_glue_dir(glue_dir, dev))
3311		return;
3312
3313	mutex_lock(&gdp_mutex);
3314	/**
3315	 * There is a race condition between removing glue directory
3316	 * and adding a new device under the glue directory.
3317	 *
3318	 * CPU1:                                         CPU2:
3319	 *
3320	 * device_add()
3321	 *   get_device_parent()
3322	 *     class_dir_create_and_add()
3323	 *       kobject_add_internal()
3324	 *         create_dir()    // create glue_dir
3325	 *
3326	 *                                               device_add()
3327	 *                                                 get_device_parent()
3328	 *                                                   kobject_get() // get glue_dir
3329	 *
3330	 * device_del()
3331	 *   cleanup_glue_dir()
3332	 *     kobject_del(glue_dir)
3333	 *
3334	 *                                               kobject_add()
3335	 *                                                 kobject_add_internal()
3336	 *                                                   create_dir() // in glue_dir
3337	 *                                                     sysfs_create_dir_ns()
3338	 *                                                       kernfs_create_dir_ns(sd)
3339	 *
3340	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3341	 *       sysfs_put()        // free glue_dir->sd
3342	 *
3343	 *                                                         // sd is freed
3344	 *                                                         kernfs_new_node(sd)
3345	 *                                                           kernfs_get(glue_dir)
3346	 *                                                           kernfs_add_one()
3347	 *                                                           kernfs_put()
3348	 *
3349	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3350	 * a new device under glue dir, the glue_dir kobject reference count
3351	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3352	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3353	 * and sysfs_put(). This result in glue_dir->sd is freed.
3354	 *
3355	 * Then the CPU2 will see a stale "empty" but still potentially used
3356	 * glue dir around in kernfs_new_node().
3357	 *
3358	 * In order to avoid this happening, we also should make sure that
3359	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3360	 * for glue_dir kobj is 1.
3361	 */
3362	ref = kref_read(&glue_dir->kref);
3363	if (!kobject_has_children(glue_dir) && !--ref)
3364		kobject_del(glue_dir);
3365	kobject_put(glue_dir);
3366	mutex_unlock(&gdp_mutex);
3367}
3368
3369static int device_add_class_symlinks(struct device *dev)
3370{
3371	struct device_node *of_node = dev_of_node(dev);
3372	struct subsys_private *sp;
3373	int error;
3374
3375	if (of_node) {
3376		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3377		if (error)
3378			dev_warn(dev, "Error %d creating of_node link\n",error);
3379		/* An error here doesn't warrant bringing down the device */
3380	}
3381
3382	sp = class_to_subsys(dev->class);
3383	if (!sp)
3384		return 0;
3385
3386	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
 
 
3387	if (error)
3388		goto out_devnode;
3389
3390	if (dev->parent && device_is_not_partition(dev)) {
3391		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3392					  "device");
3393		if (error)
3394			goto out_subsys;
3395	}
3396
 
 
 
 
 
 
3397	/* link in the class directory pointing to the device */
3398	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
 
3399	if (error)
3400		goto out_device;
3401	goto exit;
 
3402
3403out_device:
3404	sysfs_remove_link(&dev->kobj, "device");
 
3405out_subsys:
3406	sysfs_remove_link(&dev->kobj, "subsystem");
3407out_devnode:
3408	sysfs_remove_link(&dev->kobj, "of_node");
3409exit:
3410	subsys_put(sp);
3411	return error;
3412}
3413
3414static void device_remove_class_symlinks(struct device *dev)
3415{
3416	struct subsys_private *sp = class_to_subsys(dev->class);
3417
3418	if (dev_of_node(dev))
3419		sysfs_remove_link(&dev->kobj, "of_node");
3420
3421	if (!sp)
3422		return;
3423
3424	if (dev->parent && device_is_not_partition(dev))
3425		sysfs_remove_link(&dev->kobj, "device");
3426	sysfs_remove_link(&dev->kobj, "subsystem");
3427	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3428	subsys_put(sp);
 
 
 
3429}
3430
3431/**
3432 * dev_set_name - set a device name
3433 * @dev: device
3434 * @fmt: format string for the device's name
3435 */
3436int dev_set_name(struct device *dev, const char *fmt, ...)
3437{
3438	va_list vargs;
3439	int err;
3440
3441	va_start(vargs, fmt);
3442	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3443	va_end(vargs);
3444	return err;
3445}
3446EXPORT_SYMBOL_GPL(dev_set_name);
3447
3448/* select a /sys/dev/ directory for the device */
 
 
 
 
 
 
 
 
 
 
3449static struct kobject *device_to_dev_kobj(struct device *dev)
3450{
3451	if (is_blockdev(dev))
3452		return sysfs_dev_block_kobj;
 
 
3453	else
3454		return sysfs_dev_char_kobj;
 
 
3455}
3456
3457static int device_create_sys_dev_entry(struct device *dev)
3458{
3459	struct kobject *kobj = device_to_dev_kobj(dev);
3460	int error = 0;
3461	char devt_str[15];
3462
3463	if (kobj) {
3464		format_dev_t(devt_str, dev->devt);
3465		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3466	}
3467
3468	return error;
3469}
3470
3471static void device_remove_sys_dev_entry(struct device *dev)
3472{
3473	struct kobject *kobj = device_to_dev_kobj(dev);
3474	char devt_str[15];
3475
3476	if (kobj) {
3477		format_dev_t(devt_str, dev->devt);
3478		sysfs_remove_link(kobj, devt_str);
3479	}
3480}
3481
3482static int device_private_init(struct device *dev)
3483{
3484	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3485	if (!dev->p)
3486		return -ENOMEM;
3487	dev->p->device = dev;
3488	klist_init(&dev->p->klist_children, klist_children_get,
3489		   klist_children_put);
3490	INIT_LIST_HEAD(&dev->p->deferred_probe);
3491	return 0;
3492}
3493
3494/**
3495 * device_add - add device to device hierarchy.
3496 * @dev: device.
3497 *
3498 * This is part 2 of device_register(), though may be called
3499 * separately _iff_ device_initialize() has been called separately.
3500 *
3501 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3502 * to the global and sibling lists for the device, then
3503 * adds it to the other relevant subsystems of the driver model.
3504 *
3505 * Do not call this routine or device_register() more than once for
3506 * any device structure.  The driver model core is not designed to work
3507 * with devices that get unregistered and then spring back to life.
3508 * (Among other things, it's very hard to guarantee that all references
3509 * to the previous incarnation of @dev have been dropped.)  Allocate
3510 * and register a fresh new struct device instead.
3511 *
3512 * NOTE: _Never_ directly free @dev after calling this function, even
3513 * if it returned an error! Always use put_device() to give up your
3514 * reference instead.
3515 *
3516 * Rule of thumb is: if device_add() succeeds, you should call
3517 * device_del() when you want to get rid of it. If device_add() has
3518 * *not* succeeded, use *only* put_device() to drop the reference
3519 * count.
3520 */
3521int device_add(struct device *dev)
3522{
3523	struct subsys_private *sp;
3524	struct device *parent;
3525	struct kobject *kobj;
3526	struct class_interface *class_intf;
3527	int error = -EINVAL;
3528	struct kobject *glue_dir = NULL;
3529
3530	dev = get_device(dev);
3531	if (!dev)
3532		goto done;
3533
3534	if (!dev->p) {
3535		error = device_private_init(dev);
3536		if (error)
3537			goto done;
3538	}
3539
3540	/*
3541	 * for statically allocated devices, which should all be converted
3542	 * some day, we need to initialize the name. We prevent reading back
3543	 * the name, and force the use of dev_name()
3544	 */
3545	if (dev->init_name) {
3546		error = dev_set_name(dev, "%s", dev->init_name);
3547		dev->init_name = NULL;
3548	}
3549
3550	if (dev_name(dev))
3551		error = 0;
3552	/* subsystems can specify simple device enumeration */
3553	else if (dev->bus && dev->bus->dev_name)
3554		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3555	else
 
3556		error = -EINVAL;
3557	if (error)
3558		goto name_error;
 
3559
3560	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3561
3562	parent = get_device(dev->parent);
3563	kobj = get_device_parent(dev, parent);
3564	if (IS_ERR(kobj)) {
3565		error = PTR_ERR(kobj);
3566		goto parent_error;
3567	}
3568	if (kobj)
3569		dev->kobj.parent = kobj;
3570
3571	/* use parent numa_node */
3572	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3573		set_dev_node(dev, dev_to_node(parent));
3574
3575	/* first, register with generic layer. */
3576	/* we require the name to be set before, and pass NULL */
3577	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3578	if (error) {
3579		glue_dir = kobj;
3580		goto Error;
3581	}
3582
3583	/* notify platform of device entry */
3584	device_platform_notify(dev);
 
 
3585
3586	error = device_create_file(dev, &dev_attr_uevent);
3587	if (error)
3588		goto attrError;
3589
3590	error = device_add_class_symlinks(dev);
3591	if (error)
3592		goto SymlinkError;
3593	error = device_add_attrs(dev);
3594	if (error)
3595		goto AttrsError;
3596	error = bus_add_device(dev);
3597	if (error)
3598		goto BusError;
3599	error = dpm_sysfs_add(dev);
3600	if (error)
3601		goto DPMError;
3602	device_pm_add(dev);
3603
3604	if (MAJOR(dev->devt)) {
3605		error = device_create_file(dev, &dev_attr_dev);
3606		if (error)
3607			goto DevAttrError;
3608
3609		error = device_create_sys_dev_entry(dev);
3610		if (error)
3611			goto SysEntryError;
3612
3613		devtmpfs_create_node(dev);
3614	}
3615
3616	/* Notify clients of device addition.  This call must come
3617	 * after dpm_sysfs_add() and before kobject_uevent().
3618	 */
3619	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
 
 
 
3620	kobject_uevent(&dev->kobj, KOBJ_ADD);
3621
3622	/*
3623	 * Check if any of the other devices (consumers) have been waiting for
3624	 * this device (supplier) to be added so that they can create a device
3625	 * link to it.
3626	 *
3627	 * This needs to happen after device_pm_add() because device_link_add()
3628	 * requires the supplier be registered before it's called.
3629	 *
3630	 * But this also needs to happen before bus_probe_device() to make sure
3631	 * waiting consumers can link to it before the driver is bound to the
3632	 * device and the driver sync_state callback is called for this device.
3633	 */
3634	if (dev->fwnode && !dev->fwnode->dev) {
3635		dev->fwnode->dev = dev;
3636		fw_devlink_link_device(dev);
3637	}
3638
3639	bus_probe_device(dev);
3640
3641	/*
3642	 * If all driver registration is done and a newly added device doesn't
3643	 * match with any driver, don't block its consumers from probing in
3644	 * case the consumer device is able to operate without this supplier.
3645	 */
3646	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3647		fw_devlink_unblock_consumers(dev);
3648
3649	if (parent)
3650		klist_add_tail(&dev->p->knode_parent,
3651			       &parent->p->klist_children);
3652
3653	sp = class_to_subsys(dev->class);
3654	if (sp) {
3655		mutex_lock(&sp->mutex);
3656		/* tie the class to the device */
3657		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
 
3658
3659		/* notify any interfaces that the device is here */
3660		list_for_each_entry(class_intf, &sp->interfaces, node)
 
3661			if (class_intf->add_dev)
3662				class_intf->add_dev(dev);
3663		mutex_unlock(&sp->mutex);
3664		subsys_put(sp);
3665	}
3666done:
3667	put_device(dev);
3668	return error;
3669 SysEntryError:
3670	if (MAJOR(dev->devt))
3671		device_remove_file(dev, &dev_attr_dev);
3672 DevAttrError:
3673	device_pm_remove(dev);
3674	dpm_sysfs_remove(dev);
3675 DPMError:
3676	dev->driver = NULL;
3677	bus_remove_device(dev);
3678 BusError:
3679	device_remove_attrs(dev);
3680 AttrsError:
3681	device_remove_class_symlinks(dev);
3682 SymlinkError:
3683	device_remove_file(dev, &dev_attr_uevent);
3684 attrError:
3685	device_platform_notify_remove(dev);
 
3686	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3687	glue_dir = get_glue_dir(dev);
3688	kobject_del(&dev->kobj);
3689 Error:
3690	cleanup_glue_dir(dev, glue_dir);
3691parent_error:
3692	put_device(parent);
3693name_error:
3694	kfree(dev->p);
3695	dev->p = NULL;
3696	goto done;
3697}
3698EXPORT_SYMBOL_GPL(device_add);
3699
3700/**
3701 * device_register - register a device with the system.
3702 * @dev: pointer to the device structure
3703 *
3704 * This happens in two clean steps - initialize the device
3705 * and add it to the system. The two steps can be called
3706 * separately, but this is the easiest and most common.
3707 * I.e. you should only call the two helpers separately if
3708 * have a clearly defined need to use and refcount the device
3709 * before it is added to the hierarchy.
3710 *
3711 * For more information, see the kerneldoc for device_initialize()
3712 * and device_add().
3713 *
3714 * NOTE: _Never_ directly free @dev after calling this function, even
3715 * if it returned an error! Always use put_device() to give up the
3716 * reference initialized in this function instead.
3717 */
3718int device_register(struct device *dev)
3719{
3720	device_initialize(dev);
3721	return device_add(dev);
3722}
3723EXPORT_SYMBOL_GPL(device_register);
3724
3725/**
3726 * get_device - increment reference count for device.
3727 * @dev: device.
3728 *
3729 * This simply forwards the call to kobject_get(), though
3730 * we do take care to provide for the case that we get a NULL
3731 * pointer passed in.
3732 */
3733struct device *get_device(struct device *dev)
3734{
3735	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3736}
3737EXPORT_SYMBOL_GPL(get_device);
3738
3739/**
3740 * put_device - decrement reference count.
3741 * @dev: device in question.
3742 */
3743void put_device(struct device *dev)
3744{
3745	/* might_sleep(); */
3746	if (dev)
3747		kobject_put(&dev->kobj);
3748}
3749EXPORT_SYMBOL_GPL(put_device);
3750
3751bool kill_device(struct device *dev)
3752{
3753	/*
3754	 * Require the device lock and set the "dead" flag to guarantee that
3755	 * the update behavior is consistent with the other bitfields near
3756	 * it and that we cannot have an asynchronous probe routine trying
3757	 * to run while we are tearing out the bus/class/sysfs from
3758	 * underneath the device.
3759	 */
3760	device_lock_assert(dev);
3761
3762	if (dev->p->dead)
3763		return false;
3764	dev->p->dead = true;
3765	return true;
3766}
3767EXPORT_SYMBOL_GPL(kill_device);
3768
3769/**
3770 * device_del - delete device from system.
3771 * @dev: device.
3772 *
3773 * This is the first part of the device unregistration
3774 * sequence. This removes the device from the lists we control
3775 * from here, has it removed from the other driver model
3776 * subsystems it was added to in device_add(), and removes it
3777 * from the kobject hierarchy.
3778 *
3779 * NOTE: this should be called manually _iff_ device_add() was
3780 * also called manually.
3781 */
3782void device_del(struct device *dev)
3783{
3784	struct subsys_private *sp;
3785	struct device *parent = dev->parent;
3786	struct kobject *glue_dir = NULL;
3787	struct class_interface *class_intf;
3788	unsigned int noio_flag;
3789
3790	device_lock(dev);
3791	kill_device(dev);
3792	device_unlock(dev);
3793
3794	if (dev->fwnode && dev->fwnode->dev == dev)
3795		dev->fwnode->dev = NULL;
3796
3797	/* Notify clients of device removal.  This call must come
3798	 * before dpm_sysfs_remove().
3799	 */
3800	noio_flag = memalloc_noio_save();
3801	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
 
 
3802
3803	dpm_sysfs_remove(dev);
3804	if (parent)
3805		klist_del(&dev->p->knode_parent);
3806	if (MAJOR(dev->devt)) {
3807		devtmpfs_delete_node(dev);
3808		device_remove_sys_dev_entry(dev);
3809		device_remove_file(dev, &dev_attr_dev);
3810	}
3811
3812	sp = class_to_subsys(dev->class);
3813	if (sp) {
3814		device_remove_class_symlinks(dev);
3815
3816		mutex_lock(&sp->mutex);
3817		/* notify any interfaces that the device is now gone */
3818		list_for_each_entry(class_intf, &sp->interfaces, node)
 
3819			if (class_intf->remove_dev)
3820				class_intf->remove_dev(dev);
3821		/* remove the device from the class list */
3822		klist_del(&dev->p->knode_class);
3823		mutex_unlock(&sp->mutex);
3824		subsys_put(sp);
3825	}
3826	device_remove_file(dev, &dev_attr_uevent);
3827	device_remove_attrs(dev);
3828	bus_remove_device(dev);
3829	device_pm_remove(dev);
3830	driver_deferred_probe_del(dev);
3831	device_platform_notify_remove(dev);
 
3832	device_links_purge(dev);
3833
3834	/*
3835	 * If a device does not have a driver attached, we need to clean
3836	 * up any managed resources. We do this in device_release(), but
3837	 * it's never called (and we leak the device) if a managed
3838	 * resource holds a reference to the device. So release all
3839	 * managed resources here, like we do in driver_detach(). We
3840	 * still need to do so again in device_release() in case someone
3841	 * adds a new resource after this point, though.
3842	 */
3843	devres_release_all(dev);
3844
3845	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3846	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3847	glue_dir = get_glue_dir(dev);
3848	kobject_del(&dev->kobj);
3849	cleanup_glue_dir(dev, glue_dir);
3850	memalloc_noio_restore(noio_flag);
3851	put_device(parent);
3852}
3853EXPORT_SYMBOL_GPL(device_del);
3854
3855/**
3856 * device_unregister - unregister device from system.
3857 * @dev: device going away.
3858 *
3859 * We do this in two parts, like we do device_register(). First,
3860 * we remove it from all the subsystems with device_del(), then
3861 * we decrement the reference count via put_device(). If that
3862 * is the final reference count, the device will be cleaned up
3863 * via device_release() above. Otherwise, the structure will
3864 * stick around until the final reference to the device is dropped.
3865 */
3866void device_unregister(struct device *dev)
3867{
3868	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3869	device_del(dev);
3870	put_device(dev);
3871}
3872EXPORT_SYMBOL_GPL(device_unregister);
3873
3874static struct device *prev_device(struct klist_iter *i)
3875{
3876	struct klist_node *n = klist_prev(i);
3877	struct device *dev = NULL;
3878	struct device_private *p;
3879
3880	if (n) {
3881		p = to_device_private_parent(n);
3882		dev = p->device;
3883	}
3884	return dev;
3885}
3886
3887static struct device *next_device(struct klist_iter *i)
3888{
3889	struct klist_node *n = klist_next(i);
3890	struct device *dev = NULL;
3891	struct device_private *p;
3892
3893	if (n) {
3894		p = to_device_private_parent(n);
3895		dev = p->device;
3896	}
3897	return dev;
3898}
3899
3900/**
3901 * device_get_devnode - path of device node file
3902 * @dev: device
3903 * @mode: returned file access mode
3904 * @uid: returned file owner
3905 * @gid: returned file group
3906 * @tmp: possibly allocated string
3907 *
3908 * Return the relative path of a possible device node.
3909 * Non-default names may need to allocate a memory to compose
3910 * a name. This memory is returned in tmp and needs to be
3911 * freed by the caller.
3912 */
3913const char *device_get_devnode(const struct device *dev,
3914			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3915			       const char **tmp)
3916{
3917	char *s;
3918
3919	*tmp = NULL;
3920
3921	/* the device type may provide a specific name */
3922	if (dev->type && dev->type->devnode)
3923		*tmp = dev->type->devnode(dev, mode, uid, gid);
3924	if (*tmp)
3925		return *tmp;
3926
3927	/* the class may provide a specific name */
3928	if (dev->class && dev->class->devnode)
3929		*tmp = dev->class->devnode(dev, mode);
3930	if (*tmp)
3931		return *tmp;
3932
3933	/* return name without allocation, tmp == NULL */
3934	if (strchr(dev_name(dev), '!') == NULL)
3935		return dev_name(dev);
3936
3937	/* replace '!' in the name with '/' */
3938	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
3939	if (!s)
3940		return NULL;
 
