Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Arch specific cpu topology information
  4 *
  5 * Copyright (C) 2016, ARM Ltd.
  6 * Written by: Juri Lelli, ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/cacheinfo.h>
 11#include <linux/cpu.h>
 12#include <linux/cpufreq.h>
 13#include <linux/device.h>
 14#include <linux/of.h>
 15#include <linux/slab.h>
 
 16#include <linux/sched/topology.h>
 17#include <linux/cpuset.h>
 18#include <linux/cpumask.h>
 19#include <linux/init.h>
 
 20#include <linux/rcupdate.h>
 21#include <linux/sched.h>
 22#include <linux/units.h>
 23
 24#define CREATE_TRACE_POINTS
 25#include <trace/events/thermal_pressure.h>
 26
 27static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
 28static struct cpumask scale_freq_counters_mask;
 29static bool scale_freq_invariant;
 30DEFINE_PER_CPU(unsigned long, capacity_freq_ref) = 1;
 31EXPORT_PER_CPU_SYMBOL_GPL(capacity_freq_ref);
 32
 33static bool supports_scale_freq_counters(const struct cpumask *cpus)
 34{
 35	return cpumask_subset(cpus, &scale_freq_counters_mask);
 36}
 37
 38bool topology_scale_freq_invariant(void)
 39{
 40	return cpufreq_supports_freq_invariance() ||
 41	       supports_scale_freq_counters(cpu_online_mask);
 42}
 43
 44static void update_scale_freq_invariant(bool status)
 45{
 46	if (scale_freq_invariant == status)
 47		return;
 48
 49	/*
 50	 * Task scheduler behavior depends on frequency invariance support,
 51	 * either cpufreq or counter driven. If the support status changes as
 52	 * a result of counter initialisation and use, retrigger the build of
 53	 * scheduling domains to ensure the information is propagated properly.
 54	 */
 55	if (topology_scale_freq_invariant() == status) {
 56		scale_freq_invariant = status;
 57		rebuild_sched_domains_energy();
 58	}
 59}
 60
 61void topology_set_scale_freq_source(struct scale_freq_data *data,
 62				    const struct cpumask *cpus)
 63{
 64	struct scale_freq_data *sfd;
 65	int cpu;
 66
 67	/*
 68	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
 69	 * supported by cpufreq.
 70	 */
 71	if (cpumask_empty(&scale_freq_counters_mask))
 72		scale_freq_invariant = topology_scale_freq_invariant();
 73
 74	rcu_read_lock();
 75
 76	for_each_cpu(cpu, cpus) {
 77		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
 78
 79		/* Use ARCH provided counters whenever possible */
 80		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
 81			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
 82			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
 83		}
 84	}
 85
 86	rcu_read_unlock();
 87
 88	update_scale_freq_invariant(true);
 89}
 90EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
 91
 92void topology_clear_scale_freq_source(enum scale_freq_source source,
 93				      const struct cpumask *cpus)
 94{
 95	struct scale_freq_data *sfd;
 96	int cpu;
 97
 98	rcu_read_lock();
 99
100	for_each_cpu(cpu, cpus) {
101		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
102
103		if (sfd && sfd->source == source) {
104			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
105			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
106		}
107	}
108
109	rcu_read_unlock();
110
111	/*
112	 * Make sure all references to previous sft_data are dropped to avoid
113	 * use-after-free races.
114	 */
115	synchronize_rcu();
116
117	update_scale_freq_invariant(false);
118}
119EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
120
121void topology_scale_freq_tick(void)
122{
123	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
124
125	if (sfd)
126		sfd->set_freq_scale();
127}
128
129DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
130EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
131
132void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
133			     unsigned long max_freq)
134{
135	unsigned long scale;
136	int i;
137
138	if (WARN_ON_ONCE(!cur_freq || !max_freq))
139		return;
140
141	/*
142	 * If the use of counters for FIE is enabled, just return as we don't
143	 * want to update the scale factor with information from CPUFREQ.
144	 * Instead the scale factor will be updated from arch_scale_freq_tick.
145	 */
146	if (supports_scale_freq_counters(cpus))
147		return;
148
149	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
150
151	for_each_cpu(i, cpus)
152		per_cpu(arch_freq_scale, i) = scale;
153}
154
155DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
156EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
157
158void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
159{
160	per_cpu(cpu_scale, cpu) = capacity;
161}
162
163DEFINE_PER_CPU(unsigned long, thermal_pressure);
164
165/**
166 * topology_update_thermal_pressure() - Update thermal pressure for CPUs
167 * @cpus        : The related CPUs for which capacity has been reduced
168 * @capped_freq : The maximum allowed frequency that CPUs can run at
169 *
170 * Update the value of thermal pressure for all @cpus in the mask. The
171 * cpumask should include all (online+offline) affected CPUs, to avoid
172 * operating on stale data when hot-plug is used for some CPUs. The
173 * @capped_freq reflects the currently allowed max CPUs frequency due to
174 * thermal capping. It might be also a boost frequency value, which is bigger
175 * than the internal 'capacity_freq_ref' max frequency. In such case the
176 * pressure value should simply be removed, since this is an indication that
177 * there is no thermal throttling. The @capped_freq must be provided in kHz.
178 */
179void topology_update_thermal_pressure(const struct cpumask *cpus,
180				      unsigned long capped_freq)
181{
182	unsigned long max_capacity, capacity, th_pressure;
183	u32 max_freq;
184	int cpu;
185
186	cpu = cpumask_first(cpus);
187	max_capacity = arch_scale_cpu_capacity(cpu);
188	max_freq = arch_scale_freq_ref(cpu);
189
190	/*
191	 * Handle properly the boost frequencies, which should simply clean
192	 * the thermal pressure value.
193	 */
194	if (max_freq <= capped_freq)
195		capacity = max_capacity;
196	else
197		capacity = mult_frac(max_capacity, capped_freq, max_freq);
198
199	th_pressure = max_capacity - capacity;
200
201	trace_thermal_pressure_update(cpu, th_pressure);
202
203	for_each_cpu(cpu, cpus)
204		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
205}
206EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
207
208static ssize_t cpu_capacity_show(struct device *dev,
209				 struct device_attribute *attr,
210				 char *buf)
211{
212	struct cpu *cpu = container_of(dev, struct cpu, dev);
213
214	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
215}
216
217static void update_topology_flags_workfn(struct work_struct *work);
218static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
219
220static DEVICE_ATTR_RO(cpu_capacity);
221
222static int cpu_capacity_sysctl_add(unsigned int cpu)
223{
224	struct device *cpu_dev = get_cpu_device(cpu);
225
226	if (!cpu_dev)
227		return -ENOENT;
228
229	device_create_file(cpu_dev, &dev_attr_cpu_capacity);
230
231	return 0;
232}
233
234static int cpu_capacity_sysctl_remove(unsigned int cpu)
235{
236	struct device *cpu_dev = get_cpu_device(cpu);
237
238	if (!cpu_dev)
239		return -ENOENT;
240
241	device_remove_file(cpu_dev, &dev_attr_cpu_capacity);
242
243	return 0;
244}
245
246static int register_cpu_capacity_sysctl(void)
247{
248	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "topology/cpu-capacity",
249			  cpu_capacity_sysctl_add, cpu_capacity_sysctl_remove);
 
