Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * KVM paravirt_ops implementation
4 *
5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Copyright IBM Corporation, 2007
7 * Authors: Anthony Liguori <aliguori@us.ibm.com>
8 */
9
10#define pr_fmt(fmt) "kvm-guest: " fmt
11
12#include <linux/context_tracking.h>
13#include <linux/init.h>
14#include <linux/irq.h>
15#include <linux/kernel.h>
16#include <linux/kvm_para.h>
17#include <linux/cpu.h>
18#include <linux/mm.h>
19#include <linux/highmem.h>
20#include <linux/hardirq.h>
21#include <linux/notifier.h>
22#include <linux/reboot.h>
23#include <linux/hash.h>
24#include <linux/sched.h>
25#include <linux/slab.h>
26#include <linux/kprobes.h>
27#include <linux/nmi.h>
28#include <linux/swait.h>
29#include <linux/syscore_ops.h>
30#include <linux/cc_platform.h>
31#include <linux/efi.h>
32#include <asm/timer.h>
33#include <asm/cpu.h>
34#include <asm/traps.h>
35#include <asm/desc.h>
36#include <asm/tlbflush.h>
37#include <asm/apic.h>
38#include <asm/apicdef.h>
39#include <asm/hypervisor.h>
40#include <asm/tlb.h>
41#include <asm/cpuidle_haltpoll.h>
42#include <asm/ptrace.h>
43#include <asm/reboot.h>
44#include <asm/svm.h>
45#include <asm/e820/api.h>
46
47DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
48
49static int kvmapf = 1;
50
51static int __init parse_no_kvmapf(char *arg)
52{
53 kvmapf = 0;
54 return 0;
55}
56
57early_param("no-kvmapf", parse_no_kvmapf);
58
59static int steal_acc = 1;
60static int __init parse_no_stealacc(char *arg)
61{
62 steal_acc = 0;
63 return 0;
64}
65
66early_param("no-steal-acc", parse_no_stealacc);
67
68static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
69DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
70static int has_steal_clock = 0;
71
72static int has_guest_poll = 0;
73/*
74 * No need for any "IO delay" on KVM
75 */
76static void kvm_io_delay(void)
77{
78}
79
80#define KVM_TASK_SLEEP_HASHBITS 8
81#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
82
83struct kvm_task_sleep_node {
84 struct hlist_node link;
85 struct swait_queue_head wq;
86 u32 token;
87 int cpu;
88};
89
90static struct kvm_task_sleep_head {
91 raw_spinlock_t lock;
92 struct hlist_head list;
93} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
94
95static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
96 u32 token)
97{
98 struct hlist_node *p;
99
100 hlist_for_each(p, &b->list) {
101 struct kvm_task_sleep_node *n =
102 hlist_entry(p, typeof(*n), link);
103 if (n->token == token)
104 return n;
105 }
106
107 return NULL;
108}
109
110static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
111{
112 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
113 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
114 struct kvm_task_sleep_node *e;
115
116 raw_spin_lock(&b->lock);
117 e = _find_apf_task(b, token);
118 if (e) {
119 /* dummy entry exist -> wake up was delivered ahead of PF */
120 hlist_del(&e->link);
121 raw_spin_unlock(&b->lock);
122 kfree(e);
123 return false;
124 }
125
126 n->token = token;
127 n->cpu = smp_processor_id();
128 init_swait_queue_head(&n->wq);
129 hlist_add_head(&n->link, &b->list);
130 raw_spin_unlock(&b->lock);
131 return true;
132}
133
134/*
135 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
136 * @token: Token to identify the sleep node entry
137 *
138 * Invoked from the async pagefault handling code or from the VM exit page
139 * fault handler. In both cases RCU is watching.
140 */
141void kvm_async_pf_task_wait_schedule(u32 token)
142{
143 struct kvm_task_sleep_node n;
144 DECLARE_SWAITQUEUE(wait);
145
146 lockdep_assert_irqs_disabled();
147
148 if (!kvm_async_pf_queue_task(token, &n))
149 return;
150
151 for (;;) {
152 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
153 if (hlist_unhashed(&n.link))
154 break;
155
156 local_irq_enable();
157 schedule();
158 local_irq_disable();
159 }
160 finish_swait(&n.wq, &wait);
161}
162EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
163
164static void apf_task_wake_one(struct kvm_task_sleep_node *n)
165{
166 hlist_del_init(&n->link);
167 if (swq_has_sleeper(&n->wq))
168 swake_up_one(&n->wq);
169}
170
171static void apf_task_wake_all(void)
172{
173 int i;
174
175 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
176 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
177 struct kvm_task_sleep_node *n;
178 struct hlist_node *p, *next;
179
180 raw_spin_lock(&b->lock);
181 hlist_for_each_safe(p, next, &b->list) {
182 n = hlist_entry(p, typeof(*n), link);
183 if (n->cpu == smp_processor_id())
184 apf_task_wake_one(n);
185 }
186 raw_spin_unlock(&b->lock);
187 }
188}
189
190void kvm_async_pf_task_wake(u32 token)
191{
192 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
193 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
194 struct kvm_task_sleep_node *n, *dummy = NULL;
195
196 if (token == ~0) {
197 apf_task_wake_all();
198 return;
199 }
200
201again:
202 raw_spin_lock(&b->lock);
203 n = _find_apf_task(b, token);
204 if (!n) {
205 /*
206 * Async #PF not yet handled, add a dummy entry for the token.
207 * Allocating the token must be down outside of the raw lock
208 * as the allocator is preemptible on PREEMPT_RT kernels.
209 */
210 if (!dummy) {
211 raw_spin_unlock(&b->lock);
212 dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC);
213
214 /*
215 * Continue looping on allocation failure, eventually
216 * the async #PF will be handled and allocating a new
217 * node will be unnecessary.
218 */
219 if (!dummy)
220 cpu_relax();
221
222 /*
223 * Recheck for async #PF completion before enqueueing
224 * the dummy token to avoid duplicate list entries.
225 */
226 goto again;
227 }
228 dummy->token = token;
229 dummy->cpu = smp_processor_id();
230 init_swait_queue_head(&dummy->wq);
231 hlist_add_head(&dummy->link, &b->list);
232 dummy = NULL;
233 } else {
234 apf_task_wake_one(n);
235 }
236 raw_spin_unlock(&b->lock);
237
238 /* A dummy token might be allocated and ultimately not used. */
239 kfree(dummy);
240}
241EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
242
243noinstr u32 kvm_read_and_reset_apf_flags(void)
244{
245 u32 flags = 0;
246
247 if (__this_cpu_read(apf_reason.enabled)) {
248 flags = __this_cpu_read(apf_reason.flags);
249 __this_cpu_write(apf_reason.flags, 0);
250 }
251
252 return flags;
253}
254EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
255
256noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
257{
258 u32 flags = kvm_read_and_reset_apf_flags();
259 irqentry_state_t state;
260
261 if (!flags)
262 return false;
263
264 state = irqentry_enter(regs);
265 instrumentation_begin();
266
267 /*
268 * If the host managed to inject an async #PF into an interrupt
269 * disabled region, then die hard as this is not going to end well
270 * and the host side is seriously broken.
