Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/vmstat.c
   4 *
   5 *  Manages VM statistics
   6 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   7 *
   8 *  zoned VM statistics
   9 *  Copyright (C) 2006 Silicon Graphics, Inc.,
  10 *		Christoph Lameter <christoph@lameter.com>
  11 *  Copyright (C) 2008-2014 Christoph Lameter
  12 */
  13#include <linux/fs.h>
  14#include <linux/mm.h>
  15#include <linux/err.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/cpu.h>
  19#include <linux/cpumask.h>
  20#include <linux/vmstat.h>
  21#include <linux/proc_fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/debugfs.h>
  24#include <linux/sched.h>
  25#include <linux/math64.h>
  26#include <linux/writeback.h>
  27#include <linux/compaction.h>
  28#include <linux/mm_inline.h>
 
  29#include <linux/page_owner.h>
  30#include <linux/sched/isolation.h>
  31
  32#include "internal.h"
  33
  34#ifdef CONFIG_NUMA
  35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
  36
  37/* zero numa counters within a zone */
  38static void zero_zone_numa_counters(struct zone *zone)
  39{
  40	int item, cpu;
  41
  42	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
  43		atomic_long_set(&zone->vm_numa_event[item], 0);
  44		for_each_online_cpu(cpu) {
  45			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
  46						= 0;
  47		}
  48	}
  49}
  50
  51/* zero numa counters of all the populated zones */
  52static void zero_zones_numa_counters(void)
  53{
  54	struct zone *zone;
  55
  56	for_each_populated_zone(zone)
  57		zero_zone_numa_counters(zone);
  58}
  59
  60/* zero global numa counters */
  61static void zero_global_numa_counters(void)
  62{
  63	int item;
  64
  65	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
  66		atomic_long_set(&vm_numa_event[item], 0);
  67}
  68
  69static void invalid_numa_statistics(void)
  70{
  71	zero_zones_numa_counters();
  72	zero_global_numa_counters();
  73}
  74
  75static DEFINE_MUTEX(vm_numa_stat_lock);
  76
  77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
  78		void *buffer, size_t *length, loff_t *ppos)
  79{
  80	int ret, oldval;
  81
  82	mutex_lock(&vm_numa_stat_lock);
  83	if (write)
  84		oldval = sysctl_vm_numa_stat;
  85	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  86	if (ret || !write)
  87		goto out;
  88
  89	if (oldval == sysctl_vm_numa_stat)
  90		goto out;
  91	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
  92		static_branch_enable(&vm_numa_stat_key);
  93		pr_info("enable numa statistics\n");
  94	} else {
  95		static_branch_disable(&vm_numa_stat_key);
  96		invalid_numa_statistics();
  97		pr_info("disable numa statistics, and clear numa counters\n");
  98	}
  99
 100out:
 101	mutex_unlock(&vm_numa_stat_lock);
 102	return ret;
 103}
 104#endif
 105
 106#ifdef CONFIG_VM_EVENT_COUNTERS
 107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
 108EXPORT_PER_CPU_SYMBOL(vm_event_states);
 109
 110static void sum_vm_events(unsigned long *ret)
 111{
 112	int cpu;
 113	int i;
 114
 115	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
 116
 117	for_each_online_cpu(cpu) {
 118		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
 119
 120		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
 121			ret[i] += this->event[i];
 122	}
 123}
 124
 125/*
 126 * Accumulate the vm event counters across all CPUs.
 127 * The result is unavoidably approximate - it can change
 128 * during and after execution of this function.
 129*/
 130void all_vm_events(unsigned long *ret)
 131{
 132	cpus_read_lock();
 133	sum_vm_events(ret);
 134	cpus_read_unlock();
 135}
 136EXPORT_SYMBOL_GPL(all_vm_events);
 137
 138/*
 139 * Fold the foreign cpu events into our own.
 140 *
 141 * This is adding to the events on one processor
 142 * but keeps the global counts constant.
 143 */
 144void vm_events_fold_cpu(int cpu)
 145{
 146	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
 147	int i;
 148
 149	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
 150		count_vm_events(i, fold_state->event[i]);
 151		fold_state->event[i] = 0;
 152	}
 153}
 154
 155#endif /* CONFIG_VM_EVENT_COUNTERS */
 156
 157/*
 158 * Manage combined zone based / global counters
 159 *
 160 * vm_stat contains the global counters
 161 */
 162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
 163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
 164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
 165EXPORT_SYMBOL(vm_zone_stat);
 166EXPORT_SYMBOL(vm_node_stat);
 167
 168#ifdef CONFIG_NUMA
 169static void fold_vm_zone_numa_events(struct zone *zone)
 170{
 171	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
 172	int cpu;
 173	enum numa_stat_item item;
 174
 175	for_each_online_cpu(cpu) {
 176		struct per_cpu_zonestat *pzstats;
 177
 178		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
 179		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
 180			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
 181	}
 182
 183	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
 184		zone_numa_event_add(zone_numa_events[item], zone, item);
 185}
 186
 187void fold_vm_numa_events(void)
 188{
 189	struct zone *zone;
 190
 191	for_each_populated_zone(zone)
 192		fold_vm_zone_numa_events(zone);
 193}
 194#endif
 195
 196#ifdef CONFIG_SMP
 197
 198int calculate_pressure_threshold(struct zone *zone)
 199{
 200	int threshold;
 201	int watermark_distance;
 202
 203	/*
 204	 * As vmstats are not up to date, there is drift between the estimated
 205	 * and real values. For high thresholds and a high number of CPUs, it
 206	 * is possible for the min watermark to be breached while the estimated