 
 
 
 
 
 
 
 
 
250
251	return 0;
252}
253subsys_initcall(register_cpu_capacity_sysctl);
254
255static int update_topology;
256
257int topology_update_cpu_topology(void)
258{
259	return update_topology;
260}
261
262/*
263 * Updating the sched_domains can't be done directly from cpufreq callbacks
264 * due to locking, so queue the work for later.
265 */
266static void update_topology_flags_workfn(struct work_struct *work)
267{
268	update_topology = 1;
269	rebuild_sched_domains();
270	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
271	update_topology = 0;
272}
273
 
274static u32 *raw_capacity;
275
276static int free_raw_capacity(void)
277{
278	kfree(raw_capacity);
279	raw_capacity = NULL;
280
281	return 0;
282}
283
284void topology_normalize_cpu_scale(void)
285{
286	u64 capacity;
287	u64 capacity_scale;
288	int cpu;
289
290	if (!raw_capacity)
291		return;
292
293	capacity_scale = 1;
294	for_each_possible_cpu(cpu) {
295		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
296		capacity_scale = max(capacity, capacity_scale);
297	}
298
299	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
300	for_each_possible_cpu(cpu) {
301		capacity = raw_capacity[cpu] * per_cpu(capacity_freq_ref, cpu);
302		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
303			capacity_scale);
304		topology_set_cpu_scale(cpu, capacity);
305		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
306			cpu, topology_get_cpu_scale(cpu));
307	}
308}
309
310bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
311{
312	struct clk *cpu_clk;
313	static bool cap_parsing_failed;
314	int ret;
315	u32 cpu_capacity;
316
317	if (cap_parsing_failed)
318		return false;
319
320	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
321				   &cpu_capacity);
322	if (!ret) {
323		if (!raw_capacity) {
324			raw_capacity = kcalloc(num_possible_cpus(),
325					       sizeof(*raw_capacity),
326					       GFP_KERNEL);
327			if (!raw_capacity) {
328				cap_parsing_failed = true;
329				return false;
330			}
331		}
332		raw_capacity[cpu] = cpu_capacity;
333		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
334			cpu_node, raw_capacity[cpu]);
335
336		/*
337		 * Update capacity_freq_ref for calculating early boot CPU capacities.
338		 * For non-clk CPU DVFS mechanism, there's no way to get the
339		 * frequency value now, assuming they are running at the same
340		 * frequency (by keeping the initial capacity_freq_ref value).
341		 */
342		cpu_clk = of_clk_get(cpu_node, 0);
343		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
344			per_cpu(capacity_freq_ref, cpu) =
345				clk_get_rate(cpu_clk) / HZ_PER_KHZ;
346			clk_put(cpu_clk);
347		}
348	} else {
349		if (raw_capacity) {
350			pr_err("cpu_capacity: missing %pOF raw capacity\n",
351				cpu_node);
352			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
353		}
354		cap_parsing_failed = true;
355		free_raw_capacity();
356	}
357
358	return !ret;
359}
360
361void __weak freq_inv_set_max_ratio(int cpu, u64 max_rate)
362{
363}
364
365#ifdef CONFIG_ACPI_CPPC_LIB
366#include <acpi/cppc_acpi.h>
367
368void topology_init_cpu_capacity_cppc(void)
369{
370	u64 capacity, capacity_scale = 0;
371	struct cppc_perf_caps perf_caps;
372	int cpu;
373
374	if (likely(!acpi_cpc_valid()))
375		return;
376
377	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
378			       GFP_KERNEL);
379	if (!raw_capacity)
380		return;
381
382	for_each_possible_cpu(cpu) {
383		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
384		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
385		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
386			raw_capacity[cpu] = perf_caps.highest_perf;
387			capacity_scale = max_t(u64, capacity_scale, raw_capacity[cpu]);
388
389			per_cpu(capacity_freq_ref, cpu) = cppc_perf_to_khz(&perf_caps, raw_capacity[cpu]);
390
391			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
392				 cpu, raw_capacity[cpu]);
393			continue;
394		}
395
396		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
397		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
398		goto exit;
399	}
400
401	for_each_possible_cpu(cpu) {
402		freq_inv_set_max_ratio(cpu,
403				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
404
405		capacity = raw_capacity[cpu];
406		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
407				     capacity_scale);
408		topology_set_cpu_scale(cpu, capacity);
409		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
410			cpu, topology_get_cpu_scale(cpu));
411	}
412
413	schedule_work(&update_topology_flags_work);
414	pr_debug("cpu_capacity: cpu_capacity initialization done\n");
415
416exit:
417	free_raw_capacity();
418}
419#endif
420
421#ifdef CONFIG_CPU_FREQ
422static cpumask_var_t cpus_to_visit;
423static void parsing_done_workfn(struct work_struct *work);
424static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
425
426static int
427init_cpu_capacity_callback(struct notifier_block *nb,
428			   unsigned long val,
429			   void *data)
430{
431	struct cpufreq_policy *policy = data;
432	int cpu;
433
 
