Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/mem_encrypt.h>
22#include <linux/smp.h>
23#include <linux/cpu.h>
24#include <linux/io.h>
25#include <linux/syscore_ops.h>
26#include <linux/pgtable.h>
27#include <linux/stackprotector.h>
28#include <linux/utsname.h>
29
30#include <asm/alternative.h>
31#include <asm/cmdline.h>
32#include <asm/perf_event.h>
33#include <asm/mmu_context.h>
34#include <asm/doublefault.h>
35#include <asm/archrandom.h>
36#include <asm/hypervisor.h>
37#include <asm/processor.h>
38#include <asm/tlbflush.h>
39#include <asm/debugreg.h>
40#include <asm/sections.h>
41#include <asm/vsyscall.h>
42#include <linux/topology.h>
43#include <linux/cpumask.h>
44#include <linux/atomic.h>
45#include <asm/proto.h>
46#include <asm/setup.h>
47#include <asm/apic.h>
48#include <asm/desc.h>
49#include <asm/fpu/api.h>
50#include <asm/mtrr.h>
51#include <asm/hwcap2.h>
52#include <linux/numa.h>
53#include <asm/numa.h>
54#include <asm/asm.h>
55#include <asm/bugs.h>
56#include <asm/cpu.h>
57#include <asm/mce.h>
58#include <asm/msr.h>
59#include <asm/cacheinfo.h>
60#include <asm/memtype.h>
61#include <asm/microcode.h>
62#include <asm/intel-family.h>
63#include <asm/cpu_device_id.h>
64#include <asm/uv/uv.h>
65#include <asm/ia32.h>
66#include <asm/set_memory.h>
67#include <asm/traps.h>
68#include <asm/sev.h>
69#include <asm/tdx.h>
70
71#include "cpu.h"
72
73u32 elf_hwcap2 __read_mostly;
74
75/* Number of siblings per CPU package */
76int smp_num_siblings = 1;
77EXPORT_SYMBOL(smp_num_siblings);
78
79static struct ppin_info {
80 int feature;
81 int msr_ppin_ctl;
82 int msr_ppin;
83} ppin_info[] = {
84 [X86_VENDOR_INTEL] = {
85 .feature = X86_FEATURE_INTEL_PPIN,
86 .msr_ppin_ctl = MSR_PPIN_CTL,
87 .msr_ppin = MSR_PPIN
88 },
89 [X86_VENDOR_AMD] = {
90 .feature = X86_FEATURE_AMD_PPIN,
91 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
92 .msr_ppin = MSR_AMD_PPIN
93 },
94};
95
96static const struct x86_cpu_id ppin_cpuids[] = {
97 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
98 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
99
100 /* Legacy models without CPUID enumeration */
101 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
102 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
103 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
104 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
105 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
106 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
107 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
108 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
109 X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
110 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
111 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
112
113 {}
114};
115
116static void ppin_init(struct cpuinfo_x86 *c)
117{
118 const struct x86_cpu_id *id;
119 unsigned long long val;
120 struct ppin_info *info;
121
122 id = x86_match_cpu(ppin_cpuids);
123 if (!id)
124 return;
125
126 /*
127 * Testing the presence of the MSR is not enough. Need to check
128 * that the PPIN_CTL allows reading of the PPIN.
129 */
130 info = (struct ppin_info *)id->driver_data;
131
132 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
133 goto clear_ppin;
134
135 if ((val & 3UL) == 1UL) {
136 /* PPIN locked in disabled mode */
137 goto clear_ppin;
138 }
139
140 /* If PPIN is disabled, try to enable */
141 if (!(val & 2UL)) {
142 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
143 rdmsrl_safe(info->msr_ppin_ctl, &val);
144 }
145
146 /* Is the enable bit set? */
147 if (val & 2UL) {
148 c->ppin = __rdmsr(info->msr_ppin);
149 set_cpu_cap(c, info->feature);
150 return;
151 }
152
153clear_ppin:
154 clear_cpu_cap(c, info->feature);
155}
156
157static void default_init(struct cpuinfo_x86 *c)
158{
159#ifdef CONFIG_X86_64
160 cpu_detect_cache_sizes(c);
161#else
162 /* Not much we can do here... */
163 /* Check if at least it has cpuid */
164 if (c->cpuid_level == -1) {
165 /* No cpuid. It must be an ancient CPU */
166 if (c->x86 == 4)
167 strcpy(c->x86_model_id, "486");
168 else if (c->x86 == 3)
169 strcpy(c->x86_model_id, "386");
170 }
171#endif
172}
173
174static const struct cpu_dev default_cpu = {
175 .c_init = default_init,
176 .c_vendor = "Unknown",
177 .c_x86_vendor = X86_VENDOR_UNKNOWN,
178};
179
180static const struct cpu_dev *this_cpu = &default_cpu;
181
182DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
183#ifdef CONFIG_X86_64
184 /*
185 * We need valid kernel segments for data and code in long mode too
186 * IRET will check the segment types kkeil 2000/10/28
187 * Also sysret mandates a special GDT layout
188 *
189 * TLS descriptors are currently at a different place compared to i386.
190 * Hopefully nobody expects them at a fixed place (Wine?)
191 */
192 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
193 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
194 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
195 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
196 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
197 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
198#else
199 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
200 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
201 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
202 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
203 /*
204 * Segments used for calling PnP BIOS have byte granularity.
205 * They code segments and data segments have fixed 64k limits,
206 * the transfer segment sizes are set at run time.
207 */
208 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
209 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
210 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
211 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
212 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
213 /*
214 * The APM segments have byte granularity and their bases
215 * are set at run time. All have 64k limits.
216 */
217 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
218 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
219 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
220
221 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
222 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
223#endif
224} };
225EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
226
227#ifdef CONFIG_X86_64
228static int __init x86_nopcid_setup(char *s)
229{
230 /* nopcid doesn't accept parameters */
231 if (s)
232 return -EINVAL;
233
234 /* do not emit a message if the feature is not present */
235 if (!boot_cpu_has(X86_FEATURE_PCID))
236 return 0;
237
238 setup_clear_cpu_cap(X86_FEATURE_PCID);
239 pr_info("nopcid: PCID feature disabled\n");
240 return 0;
241}
242early_param("nopcid", x86_nopcid_setup);
243#endif
244
245static int __init x86_noinvpcid_setup(char *s)
246{
247 /* noinvpcid doesn't accept parameters */
248 if (s)
249 return -EINVAL;
250
251 /* do not emit a message if the feature is not present */
252 if (!boot_cpu_has(X86_FEATURE_INVPCID))
253 return 0;
254
255 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
256 pr_info("noinvpcid: INVPCID feature disabled\n");
257 return 0;
258}
259early_param("noinvpcid", x86_noinvpcid_setup);
260
261#ifdef CONFIG_X86_32
262static int cachesize_override = -1;
263static int disable_x86_serial_nr = 1;
264
265static int __init cachesize_setup(char *str)
266{
267 get_option(&str, &cachesize_override);
268 return 1;
269}
270__setup("cachesize=", cachesize_setup);
271
272/* Standard macro to see if a specific flag is changeable */
273static inline int flag_is_changeable_p(u32 flag)
274{
275 u32 f1, f2;
276
277 /*
278 * Cyrix and IDT cpus allow disabling of CPUID
279 * so the code below may return different results
280 * when it is executed before and after enabling
281 * the CPUID. Add "volatile" to not allow gcc to
282 * optimize the subsequent calls to this function.
283 */
284 asm volatile ("pushfl \n\t"
285 "pushfl \n\t"
286 "popl %0 \n\t"
287 "movl %0, %1 \n\t"
288 "xorl %2, %0 \n\t"
289 "pushl %0 \n\t"
290 "popfl \n\t"
291 "pushfl \n\t"
292 "popl %0 \n\t"
293 "popfl \n\t"
294
295 : "=&r" (f1), "=&r" (f2)
296 : "ir" (flag));
297
298 return ((f1^f2) & flag) != 0;
299}
300
301/* Probe for the CPUID instruction */
302int have_cpuid_p(void)
303{
304 return flag_is_changeable_p(X86_EFLAGS_ID);
305}
306
307static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
308{
309 unsigned long lo, hi;
310
311 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
312 return;
313
314 /* Disable processor serial number: */
315
316 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
317 lo |= 0x200000;
318 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
319
320 pr_notice("CPU serial number disabled.\n");
321 clear_cpu_cap(c, X86_FEATURE_PN);
322
323 /* Disabling the serial number may affect the cpuid level */
324 c->cpuid_level = cpuid_eax(0);
325}
326
327static int __init x86_serial_nr_setup(char *s)
328{
329 disable_x86_serial_nr = 0;
330 return 1;
331}
332__setup("serialnumber", x86_serial_nr_setup);
333#else
334static inline int flag_is_changeable_p(u32 flag)
335{
336 return 1;
337}
338static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
339{
340}
341#endif
342
343static __always_inline void setup_smep(struct cpuinfo_x86 *c)
344{
345 if (cpu_has(c, X86_FEATURE_SMEP))
346 cr4_set_bits(X86_CR4_SMEP);
347}
348
349static __always_inline void setup_smap(struct cpuinfo_x86 *c)
350{
351 unsigned long eflags = native_save_fl();
352
353 /* This should have been cleared long ago */
354 BUG_ON(eflags & X86_EFLAGS_AC);
355
356 if (cpu_has(c, X86_FEATURE_SMAP))
357 cr4_set_bits(X86_CR4_SMAP);
358}
359
360static __always_inline void setup_umip(struct cpuinfo_x86 *c)
361{
362 /* Check the boot processor, plus build option for UMIP. */
363 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
364 goto out;
365
366 /* Check the current processor's cpuid bits. */
367 if (!cpu_has(c, X86_FEATURE_UMIP))
368 goto out;
369
370 cr4_set_bits(X86_CR4_UMIP);
371
372 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
373
374 return;
375
376out:
377 /*
378 * Make sure UMIP is disabled in case it was enabled in a
379 * previous boot (e.g., via kexec).
380 */
381 cr4_clear_bits(X86_CR4_UMIP);
382}
383
384/* These bits should not change their value after CPU init is finished. */
385static const unsigned long cr4_pinned_mask =
386 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
387 X86_CR4_FSGSBASE | X86_CR4_CET;
388static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
389static unsigned long cr4_pinned_bits __ro_after_init;
390
391void native_write_cr0(unsigned long val)
392{
393 unsigned long bits_missing = 0;
394
395set_register:
396 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
397
398 if (static_branch_likely(&cr_pinning)) {
399 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
400 bits_missing = X86_CR0_WP;
401 val |= bits_missing;
402 goto set_register;
403 }
404 /* Warn after we've set the missing bits. */
405 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
406 }
407}
408EXPORT_SYMBOL(native_write_cr0);
409
410void __no_profile native_write_cr4(unsigned long val)
411{
412 unsigned long bits_changed = 0;
413
414set_register:
415 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
416
417 if (static_branch_likely(&cr_pinning)) {
418 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
419 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
420 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
421 goto set_register;
422 }
423 /* Warn after we've corrected the changed bits. */
424 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
425 bits_changed);
426 }
427}
428#if IS_MODULE(CONFIG_LKDTM)
429EXPORT_SYMBOL_GPL(native_write_cr4);
430#endif
431
432void cr4_update_irqsoff(unsigned long set, unsigned long clear)
433{
434 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
435
436 lockdep_assert_irqs_disabled();
437
438 newval = (cr4 & ~clear) | set;
439 if (newval != cr4) {
440 this_cpu_write(cpu_tlbstate.cr4, newval);
441 __write_cr4(newval);
442 }
443}
444EXPORT_SYMBOL(cr4_update_irqsoff);
445
446/* Read the CR4 shadow. */
447unsigned long cr4_read_shadow(void)
448{
449 return this_cpu_read(cpu_tlbstate.cr4);
450}
451EXPORT_SYMBOL_GPL(cr4_read_shadow);
452
453void cr4_init(void)
454{
455 unsigned long cr4 = __read_cr4();
456
457 if (boot_cpu_has(X86_FEATURE_PCID))
458 cr4 |= X86_CR4_PCIDE;
459 if (static_branch_likely(&cr_pinning))
460 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
461
462 __write_cr4(cr4);
463
464 /* Initialize cr4 shadow for this CPU. */
465 this_cpu_write(cpu_tlbstate.cr4, cr4);
466}
467
468/*
469 * Once CPU feature detection is finished (and boot params have been
470 * parsed), record any of the sensitive CR bits that are set, and
471 * enable CR pinning.
472 */
473static void __init setup_cr_pinning(void)
474{
475 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
476 static_key_enable(&cr_pinning.key);
477}
478
479static __init int x86_nofsgsbase_setup(char *arg)
480{
481 /* Require an exact match without trailing characters. */
482 if (strlen(arg))
483 return 0;
484
485 /* Do not emit a message if the feature is not present. */
486 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
487 return 1;
488
489 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
490 pr_info("FSGSBASE disabled via kernel command line\n");
491 return 1;
492}
493__setup("nofsgsbase", x86_nofsgsbase_setup);
494
495/*
496 * Protection Keys are not available in 32-bit mode.
497 */
498static bool pku_disabled;
499
500static __always_inline void setup_pku(struct cpuinfo_x86 *c)
501{
502 if (c == &boot_cpu_data) {
503 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
504 return;
505 /*
506 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
507 * bit to be set. Enforce it.
508 */
509 setup_force_cpu_cap(X86_FEATURE_OSPKE);
510
511 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
512 return;
513 }
514
515 cr4_set_bits(X86_CR4_PKE);
516 /* Load the default PKRU value */
517 pkru_write_default();
518}
519
520#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
521static __init int setup_disable_pku(char *arg)
522{
523 /*
524 * Do not clear the X86_FEATURE_PKU bit. All of the
525 * runtime checks are against OSPKE so clearing the
526 * bit does nothing.
527 *
528 * This way, we will see "pku" in cpuinfo, but not
529 * "ospke", which is exactly what we want. It shows
530 * that the CPU has PKU, but the OS has not enabled it.
531 * This happens to be exactly how a system would look
532 * if we disabled the config option.
533 */
534 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
535 pku_disabled = true;
536 return 1;
537}
538__setup("nopku", setup_disable_pku);
539#endif
540
541#ifdef CONFIG_X86_KERNEL_IBT
542
543__noendbr u64 ibt_save(bool disable)
544{
545 u64 msr = 0;
546
547 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
548 rdmsrl(MSR_IA32_S_CET, msr);
549 if (disable)
550 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
551 }
552
553 return msr;
554}
555
556__noendbr void ibt_restore(u64 save)
557{
558 u64 msr;
559
560 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
561 rdmsrl(MSR_IA32_S_CET, msr);
562 msr &= ~CET_ENDBR_EN;
563 msr |= (save & CET_ENDBR_EN);
564 wrmsrl(MSR_IA32_S_CET, msr);
565 }
566}
567
568#endif
569
570static __always_inline void setup_cet(struct cpuinfo_x86 *c)
571{
572 bool user_shstk, kernel_ibt;
573
574 if (!IS_ENABLED(CONFIG_X86_CET))
575 return;
576
577 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
578 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
579 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
580
581 if (!kernel_ibt && !user_shstk)
582 return;
583
584 if (user_shstk)
585 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
586
587 if (kernel_ibt)
588 wrmsrl(MSR_IA32_S_CET, CET_ENDBR_EN);
589 else
590 wrmsrl(MSR_IA32_S_CET, 0);
591
592 cr4_set_bits(X86_CR4_CET);
593
594 if (kernel_ibt && ibt_selftest()) {
595 pr_err("IBT selftest: Failed!\n");
596 wrmsrl(MSR_IA32_S_CET, 0);
597 setup_clear_cpu_cap(X86_FEATURE_IBT);
598 }
599}
600
601__noendbr void cet_disable(void)
602{
603 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
604 cpu_feature_enabled(X86_FEATURE_SHSTK)))
605 return;
606
607 wrmsrl(MSR_IA32_S_CET, 0);
608 wrmsrl(MSR_IA32_U_CET, 0);
609}
610
611/*
612 * Some CPU features depend on higher CPUID levels, which may not always
613 * be available due to CPUID level capping or broken virtualization
614 * software. Add those features to this table to auto-disable them.