 207	 * value looks fine. The pressure threshold is a reduced value such
 208	 * that even the maximum amount of drift will not accidentally breach
 209	 * the min watermark
 210	 */
 211	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 212	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 213
 214	/*
 215	 * Maximum threshold is 125
 216	 */
 217	threshold = min(125, threshold);
 218
 219	return threshold;
 220}
 221
 222int calculate_normal_threshold(struct zone *zone)
 223{
 224	int threshold;
 225	int mem;	/* memory in 128 MB units */
 226
 227	/*
 228	 * The threshold scales with the number of processors and the amount
 229	 * of memory per zone. More memory means that we can defer updates for
 230	 * longer, more processors could lead to more contention.
 231 	 * fls() is used to have a cheap way of logarithmic scaling.
 232	 *
 233	 * Some sample thresholds:
 234	 *
 235	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
 236	 * ------------------------------------------------------------------
 237	 * 8		1		1	0.9-1 GB	4
 238	 * 16		2		2	0.9-1 GB	4
 239	 * 20 		2		2	1-2 GB		5
 240	 * 24		2		2	2-4 GB		6
 241	 * 28		2		2	4-8 GB		7
 242	 * 32		2		2	8-16 GB		8
 243	 * 4		2		2	<128M		1
 244	 * 30		4		3	2-4 GB		5
 245	 * 48		4		3	8-16 GB		8
 246	 * 32		8		4	1-2 GB		4
 247	 * 32		8		4	0.9-1GB		4
 248	 * 10		16		5	<128M		1
 249	 * 40		16		5	900M		4
 250	 * 70		64		7	2-4 GB		5
 251	 * 84		64		7	4-8 GB		6
 252	 * 108		512		9	4-8 GB		6
 253	 * 125		1024		10	8-16 GB		8
 254	 * 125		1024		10	16-32 GB	9
 255	 */
 256
 257	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
 258
 259	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 260
 261	/*
 262	 * Maximum threshold is 125
 263	 */
 264	threshold = min(125, threshold);
 265
 266	return threshold;
 267}
 268
 269/*
 270 * Refresh the thresholds for each zone.
 271 */
 272void refresh_zone_stat_thresholds(void)
 273{
 274	struct pglist_data *pgdat;
 275	struct zone *zone;
 276	int cpu;
 277	int threshold;
 278
 279	/* Zero current pgdat thresholds */
 280	for_each_online_pgdat(pgdat) {
 281		for_each_online_cpu(cpu) {
 282			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
 283		}
 284	}
 285
 286	for_each_populated_zone(zone) {
 287		struct pglist_data *pgdat = zone->zone_pgdat;
 288		unsigned long max_drift, tolerate_drift;
 289
 290		threshold = calculate_normal_threshold(zone);
 291
 292		for_each_online_cpu(cpu) {
 293			int pgdat_threshold;
 294
 295			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
 296							= threshold;
 297
 298			/* Base nodestat threshold on the largest populated zone. */
 299			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
 300			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
 301				= max(threshold, pgdat_threshold);
 302		}
 303
 304		/*
 305		 * Only set percpu_drift_mark if there is a danger that
 306		 * NR_FREE_PAGES reports the low watermark is ok when in fact
 307		 * the min watermark could be breached by an allocation
 308		 */
 309		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 310		max_drift = num_online_cpus() * threshold;
 311		if (max_drift > tolerate_drift)
 312			zone->percpu_drift_mark = high_wmark_pages(zone) +
 313					max_drift;
 314	}
 315}
 316
 317void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 318				int (*calculate_pressure)(struct zone *))
 319{
 320	struct zone *zone;
 321	int cpu;
 322	int threshold;
 323	int i;
 324
 325	for (i = 0; i < pgdat->nr_zones; i++) {
 326		zone = &pgdat->node_zones[i];
 327		if (!zone->percpu_drift_mark)
 328			continue;
 329
 330		threshold = (*calculate_pressure)(zone);
 331		for_each_online_cpu(cpu)
 332			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
 333							= threshold;
 334	}
 335}
 336
 337/*
 338 * For use when we know that interrupts are disabled,
 339 * or when we know that preemption is disabled and that
 340 * particular counter cannot be updated from interrupt context.
 341 */
 342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 343			   long delta)
 344{
 345	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 346	s8 __percpu *p = pcp->vm_stat_diff + item;
 347	long x;
 348	long t;
 349
 350	/*
 351	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
 352	 * atomicity is provided by IRQs being disabled -- either explicitly
 353	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
 354	 * CPU migrations and preemption potentially corrupts a counter so
 355	 * disable preemption.
 356	 */
 357	preempt_disable_nested();
 358
 359	x = delta + __this_cpu_read(*p);
 360
 361	t = __this_cpu_read(pcp->stat_threshold);
 362
 363	if (unlikely(abs(x) > t)) {
 364		zone_page_state_add(x, zone, item);
 365		x = 0;
 366	}
 367	__this_cpu_write(*p, x);
 368
 369	preempt_enable_nested();
 370}
 371EXPORT_SYMBOL(__mod_zone_page_state);
 372
 373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 374				long delta)
 375{
 376	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 377	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 378	long x;
 379	long t;
 380
 381	if (vmstat_item_in_bytes(item)) {
 382		/*
 383		 * Only cgroups use subpage accounting right now; at
 384		 * the global level, these items still change in
 385		 * multiples of whole pages. Store them as pages
 386		 * internally to keep the per-cpu counters compact.
 387		 */
 388		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 389		delta >>= PAGE_SHIFT;
 390	}
 391
 392	/* See __mod_node_page_state */
 393	preempt_disable_nested();
 394
 395	x = delta + __this_cpu_read(*p);
 396
 397	t = __this_cpu_read(pcp->stat_threshold);
 398
 399	if (unlikely(abs(x) > t)) {
 400		node_page_state_add(x, pgdat, item);