 
 
434	if (val != CPUFREQ_CREATE_POLICY)
435		return 0;
436
437	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
438		 cpumask_pr_args(policy->related_cpus),
439		 cpumask_pr_args(cpus_to_visit));
440
441	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
442
443	for_each_cpu(cpu, policy->related_cpus) {
444		per_cpu(capacity_freq_ref, cpu) = policy->cpuinfo.max_freq;
445		freq_inv_set_max_ratio(cpu,
446				       per_cpu(capacity_freq_ref, cpu) * HZ_PER_KHZ);
447	}
448
449	if (cpumask_empty(cpus_to_visit)) {
450		if (raw_capacity) {
451			topology_normalize_cpu_scale();
452			schedule_work(&update_topology_flags_work);
453			free_raw_capacity();
454		}
455		pr_debug("cpu_capacity: parsing done\n");
456		schedule_work(&parsing_done_work);
457	}
458
459	return 0;
460}
461
462static struct notifier_block init_cpu_capacity_notifier = {
463	.notifier_call = init_cpu_capacity_callback,
464};
465
466static int __init register_cpufreq_notifier(void)
467{
468	int ret;
469
470	/*
471	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
472	 * information is not needed for cpu capacity initialization.
 
473	 */
474	if (!acpi_disabled)
475		return -EINVAL;
476
477	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
478		return -ENOMEM;
479
480	cpumask_copy(cpus_to_visit, cpu_possible_mask);
481
482	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
483					CPUFREQ_POLICY_NOTIFIER);
484
485	if (ret)
486		free_cpumask_var(cpus_to_visit);
487
488	return ret;
489}
490core_initcall(register_cpufreq_notifier);
491
492static void parsing_done_workfn(struct work_struct *work)
493{
494	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
495					 CPUFREQ_POLICY_NOTIFIER);
496	free_cpumask_var(cpus_to_visit);
497}
498
499#else
500core_initcall(free_raw_capacity);
501#endif
502
503#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
504/*
505 * This function returns the logic cpu number of the node.
506 * There are basically three kinds of return values:
507 * (1) logic cpu number which is > 0.
508 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
509 * there is no possible logical CPU in the kernel to match. This happens
510 * when CONFIG_NR_CPUS is configure to be smaller than the number of
511 * CPU nodes in DT. We need to just ignore this case.
512 * (3) -1 if the node does not exist in the device tree
513 */
514static int __init get_cpu_for_node(struct device_node *node)
515{
516	struct device_node *cpu_node;
517	int cpu;
518
519	cpu_node = of_parse_phandle(node, "cpu", 0);
520	if (!cpu_node)
521		return -1;
522
523	cpu = of_cpu_node_to_id(cpu_node);
524	if (cpu >= 0)
525		topology_parse_cpu_capacity(cpu_node, cpu);
526	else
527		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
528			cpu_node, cpumask_pr_args(cpu_possible_mask));
529
530	of_node_put(cpu_node);
531	return cpu;
532}
533
534static int __init parse_core(struct device_node *core, int package_id,
535			     int cluster_id, int core_id)
536{
537	char name[20];
538	bool leaf = true;
539	int i = 0;
540	int cpu;
541	struct device_node *t;
542
543	do {
544		snprintf(name, sizeof(name), "thread%d", i);
545		t = of_get_child_by_name(core, name);
546		if (t) {
547			leaf = false;
548			cpu = get_cpu_for_node(t);
549			if (cpu >= 0) {
550				cpu_topology[cpu].package_id = package_id;
551				cpu_topology[cpu].cluster_id = cluster_id;
552				cpu_topology[cpu].core_id = core_id;
553				cpu_topology[cpu].thread_id = i;
554			} else if (cpu != -ENODEV) {
555				pr_err("%pOF: Can't get CPU for thread\n", t);
556				of_node_put(t);
557				return -EINVAL;
558			}
559			of_node_put(t);
560		}
561		i++;
562	} while (t);
563
564	cpu = get_cpu_for_node(core);
565	if (cpu >= 0) {
566		if (!leaf) {
567			pr_err("%pOF: Core has both threads and CPU\n",
568			       core);
569			return -EINVAL;
570		}
571
572		cpu_topology[cpu].package_id = package_id;
573		cpu_topology[cpu].cluster_id = cluster_id;
574		cpu_topology[cpu].core_id = core_id;
575	} else if (leaf && cpu != -ENODEV) {
576		pr_err("%pOF: Can't get CPU for leaf core\n", core);
577		return -EINVAL;
578	}
579
580	return 0;
581}
582
583static int __init parse_cluster(struct device_node *cluster, int package_id,
584				int cluster_id, int depth)
585{
586	char name[20];
587	bool leaf = true;
588	bool has_cores = false;
589	struct device_node *c;
 