3941	return *tmp = s;
3942}
3943
3944/**
3945 * device_for_each_child - device child iterator.
3946 * @parent: parent struct device.
3947 * @fn: function to be called for each device.
3948 * @data: data for the callback.
3949 *
3950 * Iterate over @parent's child devices, and call @fn for each,
3951 * passing it @data.
3952 *
3953 * We check the return of @fn each time. If it returns anything
3954 * other than 0, we break out and return that value.
3955 */
3956int device_for_each_child(struct device *parent, void *data,
3957			  int (*fn)(struct device *dev, void *data))
3958{
3959	struct klist_iter i;
3960	struct device *child;
3961	int error = 0;
3962
3963	if (!parent->p)
3964		return 0;
3965
3966	klist_iter_init(&parent->p->klist_children, &i);
3967	while (!error && (child = next_device(&i)))
3968		error = fn(child, data);
3969	klist_iter_exit(&i);
3970	return error;
3971}
3972EXPORT_SYMBOL_GPL(device_for_each_child);
3973
3974/**
3975 * device_for_each_child_reverse - device child iterator in reversed order.
3976 * @parent: parent struct device.
3977 * @fn: function to be called for each device.
3978 * @data: data for the callback.
3979 *
3980 * Iterate over @parent's child devices, and call @fn for each,
3981 * passing it @data.
3982 *
3983 * We check the return of @fn each time. If it returns anything
3984 * other than 0, we break out and return that value.
3985 */
3986int device_for_each_child_reverse(struct device *parent, void *data,
3987				  int (*fn)(struct device *dev, void *data))
3988{
3989	struct klist_iter i;
3990	struct device *child;
3991	int error = 0;
3992
3993	if (!parent->p)
3994		return 0;
3995
3996	klist_iter_init(&parent->p->klist_children, &i);
3997	while ((child = prev_device(&i)) && !error)
3998		error = fn(child, data);
3999	klist_iter_exit(&i);
4000	return error;
4001}
4002EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4003
4004/**
4005 * device_find_child - device iterator for locating a particular device.
4006 * @parent: parent struct device
4007 * @match: Callback function to check device
4008 * @data: Data to pass to match function
4009 *
4010 * This is similar to the device_for_each_child() function above, but it
4011 * returns a reference to a device that is 'found' for later use, as
4012 * determined by the @match callback.
4013 *
4014 * The callback should return 0 if the device doesn't match and non-zero
4015 * if it does.  If the callback returns non-zero and a reference to the
4016 * current device can be obtained, this function will return to the caller
4017 * and not iterate over any more devices.
4018 *
4019 * NOTE: you will need to drop the reference with put_device() after use.
4020 */
4021struct device *device_find_child(struct device *parent, void *data,
4022				 int (*match)(struct device *dev, void *data))
4023{
4024	struct klist_iter i;
4025	struct device *child;
4026
4027	if (!parent)
4028		return NULL;
4029
4030	klist_iter_init(&parent->p->klist_children, &i);
4031	while ((child = next_device(&i)))
4032		if (match(child, data) && get_device(child))
4033			break;
4034	klist_iter_exit(&i);
4035	return child;
4036}
4037EXPORT_SYMBOL_GPL(device_find_child);
4038
4039/**
4040 * device_find_child_by_name - device iterator for locating a child device.
4041 * @parent: parent struct device
4042 * @name: name of the child device
4043 *
4044 * This is similar to the device_find_child() function above, but it
4045 * returns a reference to a device that has the name @name.
4046 *
4047 * NOTE: you will need to drop the reference with put_device() after use.
4048 */
4049struct device *device_find_child_by_name(struct device *parent,
4050					 const char *name)
4051{
4052	struct klist_iter i;
4053	struct device *child;
4054
4055	if (!parent)
4056		return NULL;
4057
4058	klist_iter_init(&parent->p->klist_children, &i);
4059	while ((child = next_device(&i)))
4060		if (sysfs_streq(dev_name(child), name) && get_device(child))
4061			break;
4062	klist_iter_exit(&i);
4063	return child;
4064}
4065EXPORT_SYMBOL_GPL(device_find_child_by_name);
4066
4067static int match_any(struct device *dev, void *unused)
4068{
4069	return 1;
4070}
4071
4072/**
4073 * device_find_any_child - device iterator for locating a child device, if any.
4074 * @parent: parent struct device
4075 *
4076 * This is similar to the device_find_child() function above, but it
4077 * returns a reference to a child device, if any.
4078 *
4079 * NOTE: you will need to drop the reference with put_device() after use.
4080 */
4081struct device *device_find_any_child(struct device *parent)
4082{
4083	return device_find_child(parent, NULL, match_any);
4084}
4085EXPORT_SYMBOL_GPL(device_find_any_child);
4086
4087int __init devices_init(void)
4088{
4089	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4090	if (!devices_kset)
4091		return -ENOMEM;
4092	dev_kobj = kobject_create_and_add("dev", NULL);
4093	if (!dev_kobj)
4094		goto dev_kobj_err;
4095	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4096	if (!sysfs_dev_block_kobj)
4097		goto block_kobj_err;
4098	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4099	if (!sysfs_dev_char_kobj)
4100		goto char_kobj_err;
4101
4102	return 0;
4103
4104 char_kobj_err:
4105	kobject_put(sysfs_dev_block_kobj);
4106 block_kobj_err:
4107	kobject_put(dev_kobj);
4108 dev_kobj_err:
4109	kset_unregister(devices_kset);
4110	return -ENOMEM;
4111}
4112
4113static int device_check_offline(struct device *dev, void *not_used)
4114{
4115	int ret;
4116
4117	ret = device_for_each_child(dev, NULL, device_check_offline);
4118	if (ret)
4119		return ret;
4120
4121	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4122}
4123
4124/**
4125 * device_offline - Prepare the device for hot-removal.
4126 * @dev: Device to be put offline.
4127 *
4128 * Execute the device bus type's .offline() callback, if present, to prepare
4129 * the device for a subsequent hot-removal.  If that succeeds, the device must
4130 * not be used until either it is removed or its bus type's .online() callback
4131 * is executed.
4132 *
4133 * Call under device_hotplug_lock.
4134 */
4135int device_offline(struct device *dev)
4136{
4137	int ret;
4138
4139	if (dev->offline_disabled)
4140		return -EPERM;
4141
4142	ret = device_for_each_child(dev, NULL, device_check_offline);
4143	if (ret)
4144		return ret;
4145
4146	device_lock(dev);
4147	if (device_supports_offline(dev)) {
4148		if (dev->offline) {
4149			ret = 1;
4150		} else {
4151			ret = dev->bus->offline(dev);
4152			if (!ret) {
4153				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4154				dev->offline = true;
4155			}
4156		}
4157	}
4158	device_unlock(dev);
4159
4160	return ret;
4161}
4162
4163/**
4164 * device_online - Put the device back online after successful device_offline().
4165 * @dev: Device to be put back online.
4166 *
4167 * If device_offline() has been successfully executed for @dev, but the device
4168 * has not been removed subsequently, execute its bus type's .online() callback
4169 * to indicate that the device can be used again.
4170 *
4171 * Call under device_hotplug_lock.
4172 */
4173int device_online(struct device *dev)
4174{
4175	int ret = 0;
4176
4177	device_lock(dev);
4178	if (device_supports_offline(dev)) {
4179		if (dev->offline) {
4180			ret = dev->bus->online(dev);
4181			if (!ret) {
4182				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4183				dev->offline = false;
4184			}
4185		} else {
4186			ret = 1;
4187		}
4188	}
4189	device_unlock(dev);
4190
4191	return ret;
4192}
4193
4194struct root_device {
4195	struct device dev;
4196	struct module *owner;
4197};
4198
4199static inline struct root_device *to_root_device(struct device *d)
4200{
4201	return container_of(d, struct root_device, dev);
4202}
4203
4204static void root_device_release(struct device *dev)
4205{
4206	kfree(to_root_device(dev));
4207}
4208
4209/**
4210 * __root_device_register - allocate and register a root device
4211 * @name: root device name
4212 * @owner: owner module of the root device, usually THIS_MODULE
4213 *
4214 * This function allocates a root device and registers it
4215 * using device_register(). In order to free the returned
4216 * device, use root_device_unregister().
4217 *
4218 * Root devices are dummy devices which allow other devices
4219 * to be grouped under /sys/devices. Use this function to
4220 * allocate a root device and then use it as the parent of
4221 * any device which should appear under /sys/devices/{name}
4222 *
4223 * The /sys/devices/{name} directory will also contain a
4224 * 'module' symlink which points to the @owner directory
4225 * in sysfs.
4226 *
4227 * Returns &struct device pointer on success, or ERR_PTR() on error.
4228 *
4229 * Note: You probably want to use root_device_register().
4230 */
4231struct device *__root_device_register(const char *name, struct module *owner)
4232{
4233	struct root_device *root;
4234	int err = -ENOMEM;
4235
4236	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4237	if (!root)
4238		return ERR_PTR(err);
4239
4240	err = dev_set_name(&root->dev, "%s", name);
4241	if (err) {
4242		kfree(root);
4243		return ERR_PTR(err);
4244	}
4245
4246	root->dev.release = root_device_release;
4247
4248	err = device_register(&root->dev);
4249	if (err) {
4250		put_device(&root->dev);
4251		return ERR_PTR(err);
4252	}
4253
4254#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4255	if (owner) {
4256		struct module_kobject *mk = &owner->mkobj;
4257
4258		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4259		if (err) {
4260			device_unregister(&root->dev);
4261			return ERR_PTR(err);
4262		}
4263		root->owner = owner;
4264	}
4265#endif
4266
4267	return &root->dev;
4268}
4269EXPORT_SYMBOL_GPL(__root_device_register);
4270
4271/**
4272 * root_device_unregister - unregister and free a root device
4273 * @dev: device going away
4274 *
4275 * This function unregisters and cleans up a device that was created by
4276 * root_device_register().
4277 */
4278void root_device_unregister(struct device *dev)
4279{
4280	struct root_device *root = to_root_device(dev);
4281
4282	if (root->owner)
4283		sysfs_remove_link(&root->dev.kobj, "module");
4284
4285	device_unregister(dev);
4286}
4287EXPORT_SYMBOL_GPL(root_device_unregister);
4288
4289
4290static void device_create_release(struct device *dev)
4291{
4292	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4293	kfree(dev);
4294}
4295
4296static __printf(6, 0) struct device *
4297device_create_groups_vargs(const struct class *class, struct device *parent,
4298			   dev_t devt, void *drvdata,
4299			   const struct attribute_group **groups,
4300			   const char *fmt, va_list args)
4301{
4302	struct device *dev = NULL;
4303	int retval = -ENODEV;
4304
4305	if (IS_ERR_OR_NULL(class))
4306		goto error;
4307
4308	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4309	if (!dev) {
4310		retval = -ENOMEM;
4311		goto error;
4312	}
4313
4314	device_initialize(dev);
4315	dev->devt = devt;
4316	dev->class = class;
4317	dev->parent = parent;
4318	dev->groups = groups;
4319	dev->release = device_create_release;
4320	dev_set_drvdata(dev, drvdata);
4321
4322	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4323	if (retval)
4324		goto error;
4325
4326	retval = device_add(dev);
4327	if (retval)
4328		goto error;
4329
4330	return dev;
4331
4332error:
4333	put_device(dev);
4334	return ERR_PTR(retval);
4335}
4336
4337/**
4338 * device_create - creates a device and registers it with sysfs
4339 * @class: pointer to the struct class that this device should be registered to
4340 * @parent: pointer to the parent struct device of this new device, if any
4341 * @devt: the dev_t for the char device to be added
4342 * @drvdata: the data to be added to the device for callbacks
4343 * @fmt: string for the device's name
4344 *
4345 * This function can be used by char device classes.  A struct device
4346 * will be created in sysfs, registered to the specified class.
4347 *
4348 * A "dev" file will be created, showing the dev_t for the device, if
4349 * the dev_t is not 0,0.
4350 * If a pointer to a parent struct device is passed in, the newly created
4351 * struct device will be a child of that device in sysfs.
4352 * The pointer to the struct device will be returned from the call.
4353 * Any further sysfs files that might be required can be created using this
4354 * pointer.
4355 *
4356 * Returns &struct device pointer on success, or ERR_PTR() on error.
 
 
 
4357 */
4358struct device *device_create(const struct class *class, struct device *parent,
4359			     dev_t devt, void *drvdata, const char *fmt, ...)
4360{
4361	va_list vargs;
4362	struct device *dev;
4363
4364	va_start(vargs, fmt);
4365	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4366					  fmt, vargs);
4367	va_end(vargs);
4368	return dev;
4369}
4370EXPORT_SYMBOL_GPL(device_create);
4371
4372/**
4373 * device_create_with_groups - creates a device and registers it with sysfs
4374 * @class: pointer to the struct class that this device should be registered to
4375 * @parent: pointer to the parent struct device of this new device, if any
4376 * @devt: the dev_t for the char device to be added
4377 * @drvdata: the data to be added to the device for callbacks
4378 * @groups: NULL-terminated list of attribute groups to be created
4379 * @fmt: string for the device's name
4380 *
4381 * This function can be used by char device classes.  A struct device
4382 * will be created in sysfs, registered to the specified class.
4383 * Additional attributes specified in the groups parameter will also
4384 * be created automatically.
4385 *
4386 * A "dev" file will be created, showing the dev_t for the device, if
4387 * the dev_t is not 0,0.
4388 * If a pointer to a parent struct device is passed in, the newly created
4389 * struct device will be a child of that device in sysfs.
4390 * The pointer to the struct device will be returned from the call.
4391 * Any further sysfs files that might be required can be created using this
4392 * pointer.
4393 *
4394 * Returns &struct device pointer on success, or ERR_PTR() on error.
 
 
 
4395 */
4396struct device *device_create_with_groups(const struct class *class,
4397					 struct device *parent, dev_t devt,
4398					 void *drvdata,
4399					 const struct attribute_group **groups,
4400					 const char *fmt, ...)
4401{
4402	va_list vargs;
4403	struct device *dev;
4404
4405	va_start(vargs, fmt);
4406	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4407					 fmt, vargs);
4408	va_end(vargs);
4409	return dev;
4410}
4411EXPORT_SYMBOL_GPL(device_create_with_groups);
4412
4413/**
4414 * device_destroy - removes a device that was created with device_create()
4415 * @class: pointer to the struct class that this device was registered with
4416 * @devt: the dev_t of the device that was previously registered
4417 *
4418 * This call unregisters and cleans up a device that was created with a
4419 * call to device_create().
4420 */
4421void device_destroy(const struct class *class, dev_t devt)
4422{
4423	struct device *dev;
4424
4425	dev = class_find_device_by_devt(class, devt);
4426	if (dev) {
4427		put_device(dev);
4428		device_unregister(dev);
4429	}
4430}
4431EXPORT_SYMBOL_GPL(device_destroy);
4432
4433/**
4434 * device_rename - renames a device
4435 * @dev: the pointer to the struct device to be renamed
4436 * @new_name: the new name of the device
4437 *
4438 * It is the responsibility of the caller to provide mutual
4439 * exclusion between two different calls of device_rename
4440 * on the same device to ensure that new_name is valid and
4441 * won't conflict with other devices.
4442 *
4443 * Note: given that some subsystems (networking and infiniband) use this
4444 * function, with no immediate plans for this to change, we cannot assume or
4445 * require that this function not be called at all.
4446 *
4447 * However, if you're writing new code, do not call this function. The following
4448 * text from Kay Sievers offers some insight:
4449 *
4450 * Renaming devices is racy at many levels, symlinks and other stuff are not
4451 * replaced atomically, and you get a "move" uevent, but it's not easy to
4452 * connect the event to the old and new device. Device nodes are not renamed at
4453 * all, there isn't even support for that in the kernel now.
4454 *
4455 * In the meantime, during renaming, your target name might be taken by another
4456 * driver, creating conflicts. Or the old name is taken directly after you
4457 * renamed it -- then you get events for the same DEVPATH, before you even see
4458 * the "move" event. It's just a mess, and nothing new should ever rely on
4459 * kernel device renaming. Besides that, it's not even implemented now for
4460 * other things than (driver-core wise very simple) network devices.
4461 *
 
 
 
 
 
 
 
4462 * Make up a "real" name in the driver before you register anything, or add
4463 * some other attributes for userspace to find the device, or use udev to add
4464 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4465 * don't even want to get into that and try to implement the missing pieces in
4466 * the core. We really have other pieces to fix in the driver core mess. :)
4467 */
4468int device_rename(struct device *dev, const char *new_name)
4469{
4470	struct kobject *kobj = &dev->kobj;
4471	char *old_device_name = NULL;
4472	int error;
4473
4474	dev = get_device(dev);
4475	if (!dev)
4476		return -EINVAL;
4477
4478	dev_dbg(dev, "renaming to %s\n", new_name);
4479
4480	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4481	if (!old_device_name) {
4482		error = -ENOMEM;
4483		goto out;
4484	}
4485
4486	if (dev->class) {
4487		struct subsys_private *sp = class_to_subsys(dev->class);
4488
4489		if (!sp) {
4490			error = -EINVAL;
4491			goto out;
4492		}
4493
4494		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4495					     new_name, kobject_namespace(kobj));
4496		subsys_put(sp);
4497		if (error)
4498			goto out;
4499	}
4500
4501	error = kobject_rename(kobj, new_name);
4502	if (error)
4503		goto out;
4504
4505out:
4506	put_device(dev);
4507
4508	kfree(old_device_name);
4509
4510	return error;
4511}
4512EXPORT_SYMBOL_GPL(device_rename);
4513
4514static int device_move_class_links(struct device *dev,
4515				   struct device *old_parent,
4516				   struct device *new_parent)
4517{
4518	int error = 0;
4519
4520	if (old_parent)
4521		sysfs_remove_link(&dev->kobj, "device");
4522	if (new_parent)
4523		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4524					  "device");
4525	return error;
4526}
4527
4528/**
4529 * device_move - moves a device to a new parent
4530 * @dev: the pointer to the struct device to be moved
4531 * @new_parent: the new parent of the device (can be NULL)
4532 * @dpm_order: how to reorder the dpm_list
4533 */
4534int device_move(struct device *dev, struct device *new_parent,
4535		enum dpm_order dpm_order)
4536{
4537	int error;
4538	struct device *old_parent;
4539	struct kobject *new_parent_kobj;
4540
4541	dev = get_device(dev);
4542	if (!dev)
4543		return -EINVAL;
4544
4545	device_pm_lock();
4546	new_parent = get_device(new_parent);
4547	new_parent_kobj = get_device_parent(dev, new_parent);
4548	if (IS_ERR(new_parent_kobj)) {
4549		error = PTR_ERR(new_parent_kobj);
4550		put_device(new_parent);
4551		goto out;
4552	}
4553
4554	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4555		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4556	error = kobject_move(&dev->kobj, new_parent_kobj);
4557	if (error) {
4558		cleanup_glue_dir(dev, new_parent_kobj);
4559		put_device(new_parent);
4560		goto out;
4561	}
4562	old_parent = dev->parent;
4563	dev->parent = new_parent;
4564	if (old_parent)
4565		klist_remove(&dev->p->knode_parent);
4566	if (new_parent) {
4567		klist_add_tail(&dev->p->knode_parent,
4568			       &new_parent->p->klist_children);
4569		set_dev_node(dev, dev_to_node(new_parent));
4570	}
4571
4572	if (dev->class) {
4573		error = device_move_class_links(dev, old_parent, new_parent);
4574		if (error) {
4575			/* We ignore errors on cleanup since we're hosed anyway... */
4576			device_move_class_links(dev, new_parent, old_parent);
4577			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4578				if (new_parent)
4579					klist_remove(&dev->p->knode_parent);
4580				dev->parent = old_parent;
4581				if (old_parent) {
4582					klist_add_tail(&dev->p->knode_parent,
4583						       &old_parent->p->klist_children);
4584					set_dev_node(dev, dev_to_node(old_parent));
4585				}
4586			}
4587			cleanup_glue_dir(dev, new_parent_kobj);
4588			put_device(new_parent);
4589			goto out;
4590		}
4591	}
4592	switch (dpm_order) {
4593	case DPM_ORDER_NONE:
4594		break;
4595	case DPM_ORDER_DEV_AFTER_PARENT:
4596		device_pm_move_after(dev, new_parent);
4597		devices_kset_move_after(dev, new_parent);
4598		break;
4599	case DPM_ORDER_PARENT_BEFORE_DEV:
4600		device_pm_move_before(new_parent, dev);
4601		devices_kset_move_before(new_parent, dev);
4602		break;
4603	case DPM_ORDER_DEV_LAST:
4604		device_pm_move_last(dev);
4605		devices_kset_move_last(dev);
4606		break;
4607	}
4608
4609	put_device(old_parent);
4610out:
4611	device_pm_unlock();
4612	put_device(dev);
4613	return error;
4614}
4615EXPORT_SYMBOL_GPL(device_move);
4616
4617static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4618				     kgid_t kgid)
4619{
4620	struct kobject *kobj = &dev->kobj;
4621	const struct class *class = dev->class;
4622	const struct device_type *type = dev->type;
4623	int error;
4624
4625	if (class) {
4626		/*
4627		 * Change the device groups of the device class for @dev to
4628		 * @kuid/@kgid.
4629		 */
4630		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4631						  kgid);
4632		if (error)
4633			return error;
4634	}
4635
4636	if (type) {
4637		/*
4638		 * Change the device groups of the device type for @dev to
4639		 * @kuid/@kgid.
4640		 */
4641		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4642						  kgid);
4643		if (error)
4644			return error;
4645	}
4646
4647	/* Change the device groups of @dev to @kuid/@kgid. */
4648	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4649	if (error)
4650		return error;
4651
4652	if (device_supports_offline(dev) && !dev->offline_disabled) {
4653		/* Change online device attributes of @dev to @kuid/@kgid. */
4654		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4655						kuid, kgid);
4656		if (error)
4657			return error;
4658	}
4659
4660	return 0;
4661}
4662
4663/**
4664 * device_change_owner - change the owner of an existing device.
4665 * @dev: device.
4666 * @kuid: new owner's kuid
4667 * @kgid: new owner's kgid
4668 *
4669 * This changes the owner of @dev and its corresponding sysfs entries to
4670 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4671 * core.
4672 *
4673 * Returns 0 on success or error code on failure.
4674 */
4675int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4676{
4677	int error;
4678	struct kobject *kobj = &dev->kobj;
4679	struct subsys_private *sp;
4680
4681	dev = get_device(dev);
4682	if (!dev)
4683		return -EINVAL;
4684
4685	/*
4686	 * Change the kobject and the default attributes and groups of the
4687	 * ktype associated with it to @kuid/@kgid.
4688	 */
4689	error = sysfs_change_owner(kobj, kuid, kgid);
4690	if (error)
4691		goto out;
4692
4693	/*
4694	 * Change the uevent file for @dev to the new owner. The uevent file
4695	 * was created in a separate step when @dev got added and we mirror
4696	 * that step here.
4697	 */
4698	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4699					kgid);
4700	if (error)
4701		goto out;
4702
4703	/*
4704	 * Change the device groups, the device groups associated with the
4705	 * device class, and the groups associated with the device type of @dev
4706	 * to @kuid/@kgid.
4707	 */
4708	error = device_attrs_change_owner(dev, kuid, kgid);
4709	if (error)
4710		goto out;
4711
4712	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4713	if (error)
4714		goto out;
4715
 
 
 
 
 
4716	/*
4717	 * Change the owner of the symlink located in the class directory of
4718	 * the device class associated with @dev which points to the actual
4719	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4720	 * symlink shows the same permissions as its target.
4721	 */
4722	sp = class_to_subsys(dev->class);
4723	if (!sp) {
4724		error = -EINVAL;
4725		goto out;
4726	}
4727	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4728	subsys_put(sp);
4729
4730out:
4731	put_device(dev);
4732	return error;
4733}
4734EXPORT_SYMBOL_GPL(device_change_owner);
4735
4736/**
4737 * device_shutdown - call ->shutdown() on each device to shutdown.
4738 */
4739void device_shutdown(void)
4740{
4741	struct device *dev, *parent;
4742
4743	wait_for_device_probe();
4744	device_block_probing();
4745
4746	cpufreq_suspend();
4747
4748	spin_lock(&devices_kset->list_lock);
4749	/*
4750	 * Walk the devices list backward, shutting down each in turn.
4751	 * Beware that device unplug events may also start pulling
4752	 * devices offline, even as the system is shutting down.
4753	 */
4754	while (!list_empty(&devices_kset->list)) {
4755		dev = list_entry(devices_kset->list.prev, struct device,
4756				kobj.entry);
4757
4758		/*
4759		 * hold reference count of device's parent to
4760		 * prevent it from being freed because parent's
4761		 * lock is to be held
4762		 */
4763		parent = get_device(dev->parent);
4764		get_device(dev);
4765		/*
4766		 * Make sure the device is off the kset list, in the
4767		 * event that dev->*->shutdown() doesn't remove it.
4768		 */
4769		list_del_init(&dev->kobj.entry);
4770		spin_unlock(&devices_kset->list_lock);
4771
4772		/* hold lock to avoid race with probe/release */
4773		if (parent)
4774			device_lock(parent);
4775		device_lock(dev);
4776
4777		/* Don't allow any more runtime suspends */
4778		pm_runtime_get_noresume(dev);
4779		pm_runtime_barrier(dev);
4780
4781		if (dev->class && dev->class->shutdown_pre) {
4782			if (initcall_debug)
4783				dev_info(dev, "shutdown_pre\n");
4784			dev->class->shutdown_pre(dev);
4785		}
4786		if (dev->bus && dev->bus->shutdown) {
4787			if (initcall_debug)
4788				dev_info(dev, "shutdown\n");
4789			dev->bus->shutdown(dev);
4790		} else if (dev->driver && dev->driver->shutdown) {
4791			if (initcall_debug)
4792				dev_info(dev, "shutdown\n");
4793			dev->driver->shutdown(dev);
4794		}
4795
4796		device_unlock(dev);
4797		if (parent)
4798			device_unlock(parent);
4799
4800		put_device(dev);
4801		put_device(parent);
4802
4803		spin_lock(&devices_kset->list_lock);
4804	}
4805	spin_unlock(&devices_kset->list_lock);
4806}
4807
4808/*
4809 * Device logging functions
4810 */
4811
4812#ifdef CONFIG_PRINTK
4813static void
4814set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4815{
4816	const char *subsys;
4817
4818	memset(dev_info, 0, sizeof(*dev_info));
4819
4820	if (dev->class)
4821		subsys = dev->class->name;
4822	else if (dev->bus)
4823		subsys = dev->bus->name;
4824	else
4825		return;
4826
4827	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4828
4829	/*
4830	 * Add device identifier DEVICE=:
4831	 *   b12:8         block dev_t
4832	 *   c127:3        char dev_t
4833	 *   n8            netdev ifindex
4834	 *   +sound:card0  subsystem:devname
4835	 */
4836	if (MAJOR(dev->devt)) {
4837		char c;
4838
4839		if (strcmp(subsys, "block") == 0)
4840			c = 'b';
4841		else
4842			c = 'c';
4843
4844		snprintf(dev_info->device, sizeof(dev_info->device),
4845			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4846	} else if (strcmp(subsys, "net") == 0) {
4847		struct net_device *net = to_net_dev(dev);
4848
4849		snprintf(dev_info->device, sizeof(dev_info->device),
4850			 "n%u", net->ifindex);
4851	} else {
4852		snprintf(dev_info->device, sizeof(dev_info->device),
4853			 "+%s:%s", subsys, dev_name(dev));
4854	}
4855}
4856
4857int dev_vprintk_emit(int level, const struct device *dev,
4858		     const char *fmt, va_list args)
4859{
4860	struct dev_printk_info dev_info;
4861
4862	set_dev_info(dev, &dev_info);
4863
4864	return vprintk_emit(0, level, &dev_info, fmt, args);
4865}
4866EXPORT_SYMBOL(dev_vprintk_emit);
4867
4868int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4869{
4870	va_list args;
4871	int r;
4872
4873	va_start(args, fmt);
4874
4875	r = dev_vprintk_emit(level, dev, fmt, args);
4876
4877	va_end(args);
4878
4879	return r;
4880}
4881EXPORT_SYMBOL(dev_printk_emit);
4882
4883static void __dev_printk(const char *level, const struct device *dev,
4884			struct va_format *vaf)
4885{
4886	if (dev)
4887		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4888				dev_driver_string(dev), dev_name(dev), vaf);
4889	else
4890		printk("%s(NULL device *): %pV", level, vaf);
4891}
4892
4893void _dev_printk(const char *level, const struct device *dev,
4894		 const char *fmt, ...)
4895{
4896	struct va_format vaf;
4897	va_list args;
4898
4899	va_start(args, fmt);
4900
4901	vaf.fmt = fmt;
4902	vaf.va = &args;
4903
4904	__dev_printk(level, dev, &vaf);
4905
4906	va_end(args);
4907}
4908EXPORT_SYMBOL(_dev_printk);
4909
4910#define define_dev_printk_level(func, kern_level)		\
4911void func(const struct device *dev, const char *fmt, ...)	\
4912{								\
4913	struct va_format vaf;					\
4914	va_list args;						\
4915								\
4916	va_start(args, fmt);					\
4917								\
4918	vaf.fmt = fmt;						\
4919	vaf.va = &args;						\
4920								\
4921	__dev_printk(kern_level, dev, &vaf);			\
4922								\
4923	va_end(args);						\
4924}								\
4925EXPORT_SYMBOL(func);
4926
4927define_dev_printk_level(_dev_emerg, KERN_EMERG);
4928define_dev_printk_level(_dev_alert, KERN_ALERT);
4929define_dev_printk_level(_dev_crit, KERN_CRIT);
4930define_dev_printk_level(_dev_err, KERN_ERR);
4931define_dev_printk_level(_dev_warn, KERN_WARNING);
4932define_dev_printk_level(_dev_notice, KERN_NOTICE);
4933define_dev_printk_level(_dev_info, KERN_INFO);
4934
4935#endif
4936
4937/**
4938 * dev_err_probe - probe error check and log helper
4939 * @dev: the pointer to the struct device
4940 * @err: error value to test
4941 * @fmt: printf-style format string
4942 * @...: arguments as specified in the format string
4943 *
4944 * This helper implements common pattern present in probe functions for error
4945 * checking: print debug or error message depending if the error value is
4946 * -EPROBE_DEFER and propagate error upwards.
4947 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4948 * checked later by reading devices_deferred debugfs attribute.
4949 * It replaces code sequence::
4950 *
4951 * 	if (err != -EPROBE_DEFER)
4952 * 		dev_err(dev, ...);
4953 * 	else
4954 * 		dev_dbg(dev, ...);
4955 * 	return err;
4956 *
4957 * with::
4958 *
4959 * 	return dev_err_probe(dev, err, ...);
4960 *
4961 * Using this helper in your probe function is totally fine even if @err is
4962 * known to never be -EPROBE_DEFER.
4963 * The benefit compared to a normal dev_err() is the standardized format
4964 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
4965 * instead of "-35") and the fact that the error code is returned which allows
4966 * more compact error paths.
4967 *
4968 * Returns @err.
 