615 */
616struct cpuid_dependent_feature {
617 u32 feature;
618 u32 level;
619};
620
621static const struct cpuid_dependent_feature
622cpuid_dependent_features[] = {
623 { X86_FEATURE_MWAIT, 0x00000005 },
624 { X86_FEATURE_DCA, 0x00000009 },
625 { X86_FEATURE_XSAVE, 0x0000000d },
626 { 0, 0 }
627};
628
629static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
630{
631 const struct cpuid_dependent_feature *df;
632
633 for (df = cpuid_dependent_features; df->feature; df++) {
634
635 if (!cpu_has(c, df->feature))
636 continue;
637 /*
638 * Note: cpuid_level is set to -1 if unavailable, but
639 * extended_extended_level is set to 0 if unavailable
640 * and the legitimate extended levels are all negative
641 * when signed; hence the weird messing around with
642 * signs here...
643 */
644 if (!((s32)df->level < 0 ?
645 (u32)df->level > (u32)c->extended_cpuid_level :
646 (s32)df->level > (s32)c->cpuid_level))
647 continue;
648
649 clear_cpu_cap(c, df->feature);
650 if (!warn)
651 continue;
652
653 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
654 x86_cap_flag(df->feature), df->level);
655 }
656}
657
658/*
659 * Naming convention should be: <Name> [(<Codename>)]
660 * This table only is used unless init_<vendor>() below doesn't set it;
661 * in particular, if CPUID levels 0x80000002..4 are supported, this
662 * isn't used
663 */
664
665/* Look up CPU names by table lookup. */
666static const char *table_lookup_model(struct cpuinfo_x86 *c)
667{
668#ifdef CONFIG_X86_32
669 const struct legacy_cpu_model_info *info;
670
671 if (c->x86_model >= 16)
672 return NULL; /* Range check */
673
674 if (!this_cpu)
675 return NULL;
676
677 info = this_cpu->legacy_models;
678
679 while (info->family) {
680 if (info->family == c->x86)
681 return info->model_names[c->x86_model];
682 info++;
683 }
684#endif
685 return NULL; /* Not found */
686}
687
688/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
689__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
690__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
691
692#ifdef CONFIG_X86_32
693/* The 32-bit entry code needs to find cpu_entry_area. */
694DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
695#endif
696
697/* Load the original GDT from the per-cpu structure */
698void load_direct_gdt(int cpu)
699{
700 struct desc_ptr gdt_descr;
701
702 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
703 gdt_descr.size = GDT_SIZE - 1;
704 load_gdt(&gdt_descr);
705}
706EXPORT_SYMBOL_GPL(load_direct_gdt);
707
708/* Load a fixmap remapping of the per-cpu GDT */
709void load_fixmap_gdt(int cpu)
710{
711 struct desc_ptr gdt_descr;
712
713 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
714 gdt_descr.size = GDT_SIZE - 1;
715 load_gdt(&gdt_descr);
716}
717EXPORT_SYMBOL_GPL(load_fixmap_gdt);
718
719/**
720 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
721 * @cpu: The CPU number for which this is invoked
722 *
723 * Invoked during early boot to switch from early GDT and early per CPU to
724 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
725 * switch is implicit by loading the direct GDT. On 64bit this requires
726 * to update GSBASE.
727 */
728void __init switch_gdt_and_percpu_base(int cpu)
729{
730 load_direct_gdt(cpu);
731
732#ifdef CONFIG_X86_64
733 /*
734 * No need to load %gs. It is already correct.
735 *
736 * Writing %gs on 64bit would zero GSBASE which would make any per
737 * CPU operation up to the point of the wrmsrl() fault.
738 *
739 * Set GSBASE to the new offset. Until the wrmsrl() happens the
740 * early mapping is still valid. That means the GSBASE update will
741 * lose any prior per CPU data which was not copied over in
742 * setup_per_cpu_areas().
743 *
744 * This works even with stackprotector enabled because the
745 * per CPU stack canary is 0 in both per CPU areas.
746 */
747 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
748#else
749 /*
750 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
751 * it is required to load FS again so that the 'hidden' part is
752 * updated from the new GDT. Up to this point the early per CPU
753 * translation is active. Any content of the early per CPU data
754 * which was not copied over in setup_per_cpu_areas() is lost.
755 */
756 loadsegment(fs, __KERNEL_PERCPU);
757#endif
758}
759
760static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
761
762static void get_model_name(struct cpuinfo_x86 *c)
763{
764 unsigned int *v;
765 char *p, *q, *s;
766
767 if (c->extended_cpuid_level < 0x80000004)
768 return;
769
770 v = (unsigned int *)c->x86_model_id;
771 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
772 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
773 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
774 c->x86_model_id[48] = 0;
775
776 /* Trim whitespace */
777 p = q = s = &c->x86_model_id[0];
778
779 while (*p == ' ')
780 p++;
781
782 while (*p) {
783 /* Note the last non-whitespace index */
784 if (!isspace(*p))
785 s = q;
786
787 *q++ = *p++;
788 }
789
790 *(s + 1) = '\0';
791}
792
793void detect_num_cpu_cores(struct cpuinfo_x86 *c)
794{
795 unsigned int eax, ebx, ecx, edx;
796
797 c->x86_max_cores = 1;
798 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
799 return;
800
801 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
802 if (eax & 0x1f)
803 c->x86_max_cores = (eax >> 26) + 1;
804}
805
806void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
807{
808 unsigned int n, dummy, ebx, ecx, edx, l2size;
809
810 n = c->extended_cpuid_level;
811
812 if (n >= 0x80000005) {
813 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
814 c->x86_cache_size = (ecx>>24) + (edx>>24);
815#ifdef CONFIG_X86_64
816 /* On K8 L1 TLB is inclusive, so don't count it */
817 c->x86_tlbsize = 0;
818#endif
819 }
820
821 if (n < 0x80000006) /* Some chips just has a large L1. */
822 return;
823
824 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
825 l2size = ecx >> 16;
826
827#ifdef CONFIG_X86_64
828 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
829#else
830 /* do processor-specific cache resizing */
831 if (this_cpu->legacy_cache_size)
832 l2size = this_cpu->legacy_cache_size(c, l2size);
833
834 /* Allow user to override all this if necessary. */
835 if (cachesize_override != -1)
836 l2size = cachesize_override;
837
838 if (l2size == 0)
839 return; /* Again, no L2 cache is possible */
840#endif
841
842 c->x86_cache_size = l2size;
843}
844
845u16 __read_mostly tlb_lli_4k[NR_INFO];
846u16 __read_mostly tlb_lli_2m[NR_INFO];
847u16 __read_mostly tlb_lli_4m[NR_INFO];
848u16 __read_mostly tlb_lld_4k[NR_INFO];
849u16 __read_mostly tlb_lld_2m[NR_INFO];
850u16 __read_mostly tlb_lld_4m[NR_INFO];
851u16 __read_mostly tlb_lld_1g[NR_INFO];
852
853static void cpu_detect_tlb(struct cpuinfo_x86 *c)
854{
855 if (this_cpu->c_detect_tlb)
856 this_cpu->c_detect_tlb(c);
857
858 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
859 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
860 tlb_lli_4m[ENTRIES]);
861
862 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
863 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
864 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
865}
866
867int detect_ht_early(struct cpuinfo_x86 *c)
868{
869#ifdef CONFIG_SMP
870 u32 eax, ebx, ecx, edx;
871
872 if (!cpu_has(c, X86_FEATURE_HT))
873 return -1;
874
875 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
876 return -1;
877
878 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
879 return -1;
880
881 cpuid(1, &eax, &ebx, &ecx, &edx);
882
883 smp_num_siblings = (ebx & 0xff0000) >> 16;
884 if (smp_num_siblings == 1)
885 pr_info_once("CPU0: Hyper-Threading is disabled\n");
886#endif
887 return 0;
888}
889
890void detect_ht(struct cpuinfo_x86 *c)
891{
892#ifdef CONFIG_SMP
893 int index_msb, core_bits;
894
895 if (detect_ht_early(c) < 0)
896 return;
897
898 index_msb = get_count_order(smp_num_siblings);
899 c->topo.pkg_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb);
900
901 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
902
903 index_msb = get_count_order(smp_num_siblings);
904
905 core_bits = get_count_order(c->x86_max_cores);
906
907 c->topo.core_id = apic->phys_pkg_id(c->topo.initial_apicid, index_msb) &
908 ((1 << core_bits) - 1);
909#endif
910}
911
912static void get_cpu_vendor(struct cpuinfo_x86 *c)
913{
914 char *v = c->x86_vendor_id;
915 int i;
916
917 for (i = 0; i < X86_VENDOR_NUM; i++) {
918 if (!cpu_devs[i])
919 break;
920
921 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
922 (cpu_devs[i]->c_ident[1] &&
923 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
924
925 this_cpu = cpu_devs[i];
926 c->x86_vendor = this_cpu->c_x86_vendor;
927 return;
928 }
929 }
930
931 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
932 "CPU: Your system may be unstable.\n", v);
933
934 c->x86_vendor = X86_VENDOR_UNKNOWN;
935 this_cpu = &default_cpu;
936}
937
938void cpu_detect(struct cpuinfo_x86 *c)
939{
940 /* Get vendor name */
941 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
942 (unsigned int *)&c->x86_vendor_id[0],
943 (unsigned int *)&c->x86_vendor_id[8],
944 (unsigned int *)&c->x86_vendor_id[4]);
945
946 c->x86 = 4;
947 /* Intel-defined flags: level 0x00000001 */
948 if (c->cpuid_level >= 0x00000001) {
949 u32 junk, tfms, cap0, misc;
950
951 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
952 c->x86 = x86_family(tfms);
953 c->x86_model = x86_model(tfms);
954 c->x86_stepping = x86_stepping(tfms);
955
956 if (cap0 & (1<<19)) {
957 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
958 c->x86_cache_alignment = c->x86_clflush_size;
959 }
960 }
961}
962
963static void apply_forced_caps(struct cpuinfo_x86 *c)
964{
965 int i;
966
967 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
968 c->x86_capability[i] &= ~cpu_caps_cleared[i];
969 c->x86_capability[i] |= cpu_caps_set[i];
970 }
971}
972
973static void init_speculation_control(struct cpuinfo_x86 *c)
974{
975 /*
976 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
977 * and they also have a different bit for STIBP support. Also,
978 * a hypervisor might have set the individual AMD bits even on
979 * Intel CPUs, for finer-grained selection of what's available.
980 */
981 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
982 set_cpu_cap(c, X86_FEATURE_IBRS);
983 set_cpu_cap(c, X86_FEATURE_IBPB);
984 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
985 }
986
987 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
988 set_cpu_cap(c, X86_FEATURE_STIBP);
989
990 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
991 cpu_has(c, X86_FEATURE_VIRT_SSBD))
992 set_cpu_cap(c, X86_FEATURE_SSBD);
993
994 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
995 set_cpu_cap(c, X86_FEATURE_IBRS);
996 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
997 }
998
999 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1000 set_cpu_cap(c, X86_FEATURE_IBPB);
1001
1002 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1003 set_cpu_cap(c, X86_FEATURE_STIBP);
1004 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1005 }
1006
1007 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1008 set_cpu_cap(c, X86_FEATURE_SSBD);
1009 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1010 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1011 }
1012}
1013
1014void get_cpu_cap(struct cpuinfo_x86 *c)
1015{
1016 u32 eax, ebx, ecx, edx;
1017
1018 /* Intel-defined flags: level 0x00000001 */
1019 if (c->cpuid_level >= 0x00000001) {
1020 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1021
1022 c->x86_capability[CPUID_1_ECX] = ecx;
1023 c->x86_capability[CPUID_1_EDX] = edx;
1024 }
1025
1026 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1027 if (c->cpuid_level >= 0x00000006)
1028 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1029
1030 /* Additional Intel-defined flags: level 0x00000007 */
1031 if (c->cpuid_level >= 0x00000007) {
1032 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1033 c->x86_capability[CPUID_7_0_EBX] = ebx;
1034 c->x86_capability[CPUID_7_ECX] = ecx;
1035 c->x86_capability[CPUID_7_EDX] = edx;
1036
1037 /* Check valid sub-leaf index before accessing it */
1038 if (eax >= 1) {
1039 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1040 c->x86_capability[CPUID_7_1_EAX] = eax;
1041 }
1042 }
1043
1044 /* Extended state features: level 0x0000000d */
1045 if (c->cpuid_level >= 0x0000000d) {
1046 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1047
1048 c->x86_capability[CPUID_D_1_EAX] = eax;
1049 }
1050
1051 /* AMD-defined flags: level 0x80000001 */
1052 eax = cpuid_eax(0x80000000);
1053 c->extended_cpuid_level = eax;
1054
1055 if ((eax & 0xffff0000) == 0x80000000) {
1056 if (eax >= 0x80000001) {
1057 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1058
1059 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1060 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1061 }
1062 }
1063
1064 if (c->extended_cpuid_level >= 0x80000007) {
1065 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1066
1067 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1068 c->x86_power = edx;
1069 }
1070
1071 if (c->extended_cpuid_level >= 0x80000008) {
1072 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1073 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1074 }
1075
1076 if (c->extended_cpuid_level >= 0x8000000a)
1077 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1078
1079 if (c->extended_cpuid_level >= 0x8000001f)
1080 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1081
1082 if (c->extended_cpuid_level >= 0x80000021)
1083 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1084
1085 init_scattered_cpuid_features(c);
1086 init_speculation_control(c);
1087
1088 /*
1089 * Clear/Set all flags overridden by options, after probe.
1090 * This needs to happen each time we re-probe, which may happen
1091 * several times during CPU initialization.