590	int core_id = 0;
591	int i, ret;
592
593	/*
594	 * First check for child clusters; we currently ignore any
595	 * information about the nesting of clusters and present the
596	 * scheduler with a flat list of them.
597	 */
598	i = 0;
599	do {
600		snprintf(name, sizeof(name), "cluster%d", i);
601		c = of_get_child_by_name(cluster, name);
602		if (c) {
603			leaf = false;
604			ret = parse_cluster(c, package_id, i, depth + 1);
605			if (depth > 0)
606				pr_warn("Topology for clusters of clusters not yet supported\n");
607			of_node_put(c);
608			if (ret != 0)
609				return ret;
610		}
611		i++;
612	} while (c);
613
614	/* Now check for cores */
615	i = 0;
616	do {
617		snprintf(name, sizeof(name), "core%d", i);
618		c = of_get_child_by_name(cluster, name);
619		if (c) {
620			has_cores = true;
621
622			if (depth == 0) {
623				pr_err("%pOF: cpu-map children should be clusters\n",
624				       c);
625				of_node_put(c);
626				return -EINVAL;
627			}
628
629			if (leaf) {
630				ret = parse_core(c, package_id, cluster_id,
631						 core_id++);
632			} else {
633				pr_err("%pOF: Non-leaf cluster with core %s\n",
634				       cluster, name);
635				ret = -EINVAL;
636			}
637
638			of_node_put(c);
639			if (ret != 0)
640				return ret;
641		}
642		i++;
643	} while (c);
644
645	if (leaf && !has_cores)
646		pr_warn("%pOF: empty cluster\n", cluster);
647
648	return 0;
649}
650
651static int __init parse_socket(struct device_node *socket)
652{
653	char name[20];
654	struct device_node *c;
655	bool has_socket = false;
656	int package_id = 0, ret;
657
658	do {
659		snprintf(name, sizeof(name), "socket%d", package_id);
660		c = of_get_child_by_name(socket, name);
661		if (c) {
662			has_socket = true;
663			ret = parse_cluster(c, package_id, -1, 0);
664			of_node_put(c);
665			if (ret != 0)
666				return ret;
667		}
668		package_id++;
669	} while (c);
670
671	if (!has_socket)
672		ret = parse_cluster(socket, 0, -1, 0);
673
674	return ret;
675}
676
677static int __init parse_dt_topology(void)
678{
679	struct device_node *cn, *map;
680	int ret = 0;
681	int cpu;
682
683	cn = of_find_node_by_path("/cpus");
684	if (!cn) {
685		pr_err("No CPU information found in DT\n");
686		return 0;
687	}
688
689	/*
690	 * When topology is provided cpu-map is essentially a root
691	 * cluster with restricted subnodes.
692	 */
693	map = of_get_child_by_name(cn, "cpu-map");
694	if (!map)
695		goto out;
696
697	ret = parse_socket(map);
698	if (ret != 0)
699		goto out_map;
700
701	topology_normalize_cpu_scale();
702
703	/*
704	 * Check that all cores are in the topology; the SMP code will
705	 * only mark cores described in the DT as possible.
706	 */
707	for_each_possible_cpu(cpu)
708		if (cpu_topology[cpu].package_id < 0) {
709			ret = -EINVAL;
710			break;
711		}
712
713out_map:
714	of_node_put(map);
715out:
716	of_node_put(cn);
717	return ret;
718}
719#endif
720
721/*
722 * cpu topology table
723 */
724struct cpu_topology cpu_topology[NR_CPUS];
725EXPORT_SYMBOL_GPL(cpu_topology);
726
727const struct cpumask *cpu_coregroup_mask(int cpu)
728{
729	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
730
731	/* Find the smaller of NUMA, core or LLC siblings */
732	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
733		/* not numa in package, lets use the package siblings */
734		core_mask = &cpu_topology[cpu].core_sibling;
735	}
736
737	if (last_level_cache_is_valid(cpu)) {
738		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
739			core_mask = &cpu_topology[cpu].llc_sibling;
740	}
741
742	/*
743	 * For systems with no shared cpu-side LLC but with clusters defined,
744	 * extend core_mask to cluster_siblings. The sched domain builder will
745	 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
746	 */
747	if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
748	    cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
749		core_mask = &cpu_topology[cpu].cluster_sibling;
750
751	return core_mask;
752}
753
754const struct cpumask *cpu_clustergroup_mask(int cpu)
755{
756	/*
757	 * Forbid cpu_clustergroup_mask() to span more or the same CPUs as
758	 * cpu_coregroup_mask().
759	 */
760	if (cpumask_subset(cpu_coregroup_mask(cpu),
761			   &cpu_topology[cpu].cluster_sibling))
762		return topology_sibling_cpumask(cpu);
763
764	return &cpu_topology[cpu].cluster_sibling;
765}
766
767void update_siblings_masks(unsigned int cpuid)
768{
769	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
770	int cpu, ret;
771
772	ret = detect_cache_attributes(cpuid);
773	if (ret && ret != -ENOENT)
774		pr_info("Early cacheinfo allocation failed, ret = %d\n", ret);
775
776	/* update core and thread sibling masks */
777	for_each_online_cpu(cpu) {
778		cpu_topo = &cpu_topology[cpu];
779
780		if (last_level_cache_is_shared(cpu, cpuid)) {
781			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
782			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
783		}
784
785		if (cpuid_topo->package_id != cpu_topo->package_id)
786			continue;
787
788		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
789		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
790
791		if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
792			continue;
793
794		if (cpuid_topo->cluster_id >= 0) {
795			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
796			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
797		}
798
799		if (cpuid_topo->core_id != cpu_topo->core_id)
800			continue;
801
802		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
803		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
804	}
805}
806
807static void clear_cpu_topology(int cpu)
808{
809	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
810
811	cpumask_clear(&cpu_topo->llc_sibling);
812	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
813
814	cpumask_clear(&cpu_topo->cluster_sibling);
815	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
816
817	cpumask_clear(&cpu_topo->core_sibling);
818	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
819	cpumask_clear(&cpu_topo->thread_sibling);
820	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
821}
822
823void __init reset_cpu_topology(void)
824{
825	unsigned int cpu;
826
827	for_each_possible_cpu(cpu) {
828		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
829
830		cpu_topo->thread_id = -1;
831		cpu_topo->core_id = -1;
832		cpu_topo->cluster_id = -1;
833		cpu_topo->package_id = -1;
 