4969 */
4970int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4971{
4972	struct va_format vaf;
4973	va_list args;
4974
4975	va_start(args, fmt);
4976	vaf.fmt = fmt;
4977	vaf.va = &args;
4978
4979	if (err != -EPROBE_DEFER) {
4980		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4981	} else {
4982		device_set_deferred_probe_reason(dev, &vaf);
4983		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4984	}
4985
4986	va_end(args);
4987
4988	return err;
4989}
4990EXPORT_SYMBOL_GPL(dev_err_probe);
4991
4992static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4993{
4994	return fwnode && !IS_ERR(fwnode->secondary);
4995}
4996
4997/**
4998 * set_primary_fwnode - Change the primary firmware node of a given device.
4999 * @dev: Device to handle.
5000 * @fwnode: New primary firmware node of the device.
5001 *
5002 * Set the device's firmware node pointer to @fwnode, but if a secondary
5003 * firmware node of the device is present, preserve it.
5004 *
5005 * Valid fwnode cases are:
5006 *  - primary --> secondary --> -ENODEV
5007 *  - primary --> NULL
5008 *  - secondary --> -ENODEV
5009 *  - NULL
5010 */
5011void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5012{
5013	struct device *parent = dev->parent;
5014	struct fwnode_handle *fn = dev->fwnode;
5015
5016	if (fwnode) {
5017		if (fwnode_is_primary(fn))
5018			fn = fn->secondary;
5019
5020		if (fn) {
5021			WARN_ON(fwnode->secondary);
5022			fwnode->secondary = fn;
5023		}
5024		dev->fwnode = fwnode;
5025	} else {
5026		if (fwnode_is_primary(fn)) {
5027			dev->fwnode = fn->secondary;
5028
5029			/* Skip nullifying fn->secondary if the primary is shared */
5030			if (parent && fn == parent->fwnode)
5031				return;
5032
5033			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5034			fn->secondary = NULL;
 
5035		} else {
5036			dev->fwnode = NULL;
5037		}
5038	}
5039}
5040EXPORT_SYMBOL_GPL(set_primary_fwnode);
5041
5042/**
5043 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5044 * @dev: Device to handle.
5045 * @fwnode: New secondary firmware node of the device.
5046 *
5047 * If a primary firmware node of the device is present, set its secondary
5048 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5049 * @fwnode.
5050 */
5051void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5052{
5053	if (fwnode)
5054		fwnode->secondary = ERR_PTR(-ENODEV);
5055
5056	if (fwnode_is_primary(dev->fwnode))
5057		dev->fwnode->secondary = fwnode;
5058	else
5059		dev->fwnode = fwnode;
5060}
5061EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5062
5063/**
5064 * device_set_of_node_from_dev - reuse device-tree node of another device
5065 * @dev: device whose device-tree node is being set
5066 * @dev2: device whose device-tree node is being reused
5067 *
5068 * Takes another reference to the new device-tree node after first dropping
5069 * any reference held to the old node.
5070 */
5071void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5072{
5073	of_node_put(dev->of_node);
5074	dev->of_node = of_node_get(dev2->of_node);
5075	dev->of_node_reused = true;
5076}
5077EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5078
5079void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5080{
5081	dev->fwnode = fwnode;
5082	dev->of_node = to_of_node(fwnode);
5083}
5084EXPORT_SYMBOL_GPL(device_set_node);
5085
5086int device_match_name(struct device *dev, const void *name)
5087{
5088	return sysfs_streq(dev_name(dev), name);
5089}
5090EXPORT_SYMBOL_GPL(device_match_name);
5091
5092int device_match_of_node(struct device *dev, const void *np)
5093{
5094	return dev->of_node == np;
5095}
5096EXPORT_SYMBOL_GPL(device_match_of_node);
5097
5098int device_match_fwnode(struct device *dev, const void *fwnode)
5099{
5100	return dev_fwnode(dev) == fwnode;
5101}
5102EXPORT_SYMBOL_GPL(device_match_fwnode);
5103
5104int device_match_devt(struct device *dev, const void *pdevt)
5105{
5106	return dev->devt == *(dev_t *)pdevt;
5107}
5108EXPORT_SYMBOL_GPL(device_match_devt);
5109
5110int device_match_acpi_dev(struct device *dev, const void *adev)
5111{
5112	return ACPI_COMPANION(dev) == adev;
5113}
5114EXPORT_SYMBOL(device_match_acpi_dev);
5115
5116int device_match_acpi_handle(struct device *dev, const void *handle)
5117{
5118	return ACPI_HANDLE(dev) == handle;
5119}
5120EXPORT_SYMBOL(device_match_acpi_handle);
5121
5122int device_match_any(struct device *dev, const void *unused)
5123{
5124	return 1;
5125}
5126EXPORT_SYMBOL_GPL(device_match_any);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
 
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sched/mm.h>
 
 
  30#include <linux/sysfs.h>
  31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  32
  33#include "base.h"
 
  34#include "power/power.h"
  35
  36#ifdef CONFIG_SYSFS_DEPRECATED
  37#ifdef CONFIG_SYSFS_DEPRECATED_V2
  38long sysfs_deprecated = 1;
  39#else
  40long sysfs_deprecated = 0;
  41#endif
  42static int __init sysfs_deprecated_setup(char *arg)
  43{
  44	return kstrtol(arg, 10, &sysfs_deprecated);
  45}
  46early_param("sysfs.deprecated", sysfs_deprecated_setup);
  47#endif
  48
  49/* Device links support. */
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static DEFINE_MUTEX(fwnode_link_lock);
  53static bool fw_devlink_is_permissive(void);
 
  54static bool fw_devlink_drv_reg_done;
 
  55
  56/**
  57 * fwnode_link_add - Create a link between two fwnode_handles.
  58 * @con: Consumer end of the link.
  59 * @sup: Supplier end of the link.
 
  60 *
  61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  62 * represents the detail that the firmware lists @sup fwnode as supplying a
  63 * resource to @con.
  64 *
  65 * The driver core will use the fwnode link to create a device link between the
  66 * two device objects corresponding to @con and @sup when they are created. The
  67 * driver core will automatically delete the fwnode link between @con and @sup
  68 * after doing that.
  69 *
  70 * Attempts to create duplicate links between the same pair of fwnode handles
  71 * are ignored and there is no reference counting.
  72 */
  73int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
 
  74{
  75	struct fwnode_link *link;
  76	int ret = 0;
  77
  78	mutex_lock(&fwnode_link_lock);
  79
  80	list_for_each_entry(link, &sup->consumers, s_hook)
  81		if (link->consumer == con)
  82			goto out;
 
 
  83
  84	link = kzalloc(sizeof(*link), GFP_KERNEL);
  85	if (!link) {
  86		ret = -ENOMEM;
  87		goto out;
  88	}
  89
  90	link->supplier = sup;
  91	INIT_LIST_HEAD(&link->s_hook);
  92	link->consumer = con;
  93	INIT_LIST_HEAD(&link->c_hook);
 
  94
  95	list_add(&link->s_hook, &sup->consumers);
  96	list_add(&link->c_hook, &con->suppliers);
  97out:
 
 
 
 
 
 
 
 
 
 
 
  98	mutex_unlock(&fwnode_link_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99
 100	return ret;
 
 
 
 
 
 
 
 
 
 
 101}
 102
 103/**
 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 105 * @fwnode: fwnode whose supplier links need to be deleted
 106 *
 107 * Deletes all supplier links connecting directly to @fwnode.
 108 */
 109static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 110{
 111	struct fwnode_link *link, *tmp;
 112
 113	mutex_lock(&fwnode_link_lock);
 114	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
 115		list_del(&link->s_hook);
 116		list_del(&link->c_hook);
 117		kfree(link);
 118	}
 119	mutex_unlock(&fwnode_link_lock);
 120}
 121
 122/**
 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 124 * @fwnode: fwnode whose consumer links need to be deleted
 125 *
 126 * Deletes all consumer links connecting directly to @fwnode.
 127 */
 128static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 129{
 130	struct fwnode_link *link, *tmp;
 131
 132	mutex_lock(&fwnode_link_lock);
 133	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
 134		list_del(&link->s_hook);
 135		list_del(&link->c_hook);
 136		kfree(link);
 137	}
 138	mutex_unlock(&fwnode_link_lock);
 139}
 140
 141/**
 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 143 * @fwnode: fwnode whose links needs to be deleted
 144 *
 145 * Deletes all links connecting directly to a fwnode.
 146 */
 147void fwnode_links_purge(struct fwnode_handle *fwnode)
 148{
 149	fwnode_links_purge_suppliers(fwnode);
 150	fwnode_links_purge_consumers(fwnode);
 151}
 152
 153void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 154{
 155	struct fwnode_handle *child;
 156
 157	/* Don't purge consumer links of an added child */
 158	if (fwnode->dev)
 159		return;
 160
 161	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 162	fwnode_links_purge_consumers(fwnode);
 163
 164	fwnode_for_each_available_child_node(fwnode, child)
 165		fw_devlink_purge_absent_suppliers(child);
 166}
 167EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 168
 169#ifdef CONFIG_SRCU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170static DEFINE_MUTEX(device_links_lock);
 171DEFINE_STATIC_SRCU(device_links_srcu);
 172
 173static inline void device_links_write_lock(void)
 174{
 175	mutex_lock(&device_links_lock);
 176}
 177
 178static inline void device_links_write_unlock(void)
 179{
 180	mutex_unlock(&device_links_lock);
 181}
 182
 183int device_links_read_lock(void) __acquires(&device_links_srcu)
 184{
 185	return srcu_read_lock(&device_links_srcu);
 186}
 187
 188void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 189{
 190	srcu_read_unlock(&device_links_srcu, idx);
 191}
 192
 193int device_links_read_lock_held(void)
 194{
 195	return srcu_read_lock_held(&device_links_srcu);
 196}
 197
 198static void device_link_synchronize_removal(void)
 199{
 200	synchronize_srcu(&device_links_srcu);
 201}
 202
 203static void device_link_remove_from_lists(struct device_link *link)
 204{
 205	list_del_rcu(&link->s_node);
 206	list_del_rcu(&link->c_node);
 207}
 208#else /* !CONFIG_SRCU */
 209static DECLARE_RWSEM(device_links_lock);
 210
 211static inline void device_links_write_lock(void)
 212{
 213	down_write(&device_links_lock);
 214}
 215
 216static inline void device_links_write_unlock(void)
 217{
 218	up_write(&device_links_lock);
 219}
 220
 221int device_links_read_lock(void)
 222{
 223	down_read(&device_links_lock);
 224	return 0;
 225}
 226
 227void device_links_read_unlock(int not_used)
 228{
 229	up_read(&device_links_lock);
 230}
 231
 232#ifdef CONFIG_DEBUG_LOCK_ALLOC
 233int device_links_read_lock_held(void)
 234{
 235	return lockdep_is_held(&device_links_lock);
 236}
 237#endif
 238
 239static inline void device_link_synchronize_removal(void)
 240{
 241}
 242
 243static void device_link_remove_from_lists(struct device_link *link)
 244{
 245	list_del(&link->s_node);
 246	list_del(&link->c_node);
 247}
 248#endif /* !CONFIG_SRCU */
 249
 250static bool device_is_ancestor(struct device *dev, struct device *target)
 251{
 252	while (target->parent) {
 253		target = target->parent;
 254		if (dev == target)
 255			return true;
 256	}
 257	return false;
 258}
 259
 
 
 
 
 
 
 
 
 260/**
 261 * device_is_dependent - Check if one device depends on another one
 262 * @dev: Device to check dependencies for.
 263 * @target: Device to check against.
 264 *
 265 * Check if @target depends on @dev or any device dependent on it (its child or
 266 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 267 */
 268int device_is_dependent(struct device *dev, void *target)
 269{
 270	struct device_link *link;
 271	int ret;
 272
 273	/*
 274	 * The "ancestors" check is needed to catch the case when the target
 275	 * device has not been completely initialized yet and it is still
 276	 * missing from the list of children of its parent device.
 277	 */
 278	if (dev == target || device_is_ancestor(dev, target))
 279		return 1;
 280
 281	ret = device_for_each_child(dev, target, device_is_dependent);
 282	if (ret)
 283		return ret;
 284
 285	list_for_each_entry(link, &dev->links.consumers, s_node) {
 286		if ((link->flags & ~DL_FLAG_INFERRED) ==
 287		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 288			continue;
 289
 290		if (link->consumer == target)
 291			return 1;
 292
 293		ret = device_is_dependent(link->consumer, target);
 294		if (ret)
 295			break;
 296	}
 297	return ret;
 298}
 299
 300static void device_link_init_status(struct device_link *link,
 301				    struct device *consumer,
 302				    struct device *supplier)
 303{
 304	switch (supplier->links.status) {
 305	case DL_DEV_PROBING:
 306		switch (consumer->links.status) {
 307		case DL_DEV_PROBING:
 308			/*
 309			 * A consumer driver can create a link to a supplier
 310			 * that has not completed its probing yet as long as it
 311			 * knows that the supplier is already functional (for
 312			 * example, it has just acquired some resources from the
 313			 * supplier).
 314			 */
 315			link->status = DL_STATE_CONSUMER_PROBE;
 316			break;
 317		default:
 318			link->status = DL_STATE_DORMANT;
 319			break;
 320		}
 321		break;
 322	case DL_DEV_DRIVER_BOUND:
 323		switch (consumer->links.status) {
 324		case DL_DEV_PROBING:
 325			link->status = DL_STATE_CONSUMER_PROBE;
 326			break;
 327		case DL_DEV_DRIVER_BOUND:
 328			link->status = DL_STATE_ACTIVE;
 329			break;
 330		default:
 331			link->status = DL_STATE_AVAILABLE;
 332			break;
 333		}
 334		break;
 335	case DL_DEV_UNBINDING:
 336		link->status = DL_STATE_SUPPLIER_UNBIND;
 337		break;
 338	default:
 339		link->status = DL_STATE_DORMANT;
 340		break;
 341	}
 342}
 343
 344static int device_reorder_to_tail(struct device *dev, void *not_used)
 345{
 346	struct device_link *link;
 347
 348	/*
 349	 * Devices that have not been registered yet will be put to the ends
 350	 * of the lists during the registration, so skip them here.
 351	 */
 352	if (device_is_registered(dev))
 353		devices_kset_move_last(dev);
 354
 355	if (device_pm_initialized(dev))
 356		device_pm_move_last(dev);
 357
 358	device_for_each_child(dev, NULL, device_reorder_to_tail);
 359	list_for_each_entry(link, &dev->links.consumers, s_node) {
 360		if ((link->flags & ~DL_FLAG_INFERRED) ==
 361		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 362			continue;
 363		device_reorder_to_tail(link->consumer, NULL);
 364	}
 365
 366	return 0;
 367}
 368
 369/**
 370 * device_pm_move_to_tail - Move set of devices to the end of device lists
 371 * @dev: Device to move
 372 *
 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 374 *
 375 * It moves the @dev along with all of its children and all of its consumers
 376 * to the ends of the device_kset and dpm_list, recursively.
 377 */
 378void device_pm_move_to_tail(struct device *dev)
 379{
 380	int idx;
 381
 382	idx = device_links_read_lock();
 383	device_pm_lock();
 384	device_reorder_to_tail(dev, NULL);
 385	device_pm_unlock();
 386	device_links_read_unlock(idx);
 387}
 388
 389#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 390
 391static ssize_t status_show(struct device *dev,
 392			   struct device_attribute *attr, char *buf)
 393{
 394	const char *output;
 395
 396	switch (to_devlink(dev)->status) {
 397	case DL_STATE_NONE:
 398		output = "not tracked";
 399		break;
 400	case DL_STATE_DORMANT:
 401		output = "dormant";
 402		break;
 403	case DL_STATE_AVAILABLE:
 404		output = "available";
 405		break;
 406	case DL_STATE_CONSUMER_PROBE:
 407		output = "consumer probing";
 408		break;
 409	case DL_STATE_ACTIVE:
 410		output = "active";
 411		break;
 412	case DL_STATE_SUPPLIER_UNBIND:
 413		output = "supplier unbinding";
 414		break;
 415	default:
 416		output = "unknown";
 417		break;
 418	}
 419
 420	return sysfs_emit(buf, "%s\n", output);
 421}
 422static DEVICE_ATTR_RO(status);
 423
 424static ssize_t auto_remove_on_show(struct device *dev,
 425				   struct device_attribute *attr, char *buf)
 426{
 427	struct device_link *link = to_devlink(dev);
 428	const char *output;
 429
 430	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 431		output = "supplier unbind";
 432	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 433		output = "consumer unbind";
 434	else
 435		output = "never";
 436
 437	return sysfs_emit(buf, "%s\n", output);
 438}
 439static DEVICE_ATTR_RO(auto_remove_on);
 440
 441static ssize_t runtime_pm_show(struct device *dev,
 442			       struct device_attribute *attr, char *buf)
 443{
 444	struct device_link *link = to_devlink(dev);
 445
 446	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 447}
 448static DEVICE_ATTR_RO(runtime_pm);
 449
 450static ssize_t sync_state_only_show(struct device *dev,
 451				    struct device_attribute *attr, char *buf)
 452{
 453	struct device_link *link = to_devlink(dev);
 454
 455	return sysfs_emit(buf, "%d\n",
 456			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 457}
 458static DEVICE_ATTR_RO(sync_state_only);
 459
 460static struct attribute *devlink_attrs[] = {
 461	&dev_attr_status.attr,
 462	&dev_attr_auto_remove_on.attr,
 463	&dev_attr_runtime_pm.attr,
 464	&dev_attr_sync_state_only.attr,
 465	NULL,
 466};
 467ATTRIBUTE_GROUPS(devlink);
 468
 469static void device_link_release_fn(struct work_struct *work)
 470{
 471	struct device_link *link = container_of(work, struct device_link, rm_work);
 472
 473	/* Ensure that all references to the link object have been dropped. */
 474	device_link_synchronize_removal();
 475
 476	while (refcount_dec_not_one(&link->rpm_active))
 477		pm_runtime_put(link->supplier);
 
 
 
 
 
 
 
 
 
 
 478
 479	put_device(link->consumer);
 480	put_device(link->supplier);
 481	kfree(link);
 482}
 483
 484static void devlink_dev_release(struct device *dev)
 485{
 486	struct device_link *link = to_devlink(dev);
 487
 488	INIT_WORK(&link->rm_work, device_link_release_fn);
 489	/*
 490	 * It may take a while to complete this work because of the SRCU
 491	 * synchronization in device_link_release_fn() and if the consumer or
 492	 * supplier devices get deleted when it runs, so put it into the "long"
 493	 * workqueue.
 494	 */
 495	queue_work(system_long_wq, &link->rm_work);
 496}
 497
 498static struct class devlink_class = {
 499	.name = "devlink",
 500	.owner = THIS_MODULE,
 501	.dev_groups = devlink_groups,
 502	.dev_release = devlink_dev_release,
 503};
 504
 505static int devlink_add_symlinks(struct device *dev,
 506				struct class_interface *class_intf)
 507{
 508	int ret;
 509	size_t len;
 510	struct device_link *link = to_devlink(dev);
 511	struct device *sup = link->supplier;
 512	struct device *con = link->consumer;
 513	char *buf;
 514
 515	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 516		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 517	len += strlen(":");
 518	len += strlen("supplier:") + 1;
 519	buf = kzalloc(len, GFP_KERNEL);
 520	if (!buf)
 521		return -ENOMEM;
 522
 523	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 524	if (ret)
 525		goto out;
 526
 527	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 528	if (ret)
 529		goto err_con;
 530
 531	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 532	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 533	if (ret)
 534		goto err_con_dev;
 535
 536	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 537	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 538	if (ret)
 539		goto err_sup_dev;
 540
 541	goto out;
 542
 543err_sup_dev:
 544	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 545	sysfs_remove_link(&sup->kobj, buf);
 546err_con_dev:
 547	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 548err_con:
 549	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 550out:
 551	kfree(buf);
 552	return ret;
 553}
 554
 555static void devlink_remove_symlinks(struct device *dev,
 556				   struct class_interface *class_intf)
 557{
 558	struct device_link *link = to_devlink(dev);
 559	size_t len;
 560	struct device *sup = link->supplier;
 561	struct device *con = link->consumer;
 562	char *buf;
 563
 564	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 565	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 566
 567	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 568		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 569	len += strlen(":");
 570	len += strlen("supplier:") + 1;
 571	buf = kzalloc(len, GFP_KERNEL);
 572	if (!buf) {
 573		WARN(1, "Unable to properly free device link symlinks!\n");
 574		return;
 575	}
 576
 577	if (device_is_registered(con)) {
 578		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 579		sysfs_remove_link(&con->kobj, buf);
 580	}
 581	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 582	sysfs_remove_link(&sup->kobj, buf);
 583	kfree(buf);
 584}
 585
 586static struct class_interface devlink_class_intf = {
 587	.class = &devlink_class,
 588	.add_dev = devlink_add_symlinks,
 589	.remove_dev = devlink_remove_symlinks,
 590};
 591
 592static int __init devlink_class_init(void)
 593{
 594	int ret;
 595
 596	ret = class_register(&devlink_class);
 597	if (ret)
 598		return ret;
 599
 600	ret = class_interface_register(&devlink_class_intf);
 601	if (ret)
 602		class_unregister(&devlink_class);
 603
 604	return ret;
 605}
 606postcore_initcall(devlink_class_init);
 607
 608#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 609			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 610			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 611			       DL_FLAG_SYNC_STATE_ONLY | \
 612			       DL_FLAG_INFERRED)
 
 613
 614#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 615			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 616
 617/**
 618 * device_link_add - Create a link between two devices.
 619 * @consumer: Consumer end of the link.
 620 * @supplier: Supplier end of the link.
 621 * @flags: Link flags.
 622 *
 623 * The caller is responsible for the proper synchronization of the link creation
 624 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 625 * runtime PM framework to take the link into account.  Second, if the
 626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 627 * be forced into the active meta state and reference-counted upon the creation
 628 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 629 * ignored.
 630 *
 631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 632 * expected to release the link returned by it directly with the help of either
 633 * device_link_del() or device_link_remove().
 634 *
 635 * If that flag is not set, however, the caller of this function is handing the
 636 * management of the link over to the driver core entirely and its return value
 637 * can only be used to check whether or not the link is present.  In that case,
 638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 639 * flags can be used to indicate to the driver core when the link can be safely
 640 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 641 * that the link is not going to be used (by the given caller of this function)
 642 * after unbinding the consumer or supplier driver, respectively, from its
 643 * device, so the link can be deleted at that point.  If none of them is set,
 644 * the link will be maintained until one of the devices pointed to by it (either
 645 * the consumer or the supplier) is unregistered.
 646 *
 647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 650 * be used to request the driver core to automatically probe for a consumer
 651 * driver after successfully binding a driver to the supplier device.
 652 *
 653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 655 * the same time is invalid and will cause NULL to be returned upfront.
 656 * However, if a device link between the given @consumer and @supplier pair
 657 * exists already when this function is called for them, the existing link will
 658 * be returned regardless of its current type and status (the link's flags may
 659 * be modified then).  The caller of this function is then expected to treat
 660 * the link as though it has just been created, so (in particular) if
 661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 662 * explicitly when not needed any more (as stated above).
 663 *
 664 * A side effect of the link creation is re-ordering of dpm_list and the
 665 * devices_kset list by moving the consumer device and all devices depending
 666 * on it to the ends of these lists (that does not happen to devices that have
 667 * not been registered when this function is called).
 668 *
 669 * The supplier device is required to be registered when this function is called
 670 * and NULL will be returned if that is not the case.  The consumer device need
 671 * not be registered, however.
 672 */
 673struct device_link *device_link_add(struct device *consumer,
 674				    struct device *supplier, u32 flags)
 675{
 676	struct device_link *link;
 677
 678	if (!consumer || !supplier || consumer == supplier ||
 679	    flags & ~DL_ADD_VALID_FLAGS ||
 680	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 681	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 682	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 683	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 684	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 685		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 686		return NULL;
 687
 688	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 689		if (pm_runtime_get_sync(supplier) < 0) {
 690			pm_runtime_put_noidle(supplier);
 691			return NULL;
 692		}
 693	}
 694
 695	if (!(flags & DL_FLAG_STATELESS))
 696		flags |= DL_FLAG_MANAGED;
 697
 
 
 