1092 */
1093 apply_forced_caps(c);
1094}
1095
1096void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1097{
1098 u32 eax, ebx, ecx, edx;
1099 bool vp_bits_from_cpuid = true;
1100
1101 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1102 (c->extended_cpuid_level < 0x80000008))
1103 vp_bits_from_cpuid = false;
1104
1105 if (vp_bits_from_cpuid) {
1106 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1107
1108 c->x86_virt_bits = (eax >> 8) & 0xff;
1109 c->x86_phys_bits = eax & 0xff;
1110 } else {
1111 if (IS_ENABLED(CONFIG_X86_64)) {
1112 c->x86_clflush_size = 64;
1113 c->x86_phys_bits = 36;
1114 c->x86_virt_bits = 48;
1115 } else {
1116 c->x86_clflush_size = 32;
1117 c->x86_virt_bits = 32;
1118 c->x86_phys_bits = 32;
1119
1120 if (cpu_has(c, X86_FEATURE_PAE) ||
1121 cpu_has(c, X86_FEATURE_PSE36))
1122 c->x86_phys_bits = 36;
1123 }
1124 }
1125 c->x86_cache_bits = c->x86_phys_bits;
1126 c->x86_cache_alignment = c->x86_clflush_size;
1127}
1128
1129static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1130{
1131#ifdef CONFIG_X86_32
1132 int i;
1133
1134 /*
1135 * First of all, decide if this is a 486 or higher
1136 * It's a 486 if we can modify the AC flag
1137 */
1138 if (flag_is_changeable_p(X86_EFLAGS_AC))
1139 c->x86 = 4;
1140 else
1141 c->x86 = 3;
1142
1143 for (i = 0; i < X86_VENDOR_NUM; i++)
1144 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1145 c->x86_vendor_id[0] = 0;
1146 cpu_devs[i]->c_identify(c);
1147 if (c->x86_vendor_id[0]) {
1148 get_cpu_vendor(c);
1149 break;
1150 }
1151 }
1152#endif
1153}
1154
1155#define NO_SPECULATION BIT(0)
1156#define NO_MELTDOWN BIT(1)
1157#define NO_SSB BIT(2)
1158#define NO_L1TF BIT(3)
1159#define NO_MDS BIT(4)
1160#define MSBDS_ONLY BIT(5)
1161#define NO_SWAPGS BIT(6)
1162#define NO_ITLB_MULTIHIT BIT(7)
1163#define NO_SPECTRE_V2 BIT(8)
1164#define NO_MMIO BIT(9)
1165#define NO_EIBRS_PBRSB BIT(10)
1166
1167#define VULNWL(vendor, family, model, whitelist) \
1168 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1169
1170#define VULNWL_INTEL(model, whitelist) \
1171 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1172
1173#define VULNWL_AMD(family, whitelist) \
1174 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1175
1176#define VULNWL_HYGON(family, whitelist) \
1177 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1178
1179static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1180 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1181 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1182 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1183 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1184 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1185 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1186
1187 /* Intel Family 6 */
1188 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1189 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1190 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1191 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1192
1193 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1194 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1195 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1196 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1197 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1198
1199 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1200 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1201 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205
1206 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1207
1208 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1209 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1210
1211 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1212 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1213 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1214
1215 /*
1216 * Technically, swapgs isn't serializing on AMD (despite it previously
1217 * being documented as such in the APM). But according to AMD, %gs is
1218 * updated non-speculatively, and the issuing of %gs-relative memory
1219 * operands will be blocked until the %gs update completes, which is
1220 * good enough for our purposes.
1221 */
1222
1223 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1224 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1225 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1226
1227 /* AMD Family 0xf - 0x12 */
1228 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1229 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1231 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1232
1233 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1234 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1235 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1236
1237 /* Zhaoxin Family 7 */
1238 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1239 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1240 {}
1241};
1242
1243#define VULNBL(vendor, family, model, blacklist) \
1244 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1245
1246#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1247 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1248 INTEL_FAM6_##model, steppings, \
1249 X86_FEATURE_ANY, issues)
1250
1251#define VULNBL_AMD(family, blacklist) \
1252 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1253
1254#define VULNBL_HYGON(family, blacklist) \
1255 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1256
1257#define SRBDS BIT(0)
1258/* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1259#define MMIO BIT(1)
1260/* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1261#define MMIO_SBDS BIT(2)
1262/* CPU is affected by RETbleed, speculating where you would not expect it */
1263#define RETBLEED BIT(3)
1264/* CPU is affected by SMT (cross-thread) return predictions */
1265#define SMT_RSB BIT(4)
1266/* CPU is affected by SRSO */
1267#define SRSO BIT(5)
1268/* CPU is affected by GDS */
1269#define GDS BIT(6)
1270
1271static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1272 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1273 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1274 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1275 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1276 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1277 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1278 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1279 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1280 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1281 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1282 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1283 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1284 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1285 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS | SRBDS),
1286 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1287 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1288 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO | GDS),
1289 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO | GDS),
1290 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1291 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1292 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED | GDS),
1293 VULNBL_INTEL_STEPPINGS(TIGERLAKE_L, X86_STEPPING_ANY, GDS),
1294 VULNBL_INTEL_STEPPINGS(TIGERLAKE, X86_STEPPING_ANY, GDS),
1295 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1296 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED | GDS),
1297 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1298 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1299 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1300
1301 VULNBL_AMD(0x15, RETBLEED),
1302 VULNBL_AMD(0x16, RETBLEED),
1303 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1304 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1305 VULNBL_AMD(0x19, SRSO),
1306 {}
1307};
1308
1309static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1310{
1311 const struct x86_cpu_id *m = x86_match_cpu(table);
1312
1313 return m && !!(m->driver_data & which);
1314}
1315
1316u64 x86_read_arch_cap_msr(void)
1317{
1318 u64 ia32_cap = 0;
1319
1320 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1321 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1322
1323 return ia32_cap;
1324}
1325
1326static bool arch_cap_mmio_immune(u64 ia32_cap)
1327{
1328 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1329 ia32_cap & ARCH_CAP_PSDP_NO &&
1330 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1331}
1332
1333static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1334{
1335 u64 ia32_cap = x86_read_arch_cap_msr();
1336
1337 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1338 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1339 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1340 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1341
1342 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1343 return;
1344
1345 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1346
1347 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1348 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1349
1350 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1351 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1352 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1353 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1354
1355 /*
1356 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1357 * flag and protect from vendor-specific bugs via the whitelist.
1358 */
1359 if ((ia32_cap & ARCH_CAP_IBRS_ALL) || cpu_has(c, X86_FEATURE_AUTOIBRS)) {
1360 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1361 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1362 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1363 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1364 }
1365
1366 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1367 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1368 setup_force_cpu_bug(X86_BUG_MDS);
1369 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1370 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1371 }
1372
1373 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1374 setup_force_cpu_bug(X86_BUG_SWAPGS);
1375
1376 /*
1377 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1378 * - TSX is supported or
1379 * - TSX_CTRL is present
1380 *
1381 * TSX_CTRL check is needed for cases when TSX could be disabled before
1382 * the kernel boot e.g. kexec.
1383 * TSX_CTRL check alone is not sufficient for cases when the microcode
1384 * update is not present or running as guest that don't get TSX_CTRL.
1385 */
1386 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1387 (cpu_has(c, X86_FEATURE_RTM) ||
1388 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1389 setup_force_cpu_bug(X86_BUG_TAA);
1390
1391 /*
1392 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1393 * in the vulnerability blacklist.
1394 *
1395 * Some of the implications and mitigation of Shared Buffers Data
1396 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1397 * SRBDS.
1398 */
1399 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1400 cpu_has(c, X86_FEATURE_RDSEED)) &&
1401 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1402 setup_force_cpu_bug(X86_BUG_SRBDS);
1403
1404 /*
1405 * Processor MMIO Stale Data bug enumeration
1406 *
1407 * Affected CPU list is generally enough to enumerate the vulnerability,
1408 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1409 * not want the guest to enumerate the bug.
1410 *
1411 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1412 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1413 */
1414 if (!arch_cap_mmio_immune(ia32_cap)) {
1415 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1416 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1417 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1418 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1419 }
1420
1421 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1422 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1423 setup_force_cpu_bug(X86_BUG_RETBLEED);
1424 }
1425
1426 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1427 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1428
1429 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1430 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1431 setup_force_cpu_bug(X86_BUG_SRSO);
1432 }
1433
1434 /*
1435 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1436 * an affected processor, the VMM may have disabled the use of GATHER by
1437 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1438 * which means that AVX will be disabled.
1439 */
1440 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(ia32_cap & ARCH_CAP_GDS_NO) &&
1441 boot_cpu_has(X86_FEATURE_AVX))
1442 setup_force_cpu_bug(X86_BUG_GDS);
1443
1444 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1445 return;
1446
1447 /* Rogue Data Cache Load? No! */
1448 if (ia32_cap & ARCH_CAP_RDCL_NO)
1449 return;
1450
1451 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1452
1453 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1454 return;
1455
1456 setup_force_cpu_bug(X86_BUG_L1TF);
1457}
1458
1459/*
1460 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1461 * unfortunately, that's not true in practice because of early VIA
1462 * chips and (more importantly) broken virtualizers that are not easy
1463 * to detect. In the latter case it doesn't even *fail* reliably, so
1464 * probing for it doesn't even work. Disable it completely on 32-bit
1465 * unless we can find a reliable way to detect all the broken cases.
1466 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1467 */
1468static void detect_nopl(void)
1469{
1470#ifdef CONFIG_X86_32
1471 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1472#else
1473 setup_force_cpu_cap(X86_FEATURE_NOPL);
1474#endif
1475}
1476
1477/*
1478 * We parse cpu parameters early because fpu__init_system() is executed
1479 * before parse_early_param().
1480 */
1481static void __init cpu_parse_early_param(void)
1482{
1483 char arg[128];
1484 char *argptr = arg, *opt;
1485 int arglen, taint = 0;
1486
1487#ifdef CONFIG_X86_32
1488 if (cmdline_find_option_bool(boot_command_line, "no387"))
1489#ifdef CONFIG_MATH_EMULATION
1490 setup_clear_cpu_cap(X86_FEATURE_FPU);
1491#else
1492 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1493#endif
1494
1495 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1496 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1497#endif
1498
1499 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1500 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1501
1502 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1503 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1504
1505 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1506 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1507
1508 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1509 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1510
1511 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1512 if (arglen <= 0)
1513 return;
1514
1515 pr_info("Clearing CPUID bits:");
1516
1517 while (argptr) {
1518 bool found __maybe_unused = false;
1519 unsigned int bit;
1520
1521 opt = strsep(&argptr, ",");
1522
1523 /*
1524 * Handle naked numbers first for feature flags which don't
1525 * have names.
1526 */
1527 if (!kstrtouint(opt, 10, &bit)) {
1528 if (bit < NCAPINTS * 32) {
1529
1530 /* empty-string, i.e., ""-defined feature flags */
1531 if (!x86_cap_flags[bit])
1532 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1533 else
1534 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1535
1536 setup_clear_cpu_cap(bit);
1537 taint++;
1538 }
1539 /*
1540 * The assumption is that there are no feature names with only
1541 * numbers in the name thus go to the next argument.
1542 */
1543 continue;
1544 }
1545
1546 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1547 if (!x86_cap_flag(bit))
1548 continue;
1549
1550 if (strcmp(x86_cap_flag(bit), opt))
1551 continue;
1552
1553 pr_cont(" %s", opt);
1554 setup_clear_cpu_cap(bit);
1555 taint++;
1556 found = true;
1557 break;
1558 }
1559
1560 if (!found)
1561 pr_cont(" (unknown: %s)", opt);
1562 }
1563 pr_cont("\n");
1564
1565 if (taint)
1566 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1567}
1568
1569/*
1570 * Do minimum CPU detection early.
1571 * Fields really needed: vendor, cpuid_level, family, model, mask,
1572 * cache alignment.
1573 * The others are not touched to avoid unwanted side effects.
1574 *
1575 * WARNING: this function is only called on the boot CPU. Don't add code
1576 * here that is supposed to run on all CPUs.
1577 */
1578static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1579{
1580 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1581 c->extended_cpuid_level = 0;
1582
1583 if (!have_cpuid_p())
1584 identify_cpu_without_cpuid(c);
1585
1586 /* cyrix could have cpuid enabled via c_identify()*/
1587 if (have_cpuid_p()) {
1588 cpu_detect(c);
1589 get_cpu_vendor(c);
1590 get_cpu_cap(c);
1591 setup_force_cpu_cap(X86_FEATURE_CPUID);
1592 get_cpu_address_sizes(c);
1593 cpu_parse_early_param();
1594
1595 if (this_cpu->c_early_init)
1596 this_cpu->c_early_init(c);
1597
1598 c->cpu_index = 0;
1599 filter_cpuid_features(c, false);
1600
1601 if (this_cpu->c_bsp_init)
1602 this_cpu->c_bsp_init(c);
1603 } else {
1604 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1605 get_cpu_address_sizes(c);
1606 }
1607
1608 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1609
1610 cpu_set_bug_bits(c);
1611
1612 sld_setup(c);
1613
1614#ifdef CONFIG_X86_32
1615 /*
1616 * Regardless of whether PCID is enumerated, the SDM says
1617 * that it can't be enabled in 32-bit mode.
1618 */
1619 setup_clear_cpu_cap(X86_FEATURE_PCID);
1620#endif
1621
1622 /*
1623 * Later in the boot process pgtable_l5_enabled() relies on
1624 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1625 * enabled by this point we need to clear the feature bit to avoid
1626 * false-positives at the later stage.
1627 *
1628 * pgtable_l5_enabled() can be false here for several reasons:
1629 * - 5-level paging is disabled compile-time;
1630 * - it's 32-bit kernel;
1631 * - machine doesn't support 5-level paging;
1632 * - user specified 'no5lvl' in kernel command line.
1633 */
1634 if (!pgtable_l5_enabled())
1635 setup_clear_cpu_cap(X86_FEATURE_LA57);
1636
1637 detect_nopl();
1638}
1639
1640void __init early_cpu_init(void)
1641{
1642 const struct cpu_dev *const *cdev;
1643 int count = 0;
1644
1645#ifdef CONFIG_PROCESSOR_SELECT
1646 pr_info("KERNEL supported cpus:\n");
1647#endif
1648
1649 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1650 const struct cpu_dev *cpudev = *cdev;
1651
1652 if (count >= X86_VENDOR_NUM)
1653 break;
1654 cpu_devs[count] = cpudev;
1655 count++;
1656
1657#ifdef CONFIG_PROCESSOR_SELECT
1658 {
1659 unsigned int j;
1660
1661 for (j = 0; j < 2; j++) {
1662 if (!cpudev->c_ident[j])
1663 continue;
1664 pr_info(" %s %s\n", cpudev->c_vendor,
1665 cpudev->c_ident[j]);
1666 }
1667 }
1668#endif
1669 }
1670 early_identify_cpu(&boot_cpu_data);
1671}
1672
1673static bool detect_null_seg_behavior(void)
1674{
1675 /*
1676 * Empirically, writing zero to a segment selector on AMD does
1677 * not clear the base, whereas writing zero to a segment
1678 * selector on Intel does clear the base. Intel's behavior
1679 * allows slightly faster context switches in the common case
1680 * where GS is unused by the prev and next threads.
1681 *
1682 * Since neither vendor documents this anywhere that I can see,
1683 * detect it directly instead of hard-coding the choice by
1684 * vendor.
1685 *
1686 * I've designated AMD's behavior as the "bug" because it's
1687 * counterintuitive and less friendly.
1688 */
1689
1690 unsigned long old_base, tmp;
1691 rdmsrl(MSR_FS_BASE, old_base);
1692 wrmsrl(MSR_FS_BASE, 1);
1693 loadsegment(fs, 0);
1694 rdmsrl(MSR_FS_BASE, tmp);
1695 wrmsrl(MSR_FS_BASE, old_base);
1696 return tmp == 0;
1697}
1698
1699void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1700{
1701 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1702 if (!IS_ENABLED(CONFIG_X86_64))
1703 return;
1704
1705 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1706 return;
1707
1708 /*
1709 * CPUID bit above wasn't set. If this kernel is still running
1710 * as a HV guest, then the HV has decided not to advertize
1711 * that CPUID bit for whatever reason. For example, one
1712 * member of the migration pool might be vulnerable. Which
1713 * means, the bug is present: set the BUG flag and return.