271 */
272 if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
273 panic("Host injected async #PF in interrupt disabled region\n");
274
275 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
276 if (unlikely(!(user_mode(regs))))
277 panic("Host injected async #PF in kernel mode\n");
278 /* Page is swapped out by the host. */
279 kvm_async_pf_task_wait_schedule(token);
280 } else {
281 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
282 }
283
284 instrumentation_end();
285 irqentry_exit(regs, state);
286 return true;
287}
288
289DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
290{
291 struct pt_regs *old_regs = set_irq_regs(regs);
292 u32 token;
293
294 apic_eoi();
295
296 inc_irq_stat(irq_hv_callback_count);
297
298 if (__this_cpu_read(apf_reason.enabled)) {
299 token = __this_cpu_read(apf_reason.token);
300 kvm_async_pf_task_wake(token);
301 __this_cpu_write(apf_reason.token, 0);
302 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
303 }
304
305 set_irq_regs(old_regs);
306}
307
308static void __init paravirt_ops_setup(void)
309{
310 pv_info.name = "KVM";
311
312 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
313 pv_ops.cpu.io_delay = kvm_io_delay;
314
315#ifdef CONFIG_X86_IO_APIC
316 no_timer_check = 1;
317#endif
318}
319
320static void kvm_register_steal_time(void)
321{
322 int cpu = smp_processor_id();
323 struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
324
325 if (!has_steal_clock)
326 return;
327
328 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
329 pr_debug("stealtime: cpu %d, msr %llx\n", cpu,
330 (unsigned long long) slow_virt_to_phys(st));
331}
332
333static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
334
335static notrace __maybe_unused void kvm_guest_apic_eoi_write(void)
336{
337 /**
338 * This relies on __test_and_clear_bit to modify the memory
339 * in a way that is atomic with respect to the local CPU.
340 * The hypervisor only accesses this memory from the local CPU so
341 * there's no need for lock or memory barriers.
342 * An optimization barrier is implied in apic write.
343 */
344 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
345 return;
346 apic_native_eoi();
347}
348
349static void kvm_guest_cpu_init(void)
350{
351 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
352 u64 pa;
353
354 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
355
356 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
357 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
358
359 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
360 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
361
362 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
363
364 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
365 __this_cpu_write(apf_reason.enabled, 1);
366 pr_debug("setup async PF for cpu %d\n", smp_processor_id());
367 }
368
369 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
370 unsigned long pa;
371
372 /* Size alignment is implied but just to make it explicit. */
373 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
374 __this_cpu_write(kvm_apic_eoi, 0);
375 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
376 | KVM_MSR_ENABLED;
377 wrmsrl(MSR_KVM_PV_EOI_EN, pa);
378 }
379
380 if (has_steal_clock)
381 kvm_register_steal_time();
382}
383
384static void kvm_pv_disable_apf(void)
385{
386 if (!__this_cpu_read(apf_reason.enabled))
387 return;
388
389 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
390 __this_cpu_write(apf_reason.enabled, 0);
391
392 pr_debug("disable async PF for cpu %d\n", smp_processor_id());
393}
394
395static void kvm_disable_steal_time(void)
396{
397 if (!has_steal_clock)
398 return;
399
400 wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
401}
402
403static u64 kvm_steal_clock(int cpu)
404{
405 u64 steal;
406 struct kvm_steal_time *src;
407 int version;
408
409 src = &per_cpu(steal_time, cpu);
410 do {
411 version = src->version;
412 virt_rmb();
413 steal = src->steal;
414 virt_rmb();
415 } while ((version & 1) || (version != src->version));
416
417 return steal;
418}
419
420static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
421{
422 early_set_memory_decrypted((unsigned long) ptr, size);
423}
424
425/*
426 * Iterate through all possible CPUs and map the memory region pointed
427 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
428 *
429 * Note: we iterate through all possible CPUs to ensure that CPUs
430 * hotplugged will have their per-cpu variable already mapped as
431 * decrypted.
432 */
433static void __init sev_map_percpu_data(void)
434{
435 int cpu;
436
437 if (cc_vendor != CC_VENDOR_AMD ||
438 !cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
439 return;
440
441 for_each_possible_cpu(cpu) {
442 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
443 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
444 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
445 }
446}
447
448static void kvm_guest_cpu_offline(bool shutdown)
449{
450 kvm_disable_steal_time();
451 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
452 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
453 if (kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
454 wrmsrl(MSR_KVM_MIGRATION_CONTROL, 0);
455 kvm_pv_disable_apf();
456 if (!shutdown)
457 apf_task_wake_all();
458 kvmclock_disable();
459}
460
461static int kvm_cpu_online(unsigned int cpu)
462{
463 unsigned long flags;
464
465 local_irq_save(flags);
466 kvm_guest_cpu_init();
467 local_irq_restore(flags);
468 return 0;
469}
470
471#ifdef CONFIG_SMP
472
473static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
474
475static bool pv_tlb_flush_supported(void)
476{
477 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
478 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
479 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) &&
480 !boot_cpu_has(X86_FEATURE_MWAIT) &&
481 (num_possible_cpus() != 1));
482}
483
484static bool pv_ipi_supported(void)
485{
486 return (kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI) &&
487 (num_possible_cpus() != 1));
488}
489
490static bool pv_sched_yield_supported(void)
491{
492 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
493 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
494 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) &&
495 !boot_cpu_has(X86_FEATURE_MWAIT) &&
496 (num_possible_cpus() != 1));
497}
498
499#define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG)
500
501static void __send_ipi_mask(const struct cpumask *mask, int vector)
502{
503 unsigned long flags;
504 int cpu, min = 0, max = 0;
505#ifdef CONFIG_X86_64
506 __uint128_t ipi_bitmap = 0;
507#else
508 u64 ipi_bitmap = 0;
509#endif
510 u32 apic_id, icr;
511 long ret;
512
513 if (cpumask_empty(mask))
514 return;
515
516 local_irq_save(flags);
517
518 switch (vector) {
519 default:
520 icr = APIC_DM_FIXED | vector;
521 break;
522 case NMI_VECTOR:
523 icr = APIC_DM_NMI;
524 break;
525 }
526
527 for_each_cpu(cpu, mask) {
528 apic_id = per_cpu(x86_cpu_to_apicid, cpu);
529 if (!ipi_bitmap) {
530 min = max = apic_id;
531 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
532 ipi_bitmap <<= min - apic_id;