 
 698	device_links_write_lock();
 699	device_pm_lock();
 700
 701	/*
 702	 * If the supplier has not been fully registered yet or there is a
 703	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 704	 * the supplier already in the graph, return NULL. If the link is a
 705	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 706	 * because it only affects sync_state() callbacks.
 707	 */
 708	if (!device_pm_initialized(supplier)
 709	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 710		  device_is_dependent(consumer, supplier))) {
 711		link = NULL;
 712		goto out;
 713	}
 714
 715	/*
 716	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 717	 * So, only create it if the consumer hasn't probed yet.
 718	 */
 719	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 720	    consumer->links.status != DL_DEV_NO_DRIVER &&
 721	    consumer->links.status != DL_DEV_PROBING) {
 722		link = NULL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 728	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 729	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 730	 */
 731	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 732		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 733
 734	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 735		if (link->consumer != consumer)
 736			continue;
 737
 738		if (link->flags & DL_FLAG_INFERRED &&
 739		    !(flags & DL_FLAG_INFERRED))
 740			link->flags &= ~DL_FLAG_INFERRED;
 741
 742		if (flags & DL_FLAG_PM_RUNTIME) {
 743			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 744				pm_runtime_new_link(consumer);
 745				link->flags |= DL_FLAG_PM_RUNTIME;
 746			}
 747			if (flags & DL_FLAG_RPM_ACTIVE)
 748				refcount_inc(&link->rpm_active);
 749		}
 750
 751		if (flags & DL_FLAG_STATELESS) {
 752			kref_get(&link->kref);
 753			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 754			    !(link->flags & DL_FLAG_STATELESS)) {
 755				link->flags |= DL_FLAG_STATELESS;
 756				goto reorder;
 757			} else {
 758				link->flags |= DL_FLAG_STATELESS;
 759				goto out;
 760			}
 761		}
 762
 763		/*
 764		 * If the life time of the link following from the new flags is
 765		 * longer than indicated by the flags of the existing link,
 766		 * update the existing link to stay around longer.
 767		 */
 768		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 769			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 770				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 771				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 772			}
 773		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 774			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 775					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 776		}
 777		if (!(link->flags & DL_FLAG_MANAGED)) {
 778			kref_get(&link->kref);
 779			link->flags |= DL_FLAG_MANAGED;
 780			device_link_init_status(link, consumer, supplier);
 781		}
 782		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 783		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 784			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 785			goto reorder;
 786		}
 787
 788		goto out;
 789	}
 790
 791	link = kzalloc(sizeof(*link), GFP_KERNEL);
 792	if (!link)
 793		goto out;
 794
 795	refcount_set(&link->rpm_active, 1);
 796
 797	get_device(supplier);
 798	link->supplier = supplier;
 799	INIT_LIST_HEAD(&link->s_node);
 800	get_device(consumer);
 801	link->consumer = consumer;
 802	INIT_LIST_HEAD(&link->c_node);
 803	link->flags = flags;
 804	kref_init(&link->kref);
 805
 806	link->link_dev.class = &devlink_class;
 807	device_set_pm_not_required(&link->link_dev);
 808	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 809		     dev_bus_name(supplier), dev_name(supplier),
 810		     dev_bus_name(consumer), dev_name(consumer));
 811	if (device_register(&link->link_dev)) {
 812		put_device(consumer);
 813		put_device(supplier);
 814		kfree(link);
 815		link = NULL;
 816		goto out;
 817	}
 818
 819	if (flags & DL_FLAG_PM_RUNTIME) {
 820		if (flags & DL_FLAG_RPM_ACTIVE)
 821			refcount_inc(&link->rpm_active);
 822
 823		pm_runtime_new_link(consumer);
 824	}
 825
 826	/* Determine the initial link state. */
 827	if (flags & DL_FLAG_STATELESS)
 828		link->status = DL_STATE_NONE;
 829	else
 830		device_link_init_status(link, consumer, supplier);
 831
 832	/*
 833	 * Some callers expect the link creation during consumer driver probe to
 834	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 835	 */
 836	if (link->status == DL_STATE_CONSUMER_PROBE &&
 837	    flags & DL_FLAG_PM_RUNTIME)
 838		pm_runtime_resume(supplier);
 839
 840	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 841	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 842
 843	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 844		dev_dbg(consumer,
 845			"Linked as a sync state only consumer to %s\n",
 846			dev_name(supplier));
 847		goto out;
 848	}
 849
 850reorder:
 851	/*
 852	 * Move the consumer and all of the devices depending on it to the end
 853	 * of dpm_list and the devices_kset list.
 854	 *
 855	 * It is necessary to hold dpm_list locked throughout all that or else
 856	 * we may end up suspending with a wrong ordering of it.
 857	 */
 858	device_reorder_to_tail(consumer, NULL);
 859
 860	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 861
 862out:
 863	device_pm_unlock();
 864	device_links_write_unlock();
 865
 866	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 867		pm_runtime_put(supplier);
 868
 869	return link;
 870}
 871EXPORT_SYMBOL_GPL(device_link_add);
 872
 873static void __device_link_del(struct kref *kref)
 874{
 875	struct device_link *link = container_of(kref, struct device_link, kref);
 876
 877	dev_dbg(link->consumer, "Dropping the link to %s\n",
 878		dev_name(link->supplier));
 879
 880	pm_runtime_drop_link(link);
 881
 882	device_link_remove_from_lists(link);
 883	device_unregister(&link->link_dev);
 884}
 885
 886static void device_link_put_kref(struct device_link *link)
 887{
 888	if (link->flags & DL_FLAG_STATELESS)
 889		kref_put(&link->kref, __device_link_del);
 890	else if (!device_is_registered(link->consumer))
 891		__device_link_del(&link->kref);
 892	else
 893		WARN(1, "Unable to drop a managed device link reference\n");
 894}
 895
 896/**
 897 * device_link_del - Delete a stateless link between two devices.
 898 * @link: Device link to delete.
 899 *
 900 * The caller must ensure proper synchronization of this function with runtime
 901 * PM.  If the link was added multiple times, it needs to be deleted as often.
 902 * Care is required for hotplugged devices:  Their links are purged on removal
 903 * and calling device_link_del() is then no longer allowed.
 904 */
 905void device_link_del(struct device_link *link)
 906{
 907	device_links_write_lock();
 908	device_link_put_kref(link);
 909	device_links_write_unlock();
 910}
 911EXPORT_SYMBOL_GPL(device_link_del);
 912
 913/**
 914 * device_link_remove - Delete a stateless link between two devices.
 915 * @consumer: Consumer end of the link.
 916 * @supplier: Supplier end of the link.
 917 *
 918 * The caller must ensure proper synchronization of this function with runtime
 919 * PM.
 920 */
 921void device_link_remove(void *consumer, struct device *supplier)
 922{
 923	struct device_link *link;
 924
 925	if (WARN_ON(consumer == supplier))
 926		return;
 927
 928	device_links_write_lock();
 929
 930	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 931		if (link->consumer == consumer) {
 932			device_link_put_kref(link);
 933			break;
 934		}
 935	}
 936
 937	device_links_write_unlock();
 938}
 939EXPORT_SYMBOL_GPL(device_link_remove);
 940
 941static void device_links_missing_supplier(struct device *dev)
 942{
 943	struct device_link *link;
 944
 945	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 946		if (link->status != DL_STATE_CONSUMER_PROBE)
 947			continue;
 948
 949		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 950			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 951		} else {
 952			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 953			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 954		}
 955	}
 956}
 957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958/**
 959 * device_links_check_suppliers - Check presence of supplier drivers.
 960 * @dev: Consumer device.
 961 *
 962 * Check links from this device to any suppliers.  Walk the list of the device's
 963 * links to suppliers and see if all of them are available.  If not, simply
 964 * return -EPROBE_DEFER.
 965 *
 966 * We need to guarantee that the supplier will not go away after the check has
 967 * been positive here.  It only can go away in __device_release_driver() and
 968 * that function  checks the device's links to consumers.  This means we need to
 969 * mark the link as "consumer probe in progress" to make the supplier removal
 970 * wait for us to complete (or bad things may happen).
 971 *
 972 * Links without the DL_FLAG_MANAGED flag set are ignored.
 973 */
 974int device_links_check_suppliers(struct device *dev)
 975{
 976	struct device_link *link;
 977	int ret = 0;
 
 978
 979	/*
 980	 * Device waiting for supplier to become available is not allowed to
 981	 * probe.
 982	 */
 983	mutex_lock(&fwnode_link_lock);
 984	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
 985	    !fw_devlink_is_permissive()) {
 986		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
 987			list_first_entry(&dev->fwnode->suppliers,
 988			struct fwnode_link,
 989			c_hook)->supplier);
 990		mutex_unlock(&fwnode_link_lock);
 991		return -EPROBE_DEFER;
 
 992	}
 993	mutex_unlock(&fwnode_link_lock);
 
 
 994
 995	device_links_write_lock();
 996
 997	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 998		if (!(link->flags & DL_FLAG_MANAGED))
 999			continue;
1000
1001		if (link->status != DL_STATE_AVAILABLE &&
1002		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
 
 
 
 
 
 
 
 
1003			device_links_missing_supplier(dev);
1004			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1005				dev_name(link->supplier));
 
1006			ret = -EPROBE_DEFER;
1007			break;
1008		}
1009		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1010	}
1011	dev->links.status = DL_DEV_PROBING;
1012
1013	device_links_write_unlock();
1014	return ret;
 
1015}
1016
1017/**
1018 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1019 * @dev: Device to call sync_state() on
1020 * @list: List head to queue the @dev on
1021 *
1022 * Queues a device for a sync_state() callback when the device links write lock
1023 * isn't held. This allows the sync_state() execution flow to use device links
1024 * APIs.  The caller must ensure this function is called with
1025 * device_links_write_lock() held.
1026 *
1027 * This function does a get_device() to make sure the device is not freed while
1028 * on this list.
1029 *
1030 * So the caller must also ensure that device_links_flush_sync_list() is called
1031 * as soon as the caller releases device_links_write_lock().  This is necessary
1032 * to make sure the sync_state() is called in a timely fashion and the
1033 * put_device() is called on this device.
1034 */
1035static void __device_links_queue_sync_state(struct device *dev,
1036					    struct list_head *list)
1037{
1038	struct device_link *link;
1039
1040	if (!dev_has_sync_state(dev))
1041		return;
1042	if (dev->state_synced)
1043		return;
1044
1045	list_for_each_entry(link, &dev->links.consumers, s_node) {
1046		if (!(link->flags & DL_FLAG_MANAGED))
1047			continue;
1048		if (link->status != DL_STATE_ACTIVE)
1049			return;
1050	}
1051
1052	/*
1053	 * Set the flag here to avoid adding the same device to a list more
1054	 * than once. This can happen if new consumers get added to the device
1055	 * and probed before the list is flushed.
1056	 */
1057	dev->state_synced = true;
1058
1059	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1060		return;
1061
1062	get_device(dev);
1063	list_add_tail(&dev->links.defer_sync, list);
1064}
1065
1066/**
1067 * device_links_flush_sync_list - Call sync_state() on a list of devices
1068 * @list: List of devices to call sync_state() on
1069 * @dont_lock_dev: Device for which lock is already held by the caller
1070 *
1071 * Calls sync_state() on all the devices that have been queued for it. This
1072 * function is used in conjunction with __device_links_queue_sync_state(). The
1073 * @dont_lock_dev parameter is useful when this function is called from a
1074 * context where a device lock is already held.
1075 */
1076static void device_links_flush_sync_list(struct list_head *list,
1077					 struct device *dont_lock_dev)
1078{
1079	struct device *dev, *tmp;
1080
1081	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1082		list_del_init(&dev->links.defer_sync);
1083
1084		if (dev != dont_lock_dev)
1085			device_lock(dev);
1086
1087		if (dev->bus->sync_state)
1088			dev->bus->sync_state(dev);
1089		else if (dev->driver && dev->driver->sync_state)
1090			dev->driver->sync_state(dev);
1091
1092		if (dev != dont_lock_dev)
1093			device_unlock(dev);
1094
1095		put_device(dev);
1096	}
1097}
1098
1099void device_links_supplier_sync_state_pause(void)
1100{
1101	device_links_write_lock();
1102	defer_sync_state_count++;
1103	device_links_write_unlock();
1104}
1105
1106void device_links_supplier_sync_state_resume(void)
1107{
1108	struct device *dev, *tmp;
1109	LIST_HEAD(sync_list);
1110
1111	device_links_write_lock();
1112	if (!defer_sync_state_count) {
1113		WARN(true, "Unmatched sync_state pause/resume!");
1114		goto out;
1115	}
1116	defer_sync_state_count--;
1117	if (defer_sync_state_count)
1118		goto out;
1119
1120	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1121		/*
1122		 * Delete from deferred_sync list before queuing it to
1123		 * sync_list because defer_sync is used for both lists.
1124		 */
1125		list_del_init(&dev->links.defer_sync);
1126		__device_links_queue_sync_state(dev, &sync_list);
1127	}
1128out:
1129	device_links_write_unlock();
1130
1131	device_links_flush_sync_list(&sync_list, NULL);
1132}
1133
1134static int sync_state_resume_initcall(void)
1135{
1136	device_links_supplier_sync_state_resume();
1137	return 0;
1138}
1139late_initcall(sync_state_resume_initcall);
1140
1141static void __device_links_supplier_defer_sync(struct device *sup)
1142{
1143	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1144		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1145}
1146
1147static void device_link_drop_managed(struct device_link *link)
1148{
1149	link->flags &= ~DL_FLAG_MANAGED;
1150	WRITE_ONCE(link->status, DL_STATE_NONE);
1151	kref_put(&link->kref, __device_link_del);
1152}
1153
1154static ssize_t waiting_for_supplier_show(struct device *dev,
1155					 struct device_attribute *attr,
1156					 char *buf)
1157{
1158	bool val;
1159
1160	device_lock(dev);
1161	val = !list_empty(&dev->fwnode->suppliers);
 
 
1162	device_unlock(dev);
1163	return sysfs_emit(buf, "%u\n", val);
1164}
1165static DEVICE_ATTR_RO(waiting_for_supplier);
1166
1167/**
1168 * device_links_force_bind - Prepares device to be force bound
1169 * @dev: Consumer device.
1170 *
1171 * device_bind_driver() force binds a device to a driver without calling any
1172 * driver probe functions. So the consumer really isn't going to wait for any
1173 * supplier before it's bound to the driver. We still want the device link
1174 * states to be sensible when this happens.
1175 *
1176 * In preparation for device_bind_driver(), this function goes through each
1177 * supplier device links and checks if the supplier is bound. If it is, then
1178 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1179 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1180 */
1181void device_links_force_bind(struct device *dev)
1182{
1183	struct device_link *link, *ln;
1184
1185	device_links_write_lock();
1186
1187	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1188		if (!(link->flags & DL_FLAG_MANAGED))
1189			continue;
1190
1191		if (link->status != DL_STATE_AVAILABLE) {
1192			device_link_drop_managed(link);
1193			continue;
1194		}
1195		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1196	}
1197	dev->links.status = DL_DEV_PROBING;
1198
1199	device_links_write_unlock();
1200}
1201
1202/**
1203 * device_links_driver_bound - Update device links after probing its driver.
1204 * @dev: Device to update the links for.
1205 *
1206 * The probe has been successful, so update links from this device to any
1207 * consumers by changing their status to "available".
1208 *
1209 * Also change the status of @dev's links to suppliers to "active".
1210 *
1211 * Links without the DL_FLAG_MANAGED flag set are ignored.
1212 */
1213void device_links_driver_bound(struct device *dev)
1214{
1215	struct device_link *link, *ln;
1216	LIST_HEAD(sync_list);
1217
1218	/*
1219	 * If a device binds successfully, it's expected to have created all
1220	 * the device links it needs to or make new device links as it needs
1221	 * them. So, fw_devlink no longer needs to create device links to any
1222	 * of the device's suppliers.
1223	 *
1224	 * Also, if a child firmware node of this bound device is not added as
1225	 * a device by now, assume it is never going to be added and make sure
1226	 * other devices don't defer probe indefinitely by waiting for such a
1227	 * child device.
 
 
 
1228	 */
1229	if (dev->fwnode && dev->fwnode->dev == dev) {
1230		struct fwnode_handle *child;
1231		fwnode_links_purge_suppliers(dev->fwnode);
 
1232		fwnode_for_each_available_child_node(dev->fwnode, child)
1233			fw_devlink_purge_absent_suppliers(child);
 
 
 
1234	}
1235	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1236
1237	device_links_write_lock();
1238
1239	list_for_each_entry(link, &dev->links.consumers, s_node) {
1240		if (!(link->flags & DL_FLAG_MANAGED))
1241			continue;
1242
1243		/*
1244		 * Links created during consumer probe may be in the "consumer
1245		 * probe" state to start with if the supplier is still probing
1246		 * when they are created and they may become "active" if the
1247		 * consumer probe returns first.  Skip them here.
1248		 */
1249		if (link->status == DL_STATE_CONSUMER_PROBE ||
1250		    link->status == DL_STATE_ACTIVE)
1251			continue;
1252
1253		WARN_ON(link->status != DL_STATE_DORMANT);
1254		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1255
1256		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1257			driver_deferred_probe_add(link->consumer);
1258	}
1259
1260	if (defer_sync_state_count)
1261		__device_links_supplier_defer_sync(dev);
1262	else
1263		__device_links_queue_sync_state(dev, &sync_list);
1264
1265	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1266		struct device *supplier;
1267
1268		if (!(link->flags & DL_FLAG_MANAGED))
1269			continue;
1270
1271		supplier = link->supplier;
1272		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1273			/*
1274			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1275			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1276			 * save to drop the managed link completely.
1277			 */
1278			device_link_drop_managed(link);
 
 
 
 
 
 
 
 
 
 
 
 
1279		} else {
1280			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1281			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1282		}
1283
1284		/*
1285		 * This needs to be done even for the deleted
1286		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1287		 * device link that was preventing the supplier from getting a
1288		 * sync_state() call.
1289		 */
1290		if (defer_sync_state_count)
1291			__device_links_supplier_defer_sync(supplier);
1292		else
1293			__device_links_queue_sync_state(supplier, &sync_list);
1294	}
1295
1296	dev->links.status = DL_DEV_DRIVER_BOUND;
1297
1298	device_links_write_unlock();
1299
1300	device_links_flush_sync_list(&sync_list, dev);
1301}
1302
1303/**
1304 * __device_links_no_driver - Update links of a device without a driver.
1305 * @dev: Device without a drvier.
1306 *
1307 * Delete all non-persistent links from this device to any suppliers.
1308 *
1309 * Persistent links stay around, but their status is changed to "available",
1310 * unless they already are in the "supplier unbind in progress" state in which
1311 * case they need not be updated.
1312 *
1313 * Links without the DL_FLAG_MANAGED flag set are ignored.
1314 */
1315static void __device_links_no_driver(struct device *dev)
1316{
1317	struct device_link *link, *ln;
1318
1319	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1320		if (!(link->flags & DL_FLAG_MANAGED))
1321			continue;
1322
1323		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1324			device_link_drop_managed(link);
1325			continue;
1326		}
1327
1328		if (link->status != DL_STATE_CONSUMER_PROBE &&
1329		    link->status != DL_STATE_ACTIVE)
1330			continue;
1331
1332		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1333			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1334		} else {
1335			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1336			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1337		}
1338	}
1339
1340	dev->links.status = DL_DEV_NO_DRIVER;
1341}
1342
1343/**
1344 * device_links_no_driver - Update links after failing driver probe.
1345 * @dev: Device whose driver has just failed to probe.
1346 *
1347 * Clean up leftover links to consumers for @dev and invoke
1348 * %__device_links_no_driver() to update links to suppliers for it as
1349 * appropriate.
1350 *
1351 * Links without the DL_FLAG_MANAGED flag set are ignored.
1352 */
1353void device_links_no_driver(struct device *dev)
1354{
1355	struct device_link *link;
1356
1357	device_links_write_lock();
1358
1359	list_for_each_entry(link, &dev->links.consumers, s_node) {
1360		if (!(link->flags & DL_FLAG_MANAGED))
1361			continue;
1362
1363		/*
1364		 * The probe has failed, so if the status of the link is
1365		 * "consumer probe" or "active", it must have been added by
1366		 * a probing consumer while this device was still probing.
1367		 * Change its state to "dormant", as it represents a valid
1368		 * relationship, but it is not functionally meaningful.
1369		 */
1370		if (link->status == DL_STATE_CONSUMER_PROBE ||
1371		    link->status == DL_STATE_ACTIVE)
1372			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1373	}
1374
1375	__device_links_no_driver(dev);
1376
1377	device_links_write_unlock();
1378}
1379
1380/**
1381 * device_links_driver_cleanup - Update links after driver removal.
1382 * @dev: Device whose driver has just gone away.
1383 *
1384 * Update links to consumers for @dev by changing their status to "dormant" and
1385 * invoke %__device_links_no_driver() to update links to suppliers for it as
1386 * appropriate.
1387 *
1388 * Links without the DL_FLAG_MANAGED flag set are ignored.
1389 */
1390void device_links_driver_cleanup(struct device *dev)
1391{
1392	struct device_link *link, *ln;
1393
1394	device_links_write_lock();
1395
1396	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1397		if (!(link->flags & DL_FLAG_MANAGED))
1398			continue;
1399
1400		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1401		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1402
1403		/*
1404		 * autoremove the links between this @dev and its consumer
1405		 * devices that are not active, i.e. where the link state
1406		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1407		 */
1408		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1409		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1410			device_link_drop_managed(link);
1411
1412		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1413	}
1414
1415	list_del_init(&dev->links.defer_sync);
1416	__device_links_no_driver(dev);
1417
1418	device_links_write_unlock();
1419}
1420
1421/**
1422 * device_links_busy - Check if there are any busy links to consumers.
1423 * @dev: Device to check.
1424 *
1425 * Check each consumer of the device and return 'true' if its link's status
1426 * is one of "consumer probe" or "active" (meaning that the given consumer is
1427 * probing right now or its driver is present).  Otherwise, change the link
1428 * state to "supplier unbind" to prevent the consumer from being probed
1429 * successfully going forward.
1430 *
1431 * Return 'false' if there are no probing or active consumers.
1432 *
1433 * Links without the DL_FLAG_MANAGED flag set are ignored.
1434 */
1435bool device_links_busy(struct device *dev)
1436{
1437	struct device_link *link;
1438	bool ret = false;
1439
1440	device_links_write_lock();
1441
1442	list_for_each_entry(link, &dev->links.consumers, s_node) {
1443		if (!(link->flags & DL_FLAG_MANAGED))
1444			continue;
1445
1446		if (link->status == DL_STATE_CONSUMER_PROBE
1447		    || link->status == DL_STATE_ACTIVE) {
1448			ret = true;
1449			break;
1450		}
1451		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1452	}
1453
1454	dev->links.status = DL_DEV_UNBINDING;
1455
1456	device_links_write_unlock();
1457	return ret;
1458}
1459
1460/**
1461 * device_links_unbind_consumers - Force unbind consumers of the given device.
1462 * @dev: Device to unbind the consumers of.
1463 *
1464 * Walk the list of links to consumers for @dev and if any of them is in the
1465 * "consumer probe" state, wait for all device probes in progress to complete
1466 * and start over.
1467 *
1468 * If that's not the case, change the status of the link to "supplier unbind"
1469 * and check if the link was in the "active" state.  If so, force the consumer
1470 * driver to unbind and start over (the consumer will not re-probe as we have
1471 * changed the state of the link already).
1472 *
1473 * Links without the DL_FLAG_MANAGED flag set are ignored.
1474 */
1475void device_links_unbind_consumers(struct device *dev)
1476{
1477	struct device_link *link;
1478
1479 start:
1480	device_links_write_lock();
1481
1482	list_for_each_entry(link, &dev->links.consumers, s_node) {
1483		enum device_link_state status;
1484
1485		if (!(link->flags & DL_FLAG_MANAGED) ||
1486		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1487			continue;
1488
1489		status = link->status;
1490		if (status == DL_STATE_CONSUMER_PROBE) {
1491			device_links_write_unlock();
1492
1493			wait_for_device_probe();
1494			goto start;
1495		}
1496		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1497		if (status == DL_STATE_ACTIVE) {
1498			struct device *consumer = link->consumer;
1499
1500			get_device(consumer);
1501
1502			device_links_write_unlock();
1503
1504			device_release_driver_internal(consumer, NULL,
1505						       consumer->parent);
1506			put_device(consumer);
1507			goto start;
1508		}
1509	}
1510
1511	device_links_write_unlock();
1512}
1513
1514/**
1515 * device_links_purge - Delete existing links to other devices.
1516 * @dev: Target device.
1517 */
1518static void device_links_purge(struct device *dev)
1519{
1520	struct device_link *link, *ln;
1521
1522	if (dev->class == &devlink_class)
1523		return;
1524
1525	/*
1526	 * Delete all of the remaining links from this device to any other
1527	 * devices (either consumers or suppliers).
1528	 */
1529	device_links_write_lock();
1530
1531	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1532		WARN_ON(link->status == DL_STATE_ACTIVE);
1533		__device_link_del(&link->kref);
1534	}
1535
1536	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1537		WARN_ON(link->status != DL_STATE_DORMANT &&
1538			link->status != DL_STATE_NONE);
1539		__device_link_del(&link->kref);
1540	}
1541
1542	device_links_write_unlock();
1543}
1544
1545#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1546					 DL_FLAG_SYNC_STATE_ONLY)
1547#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1548					 DL_FLAG_AUTOPROBE_CONSUMER)
1549#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1550					 DL_FLAG_PM_RUNTIME)
1551
1552static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1553static int __init fw_devlink_setup(char *arg)
1554{
1555	if (!arg)
1556		return -EINVAL;
1557
1558	if (strcmp(arg, "off") == 0) {
1559		fw_devlink_flags = 0;
1560	} else if (strcmp(arg, "permissive") == 0) {
1561		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1562	} else if (strcmp(arg, "on") == 0) {
1563		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1564	} else if (strcmp(arg, "rpm") == 0) {
1565		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1566	}
1567	return 0;
1568}
1569early_param("fw_devlink", fw_devlink_setup);
1570
1571static bool fw_devlink_strict;
1572static int __init fw_devlink_strict_setup(char *arg)
1573{
1574	return strtobool(arg, &fw_devlink_strict);
1575}
1576early_param("fw_devlink.strict", fw_devlink_strict_setup);
1577
1578u32 fw_devlink_get_flags(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1579{
 
 
 
1580	return fw_devlink_flags;
1581}
1582
1583static bool fw_devlink_is_permissive(void)
1584{
1585	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1586}
1587
1588bool fw_devlink_is_strict(void)
1589{
1590	return fw_devlink_strict && !fw_devlink_is_permissive();
1591}
1592
1593static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1594{
1595	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1596		return;
1597
1598	fwnode_call_int_op(fwnode, add_links);
1599	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1600}
1601
1602static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1603{
1604	struct fwnode_handle *child = NULL;
1605
1606	fw_devlink_parse_fwnode(fwnode);
1607
1608	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1609		fw_devlink_parse_fwtree(child);
1610}
1611
1612static void fw_devlink_relax_link(struct device_link *link)
1613{
1614	if (!(link->flags & DL_FLAG_INFERRED))
1615		return;
1616
1617	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1618		return;
1619
1620	pm_runtime_drop_link(link);
1621	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1622	dev_dbg(link->consumer, "Relaxing link with %s\n",
1623		dev_name(link->supplier));
1624}
1625
1626static int fw_devlink_no_driver(struct device *dev, void *data)
1627{
1628	struct device_link *link = to_devlink(dev);
1629
1630	if (!link->supplier->can_match)
1631		fw_devlink_relax_link(link);
1632
1633	return 0;
1634}
1635
1636void fw_devlink_drivers_done(void)
1637{
1638	fw_devlink_drv_reg_done = true;
1639	device_links_write_lock();
1640	class_for_each_device(&devlink_class, NULL, NULL,
1641			      fw_devlink_no_driver);
1642	device_links_write_unlock();
1643}
1644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645static void fw_devlink_unblock_consumers(struct device *dev)
1646{
1647	struct device_link *link;
1648
1649	if (!fw_devlink_flags || fw_devlink_is_permissive())
1650		return;
1651
1652	device_links_write_lock();
1653	list_for_each_entry(link, &dev->links.consumers, s_node)
1654		fw_devlink_relax_link(link);
1655	device_links_write_unlock();
1656}
1657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658/**
1659 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1660 * @con: Device to check dependencies for.
1661 * @sup: Device to check against.
1662 *
1663 * Check if @sup depends on @con or any device dependent on it (its child or
1664 * its consumer etc).  When such a cyclic dependency is found, convert all
1665 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1666 * This is the equivalent of doing fw_devlink=permissive just between the
1667 * devices in the cycle. We need to do this because, at this point, fw_devlink
1668 * can't tell which of these dependencies is not a real dependency.
 