1714 */
1715 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1716 set_cpu_bug(c, X86_BUG_NULL_SEG);
1717 return;
1718 }
1719
1720 /*
1721 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1722 * 0x18 is the respective family for Hygon.
1723 */
1724 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1725 detect_null_seg_behavior())
1726 return;
1727
1728 /* All the remaining ones are affected */
1729 set_cpu_bug(c, X86_BUG_NULL_SEG);
1730}
1731
1732static void generic_identify(struct cpuinfo_x86 *c)
1733{
1734 c->extended_cpuid_level = 0;
1735
1736 if (!have_cpuid_p())
1737 identify_cpu_without_cpuid(c);
1738
1739 /* cyrix could have cpuid enabled via c_identify()*/
1740 if (!have_cpuid_p())
1741 return;
1742
1743 cpu_detect(c);
1744
1745 get_cpu_vendor(c);
1746
1747 get_cpu_cap(c);
1748
1749 get_cpu_address_sizes(c);
1750
1751 if (c->cpuid_level >= 0x00000001) {
1752 c->topo.initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1753#ifdef CONFIG_X86_32
1754# ifdef CONFIG_SMP
1755 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1756# else
1757 c->topo.apicid = c->topo.initial_apicid;
1758# endif
1759#endif
1760 c->topo.pkg_id = c->topo.initial_apicid;
1761 }
1762
1763 get_model_name(c); /* Default name */
1764
1765 /*
1766 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1767 * systems that run Linux at CPL > 0 may or may not have the
1768 * issue, but, even if they have the issue, there's absolutely
1769 * nothing we can do about it because we can't use the real IRET
1770 * instruction.
1771 *
1772 * NB: For the time being, only 32-bit kernels support
1773 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1774 * whether to apply espfix using paravirt hooks. If any
1775 * non-paravirt system ever shows up that does *not* have the
1776 * ESPFIX issue, we can change this.
1777 */
1778#ifdef CONFIG_X86_32
1779 set_cpu_bug(c, X86_BUG_ESPFIX);
1780#endif
1781}
1782
1783/*
1784 * Validate that ACPI/mptables have the same information about the
1785 * effective APIC id and update the package map.
1786 */
1787static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1788{
1789#ifdef CONFIG_SMP
1790 unsigned int cpu = smp_processor_id();
1791 u32 apicid;
1792
1793 apicid = apic->cpu_present_to_apicid(cpu);
1794
1795 if (apicid != c->topo.apicid) {
1796 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1797 cpu, apicid, c->topo.initial_apicid);
1798 }
1799 BUG_ON(topology_update_package_map(c->topo.pkg_id, cpu));
1800 BUG_ON(topology_update_die_map(c->topo.die_id, cpu));
1801#else
1802 c->topo.logical_pkg_id = 0;
1803#endif
1804}
1805
1806/*
1807 * This does the hard work of actually picking apart the CPU stuff...
1808 */
1809static void identify_cpu(struct cpuinfo_x86 *c)
1810{
1811 int i;
1812
1813 c->loops_per_jiffy = loops_per_jiffy;
1814 c->x86_cache_size = 0;
1815 c->x86_vendor = X86_VENDOR_UNKNOWN;
1816 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1817 c->x86_vendor_id[0] = '\0'; /* Unset */
1818 c->x86_model_id[0] = '\0'; /* Unset */
1819 c->x86_max_cores = 1;
1820 c->x86_coreid_bits = 0;
1821 c->topo.cu_id = 0xff;
1822 c->topo.llc_id = BAD_APICID;
1823 c->topo.l2c_id = BAD_APICID;
1824#ifdef CONFIG_X86_64
1825 c->x86_clflush_size = 64;
1826 c->x86_phys_bits = 36;
1827 c->x86_virt_bits = 48;
1828#else
1829 c->cpuid_level = -1; /* CPUID not detected */
1830 c->x86_clflush_size = 32;
1831 c->x86_phys_bits = 32;
1832 c->x86_virt_bits = 32;
1833#endif
1834 c->x86_cache_alignment = c->x86_clflush_size;
1835 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1836#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1837 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1838#endif
1839
1840 generic_identify(c);
1841
1842 if (this_cpu->c_identify)
1843 this_cpu->c_identify(c);
1844
1845 /* Clear/Set all flags overridden by options, after probe */
1846 apply_forced_caps(c);
1847
1848#ifdef CONFIG_X86_64
1849 c->topo.apicid = apic->phys_pkg_id(c->topo.initial_apicid, 0);
1850#endif
1851
1852
1853 /*
1854 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1855 * Hygon will clear it in ->c_init() below.
1856 */
1857 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1858
1859 /*
1860 * Vendor-specific initialization. In this section we
1861 * canonicalize the feature flags, meaning if there are
1862 * features a certain CPU supports which CPUID doesn't
1863 * tell us, CPUID claiming incorrect flags, or other bugs,
1864 * we handle them here.
1865 *
1866 * At the end of this section, c->x86_capability better
1867 * indicate the features this CPU genuinely supports!
1868 */
1869 if (this_cpu->c_init)
1870 this_cpu->c_init(c);
1871
1872 /* Disable the PN if appropriate */
1873 squash_the_stupid_serial_number(c);
1874
1875 /* Set up SMEP/SMAP/UMIP */
1876 setup_smep(c);
1877 setup_smap(c);
1878 setup_umip(c);
1879
1880 /* Enable FSGSBASE instructions if available. */
1881 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1882 cr4_set_bits(X86_CR4_FSGSBASE);
1883 elf_hwcap2 |= HWCAP2_FSGSBASE;
1884 }
1885
1886 /*
1887 * The vendor-specific functions might have changed features.
1888 * Now we do "generic changes."
1889 */
1890
1891 /* Filter out anything that depends on CPUID levels we don't have */
1892 filter_cpuid_features(c, true);
1893
1894 /* If the model name is still unset, do table lookup. */
1895 if (!c->x86_model_id[0]) {
1896 const char *p;
1897 p = table_lookup_model(c);
1898 if (p)
1899 strcpy(c->x86_model_id, p);
1900 else
1901 /* Last resort... */
1902 sprintf(c->x86_model_id, "%02x/%02x",
1903 c->x86, c->x86_model);
1904 }
1905
1906#ifdef CONFIG_X86_64
1907 detect_ht(c);
1908#endif
1909
1910 x86_init_rdrand(c);
1911 setup_pku(c);
1912 setup_cet(c);
1913
1914 /*
1915 * Clear/Set all flags overridden by options, need do it
1916 * before following smp all cpus cap AND.
1917 */
1918 apply_forced_caps(c);
1919
1920 /*
1921 * On SMP, boot_cpu_data holds the common feature set between
1922 * all CPUs; so make sure that we indicate which features are
1923 * common between the CPUs. The first time this routine gets
1924 * executed, c == &boot_cpu_data.
1925 */
1926 if (c != &boot_cpu_data) {
1927 /* AND the already accumulated flags with these */
1928 for (i = 0; i < NCAPINTS; i++)
1929 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1930
1931 /* OR, i.e. replicate the bug flags */
1932 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1933 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1934 }
1935
1936 ppin_init(c);
1937
1938 /* Init Machine Check Exception if available. */
1939 mcheck_cpu_init(c);
1940
1941 select_idle_routine(c);
1942
1943#ifdef CONFIG_NUMA
1944 numa_add_cpu(smp_processor_id());
1945#endif
1946}
1947
1948/*
1949 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1950 * on 32-bit kernels:
1951 */
1952#ifdef CONFIG_X86_32
1953void enable_sep_cpu(void)
1954{
1955 struct tss_struct *tss;
1956 int cpu;
1957
1958 if (!boot_cpu_has(X86_FEATURE_SEP))
1959 return;
1960
1961 cpu = get_cpu();
1962 tss = &per_cpu(cpu_tss_rw, cpu);
1963
1964 /*
1965 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1966 * see the big comment in struct x86_hw_tss's definition.
1967 */
1968
1969 tss->x86_tss.ss1 = __KERNEL_CS;
1970 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1971 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1972 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1973
1974 put_cpu();
1975}
1976#endif
1977
1978static __init void identify_boot_cpu(void)
1979{
1980 identify_cpu(&boot_cpu_data);
1981 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1982 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1983#ifdef CONFIG_X86_32
1984 enable_sep_cpu();
1985#endif
1986 cpu_detect_tlb(&boot_cpu_data);
1987 setup_cr_pinning();
1988
1989 tsx_init();
1990 tdx_init();
1991 lkgs_init();
1992}
1993
1994void identify_secondary_cpu(struct cpuinfo_x86 *c)
1995{
1996 BUG_ON(c == &boot_cpu_data);
1997 identify_cpu(c);
1998#ifdef CONFIG_X86_32
1999 enable_sep_cpu();
2000#endif
2001 validate_apic_and_package_id(c);
2002 x86_spec_ctrl_setup_ap();
2003 update_srbds_msr();
2004 if (boot_cpu_has_bug(X86_BUG_GDS))
2005 update_gds_msr();
2006
2007 tsx_ap_init();
2008}
2009
2010void print_cpu_info(struct cpuinfo_x86 *c)
2011{
2012 const char *vendor = NULL;
2013
2014 if (c->x86_vendor < X86_VENDOR_NUM) {
2015 vendor = this_cpu->c_vendor;
2016 } else {
2017 if (c->cpuid_level >= 0)
2018 vendor = c->x86_vendor_id;
2019 }
2020
2021 if (vendor && !strstr(c->x86_model_id, vendor))
2022 pr_cont("%s ", vendor);
2023
2024 if (c->x86_model_id[0])
2025 pr_cont("%s", c->x86_model_id);
2026 else
2027 pr_cont("%d86", c->x86);
2028
2029 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2030
2031 if (c->x86_stepping || c->cpuid_level >= 0)
2032 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2033 else
2034 pr_cont(")\n");
2035}
2036
2037/*
2038 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2039 * function prevents it from becoming an environment variable for init.
2040 */
2041static __init int setup_clearcpuid(char *arg)
2042{
2043 return 1;
2044}
2045__setup("clearcpuid=", setup_clearcpuid);
2046
2047DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2048 .current_task = &init_task,
2049 .preempt_count = INIT_PREEMPT_COUNT,
2050 .top_of_stack = TOP_OF_INIT_STACK,
2051};
2052EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2053
2054#ifdef CONFIG_X86_64
2055DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2056 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2057EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2058
2059static void wrmsrl_cstar(unsigned long val)
2060{
2061 /*
2062 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2063 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2064 * guest. Avoid the pointless write on all Intel CPUs.
2065 */
2066 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2067 wrmsrl(MSR_CSTAR, val);
2068}
2069
2070/* May not be marked __init: used by software suspend */
2071void syscall_init(void)
2072{
2073 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2074 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2075
2076 if (ia32_enabled()) {
2077 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2078 /*
2079 * This only works on Intel CPUs.
2080 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2081 * This does not cause SYSENTER to jump to the wrong location, because
2082 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2083 */
2084 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2085 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2086 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2087 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2088 } else {
2089 wrmsrl_cstar((unsigned long)entry_SYSCALL32_ignore);
2090 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2091 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2092 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2093 }
2094
2095 /*
2096 * Flags to clear on syscall; clear as much as possible
2097 * to minimize user space-kernel interference.
2098 */
2099 wrmsrl(MSR_SYSCALL_MASK,
2100 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2101 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2102 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2103 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2104 X86_EFLAGS_AC|X86_EFLAGS_ID);
2105}
2106
2107#else /* CONFIG_X86_64 */
2108
2109#ifdef CONFIG_STACKPROTECTOR
2110DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2111EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2112#endif
2113
2114#endif /* CONFIG_X86_64 */
2115
2116/*
2117 * Clear all 6 debug registers:
2118 */
2119static void clear_all_debug_regs(void)
2120{
2121 int i;
2122
2123 for (i = 0; i < 8; i++) {
2124 /* Ignore db4, db5 */
2125 if ((i == 4) || (i == 5))
2126 continue;
2127
2128 set_debugreg(0, i);
2129 }
2130}
2131
2132#ifdef CONFIG_KGDB
2133/*
2134 * Restore debug regs if using kgdbwait and you have a kernel debugger
2135 * connection established.
2136 */
2137static void dbg_restore_debug_regs(void)
2138{
2139 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2140 arch_kgdb_ops.correct_hw_break();
2141}
2142#else /* ! CONFIG_KGDB */
2143#define dbg_restore_debug_regs()
2144#endif /* ! CONFIG_KGDB */
2145
2146static inline void setup_getcpu(int cpu)
2147{
2148 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2149 struct desc_struct d = { };
2150
2151 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2152 wrmsr(MSR_TSC_AUX, cpudata, 0);
2153
2154 /* Store CPU and node number in limit. */
2155 d.limit0 = cpudata;
2156 d.limit1 = cpudata >> 16;
2157
2158 d.type = 5; /* RO data, expand down, accessed */
2159 d.dpl = 3; /* Visible to user code */
2160 d.s = 1; /* Not a system segment */
2161 d.p = 1; /* Present */
2162 d.d = 1; /* 32-bit */
2163
2164 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2165}
2166
2167#ifdef CONFIG_X86_64
2168static inline void tss_setup_ist(struct tss_struct *tss)
2169{
2170 /* Set up the per-CPU TSS IST stacks */
2171 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2172 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2173 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2174 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2175 /* Only mapped when SEV-ES is active */
2176 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2177}
2178#else /* CONFIG_X86_64 */
2179static inline void tss_setup_ist(struct tss_struct *tss) { }
2180#endif /* !CONFIG_X86_64 */
2181
2182static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2183{
2184 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2185
2186#ifdef CONFIG_X86_IOPL_IOPERM
2187 tss->io_bitmap.prev_max = 0;
2188 tss->io_bitmap.prev_sequence = 0;
2189 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2190 /*
2191 * Invalidate the extra array entry past the end of the all
2192 * permission bitmap as required by the hardware.
2193 */
2194 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2195#endif
2196}
2197
2198/*
2199 * Setup everything needed to handle exceptions from the IDT, including the IST
2200 * exceptions which use paranoid_entry().
2201 */
2202void cpu_init_exception_handling(void)
2203{
2204 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2205 int cpu = raw_smp_processor_id();
2206
2207 /* paranoid_entry() gets the CPU number from the GDT */
2208 setup_getcpu(cpu);
2209
2210 /* IST vectors need TSS to be set up. */
2211 tss_setup_ist(tss);
2212 tss_setup_io_bitmap(tss);
2213 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2214
2215 load_TR_desc();
2216
2217 /* GHCB needs to be setup to handle #VC. */
2218 setup_ghcb();
2219
2220 /* Finally load the IDT */
2221 load_current_idt();
2222}
2223
2224/*
2225 * cpu_init() initializes state that is per-CPU. Some data is already
2226 * initialized (naturally) in the bootstrap process, such as the GDT. We
2227 * reload it nevertheless, this function acts as a 'CPU state barrier',
2228 * nothing should get across.