533 min = apic_id;
534 } else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) {
535 max = apic_id < max ? max : apic_id;
536 } else {
537 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
538 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
539 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
540 ret);
541 min = max = apic_id;
542 ipi_bitmap = 0;
543 }
544 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
545 }
546
547 if (ipi_bitmap) {
548 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
549 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
550 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
551 ret);
552 }
553
554 local_irq_restore(flags);
555}
556
557static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
558{
559 __send_ipi_mask(mask, vector);
560}
561
562static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
563{
564 unsigned int this_cpu = smp_processor_id();
565 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
566 const struct cpumask *local_mask;
567
568 cpumask_copy(new_mask, mask);
569 cpumask_clear_cpu(this_cpu, new_mask);
570 local_mask = new_mask;
571 __send_ipi_mask(local_mask, vector);
572}
573
574static int __init setup_efi_kvm_sev_migration(void)
575{
576 efi_char16_t efi_sev_live_migration_enabled[] = L"SevLiveMigrationEnabled";
577 efi_guid_t efi_variable_guid = AMD_SEV_MEM_ENCRYPT_GUID;
578 efi_status_t status;
579 unsigned long size;
580 bool enabled;
581
582 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) ||
583 !kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL))
584 return 0;
585
586 if (!efi_enabled(EFI_BOOT))
587 return 0;
588
589 if (!efi_enabled(EFI_RUNTIME_SERVICES)) {
590 pr_info("%s : EFI runtime services are not enabled\n", __func__);
591 return 0;
592 }
593
594 size = sizeof(enabled);
595
596 /* Get variable contents into buffer */
597 status = efi.get_variable(efi_sev_live_migration_enabled,
598 &efi_variable_guid, NULL, &size, &enabled);
599
600 if (status == EFI_NOT_FOUND) {
601 pr_info("%s : EFI live migration variable not found\n", __func__);
602 return 0;
603 }
604
605 if (status != EFI_SUCCESS) {
606 pr_info("%s : EFI variable retrieval failed\n", __func__);
607 return 0;
608 }
609
610 if (enabled == 0) {
611 pr_info("%s: live migration disabled in EFI\n", __func__);
612 return 0;
613 }
614
615 pr_info("%s : live migration enabled in EFI\n", __func__);
616 wrmsrl(MSR_KVM_MIGRATION_CONTROL, KVM_MIGRATION_READY);
617
618 return 1;
619}
620
621late_initcall(setup_efi_kvm_sev_migration);
622
623/*
624 * Set the IPI entry points
625 */
626static __init void kvm_setup_pv_ipi(void)
627{
628 apic_update_callback(send_IPI_mask, kvm_send_ipi_mask);
629 apic_update_callback(send_IPI_mask_allbutself, kvm_send_ipi_mask_allbutself);
630 pr_info("setup PV IPIs\n");
631}
632
633static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
634{
635 int cpu;
636
637 native_send_call_func_ipi(mask);
638
639 /* Make sure other vCPUs get a chance to run if they need to. */
640 for_each_cpu(cpu, mask) {
641 if (!idle_cpu(cpu) && vcpu_is_preempted(cpu)) {
642 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
643 break;
644 }
645 }
646}
647
648static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
649 const struct flush_tlb_info *info)
650{
651 u8 state;
652 int cpu;
653 struct kvm_steal_time *src;
654 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
655
656 cpumask_copy(flushmask, cpumask);
657 /*
658 * We have to call flush only on online vCPUs. And
659 * queue flush_on_enter for pre-empted vCPUs
660 */
661 for_each_cpu(cpu, flushmask) {
662 /*
663 * The local vCPU is never preempted, so we do not explicitly
664 * skip check for local vCPU - it will never be cleared from
665 * flushmask.
666 */
667 src = &per_cpu(steal_time, cpu);
668 state = READ_ONCE(src->preempted);
669 if ((state & KVM_VCPU_PREEMPTED)) {
670 if (try_cmpxchg(&src->preempted, &state,
671 state | KVM_VCPU_FLUSH_TLB))
672 __cpumask_clear_cpu(cpu, flushmask);
673 }
674 }
675
676 native_flush_tlb_multi(flushmask, info);
677}
678
679static __init int kvm_alloc_cpumask(void)
680{
681 int cpu;
682
683 if (!kvm_para_available() || nopv)
684 return 0;
685
686 if (pv_tlb_flush_supported() || pv_ipi_supported())
687 for_each_possible_cpu(cpu) {
688 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
689 GFP_KERNEL, cpu_to_node(cpu));
690 }
691
692 return 0;
693}
694arch_initcall(kvm_alloc_cpumask);
695
696static void __init kvm_smp_prepare_boot_cpu(void)
697{
698 /*
699 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
700 * shares the guest physical address with the hypervisor.
701 */
702 sev_map_percpu_data();
703
704 kvm_guest_cpu_init();
705 native_smp_prepare_boot_cpu();
706 kvm_spinlock_init();
707}
708
709static int kvm_cpu_down_prepare(unsigned int cpu)
710{
711 unsigned long flags;
712
713 local_irq_save(flags);
714 kvm_guest_cpu_offline(false);
715 local_irq_restore(flags);
716 return 0;
717}
718
719#endif
720
721static int kvm_suspend(void)
722{
723 u64 val = 0;
724
725 kvm_guest_cpu_offline(false);
726
727#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
728 if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
729 rdmsrl(MSR_KVM_POLL_CONTROL, val);
730 has_guest_poll = !(val & 1);
731#endif
732 return 0;
733}
734
735static void kvm_resume(void)
736{
737 kvm_cpu_online(raw_smp_processor_id());
738
739#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
740 if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll)
741 wrmsrl(MSR_KVM_POLL_CONTROL, 0);
742#endif
743}
744
745static struct syscore_ops kvm_syscore_ops = {
746 .suspend = kvm_suspend,
747 .resume = kvm_resume,
748};
749
750static void kvm_pv_guest_cpu_reboot(void *unused)
751{
752 kvm_guest_cpu_offline(true);
753}
754
755static int kvm_pv_reboot_notify(struct notifier_block *nb,
756 unsigned long code, void *unused)
757{
758 if (code == SYS_RESTART)
759 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
760 return NOTIFY_DONE;
761}
762
763static struct notifier_block kvm_pv_reboot_nb = {
764 .notifier_call = kvm_pv_reboot_notify,
765};
766
767/*
768 * After a PV feature is registered, the host will keep writing to the
769 * registered memory location. If the guest happens to shutdown, this memory
770 * won't be valid. In cases like kexec, in which you install a new kernel, this
771 * means a random memory location will be kept being written.
772 */
773#ifdef CONFIG_KEXEC_CORE
774static void kvm_crash_shutdown(struct pt_regs *regs)
775{
776 kvm_guest_cpu_offline(true);
777 native_machine_crash_shutdown(regs);
778}
779#endif
780
781#if defined(CONFIG_X86_32) || !defined(CONFIG_SMP)
782bool __kvm_vcpu_is_preempted(long cpu);
783
784__visible bool __kvm_vcpu_is_preempted(long cpu)
785{
786 struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
787
788 return !!(src->preempted & KVM_VCPU_PREEMPTED);
789}
790PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
791
792#else
793
794#include <asm/asm-offsets.h>
795
796extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
797
798/*
799 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
800 * restoring to/from the stack.