834
835		clear_cpu_topology(cpu);
836	}
837}
838
839void remove_cpu_topology(unsigned int cpu)
840{
841	int sibling;
842
843	for_each_cpu(sibling, topology_core_cpumask(cpu))
844		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
845	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
846		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
847	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
848		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
849	for_each_cpu(sibling, topology_llc_cpumask(cpu))
850		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
851
852	clear_cpu_topology(cpu);
853}
854
855__weak int __init parse_acpi_topology(void)
856{
857	return 0;
858}
859
860#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
861void __init init_cpu_topology(void)
862{
863	int cpu, ret;
864
865	reset_cpu_topology();
866	ret = parse_acpi_topology();
867	if (!ret)
868		ret = of_have_populated_dt() && parse_dt_topology();
869
870	if (ret) {
871		/*
872		 * Discard anything that was parsed if we hit an error so we
873		 * don't use partial information. But do not return yet to give
874		 * arch-specific early cache level detection a chance to run.
875		 */
 
876		reset_cpu_topology();
877	}
878
879	for_each_possible_cpu(cpu) {
880		ret = fetch_cache_info(cpu);
881		if (!ret)
882			continue;
883		else if (ret != -ENOENT)
884			pr_err("Early cacheinfo failed, ret = %d\n", ret);
885		return;
886	}
887}
888
889void store_cpu_topology(unsigned int cpuid)
890{
891	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
892
893	if (cpuid_topo->package_id != -1)
894		goto topology_populated;
895
896	cpuid_topo->thread_id = -1;
897	cpuid_topo->core_id = cpuid;
898	cpuid_topo->package_id = cpu_to_node(cpuid);
899
900	pr_debug("CPU%u: package %d core %d thread %d\n",
901		 cpuid, cpuid_topo->package_id, cpuid_topo->core_id,
902		 cpuid_topo->thread_id);
903
904topology_populated:
905	update_siblings_masks(cpuid);
906}
907#endif
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Arch specific cpu topology information
  4 *
  5 * Copyright (C) 2016, ARM Ltd.
  6 * Written by: Juri Lelli, ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 
 10#include <linux/cpu.h>
 11#include <linux/cpufreq.h>
 12#include <linux/device.h>
 13#include <linux/of.h>
 14#include <linux/slab.h>
 15#include <linux/string.h>
 16#include <linux/sched/topology.h>
 17#include <linux/cpuset.h>
 18#include <linux/cpumask.h>
 19#include <linux/init.h>
 20#include <linux/percpu.h>
 21#include <linux/rcupdate.h>
 22#include <linux/sched.h>
 23#include <linux/smp.h>
 
 
 
 24
 25static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
 26static struct cpumask scale_freq_counters_mask;
 27static bool scale_freq_invariant;
 