 
 
 
 
 
1669 *
1670 * Return 1 if a cycle is found. Otherwise, return 0.
1671 */
1672static int fw_devlink_relax_cycle(struct device *con, void *sup)
 
1673{
1674	struct device_link *link;
1675	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676
1677	if (con == sup)
1678		return 1;
 
 
 
 
 
 
1679
1680	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1681	if (ret)
1682		return ret;
 
 
1683
1684	list_for_each_entry(link, &con->links.consumers, s_node) {
1685		if ((link->flags & ~DL_FLAG_INFERRED) ==
1686		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1687			continue;
1688
1689		if (!fw_devlink_relax_cycle(link->consumer, sup))
 
 
 
 
 
 
1690			continue;
1691
1692		ret = 1;
 
 
 
 
 
 
 
 
1693
1694		fw_devlink_relax_link(link);
1695	}
 
 
1696	return ret;
1697}
1698
1699/**
1700 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1701 * @con: consumer device for the device link
1702 * @sup_handle: fwnode handle of supplier
1703 * @flags: devlink flags
1704 *
1705 * This function will try to create a device link between the consumer device
1706 * @con and the supplier device represented by @sup_handle.
1707 *
1708 * The supplier has to be provided as a fwnode because incorrect cycles in
1709 * fwnode links can sometimes cause the supplier device to never be created.
1710 * This function detects such cases and returns an error if it cannot create a
1711 * device link from the consumer to a missing supplier.
1712 *
1713 * Returns,
1714 * 0 on successfully creating a device link
1715 * -EINVAL if the device link cannot be created as expected
1716 * -EAGAIN if the device link cannot be created right now, but it may be
1717 *  possible to do that in the future
1718 */
1719static int fw_devlink_create_devlink(struct device *con,
1720				     struct fwnode_handle *sup_handle, u32 flags)
 
1721{
1722	struct device *sup_dev;
1723	int ret = 0;
 
 
 
 
 
 
1724
1725	/*
1726	 * In some cases, a device P might also be a supplier to its child node
1727	 * C. However, this would defer the probe of C until the probe of P
1728	 * completes successfully. This is perfectly fine in the device driver
1729	 * model. device_add() doesn't guarantee probe completion of the device
1730	 * by the time it returns.
1731	 *
1732	 * However, there are a few drivers that assume C will finish probing
1733	 * as soon as it's added and before P finishes probing. So, we provide
1734	 * a flag to let fw_devlink know not to delay the probe of C until the
1735	 * probe of P completes successfully.
1736	 *
1737	 * When such a flag is set, we can't create device links where P is the
1738	 * supplier of C as that would delay the probe of C.
1739	 */
1740	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1741	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1742		return -EINVAL;
1743
1744	sup_dev = get_dev_from_fwnode(sup_handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745	if (sup_dev) {
1746		/*
1747		 * If it's one of those drivers that don't actually bind to
1748		 * their device using driver core, then don't wait on this
1749		 * supplier device indefinitely.
1750		 */
1751		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1752		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
 
 
 
1753			ret = -EINVAL;
1754			goto out;
1755		}
1756
1757		/*
1758		 * If this fails, it is due to cycles in device links.  Just
1759		 * give up on this link and treat it as invalid.
1760		 */
1761		if (!device_link_add(con, sup_dev, flags) &&
1762		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1763			dev_info(con, "Fixing up cyclic dependency with %s\n",
1764				 dev_name(sup_dev));
1765			device_links_write_lock();
1766			fw_devlink_relax_cycle(con, sup_dev);
1767			device_links_write_unlock();
1768			device_link_add(con, sup_dev,
1769					FW_DEVLINK_FLAGS_PERMISSIVE);
1770			ret = -EINVAL;
1771		}
1772
1773		goto out;
1774	}
1775
1776	/* Supplier that's already initialized without a struct device. */
1777	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1778		return -EINVAL;
1779
1780	/*
1781	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1782	 * cycles. So cycle detection isn't necessary and shouldn't be
1783	 * done.
1784	 */
1785	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1786		return -EAGAIN;
1787
1788	/*
1789	 * If we can't find the supplier device from its fwnode, it might be
1790	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1791	 * be broken by applying logic. Check for these types of cycles and
1792	 * break them so that devices in the cycle probe properly.
1793	 *
1794	 * If the supplier's parent is dependent on the consumer, then the
1795	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1796	 * can't tell which of the inferred dependencies are incorrect, don't
1797	 * enforce probe ordering between any of the devices in this cyclic
1798	 * dependency. Do this by relaxing all the fw_devlink device links in
1799	 * this cycle and by treating the fwnode link between the consumer and
1800	 * the supplier as an invalid dependency.
1801	 */
1802	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1803	if (sup_dev && device_is_dependent(con, sup_dev)) {
1804		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1805			 sup_handle, dev_name(sup_dev));
1806		device_links_write_lock();
1807		fw_devlink_relax_cycle(con, sup_dev);
1808		device_links_write_unlock();
1809		ret = -EINVAL;
1810	} else {
1811		/*
1812		 * Can't check for cycles or no cycles. So let's try
1813		 * again later.
1814		 */
1815		ret = -EAGAIN;
1816	}
1817
 
1818out:
1819	put_device(sup_dev);
1820	return ret;
1821}
1822
1823/**
1824 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1825 * @dev: Device that needs to be linked to its consumers
1826 *
1827 * This function looks at all the consumer fwnodes of @dev and creates device
1828 * links between the consumer device and @dev (supplier).
1829 *
1830 * If the consumer device has not been added yet, then this function creates a
1831 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1832 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1833 * sync_state() callback before the real consumer device gets to be added and
1834 * then probed.
1835 *
1836 * Once device links are created from the real consumer to @dev (supplier), the
1837 * fwnode links are deleted.
1838 */
1839static void __fw_devlink_link_to_consumers(struct device *dev)
1840{
1841	struct fwnode_handle *fwnode = dev->fwnode;
1842	struct fwnode_link *link, *tmp;
1843
1844	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1845		u32 dl_flags = fw_devlink_get_flags();
1846		struct device *con_dev;
1847		bool own_link = true;
1848		int ret;
1849
1850		con_dev = get_dev_from_fwnode(link->consumer);
1851		/*
1852		 * If consumer device is not available yet, make a "proxy"
1853		 * SYNC_STATE_ONLY link from the consumer's parent device to
1854		 * the supplier device. This is necessary to make sure the
1855		 * supplier doesn't get a sync_state() callback before the real
1856		 * consumer can create a device link to the supplier.
1857		 *
1858		 * This proxy link step is needed to handle the case where the
1859		 * consumer's parent device is added before the supplier.
1860		 */
1861		if (!con_dev) {
1862			con_dev = fwnode_get_next_parent_dev(link->consumer);
1863			/*
1864			 * However, if the consumer's parent device is also the
1865			 * parent of the supplier, don't create a
1866			 * consumer-supplier link from the parent to its child
1867			 * device. Such a dependency is impossible.
1868			 */
1869			if (con_dev &&
1870			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1871				put_device(con_dev);
1872				con_dev = NULL;
1873			} else {
1874				own_link = false;
1875				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1876			}
1877		}
1878
1879		if (!con_dev)
1880			continue;
1881
1882		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1883		put_device(con_dev);
1884		if (!own_link || ret == -EAGAIN)
1885			continue;
1886
1887		list_del(&link->s_hook);
1888		list_del(&link->c_hook);
1889		kfree(link);
1890	}
1891}
1892
1893/**
1894 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1895 * @dev: The consumer device that needs to be linked to its suppliers
1896 * @fwnode: Root of the fwnode tree that is used to create device links
1897 *
1898 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1899 * @fwnode and creates device links between @dev (consumer) and all the
1900 * supplier devices of the entire fwnode tree at @fwnode.
1901 *
1902 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1903 * and the real suppliers of @dev. Once these device links are created, the
1904 * fwnode links are deleted. When such device links are successfully created,
1905 * this function is called recursively on those supplier devices. This is
1906 * needed to detect and break some invalid cycles in fwnode links.  See
1907 * fw_devlink_create_devlink() for more details.
1908 *
1909 * In addition, it also looks at all the suppliers of the entire fwnode tree
1910 * because some of the child devices of @dev that have not been added yet
1911 * (because @dev hasn't probed) might already have their suppliers added to
1912 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1913 * @dev (consumer) and these suppliers to make sure they don't execute their
1914 * sync_state() callbacks before these child devices have a chance to create
1915 * their device links. The fwnode links that correspond to the child devices
1916 * aren't delete because they are needed later to create the device links
1917 * between the real consumer and supplier devices.
1918 */
1919static void __fw_devlink_link_to_suppliers(struct device *dev,
1920					   struct fwnode_handle *fwnode)
1921{
1922	bool own_link = (dev->fwnode == fwnode);
1923	struct fwnode_link *link, *tmp;
1924	struct fwnode_handle *child = NULL;
1925	u32 dl_flags;
1926
1927	if (own_link)
1928		dl_flags = fw_devlink_get_flags();
1929	else
1930		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1931
1932	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1933		int ret;
1934		struct device *sup_dev;
1935		struct fwnode_handle *sup = link->supplier;
1936
1937		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1938		if (!own_link || ret == -EAGAIN)
1939			continue;
1940
1941		list_del(&link->s_hook);
1942		list_del(&link->c_hook);
1943		kfree(link);
1944
1945		/* If no device link was created, nothing more to do. */
1946		if (ret)
1947			continue;
1948
1949		/*
1950		 * If a device link was successfully created to a supplier, we
1951		 * now need to try and link the supplier to all its suppliers.
1952		 *
1953		 * This is needed to detect and delete false dependencies in
1954		 * fwnode links that haven't been converted to a device link
1955		 * yet. See comments in fw_devlink_create_devlink() for more
1956		 * details on the false dependency.
1957		 *
1958		 * Without deleting these false dependencies, some devices will
1959		 * never probe because they'll keep waiting for their false
1960		 * dependency fwnode links to be converted to device links.
1961		 */
1962		sup_dev = get_dev_from_fwnode(sup);
1963		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1964		put_device(sup_dev);
1965	}
1966
1967	/*
1968	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1969	 * all the descendants. This proxy link step is needed to handle the
1970	 * case where the supplier is added before the consumer's parent device
1971	 * (@dev).
1972	 */
1973	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1974		__fw_devlink_link_to_suppliers(dev, child);
1975}
1976
1977static void fw_devlink_link_device(struct device *dev)
1978{
1979	struct fwnode_handle *fwnode = dev->fwnode;
1980
1981	if (!fw_devlink_flags)
1982		return;
1983
1984	fw_devlink_parse_fwtree(fwnode);
1985
1986	mutex_lock(&fwnode_link_lock);
1987	__fw_devlink_link_to_consumers(dev);
1988	__fw_devlink_link_to_suppliers(dev, fwnode);
1989	mutex_unlock(&fwnode_link_lock);
1990}
1991
1992/* Device links support end. */
1993
1994int (*platform_notify)(struct device *dev) = NULL;
1995int (*platform_notify_remove)(struct device *dev) = NULL;
1996static struct kobject *dev_kobj;
1997struct kobject *sysfs_dev_char_kobj;
1998struct kobject *sysfs_dev_block_kobj;
 
 
 
 
1999
2000static DEFINE_MUTEX(device_hotplug_lock);
2001
2002void lock_device_hotplug(void)
2003{
2004	mutex_lock(&device_hotplug_lock);
2005}
2006
2007void unlock_device_hotplug(void)
2008{
2009	mutex_unlock(&device_hotplug_lock);
2010}
2011
2012int lock_device_hotplug_sysfs(void)
2013{
2014	if (mutex_trylock(&device_hotplug_lock))
2015		return 0;
2016
2017	/* Avoid busy looping (5 ms of sleep should do). */
2018	msleep(5);
2019	return restart_syscall();
2020}
2021
2022#ifdef CONFIG_BLOCK
2023static inline int device_is_not_partition(struct device *dev)
2024{
2025	return !(dev->type == &part_type);
2026}
2027#else
2028static inline int device_is_not_partition(struct device *dev)
2029{
2030	return 1;
2031}
2032#endif
2033
2034static int
2035device_platform_notify(struct device *dev, enum kobject_action action)
2036{
2037	int ret;
2038
2039	ret = acpi_platform_notify(dev, action);
2040	if (ret)
2041		return ret;
2042
2043	ret = software_node_notify(dev, action);
2044	if (ret)
2045		return ret;
2046
2047	if (platform_notify && action == KOBJ_ADD)
2048		platform_notify(dev);
2049	else if (platform_notify_remove && action == KOBJ_REMOVE)
2050		platform_notify_remove(dev);
2051	return 0;
 
 
 
2052}
2053
2054/**
2055 * dev_driver_string - Return a device's driver name, if at all possible
2056 * @dev: struct device to get the name of
2057 *
2058 * Will return the device's driver's name if it is bound to a device.  If
2059 * the device is not bound to a driver, it will return the name of the bus
2060 * it is attached to.  If it is not attached to a bus either, an empty
2061 * string will be returned.
2062 */
2063const char *dev_driver_string(const struct device *dev)
2064{
2065	struct device_driver *drv;
2066
2067	/* dev->driver can change to NULL underneath us because of unbinding,
2068	 * so be careful about accessing it.  dev->bus and dev->class should
2069	 * never change once they are set, so they don't need special care.
2070	 */
2071	drv = READ_ONCE(dev->driver);
2072	return drv ? drv->name : dev_bus_name(dev);
2073}
2074EXPORT_SYMBOL(dev_driver_string);
2075
2076#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2077
2078static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2079			     char *buf)
2080{
2081	struct device_attribute *dev_attr = to_dev_attr(attr);
2082	struct device *dev = kobj_to_dev(kobj);
2083	ssize_t ret = -EIO;
2084
2085	if (dev_attr->show)
2086		ret = dev_attr->show(dev, dev_attr, buf);
2087	if (ret >= (ssize_t)PAGE_SIZE) {
2088		printk("dev_attr_show: %pS returned bad count\n",
2089				dev_attr->show);
2090	}
2091	return ret;
2092}
2093
2094static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2095			      const char *buf, size_t count)
2096{
2097	struct device_attribute *dev_attr = to_dev_attr(attr);
2098	struct device *dev = kobj_to_dev(kobj);
2099	ssize_t ret = -EIO;
2100
2101	if (dev_attr->store)
2102		ret = dev_attr->store(dev, dev_attr, buf, count);
2103	return ret;
2104}
2105
2106static const struct sysfs_ops dev_sysfs_ops = {
2107	.show	= dev_attr_show,
2108	.store	= dev_attr_store,
2109};
2110
2111#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2112
2113ssize_t device_store_ulong(struct device *dev,
2114			   struct device_attribute *attr,
2115			   const char *buf, size_t size)
2116{
2117	struct dev_ext_attribute *ea = to_ext_attr(attr);
2118	int ret;
2119	unsigned long new;
2120
2121	ret = kstrtoul(buf, 0, &new);
2122	if (ret)
2123		return ret;
2124	*(unsigned long *)(ea->var) = new;
2125	/* Always return full write size even if we didn't consume all */
2126	return size;
2127}
2128EXPORT_SYMBOL_GPL(device_store_ulong);
2129
2130ssize_t device_show_ulong(struct device *dev,
2131			  struct device_attribute *attr,
2132			  char *buf)
2133{
2134	struct dev_ext_attribute *ea = to_ext_attr(attr);
2135	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2136}
2137EXPORT_SYMBOL_GPL(device_show_ulong);
2138
2139ssize_t device_store_int(struct device *dev,
2140			 struct device_attribute *attr,
2141			 const char *buf, size_t size)
2142{
2143	struct dev_ext_attribute *ea = to_ext_attr(attr);
2144	int ret;
2145	long new;
2146
2147	ret = kstrtol(buf, 0, &new);
2148	if (ret)
2149		return ret;
2150
2151	if (new > INT_MAX || new < INT_MIN)
2152		return -EINVAL;
2153	*(int *)(ea->var) = new;
2154	/* Always return full write size even if we didn't consume all */
2155	return size;
2156}
2157EXPORT_SYMBOL_GPL(device_store_int);
2158
2159ssize_t device_show_int(struct device *dev,
2160			struct device_attribute *attr,
2161			char *buf)
2162{
2163	struct dev_ext_attribute *ea = to_ext_attr(attr);
2164
2165	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2166}
2167EXPORT_SYMBOL_GPL(device_show_int);
2168
2169ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2170			  const char *buf, size_t size)
2171{
2172	struct dev_ext_attribute *ea = to_ext_attr(attr);
2173
2174	if (strtobool(buf, ea->var) < 0)
2175		return -EINVAL;
2176
2177	return size;
2178}
2179EXPORT_SYMBOL_GPL(device_store_bool);
2180
2181ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2182			 char *buf)
2183{
2184	struct dev_ext_attribute *ea = to_ext_attr(attr);
2185
2186	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2187}
2188EXPORT_SYMBOL_GPL(device_show_bool);
2189
2190/**
2191 * device_release - free device structure.
2192 * @kobj: device's kobject.
2193 *
2194 * This is called once the reference count for the object
2195 * reaches 0. We forward the call to the device's release
2196 * method, which should handle actually freeing the structure.
2197 */
2198static void device_release(struct kobject *kobj)
2199{
2200	struct device *dev = kobj_to_dev(kobj);
2201	struct device_private *p = dev->p;
2202
2203	/*
2204	 * Some platform devices are driven without driver attached
2205	 * and managed resources may have been acquired.  Make sure
2206	 * all resources are released.
2207	 *
2208	 * Drivers still can add resources into device after device
2209	 * is deleted but alive, so release devres here to avoid
2210	 * possible memory leak.
2211	 */
2212	devres_release_all(dev);
2213
2214	kfree(dev->dma_range_map);
2215
2216	if (dev->release)
2217		dev->release(dev);
2218	else if (dev->type && dev->type->release)
2219		dev->type->release(dev);
2220	else if (dev->class && dev->class->dev_release)
2221		dev->class->dev_release(dev);
2222	else
2223		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2224			dev_name(dev));
2225	kfree(p);
2226}
2227
2228static const void *device_namespace(struct kobject *kobj)
2229{
2230	struct device *dev = kobj_to_dev(kobj);
2231	const void *ns = NULL;
2232
2233	if (dev->class && dev->class->ns_type)
2234		ns = dev->class->namespace(dev);
2235
2236	return ns;
2237}
2238
2239static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2240{
2241	struct device *dev = kobj_to_dev(kobj);
2242
2243	if (dev->class && dev->class->get_ownership)
2244		dev->class->get_ownership(dev, uid, gid);
2245}
2246
2247static struct kobj_type device_ktype = {
2248	.release	= device_release,
2249	.sysfs_ops	= &dev_sysfs_ops,
2250	.namespace	= device_namespace,
2251	.get_ownership	= device_get_ownership,
2252};
2253
2254
2255static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2256{
2257	struct kobj_type *ktype = get_ktype(kobj);
2258
2259	if (ktype == &device_ktype) {
2260		struct device *dev = kobj_to_dev(kobj);
2261		if (dev->bus)
2262			return 1;
2263		if (dev->class)
2264			return 1;
2265	}
2266	return 0;
2267}
2268
2269static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2270{
2271	struct device *dev = kobj_to_dev(kobj);
2272
2273	if (dev->bus)
2274		return dev->bus->name;
2275	if (dev->class)
2276		return dev->class->name;
2277	return NULL;
2278}
2279
2280static int dev_uevent(struct kset *kset, struct kobject *kobj,
2281		      struct kobj_uevent_env *env)
2282{
2283	struct device *dev = kobj_to_dev(kobj);
2284	int retval = 0;
2285
2286	/* add device node properties if present */
2287	if (MAJOR(dev->devt)) {
2288		const char *tmp;
2289		const char *name;
2290		umode_t mode = 0;
2291		kuid_t uid = GLOBAL_ROOT_UID;
2292		kgid_t gid = GLOBAL_ROOT_GID;
2293
2294		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2295		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2296		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2297		if (name) {
2298			add_uevent_var(env, "DEVNAME=%s", name);
2299			if (mode)
2300				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2301			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2302				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2303			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2304				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2305			kfree(tmp);
2306		}
2307	}
2308
2309	if (dev->type && dev->type->name)
2310		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2311
2312	if (dev->driver)
2313		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2314
2315	/* Add common DT information about the device */
2316	of_device_uevent(dev, env);
2317
2318	/* have the bus specific function add its stuff */
2319	if (dev->bus && dev->bus->uevent) {
2320		retval = dev->bus->uevent(dev, env);
2321		if (retval)
2322			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2323				 dev_name(dev), __func__, retval);
2324	}
2325
2326	/* have the class specific function add its stuff */
2327	if (dev->class && dev->class->dev_uevent) {
2328		retval = dev->class->dev_uevent(dev, env);
2329		if (retval)
2330			pr_debug("device: '%s': %s: class uevent() "
2331				 "returned %d\n", dev_name(dev),
2332				 __func__, retval);
2333	}
2334
2335	/* have the device type specific function add its stuff */
2336	if (dev->type && dev->type->uevent) {
2337		retval = dev->type->uevent(dev, env);
2338		if (retval)
2339			pr_debug("device: '%s': %s: dev_type uevent() "
2340				 "returned %d\n", dev_name(dev),
2341				 __func__, retval);
2342	}
2343
2344	return retval;
2345}
2346
2347static const struct kset_uevent_ops device_uevent_ops = {
2348	.filter =	dev_uevent_filter,
2349	.name =		dev_uevent_name,
2350	.uevent =	dev_uevent,
2351};
2352
2353static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2354			   char *buf)
2355{
2356	struct kobject *top_kobj;
2357	struct kset *kset;
2358	struct kobj_uevent_env *env = NULL;
2359	int i;
2360	int len = 0;
2361	int retval;
2362
2363	/* search the kset, the device belongs to */
2364	top_kobj = &dev->kobj;
2365	while (!top_kobj->kset && top_kobj->parent)
2366		top_kobj = top_kobj->parent;
2367	if (!top_kobj->kset)
2368		goto out;
2369
2370	kset = top_kobj->kset;
2371	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2372		goto out;
2373
2374	/* respect filter */
2375	if (kset->uevent_ops && kset->uevent_ops->filter)
2376		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2377			goto out;
2378
2379	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2380	if (!env)
2381		return -ENOMEM;
2382
2383	/* let the kset specific function add its keys */
2384	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2385	if (retval)
2386		goto out;
2387
2388	/* copy keys to file */
2389	for (i = 0; i < env->envp_idx; i++)
2390		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2391out:
2392	kfree(env);
2393	return len;
2394}
2395
2396static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2397			    const char *buf, size_t count)
2398{
2399	int rc;
2400
2401	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2402
2403	if (rc) {
2404		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2405		return rc;
2406	}
2407
2408	return count;
2409}
2410static DEVICE_ATTR_RW(uevent);
2411
2412static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2413			   char *buf)
2414{
2415	bool val;
2416
2417	device_lock(dev);
2418	val = !dev->offline;
2419	device_unlock(dev);
2420	return sysfs_emit(buf, "%u\n", val);
2421}
2422
2423static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2424			    const char *buf, size_t count)
2425{
2426	bool val;
2427	int ret;
2428
2429	ret = strtobool(buf, &val);
2430	if (ret < 0)
2431		return ret;
2432
2433	ret = lock_device_hotplug_sysfs();
2434	if (ret)
2435		return ret;
2436
2437	ret = val ? device_online(dev) : device_offline(dev);
2438	unlock_device_hotplug();
2439	return ret < 0 ? ret : count;
2440}
2441static DEVICE_ATTR_RW(online);
2442
2443static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2444			      char *buf)
2445{
2446	const char *loc;
2447
2448	switch (dev->removable) {
2449	case DEVICE_REMOVABLE:
2450		loc = "removable";
2451		break;
2452	case DEVICE_FIXED:
2453		loc = "fixed";
2454		break;
2455	default:
2456		loc = "unknown";
2457	}
2458	return sysfs_emit(buf, "%s\n", loc);
2459}
2460static DEVICE_ATTR_RO(removable);
2461
2462int device_add_groups(struct device *dev, const struct attribute_group **groups)
2463{
2464	return sysfs_create_groups(&dev->kobj, groups);
2465}
2466EXPORT_SYMBOL_GPL(device_add_groups);
2467
2468void device_remove_groups(struct device *dev,
2469			  const struct attribute_group **groups)
2470{
2471	sysfs_remove_groups(&dev->kobj, groups);
2472}
2473EXPORT_SYMBOL_GPL(device_remove_groups);
2474
2475union device_attr_group_devres {
2476	const struct attribute_group *group;
2477	const struct attribute_group **groups;
2478};
2479
2480static int devm_attr_group_match(struct device *dev, void *res, void *data)
2481{
2482	return ((union device_attr_group_devres *)res)->group == data;
2483}
2484
2485static void devm_attr_group_remove(struct device *dev, void *res)
2486{
2487	union device_attr_group_devres *devres = res;
2488	const struct attribute_group *group = devres->group;
2489
2490	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2491	sysfs_remove_group(&dev->kobj, group);
2492}
2493
2494static void devm_attr_groups_remove(struct device *dev, void *res)
2495{
2496	union device_attr_group_devres *devres = res;
2497	const struct attribute_group **groups = devres->groups;
2498
2499	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2500	sysfs_remove_groups(&dev->kobj, groups);
2501}
2502
2503/**
2504 * devm_device_add_group - given a device, create a managed attribute group
2505 * @dev:	The device to create the group for
2506 * @grp:	The attribute group to create
2507 *
2508 * This function creates a group for the first time.  It will explicitly
2509 * warn and error if any of the attribute files being created already exist.
2510 *
2511 * Returns 0 on success or error code on failure.
2512 */
2513int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2514{
2515	union device_attr_group_devres *devres;
2516	int error;
2517
2518	devres = devres_alloc(devm_attr_group_remove,
2519			      sizeof(*devres), GFP_KERNEL);
2520	if (!devres)
2521		return -ENOMEM;
2522
2523	error = sysfs_create_group(&dev->kobj, grp);
2524	if (error) {
2525		devres_free(devres);
2526		return error;
2527	}
2528
2529	devres->group = grp;
2530	devres_add(dev, devres);
2531	return 0;
2532}
2533EXPORT_SYMBOL_GPL(devm_device_add_group);
2534
2535/**
2536 * devm_device_remove_group: remove a managed group from a device
2537 * @dev:	device to remove the group from
2538 * @grp:	group to remove
2539 *
2540 * This function removes a group of attributes from a device. The attributes
2541 * previously have to have been created for this group, otherwise it will fail.
2542 */
2543void devm_device_remove_group(struct device *dev,
2544			      const struct attribute_group *grp)
2545{
2546	WARN_ON(devres_release(dev, devm_attr_group_remove,
2547			       devm_attr_group_match,
2548			       /* cast away const */ (void *)grp));
2549}
2550EXPORT_SYMBOL_GPL(devm_device_remove_group);
2551
2552/**
2553 * devm_device_add_groups - create a bunch of managed attribute groups
2554 * @dev:	The device to create the group for
2555 * @groups:	The attribute groups to create, NULL terminated
2556 *
2557 * This function creates a bunch of managed attribute groups.  If an error
2558 * occurs when creating a group, all previously created groups will be
2559 * removed, unwinding everything back to the original state when this
2560 * function was called.  It will explicitly warn and error if any of the
2561 * attribute files being created already exist.
2562 *
2563 * Returns 0 on success or error code from sysfs_create_group on failure.
2564 */
2565int devm_device_add_groups(struct device *dev,
2566			   const struct attribute_group **groups)
2567{
2568	union device_attr_group_devres *devres;
2569	int error;
2570
2571	devres = devres_alloc(devm_attr_groups_remove,
2572			      sizeof(*devres), GFP_KERNEL);
2573	if (!devres)
2574		return -ENOMEM;
2575
2576	error = sysfs_create_groups(&dev->kobj, groups);
2577	if (error) {
2578		devres_free(devres);
2579		return error;
2580	}
2581
2582	devres->groups = groups;
2583	devres_add(dev, devres);
2584	return 0;
2585}
2586EXPORT_SYMBOL_GPL(devm_device_add_groups);
2587
2588/**
2589 * devm_device_remove_groups - remove a list of managed groups
2590 *
2591 * @dev:	The device for the groups to be removed from
2592 * @groups:	NULL terminated list of groups to be removed
2593 *
2594 * If groups is not NULL, remove the specified groups from the device.
2595 */
2596void devm_device_remove_groups(struct device *dev,
2597			       const struct attribute_group **groups)
2598{
2599	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2600			       devm_attr_group_match,
2601			       /* cast away const */ (void *)groups));
2602}
2603EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2604
2605static int device_add_attrs(struct device *dev)
2606{
2607	struct class *class = dev->class;
2608	const struct device_type *type = dev->type;
2609	int error;
2610
2611	if (class) {
2612		error = device_add_groups(dev, class->dev_groups);
2613		if (error)
2614			return error;
2615	}
2616
2617	if (type) {
2618		error = device_add_groups(dev, type->groups);
2619		if (error)
2620			goto err_remove_class_groups;
2621	}
2622
2623	error = device_add_groups(dev, dev->groups);
2624	if (error)
2625		goto err_remove_type_groups;
2626
2627	if (device_supports_offline(dev) && !dev->offline_disabled) {
2628		error = device_create_file(dev, &dev_attr_online);
2629		if (error)
2630			goto err_remove_dev_groups;
2631	}
2632
2633	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2634		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2635		if (error)
2636			goto err_remove_dev_online;
2637	}
2638
2639	if (dev_removable_is_valid(dev)) {
2640		error = device_create_file(dev, &dev_attr_removable);
2641		if (error)
2642			goto err_remove_dev_waiting_for_supplier;
2643	}
2644
 