801 */
802#define PV_VCPU_PREEMPTED_ASM \
803 "movq __per_cpu_offset(,%rdi,8), %rax\n\t" \
804 "cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax)\n\t" \
805 "setne %al\n\t"
806
807DEFINE_ASM_FUNC(__raw_callee_save___kvm_vcpu_is_preempted,
808 PV_VCPU_PREEMPTED_ASM, .text);
809#endif
810
811static void __init kvm_guest_init(void)
812{
813 int i;
814
815 paravirt_ops_setup();
816 register_reboot_notifier(&kvm_pv_reboot_nb);
817 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
818 raw_spin_lock_init(&async_pf_sleepers[i].lock);
819
820 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
821 has_steal_clock = 1;
822 static_call_update(pv_steal_clock, kvm_steal_clock);
823
824 pv_ops.lock.vcpu_is_preempted =
825 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
826 }
827
828 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
829 apic_update_callback(eoi, kvm_guest_apic_eoi_write);
830
831 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
832 static_branch_enable(&kvm_async_pf_enabled);
833 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
834 }
835
836#ifdef CONFIG_SMP
837 if (pv_tlb_flush_supported()) {
838 pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
839 pv_ops.mmu.tlb_remove_table = tlb_remove_table;
840 pr_info("KVM setup pv remote TLB flush\n");
841 }
842
843 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
844 if (pv_sched_yield_supported()) {
845 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
846 pr_info("setup PV sched yield\n");
847 }
848 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
849 kvm_cpu_online, kvm_cpu_down_prepare) < 0)
850 pr_err("failed to install cpu hotplug callbacks\n");
851#else
852 sev_map_percpu_data();
853 kvm_guest_cpu_init();
854#endif
855
856#ifdef CONFIG_KEXEC_CORE
857 machine_ops.crash_shutdown = kvm_crash_shutdown;
858#endif
859
860 register_syscore_ops(&kvm_syscore_ops);
861
862 /*
863 * Hard lockup detection is enabled by default. Disable it, as guests
864 * can get false positives too easily, for example if the host is
865 * overcommitted.
866 */
867 hardlockup_detector_disable();
868}
869
870static noinline uint32_t __kvm_cpuid_base(void)
871{
872 if (boot_cpu_data.cpuid_level < 0)
873 return 0; /* So we don't blow up on old processors */
874
875 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
876 return hypervisor_cpuid_base(KVM_SIGNATURE, 0);
877
878 return 0;
879}
880
881static inline uint32_t kvm_cpuid_base(void)
882{
883 static int kvm_cpuid_base = -1;
884
885 if (kvm_cpuid_base == -1)
886 kvm_cpuid_base = __kvm_cpuid_base();
887
888 return kvm_cpuid_base;
889}
890
891bool kvm_para_available(void)
892{
893 return kvm_cpuid_base() != 0;
894}
895EXPORT_SYMBOL_GPL(kvm_para_available);
896
897unsigned int kvm_arch_para_features(void)
898{
899 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
900}
901
902unsigned int kvm_arch_para_hints(void)
903{
904 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
905}
906EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
907
908static uint32_t __init kvm_detect(void)
909{
910 return kvm_cpuid_base();
911}
912
913static void __init kvm_apic_init(void)
914{
915#ifdef CONFIG_SMP
916 if (pv_ipi_supported())
917 kvm_setup_pv_ipi();
918#endif
919}
920
921static bool __init kvm_msi_ext_dest_id(void)
922{
923 return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
924}
925
926static void kvm_sev_hc_page_enc_status(unsigned long pfn, int npages, bool enc)
927{
928 kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, pfn << PAGE_SHIFT, npages,
929 KVM_MAP_GPA_RANGE_ENC_STAT(enc) | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
930}
931
932static void __init kvm_init_platform(void)
933{
934 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) &&
935 kvm_para_has_feature(KVM_FEATURE_MIGRATION_CONTROL)) {
936 unsigned long nr_pages;
937 int i;
938
939 pv_ops.mmu.notify_page_enc_status_changed =
940 kvm_sev_hc_page_enc_status;
941
942 /*
943 * Reset the host's shared pages list related to kernel
944 * specific page encryption status settings before we load a
945 * new kernel by kexec. Reset the page encryption status
946 * during early boot instead of just before kexec to avoid SMP
947 * races during kvm_pv_guest_cpu_reboot().
948 * NOTE: We cannot reset the complete shared pages list
949 * here as we need to retain the UEFI/OVMF firmware
950 * specific settings.
951 */
952
953 for (i = 0; i < e820_table->nr_entries; i++) {
954 struct e820_entry *entry = &e820_table->entries[i];
955
956 if (entry->type != E820_TYPE_RAM)
957 continue;
958
959 nr_pages = DIV_ROUND_UP(entry->size, PAGE_SIZE);
960
961 kvm_sev_hypercall3(KVM_HC_MAP_GPA_RANGE, entry->addr,
962 nr_pages,
963 KVM_MAP_GPA_RANGE_ENCRYPTED | KVM_MAP_GPA_RANGE_PAGE_SZ_4K);
964 }
965
966 /*
967 * Ensure that _bss_decrypted section is marked as decrypted in the
968 * shared pages list.
969 */
970 early_set_mem_enc_dec_hypercall((unsigned long)__start_bss_decrypted,
971 __end_bss_decrypted - __start_bss_decrypted, 0);
972
973 /*
974 * If not booted using EFI, enable Live migration support.
975 */
976 if (!efi_enabled(EFI_BOOT))
977 wrmsrl(MSR_KVM_MIGRATION_CONTROL,
978 KVM_MIGRATION_READY);
979 }
980 kvmclock_init();
981 x86_platform.apic_post_init = kvm_apic_init;
982}
983
984#if defined(CONFIG_AMD_MEM_ENCRYPT)
985static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
986{
987 /* RAX and CPL are already in the GHCB */
988 ghcb_set_rbx(ghcb, regs->bx);
989 ghcb_set_rcx(ghcb, regs->cx);
990 ghcb_set_rdx(ghcb, regs->dx);
991 ghcb_set_rsi(ghcb, regs->si);
992}
993
994static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
995{
996 /* No checking of the return state needed */
997 return true;
998}
999#endif
1000
1001const __initconst struct hypervisor_x86 x86_hyper_kvm = {
1002 .name = "KVM",
1003 .detect = kvm_detect,
1004 .type = X86_HYPER_KVM,
1005 .init.guest_late_init = kvm_guest_init,
1006 .init.x2apic_available = kvm_para_available,
1007 .init.msi_ext_dest_id = kvm_msi_ext_dest_id,
1008 .init.init_platform = kvm_init_platform,
1009#if defined(CONFIG_AMD_MEM_ENCRYPT)
1010 .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare,
1011 .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish,
1012#endif
1013};
1014
1015static __init int activate_jump_labels(void)
1016{
1017 if (has_steal_clock) {
1018 static_key_slow_inc(¶virt_steal_enabled);
1019 if (steal_acc)
1020 static_key_slow_inc(¶virt_steal_rq_enabled);
1021 }
1022
1023 return 0;
1024}
1025arch_initcall(activate_jump_labels);
1026
1027#ifdef CONFIG_PARAVIRT_SPINLOCKS
1028
1029/* Kick a cpu by its apicid. Used to wake up a halted vcpu */
1030static void kvm_kick_cpu(int cpu)
1031{
1032 unsigned long flags = 0;
1033 u32 apicid;
1034
1035 apicid = per_cpu(x86_cpu_to_apicid, cpu);
1036 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
1037}
1038
1039#include <asm/qspinlock.h>
1040
1041static void kvm_wait(u8 *ptr, u8 val)
1042{
1043 if (in_nmi())
1044 return;
1045
1046 /*
1047 * halt until it's our turn and kicked. Note that we do safe halt
1048 * for irq enabled case to avoid hang when lock info is overwritten
1049 * in irq spinlock slowpath and no spurious interrupt occur to save us.