 401		x = 0;
 402	}
 403	__this_cpu_write(*p, x);
 404
 405	preempt_enable_nested();
 406}
 407EXPORT_SYMBOL(__mod_node_page_state);
 408
 409/*
 410 * Optimized increment and decrement functions.
 411 *
 412 * These are only for a single page and therefore can take a struct page *
 413 * argument instead of struct zone *. This allows the inclusion of the code
 414 * generated for page_zone(page) into the optimized functions.
 415 *
 416 * No overflow check is necessary and therefore the differential can be
 417 * incremented or decremented in place which may allow the compilers to
 418 * generate better code.
 419 * The increment or decrement is known and therefore one boundary check can
 420 * be omitted.
 421 *
 422 * NOTE: These functions are very performance sensitive. Change only
 423 * with care.
 424 *
 425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 426 * However, the code must first determine the differential location in a zone
 427 * based on the processor number and then inc/dec the counter. There is no
 428 * guarantee without disabling preemption that the processor will not change
 429 * in between and therefore the atomicity vs. interrupt cannot be exploited
 430 * in a useful way here.
 431 */
 432void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 433{
 434	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 435	s8 __percpu *p = pcp->vm_stat_diff + item;
 436	s8 v, t;
 437
 438	/* See __mod_node_page_state */
 439	preempt_disable_nested();
 440
 441	v = __this_cpu_inc_return(*p);
 442	t = __this_cpu_read(pcp->stat_threshold);
 443	if (unlikely(v > t)) {
 444		s8 overstep = t >> 1;
 445
 446		zone_page_state_add(v + overstep, zone, item);
 447		__this_cpu_write(*p, -overstep);
 448	}
 449
 450	preempt_enable_nested();
 451}
 452
 453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 454{
 455	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 456	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 457	s8 v, t;
 458
 459	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 460
 461	/* See __mod_node_page_state */
 462	preempt_disable_nested();
 463
 464	v = __this_cpu_inc_return(*p);
 465	t = __this_cpu_read(pcp->stat_threshold);
 466	if (unlikely(v > t)) {
 467		s8 overstep = t >> 1;
 468
 469		node_page_state_add(v + overstep, pgdat, item);
 470		__this_cpu_write(*p, -overstep);
 471	}
 472
 473	preempt_enable_nested();
 474}
 475
 476void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 477{
 478	__inc_zone_state(page_zone(page), item);
 479}
 480EXPORT_SYMBOL(__inc_zone_page_state);
 481
 482void __inc_node_page_state(struct page *page, enum node_stat_item item)
 483{
 484	__inc_node_state(page_pgdat(page), item);
 485}
 486EXPORT_SYMBOL(__inc_node_page_state);
 487
 488void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 489{
 490	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 491	s8 __percpu *p = pcp->vm_stat_diff + item;
 492	s8 v, t;
 493
 494	/* See __mod_node_page_state */
 495	preempt_disable_nested();
 496
 497	v = __this_cpu_dec_return(*p);
 498	t = __this_cpu_read(pcp->stat_threshold);
 499	if (unlikely(v < - t)) {
 500		s8 overstep = t >> 1;
 501
 502		zone_page_state_add(v - overstep, zone, item);
 503		__this_cpu_write(*p, overstep);
 504	}
 505
 506	preempt_enable_nested();
 507}
 508
 509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 510{
 511	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 512	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 513	s8 v, t;
 514
 515	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
 516
 517	/* See __mod_node_page_state */
 518	preempt_disable_nested();
 519
 520	v = __this_cpu_dec_return(*p);
 521	t = __this_cpu_read(pcp->stat_threshold);
 522	if (unlikely(v < - t)) {
 523		s8 overstep = t >> 1;
 524
 525		node_page_state_add(v - overstep, pgdat, item);
 526		__this_cpu_write(*p, overstep);
 527	}
 528
 529	preempt_enable_nested();
 530}
 531
 532void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 533{
 534	__dec_zone_state(page_zone(page), item);
 535}
 536EXPORT_SYMBOL(__dec_zone_page_state);
 537
 538void __dec_node_page_state(struct page *page, enum node_stat_item item)
 539{
 540	__dec_node_state(page_pgdat(page), item);
 541}
 542EXPORT_SYMBOL(__dec_node_page_state);
 543
 544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 545/*
 546 * If we have cmpxchg_local support then we do not need to incur the overhead
 547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 548 *
 549 * mod_state() modifies the zone counter state through atomic per cpu
 550 * operations.
 551 *
 552 * Overstep mode specifies how overstep should handled:
 553 *     0       No overstepping
 554 *     1       Overstepping half of threshold
 555 *     -1      Overstepping minus half of threshold
 556*/
 557static inline void mod_zone_state(struct zone *zone,
 558       enum zone_stat_item item, long delta, int overstep_mode)
 559{
 560	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
 561	s8 __percpu *p = pcp->vm_stat_diff + item;
 562	long n, t, z;
 563	s8 o;
 564
 565	o = this_cpu_read(*p);
 566	do {
 567		z = 0;  /* overflow to zone counters */
 568
 569		/*
 570		 * The fetching of the stat_threshold is racy. We may apply
 571		 * a counter threshold to the wrong the cpu if we get
 572		 * rescheduled while executing here. However, the next
 573		 * counter update will apply the threshold again and
 574		 * therefore bring the counter under the threshold again.
 575		 *
 576		 * Most of the time the thresholds are the same anyways
 577		 * for all cpus in a zone.
 578		 */
 579		t = this_cpu_read(pcp->stat_threshold);
 580
 581		n = delta + (long)o;
 