 
 28
 29static bool supports_scale_freq_counters(const struct cpumask *cpus)
 30{
 31	return cpumask_subset(cpus, &scale_freq_counters_mask);
 32}
 33
 34bool topology_scale_freq_invariant(void)
 35{
 36	return cpufreq_supports_freq_invariance() ||
 37	       supports_scale_freq_counters(cpu_online_mask);
 38}
 39
 40static void update_scale_freq_invariant(bool status)
 41{
 42	if (scale_freq_invariant == status)
 43		return;
 44
 45	/*
 46	 * Task scheduler behavior depends on frequency invariance support,
 47	 * either cpufreq or counter driven. If the support status changes as
 48	 * a result of counter initialisation and use, retrigger the build of
 49	 * scheduling domains to ensure the information is propagated properly.
 50	 */
 51	if (topology_scale_freq_invariant() == status) {
 52		scale_freq_invariant = status;
 53		rebuild_sched_domains_energy();
 54	}
 55}
 56
 57void topology_set_scale_freq_source(struct scale_freq_data *data,
 58				    const struct cpumask *cpus)
 59{
 60	struct scale_freq_data *sfd;
 61	int cpu;
 62
 63	/*
 64	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
 65	 * supported by cpufreq.
 66	 */
 67	if (cpumask_empty(&scale_freq_counters_mask))
 68		scale_freq_invariant = topology_scale_freq_invariant();
 69
 70	rcu_read_lock();
 71
 72	for_each_cpu(cpu, cpus) {
 73		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
 74
 75		/* Use ARCH provided counters whenever possible */
 76		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
 77			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
 78			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
 79		}
 80	}
 81
 82	rcu_read_unlock();
 83
 84	update_scale_freq_invariant(true);
 85}
 86EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
 87
 88void topology_clear_scale_freq_source(enum scale_freq_source source,
 89				      const struct cpumask *cpus)
 90{
 91	struct scale_freq_data *sfd;
 92	int cpu;
 93
 94	rcu_read_lock();
 95
 96	for_each_cpu(cpu, cpus) {
 97		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
 98
 99		if (sfd && sfd->source == source) {
100			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
101			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
102		}
103	}
104
105	rcu_read_unlock();
106
107	/*
108	 * Make sure all references to previous sft_data are dropped to avoid
109	 * use-after-free races.
110	 */
111	synchronize_rcu();
112
113	update_scale_freq_invariant(false);
114}
115EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
116
117void topology_scale_freq_tick(void)
118{
119	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
120
121	if (sfd)
122		sfd->set_freq_scale();
123}
124
125DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
126EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
127
128void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
129			     unsigned long max_freq)
130{
131	unsigned long scale;
132	int i;
133
134	if (WARN_ON_ONCE(!cur_freq || !max_freq))
135		return;
136
137	/*
138	 * If the use of counters for FIE is enabled, just return as we don't
139	 * want to update the scale factor with information from CPUFREQ.
140	 * Instead the scale factor will be updated from arch_scale_freq_tick.
141	 */
142	if (supports_scale_freq_counters(cpus))
143		return;
144
145	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
146
147	for_each_cpu(i, cpus)
148		per_cpu(arch_freq_scale, i) = scale;
149}
150
151DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
 
152
153void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
154{
155	per_cpu(cpu_scale, cpu) = capacity;
156}
157
158DEFINE_PER_CPU(unsigned long, thermal_pressure);
159
160void topology_set_thermal_pressure(const struct cpumask *cpus,
161			       unsigned long th_pressure)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162{
 
 
163	int cpu;
164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165	for_each_cpu(cpu, cpus)
166		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
167}
 
168
169static ssize_t cpu_capacity_show(struct device *dev,
170				 struct device_attribute *attr,
171				 char *buf)
172{
173	struct cpu *cpu = container_of(dev, struct cpu, dev);
174
175	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
176}
177
178static void update_topology_flags_workfn(struct work_struct *work);
179static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
180
181static DEVICE_ATTR_RO(cpu_capacity);
182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183static int register_cpu_capacity_sysctl(void)
184{
185	int i;
186	struct device *cpu;
187
188	for_each_possible_cpu(i) {
189		cpu = get_cpu_device(i);
190		if (!cpu) {
191			pr_err("%s: too early to get CPU%d device!\n",
192			       __func__, i);
193			continue;
194		}
195		device_create_file(cpu, &dev_attr_cpu_capacity);
196	}
197
198	return 0;
199}
200subsys_initcall(register_cpu_capacity_sysctl);
201
202static int update_topology;
203
204int topology_update_cpu_topology(void)
205{
206	return update_topology;
207}
208
209/*
210 * Updating the sched_domains can't be done directly from cpufreq callbacks
211 * due to locking, so queue the work for later.
212 */
213static void update_topology_flags_workfn(struct work_struct *work)
214{
215	update_topology = 1;
216	rebuild_sched_domains();
217	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
218	update_topology = 0;
219}
220
221static DEFINE_PER_CPU(u32, freq_factor) = 1;
222static u32 *raw_capacity;
223
224static int free_raw_capacity(void)
225{
226	kfree(raw_capacity);
227	raw_capacity = NULL;
228
229	return 0;
230}
231
232void topology_normalize_cpu_scale(void)
233{
234	u64 capacity;
235	u64 capacity_scale;
236	int cpu;
237
238	if (!raw_capacity)
239		return;
240
241	capacity_scale = 1;
242	for_each_possible_cpu(cpu) {
243		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
244		capacity_scale = max(capacity, capacity_scale);
245	}
246
247	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
248	for_each_possible_cpu(cpu) {
249		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
250		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
251			capacity_scale);
252		topology_set_cpu_scale(cpu, capacity);
253		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
254			cpu, topology_get_cpu_scale(cpu));
255	}
256}
257
258bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
259{
260	struct clk *cpu_clk;
261	static bool cap_parsing_failed;
262	int ret;
263	u32 cpu_capacity;
264
265	if (cap_parsing_failed)
266		return false;
267
268	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
269				   &cpu_capacity);
270	if (!ret) {
271		if (!raw_capacity) {
272			raw_capacity = kcalloc(num_possible_cpus(),
273					       sizeof(*raw_capacity),
274					       GFP_KERNEL);
275			if (!raw_capacity) {
276				cap_parsing_failed = true;
277				return false;
278			}
279		}
280		raw_capacity[cpu] = cpu_capacity;
281		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
282			cpu_node, raw_capacity[cpu]);
283
284		/*
285		 * Update freq_factor for calculating early boot cpu capacities.
286		 * For non-clk CPU DVFS mechanism, there's no way to get the
287		 * frequency value now, assuming they are running at the same
288		 * frequency (by keeping the initial freq_factor value).
289		 */
290		cpu_clk = of_clk_get(cpu_node, 0);
291		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
292			per_cpu(freq_factor, cpu) =
293				clk_get_rate(cpu_clk) / 1000;
294			clk_put(cpu_clk);
295		}
296	} else {
297		if (raw_capacity) {
298			pr_err("cpu_capacity: missing %pOF raw capacity\n",
299				cpu_node);
300			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
301		}
302		cap_parsing_failed = true;
303		free_raw_capacity();
304	}
305
306	return !ret;
307}
308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309#ifdef CONFIG_CPU_FREQ
310static cpumask_var_t cpus_to_visit;
311static void parsing_done_workfn(struct work_struct *work);
312static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
313
314static int
315init_cpu_capacity_callback(struct notifier_block *nb,
316			   unsigned long val,
317			   void *data)
318{
319	struct cpufreq_policy *policy = data;
320	int cpu;
321
322	if (!raw_capacity)
323		return 0;
324
325	if (val != CPUFREQ_CREATE_POLICY)
326		return 0;
327
328	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
329		 cpumask_pr_args(policy->related_cpus),
330		 cpumask_pr_args(cpus_to_visit));
331
332	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
333
334	for_each_cpu(cpu, policy->related_cpus)
335		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
 