1050 */
1051 if (irqs_disabled()) {
1052 if (READ_ONCE(*ptr) == val)
1053 halt();
1054 } else {
1055 local_irq_disable();
1056
1057 /* safe_halt() will enable IRQ */
1058 if (READ_ONCE(*ptr) == val)
1059 safe_halt();
1060 else
1061 local_irq_enable();
1062 }
1063}
1064
1065/*
1066 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
1067 */
1068void __init kvm_spinlock_init(void)
1069{
1070 /*
1071 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
1072 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
1073 * preferred over native qspinlock when vCPU is preempted.
1074 */
1075 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
1076 pr_info("PV spinlocks disabled, no host support\n");
1077 return;
1078 }
1079
1080 /*
1081 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
1082 * are available.
1083 */
1084 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
1085 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
1086 goto out;
1087 }
1088
1089 if (num_possible_cpus() == 1) {
1090 pr_info("PV spinlocks disabled, single CPU\n");
1091 goto out;
1092 }
1093
1094 if (nopvspin) {
1095 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
1096 goto out;
1097 }
1098
1099 pr_info("PV spinlocks enabled\n");
1100
1101 __pv_init_lock_hash();
1102 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
1103 pv_ops.lock.queued_spin_unlock =
1104 PV_CALLEE_SAVE(__pv_queued_spin_unlock);
1105 pv_ops.lock.wait = kvm_wait;
1106 pv_ops.lock.kick = kvm_kick_cpu;
1107
1108 /*
1109 * When PV spinlock is enabled which is preferred over
1110 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
1111 * Just disable it anyway.
1112 */
1113out:
1114 static_branch_disable(&virt_spin_lock_key);
1115}
1116
1117#endif /* CONFIG_PARAVIRT_SPINLOCKS */
1118
1119#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
1120
1121static void kvm_disable_host_haltpoll(void *i)
1122{
1123 wrmsrl(MSR_KVM_POLL_CONTROL, 0);
1124}
1125
1126static void kvm_enable_host_haltpoll(void *i)
1127{
1128 wrmsrl(MSR_KVM_POLL_CONTROL, 1);
1129}
1130
1131void arch_haltpoll_enable(unsigned int cpu)
1132{
1133 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1134 pr_err_once("host does not support poll control\n");
1135 pr_err_once("host upgrade recommended\n");
1136 return;
1137 }
1138
1139 /* Enable guest halt poll disables host halt poll */
1140 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1141}
1142EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1143
1144void arch_haltpoll_disable(unsigned int cpu)
1145{
1146 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1147 return;
1148
1149 /* Disable guest halt poll enables host halt poll */
1150 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1151}
1152EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1153#endif
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * KVM paravirt_ops implementation
4 *
5 * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Copyright IBM Corporation, 2007
7 * Authors: Anthony Liguori <aliguori@us.ibm.com>
8 */
9
10#define pr_fmt(fmt) "kvm-guest: " fmt
11
12#include <linux/context_tracking.h>
13#include <linux/init.h>
14#include <linux/irq.h>
15#include <linux/kernel.h>
16#include <linux/kvm_para.h>
17#include <linux/cpu.h>
18#include <linux/mm.h>
19#include <linux/highmem.h>
20#include <linux/hardirq.h>
21#include <linux/notifier.h>
22#include <linux/reboot.h>
23#include <linux/hash.h>
24#include <linux/sched.h>
25#include <linux/slab.h>
26#include <linux/kprobes.h>
27#include <linux/nmi.h>
28#include <linux/swait.h>
29#include <linux/syscore_ops.h>
30#include <asm/timer.h>
31#include <asm/cpu.h>
32#include <asm/traps.h>
33#include <asm/desc.h>
34#include <asm/tlbflush.h>
35#include <asm/apic.h>
36#include <asm/apicdef.h>
37#include <asm/hypervisor.h>
38#include <asm/tlb.h>
39#include <asm/cpuidle_haltpoll.h>
40#include <asm/ptrace.h>
41#include <asm/reboot.h>
42#include <asm/svm.h>
43
44DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
45
46static int kvmapf = 1;
47
48static int __init parse_no_kvmapf(char *arg)
49{
50 kvmapf = 0;
51 return 0;
52}
53
54early_param("no-kvmapf", parse_no_kvmapf);
55
56static int steal_acc = 1;
57static int __init parse_no_stealacc(char *arg)
58{
59 steal_acc = 0;
60 return 0;
61}
62
63early_param("no-steal-acc", parse_no_stealacc);
64
65static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
66DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
67static int has_steal_clock = 0;
68
69/*
70 * No need for any "IO delay" on KVM
71 */
72static void kvm_io_delay(void)
73{
74}
75
76#define KVM_TASK_SLEEP_HASHBITS 8
77#define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
78
79struct kvm_task_sleep_node {
80 struct hlist_node link;
81 struct swait_queue_head wq;
82 u32 token;
83 int cpu;
84};
85
86static struct kvm_task_sleep_head {
87 raw_spinlock_t lock;
88 struct hlist_head list;
89} async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
90
91static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
92 u32 token)
93{
94 struct hlist_node *p;
95
96 hlist_for_each(p, &b->list) {
97 struct kvm_task_sleep_node *n =
98 hlist_entry(p, typeof(*n), link);
99 if (n->token == token)
100 return n;
101 }
102
103 return NULL;
104}
105
106static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
107{
108 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
109 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
110 struct kvm_task_sleep_node *e;
111
112 raw_spin_lock(&b->lock);
113 e = _find_apf_task(b, token);
114 if (e) {
115 /* dummy entry exist -> wake up was delivered ahead of PF */
116 hlist_del(&e->link);
117 raw_spin_unlock(&b->lock);
118 kfree(e);
119 return false;
120 }
121
122 n->token = token;
123 n->cpu = smp_processor_id();
124 init_swait_queue_head(&n->wq);
125 hlist_add_head(&n->link, &b->list);
126 raw_spin_unlock(&b->lock);
127 return true;
128}
129
130/*
131 * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
132 * @token: Token to identify the sleep node entry
133 *
134 * Invoked from the async pagefault handling code or from the VM exit page
135 * fault handler. In both cases RCU is watching.
136 */
137void kvm_async_pf_task_wait_schedule(u32 token)
138{
139 struct kvm_task_sleep_node n;
140 DECLARE_SWAITQUEUE(wait);
141
142 lockdep_assert_irqs_disabled();
143
144 if (!kvm_async_pf_queue_task(token, &n))
145 return;
146
147 for (;;) {
148 prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
149 if (hlist_unhashed(&n.link))
150 break;
151
152 local_irq_enable();
153 schedule();
154 local_irq_disable();
155 }
156 finish_swait(&n.wq, &wait);
157}
158EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
159
160static void apf_task_wake_one(struct kvm_task_sleep_node *n)
161{
162 hlist_del_init(&n->link);
163 if (swq_has_sleeper(&n->wq))
164 swake_up_one(&n->wq);
165}
166
167static void apf_task_wake_all(void)
168{
169 int i;
170
171 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
172 struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
173 struct kvm_task_sleep_node *n;
174 struct hlist_node *p, *next;
175
176 raw_spin_lock(&b->lock);
177 hlist_for_each_safe(p, next, &b->list) {
178 n = hlist_entry(p, typeof(*n), link);
179 if (n->cpu == smp_processor_id())
180 apf_task_wake_one(n);
181 }
182 raw_spin_unlock(&b->lock);
183 }
184}
185
186void kvm_async_pf_task_wake(u32 token)
187{
188 u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
189 struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
190 struct kvm_task_sleep_node *n;
191
192 if (token == ~0) {
193 apf_task_wake_all();
194 return;
195 }
196
197again:
198 raw_spin_lock(&b->lock);
199 n = _find_apf_task(b, token);
200 if (!n) {
201 /*
202 * async PF was not yet handled.