 582
 583		if (abs(n) > t) {
 584			int os = overstep_mode * (t >> 1) ;
 585
 586			/* Overflow must be added to zone counters */
 587			z = n + os;
 588			n = -os;
 589		}
 590	} while (!this_cpu_try_cmpxchg(*p, &o, n));
 591
 592	if (z)
 593		zone_page_state_add(z, zone, item);
 594}
 595
 596void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 597			 long delta)
 598{
 599	mod_zone_state(zone, item, delta, 0);
 600}
 601EXPORT_SYMBOL(mod_zone_page_state);
 602
 
 
 
 
 
 603void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 604{
 605	mod_zone_state(page_zone(page), item, 1, 1);
 606}
 607EXPORT_SYMBOL(inc_zone_page_state);
 608
 609void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 610{
 611	mod_zone_state(page_zone(page), item, -1, -1);
 612}
 613EXPORT_SYMBOL(dec_zone_page_state);
 614
 615static inline void mod_node_state(struct pglist_data *pgdat,
 616       enum node_stat_item item, int delta, int overstep_mode)
 617{
 618	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
 619	s8 __percpu *p = pcp->vm_node_stat_diff + item;
 620	long n, t, z;
 621	s8 o;
 622
 623	if (vmstat_item_in_bytes(item)) {
 624		/*
 625		 * Only cgroups use subpage accounting right now; at
 626		 * the global level, these items still change in
 627		 * multiples of whole pages. Store them as pages
 628		 * internally to keep the per-cpu counters compact.
 629		 */
 630		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
 631		delta >>= PAGE_SHIFT;
 632	}
 633
 634	o = this_cpu_read(*p);
 635	do {
 636		z = 0;  /* overflow to node counters */
 637
 638		/*
 639		 * The fetching of the stat_threshold is racy. We may apply
 640		 * a counter threshold to the wrong the cpu if we get
 641		 * rescheduled while executing here. However, the next
 642		 * counter update will apply the threshold again and
 643		 * therefore bring the counter under the threshold again.
 644		 *
 645		 * Most of the time the thresholds are the same anyways
 646		 * for all cpus in a node.
 647		 */
 648		t = this_cpu_read(pcp->stat_threshold);
 649
 650		n = delta + (long)o;
 651
 652		if (abs(n) > t) {
 653			int os = overstep_mode * (t >> 1) ;
 654
 655			/* Overflow must be added to node counters */
 656			z = n + os;
 657			n = -os;
 658		}
 659	} while (!this_cpu_try_cmpxchg(*p, &o, n));
 660
 661	if (z)
 662		node_page_state_add(z, pgdat, item);
 663}
 664
 665void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 666					long delta)
 667{
 668	mod_node_state(pgdat, item, delta, 0);
 669}
 670EXPORT_SYMBOL(mod_node_page_state);
 671
 672void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 673{
 674	mod_node_state(pgdat, item, 1, 1);
 675}
 676
 677void inc_node_page_state(struct page *page, enum node_stat_item item)
 678{
 679	mod_node_state(page_pgdat(page), item, 1, 1);
 680}
 681EXPORT_SYMBOL(inc_node_page_state);
 682
 683void dec_node_page_state(struct page *page, enum node_stat_item item)
 684{
 685	mod_node_state(page_pgdat(page), item, -1, -1);
 686}
 687EXPORT_SYMBOL(dec_node_page_state);
 688#else
 689/*
 690 * Use interrupt disable to serialize counter updates
 691 */
 692void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 693			 long delta)
 694{
 695	unsigned long flags;
 696
 697	local_irq_save(flags);
 698	__mod_zone_page_state(zone, item, delta);
 699	local_irq_restore(flags);
 700}
 701EXPORT_SYMBOL(mod_zone_page_state);
 702
 703void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 704{
 705	unsigned long flags;
 706	struct zone *zone;
 707
 708	zone = page_zone(page);
 709	local_irq_save(flags);
 710	__inc_zone_state(zone, item);
 711	local_irq_restore(flags);
 712}
 713EXPORT_SYMBOL(inc_zone_page_state);
 714
 715void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 716{
 717	unsigned long flags;
 718
 719	local_irq_save(flags);
 720	__dec_zone_page_state(page, item);
 721	local_irq_restore(flags);
 722}
 723EXPORT_SYMBOL(dec_zone_page_state);
 724
 725void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
 726{
 727	unsigned long flags;
 728
 729	local_irq_save(flags);
 730	__inc_node_state(pgdat, item);
 731	local_irq_restore(flags);
 732}
 733EXPORT_SYMBOL(inc_node_state);
 734
 735void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
 736					long delta)
 737{
 738	unsigned long flags;
 739
 740	local_irq_save(flags);
 741	__mod_node_page_state(pgdat, item, delta);
 742	local_irq_restore(flags);
 743}
 744EXPORT_SYMBOL(mod_node_page_state);
 745
 746void inc_node_page_state(struct page *page, enum node_stat_item item)
 747{
 748	unsigned long flags;
 749	struct pglist_data *pgdat;
 750
 751	pgdat = page_pgdat(page);
 752	local_irq_save(flags);
 753	__inc_node_state(pgdat, item);
 754	local_irq_restore(flags);
 755}
 756EXPORT_SYMBOL(inc_node_page_state);
 757
 758void dec_node_page_state(struct page *page, enum node_stat_item item)
 759{
 760	unsigned long flags;
 761
 762	local_irq_save(flags);
 763	__dec_node_page_state(page, item);
 764	local_irq_restore(flags);
 765}
 766EXPORT_SYMBOL(dec_node_page_state);
 767#endif
 768
 