2229 */
2230void cpu_init(void)
2231{
2232 struct task_struct *cur = current;
2233 int cpu = raw_smp_processor_id();
2234
2235#ifdef CONFIG_NUMA
2236 if (this_cpu_read(numa_node) == 0 &&
2237 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2238 set_numa_node(early_cpu_to_node(cpu));
2239#endif
2240 pr_debug("Initializing CPU#%d\n", cpu);
2241
2242 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2243 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2244 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2245
2246 if (IS_ENABLED(CONFIG_X86_64)) {
2247 loadsegment(fs, 0);
2248 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2249 syscall_init();
2250
2251 wrmsrl(MSR_FS_BASE, 0);
2252 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2253 barrier();
2254
2255 x2apic_setup();
2256 }
2257
2258 mmgrab(&init_mm);
2259 cur->active_mm = &init_mm;
2260 BUG_ON(cur->mm);
2261 initialize_tlbstate_and_flush();
2262 enter_lazy_tlb(&init_mm, cur);
2263
2264 /*
2265 * sp0 points to the entry trampoline stack regardless of what task
2266 * is running.
2267 */
2268 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2269
2270 load_mm_ldt(&init_mm);
2271
2272 clear_all_debug_regs();
2273 dbg_restore_debug_regs();
2274
2275 doublefault_init_cpu_tss();
2276
2277 if (is_uv_system())
2278 uv_cpu_init();
2279
2280 load_fixmap_gdt(cpu);
2281}
2282
2283#ifdef CONFIG_MICROCODE_LATE_LOADING
2284/**
2285 * store_cpu_caps() - Store a snapshot of CPU capabilities
2286 * @curr_info: Pointer where to store it
2287 *
2288 * Returns: None
2289 */
2290void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2291{
2292 /* Reload CPUID max function as it might've changed. */
2293 curr_info->cpuid_level = cpuid_eax(0);
2294
2295 /* Copy all capability leafs and pick up the synthetic ones. */
2296 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2297 sizeof(curr_info->x86_capability));
2298
2299 /* Get the hardware CPUID leafs */
2300 get_cpu_cap(curr_info);
2301}
2302
2303/**
2304 * microcode_check() - Check if any CPU capabilities changed after an update.
2305 * @prev_info: CPU capabilities stored before an update.
2306 *
2307 * The microcode loader calls this upon late microcode load to recheck features,
2308 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2309 *
2310 * Return: None
2311 */
2312void microcode_check(struct cpuinfo_x86 *prev_info)
2313{
2314 struct cpuinfo_x86 curr_info;
2315
2316 perf_check_microcode();
2317
2318 amd_check_microcode();
2319
2320 store_cpu_caps(&curr_info);
2321
2322 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2323 sizeof(prev_info->x86_capability)))
2324 return;
2325
2326 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2327 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2328}
2329#endif
2330
2331/*
2332 * Invoked from core CPU hotplug code after hotplug operations
2333 */
2334void arch_smt_update(void)
2335{
2336 /* Handle the speculative execution misfeatures */
2337 cpu_bugs_smt_update();
2338 /* Check whether IPI broadcasting can be enabled */
2339 apic_smt_update();
2340}
2341
2342void __init arch_cpu_finalize_init(void)
2343{
2344 identify_boot_cpu();
2345
2346 /*
2347 * identify_boot_cpu() initialized SMT support information, let the
2348 * core code know.
2349 */
2350 cpu_smt_set_num_threads(smp_num_siblings, smp_num_siblings);
2351
2352 if (!IS_ENABLED(CONFIG_SMP)) {
2353 pr_info("CPU: ");
2354 print_cpu_info(&boot_cpu_data);
2355 }
2356
2357 cpu_select_mitigations();
2358
2359 arch_smt_update();
2360
2361 if (IS_ENABLED(CONFIG_X86_32)) {
2362 /*
2363 * Check whether this is a real i386 which is not longer
2364 * supported and fixup the utsname.
2365 */
2366 if (boot_cpu_data.x86 < 4)
2367 panic("Kernel requires i486+ for 'invlpg' and other features");
2368
2369 init_utsname()->machine[1] =
2370 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2371 }
2372
2373 /*
2374 * Must be before alternatives because it might set or clear
2375 * feature bits.
2376 */
2377 fpu__init_system();
2378 fpu__init_cpu();
2379
2380 alternative_instructions();
2381
2382 if (IS_ENABLED(CONFIG_X86_64)) {
2383 /*
2384 * Make sure the first 2MB area is not mapped by huge pages
2385 * There are typically fixed size MTRRs in there and overlapping
2386 * MTRRs into large pages causes slow downs.
2387 *
2388 * Right now we don't do that with gbpages because there seems
2389 * very little benefit for that case.
2390 */
2391 if (!direct_gbpages)
2392 set_memory_4k((unsigned long)__va(0), 1);
2393 } else {
2394 fpu__init_check_bugs();
2395 }
2396
2397 /*
2398 * This needs to be called before any devices perform DMA
2399 * operations that might use the SWIOTLB bounce buffers. It will
2400 * mark the bounce buffers as decrypted so that their usage will
2401 * not cause "plain-text" data to be decrypted when accessed. It
2402 * must be called after late_time_init() so that Hyper-V x86/x64
2403 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2404 */
2405 mem_encrypt_init();
2406}
1// SPDX-License-Identifier: GPL-2.0-only
2/* cpu_feature_enabled() cannot be used this early */
3#define USE_EARLY_PGTABLE_L5
4
5#include <linux/memblock.h>
6#include <linux/linkage.h>
7#include <linux/bitops.h>
8#include <linux/kernel.h>
9#include <linux/export.h>
10#include <linux/percpu.h>
11#include <linux/string.h>
12#include <linux/ctype.h>
13#include <linux/delay.h>
14#include <linux/sched/mm.h>
15#include <linux/sched/clock.h>
16#include <linux/sched/task.h>
17#include <linux/sched/smt.h>
18#include <linux/init.h>
19#include <linux/kprobes.h>
20#include <linux/kgdb.h>
21#include <linux/smp.h>
22#include <linux/io.h>
23#include <linux/syscore_ops.h>
24#include <linux/pgtable.h>
25
26#include <asm/cmdline.h>
27#include <asm/stackprotector.h>
28#include <asm/perf_event.h>
29#include <asm/mmu_context.h>
30#include <asm/doublefault.h>
31#include <asm/archrandom.h>
32#include <asm/hypervisor.h>
33#include <asm/processor.h>
34#include <asm/tlbflush.h>
35#include <asm/debugreg.h>
36#include <asm/sections.h>
37#include <asm/vsyscall.h>
38#include <linux/topology.h>
39#include <linux/cpumask.h>
40#include <linux/atomic.h>
41#include <asm/proto.h>
42#include <asm/setup.h>
43#include <asm/apic.h>
44#include <asm/desc.h>
45#include <asm/fpu/internal.h>
46#include <asm/mtrr.h>
47#include <asm/hwcap2.h>
48#include <linux/numa.h>
49#include <asm/numa.h>
50#include <asm/asm.h>
51#include <asm/bugs.h>
52#include <asm/cpu.h>
53#include <asm/mce.h>
54#include <asm/msr.h>
55#include <asm/memtype.h>
56#include <asm/microcode.h>
57#include <asm/microcode_intel.h>
58#include <asm/intel-family.h>
59#include <asm/cpu_device_id.h>
60#include <asm/uv/uv.h>
61#include <asm/sigframe.h>
62
63#include "cpu.h"
64
65u32 elf_hwcap2 __read_mostly;
66
67/* all of these masks are initialized in setup_cpu_local_masks() */
68cpumask_var_t cpu_initialized_mask;
69cpumask_var_t cpu_callout_mask;
70cpumask_var_t cpu_callin_mask;
71
72/* representing cpus for which sibling maps can be computed */
73cpumask_var_t cpu_sibling_setup_mask;
74
75/* Number of siblings per CPU package */
76int smp_num_siblings = 1;
77EXPORT_SYMBOL(smp_num_siblings);
78
79/* Last level cache ID of each logical CPU */
80DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
82/* correctly size the local cpu masks */
83void __init setup_cpu_local_masks(void)
84{
85 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
86 alloc_bootmem_cpumask_var(&cpu_callin_mask);
87 alloc_bootmem_cpumask_var(&cpu_callout_mask);
88 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
89}
90
91static void default_init(struct cpuinfo_x86 *c)
92{
93#ifdef CONFIG_X86_64
94 cpu_detect_cache_sizes(c);
95#else
96 /* Not much we can do here... */
97 /* Check if at least it has cpuid */
98 if (c->cpuid_level == -1) {
99 /* No cpuid. It must be an ancient CPU */
100 if (c->x86 == 4)
101 strcpy(c->x86_model_id, "486");
102 else if (c->x86 == 3)
103 strcpy(c->x86_model_id, "386");
104 }
105#endif
106}
107
108static const struct cpu_dev default_cpu = {
109 .c_init = default_init,
110 .c_vendor = "Unknown",
111 .c_x86_vendor = X86_VENDOR_UNKNOWN,
112};
113
114static const struct cpu_dev *this_cpu = &default_cpu;
115
116DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
117#ifdef CONFIG_X86_64
118 /*
119 * We need valid kernel segments for data and code in long mode too
120 * IRET will check the segment types kkeil 2000/10/28
121 * Also sysret mandates a special GDT layout
122 *
123 * TLS descriptors are currently at a different place compared to i386.
124 * Hopefully nobody expects them at a fixed place (Wine?)
125 */
126 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
127 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
128 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
131 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
132#else
133 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
134 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
135 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
136 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
137 /*
138 * Segments used for calling PnP BIOS have byte granularity.
139 * They code segments and data segments have fixed 64k limits,
140 * the transfer segment sizes are set at run time.
141 */
142 /* 32-bit code */
143 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
144 /* 16-bit code */
145 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
146 /* 16-bit data */
147 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
148 /* 16-bit data */
149 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 /* 16-bit data */
151 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
152 /*
153 * The APM segments have byte granularity and their bases
154 * are set at run time. All have 64k limits.
155 */
156 /* 32-bit code */
157 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
158 /* 16-bit code */
159 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
160 /* data */
161 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
162
163 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
165#endif
166} };
167EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
168
169#ifdef CONFIG_X86_64
170static int __init x86_nopcid_setup(char *s)
171{
172 /* nopcid doesn't accept parameters */
173 if (s)
174 return -EINVAL;
175
176 /* do not emit a message if the feature is not present */
177 if (!boot_cpu_has(X86_FEATURE_PCID))
178 return 0;
179
180 setup_clear_cpu_cap(X86_FEATURE_PCID);
181 pr_info("nopcid: PCID feature disabled\n");
182 return 0;
183}
184early_param("nopcid", x86_nopcid_setup);
185#endif
186
187static int __init x86_noinvpcid_setup(char *s)
188{
189 /* noinvpcid doesn't accept parameters */
190 if (s)
191 return -EINVAL;
192
193 /* do not emit a message if the feature is not present */
194 if (!boot_cpu_has(X86_FEATURE_INVPCID))
195 return 0;
196
197 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
198 pr_info("noinvpcid: INVPCID feature disabled\n");
199 return 0;
200}
201early_param("noinvpcid", x86_noinvpcid_setup);
202
203#ifdef CONFIG_X86_32
204static int cachesize_override = -1;
205static int disable_x86_serial_nr = 1;
206
207static int __init cachesize_setup(char *str)
208{
209 get_option(&str, &cachesize_override);
210 return 1;
211}
212__setup("cachesize=", cachesize_setup);
213
214static int __init x86_sep_setup(char *s)
215{
216 setup_clear_cpu_cap(X86_FEATURE_SEP);
217 return 1;
218}
219__setup("nosep", x86_sep_setup);
220
221/* Standard macro to see if a specific flag is changeable */
222static inline int flag_is_changeable_p(u32 flag)
223{
224 u32 f1, f2;
225
226 /*
227 * Cyrix and IDT cpus allow disabling of CPUID
228 * so the code below may return different results
229 * when it is executed before and after enabling
230 * the CPUID. Add "volatile" to not allow gcc to
231 * optimize the subsequent calls to this function.
232 */
233 asm volatile ("pushfl \n\t"
234 "pushfl \n\t"
235 "popl %0 \n\t"
236 "movl %0, %1 \n\t"
237 "xorl %2, %0 \n\t"
238 "pushl %0 \n\t"
239 "popfl \n\t"
240 "pushfl \n\t"
241 "popl %0 \n\t"
242 "popfl \n\t"
243
244 : "=&r" (f1), "=&r" (f2)
245 : "ir" (flag));
246
247 return ((f1^f2) & flag) != 0;
248}
249
250/* Probe for the CPUID instruction */
251int have_cpuid_p(void)
252{
253 return flag_is_changeable_p(X86_EFLAGS_ID);
254}
255
256static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
257{
258 unsigned long lo, hi;
259
260 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
261 return;
262
263 /* Disable processor serial number: */
264
265 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266 lo |= 0x200000;
267 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268
269 pr_notice("CPU serial number disabled.\n");
270 clear_cpu_cap(c, X86_FEATURE_PN);
271
272 /* Disabling the serial number may affect the cpuid level */
273 c->cpuid_level = cpuid_eax(0);
274}
275
276static int __init x86_serial_nr_setup(char *s)
277{
278 disable_x86_serial_nr = 0;
279 return 1;
280}
281__setup("serialnumber", x86_serial_nr_setup);
282#else
283static inline int flag_is_changeable_p(u32 flag)
284{
285 return 1;
286}
287static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
288{
289}
290#endif
291
292static __init int setup_disable_smep(char *arg)
293{
294 setup_clear_cpu_cap(X86_FEATURE_SMEP);
295 return 1;
296}
297__setup("nosmep", setup_disable_smep);
298
299static __always_inline void setup_smep(struct cpuinfo_x86 *c)
300{
301 if (cpu_has(c, X86_FEATURE_SMEP))
302 cr4_set_bits(X86_CR4_SMEP);
303}
304
305static __init int setup_disable_smap(char *arg)
306{
307 setup_clear_cpu_cap(X86_FEATURE_SMAP);
308 return 1;
309}
310__setup("nosmap", setup_disable_smap);
311
312static __always_inline void setup_smap(struct cpuinfo_x86 *c)
313{
314 unsigned long eflags = native_save_fl();
315
316 /* This should have been cleared long ago */
317 BUG_ON(eflags & X86_EFLAGS_AC);
318
319 if (cpu_has(c, X86_FEATURE_SMAP)) {
320#ifdef CONFIG_X86_SMAP
321 cr4_set_bits(X86_CR4_SMAP);
322#else
323 clear_cpu_cap(c, X86_FEATURE_SMAP);
324 cr4_clear_bits(X86_CR4_SMAP);
325#endif
326 }
327}
328
329static __always_inline void setup_umip(struct cpuinfo_x86 *c)
330{
331 /* Check the boot processor, plus build option for UMIP. */
332 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
333 goto out;
334
335 /* Check the current processor's cpuid bits. */
336 if (!cpu_has(c, X86_FEATURE_UMIP))
337 goto out;
338
339 cr4_set_bits(X86_CR4_UMIP);
340
341 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
342
343 return;
344
345out:
346 /*
347 * Make sure UMIP is disabled in case it was enabled in a
348 * previous boot (e.g., via kexec).