203 * Add dummy entry for the token.
204 */
205 n = kzalloc(sizeof(*n), GFP_ATOMIC);
206 if (!n) {
207 /*
208 * Allocation failed! Busy wait while other cpu
209 * handles async PF.
210 */
211 raw_spin_unlock(&b->lock);
212 cpu_relax();
213 goto again;
214 }
215 n->token = token;
216 n->cpu = smp_processor_id();
217 init_swait_queue_head(&n->wq);
218 hlist_add_head(&n->link, &b->list);
219 } else {
220 apf_task_wake_one(n);
221 }
222 raw_spin_unlock(&b->lock);
223 return;
224}
225EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
226
227noinstr u32 kvm_read_and_reset_apf_flags(void)
228{
229 u32 flags = 0;
230
231 if (__this_cpu_read(apf_reason.enabled)) {
232 flags = __this_cpu_read(apf_reason.flags);
233 __this_cpu_write(apf_reason.flags, 0);
234 }
235
236 return flags;
237}
238EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
239
240noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
241{
242 u32 flags = kvm_read_and_reset_apf_flags();
243 irqentry_state_t state;
244
245 if (!flags)
246 return false;
247
248 state = irqentry_enter(regs);
249 instrumentation_begin();
250
251 /*
252 * If the host managed to inject an async #PF into an interrupt
253 * disabled region, then die hard as this is not going to end well
254 * and the host side is seriously broken.
255 */
256 if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
257 panic("Host injected async #PF in interrupt disabled region\n");
258
259 if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
260 if (unlikely(!(user_mode(regs))))
261 panic("Host injected async #PF in kernel mode\n");
262 /* Page is swapped out by the host. */
263 kvm_async_pf_task_wait_schedule(token);
264 } else {
265 WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
266 }
267
268 instrumentation_end();
269 irqentry_exit(regs, state);
270 return true;
271}
272
273DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
274{
275 struct pt_regs *old_regs = set_irq_regs(regs);
276 u32 token;
277
278 ack_APIC_irq();
279
280 inc_irq_stat(irq_hv_callback_count);
281
282 if (__this_cpu_read(apf_reason.enabled)) {
283 token = __this_cpu_read(apf_reason.token);
284 kvm_async_pf_task_wake(token);
285 __this_cpu_write(apf_reason.token, 0);
286 wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
287 }
288
289 set_irq_regs(old_regs);
290}
291
292static void __init paravirt_ops_setup(void)
293{
294 pv_info.name = "KVM";
295
296 if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
297 pv_ops.cpu.io_delay = kvm_io_delay;
298
299#ifdef CONFIG_X86_IO_APIC
300 no_timer_check = 1;
301#endif
302}
303
304static void kvm_register_steal_time(void)
305{
306 int cpu = smp_processor_id();
307 struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
308
309 if (!has_steal_clock)
310 return;
311
312 wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
313 pr_info("stealtime: cpu %d, msr %llx\n", cpu,
314 (unsigned long long) slow_virt_to_phys(st));
315}
316
317static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
318
319static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
320{
321 /**
322 * This relies on __test_and_clear_bit to modify the memory
323 * in a way that is atomic with respect to the local CPU.
324 * The hypervisor only accesses this memory from the local CPU so
325 * there's no need for lock or memory barriers.
326 * An optimization barrier is implied in apic write.
327 */
328 if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
329 return;
330 apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
331}
332
333static void kvm_guest_cpu_init(void)
334{
335 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
336 u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
337
338 WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
339
340 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
341 pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
342
343 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
344 pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
345
346 wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
347
348 wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
349 __this_cpu_write(apf_reason.enabled, 1);
350 pr_info("setup async PF for cpu %d\n", smp_processor_id());
351 }
352
353 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
354 unsigned long pa;
355
356 /* Size alignment is implied but just to make it explicit. */
357 BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
358 __this_cpu_write(kvm_apic_eoi, 0);
359 pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
360 | KVM_MSR_ENABLED;
361 wrmsrl(MSR_KVM_PV_EOI_EN, pa);
362 }
363
364 if (has_steal_clock)
365 kvm_register_steal_time();
366}
367
368static void kvm_pv_disable_apf(void)
369{
370 if (!__this_cpu_read(apf_reason.enabled))
371 return;
372
373 wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
374 __this_cpu_write(apf_reason.enabled, 0);
375
376 pr_info("disable async PF for cpu %d\n", smp_processor_id());
377}
378
379static void kvm_disable_steal_time(void)
380{
381 if (!has_steal_clock)
382 return;
383
384 wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
385}
386
387static u64 kvm_steal_clock(int cpu)
388{
389 u64 steal;
390 struct kvm_steal_time *src;
391 int version;
392
393 src = &per_cpu(steal_time, cpu);
394 do {
395 version = src->version;
396 virt_rmb();
397 steal = src->steal;
398 virt_rmb();
399 } while ((version & 1) || (version != src->version));
400
401 return steal;
402}
403
404static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
405{
406 early_set_memory_decrypted((unsigned long) ptr, size);
407}
408
409/*
410 * Iterate through all possible CPUs and map the memory region pointed
411 * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
412 *
413 * Note: we iterate through all possible CPUs to ensure that CPUs
414 * hotplugged will have their per-cpu variable already mapped as
415 * decrypted.