 769/*
 770 * Fold a differential into the global counters.
 771 * Returns the number of counters updated.
 772 */
 773static int fold_diff(int *zone_diff, int *node_diff)
 774{
 775	int i;
 776	int changes = 0;
 777
 778	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 779		if (zone_diff[i]) {
 780			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
 781			changes++;
 782	}
 783
 784	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 785		if (node_diff[i]) {
 786			atomic_long_add(node_diff[i], &vm_node_stat[i]);
 787			changes++;
 788	}
 789	return changes;
 790}
 791
 792/*
 793 * Update the zone counters for the current cpu.
 794 *
 795 * Note that refresh_cpu_vm_stats strives to only access
 796 * node local memory. The per cpu pagesets on remote zones are placed
 797 * in the memory local to the processor using that pageset. So the
 798 * loop over all zones will access a series of cachelines local to
 799 * the processor.
 800 *
 801 * The call to zone_page_state_add updates the cachelines with the
 802 * statistics in the remote zone struct as well as the global cachelines
 803 * with the global counters. These could cause remote node cache line
 804 * bouncing and will have to be only done when necessary.
 805 *
 806 * The function returns the number of global counters updated.
 807 */
 808static int refresh_cpu_vm_stats(bool do_pagesets)
 809{
 810	struct pglist_data *pgdat;
 811	struct zone *zone;
 812	int i;
 813	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 814	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 815	int changes = 0;
 816
 817	for_each_populated_zone(zone) {
 818		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
 819		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
 820
 821		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 822			int v;
 823
 824			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
 825			if (v) {
 826
 827				atomic_long_add(v, &zone->vm_stat[i]);
 828				global_zone_diff[i] += v;
 829#ifdef CONFIG_NUMA
 830				/* 3 seconds idle till flush */
 831				__this_cpu_write(pcp->expire, 3);
 832#endif
 833			}
 834		}
 835
 836		if (do_pagesets) {
 837			cond_resched();
 838
 839			changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
 840#ifdef CONFIG_NUMA
 841			/*
 842			 * Deal with draining the remote pageset of this
 843			 * processor
 844			 *
 845			 * Check if there are pages remaining in this pageset
 846			 * if not then there is nothing to expire.
 847			 */
 848			if (!__this_cpu_read(pcp->expire) ||
 849			       !__this_cpu_read(pcp->count))
 850				continue;
 851
 852			/*
 853			 * We never drain zones local to this processor.
 854			 */
 855			if (zone_to_nid(zone) == numa_node_id()) {
 856				__this_cpu_write(pcp->expire, 0);
 857				continue;
 858			}
 859
 860			if (__this_cpu_dec_return(pcp->expire)) {
 861				changes++;
 862				continue;
 863			}
 864
 865			if (__this_cpu_read(pcp->count)) {
 866				drain_zone_pages(zone, this_cpu_ptr(pcp));
 867				changes++;
 868			}
 869#endif
 870		}
 871	}
 872
 873	for_each_online_pgdat(pgdat) {
 874		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
 875
 876		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
 877			int v;
 878
 879			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
 880			if (v) {
 881				atomic_long_add(v, &pgdat->vm_stat[i]);
 882				global_node_diff[i] += v;
 883			}
 884		}
 
 885	}
 886
 887	changes += fold_diff(global_zone_diff, global_node_diff);
 888	return changes;
 889}
 890
 891/*
 892 * Fold the data for an offline cpu into the global array.
 893 * There cannot be any access by the offline cpu and therefore
 894 * synchronization is simplified.
 895 */
 896void cpu_vm_stats_fold(int cpu)
 897{
 898	struct pglist_data *pgdat;
 899	struct zone *zone;
 900	int i;
 901	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 902	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
 903
 904	for_each_populated_zone(zone) {
 905		struct per_cpu_zonestat *pzstats;
 906
 907		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
 908
 909		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 910			if (pzstats->vm_stat_diff[i]) {
 911				int v;
 912
 913				v = pzstats->vm_stat_diff[i];
 914				pzstats->vm_stat_diff[i] = 0;
 915				atomic_long_add(v, &zone->vm_stat[i]);
 916				global_zone_diff[i] += v;
 917			}
 918		}
 919#ifdef CONFIG_NUMA
 920		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
 921			if (pzstats->vm_numa_event[i]) {
 922				unsigned long v;
 923
 924				v = pzstats->vm_numa_event[i];
 925				pzstats->vm_numa_event[i] = 0;
 926				zone_numa_event_add(v, zone, i);
 927			}
 928		}
 929#endif
 930	}
 931
 932	for_each_online_pgdat(pgdat) {
 933		struct per_cpu_nodestat *p;
 934
 935		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
 936
 937		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
 938			if (p->vm_node_stat_diff[i]) {
 939				int v;
 940
 941				v = p->vm_node_stat_diff[i];
 942				p->vm_node_stat_diff[i] = 0;
 943				atomic_long_add(v, &pgdat->vm_stat[i]);
 944				global_node_diff[i] += v;
 945			}
 946	}
 947
 948	fold_diff(global_zone_diff, global_node_diff);
 949}
 950
 951/*
 952 * this is only called if !populated_zone(zone), which implies no other users of
 953 * pset->vm_stat_diff[] exist.
 954 */
 955void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
 956{
 957	unsigned long v;
 958	int i;
 959
 960	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 961		if (pzstats->vm_stat_diff[i]) {
 962			v = pzstats->vm_stat_diff[i];
 963			pzstats->vm_stat_diff[i] = 0;
 964			zone_page_state_add(v, zone, i);
 965		}
 966	}
 967
 968#ifdef CONFIG_NUMA
 969	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
 970		if (pzstats->vm_numa_event[i]) {
 971			v = pzstats->vm_numa_event[i];
 972			pzstats->vm_numa_event[i] = 0;
 973			zone_numa_event_add(v, zone, i);
 974		}
 975	}
 976#endif
 977}
 978#endif
 979
 980#ifdef CONFIG_NUMA
 981/*
 982 * Determine the per node value of a stat item. This function
 983 * is called frequently in a NUMA machine, so try to be as
 984 * frugal as possible.
 