349 */
350 cr4_clear_bits(X86_CR4_UMIP);
351}
352
353/* These bits should not change their value after CPU init is finished. */
354static const unsigned long cr4_pinned_mask =
355 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
356static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
357static unsigned long cr4_pinned_bits __ro_after_init;
358
359void native_write_cr0(unsigned long val)
360{
361 unsigned long bits_missing = 0;
362
363set_register:
364 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
365
366 if (static_branch_likely(&cr_pinning)) {
367 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
368 bits_missing = X86_CR0_WP;
369 val |= bits_missing;
370 goto set_register;
371 }
372 /* Warn after we've set the missing bits. */
373 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
374 }
375}
376EXPORT_SYMBOL(native_write_cr0);
377
378void native_write_cr4(unsigned long val)
379{
380 unsigned long bits_changed = 0;
381
382set_register:
383 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
384
385 if (static_branch_likely(&cr_pinning)) {
386 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
387 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
388 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
389 goto set_register;
390 }
391 /* Warn after we've corrected the changed bits. */
392 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
393 bits_changed);
394 }
395}
396#if IS_MODULE(CONFIG_LKDTM)
397EXPORT_SYMBOL_GPL(native_write_cr4);
398#endif
399
400void cr4_update_irqsoff(unsigned long set, unsigned long clear)
401{
402 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
403
404 lockdep_assert_irqs_disabled();
405
406 newval = (cr4 & ~clear) | set;
407 if (newval != cr4) {
408 this_cpu_write(cpu_tlbstate.cr4, newval);
409 __write_cr4(newval);
410 }
411}
412EXPORT_SYMBOL(cr4_update_irqsoff);
413
414/* Read the CR4 shadow. */
415unsigned long cr4_read_shadow(void)
416{
417 return this_cpu_read(cpu_tlbstate.cr4);
418}
419EXPORT_SYMBOL_GPL(cr4_read_shadow);
420
421void cr4_init(void)
422{
423 unsigned long cr4 = __read_cr4();
424
425 if (boot_cpu_has(X86_FEATURE_PCID))
426 cr4 |= X86_CR4_PCIDE;
427 if (static_branch_likely(&cr_pinning))
428 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
429
430 __write_cr4(cr4);
431
432 /* Initialize cr4 shadow for this CPU. */
433 this_cpu_write(cpu_tlbstate.cr4, cr4);
434}
435
436/*
437 * Once CPU feature detection is finished (and boot params have been
438 * parsed), record any of the sensitive CR bits that are set, and
439 * enable CR pinning.
440 */
441static void __init setup_cr_pinning(void)
442{
443 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
444 static_key_enable(&cr_pinning.key);
445}
446
447static __init int x86_nofsgsbase_setup(char *arg)
448{
449 /* Require an exact match without trailing characters. */
450 if (strlen(arg))
451 return 0;
452
453 /* Do not emit a message if the feature is not present. */
454 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
455 return 1;
456
457 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
458 pr_info("FSGSBASE disabled via kernel command line\n");
459 return 1;
460}
461__setup("nofsgsbase", x86_nofsgsbase_setup);
462
463/*
464 * Protection Keys are not available in 32-bit mode.
465 */
466static bool pku_disabled;
467
468static __always_inline void setup_pku(struct cpuinfo_x86 *c)
469{
470 if (c == &boot_cpu_data) {
471 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
472 return;
473 /*
474 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
475 * bit to be set. Enforce it.
476 */
477 setup_force_cpu_cap(X86_FEATURE_OSPKE);
478
479 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
480 return;
481 }
482
483 cr4_set_bits(X86_CR4_PKE);
484 /* Load the default PKRU value */
485 pkru_write_default();
486}
487
488#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
489static __init int setup_disable_pku(char *arg)
490{
491 /*
492 * Do not clear the X86_FEATURE_PKU bit. All of the
493 * runtime checks are against OSPKE so clearing the
494 * bit does nothing.
495 *
496 * This way, we will see "pku" in cpuinfo, but not
497 * "ospke", which is exactly what we want. It shows
498 * that the CPU has PKU, but the OS has not enabled it.
499 * This happens to be exactly how a system would look
500 * if we disabled the config option.
501 */
502 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
503 pku_disabled = true;
504 return 1;
505}
506__setup("nopku", setup_disable_pku);
507#endif /* CONFIG_X86_64 */
508
509/*
510 * Some CPU features depend on higher CPUID levels, which may not always
511 * be available due to CPUID level capping or broken virtualization
512 * software. Add those features to this table to auto-disable them.
513 */
514struct cpuid_dependent_feature {
515 u32 feature;
516 u32 level;
517};
518
519static const struct cpuid_dependent_feature
520cpuid_dependent_features[] = {
521 { X86_FEATURE_MWAIT, 0x00000005 },
522 { X86_FEATURE_DCA, 0x00000009 },
523 { X86_FEATURE_XSAVE, 0x0000000d },
524 { 0, 0 }
525};
526
527static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
528{
529 const struct cpuid_dependent_feature *df;
530
531 for (df = cpuid_dependent_features; df->feature; df++) {
532
533 if (!cpu_has(c, df->feature))
534 continue;
535 /*
536 * Note: cpuid_level is set to -1 if unavailable, but
537 * extended_extended_level is set to 0 if unavailable
538 * and the legitimate extended levels are all negative
539 * when signed; hence the weird messing around with
540 * signs here...
541 */
542 if (!((s32)df->level < 0 ?
543 (u32)df->level > (u32)c->extended_cpuid_level :
544 (s32)df->level > (s32)c->cpuid_level))
545 continue;
546
547 clear_cpu_cap(c, df->feature);
548 if (!warn)
549 continue;
550
551 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
552 x86_cap_flag(df->feature), df->level);
553 }
554}
555
556/*
557 * Naming convention should be: <Name> [(<Codename>)]
558 * This table only is used unless init_<vendor>() below doesn't set it;
559 * in particular, if CPUID levels 0x80000002..4 are supported, this
560 * isn't used
561 */
562
563/* Look up CPU names by table lookup. */
564static const char *table_lookup_model(struct cpuinfo_x86 *c)
565{
566#ifdef CONFIG_X86_32
567 const struct legacy_cpu_model_info *info;
568
569 if (c->x86_model >= 16)
570 return NULL; /* Range check */
571
572 if (!this_cpu)
573 return NULL;
574
575 info = this_cpu->legacy_models;
576
577 while (info->family) {
578 if (info->family == c->x86)
579 return info->model_names[c->x86_model];
580 info++;
581 }
582#endif
583 return NULL; /* Not found */
584}
585
586/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
587__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
588__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
589
590void load_percpu_segment(int cpu)
591{
592#ifdef CONFIG_X86_32
593 loadsegment(fs, __KERNEL_PERCPU);
594#else
595 __loadsegment_simple(gs, 0);
596 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
597#endif
598}
599
600#ifdef CONFIG_X86_32
601/* The 32-bit entry code needs to find cpu_entry_area. */
602DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
603#endif
604
605/* Load the original GDT from the per-cpu structure */
606void load_direct_gdt(int cpu)
607{
608 struct desc_ptr gdt_descr;
609
610 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
611 gdt_descr.size = GDT_SIZE - 1;
612 load_gdt(&gdt_descr);
613}
614EXPORT_SYMBOL_GPL(load_direct_gdt);
615
616/* Load a fixmap remapping of the per-cpu GDT */
617void load_fixmap_gdt(int cpu)
618{
619 struct desc_ptr gdt_descr;
620
621 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
622 gdt_descr.size = GDT_SIZE - 1;
623 load_gdt(&gdt_descr);
624}
625EXPORT_SYMBOL_GPL(load_fixmap_gdt);
626
627/*
628 * Current gdt points %fs at the "master" per-cpu area: after this,
629 * it's on the real one.
630 */
631void switch_to_new_gdt(int cpu)
632{
633 /* Load the original GDT */
634 load_direct_gdt(cpu);
635 /* Reload the per-cpu base */
636 load_percpu_segment(cpu);
637}
638
639static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
640
641static void get_model_name(struct cpuinfo_x86 *c)
642{
643 unsigned int *v;
644 char *p, *q, *s;
645
646 if (c->extended_cpuid_level < 0x80000004)
647 return;
648
649 v = (unsigned int *)c->x86_model_id;
650 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
651 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
652 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
653 c->x86_model_id[48] = 0;
654
655 /* Trim whitespace */
656 p = q = s = &c->x86_model_id[0];
657
658 while (*p == ' ')
659 p++;
660
661 while (*p) {
662 /* Note the last non-whitespace index */
663 if (!isspace(*p))
664 s = q;
665
666 *q++ = *p++;
667 }
668
669 *(s + 1) = '\0';
670}
671
672void detect_num_cpu_cores(struct cpuinfo_x86 *c)
673{
674 unsigned int eax, ebx, ecx, edx;
675
676 c->x86_max_cores = 1;
677 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
678 return;
679
680 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
681 if (eax & 0x1f)
682 c->x86_max_cores = (eax >> 26) + 1;
683}
684
685void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
686{
687 unsigned int n, dummy, ebx, ecx, edx, l2size;
688
689 n = c->extended_cpuid_level;
690
691 if (n >= 0x80000005) {
692 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
693 c->x86_cache_size = (ecx>>24) + (edx>>24);
694#ifdef CONFIG_X86_64
695 /* On K8 L1 TLB is inclusive, so don't count it */
696 c->x86_tlbsize = 0;
697#endif
698 }
699
700 if (n < 0x80000006) /* Some chips just has a large L1. */
701 return;
702
703 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
704 l2size = ecx >> 16;
705
706#ifdef CONFIG_X86_64
707 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
708#else
709 /* do processor-specific cache resizing */
710 if (this_cpu->legacy_cache_size)
711 l2size = this_cpu->legacy_cache_size(c, l2size);
712
713 /* Allow user to override all this if necessary. */
714 if (cachesize_override != -1)
715 l2size = cachesize_override;
716
717 if (l2size == 0)
718 return; /* Again, no L2 cache is possible */
719#endif
720
721 c->x86_cache_size = l2size;
722}
723
724u16 __read_mostly tlb_lli_4k[NR_INFO];
725u16 __read_mostly tlb_lli_2m[NR_INFO];
726u16 __read_mostly tlb_lli_4m[NR_INFO];
727u16 __read_mostly tlb_lld_4k[NR_INFO];
728u16 __read_mostly tlb_lld_2m[NR_INFO];
729u16 __read_mostly tlb_lld_4m[NR_INFO];
730u16 __read_mostly tlb_lld_1g[NR_INFO];
731
732static void cpu_detect_tlb(struct cpuinfo_x86 *c)
733{
734 if (this_cpu->c_detect_tlb)
735 this_cpu->c_detect_tlb(c);
736
737 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
738 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
739 tlb_lli_4m[ENTRIES]);
740
741 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
742 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
743 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
744}
745
746int detect_ht_early(struct cpuinfo_x86 *c)
747{
748#ifdef CONFIG_SMP
749 u32 eax, ebx, ecx, edx;
750
751 if (!cpu_has(c, X86_FEATURE_HT))
752 return -1;
753
754 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
755 return -1;
756
757 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
758 return -1;
759
760 cpuid(1, &eax, &ebx, &ecx, &edx);
761
762 smp_num_siblings = (ebx & 0xff0000) >> 16;
763 if (smp_num_siblings == 1)
764 pr_info_once("CPU0: Hyper-Threading is disabled\n");
765#endif
766 return 0;
767}
768
769void detect_ht(struct cpuinfo_x86 *c)
770{
771#ifdef CONFIG_SMP
772 int index_msb, core_bits;
773
774 if (detect_ht_early(c) < 0)
775 return;
776
777 index_msb = get_count_order(smp_num_siblings);
778 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
779
780 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
781
782 index_msb = get_count_order(smp_num_siblings);
783
784 core_bits = get_count_order(c->x86_max_cores);
785
786 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
787 ((1 << core_bits) - 1);
788#endif
789}
790
791static void get_cpu_vendor(struct cpuinfo_x86 *c)
792{
793 char *v = c->x86_vendor_id;
794 int i;
795
796 for (i = 0; i < X86_VENDOR_NUM; i++) {
797 if (!cpu_devs[i])
798 break;
799
800 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
801 (cpu_devs[i]->c_ident[1] &&
802 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
803
804 this_cpu = cpu_devs[i];
805 c->x86_vendor = this_cpu->c_x86_vendor;
806 return;
807 }
808 }
809
810 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
811 "CPU: Your system may be unstable.\n", v);
812
813 c->x86_vendor = X86_VENDOR_UNKNOWN;
814 this_cpu = &default_cpu;
815}
816
817void cpu_detect(struct cpuinfo_x86 *c)
818{
819 /* Get vendor name */
820 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
821 (unsigned int *)&c->x86_vendor_id[0],
822 (unsigned int *)&c->x86_vendor_id[8],
823 (unsigned int *)&c->x86_vendor_id[4]);
824
825 c->x86 = 4;
826 /* Intel-defined flags: level 0x00000001 */
827 if (c->cpuid_level >= 0x00000001) {
828 u32 junk, tfms, cap0, misc;
829
830 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
831 c->x86 = x86_family(tfms);
832 c->x86_model = x86_model(tfms);
833 c->x86_stepping = x86_stepping(tfms);
834
835 if (cap0 & (1<<19)) {
836 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
837 c->x86_cache_alignment = c->x86_clflush_size;
838 }
839 }
840}
841
842static void apply_forced_caps(struct cpuinfo_x86 *c)
843{
844 int i;
845
846 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
847 c->x86_capability[i] &= ~cpu_caps_cleared[i];
848 c->x86_capability[i] |= cpu_caps_set[i];
849 }
850}
851
852static void init_speculation_control(struct cpuinfo_x86 *c)
853{
854 /*
855 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
856 * and they also have a different bit for STIBP support. Also,
857 * a hypervisor might have set the individual AMD bits even on
858 * Intel CPUs, for finer-grained selection of what's available.
859 */
860 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
861 set_cpu_cap(c, X86_FEATURE_IBRS);
862 set_cpu_cap(c, X86_FEATURE_IBPB);
863 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
864 }
865
866 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
867 set_cpu_cap(c, X86_FEATURE_STIBP);
868
869 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
870 cpu_has(c, X86_FEATURE_VIRT_SSBD))
871 set_cpu_cap(c, X86_FEATURE_SSBD);
872
873 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
874 set_cpu_cap(c, X86_FEATURE_IBRS);
875 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
876 }
877
878 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
879 set_cpu_cap(c, X86_FEATURE_IBPB);
880
881 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
882 set_cpu_cap(c, X86_FEATURE_STIBP);
883 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
884 }
885
886 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
887 set_cpu_cap(c, X86_FEATURE_SSBD);
888 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
889 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
890 }
891}
892
893void get_cpu_cap(struct cpuinfo_x86 *c)
894{
895 u32 eax, ebx, ecx, edx;
896
897 /* Intel-defined flags: level 0x00000001 */
898 if (c->cpuid_level >= 0x00000001) {
899 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
900
901 c->x86_capability[CPUID_1_ECX] = ecx;
902 c->x86_capability[CPUID_1_EDX] = edx;
903 }
904
905 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
906 if (c->cpuid_level >= 0x00000006)
907 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
908
909 /* Additional Intel-defined flags: level 0x00000007 */
910 if (c->cpuid_level >= 0x00000007) {
911 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
912 c->x86_capability[CPUID_7_0_EBX] = ebx;
913 c->x86_capability[CPUID_7_ECX] = ecx;
914 c->x86_capability[CPUID_7_EDX] = edx;
915
916 /* Check valid sub-leaf index before accessing it */
917 if (eax >= 1) {
918 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
919 c->x86_capability[CPUID_7_1_EAX] = eax;
920 }
921 }
922
923 /* Extended state features: level 0x0000000d */
924 if (c->cpuid_level >= 0x0000000d) {
925 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
926
927 c->x86_capability[CPUID_D_1_EAX] = eax;
928 }
929
930 /* AMD-defined flags: level 0x80000001 */
931 eax = cpuid_eax(0x80000000);
932 c->extended_cpuid_level = eax;
933
934 if ((eax & 0xffff0000) == 0x80000000) {
935 if (eax >= 0x80000001) {
936 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
937
938 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
939 c->x86_capability[CPUID_8000_0001_EDX] = edx;
940 }
941 }
942
943 if (c->extended_cpuid_level >= 0x80000007) {
944 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
945
946 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
947 c->x86_power = edx;
948 }
949
950 if (c->extended_cpuid_level >= 0x80000008) {
951 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
952 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
953 }
954
955 if (c->extended_cpuid_level >= 0x8000000a)
956 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
957
958 if (c->extended_cpuid_level >= 0x8000001f)
959 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
960
961 init_scattered_cpuid_features(c);
962 init_speculation_control(c);
963
964 /*
965 * Clear/Set all flags overridden by options, after probe.