416 */
417static void __init sev_map_percpu_data(void)
418{
419 int cpu;
420
421 if (!sev_active())
422 return;
423
424 for_each_possible_cpu(cpu) {
425 __set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
426 __set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
427 __set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
428 }
429}
430
431static void kvm_guest_cpu_offline(bool shutdown)
432{
433 kvm_disable_steal_time();
434 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
435 wrmsrl(MSR_KVM_PV_EOI_EN, 0);
436 kvm_pv_disable_apf();
437 if (!shutdown)
438 apf_task_wake_all();
439 kvmclock_disable();
440}
441
442static int kvm_cpu_online(unsigned int cpu)
443{
444 unsigned long flags;
445
446 local_irq_save(flags);
447 kvm_guest_cpu_init();
448 local_irq_restore(flags);
449 return 0;
450}
451
452#ifdef CONFIG_SMP
453
454static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
455
456static bool pv_tlb_flush_supported(void)
457{
458 return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
459 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
460 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
461}
462
463static bool pv_ipi_supported(void)
464{
465 return kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI);
466}
467
468static bool pv_sched_yield_supported(void)
469{
470 return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
471 !kvm_para_has_hint(KVM_HINTS_REALTIME) &&
472 kvm_para_has_feature(KVM_FEATURE_STEAL_TIME));
473}
474
475#define KVM_IPI_CLUSTER_SIZE (2 * BITS_PER_LONG)
476
477static void __send_ipi_mask(const struct cpumask *mask, int vector)
478{
479 unsigned long flags;
480 int cpu, apic_id, icr;
481 int min = 0, max = 0;
482#ifdef CONFIG_X86_64
483 __uint128_t ipi_bitmap = 0;
484#else
485 u64 ipi_bitmap = 0;
486#endif
487 long ret;
488
489 if (cpumask_empty(mask))
490 return;
491
492 local_irq_save(flags);
493
494 switch (vector) {
495 default:
496 icr = APIC_DM_FIXED | vector;
497 break;
498 case NMI_VECTOR:
499 icr = APIC_DM_NMI;
500 break;
501 }
502
503 for_each_cpu(cpu, mask) {
504 apic_id = per_cpu(x86_cpu_to_apicid, cpu);
505 if (!ipi_bitmap) {
506 min = max = apic_id;
507 } else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
508 ipi_bitmap <<= min - apic_id;
509 min = apic_id;
510 } else if (apic_id < min + KVM_IPI_CLUSTER_SIZE) {
511 max = apic_id < max ? max : apic_id;
512 } else {
513 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
514 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
515 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
516 ret);
517 min = max = apic_id;
518 ipi_bitmap = 0;
519 }
520 __set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
521 }
522
523 if (ipi_bitmap) {
524 ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
525 (unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
526 WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
527 ret);
528 }
529
530 local_irq_restore(flags);
531}
532
533static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
534{
535 __send_ipi_mask(mask, vector);
536}
537
538static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
539{
540 unsigned int this_cpu = smp_processor_id();
541 struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
542 const struct cpumask *local_mask;
543
544 cpumask_copy(new_mask, mask);
545 cpumask_clear_cpu(this_cpu, new_mask);
546 local_mask = new_mask;
547 __send_ipi_mask(local_mask, vector);
548}
549
550/*
551 * Set the IPI entry points
552 */
553static void kvm_setup_pv_ipi(void)
554{
555 apic->send_IPI_mask = kvm_send_ipi_mask;
556 apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
557 pr_info("setup PV IPIs\n");
558}
559
560static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
561{
562 int cpu;
563
564 native_send_call_func_ipi(mask);
565
566 /* Make sure other vCPUs get a chance to run if they need to. */
567 for_each_cpu(cpu, mask) {
568 if (vcpu_is_preempted(cpu)) {
569 kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
570 break;
571 }
572 }
573}
574
575static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
576 const struct flush_tlb_info *info)
577{
578 u8 state;
579 int cpu;
580 struct kvm_steal_time *src;
581 struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
582
583 cpumask_copy(flushmask, cpumask);
584 /*
585 * We have to call flush only on online vCPUs. And
586 * queue flush_on_enter for pre-empted vCPUs
587 */
588 for_each_cpu(cpu, flushmask) {
589 /*
590 * The local vCPU is never preempted, so we do not explicitly
591 * skip check for local vCPU - it will never be cleared from
592 * flushmask.
593 */
594 src = &per_cpu(steal_time, cpu);
595 state = READ_ONCE(src->preempted);
596 if ((state & KVM_VCPU_PREEMPTED)) {
597 if (try_cmpxchg(&src->preempted, &state,
598 state | KVM_VCPU_FLUSH_TLB))
599 __cpumask_clear_cpu(cpu, flushmask);
600 }
601 }
602
603 native_flush_tlb_multi(flushmask, info);
604}
605
606static __init int kvm_alloc_cpumask(void)
607{
608 int cpu;
609
610 if (!kvm_para_available() || nopv)
611 return 0;
612
613 if (pv_tlb_flush_supported() || pv_ipi_supported())
614 for_each_possible_cpu(cpu) {
615 zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
616 GFP_KERNEL, cpu_to_node(cpu));
617 }
618
619 return 0;
620}
621arch_initcall(kvm_alloc_cpumask);
622
623static void __init kvm_smp_prepare_boot_cpu(void)
624{
625 /*
626 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
627 * shares the guest physical address with the hypervisor.
628 */
629 sev_map_percpu_data();
630
631 kvm_guest_cpu_init();
632 native_smp_prepare_boot_cpu();
633 kvm_spinlock_init();
634}
635
636static int kvm_cpu_down_prepare(unsigned int cpu)
637{
638 unsigned long flags;
639
640 local_irq_save(flags);
641 kvm_guest_cpu_offline(false);
642 local_irq_restore(flags);
643 return 0;
644}
645
646#endif
647
648static int kvm_suspend(void)
649{
650 kvm_guest_cpu_offline(false);
651
652 return 0;
653}
654
655static void kvm_resume(void)
656{
657 kvm_cpu_online(raw_smp_processor_id());
658}
659
660static struct syscore_ops kvm_syscore_ops = {
661 .suspend = kvm_suspend,
662 .resume = kvm_resume,
663};
664
665static void kvm_pv_guest_cpu_reboot(void *unused)
666{
667 kvm_guest_cpu_offline(true);
668}
669
670static int kvm_pv_reboot_notify(struct notifier_block *nb,
671 unsigned long code, void *unused)
672{
673 if (code == SYS_RESTART)
674 on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
675 return NOTIFY_DONE;
676}
677
678static struct notifier_block kvm_pv_reboot_nb = {
679 .notifier_call = kvm_pv_reboot_notify,
680};
681
682/*
683 * After a PV feature is registered, the host will keep writing to the
684 * registered memory location. If the guest happens to shutdown, this memory
685 * won't be valid. In cases like kexec, in which you install a new kernel, this
686 * means a random memory location will be kept being written.
687 */
688#ifdef CONFIG_KEXEC_CORE
689static void kvm_crash_shutdown(struct pt_regs *regs)
690{
691 kvm_guest_cpu_offline(true);
692 native_machine_crash_shutdown(regs);
693}
694#endif
695
696static void __init kvm_guest_init(void)
697{
698 int i;
699
700 paravirt_ops_setup();
701 register_reboot_notifier(&kvm_pv_reboot_nb);
702 for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
703 raw_spin_lock_init(&async_pf_sleepers[i].lock);
704
705 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
706 has_steal_clock = 1;
707 static_call_update(pv_steal_clock, kvm_steal_clock);
708 }
709
710 if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
711 apic_set_eoi_write(kvm_guest_apic_eoi_write);
712
713 if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
714 static_branch_enable(&kvm_async_pf_enabled);
715 alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
716 }
717
718#ifdef CONFIG_SMP
719 if (pv_tlb_flush_supported()) {
720 pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
721 pv_ops.mmu.tlb_remove_table = tlb_remove_table;
722 pr_info("KVM setup pv remote TLB flush\n");
723 }
724
725 smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
726 if (pv_sched_yield_supported()) {
727 smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
728 pr_info("setup PV sched yield\n");
729 }
730 if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
731 kvm_cpu_online, kvm_cpu_down_prepare) < 0)
732 pr_err("failed to install cpu hotplug callbacks\n");
733#else
734 sev_map_percpu_data();
735 kvm_guest_cpu_init();
736#endif
737
738#ifdef CONFIG_KEXEC_CORE
739 machine_ops.crash_shutdown = kvm_crash_shutdown;
740#endif
741
742 register_syscore_ops(&kvm_syscore_ops);
743
744 /*
745 * Hard lockup detection is enabled by default. Disable it, as guests
746 * can get false positives too easily, for example if the host is
747 * overcommitted.