 
 
 
 
 985 */
 986unsigned long sum_zone_node_page_state(int node,
 987				 enum zone_stat_item item)
 988{
 989	struct zone *zones = NODE_DATA(node)->node_zones;
 990	int i;
 991	unsigned long count = 0;
 992
 993	for (i = 0; i < MAX_NR_ZONES; i++)
 994		count += zone_page_state(zones + i, item);
 995
 996	return count;
 997}
 998
 999/* Determine the per node value of a numa stat item. */
1000unsigned long sum_zone_numa_event_state(int node,
1001				 enum numa_stat_item item)
1002{
1003	struct zone *zones = NODE_DATA(node)->node_zones;
1004	unsigned long count = 0;
1005	int i;
1006
1007	for (i = 0; i < MAX_NR_ZONES; i++)
1008		count += zone_numa_event_state(zones + i, item);
1009
1010	return count;
1011}
1012
1013/*
1014 * Determine the per node value of a stat item.
1015 */
1016unsigned long node_page_state_pages(struct pglist_data *pgdat,
1017				    enum node_stat_item item)
1018{
1019	long x = atomic_long_read(&pgdat->vm_stat[item]);
1020#ifdef CONFIG_SMP
1021	if (x < 0)
1022		x = 0;
 
 
 
 
1023#endif
1024	return x;
 
 
 
 
1025}
1026
1027unsigned long node_page_state(struct pglist_data *pgdat,
1028			      enum node_stat_item item)
1029{
1030	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1031
1032	return node_page_state_pages(pgdat, item);
1033}
1034#endif
1035
1036#ifdef CONFIG_COMPACTION
1037
1038struct contig_page_info {
1039	unsigned long free_pages;
1040	unsigned long free_blocks_total;
1041	unsigned long free_blocks_suitable;
1042};
1043
1044/*
1045 * Calculate the number of free pages in a zone, how many contiguous
1046 * pages are free and how many are large enough to satisfy an allocation of
1047 * the target size. Note that this function makes no attempt to estimate
1048 * how many suitable free blocks there *might* be if MOVABLE pages were
1049 * migrated. Calculating that is possible, but expensive and can be
1050 * figured out from userspace
1051 */
1052static void fill_contig_page_info(struct zone *zone,
1053				unsigned int suitable_order,
1054				struct contig_page_info *info)
1055{
1056	unsigned int order;
1057
1058	info->free_pages = 0;
1059	info->free_blocks_total = 0;
1060	info->free_blocks_suitable = 0;
1061
1062	for (order = 0; order < NR_PAGE_ORDERS; order++) {
1063		unsigned long blocks;
1064
1065		/*
1066		 * Count number of free blocks.
1067		 *
1068		 * Access to nr_free is lockless as nr_free is used only for
1069		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1070		 */
1071		blocks = data_race(zone->free_area[order].nr_free);
1072		info->free_blocks_total += blocks;
1073
1074		/* Count free base pages */
1075		info->free_pages += blocks << order;
1076
1077		/* Count the suitable free blocks */
1078		if (order >= suitable_order)
1079			info->free_blocks_suitable += blocks <<
1080						(order - suitable_order);
1081	}
1082}
1083
1084/*
1085 * A fragmentation index only makes sense if an allocation of a requested
1086 * size would fail. If that is true, the fragmentation index indicates
1087 * whether external fragmentation or a lack of memory was the problem.
1088 * The value can be used to determine if page reclaim or compaction
1089 * should be used
1090 */
1091static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1092{
1093	unsigned long requested = 1UL << order;
1094
1095	if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1096		return 0;
1097
1098	if (!info->free_blocks_total)
1099		return 0;
1100
1101	/* Fragmentation index only makes sense when a request would fail */
1102	if (info->free_blocks_suitable)
1103		return -1000;
1104
1105	/*
1106	 * Index is between 0 and 1 so return within 3 decimal places
1107	 *
1108	 * 0 => allocation would fail due to lack of memory
1109	 * 1 => allocation would fail due to fragmentation
1110	 */
1111	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1112}
1113
1114/*
1115 * Calculates external fragmentation within a zone wrt the given order.
1116 * It is defined as the percentage of pages found in blocks of size
1117 * less than 1 << order. It returns values in range [0, 100].
1118 */
1119unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1120{
1121	struct contig_page_info info;
1122
1123	fill_contig_page_info(zone, order, &info);
1124	if (info.free_pages == 0)
1125		return 0;
1126
1127	return div_u64((info.free_pages -
1128			(info.free_blocks_suitable << order)) * 100,
1129			info.free_pages);
1130}
1131
1132/* Same as __fragmentation index but allocs contig_page_info on stack */
1133int fragmentation_index(struct zone *zone, unsigned int order)
1134{
1135	struct contig_page_info info;
1136
1137	fill_contig_page_info(zone, order, &info);
1138	return __fragmentation_index(order, &info);
1139}
1140#endif
1141
1142#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1143    defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1144#ifdef CONFIG_ZONE_DMA
1145#define TEXT_FOR_DMA(xx) xx "_dma",
1146#else
1147#define TEXT_FOR_DMA(xx)
1148#endif
1149
1150#ifdef CONFIG_ZONE_DMA32
1151#define TEXT_FOR_DMA32(xx) xx "_dma32",
1152#else
1153#define TEXT_FOR_DMA32(xx)
1154#endif
1155
1156#ifdef CONFIG_HIGHMEM
1157#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1158#else
1159#define TEXT_FOR_HIGHMEM(xx)
1160#endif
1161
1162#ifdef CONFIG_ZONE_DEVICE
1163#define TEXT_FOR_DEVICE(xx) xx "_device",
1164#else
1165#define TEXT_FOR_DEVICE(xx)
1166#endif
1167
1168#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1169					TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1170					TEXT_FOR_DEVICE(xx)
1171
1172const char * const vmstat_text[] = {
1173	/* enum zone_stat_item counters */
1174	"nr_free_pages",
1175	"nr_zone_inactive_anon",
1176	"nr_zone_active_anon",
1177	"nr_zone_inactive_file",
1178	"nr_zone_active_file",
1179	"nr_zone_unevictable",
1180	"nr_zone_write_pending",
1181	"nr_mlock",
1182	"nr_bounce",
1183#if IS_ENABLED(CONFIG_ZSMALLOC)
1184	"nr_zspages",
1185#endif
1186	"nr_free_cma",
1187#ifdef CONFIG_UNACCEPTED_MEMORY
1188	"nr_unaccepted",
1189#endif
1190
1191	/* enum numa_stat_item counters */
1192#ifdef CONFIG_NUMA
1193	"numa_hit",
1194	"numa_miss",
1195	"numa_foreign",
1196	"numa_interleave",
1197	"numa_local",
1198	"numa_other",
1199#endif
1200
1201	/* enum node_stat_item counters */
1202	"nr_inactive_anon",
1203	"nr_active_anon",
1204	"nr_inactive_file",
1205	"nr_active_file",
1206	"nr_unevictable",
1207	"nr_slab_reclaimable",
1208	"nr_slab_unreclaimable",
1209	"nr_isolated_anon",
1210	"nr_isolated_file",
1211	"workingset_nodes",
1212	"workingset_refault_anon",
1213	"workingset_refault_file",
1214	"workingset_activate_anon",
1215	"workingset_activate_file",
1216	"workingset_restore_anon",
1217	"workingset_restore_file",
1218	"workingset_nodereclaim",
1219	"nr_anon_pages",
1220	"nr_mapped",
1221	"nr_file_pages",
1222	"nr_dirty",
1223	"nr_writeback",
1224	"nr_writeback_temp",
1225	"nr_shmem",
1226	"nr_shmem_hugepages",
1227	"nr_shmem_pmdmapped",
1228	"nr_file_hugepages",
1229	"nr_file_pmdmapped",
1230	"nr_anon_transparent_hugepages",
1231	"nr_vmscan_write",
1232	"nr_vmscan_immediate_reclaim",
 