966 * This needs to happen each time we re-probe, which may happen
967 * several times during CPU initialization.
968 */
969 apply_forced_caps(c);
970}
971
972void get_cpu_address_sizes(struct cpuinfo_x86 *c)
973{
974 u32 eax, ebx, ecx, edx;
975
976 if (c->extended_cpuid_level >= 0x80000008) {
977 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
978
979 c->x86_virt_bits = (eax >> 8) & 0xff;
980 c->x86_phys_bits = eax & 0xff;
981 }
982#ifdef CONFIG_X86_32
983 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
984 c->x86_phys_bits = 36;
985#endif
986 c->x86_cache_bits = c->x86_phys_bits;
987}
988
989static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
990{
991#ifdef CONFIG_X86_32
992 int i;
993
994 /*
995 * First of all, decide if this is a 486 or higher
996 * It's a 486 if we can modify the AC flag
997 */
998 if (flag_is_changeable_p(X86_EFLAGS_AC))
999 c->x86 = 4;
1000 else
1001 c->x86 = 3;
1002
1003 for (i = 0; i < X86_VENDOR_NUM; i++)
1004 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1005 c->x86_vendor_id[0] = 0;
1006 cpu_devs[i]->c_identify(c);
1007 if (c->x86_vendor_id[0]) {
1008 get_cpu_vendor(c);
1009 break;
1010 }
1011 }
1012#endif
1013}
1014
1015#define NO_SPECULATION BIT(0)
1016#define NO_MELTDOWN BIT(1)
1017#define NO_SSB BIT(2)
1018#define NO_L1TF BIT(3)
1019#define NO_MDS BIT(4)
1020#define MSBDS_ONLY BIT(5)
1021#define NO_SWAPGS BIT(6)
1022#define NO_ITLB_MULTIHIT BIT(7)
1023#define NO_SPECTRE_V2 BIT(8)
1024
1025#define VULNWL(vendor, family, model, whitelist) \
1026 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1027
1028#define VULNWL_INTEL(model, whitelist) \
1029 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1030
1031#define VULNWL_AMD(family, whitelist) \
1032 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1033
1034#define VULNWL_HYGON(family, whitelist) \
1035 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1036
1037static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1038 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1039 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1040 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1041 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1042
1043 /* Intel Family 6 */
1044 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1045 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1046 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049
1050 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1051 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056
1057 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1058
1059 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061
1062 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065
1066 /*
1067 * Technically, swapgs isn't serializing on AMD (despite it previously
1068 * being documented as such in the APM). But according to AMD, %gs is
1069 * updated non-speculatively, and the issuing of %gs-relative memory
1070 * operands will be blocked until the %gs update completes, which is
1071 * good enough for our purposes.
1072 */
1073
1074 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1075
1076 /* AMD Family 0xf - 0x12 */
1077 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1078 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081
1082 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1083 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085
1086 /* Zhaoxin Family 7 */
1087 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1088 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1089 {}
1090};
1091
1092#define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1093 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1094 INTEL_FAM6_##model, steppings, \
1095 X86_FEATURE_ANY, issues)
1096
1097#define SRBDS BIT(0)
1098
1099static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1100 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1101 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1102 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1103 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1104 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1105 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1106 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
1107 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
1108 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS),
1109 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS),
1110 {}
1111};
1112
1113static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1114{
1115 const struct x86_cpu_id *m = x86_match_cpu(table);
1116
1117 return m && !!(m->driver_data & which);
1118}
1119
1120u64 x86_read_arch_cap_msr(void)
1121{
1122 u64 ia32_cap = 0;
1123
1124 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1125 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1126
1127 return ia32_cap;
1128}
1129
1130static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1131{
1132 u64 ia32_cap = x86_read_arch_cap_msr();
1133
1134 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1135 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1136 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1137 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1138
1139 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1140 return;
1141
1142 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1143
1144 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1145 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1146
1147 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1148 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1149 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1150 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1151
1152 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1153 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1154
1155 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1156 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1157 setup_force_cpu_bug(X86_BUG_MDS);
1158 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1159 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1160 }
1161
1162 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1163 setup_force_cpu_bug(X86_BUG_SWAPGS);
1164
1165 /*
1166 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1167 * - TSX is supported or
1168 * - TSX_CTRL is present
1169 *
1170 * TSX_CTRL check is needed for cases when TSX could be disabled before
1171 * the kernel boot e.g. kexec.
1172 * TSX_CTRL check alone is not sufficient for cases when the microcode
1173 * update is not present or running as guest that don't get TSX_CTRL.
1174 */
1175 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1176 (cpu_has(c, X86_FEATURE_RTM) ||
1177 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1178 setup_force_cpu_bug(X86_BUG_TAA);
1179
1180 /*
1181 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1182 * in the vulnerability blacklist.
1183 */
1184 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1185 cpu_has(c, X86_FEATURE_RDSEED)) &&
1186 cpu_matches(cpu_vuln_blacklist, SRBDS))
1187 setup_force_cpu_bug(X86_BUG_SRBDS);
1188
1189 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1190 return;
1191
1192 /* Rogue Data Cache Load? No! */
1193 if (ia32_cap & ARCH_CAP_RDCL_NO)
1194 return;
1195
1196 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1197
1198 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1199 return;
1200
1201 setup_force_cpu_bug(X86_BUG_L1TF);
1202}
1203
1204/*
1205 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1206 * unfortunately, that's not true in practice because of early VIA
1207 * chips and (more importantly) broken virtualizers that are not easy
1208 * to detect. In the latter case it doesn't even *fail* reliably, so
1209 * probing for it doesn't even work. Disable it completely on 32-bit
1210 * unless we can find a reliable way to detect all the broken cases.
1211 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1212 */
1213static void detect_nopl(void)
1214{
1215#ifdef CONFIG_X86_32
1216 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1217#else
1218 setup_force_cpu_cap(X86_FEATURE_NOPL);
1219#endif
1220}
1221
1222/*
1223 * We parse cpu parameters early because fpu__init_system() is executed
1224 * before parse_early_param().
1225 */
1226static void __init cpu_parse_early_param(void)
1227{
1228 char arg[128];
1229 char *argptr = arg;
1230 int arglen, res, bit;
1231
1232#ifdef CONFIG_X86_32
1233 if (cmdline_find_option_bool(boot_command_line, "no387"))
1234#ifdef CONFIG_MATH_EMULATION
1235 setup_clear_cpu_cap(X86_FEATURE_FPU);
1236#else
1237 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1238#endif
1239
1240 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1241 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1242#endif
1243
1244 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1245 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1246
1247 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1248 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1249
1250 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1251 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1252
1253 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1254 if (arglen <= 0)
1255 return;
1256
1257 pr_info("Clearing CPUID bits:");
1258 do {
1259 res = get_option(&argptr, &bit);
1260 if (res == 0 || res == 3)
1261 break;
1262
1263 /* If the argument was too long, the last bit may be cut off */
1264 if (res == 1 && arglen >= sizeof(arg))
1265 break;
1266
1267 if (bit >= 0 && bit < NCAPINTS * 32) {
1268 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1269 setup_clear_cpu_cap(bit);
1270 }
1271 } while (res == 2);
1272 pr_cont("\n");
1273}
1274
1275/*
1276 * Do minimum CPU detection early.
1277 * Fields really needed: vendor, cpuid_level, family, model, mask,
1278 * cache alignment.
1279 * The others are not touched to avoid unwanted side effects.
1280 *
1281 * WARNING: this function is only called on the boot CPU. Don't add code
1282 * here that is supposed to run on all CPUs.
1283 */
1284static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1285{
1286#ifdef CONFIG_X86_64
1287 c->x86_clflush_size = 64;
1288 c->x86_phys_bits = 36;
1289 c->x86_virt_bits = 48;
1290#else
1291 c->x86_clflush_size = 32;
1292 c->x86_phys_bits = 32;
1293 c->x86_virt_bits = 32;
1294#endif
1295 c->x86_cache_alignment = c->x86_clflush_size;
1296
1297 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1298 c->extended_cpuid_level = 0;
1299
1300 if (!have_cpuid_p())
1301 identify_cpu_without_cpuid(c);
1302
1303 /* cyrix could have cpuid enabled via c_identify()*/
1304 if (have_cpuid_p()) {
1305 cpu_detect(c);
1306 get_cpu_vendor(c);
1307 get_cpu_cap(c);
1308 get_cpu_address_sizes(c);
1309 setup_force_cpu_cap(X86_FEATURE_CPUID);
1310 cpu_parse_early_param();
1311
1312 if (this_cpu->c_early_init)
1313 this_cpu->c_early_init(c);
1314
1315 c->cpu_index = 0;
1316 filter_cpuid_features(c, false);
1317
1318 if (this_cpu->c_bsp_init)
1319 this_cpu->c_bsp_init(c);
1320 } else {
1321 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1322 }
1323
1324 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1325
1326 cpu_set_bug_bits(c);
1327
1328 sld_setup(c);
1329
1330 fpu__init_system(c);
1331
1332 init_sigframe_size();
1333
1334#ifdef CONFIG_X86_32
1335 /*
1336 * Regardless of whether PCID is enumerated, the SDM says
1337 * that it can't be enabled in 32-bit mode.
1338 */
1339 setup_clear_cpu_cap(X86_FEATURE_PCID);
1340#endif
1341
1342 /*
1343 * Later in the boot process pgtable_l5_enabled() relies on
1344 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1345 * enabled by this point we need to clear the feature bit to avoid
1346 * false-positives at the later stage.
1347 *
1348 * pgtable_l5_enabled() can be false here for several reasons:
1349 * - 5-level paging is disabled compile-time;
1350 * - it's 32-bit kernel;
1351 * - machine doesn't support 5-level paging;
1352 * - user specified 'no5lvl' in kernel command line.
1353 */
1354 if (!pgtable_l5_enabled())
1355 setup_clear_cpu_cap(X86_FEATURE_LA57);
1356
1357 detect_nopl();
1358}
1359
1360void __init early_cpu_init(void)
1361{
1362 const struct cpu_dev *const *cdev;
1363 int count = 0;
1364
1365#ifdef CONFIG_PROCESSOR_SELECT
1366 pr_info("KERNEL supported cpus:\n");
1367#endif
1368
1369 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1370 const struct cpu_dev *cpudev = *cdev;
1371
1372 if (count >= X86_VENDOR_NUM)
1373 break;
1374 cpu_devs[count] = cpudev;
1375 count++;
1376
1377#ifdef CONFIG_PROCESSOR_SELECT
1378 {
1379 unsigned int j;
1380
1381 for (j = 0; j < 2; j++) {
1382 if (!cpudev->c_ident[j])
1383 continue;
1384 pr_info(" %s %s\n", cpudev->c_vendor,
1385 cpudev->c_ident[j]);
1386 }
1387 }
1388#endif
1389 }
1390 early_identify_cpu(&boot_cpu_data);
1391}
1392
1393static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1394{
1395#ifdef CONFIG_X86_64
1396 /*
1397 * Empirically, writing zero to a segment selector on AMD does
1398 * not clear the base, whereas writing zero to a segment
1399 * selector on Intel does clear the base. Intel's behavior
1400 * allows slightly faster context switches in the common case
1401 * where GS is unused by the prev and next threads.
1402 *
1403 * Since neither vendor documents this anywhere that I can see,
1404 * detect it directly instead of hard-coding the choice by
1405 * vendor.
1406 *
1407 * I've designated AMD's behavior as the "bug" because it's
1408 * counterintuitive and less friendly.
1409 */
1410
1411 unsigned long old_base, tmp;
1412 rdmsrl(MSR_FS_BASE, old_base);
1413 wrmsrl(MSR_FS_BASE, 1);
1414 loadsegment(fs, 0);
1415 rdmsrl(MSR_FS_BASE, tmp);
1416 if (tmp != 0)
1417 set_cpu_bug(c, X86_BUG_NULL_SEG);
1418 wrmsrl(MSR_FS_BASE, old_base);
1419#endif
1420}
1421
1422static void generic_identify(struct cpuinfo_x86 *c)
1423{
1424 c->extended_cpuid_level = 0;
1425
1426 if (!have_cpuid_p())
1427 identify_cpu_without_cpuid(c);
1428
1429 /* cyrix could have cpuid enabled via c_identify()*/
1430 if (!have_cpuid_p())
1431 return;
1432
1433 cpu_detect(c);
1434
1435 get_cpu_vendor(c);
1436
1437 get_cpu_cap(c);
1438
1439 get_cpu_address_sizes(c);
1440
1441 if (c->cpuid_level >= 0x00000001) {
1442 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1443#ifdef CONFIG_X86_32
1444# ifdef CONFIG_SMP
1445 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1446# else
1447 c->apicid = c->initial_apicid;
1448# endif
1449#endif
1450 c->phys_proc_id = c->initial_apicid;
1451 }
1452
1453 get_model_name(c); /* Default name */
1454
1455 detect_null_seg_behavior(c);
1456
1457 /*
1458 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1459 * systems that run Linux at CPL > 0 may or may not have the
1460 * issue, but, even if they have the issue, there's absolutely
1461 * nothing we can do about it because we can't use the real IRET
1462 * instruction.
1463 *
1464 * NB: For the time being, only 32-bit kernels support
1465 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1466 * whether to apply espfix using paravirt hooks. If any
1467 * non-paravirt system ever shows up that does *not* have the
1468 * ESPFIX issue, we can change this.
1469 */
1470#ifdef CONFIG_X86_32
1471 set_cpu_bug(c, X86_BUG_ESPFIX);
1472#endif
1473}
1474
1475/*
1476 * Validate that ACPI/mptables have the same information about the
1477 * effective APIC id and update the package map.
1478 */
1479static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1480{
1481#ifdef CONFIG_SMP
1482 unsigned int apicid, cpu = smp_processor_id();
1483
1484 apicid = apic->cpu_present_to_apicid(cpu);
1485
1486 if (apicid != c->apicid) {
1487 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1488 cpu, apicid, c->initial_apicid);
1489 }
1490 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1491 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1492#else
1493 c->logical_proc_id = 0;
1494#endif
1495}
1496
1497/*
1498 * This does the hard work of actually picking apart the CPU stuff...