 
 
336
337	if (cpumask_empty(cpus_to_visit)) {
338		topology_normalize_cpu_scale();
339		schedule_work(&update_topology_flags_work);
340		free_raw_capacity();
 
 
341		pr_debug("cpu_capacity: parsing done\n");
342		schedule_work(&parsing_done_work);
343	}
344
345	return 0;
346}
347
348static struct notifier_block init_cpu_capacity_notifier = {
349	.notifier_call = init_cpu_capacity_callback,
350};
351
352static int __init register_cpufreq_notifier(void)
353{
354	int ret;
355
356	/*
357	 * on ACPI-based systems we need to use the default cpu capacity
358	 * until we have the necessary code to parse the cpu capacity, so
359	 * skip registering cpufreq notifier.
360	 */
361	if (!acpi_disabled || !raw_capacity)
362		return -EINVAL;
363
364	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
365		return -ENOMEM;
366
367	cpumask_copy(cpus_to_visit, cpu_possible_mask);
368
369	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
370					CPUFREQ_POLICY_NOTIFIER);
371
372	if (ret)
373		free_cpumask_var(cpus_to_visit);
374
375	return ret;
376}
377core_initcall(register_cpufreq_notifier);
378
379static void parsing_done_workfn(struct work_struct *work)
380{
381	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
382					 CPUFREQ_POLICY_NOTIFIER);
383	free_cpumask_var(cpus_to_visit);
384}
385
386#else
387core_initcall(free_raw_capacity);
388#endif
389
390#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
391/*
392 * This function returns the logic cpu number of the node.
393 * There are basically three kinds of return values:
394 * (1) logic cpu number which is > 0.
395 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
396 * there is no possible logical CPU in the kernel to match. This happens
397 * when CONFIG_NR_CPUS is configure to be smaller than the number of
398 * CPU nodes in DT. We need to just ignore this case.
399 * (3) -1 if the node does not exist in the device tree
400 */
401static int __init get_cpu_for_node(struct device_node *node)
402{
403	struct device_node *cpu_node;
404	int cpu;
405
406	cpu_node = of_parse_phandle(node, "cpu", 0);
407	if (!cpu_node)
408		return -1;
409
410	cpu = of_cpu_node_to_id(cpu_node);
411	if (cpu >= 0)
412		topology_parse_cpu_capacity(cpu_node, cpu);
413	else
414		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
415			cpu_node, cpumask_pr_args(cpu_possible_mask));
416
417	of_node_put(cpu_node);
418	return cpu;
419}
420
421static int __init parse_core(struct device_node *core, int package_id,
422			     int core_id)
423{
424	char name[20];
425	bool leaf = true;
426	int i = 0;
427	int cpu;
428	struct device_node *t;
429
430	do {
431		snprintf(name, sizeof(name), "thread%d", i);
432		t = of_get_child_by_name(core, name);
433		if (t) {
434			leaf = false;
435			cpu = get_cpu_for_node(t);
436			if (cpu >= 0) {
437				cpu_topology[cpu].package_id = package_id;
 
438				cpu_topology[cpu].core_id = core_id;
439				cpu_topology[cpu].thread_id = i;
440			} else if (cpu != -ENODEV) {
441				pr_err("%pOF: Can't get CPU for thread\n", t);
442				of_node_put(t);
443				return -EINVAL;
444			}
445			of_node_put(t);
446		}
447		i++;
448	} while (t);
449
450	cpu = get_cpu_for_node(core);
451	if (cpu >= 0) {
452		if (!leaf) {
453			pr_err("%pOF: Core has both threads and CPU\n",
454			       core);
455			return -EINVAL;
456		}
457
458		cpu_topology[cpu].package_id = package_id;
 
459		cpu_topology[cpu].core_id = core_id;
460	} else if (leaf && cpu != -ENODEV) {
461		pr_err("%pOF: Can't get CPU for leaf core\n", core);
462		return -EINVAL;
463	}
464
465	return 0;
466}
467
468static int __init parse_cluster(struct device_node *cluster, int depth)
 