748 */
749 hardlockup_detector_disable();
750}
751
752static noinline uint32_t __kvm_cpuid_base(void)
753{
754 if (boot_cpu_data.cpuid_level < 0)
755 return 0; /* So we don't blow up on old processors */
756
757 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
758 return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
759
760 return 0;
761}
762
763static inline uint32_t kvm_cpuid_base(void)
764{
765 static int kvm_cpuid_base = -1;
766
767 if (kvm_cpuid_base == -1)
768 kvm_cpuid_base = __kvm_cpuid_base();
769
770 return kvm_cpuid_base;
771}
772
773bool kvm_para_available(void)
774{
775 return kvm_cpuid_base() != 0;
776}
777EXPORT_SYMBOL_GPL(kvm_para_available);
778
779unsigned int kvm_arch_para_features(void)
780{
781 return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
782}
783
784unsigned int kvm_arch_para_hints(void)
785{
786 return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
787}
788EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
789
790static uint32_t __init kvm_detect(void)
791{
792 return kvm_cpuid_base();
793}
794
795static void __init kvm_apic_init(void)
796{
797#ifdef CONFIG_SMP
798 if (pv_ipi_supported())
799 kvm_setup_pv_ipi();
800#endif
801}
802
803static bool __init kvm_msi_ext_dest_id(void)
804{
805 return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
806}
807
808static void __init kvm_init_platform(void)
809{
810 kvmclock_init();
811 x86_platform.apic_post_init = kvm_apic_init;
812}
813
814#if defined(CONFIG_AMD_MEM_ENCRYPT)
815static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
816{
817 /* RAX and CPL are already in the GHCB */
818 ghcb_set_rbx(ghcb, regs->bx);
819 ghcb_set_rcx(ghcb, regs->cx);
820 ghcb_set_rdx(ghcb, regs->dx);
821 ghcb_set_rsi(ghcb, regs->si);
822}
823
824static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
825{
826 /* No checking of the return state needed */
827 return true;
828}
829#endif
830
831const __initconst struct hypervisor_x86 x86_hyper_kvm = {
832 .name = "KVM",
833 .detect = kvm_detect,
834 .type = X86_HYPER_KVM,
835 .init.guest_late_init = kvm_guest_init,
836 .init.x2apic_available = kvm_para_available,
837 .init.msi_ext_dest_id = kvm_msi_ext_dest_id,
838 .init.init_platform = kvm_init_platform,
839#if defined(CONFIG_AMD_MEM_ENCRYPT)
840 .runtime.sev_es_hcall_prepare = kvm_sev_es_hcall_prepare,
841 .runtime.sev_es_hcall_finish = kvm_sev_es_hcall_finish,
842#endif
843};
844
845static __init int activate_jump_labels(void)
846{
847 if (has_steal_clock) {
848 static_key_slow_inc(¶virt_steal_enabled);
849 if (steal_acc)
850 static_key_slow_inc(¶virt_steal_rq_enabled);
851 }
852
853 return 0;
854}
855arch_initcall(activate_jump_labels);
856
857#ifdef CONFIG_PARAVIRT_SPINLOCKS
858
859/* Kick a cpu by its apicid. Used to wake up a halted vcpu */
860static void kvm_kick_cpu(int cpu)
861{
862 int apicid;
863 unsigned long flags = 0;
864
865 apicid = per_cpu(x86_cpu_to_apicid, cpu);
866 kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
867}
868
869#include <asm/qspinlock.h>
870
871static void kvm_wait(u8 *ptr, u8 val)
872{
873 if (in_nmi())
874 return;
875
876 /*
877 * halt until it's our turn and kicked. Note that we do safe halt
878 * for irq enabled case to avoid hang when lock info is overwritten
879 * in irq spinlock slowpath and no spurious interrupt occur to save us.
880 */
881 if (irqs_disabled()) {
882 if (READ_ONCE(*ptr) == val)
883 halt();
884 } else {
885 local_irq_disable();
886
887 if (READ_ONCE(*ptr) == val)
888 safe_halt();
889
890 local_irq_enable();
891 }
892}
893
894#ifdef CONFIG_X86_32
895__visible bool __kvm_vcpu_is_preempted(long cpu)
896{
897 struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
898
899 return !!(src->preempted & KVM_VCPU_PREEMPTED);
900}
901PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
902
903#else
904
905#include <asm/asm-offsets.h>
906
907extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
908
909/*
910 * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
911 * restoring to/from the stack.
912 */
913asm(
914".pushsection .text;"
915".global __raw_callee_save___kvm_vcpu_is_preempted;"
916".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
917"__raw_callee_save___kvm_vcpu_is_preempted:"
918"movq __per_cpu_offset(,%rdi,8), %rax;"
919"cmpb $0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
920"setne %al;"
921"ret;"
922".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
923".popsection");
924
925#endif
926
927/*
928 * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
929 */
930void __init kvm_spinlock_init(void)
931{
932 /*
933 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
934 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
935 * preferred over native qspinlock when vCPU is preempted.
936 */
937 if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
938 pr_info("PV spinlocks disabled, no host support\n");
939 return;
940 }
941
942 /*
943 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
944 * are available.
945 */
946 if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
947 pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
948 goto out;
949 }
950
951 if (num_possible_cpus() == 1) {
952 pr_info("PV spinlocks disabled, single CPU\n");
953 goto out;
954 }
955
956 if (nopvspin) {
957 pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
958 goto out;
959 }
960
961 pr_info("PV spinlocks enabled\n");
962
963 __pv_init_lock_hash();
964 pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
965 pv_ops.lock.queued_spin_unlock =
966 PV_CALLEE_SAVE(__pv_queued_spin_unlock);
967 pv_ops.lock.wait = kvm_wait;
968 pv_ops.lock.kick = kvm_kick_cpu;
969
970 if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
971 pv_ops.lock.vcpu_is_preempted =
972 PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
973 }
974 /*
975 * When PV spinlock is enabled which is preferred over
976 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
977 * Just disable it anyway.
978 */
979out:
980 static_branch_disable(&virt_spin_lock_key);
981}
982
983#endif /* CONFIG_PARAVIRT_SPINLOCKS */
984
985#ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
986
987static void kvm_disable_host_haltpoll(void *i)
988{
989 wrmsrl(MSR_KVM_POLL_CONTROL, 0);
990}
991
992static void kvm_enable_host_haltpoll(void *i)
993{
994 wrmsrl(MSR_KVM_POLL_CONTROL, 1);
995}
996
997void arch_haltpoll_enable(unsigned int cpu)
998{
999 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1000 pr_err_once("host does not support poll control\n");
1001 pr_err_once("host upgrade recommended\n");
1002 return;
1003 }
1004
1005 /* Enable guest halt poll disables host halt poll */
1006 smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1007}
1008EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1009
1010void arch_haltpoll_disable(unsigned int cpu)
1011{
1012 if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1013 return;
1014
1015 /* Disable guest halt poll enables host halt poll */
1016 smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1017}
1018EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1019#endif