 
 
 
 
 
 
2645	return 0;
2646
 
 
2647 err_remove_dev_waiting_for_supplier:
2648	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2649 err_remove_dev_online:
2650	device_remove_file(dev, &dev_attr_online);
2651 err_remove_dev_groups:
2652	device_remove_groups(dev, dev->groups);
2653 err_remove_type_groups:
2654	if (type)
2655		device_remove_groups(dev, type->groups);
2656 err_remove_class_groups:
2657	if (class)
2658		device_remove_groups(dev, class->dev_groups);
2659
2660	return error;
2661}
2662
2663static void device_remove_attrs(struct device *dev)
2664{
2665	struct class *class = dev->class;
2666	const struct device_type *type = dev->type;
2667
 
 
 
 
 
2668	device_remove_file(dev, &dev_attr_removable);
2669	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2670	device_remove_file(dev, &dev_attr_online);
2671	device_remove_groups(dev, dev->groups);
2672
2673	if (type)
2674		device_remove_groups(dev, type->groups);
2675
2676	if (class)
2677		device_remove_groups(dev, class->dev_groups);
2678}
2679
2680static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2681			char *buf)
2682{
2683	return print_dev_t(buf, dev->devt);
2684}
2685static DEVICE_ATTR_RO(dev);
2686
2687/* /sys/devices/ */
2688struct kset *devices_kset;
2689
2690/**
2691 * devices_kset_move_before - Move device in the devices_kset's list.
2692 * @deva: Device to move.
2693 * @devb: Device @deva should come before.
2694 */
2695static void devices_kset_move_before(struct device *deva, struct device *devb)
2696{
2697	if (!devices_kset)
2698		return;
2699	pr_debug("devices_kset: Moving %s before %s\n",
2700		 dev_name(deva), dev_name(devb));
2701	spin_lock(&devices_kset->list_lock);
2702	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2703	spin_unlock(&devices_kset->list_lock);
2704}
2705
2706/**
2707 * devices_kset_move_after - Move device in the devices_kset's list.
2708 * @deva: Device to move
2709 * @devb: Device @deva should come after.
2710 */
2711static void devices_kset_move_after(struct device *deva, struct device *devb)
2712{
2713	if (!devices_kset)
2714		return;
2715	pr_debug("devices_kset: Moving %s after %s\n",
2716		 dev_name(deva), dev_name(devb));
2717	spin_lock(&devices_kset->list_lock);
2718	list_move(&deva->kobj.entry, &devb->kobj.entry);
2719	spin_unlock(&devices_kset->list_lock);
2720}
2721
2722/**
2723 * devices_kset_move_last - move the device to the end of devices_kset's list.
2724 * @dev: device to move
2725 */
2726void devices_kset_move_last(struct device *dev)
2727{
2728	if (!devices_kset)
2729		return;
2730	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2731	spin_lock(&devices_kset->list_lock);
2732	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2733	spin_unlock(&devices_kset->list_lock);
2734}
2735
2736/**
2737 * device_create_file - create sysfs attribute file for device.
2738 * @dev: device.
2739 * @attr: device attribute descriptor.
2740 */
2741int device_create_file(struct device *dev,
2742		       const struct device_attribute *attr)
2743{
2744	int error = 0;
2745
2746	if (dev) {
2747		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2748			"Attribute %s: write permission without 'store'\n",
2749			attr->attr.name);
2750		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2751			"Attribute %s: read permission without 'show'\n",
2752			attr->attr.name);
2753		error = sysfs_create_file(&dev->kobj, &attr->attr);
2754	}
2755
2756	return error;
2757}
2758EXPORT_SYMBOL_GPL(device_create_file);
2759
2760/**
2761 * device_remove_file - remove sysfs attribute file.
2762 * @dev: device.
2763 * @attr: device attribute descriptor.
2764 */
2765void device_remove_file(struct device *dev,
2766			const struct device_attribute *attr)
2767{
2768	if (dev)
2769		sysfs_remove_file(&dev->kobj, &attr->attr);
2770}
2771EXPORT_SYMBOL_GPL(device_remove_file);
2772
2773/**
2774 * device_remove_file_self - remove sysfs attribute file from its own method.
2775 * @dev: device.
2776 * @attr: device attribute descriptor.
2777 *
2778 * See kernfs_remove_self() for details.
2779 */
2780bool device_remove_file_self(struct device *dev,
2781			     const struct device_attribute *attr)
2782{
2783	if (dev)
2784		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2785	else
2786		return false;
2787}
2788EXPORT_SYMBOL_GPL(device_remove_file_self);
2789
2790/**
2791 * device_create_bin_file - create sysfs binary attribute file for device.
2792 * @dev: device.
2793 * @attr: device binary attribute descriptor.
2794 */
2795int device_create_bin_file(struct device *dev,
2796			   const struct bin_attribute *attr)
2797{
2798	int error = -EINVAL;
2799	if (dev)
2800		error = sysfs_create_bin_file(&dev->kobj, attr);
2801	return error;
2802}
2803EXPORT_SYMBOL_GPL(device_create_bin_file);
2804
2805/**
2806 * device_remove_bin_file - remove sysfs binary attribute file
2807 * @dev: device.
2808 * @attr: device binary attribute descriptor.
2809 */
2810void device_remove_bin_file(struct device *dev,
2811			    const struct bin_attribute *attr)
2812{
2813	if (dev)
2814		sysfs_remove_bin_file(&dev->kobj, attr);
2815}
2816EXPORT_SYMBOL_GPL(device_remove_bin_file);
2817
2818static void klist_children_get(struct klist_node *n)
2819{
2820	struct device_private *p = to_device_private_parent(n);
2821	struct device *dev = p->device;
2822
2823	get_device(dev);
2824}
2825
2826static void klist_children_put(struct klist_node *n)
2827{
2828	struct device_private *p = to_device_private_parent(n);
2829	struct device *dev = p->device;
2830
2831	put_device(dev);
2832}
2833
2834/**
2835 * device_initialize - init device structure.
2836 * @dev: device.
2837 *
2838 * This prepares the device for use by other layers by initializing
2839 * its fields.
2840 * It is the first half of device_register(), if called by
2841 * that function, though it can also be called separately, so one
2842 * may use @dev's fields. In particular, get_device()/put_device()
2843 * may be used for reference counting of @dev after calling this
2844 * function.
2845 *
2846 * All fields in @dev must be initialized by the caller to 0, except
2847 * for those explicitly set to some other value.  The simplest
2848 * approach is to use kzalloc() to allocate the structure containing
2849 * @dev.
2850 *
2851 * NOTE: Use put_device() to give up your reference instead of freeing
2852 * @dev directly once you have called this function.
2853 */
2854void device_initialize(struct device *dev)
2855{
2856	dev->kobj.kset = devices_kset;
2857	kobject_init(&dev->kobj, &device_ktype);
2858	INIT_LIST_HEAD(&dev->dma_pools);
2859	mutex_init(&dev->mutex);
2860#ifdef CONFIG_PROVE_LOCKING
2861	mutex_init(&dev->lockdep_mutex);
2862#endif
2863	lockdep_set_novalidate_class(&dev->mutex);
2864	spin_lock_init(&dev->devres_lock);
2865	INIT_LIST_HEAD(&dev->devres_head);
2866	device_pm_init(dev);
2867	set_dev_node(dev, -1);
2868#ifdef CONFIG_GENERIC_MSI_IRQ
2869	raw_spin_lock_init(&dev->msi_lock);
2870	INIT_LIST_HEAD(&dev->msi_list);
2871#endif
2872	INIT_LIST_HEAD(&dev->links.consumers);
2873	INIT_LIST_HEAD(&dev->links.suppliers);
2874	INIT_LIST_HEAD(&dev->links.defer_sync);
2875	dev->links.status = DL_DEV_NO_DRIVER;
2876#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2877    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2878    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2879	dev->dma_coherent = dma_default_coherent;
2880#endif
 
2881}
2882EXPORT_SYMBOL_GPL(device_initialize);
2883
2884struct kobject *virtual_device_parent(struct device *dev)
2885{
2886	static struct kobject *virtual_dir = NULL;
2887
2888	if (!virtual_dir)
2889		virtual_dir = kobject_create_and_add("virtual",
2890						     &devices_kset->kobj);
2891
2892	return virtual_dir;
2893}
2894
2895struct class_dir {
2896	struct kobject kobj;
2897	struct class *class;
2898};
2899
2900#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2901
2902static void class_dir_release(struct kobject *kobj)
2903{
2904	struct class_dir *dir = to_class_dir(kobj);
2905	kfree(dir);
2906}
2907
2908static const
2909struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2910{
2911	struct class_dir *dir = to_class_dir(kobj);
2912	return dir->class->ns_type;
2913}
2914
2915static struct kobj_type class_dir_ktype = {
2916	.release	= class_dir_release,
2917	.sysfs_ops	= &kobj_sysfs_ops,
2918	.child_ns_type	= class_dir_child_ns_type
2919};
2920
2921static struct kobject *
2922class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2923{
2924	struct class_dir *dir;
2925	int retval;
2926
2927	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2928	if (!dir)
2929		return ERR_PTR(-ENOMEM);
2930
2931	dir->class = class;
2932	kobject_init(&dir->kobj, &class_dir_ktype);
2933
2934	dir->kobj.kset = &class->p->glue_dirs;
2935
2936	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2937	if (retval < 0) {
2938		kobject_put(&dir->kobj);
2939		return ERR_PTR(retval);
2940	}
2941	return &dir->kobj;
2942}
2943
2944static DEFINE_MUTEX(gdp_mutex);
2945
2946static struct kobject *get_device_parent(struct device *dev,
2947					 struct device *parent)
2948{
2949	if (dev->class) {
2950		struct kobject *kobj = NULL;
 
 
2951		struct kobject *parent_kobj;
2952		struct kobject *k;
2953
2954#ifdef CONFIG_BLOCK
2955		/* block disks show up in /sys/block */
2956		if (sysfs_deprecated && dev->class == &block_class) {
2957			if (parent && parent->class == &block_class)
2958				return &parent->kobj;
2959			return &block_class.p->subsys.kobj;
2960		}
2961#endif
2962
2963		/*
2964		 * If we have no parent, we live in "virtual".
2965		 * Class-devices with a non class-device as parent, live
2966		 * in a "glue" directory to prevent namespace collisions.
2967		 */
2968		if (parent == NULL)
2969			parent_kobj = virtual_device_parent(dev);
2970		else if (parent->class && !dev->class->ns_type)
 
2971			return &parent->kobj;
2972		else
2973			parent_kobj = &parent->kobj;
 
2974
2975		mutex_lock(&gdp_mutex);
2976
2977		/* find our class-directory at the parent and reference it */
2978		spin_lock(&dev->class->p->glue_dirs.list_lock);
2979		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2980			if (k->parent == parent_kobj) {
2981				kobj = kobject_get(k);
2982				break;
2983			}
2984		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2985		if (kobj) {
2986			mutex_unlock(&gdp_mutex);
 
2987			return kobj;
2988		}
2989
2990		/* or create a new class-directory at the parent device */
2991		k = class_dir_create_and_add(dev->class, parent_kobj);
2992		/* do not emit an uevent for this simple "glue" directory */
2993		mutex_unlock(&gdp_mutex);
 
2994		return k;
2995	}
2996
2997	/* subsystems can specify a default root directory for their devices */
2998	if (!parent && dev->bus && dev->bus->dev_root)
2999		return &dev->bus->dev_root->kobj;
 
 
 
 
 
 
 
3000
3001	if (parent)
3002		return &parent->kobj;
3003	return NULL;
3004}
3005
3006static inline bool live_in_glue_dir(struct kobject *kobj,
3007				    struct device *dev)
3008{
3009	if (!kobj || !dev->class ||
3010	    kobj->kset != &dev->class->p->glue_dirs)
 
 
3011		return false;
3012	return true;
 
 
 
 
 
 
 
 
 
 
 
3013}
3014
3015static inline struct kobject *get_glue_dir(struct device *dev)
3016{
3017	return dev->kobj.parent;
3018}
3019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3020/*
3021 * make sure cleaning up dir as the last step, we need to make
3022 * sure .release handler of kobject is run with holding the
3023 * global lock
3024 */
3025static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3026{
3027	unsigned int ref;
3028
3029	/* see if we live in a "glue" directory */
3030	if (!live_in_glue_dir(glue_dir, dev))
3031		return;
3032
3033	mutex_lock(&gdp_mutex);
3034	/**
3035	 * There is a race condition between removing glue directory
3036	 * and adding a new device under the glue directory.
3037	 *
3038	 * CPU1:                                         CPU2:
3039	 *
3040	 * device_add()
3041	 *   get_device_parent()
3042	 *     class_dir_create_and_add()
3043	 *       kobject_add_internal()
3044	 *         create_dir()    // create glue_dir
3045	 *
3046	 *                                               device_add()
3047	 *                                                 get_device_parent()
3048	 *                                                   kobject_get() // get glue_dir
3049	 *
3050	 * device_del()
3051	 *   cleanup_glue_dir()
3052	 *     kobject_del(glue_dir)
3053	 *
3054	 *                                               kobject_add()
3055	 *                                                 kobject_add_internal()
3056	 *                                                   create_dir() // in glue_dir
3057	 *                                                     sysfs_create_dir_ns()
3058	 *                                                       kernfs_create_dir_ns(sd)
3059	 *
3060	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3061	 *       sysfs_put()        // free glue_dir->sd
3062	 *
3063	 *                                                         // sd is freed
3064	 *                                                         kernfs_new_node(sd)
3065	 *                                                           kernfs_get(glue_dir)
3066	 *                                                           kernfs_add_one()
3067	 *                                                           kernfs_put()
3068	 *
3069	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3070	 * a new device under glue dir, the glue_dir kobject reference count
3071	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3072	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3073	 * and sysfs_put(). This result in glue_dir->sd is freed.
3074	 *
3075	 * Then the CPU2 will see a stale "empty" but still potentially used
3076	 * glue dir around in kernfs_new_node().
3077	 *
3078	 * In order to avoid this happening, we also should make sure that
3079	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3080	 * for glue_dir kobj is 1.
3081	 */
3082	ref = kref_read(&glue_dir->kref);
3083	if (!kobject_has_children(glue_dir) && !--ref)
3084		kobject_del(glue_dir);
3085	kobject_put(glue_dir);
3086	mutex_unlock(&gdp_mutex);
3087}
3088
3089static int device_add_class_symlinks(struct device *dev)
3090{
3091	struct device_node *of_node = dev_of_node(dev);
 
3092	int error;
3093
3094	if (of_node) {
3095		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3096		if (error)
3097			dev_warn(dev, "Error %d creating of_node link\n",error);
3098		/* An error here doesn't warrant bringing down the device */
3099	}
3100
3101	if (!dev->class)
 
3102		return 0;
3103
3104	error = sysfs_create_link(&dev->kobj,
3105				  &dev->class->p->subsys.kobj,
3106				  "subsystem");
3107	if (error)
3108		goto out_devnode;
3109
3110	if (dev->parent && device_is_not_partition(dev)) {
3111		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3112					  "device");
3113		if (error)
3114			goto out_subsys;
3115	}
3116
3117#ifdef CONFIG_BLOCK
3118	/* /sys/block has directories and does not need symlinks */
3119	if (sysfs_deprecated && dev->class == &block_class)
3120		return 0;
3121#endif
3122
3123	/* link in the class directory pointing to the device */
3124	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3125				  &dev->kobj, dev_name(dev));
3126	if (error)
3127		goto out_device;
3128
3129	return 0;
3130
3131out_device:
3132	sysfs_remove_link(&dev->kobj, "device");
3133
3134out_subsys:
3135	sysfs_remove_link(&dev->kobj, "subsystem");
3136out_devnode:
3137	sysfs_remove_link(&dev->kobj, "of_node");
 
 
3138	return error;
3139}
3140
3141static void device_remove_class_symlinks(struct device *dev)
3142{
 