 
 
 
1233	"nr_dirtied",
1234	"nr_written",
1235	"nr_throttled_written",
1236	"nr_kernel_misc_reclaimable",
1237	"nr_foll_pin_acquired",
1238	"nr_foll_pin_released",
1239	"nr_kernel_stack",
1240#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1241	"nr_shadow_call_stack",
1242#endif
1243	"nr_page_table_pages",
1244	"nr_sec_page_table_pages",
1245#ifdef CONFIG_SWAP
1246	"nr_swapcached",
1247#endif
1248#ifdef CONFIG_NUMA_BALANCING
1249	"pgpromote_success",
1250	"pgpromote_candidate",
1251#endif
1252	"pgdemote_kswapd",
1253	"pgdemote_direct",
1254	"pgdemote_khugepaged",
 
 
1255
1256	/* enum writeback_stat_item counters */
1257	"nr_dirty_threshold",
1258	"nr_dirty_background_threshold",
1259
1260#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1261	/* enum vm_event_item counters */
1262	"pgpgin",
1263	"pgpgout",
1264	"pswpin",
1265	"pswpout",
1266
1267	TEXTS_FOR_ZONES("pgalloc")
1268	TEXTS_FOR_ZONES("allocstall")
1269	TEXTS_FOR_ZONES("pgskip")
1270
1271	"pgfree",
1272	"pgactivate",
1273	"pgdeactivate",
1274	"pglazyfree",
1275
1276	"pgfault",
1277	"pgmajfault",
1278	"pglazyfreed",
1279
1280	"pgrefill",
1281	"pgreuse",
1282	"pgsteal_kswapd",
1283	"pgsteal_direct",
1284	"pgsteal_khugepaged",
1285	"pgscan_kswapd",
1286	"pgscan_direct",
1287	"pgscan_khugepaged",
1288	"pgscan_direct_throttle",
1289	"pgscan_anon",
1290	"pgscan_file",
1291	"pgsteal_anon",
1292	"pgsteal_file",
1293
1294#ifdef CONFIG_NUMA
1295	"zone_reclaim_failed",
1296#endif
1297	"pginodesteal",
1298	"slabs_scanned",
1299	"kswapd_inodesteal",
1300	"kswapd_low_wmark_hit_quickly",
1301	"kswapd_high_wmark_hit_quickly",
1302	"pageoutrun",
 