1499 */
1500static void identify_cpu(struct cpuinfo_x86 *c)
1501{
1502 int i;
1503
1504 c->loops_per_jiffy = loops_per_jiffy;
1505 c->x86_cache_size = 0;
1506 c->x86_vendor = X86_VENDOR_UNKNOWN;
1507 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1508 c->x86_vendor_id[0] = '\0'; /* Unset */
1509 c->x86_model_id[0] = '\0'; /* Unset */
1510 c->x86_max_cores = 1;
1511 c->x86_coreid_bits = 0;
1512 c->cu_id = 0xff;
1513#ifdef CONFIG_X86_64
1514 c->x86_clflush_size = 64;
1515 c->x86_phys_bits = 36;
1516 c->x86_virt_bits = 48;
1517#else
1518 c->cpuid_level = -1; /* CPUID not detected */
1519 c->x86_clflush_size = 32;
1520 c->x86_phys_bits = 32;
1521 c->x86_virt_bits = 32;
1522#endif
1523 c->x86_cache_alignment = c->x86_clflush_size;
1524 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1525#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1526 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1527#endif
1528
1529 generic_identify(c);
1530
1531 if (this_cpu->c_identify)
1532 this_cpu->c_identify(c);
1533
1534 /* Clear/Set all flags overridden by options, after probe */
1535 apply_forced_caps(c);
1536
1537#ifdef CONFIG_X86_64
1538 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1539#endif
1540
1541 /*
1542 * Vendor-specific initialization. In this section we
1543 * canonicalize the feature flags, meaning if there are
1544 * features a certain CPU supports which CPUID doesn't
1545 * tell us, CPUID claiming incorrect flags, or other bugs,
1546 * we handle them here.
1547 *
1548 * At the end of this section, c->x86_capability better
1549 * indicate the features this CPU genuinely supports!
1550 */
1551 if (this_cpu->c_init)
1552 this_cpu->c_init(c);
1553
1554 /* Disable the PN if appropriate */
1555 squash_the_stupid_serial_number(c);
1556
1557 /* Set up SMEP/SMAP/UMIP */
1558 setup_smep(c);
1559 setup_smap(c);
1560 setup_umip(c);
1561
1562 /* Enable FSGSBASE instructions if available. */
1563 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1564 cr4_set_bits(X86_CR4_FSGSBASE);
1565 elf_hwcap2 |= HWCAP2_FSGSBASE;
1566 }
1567
1568 /*
1569 * The vendor-specific functions might have changed features.
1570 * Now we do "generic changes."
1571 */
1572
1573 /* Filter out anything that depends on CPUID levels we don't have */
1574 filter_cpuid_features(c, true);
1575
1576 /* If the model name is still unset, do table lookup. */
1577 if (!c->x86_model_id[0]) {
1578 const char *p;
1579 p = table_lookup_model(c);
1580 if (p)
1581 strcpy(c->x86_model_id, p);
1582 else
1583 /* Last resort... */
1584 sprintf(c->x86_model_id, "%02x/%02x",
1585 c->x86, c->x86_model);
1586 }
1587
1588#ifdef CONFIG_X86_64
1589 detect_ht(c);
1590#endif
1591
1592 x86_init_rdrand(c);
1593 setup_pku(c);
1594
1595 /*
1596 * Clear/Set all flags overridden by options, need do it
1597 * before following smp all cpus cap AND.
1598 */
1599 apply_forced_caps(c);
1600
1601 /*
1602 * On SMP, boot_cpu_data holds the common feature set between
1603 * all CPUs; so make sure that we indicate which features are
1604 * common between the CPUs. The first time this routine gets
1605 * executed, c == &boot_cpu_data.
1606 */
1607 if (c != &boot_cpu_data) {
1608 /* AND the already accumulated flags with these */
1609 for (i = 0; i < NCAPINTS; i++)
1610 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1611
1612 /* OR, i.e. replicate the bug flags */
1613 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1614 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1615 }
1616
1617 /* Init Machine Check Exception if available. */
1618 mcheck_cpu_init(c);
1619
1620 select_idle_routine(c);
1621
1622#ifdef CONFIG_NUMA
1623 numa_add_cpu(smp_processor_id());
1624#endif
1625}
1626
1627/*
1628 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1629 * on 32-bit kernels:
1630 */
1631#ifdef CONFIG_X86_32
1632void enable_sep_cpu(void)
1633{
1634 struct tss_struct *tss;
1635 int cpu;
1636
1637 if (!boot_cpu_has(X86_FEATURE_SEP))
1638 return;
1639
1640 cpu = get_cpu();
1641 tss = &per_cpu(cpu_tss_rw, cpu);
1642
1643 /*
1644 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1645 * see the big comment in struct x86_hw_tss's definition.
1646 */
1647
1648 tss->x86_tss.ss1 = __KERNEL_CS;
1649 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1650 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1651 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1652
1653 put_cpu();
1654}
1655#endif
1656
1657void __init identify_boot_cpu(void)
1658{
1659 identify_cpu(&boot_cpu_data);
1660#ifdef CONFIG_X86_32
1661 sysenter_setup();
1662 enable_sep_cpu();
1663#endif
1664 cpu_detect_tlb(&boot_cpu_data);
1665 setup_cr_pinning();
1666
1667 tsx_init();
1668}
1669
1670void identify_secondary_cpu(struct cpuinfo_x86 *c)
1671{
1672 BUG_ON(c == &boot_cpu_data);
1673 identify_cpu(c);
1674#ifdef CONFIG_X86_32
1675 enable_sep_cpu();
1676#endif
1677 mtrr_ap_init();
1678 validate_apic_and_package_id(c);
1679 x86_spec_ctrl_setup_ap();
1680 update_srbds_msr();
1681}
1682
1683static __init int setup_noclflush(char *arg)
1684{
1685 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1686 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1687 return 1;
1688}
1689__setup("noclflush", setup_noclflush);
1690
1691void print_cpu_info(struct cpuinfo_x86 *c)
1692{
1693 const char *vendor = NULL;
1694
1695 if (c->x86_vendor < X86_VENDOR_NUM) {
1696 vendor = this_cpu->c_vendor;
1697 } else {
1698 if (c->cpuid_level >= 0)
1699 vendor = c->x86_vendor_id;
1700 }
1701
1702 if (vendor && !strstr(c->x86_model_id, vendor))
1703 pr_cont("%s ", vendor);
1704
1705 if (c->x86_model_id[0])
1706 pr_cont("%s", c->x86_model_id);
1707 else
1708 pr_cont("%d86", c->x86);
1709
1710 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1711
1712 if (c->x86_stepping || c->cpuid_level >= 0)
1713 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1714 else
1715 pr_cont(")\n");
1716}
1717
1718/*
1719 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
1720 * function prevents it from becoming an environment variable for init.
1721 */
1722static __init int setup_clearcpuid(char *arg)
1723{
1724 return 1;
1725}
1726__setup("clearcpuid=", setup_clearcpuid);
1727
1728#ifdef CONFIG_X86_64
1729DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1730 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1731EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1732
1733/*
1734 * The following percpu variables are hot. Align current_task to
1735 * cacheline size such that they fall in the same cacheline.
1736 */
1737DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1738 &init_task;
1739EXPORT_PER_CPU_SYMBOL(current_task);
1740
1741DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1742DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1743
1744DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1745EXPORT_PER_CPU_SYMBOL(__preempt_count);
1746
1747DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1748
1749/* May not be marked __init: used by software suspend */
1750void syscall_init(void)
1751{
1752 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1753 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1754
1755#ifdef CONFIG_IA32_EMULATION
1756 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1757 /*
1758 * This only works on Intel CPUs.
1759 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1760 * This does not cause SYSENTER to jump to the wrong location, because
1761 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1762 */
1763 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1764 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1765 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1766 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1767#else
1768 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1769 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1770 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1771 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1772#endif
1773
1774 /*
1775 * Flags to clear on syscall; clear as much as possible
1776 * to minimize user space-kernel interference.
1777 */
1778 wrmsrl(MSR_SYSCALL_MASK,
1779 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1780 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1781 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1782 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1783 X86_EFLAGS_AC|X86_EFLAGS_ID);
1784}
1785
1786#else /* CONFIG_X86_64 */
1787
1788DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1789EXPORT_PER_CPU_SYMBOL(current_task);
1790DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1791EXPORT_PER_CPU_SYMBOL(__preempt_count);
1792
1793/*
1794 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1795 * the top of the kernel stack. Use an extra percpu variable to track the
1796 * top of the kernel stack directly.
1797 */
1798DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1799 (unsigned long)&init_thread_union + THREAD_SIZE;
1800EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1801
1802#ifdef CONFIG_STACKPROTECTOR
1803DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1804EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1805#endif
1806
1807#endif /* CONFIG_X86_64 */
1808
1809/*
1810 * Clear all 6 debug registers:
1811 */
1812static void clear_all_debug_regs(void)
1813{
1814 int i;
1815
1816 for (i = 0; i < 8; i++) {
1817 /* Ignore db4, db5 */
1818 if ((i == 4) || (i == 5))
1819 continue;
1820
1821 set_debugreg(0, i);
1822 }
1823}
1824
1825#ifdef CONFIG_KGDB
1826/*
1827 * Restore debug regs if using kgdbwait and you have a kernel debugger
1828 * connection established.
1829 */
1830static void dbg_restore_debug_regs(void)
1831{
1832 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1833 arch_kgdb_ops.correct_hw_break();
1834}
1835#else /* ! CONFIG_KGDB */
1836#define dbg_restore_debug_regs()
1837#endif /* ! CONFIG_KGDB */
1838
1839static void wait_for_master_cpu(int cpu)
1840{
1841#ifdef CONFIG_SMP
1842 /*
1843 * wait for ACK from master CPU before continuing
1844 * with AP initialization
1845 */
1846 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1847 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1848 cpu_relax();
1849#endif
1850}
1851
1852#ifdef CONFIG_X86_64
1853static inline void setup_getcpu(int cpu)
1854{
1855 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1856 struct desc_struct d = { };
1857
1858 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1859 wrmsr(MSR_TSC_AUX, cpudata, 0);
1860
1861 /* Store CPU and node number in limit. */
1862 d.limit0 = cpudata;
1863 d.limit1 = cpudata >> 16;
1864
1865 d.type = 5; /* RO data, expand down, accessed */
1866 d.dpl = 3; /* Visible to user code */
1867 d.s = 1; /* Not a system segment */
1868 d.p = 1; /* Present */
1869 d.d = 1; /* 32-bit */
1870
1871 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1872}
1873
1874static inline void ucode_cpu_init(int cpu)
1875{
1876 if (cpu)
1877 load_ucode_ap();
1878}
1879
1880static inline void tss_setup_ist(struct tss_struct *tss)
1881{
1882 /* Set up the per-CPU TSS IST stacks */
1883 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1884 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1885 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1886 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1887 /* Only mapped when SEV-ES is active */
1888 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1889}
1890
1891#else /* CONFIG_X86_64 */
1892
1893static inline void setup_getcpu(int cpu) { }
1894
1895static inline void ucode_cpu_init(int cpu)
1896{
1897 show_ucode_info_early();
1898}
1899
1900static inline void tss_setup_ist(struct tss_struct *tss) { }
1901
1902#endif /* !CONFIG_X86_64 */
1903
1904static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1905{
1906 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1907
1908#ifdef CONFIG_X86_IOPL_IOPERM
1909 tss->io_bitmap.prev_max = 0;
1910 tss->io_bitmap.prev_sequence = 0;
1911 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1912 /*
1913 * Invalidate the extra array entry past the end of the all
1914 * permission bitmap as required by the hardware.
1915 */
1916 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1917#endif
1918}
1919
1920/*
1921 * Setup everything needed to handle exceptions from the IDT, including the IST
1922 * exceptions which use paranoid_entry().
1923 */
1924void cpu_init_exception_handling(void)
1925{
1926 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1927 int cpu = raw_smp_processor_id();
1928
1929 /* paranoid_entry() gets the CPU number from the GDT */
1930 setup_getcpu(cpu);
1931
1932 /* IST vectors need TSS to be set up. */
1933 tss_setup_ist(tss);
1934 tss_setup_io_bitmap(tss);
1935 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1936
1937 load_TR_desc();
1938
1939 /* Finally load the IDT */
1940 load_current_idt();
1941}
1942
1943/*
1944 * cpu_init() initializes state that is per-CPU. Some data is already
1945 * initialized (naturally) in the bootstrap process, such as the GDT. We
1946 * reload it nevertheless, this function acts as a 'CPU state barrier',
1947 * nothing should get across.
1948 */
1949void cpu_init(void)
1950{
1951 struct task_struct *cur = current;
1952 int cpu = raw_smp_processor_id();
1953
1954 wait_for_master_cpu(cpu);
1955
1956 ucode_cpu_init(cpu);
1957
1958#ifdef CONFIG_NUMA
1959 if (this_cpu_read(numa_node) == 0 &&
1960 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1961 set_numa_node(early_cpu_to_node(cpu));
1962#endif
1963 pr_debug("Initializing CPU#%d\n", cpu);
1964
1965 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1966 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1967 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1968
1969 /*
1970 * Initialize the per-CPU GDT with the boot GDT,
1971 * and set up the GDT descriptor:
1972 */
1973 switch_to_new_gdt(cpu);
1974
1975 if (IS_ENABLED(CONFIG_X86_64)) {
1976 loadsegment(fs, 0);
1977 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1978 syscall_init();
1979
1980 wrmsrl(MSR_FS_BASE, 0);
1981 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1982 barrier();
1983
1984 x2apic_setup();
1985 }
1986
1987 mmgrab(&init_mm);
1988 cur->active_mm = &init_mm;
1989 BUG_ON(cur->mm);
1990 initialize_tlbstate_and_flush();
1991 enter_lazy_tlb(&init_mm, cur);
1992
1993 /*
1994 * sp0 points to the entry trampoline stack regardless of what task
1995 * is running.
1996 */
1997 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1998
1999 load_mm_ldt(&init_mm);
2000
2001 clear_all_debug_regs();
2002 dbg_restore_debug_regs();
2003
2004 doublefault_init_cpu_tss();
2005
2006 fpu__init_cpu();
2007
2008 if (is_uv_system())
2009 uv_cpu_init();
2010
2011 load_fixmap_gdt(cpu);
2012}
2013
2014#ifdef CONFIG_SMP
2015void cpu_init_secondary(void)
2016{
2017 /*
2018 * Relies on the BP having set-up the IDT tables, which are loaded
2019 * on this CPU in cpu_init_exception_handling().
2020 */
2021 cpu_init_exception_handling();
2022 cpu_init();
2023}
2024#endif
2025
2026/*
2027 * The microcode loader calls this upon late microcode load to recheck features,
2028 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2029 * hotplug lock.
2030 */
2031void microcode_check(void)
2032{
2033 struct cpuinfo_x86 info;
2034
2035 perf_check_microcode();
2036
2037 /* Reload CPUID max function as it might've changed. */
2038 info.cpuid_level = cpuid_eax(0);
2039
2040 /*
2041 * Copy all capability leafs to pick up the synthetic ones so that
2042 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2043 * get overwritten in get_cpu_cap().
2044 */
2045 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2046
2047 get_cpu_cap(&info);
2048
2049 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2050 return;
2051
2052 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2053 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2054}
2055
2056/*
2057 * Invoked from core CPU hotplug code after hotplug operations
2058 */
2059void arch_smt_update(void)
2060{
2061 /* Handle the speculative execution misfeatures */
2062 cpu_bugs_smt_update();
2063 /* Check whether IPI broadcasting can be enabled */
2064 apic_smt_update();
2065}