 
3143	if (dev_of_node(dev))
3144		sysfs_remove_link(&dev->kobj, "of_node");
3145
3146	if (!dev->class)
3147		return;
3148
3149	if (dev->parent && device_is_not_partition(dev))
3150		sysfs_remove_link(&dev->kobj, "device");
3151	sysfs_remove_link(&dev->kobj, "subsystem");
3152#ifdef CONFIG_BLOCK
3153	if (sysfs_deprecated && dev->class == &block_class)
3154		return;
3155#endif
3156	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3157}
3158
3159/**
3160 * dev_set_name - set a device name
3161 * @dev: device
3162 * @fmt: format string for the device's name
3163 */
3164int dev_set_name(struct device *dev, const char *fmt, ...)
3165{
3166	va_list vargs;
3167	int err;
3168
3169	va_start(vargs, fmt);
3170	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3171	va_end(vargs);
3172	return err;
3173}
3174EXPORT_SYMBOL_GPL(dev_set_name);
3175
3176/**
3177 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3178 * @dev: device
3179 *
3180 * By default we select char/ for new entries.  Setting class->dev_obj
3181 * to NULL prevents an entry from being created.  class->dev_kobj must
3182 * be set (or cleared) before any devices are registered to the class
3183 * otherwise device_create_sys_dev_entry() and
3184 * device_remove_sys_dev_entry() will disagree about the presence of
3185 * the link.
3186 */
3187static struct kobject *device_to_dev_kobj(struct device *dev)
3188{
3189	struct kobject *kobj;
3190
3191	if (dev->class)
3192		kobj = dev->class->dev_kobj;
3193	else
3194		kobj = sysfs_dev_char_kobj;
3195
3196	return kobj;
3197}
3198
3199static int device_create_sys_dev_entry(struct device *dev)
3200{
3201	struct kobject *kobj = device_to_dev_kobj(dev);
3202	int error = 0;
3203	char devt_str[15];
3204
3205	if (kobj) {
3206		format_dev_t(devt_str, dev->devt);
3207		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3208	}
3209
3210	return error;
3211}
3212
3213static void device_remove_sys_dev_entry(struct device *dev)
3214{
3215	struct kobject *kobj = device_to_dev_kobj(dev);
3216	char devt_str[15];
3217
3218	if (kobj) {
3219		format_dev_t(devt_str, dev->devt);
3220		sysfs_remove_link(kobj, devt_str);
3221	}
3222}
3223
3224static int device_private_init(struct device *dev)
3225{
3226	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3227	if (!dev->p)
3228		return -ENOMEM;
3229	dev->p->device = dev;
3230	klist_init(&dev->p->klist_children, klist_children_get,
3231		   klist_children_put);
3232	INIT_LIST_HEAD(&dev->p->deferred_probe);
3233	return 0;
3234}
3235
3236/**
3237 * device_add - add device to device hierarchy.
3238 * @dev: device.
3239 *
3240 * This is part 2 of device_register(), though may be called
3241 * separately _iff_ device_initialize() has been called separately.
3242 *
3243 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3244 * to the global and sibling lists for the device, then
3245 * adds it to the other relevant subsystems of the driver model.
3246 *
3247 * Do not call this routine or device_register() more than once for
3248 * any device structure.  The driver model core is not designed to work
3249 * with devices that get unregistered and then spring back to life.
3250 * (Among other things, it's very hard to guarantee that all references
3251 * to the previous incarnation of @dev have been dropped.)  Allocate
3252 * and register a fresh new struct device instead.
3253 *
3254 * NOTE: _Never_ directly free @dev after calling this function, even
3255 * if it returned an error! Always use put_device() to give up your
3256 * reference instead.
3257 *
3258 * Rule of thumb is: if device_add() succeeds, you should call
3259 * device_del() when you want to get rid of it. If device_add() has
3260 * *not* succeeded, use *only* put_device() to drop the reference
3261 * count.
3262 */
3263int device_add(struct device *dev)
3264{
 
3265	struct device *parent;
3266	struct kobject *kobj;
3267	struct class_interface *class_intf;
3268	int error = -EINVAL;
3269	struct kobject *glue_dir = NULL;
3270
3271	dev = get_device(dev);
3272	if (!dev)
3273		goto done;
3274
3275	if (!dev->p) {
3276		error = device_private_init(dev);
3277		if (error)
3278			goto done;
3279	}
3280
3281	/*
3282	 * for statically allocated devices, which should all be converted
3283	 * some day, we need to initialize the name. We prevent reading back
3284	 * the name, and force the use of dev_name()
3285	 */
3286	if (dev->init_name) {
3287		dev_set_name(dev, "%s", dev->init_name);
3288		dev->init_name = NULL;
3289	}
3290
 
 
3291	/* subsystems can specify simple device enumeration */
3292	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3293		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3294
3295	if (!dev_name(dev)) {
3296		error = -EINVAL;
 
3297		goto name_error;
3298	}
3299
3300	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3301
3302	parent = get_device(dev->parent);
3303	kobj = get_device_parent(dev, parent);
3304	if (IS_ERR(kobj)) {
3305		error = PTR_ERR(kobj);
3306		goto parent_error;
3307	}
3308	if (kobj)
3309		dev->kobj.parent = kobj;
3310
3311	/* use parent numa_node */
3312	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3313		set_dev_node(dev, dev_to_node(parent));
3314
3315	/* first, register with generic layer. */
3316	/* we require the name to be set before, and pass NULL */
3317	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3318	if (error) {
3319		glue_dir = get_glue_dir(dev);
3320		goto Error;
3321	}
3322
3323	/* notify platform of device entry */
3324	error = device_platform_notify(dev, KOBJ_ADD);
3325	if (error)
3326		goto platform_error;
3327
3328	error = device_create_file(dev, &dev_attr_uevent);
3329	if (error)
3330		goto attrError;
3331
3332	error = device_add_class_symlinks(dev);
3333	if (error)
3334		goto SymlinkError;
3335	error = device_add_attrs(dev);
3336	if (error)
3337		goto AttrsError;
3338	error = bus_add_device(dev);
3339	if (error)
3340		goto BusError;
3341	error = dpm_sysfs_add(dev);
3342	if (error)
3343		goto DPMError;
3344	device_pm_add(dev);
3345
3346	if (MAJOR(dev->devt)) {
3347		error = device_create_file(dev, &dev_attr_dev);
3348		if (error)
3349			goto DevAttrError;
3350
3351		error = device_create_sys_dev_entry(dev);
3352		if (error)
3353			goto SysEntryError;
3354
3355		devtmpfs_create_node(dev);
3356	}
3357
3358	/* Notify clients of device addition.  This call must come
3359	 * after dpm_sysfs_add() and before kobject_uevent().
3360	 */
3361	if (dev->bus)
3362		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3363					     BUS_NOTIFY_ADD_DEVICE, dev);
3364
3365	kobject_uevent(&dev->kobj, KOBJ_ADD);
3366
3367	/*
3368	 * Check if any of the other devices (consumers) have been waiting for
3369	 * this device (supplier) to be added so that they can create a device
3370	 * link to it.
3371	 *
3372	 * This needs to happen after device_pm_add() because device_link_add()
3373	 * requires the supplier be registered before it's called.
3374	 *
3375	 * But this also needs to happen before bus_probe_device() to make sure
3376	 * waiting consumers can link to it before the driver is bound to the
3377	 * device and the driver sync_state callback is called for this device.
3378	 */
3379	if (dev->fwnode && !dev->fwnode->dev) {
3380		dev->fwnode->dev = dev;
3381		fw_devlink_link_device(dev);
3382	}
3383
3384	bus_probe_device(dev);
3385
3386	/*
3387	 * If all driver registration is done and a newly added device doesn't
3388	 * match with any driver, don't block its consumers from probing in
3389	 * case the consumer device is able to operate without this supplier.
3390	 */
3391	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3392		fw_devlink_unblock_consumers(dev);
3393
3394	if (parent)
3395		klist_add_tail(&dev->p->knode_parent,
3396			       &parent->p->klist_children);
3397
3398	if (dev->class) {
3399		mutex_lock(&dev->class->p->mutex);
 
3400		/* tie the class to the device */
3401		klist_add_tail(&dev->p->knode_class,
3402			       &dev->class->p->klist_devices);
3403
3404		/* notify any interfaces that the device is here */
3405		list_for_each_entry(class_intf,
3406				    &dev->class->p->interfaces, node)
3407			if (class_intf->add_dev)
3408				class_intf->add_dev(dev, class_intf);
3409		mutex_unlock(&dev->class->p->mutex);
 
3410	}
3411done:
3412	put_device(dev);
3413	return error;
3414 SysEntryError:
3415	if (MAJOR(dev->devt))
3416		device_remove_file(dev, &dev_attr_dev);
3417 DevAttrError:
3418	device_pm_remove(dev);
3419	dpm_sysfs_remove(dev);
3420 DPMError:
 
3421	bus_remove_device(dev);
3422 BusError:
3423	device_remove_attrs(dev);
3424 AttrsError:
3425	device_remove_class_symlinks(dev);
3426 SymlinkError:
3427	device_remove_file(dev, &dev_attr_uevent);
3428 attrError:
3429	device_platform_notify(dev, KOBJ_REMOVE);
3430platform_error:
3431	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3432	glue_dir = get_glue_dir(dev);
3433	kobject_del(&dev->kobj);
3434 Error:
3435	cleanup_glue_dir(dev, glue_dir);
3436parent_error:
3437	put_device(parent);
3438name_error:
3439	kfree(dev->p);
3440	dev->p = NULL;
3441	goto done;
3442}
3443EXPORT_SYMBOL_GPL(device_add);
3444
3445/**
3446 * device_register - register a device with the system.
3447 * @dev: pointer to the device structure
3448 *
3449 * This happens in two clean steps - initialize the device
3450 * and add it to the system. The two steps can be called
3451 * separately, but this is the easiest and most common.
3452 * I.e. you should only call the two helpers separately if
3453 * have a clearly defined need to use and refcount the device
3454 * before it is added to the hierarchy.
3455 *
3456 * For more information, see the kerneldoc for device_initialize()
3457 * and device_add().
3458 *
3459 * NOTE: _Never_ directly free @dev after calling this function, even
3460 * if it returned an error! Always use put_device() to give up the
3461 * reference initialized in this function instead.
3462 */
3463int device_register(struct device *dev)
3464{
3465	device_initialize(dev);
3466	return device_add(dev);
3467}
3468EXPORT_SYMBOL_GPL(device_register);
3469
3470/**
3471 * get_device - increment reference count for device.
3472 * @dev: device.
3473 *
3474 * This simply forwards the call to kobject_get(), though
3475 * we do take care to provide for the case that we get a NULL
3476 * pointer passed in.
3477 */
3478struct device *get_device(struct device *dev)
3479{
3480	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3481}
3482EXPORT_SYMBOL_GPL(get_device);
3483
3484/**
3485 * put_device - decrement reference count.
3486 * @dev: device in question.
3487 */
3488void put_device(struct device *dev)
3489{
3490	/* might_sleep(); */
3491	if (dev)
3492		kobject_put(&dev->kobj);
3493}
3494EXPORT_SYMBOL_GPL(put_device);
3495
3496bool kill_device(struct device *dev)
3497{
3498	/*
3499	 * Require the device lock and set the "dead" flag to guarantee that
3500	 * the update behavior is consistent with the other bitfields near
3501	 * it and that we cannot have an asynchronous probe routine trying
3502	 * to run while we are tearing out the bus/class/sysfs from
3503	 * underneath the device.
3504	 */
3505	device_lock_assert(dev);
3506
3507	if (dev->p->dead)
3508		return false;
3509	dev->p->dead = true;
3510	return true;
3511}
3512EXPORT_SYMBOL_GPL(kill_device);
3513
3514/**
3515 * device_del - delete device from system.
3516 * @dev: device.
3517 *
3518 * This is the first part of the device unregistration
3519 * sequence. This removes the device from the lists we control
3520 * from here, has it removed from the other driver model
3521 * subsystems it was added to in device_add(), and removes it
3522 * from the kobject hierarchy.
3523 *
3524 * NOTE: this should be called manually _iff_ device_add() was
3525 * also called manually.
3526 */
3527void device_del(struct device *dev)
3528{
 
3529	struct device *parent = dev->parent;
3530	struct kobject *glue_dir = NULL;
3531	struct class_interface *class_intf;
3532	unsigned int noio_flag;
3533
3534	device_lock(dev);
3535	kill_device(dev);
3536	device_unlock(dev);
3537
3538	if (dev->fwnode && dev->fwnode->dev == dev)
3539		dev->fwnode->dev = NULL;
3540
3541	/* Notify clients of device removal.  This call must come
3542	 * before dpm_sysfs_remove().
3543	 */
3544	noio_flag = memalloc_noio_save();
3545	if (dev->bus)
3546		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3547					     BUS_NOTIFY_DEL_DEVICE, dev);
3548
3549	dpm_sysfs_remove(dev);
3550	if (parent)
3551		klist_del(&dev->p->knode_parent);
3552	if (MAJOR(dev->devt)) {
3553		devtmpfs_delete_node(dev);
3554		device_remove_sys_dev_entry(dev);
3555		device_remove_file(dev, &dev_attr_dev);
3556	}
3557	if (dev->class) {
 
 
3558		device_remove_class_symlinks(dev);
3559
3560		mutex_lock(&dev->class->p->mutex);
3561		/* notify any interfaces that the device is now gone */
3562		list_for_each_entry(class_intf,
3563				    &dev->class->p->interfaces, node)
3564			if (class_intf->remove_dev)
3565				class_intf->remove_dev(dev, class_intf);
3566		/* remove the device from the class list */
3567		klist_del(&dev->p->knode_class);
3568		mutex_unlock(&dev->class->p->mutex);
 
3569	}
3570	device_remove_file(dev, &dev_attr_uevent);
3571	device_remove_attrs(dev);
3572	bus_remove_device(dev);
3573	device_pm_remove(dev);
3574	driver_deferred_probe_del(dev);
3575	device_platform_notify(dev, KOBJ_REMOVE);
3576	device_remove_properties(dev);
3577	device_links_purge(dev);
3578
3579	if (dev->bus)
3580		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3581					     BUS_NOTIFY_REMOVED_DEVICE, dev);
 
 
 
 
 
 
 
 
 
3582	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3583	glue_dir = get_glue_dir(dev);
3584	kobject_del(&dev->kobj);
3585	cleanup_glue_dir(dev, glue_dir);
3586	memalloc_noio_restore(noio_flag);
3587	put_device(parent);
3588}
3589EXPORT_SYMBOL_GPL(device_del);
3590
3591/**
3592 * device_unregister - unregister device from system.
3593 * @dev: device going away.
3594 *
3595 * We do this in two parts, like we do device_register(). First,
3596 * we remove it from all the subsystems with device_del(), then
3597 * we decrement the reference count via put_device(). If that
3598 * is the final reference count, the device will be cleaned up
3599 * via device_release() above. Otherwise, the structure will
3600 * stick around until the final reference to the device is dropped.
3601 */
3602void device_unregister(struct device *dev)
3603{
3604	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3605	device_del(dev);
3606	put_device(dev);
3607}
3608EXPORT_SYMBOL_GPL(device_unregister);
3609
3610static struct device *prev_device(struct klist_iter *i)
3611{
3612	struct klist_node *n = klist_prev(i);
3613	struct device *dev = NULL;
3614	struct device_private *p;
3615
3616	if (n) {
3617		p = to_device_private_parent(n);
3618		dev = p->device;
3619	}
3620	return dev;
3621}
3622
3623static struct device *next_device(struct klist_iter *i)
3624{
3625	struct klist_node *n = klist_next(i);
3626	struct device *dev = NULL;
3627	struct device_private *p;
3628
3629	if (n) {
3630		p = to_device_private_parent(n);
3631		dev = p->device;
3632	}
3633	return dev;
3634}
3635
3636/**
3637 * device_get_devnode - path of device node file
3638 * @dev: device
3639 * @mode: returned file access mode
3640 * @uid: returned file owner
3641 * @gid: returned file group
3642 * @tmp: possibly allocated string
3643 *
3644 * Return the relative path of a possible device node.
3645 * Non-default names may need to allocate a memory to compose
3646 * a name. This memory is returned in tmp and needs to be
3647 * freed by the caller.
3648 */
3649const char *device_get_devnode(struct device *dev,
3650			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3651			       const char **tmp)
3652{
3653	char *s;
3654
3655	*tmp = NULL;
3656
3657	/* the device type may provide a specific name */
3658	if (dev->type && dev->type->devnode)
3659		*tmp = dev->type->devnode(dev, mode, uid, gid);
3660	if (*tmp)
3661		return *tmp;
3662
3663	/* the class may provide a specific name */
3664	if (dev->class && dev->class->devnode)
3665		*tmp = dev->class->devnode(dev, mode);
3666	if (*tmp)
3667		return *tmp;
3668
3669	/* return name without allocation, tmp == NULL */
3670	if (strchr(dev_name(dev), '!') == NULL)
3671		return dev_name(dev);
3672
3673	/* replace '!' in the name with '/' */
3674	s = kstrdup(dev_name(dev), GFP_KERNEL);
3675	if (!s)
3676		return NULL;
3677	strreplace(s, '!', '/');
3678	return *tmp = s;
3679}
3680
3681/**
3682 * device_for_each_child - device child iterator.
3683 * @parent: parent struct device.
3684 * @fn: function to be called for each device.
3685 * @data: data for the callback.
3686 *
3687 * Iterate over @parent's child devices, and call @fn for each,
3688 * passing it @data.
3689 *
3690 * We check the return of @fn each time. If it returns anything
3691 * other than 0, we break out and return that value.
3692 */
3693int device_for_each_child(struct device *parent, void *data,
3694			  int (*fn)(struct device *dev, void *data))
3695{
3696	struct klist_iter i;
3697	struct device *child;
3698	int error = 0;
3699
3700	if (!parent->p)
3701		return 0;
3702
3703	klist_iter_init(&parent->p->klist_children, &i);
3704	while (!error && (child = next_device(&i)))
3705		error = fn(child, data);
3706	klist_iter_exit(&i);
3707	return error;
3708}
3709EXPORT_SYMBOL_GPL(device_for_each_child);
3710
3711/**
3712 * device_for_each_child_reverse - device child iterator in reversed order.
3713 * @parent: parent struct device.
3714 * @fn: function to be called for each device.
3715 * @data: data for the callback.
3716 *
3717 * Iterate over @parent's child devices, and call @fn for each,
3718 * passing it @data.
3719 *
3720 * We check the return of @fn each time. If it returns anything
3721 * other than 0, we break out and return that value.
3722 */
3723int device_for_each_child_reverse(struct device *parent, void *data,
3724				  int (*fn)(struct device *dev, void *data))
3725{
3726	struct klist_iter i;
3727	struct device *child;
3728	int error = 0;
3729
3730	if (!parent->p)
3731		return 0;
3732
3733	klist_iter_init(&parent->p->klist_children, &i);
3734	while ((child = prev_device(&i)) && !error)
3735		error = fn(child, data);
3736	klist_iter_exit(&i);
3737	return error;
3738}
3739EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3740
3741/**
3742 * device_find_child - device iterator for locating a particular device.
3743 * @parent: parent struct device
3744 * @match: Callback function to check device
3745 * @data: Data to pass to match function
3746 *
3747 * This is similar to the device_for_each_child() function above, but it
3748 * returns a reference to a device that is 'found' for later use, as
3749 * determined by the @match callback.
3750 *
3751 * The callback should return 0 if the device doesn't match and non-zero
3752 * if it does.  If the callback returns non-zero and a reference to the
3753 * current device can be obtained, this function will return to the caller
3754 * and not iterate over any more devices.
3755 *
3756 * NOTE: you will need to drop the reference with put_device() after use.
3757 */
3758struct device *device_find_child(struct device *parent, void *data,
3759				 int (*match)(struct device *dev, void *data))
3760{
3761	struct klist_iter i;
3762	struct device *child;
3763
3764	if (!parent)
3765		return NULL;
3766
3767	klist_iter_init(&parent->p->klist_children, &i);
3768	while ((child = next_device(&i)))
3769		if (match(child, data) && get_device(child))
3770			break;
3771	klist_iter_exit(&i);
3772	return child;
3773}
3774EXPORT_SYMBOL_GPL(device_find_child);
3775
3776/**
3777 * device_find_child_by_name - device iterator for locating a child device.
3778 * @parent: parent struct device
3779 * @name: name of the child device
3780 *
3781 * This is similar to the device_find_child() function above, but it
3782 * returns a reference to a device that has the name @name.
3783 *
3784 * NOTE: you will need to drop the reference with put_device() after use.
3785 */
3786struct device *device_find_child_by_name(struct device *parent,
3787					 const char *name)
3788{
3789	struct klist_iter i;
3790	struct device *child;
3791
3792	if (!parent)
3793		return NULL;
3794
3795	klist_iter_init(&parent->p->klist_children, &i);
3796	while ((child = next_device(&i)))
3797		if (sysfs_streq(dev_name(child), name) && get_device(child))
3798			break;
3799	klist_iter_exit(&i);
3800	return child;
3801}
3802EXPORT_SYMBOL_GPL(device_find_child_by_name);
3803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3804int __init devices_init(void)
3805{
3806	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3807	if (!devices_kset)
3808		return -ENOMEM;
3809	dev_kobj = kobject_create_and_add("dev", NULL);
3810	if (!dev_kobj)
3811		goto dev_kobj_err;
3812	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3813	if (!sysfs_dev_block_kobj)
3814		goto block_kobj_err;
3815	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3816	if (!sysfs_dev_char_kobj)
3817		goto char_kobj_err;
3818
3819	return 0;
3820
3821 char_kobj_err:
3822	kobject_put(sysfs_dev_block_kobj);
3823 block_kobj_err:
3824	kobject_put(dev_kobj);
3825 dev_kobj_err:
3826	kset_unregister(devices_kset);
3827	return -ENOMEM;
3828}
3829
3830static int device_check_offline(struct device *dev, void *not_used)
3831{
3832	int ret;
3833
3834	ret = device_for_each_child(dev, NULL, device_check_offline);
3835	if (ret)
3836		return ret;
3837
3838	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3839}
3840
3841/**
3842 * device_offline - Prepare the device for hot-removal.
3843 * @dev: Device to be put offline.
3844 *
3845 * Execute the device bus type's .offline() callback, if present, to prepare
3846 * the device for a subsequent hot-removal.  If that succeeds, the device must
3847 * not be used until either it is removed or its bus type's .online() callback
3848 * is executed.
3849 *
3850 * Call under device_hotplug_lock.
3851 */
3852int device_offline(struct device *dev)
3853{
3854	int ret;
3855
3856	if (dev->offline_disabled)
3857		return -EPERM;
3858
3859	ret = device_for_each_child(dev, NULL, device_check_offline);
3860	if (ret)
3861		return ret;
3862
3863	device_lock(dev);
3864	if (device_supports_offline(dev)) {
3865		if (dev->offline) {
3866			ret = 1;
3867		} else {
3868			ret = dev->bus->offline(dev);
3869			if (!ret) {
3870				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3871				dev->offline = true;
3872			}
3873		}
3874	}
3875	device_unlock(dev);
3876
3877	return ret;
3878}
3879
3880/**
3881 * device_online - Put the device back online after successful device_offline().
3882 * @dev: Device to be put back online.
3883 *
3884 * If device_offline() has been successfully executed for @dev, but the device
3885 * has not been removed subsequently, execute its bus type's .online() callback
3886 * to indicate that the device can be used again.
3887 *
3888 * Call under device_hotplug_lock.
3889 */
3890int device_online(struct device *dev)
3891{
3892	int ret = 0;
3893
3894	device_lock(dev);
3895	if (device_supports_offline(dev)) {
3896		if (dev->offline) {
3897			ret = dev->bus->online(dev);
3898			if (!ret) {
3899				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3900				dev->offline = false;
3901			}
3902		} else {
3903			ret = 1;
3904		}
3905	}
3906	device_unlock(dev);
3907
3908	return ret;
3909}
3910
3911struct root_device {
3912	struct device dev;
3913	struct module *owner;
3914};
3915
3916static inline struct root_device *to_root_device(struct device *d)
3917{
3918	return container_of(d, struct root_device, dev);
3919}
3920
3921static void root_device_release(struct device *dev)
3922{
3923	kfree(to_root_device(dev));
3924}
3925
3926/**
3927 * __root_device_register - allocate and register a root device
3928 * @name: root device name
3929 * @owner: owner module of the root device, usually THIS_MODULE
3930 *
3931 * This function allocates a root device and registers it
3932 * using device_register(). In order to free the returned
3933 * device, use root_device_unregister().
3934 *
3935 * Root devices are dummy devices which allow other devices
3936 * to be grouped under /sys/devices. Use this function to
3937 * allocate a root device and then use it as the parent of
3938 * any device which should appear under /sys/devices/{name}
3939 *
3940 * The /sys/devices/{name} directory will also contain a
3941 * 'module' symlink which points to the @owner directory
3942 * in sysfs.
3943 *
3944 * Returns &struct device pointer on success, or ERR_PTR() on error.
3945 *
3946 * Note: You probably want to use root_device_register().
3947 */
3948struct device *__root_device_register(const char *name, struct module *owner)
3949{
3950	struct root_device *root;
3951	int err = -ENOMEM;
3952
3953	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3954	if (!root)
3955		return ERR_PTR(err);
3956
3957	err = dev_set_name(&root->dev, "%s", name);
3958	if (err) {
3959		kfree(root);
3960		return ERR_PTR(err);
3961	}
3962
3963	root->dev.release = root_device_release;
3964
3965	err = device_register(&root->dev);
3966	if (err) {
3967		put_device(&root->dev);
3968		return ERR_PTR(err);
3969	}
3970
3971#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3972	if (owner) {
3973		struct module_kobject *mk = &owner->mkobj;
3974
3975		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3976		if (err) {
3977			device_unregister(&root->dev);
3978			return ERR_PTR(err);
3979		}
3980		root->owner = owner;
3981	}
3982#endif
3983
3984	return &root->dev;
3985}
3986EXPORT_SYMBOL_GPL(__root_device_register);
3987
3988/**
3989 * root_device_unregister - unregister and free a root device
3990 * @dev: device going away
3991 *
3992 * This function unregisters and cleans up a device that was created by
3993 * root_device_register().
3994 */
3995void root_device_unregister(struct device *dev)
3996{
3997	struct root_device *root = to_root_device(dev);
3998
3999	if (root->owner)
4000		sysfs_remove_link(&root->dev.kobj, "module");
4001
4002	device_unregister(dev);
4003}
4004EXPORT_SYMBOL_GPL(root_device_unregister);
4005
4006
4007static void device_create_release(struct device *dev)
4008{
4009	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4010	kfree(dev);
4011}
4012
4013static __printf(6, 0) struct device *
4014device_create_groups_vargs(struct class *class, struct device *parent,
4015			   dev_t devt, void *drvdata,
4016			   const struct attribute_group **groups,
4017			   const char *fmt, va_list args)
4018{
4019	struct device *dev = NULL;
4020	int retval = -ENODEV;
4021
4022	if (class == NULL || IS_ERR(class))
4023		goto error;
4024
4025	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4026	if (!dev) {
4027		retval = -ENOMEM;
4028		goto error;
4029	}
4030
4031	device_initialize(dev);
4032	dev->devt = devt;
4033	dev->class = class;
4034	dev->parent = parent;
4035	dev->groups = groups;
4036	dev->release = device_create_release;
4037	dev_set_drvdata(dev, drvdata);
4038
4039	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4040	if (retval)
4041		goto error;
4042
4043	retval = device_add(dev);
4044	if (retval)
4045		goto error;
4046
4047	return dev;
4048
4049error:
4050	put_device(dev);
4051	return ERR_PTR(retval);
4052}
4053
4054/**
4055 * device_create - creates a device and registers it with sysfs
4056 * @class: pointer to the struct class that this device should be registered to
4057 * @parent: pointer to the parent struct device of this new device, if any
4058 * @devt: the dev_t for the char device to be added
4059 * @drvdata: the data to be added to the device for callbacks
4060 * @fmt: string for the device's name
4061 *
4062 * This function can be used by char device classes.  A struct device
4063 * will be created in sysfs, registered to the specified class.
4064 *
4065 * A "dev" file will be created, showing the dev_t for the device, if
4066 * the dev_t is not 0,0.
4067 * If a pointer to a parent struct device is passed in, the newly created
4068 * struct device will be a child of that device in sysfs.
4069 * The pointer to the struct device will be returned from the call.
4070 * Any further sysfs files that might be required can be created using this
4071 * pointer.
4072 *
4073 * Returns &struct device pointer on success, or ERR_PTR() on error.
4074 *
4075 * Note: the struct class passed to this function must have previously
4076 * been created with a call to class_create().
4077 */
4078struct device *device_create(struct class *class, struct device *parent,
4079			     dev_t devt, void *drvdata, const char *fmt, ...)
4080{
4081	va_list vargs;
4082	struct device *dev;
4083
4084	va_start(vargs, fmt);
4085	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4086					  fmt, vargs);
4087	va_end(vargs);
4088	return dev;
4089}
4090EXPORT_SYMBOL_GPL(device_create);
4091
4092/**
4093 * device_create_with_groups - creates a device and registers it with sysfs
4094 * @class: pointer to the struct class that this device should be registered to
4095 * @parent: pointer to the parent struct device of this new device, if any
4096 * @devt: the dev_t for the char device to be added
4097 * @drvdata: the data to be added to the device for callbacks
4098 * @groups: NULL-terminated list of attribute groups to be created
4099 * @fmt: string for the device's name
4100 *
4101 * This function can be used by char device classes.  A struct device
4102 * will be created in sysfs, registered to the specified class.
4103 * Additional attributes specified in the groups parameter will also
4104 * be created automatically.
4105 *
4106 * A "dev" file will be created, showing the dev_t for the device, if
4107 * the dev_t is not 0,0.
4108 * If a pointer to a parent struct device is passed in, the newly created
4109 * struct device will be a child of that device in sysfs.
4110 * The pointer to the struct device will be returned from the call.
4111 * Any further sysfs files that might be required can be created using this
4112 * pointer.
4113 *
4114 * Returns &struct device pointer on success, or ERR_PTR() on error.
4115 *
4116 * Note: the struct class passed to this function must have previously
4117 * been created with a call to class_create().
4118 */
4119struct device *device_create_with_groups(struct class *class,
4120					 struct device *parent, dev_t devt,
4121					 void *drvdata,
4122					 const struct attribute_group **groups,
4123					 const char *fmt, ...)
4124{
4125	va_list vargs;
4126	struct device *dev;
4127
4128	va_start(vargs, fmt);
4129	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4130					 fmt, vargs);
4131	va_end(vargs);
4132	return dev;
4133}
4134EXPORT_SYMBOL_GPL(device_create_with_groups);
4135
4136/**
4137 * device_destroy - removes a device that was created with device_create()
4138 * @class: pointer to the struct class that this device was registered with
4139 * @devt: the dev_t of the device that was previously registered
4140 *
4141 * This call unregisters and cleans up a device that was created with a
4142 * call to device_create().
4143 */
4144void device_destroy(struct class *class, dev_t devt)
4145{
4146	struct device *dev;
4147
4148	dev = class_find_device_by_devt(class, devt);
4149	if (dev) {
4150		put_device(dev);
4151		device_unregister(dev);
4152	}
4153}
4154EXPORT_SYMBOL_GPL(device_destroy);
4155
4156/**
4157 * device_rename - renames a device
4158 * @dev: the pointer to the struct device to be renamed
4159 * @new_name: the new name of the device
4160 *
4161 * It is the responsibility of the caller to provide mutual
4162 * exclusion between two different calls of device_rename
4163 * on the same device to ensure that new_name is valid and
4164 * won't conflict with other devices.
4165 *
4166 * Note: Don't call this function.  Currently, the networking layer calls this
4167 * function, but that will change.  The following text from Kay Sievers offers
4168 * some insight:
 