469{
470	char name[20];
471	bool leaf = true;
472	bool has_cores = false;
473	struct device_node *c;
474	static int package_id __initdata;
475	int core_id = 0;
476	int i, ret;
477
478	/*
479	 * First check for child clusters; we currently ignore any
480	 * information about the nesting of clusters and present the
481	 * scheduler with a flat list of them.
482	 */
483	i = 0;
484	do {
485		snprintf(name, sizeof(name), "cluster%d", i);
486		c = of_get_child_by_name(cluster, name);
487		if (c) {
488			leaf = false;
489			ret = parse_cluster(c, depth + 1);
 
 
490			of_node_put(c);
491			if (ret != 0)
492				return ret;
493		}
494		i++;
495	} while (c);
496
497	/* Now check for cores */
498	i = 0;
499	do {
500		snprintf(name, sizeof(name), "core%d", i);
501		c = of_get_child_by_name(cluster, name);
502		if (c) {
503			has_cores = true;
504
505			if (depth == 0) {
506				pr_err("%pOF: cpu-map children should be clusters\n",
507				       c);
508				of_node_put(c);
509				return -EINVAL;
510			}
511
512			if (leaf) {
513				ret = parse_core(c, package_id, core_id++);
 
514			} else {
515				pr_err("%pOF: Non-leaf cluster with core %s\n",
516				       cluster, name);
517				ret = -EINVAL;
518			}
519
520			of_node_put(c);
521			if (ret != 0)
522				return ret;
523		}
524		i++;
525	} while (c);
526
527	if (leaf && !has_cores)
528		pr_warn("%pOF: empty cluster\n", cluster);
529
530	if (leaf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531		package_id++;
 
 
 
 
532
533	return 0;
534}
535
536static int __init parse_dt_topology(void)
537{
538	struct device_node *cn, *map;
539	int ret = 0;
540	int cpu;
541
542	cn = of_find_node_by_path("/cpus");
543	if (!cn) {
544		pr_err("No CPU information found in DT\n");
545		return 0;
546	}
547
548	/*
549	 * When topology is provided cpu-map is essentially a root
550	 * cluster with restricted subnodes.
551	 */
552	map = of_get_child_by_name(cn, "cpu-map");
553	if (!map)
554		goto out;
555
556	ret = parse_cluster(map, 0);
557	if (ret != 0)
558		goto out_map;
559
560	topology_normalize_cpu_scale();
561
562	/*
563	 * Check that all cores are in the topology; the SMP code will
564	 * only mark cores described in the DT as possible.
565	 */
566	for_each_possible_cpu(cpu)
567		if (cpu_topology[cpu].package_id == -1)
568			ret = -EINVAL;
 
 
569
570out_map:
571	of_node_put(map);
572out:
573	of_node_put(cn);
574	return ret;
575}
576#endif
577
578/*
579 * cpu topology table
580 */
581struct cpu_topology cpu_topology[NR_CPUS];
582EXPORT_SYMBOL_GPL(cpu_topology);
583
584const struct cpumask *cpu_coregroup_mask(int cpu)
585{
586	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
587
588	/* Find the smaller of NUMA, core or LLC siblings */
589	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
590		/* not numa in package, lets use the package siblings */
591		core_mask = &cpu_topology[cpu].core_sibling;
592	}
593	if (cpu_topology[cpu].llc_id != -1) {
 
594		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
595			core_mask = &cpu_topology[cpu].llc_sibling;
596	}
597
 
 
 
 
 
 
 
 
 
598	return core_mask;
599}
600
 
 
 
 
 
 
 
 
 
 
 
 
 
601void update_siblings_masks(unsigned int cpuid)
602{
603	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
604	int cpu;
 
 
 
 
605
606	/* update core and thread sibling masks */
607	for_each_online_cpu(cpu) {
608		cpu_topo = &cpu_topology[cpu];
609
610		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
611			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
612			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
613		}
614
615		if (cpuid_topo->package_id != cpu_topo->package_id)
616			continue;
617
618		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
619		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
620
 
 
 
 
 
 
 
 
621		if (cpuid_topo->core_id != cpu_topo->core_id)
622			continue;
623
624		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
625		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
626	}
627}
628
629static void clear_cpu_topology(int cpu)
630{
631	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
632
633	cpumask_clear(&cpu_topo->llc_sibling);
634	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
635
 
 
 
636	cpumask_clear(&cpu_topo->core_sibling);
637	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
638	cpumask_clear(&cpu_topo->thread_sibling);
639	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
640}
641
642void __init reset_cpu_topology(void)
643{
644	unsigned int cpu;
645
646	for_each_possible_cpu(cpu) {
647		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
648
649		cpu_topo->thread_id = -1;
650		cpu_topo->core_id = -1;
 
651		cpu_topo->package_id = -1;
652		cpu_topo->llc_id = -1;
653
654		clear_cpu_topology(cpu);
655	}
656}
657
658void remove_cpu_topology(unsigned int cpu)
659{
660	int sibling;
661
662	for_each_cpu(sibling, topology_core_cpumask(cpu))
663		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
664	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
665		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
 
 
666	for_each_cpu(sibling, topology_llc_cpumask(cpu))
667		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
668
669	clear_cpu_topology(cpu);
670}
671
672__weak int __init parse_acpi_topology(void)
673{
674	return 0;
675}
676
677#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
678void __init init_cpu_topology(void)
679{
 
 
680	reset_cpu_topology();
 
 
 
681
682	/*
683	 * Discard anything that was parsed if we hit an error so we
684	 * don't use partial information.
685	 */
686	if (parse_acpi_topology())
687		reset_cpu_topology();
688	else if (of_have_populated_dt() && parse_dt_topology())
689		reset_cpu_topology();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690}
691#endif