 
 
4169 *
4170 * Renaming devices is racy at many levels, symlinks and other stuff are not
4171 * replaced atomically, and you get a "move" uevent, but it's not easy to
4172 * connect the event to the old and new device. Device nodes are not renamed at
4173 * all, there isn't even support for that in the kernel now.
4174 *
4175 * In the meantime, during renaming, your target name might be taken by another
4176 * driver, creating conflicts. Or the old name is taken directly after you
4177 * renamed it -- then you get events for the same DEVPATH, before you even see
4178 * the "move" event. It's just a mess, and nothing new should ever rely on
4179 * kernel device renaming. Besides that, it's not even implemented now for
4180 * other things than (driver-core wise very simple) network devices.
4181 *
4182 * We are currently about to change network renaming in udev to completely
4183 * disallow renaming of devices in the same namespace as the kernel uses,
4184 * because we can't solve the problems properly, that arise with swapping names
4185 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4186 * be allowed to some other name than eth[0-9]*, for the aforementioned
4187 * reasons.
4188 *
4189 * Make up a "real" name in the driver before you register anything, or add
4190 * some other attributes for userspace to find the device, or use udev to add
4191 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4192 * don't even want to get into that and try to implement the missing pieces in
4193 * the core. We really have other pieces to fix in the driver core mess. :)
4194 */
4195int device_rename(struct device *dev, const char *new_name)
4196{
4197	struct kobject *kobj = &dev->kobj;
4198	char *old_device_name = NULL;
4199	int error;
4200
4201	dev = get_device(dev);
4202	if (!dev)
4203		return -EINVAL;
4204
4205	dev_dbg(dev, "renaming to %s\n", new_name);
4206
4207	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4208	if (!old_device_name) {
4209		error = -ENOMEM;
4210		goto out;
4211	}
4212
4213	if (dev->class) {
4214		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4215					     kobj, old_device_name,
 
 
 
 
 
 
4216					     new_name, kobject_namespace(kobj));
 
4217		if (error)
4218			goto out;
4219	}
4220
4221	error = kobject_rename(kobj, new_name);
4222	if (error)
4223		goto out;
4224
4225out:
4226	put_device(dev);
4227
4228	kfree(old_device_name);
4229
4230	return error;
4231}
4232EXPORT_SYMBOL_GPL(device_rename);
4233
4234static int device_move_class_links(struct device *dev,
4235				   struct device *old_parent,
4236				   struct device *new_parent)
4237{
4238	int error = 0;
4239
4240	if (old_parent)
4241		sysfs_remove_link(&dev->kobj, "device");
4242	if (new_parent)
4243		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4244					  "device");
4245	return error;
4246}
4247
4248/**
4249 * device_move - moves a device to a new parent
4250 * @dev: the pointer to the struct device to be moved
4251 * @new_parent: the new parent of the device (can be NULL)
4252 * @dpm_order: how to reorder the dpm_list
4253 */
4254int device_move(struct device *dev, struct device *new_parent,
4255		enum dpm_order dpm_order)
4256{
4257	int error;
4258	struct device *old_parent;
4259	struct kobject *new_parent_kobj;
4260
4261	dev = get_device(dev);
4262	if (!dev)
4263		return -EINVAL;
4264
4265	device_pm_lock();
4266	new_parent = get_device(new_parent);
4267	new_parent_kobj = get_device_parent(dev, new_parent);
4268	if (IS_ERR(new_parent_kobj)) {
4269		error = PTR_ERR(new_parent_kobj);
4270		put_device(new_parent);
4271		goto out;
4272	}
4273
4274	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4275		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4276	error = kobject_move(&dev->kobj, new_parent_kobj);
4277	if (error) {
4278		cleanup_glue_dir(dev, new_parent_kobj);
4279		put_device(new_parent);
4280		goto out;
4281	}
4282	old_parent = dev->parent;
4283	dev->parent = new_parent;
4284	if (old_parent)
4285		klist_remove(&dev->p->knode_parent);
4286	if (new_parent) {
4287		klist_add_tail(&dev->p->knode_parent,
4288			       &new_parent->p->klist_children);
4289		set_dev_node(dev, dev_to_node(new_parent));
4290	}
4291
4292	if (dev->class) {
4293		error = device_move_class_links(dev, old_parent, new_parent);
4294		if (error) {
4295			/* We ignore errors on cleanup since we're hosed anyway... */
4296			device_move_class_links(dev, new_parent, old_parent);
4297			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4298				if (new_parent)
4299					klist_remove(&dev->p->knode_parent);
4300				dev->parent = old_parent;
4301				if (old_parent) {
4302					klist_add_tail(&dev->p->knode_parent,
4303						       &old_parent->p->klist_children);
4304					set_dev_node(dev, dev_to_node(old_parent));
4305				}
4306			}
4307			cleanup_glue_dir(dev, new_parent_kobj);
4308			put_device(new_parent);
4309			goto out;
4310		}
4311	}
4312	switch (dpm_order) {
4313	case DPM_ORDER_NONE:
4314		break;
4315	case DPM_ORDER_DEV_AFTER_PARENT:
4316		device_pm_move_after(dev, new_parent);
4317		devices_kset_move_after(dev, new_parent);
4318		break;
4319	case DPM_ORDER_PARENT_BEFORE_DEV:
4320		device_pm_move_before(new_parent, dev);
4321		devices_kset_move_before(new_parent, dev);
4322		break;
4323	case DPM_ORDER_DEV_LAST:
4324		device_pm_move_last(dev);
4325		devices_kset_move_last(dev);
4326		break;
4327	}
4328
4329	put_device(old_parent);
4330out:
4331	device_pm_unlock();
4332	put_device(dev);
4333	return error;
4334}
4335EXPORT_SYMBOL_GPL(device_move);
4336
4337static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4338				     kgid_t kgid)
4339{
4340	struct kobject *kobj = &dev->kobj;
4341	struct class *class = dev->class;
4342	const struct device_type *type = dev->type;
4343	int error;
4344
4345	if (class) {
4346		/*
4347		 * Change the device groups of the device class for @dev to
4348		 * @kuid/@kgid.
4349		 */
4350		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4351						  kgid);
4352		if (error)
4353			return error;
4354	}
4355
4356	if (type) {
4357		/*
4358		 * Change the device groups of the device type for @dev to
4359		 * @kuid/@kgid.
4360		 */
4361		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4362						  kgid);
4363		if (error)
4364			return error;
4365	}
4366
4367	/* Change the device groups of @dev to @kuid/@kgid. */
4368	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4369	if (error)
4370		return error;
4371
4372	if (device_supports_offline(dev) && !dev->offline_disabled) {
4373		/* Change online device attributes of @dev to @kuid/@kgid. */
4374		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4375						kuid, kgid);
4376		if (error)
4377			return error;
4378	}
4379
4380	return 0;
4381}
4382
4383/**
4384 * device_change_owner - change the owner of an existing device.
4385 * @dev: device.
4386 * @kuid: new owner's kuid
4387 * @kgid: new owner's kgid
4388 *
4389 * This changes the owner of @dev and its corresponding sysfs entries to
4390 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4391 * core.
4392 *
4393 * Returns 0 on success or error code on failure.
4394 */
4395int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4396{
4397	int error;
4398	struct kobject *kobj = &dev->kobj;
 
4399
4400	dev = get_device(dev);
4401	if (!dev)
4402		return -EINVAL;
4403
4404	/*
4405	 * Change the kobject and the default attributes and groups of the
4406	 * ktype associated with it to @kuid/@kgid.
4407	 */
4408	error = sysfs_change_owner(kobj, kuid, kgid);
4409	if (error)
4410		goto out;
4411
4412	/*
4413	 * Change the uevent file for @dev to the new owner. The uevent file
4414	 * was created in a separate step when @dev got added and we mirror
4415	 * that step here.
4416	 */
4417	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4418					kgid);
4419	if (error)
4420		goto out;
4421
4422	/*
4423	 * Change the device groups, the device groups associated with the
4424	 * device class, and the groups associated with the device type of @dev
4425	 * to @kuid/@kgid.
4426	 */
4427	error = device_attrs_change_owner(dev, kuid, kgid);
4428	if (error)
4429		goto out;
4430
4431	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4432	if (error)
4433		goto out;
4434
4435#ifdef CONFIG_BLOCK
4436	if (sysfs_deprecated && dev->class == &block_class)
4437		goto out;
4438#endif
4439
4440	/*
4441	 * Change the owner of the symlink located in the class directory of
4442	 * the device class associated with @dev which points to the actual
4443	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4444	 * symlink shows the same permissions as its target.
4445	 */
4446	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4447					dev_name(dev), kuid, kgid);
4448	if (error)
4449		goto out;
 
 
 
4450
4451out:
4452	put_device(dev);
4453	return error;
4454}
4455EXPORT_SYMBOL_GPL(device_change_owner);
4456
4457/**
4458 * device_shutdown - call ->shutdown() on each device to shutdown.
4459 */
4460void device_shutdown(void)
4461{
4462	struct device *dev, *parent;
4463
4464	wait_for_device_probe();
4465	device_block_probing();
4466
4467	cpufreq_suspend();
4468
4469	spin_lock(&devices_kset->list_lock);
4470	/*
4471	 * Walk the devices list backward, shutting down each in turn.
4472	 * Beware that device unplug events may also start pulling
4473	 * devices offline, even as the system is shutting down.
4474	 */
4475	while (!list_empty(&devices_kset->list)) {
4476		dev = list_entry(devices_kset->list.prev, struct device,
4477				kobj.entry);
4478
4479		/*
4480		 * hold reference count of device's parent to
4481		 * prevent it from being freed because parent's
4482		 * lock is to be held
4483		 */
4484		parent = get_device(dev->parent);
4485		get_device(dev);
4486		/*
4487		 * Make sure the device is off the kset list, in the
4488		 * event that dev->*->shutdown() doesn't remove it.
4489		 */
4490		list_del_init(&dev->kobj.entry);
4491		spin_unlock(&devices_kset->list_lock);
4492
4493		/* hold lock to avoid race with probe/release */
4494		if (parent)
4495			device_lock(parent);
4496		device_lock(dev);
4497
4498		/* Don't allow any more runtime suspends */
4499		pm_runtime_get_noresume(dev);
4500		pm_runtime_barrier(dev);
4501
4502		if (dev->class && dev->class->shutdown_pre) {
4503			if (initcall_debug)
4504				dev_info(dev, "shutdown_pre\n");
4505			dev->class->shutdown_pre(dev);
4506		}
4507		if (dev->bus && dev->bus->shutdown) {
4508			if (initcall_debug)
4509				dev_info(dev, "shutdown\n");
4510			dev->bus->shutdown(dev);
4511		} else if (dev->driver && dev->driver->shutdown) {
4512			if (initcall_debug)
4513				dev_info(dev, "shutdown\n");
4514			dev->driver->shutdown(dev);
4515		}
4516
4517		device_unlock(dev);
4518		if (parent)
4519			device_unlock(parent);
4520
4521		put_device(dev);
4522		put_device(parent);
4523
4524		spin_lock(&devices_kset->list_lock);
4525	}
4526	spin_unlock(&devices_kset->list_lock);
4527}
4528
4529/*
4530 * Device logging functions
4531 */
4532
4533#ifdef CONFIG_PRINTK
4534static void
4535set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4536{
4537	const char *subsys;
4538
4539	memset(dev_info, 0, sizeof(*dev_info));
4540
4541	if (dev->class)
4542		subsys = dev->class->name;
4543	else if (dev->bus)
4544		subsys = dev->bus->name;
4545	else
4546		return;
4547
4548	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4549
4550	/*
4551	 * Add device identifier DEVICE=:
4552	 *   b12:8         block dev_t
4553	 *   c127:3        char dev_t
4554	 *   n8            netdev ifindex
4555	 *   +sound:card0  subsystem:devname
4556	 */
4557	if (MAJOR(dev->devt)) {
4558		char c;
4559
4560		if (strcmp(subsys, "block") == 0)
4561			c = 'b';
4562		else
4563			c = 'c';
4564
4565		snprintf(dev_info->device, sizeof(dev_info->device),
4566			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4567	} else if (strcmp(subsys, "net") == 0) {
4568		struct net_device *net = to_net_dev(dev);
4569
4570		snprintf(dev_info->device, sizeof(dev_info->device),
4571			 "n%u", net->ifindex);
4572	} else {
4573		snprintf(dev_info->device, sizeof(dev_info->device),
4574			 "+%s:%s", subsys, dev_name(dev));
4575	}
4576}
4577
4578int dev_vprintk_emit(int level, const struct device *dev,
4579		     const char *fmt, va_list args)
4580{
4581	struct dev_printk_info dev_info;
4582
4583	set_dev_info(dev, &dev_info);
4584
4585	return vprintk_emit(0, level, &dev_info, fmt, args);
4586}
4587EXPORT_SYMBOL(dev_vprintk_emit);
4588
4589int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4590{
4591	va_list args;
4592	int r;
4593
4594	va_start(args, fmt);
4595
4596	r = dev_vprintk_emit(level, dev, fmt, args);
4597
4598	va_end(args);
4599
4600	return r;
4601}
4602EXPORT_SYMBOL(dev_printk_emit);
4603
4604static void __dev_printk(const char *level, const struct device *dev,
4605			struct va_format *vaf)
4606{
4607	if (dev)
4608		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4609				dev_driver_string(dev), dev_name(dev), vaf);
4610	else
4611		printk("%s(NULL device *): %pV", level, vaf);
4612}
4613
4614void dev_printk(const char *level, const struct device *dev,
4615		const char *fmt, ...)
4616{
4617	struct va_format vaf;
4618	va_list args;
4619
4620	va_start(args, fmt);
4621
4622	vaf.fmt = fmt;
4623	vaf.va = &args;
4624
4625	__dev_printk(level, dev, &vaf);
4626
4627	va_end(args);
4628}
4629EXPORT_SYMBOL(dev_printk);
4630
4631#define define_dev_printk_level(func, kern_level)		\
4632void func(const struct device *dev, const char *fmt, ...)	\
4633{								\
4634	struct va_format vaf;					\
4635	va_list args;						\
4636								\
4637	va_start(args, fmt);					\
4638								\
4639	vaf.fmt = fmt;						\
4640	vaf.va = &args;						\
4641								\
4642	__dev_printk(kern_level, dev, &vaf);			\
4643								\
4644	va_end(args);						\
4645}								\
4646EXPORT_SYMBOL(func);
4647
4648define_dev_printk_level(_dev_emerg, KERN_EMERG);
4649define_dev_printk_level(_dev_alert, KERN_ALERT);
4650define_dev_printk_level(_dev_crit, KERN_CRIT);
4651define_dev_printk_level(_dev_err, KERN_ERR);
4652define_dev_printk_level(_dev_warn, KERN_WARNING);
4653define_dev_printk_level(_dev_notice, KERN_NOTICE);
4654define_dev_printk_level(_dev_info, KERN_INFO);
4655
4656#endif
4657
4658/**
4659 * dev_err_probe - probe error check and log helper
4660 * @dev: the pointer to the struct device
4661 * @err: error value to test
4662 * @fmt: printf-style format string
4663 * @...: arguments as specified in the format string
4664 *
4665 * This helper implements common pattern present in probe functions for error
4666 * checking: print debug or error message depending if the error value is
4667 * -EPROBE_DEFER and propagate error upwards.
4668 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4669 * checked later by reading devices_deferred debugfs attribute.
4670 * It replaces code sequence::
4671 *
4672 * 	if (err != -EPROBE_DEFER)
4673 * 		dev_err(dev, ...);
4674 * 	else
4675 * 		dev_dbg(dev, ...);
4676 * 	return err;
4677 *
4678 * with::
4679 *
4680 * 	return dev_err_probe(dev, err, ...);
4681 *
 
 
 
 
 
 
 
4682 * Returns @err.
4683 *
4684 */
4685int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4686{
4687	struct va_format vaf;
4688	va_list args;
4689
4690	va_start(args, fmt);
4691	vaf.fmt = fmt;
4692	vaf.va = &args;
4693
4694	if (err != -EPROBE_DEFER) {
4695		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4696	} else {
4697		device_set_deferred_probe_reason(dev, &vaf);
4698		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4699	}
4700
4701	va_end(args);
4702
4703	return err;
4704}
4705EXPORT_SYMBOL_GPL(dev_err_probe);
4706
4707static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4708{
4709	return fwnode && !IS_ERR(fwnode->secondary);
4710}
4711
4712/**
4713 * set_primary_fwnode - Change the primary firmware node of a given device.
4714 * @dev: Device to handle.
4715 * @fwnode: New primary firmware node of the device.
4716 *
4717 * Set the device's firmware node pointer to @fwnode, but if a secondary
4718 * firmware node of the device is present, preserve it.
4719 *
4720 * Valid fwnode cases are:
4721 *  - primary --> secondary --> -ENODEV
4722 *  - primary --> NULL
4723 *  - secondary --> -ENODEV
4724 *  - NULL
4725 */
4726void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4727{
4728	struct device *parent = dev->parent;
4729	struct fwnode_handle *fn = dev->fwnode;
4730
4731	if (fwnode) {
4732		if (fwnode_is_primary(fn))
4733			fn = fn->secondary;
4734
4735		if (fn) {
4736			WARN_ON(fwnode->secondary);
4737			fwnode->secondary = fn;
4738		}
4739		dev->fwnode = fwnode;
4740	} else {
4741		if (fwnode_is_primary(fn)) {
4742			dev->fwnode = fn->secondary;
 
 
 
 
 
4743			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4744			if (!(parent && fn == parent->fwnode))
4745				fn->secondary = NULL;
4746		} else {
4747			dev->fwnode = NULL;
4748		}
4749	}
4750}
4751EXPORT_SYMBOL_GPL(set_primary_fwnode);
4752
4753/**
4754 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4755 * @dev: Device to handle.
4756 * @fwnode: New secondary firmware node of the device.
4757 *
4758 * If a primary firmware node of the device is present, set its secondary
4759 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4760 * @fwnode.
4761 */
4762void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4763{
4764	if (fwnode)
4765		fwnode->secondary = ERR_PTR(-ENODEV);
4766
4767	if (fwnode_is_primary(dev->fwnode))
4768		dev->fwnode->secondary = fwnode;
4769	else
4770		dev->fwnode = fwnode;
4771}
4772EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4773
4774/**
4775 * device_set_of_node_from_dev - reuse device-tree node of another device
4776 * @dev: device whose device-tree node is being set
4777 * @dev2: device whose device-tree node is being reused
4778 *
4779 * Takes another reference to the new device-tree node after first dropping
4780 * any reference held to the old node.
4781 */
4782void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4783{
4784	of_node_put(dev->of_node);
4785	dev->of_node = of_node_get(dev2->of_node);
4786	dev->of_node_reused = true;
4787}
4788EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4789
4790void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4791{
4792	dev->fwnode = fwnode;
4793	dev->of_node = to_of_node(fwnode);
4794}
4795EXPORT_SYMBOL_GPL(device_set_node);
4796
4797int device_match_name(struct device *dev, const void *name)
4798{
4799	return sysfs_streq(dev_name(dev), name);
4800}
4801EXPORT_SYMBOL_GPL(device_match_name);
4802
4803int device_match_of_node(struct device *dev, const void *np)
4804{
4805	return dev->of_node == np;
4806}
4807EXPORT_SYMBOL_GPL(device_match_of_node);
4808
4809int device_match_fwnode(struct device *dev, const void *fwnode)
4810{
4811	return dev_fwnode(dev) == fwnode;
4812}
4813EXPORT_SYMBOL_GPL(device_match_fwnode);
4814
4815int device_match_devt(struct device *dev, const void *pdevt)
4816{
4817	return dev->devt == *(dev_t *)pdevt;
4818}
4819EXPORT_SYMBOL_GPL(device_match_devt);
4820
4821int device_match_acpi_dev(struct device *dev, const void *adev)
4822{
4823	return ACPI_COMPANION(dev) == adev;
4824}
4825EXPORT_SYMBOL(device_match_acpi_dev);
 
 
 
 
 
 
4826
4827int device_match_any(struct device *dev, const void *unused)
4828{
4829	return 1;
4830}
4831EXPORT_SYMBOL_GPL(device_match_any);