1303
1304	"pgrotated",
1305
1306	"drop_pagecache",
1307	"drop_slab",
1308	"oom_kill",
1309
1310#ifdef CONFIG_NUMA_BALANCING
1311	"numa_pte_updates",
1312	"numa_huge_pte_updates",
1313	"numa_hint_faults",
1314	"numa_hint_faults_local",
1315	"numa_pages_migrated",
1316#endif
1317#ifdef CONFIG_MIGRATION
1318	"pgmigrate_success",
1319	"pgmigrate_fail",
1320	"thp_migration_success",
1321	"thp_migration_fail",
1322	"thp_migration_split",
1323#endif
1324#ifdef CONFIG_COMPACTION
1325	"compact_migrate_scanned",
1326	"compact_free_scanned",
1327	"compact_isolated",
1328	"compact_stall",
1329	"compact_fail",
1330	"compact_success",
1331	"compact_daemon_wake",
1332	"compact_daemon_migrate_scanned",
1333	"compact_daemon_free_scanned",
1334#endif
1335
1336#ifdef CONFIG_HUGETLB_PAGE
1337	"htlb_buddy_alloc_success",
1338	"htlb_buddy_alloc_fail",
1339#endif
1340#ifdef CONFIG_CMA
1341	"cma_alloc_success",
1342	"cma_alloc_fail",
1343#endif
1344	"unevictable_pgs_culled",
1345	"unevictable_pgs_scanned",
1346	"unevictable_pgs_rescued",
1347	"unevictable_pgs_mlocked",
1348	"unevictable_pgs_munlocked",
1349	"unevictable_pgs_cleared",
1350	"unevictable_pgs_stranded",
1351
1352#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353	"thp_fault_alloc",
1354	"thp_fault_fallback",
1355	"thp_fault_fallback_charge",
1356	"thp_collapse_alloc",
1357	"thp_collapse_alloc_failed",
1358	"thp_file_alloc",
1359	"thp_file_fallback",
1360	"thp_file_fallback_charge",
1361	"thp_file_mapped",
1362	"thp_split_page",
1363	"thp_split_page_failed",
1364	"thp_deferred_split_page",
1365	"thp_split_pmd",
1366	"thp_scan_exceed_none_pte",
1367	"thp_scan_exceed_swap_pte",
1368	"thp_scan_exceed_share_pte",
1369#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1370	"thp_split_pud",
1371#endif
1372	"thp_zero_page_alloc",
1373	"thp_zero_page_alloc_failed",
1374	"thp_swpout",
1375	"thp_swpout_fallback",
1376#endif
1377#ifdef CONFIG_MEMORY_BALLOON
1378	"balloon_inflate",
1379	"balloon_deflate",
1380#ifdef CONFIG_BALLOON_COMPACTION
1381	"balloon_migrate",
1382#endif
1383#endif /* CONFIG_MEMORY_BALLOON */
1384#ifdef CONFIG_DEBUG_TLBFLUSH
 
1385	"nr_tlb_remote_flush",
1386	"nr_tlb_remote_flush_received",
 
1387	"nr_tlb_local_flush_all",
1388	"nr_tlb_local_flush_one",
1389#endif /* CONFIG_DEBUG_TLBFLUSH */
1390
1391#ifdef CONFIG_SWAP
1392	"swap_ra",
1393	"swap_ra_hit",
1394#ifdef CONFIG_KSM
1395	"ksm_swpin_copy",
1396#endif
1397#endif
1398#ifdef CONFIG_KSM
1399	"cow_ksm",
1400#endif
1401#ifdef CONFIG_ZSWAP
1402	"zswpin",
1403	"zswpout",
1404	"zswpwb",
1405#endif
1406#ifdef CONFIG_X86
1407	"direct_map_level2_splits",
1408	"direct_map_level3_splits",
1409#endif
1410#ifdef CONFIG_PER_VMA_LOCK_STATS
1411	"vma_lock_success",
1412	"vma_lock_abort",
1413	"vma_lock_retry",
1414	"vma_lock_miss",
1415#endif
1416#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1417};
1418#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
 
1419
1420#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1421     defined(CONFIG_PROC_FS)
1422static void *frag_start(struct seq_file *m, loff_t *pos)
1423{
1424	pg_data_t *pgdat;
1425	loff_t node = *pos;
1426
1427	for (pgdat = first_online_pgdat();
1428	     pgdat && node;
1429	     pgdat = next_online_pgdat(pgdat))
1430		--node;
1431
1432	return pgdat;
1433}
1434
1435static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1436{
1437	pg_data_t *pgdat = (pg_data_t *)arg;
1438
1439	(*pos)++;
1440	return next_online_pgdat(pgdat);
1441}
1442
1443static void frag_stop(struct seq_file *m, void *arg)
1444{
1445}
1446
1447/*
1448 * Walk zones in a node and print using a callback.
1449 * If @assert_populated is true, only use callback for zones that are populated.
1450 */
1451static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1452		bool assert_populated, bool nolock,
1453		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1454{
1455	struct zone *zone;
1456	struct zone *node_zones = pgdat->node_zones;
1457	unsigned long flags;
1458
1459	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1460		if (assert_populated && !populated_zone(zone))
1461			continue;
1462
1463		if (!nolock)
1464			spin_lock_irqsave(&zone->lock, flags);
1465		print(m, pgdat, zone);
1466		if (!nolock)
1467			spin_unlock_irqrestore(&zone->lock, flags);
1468	}
1469}
1470#endif
1471
1472#ifdef CONFIG_PROC_FS
1473static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1474						struct zone *zone)
1475{
1476	int order;
1477
1478	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1479	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1480		/*
1481		 * Access to nr_free is lockless as nr_free is used only for
1482		 * printing purposes. Use data_race to avoid KCSAN warning.
1483		 */
1484		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1485	seq_putc(m, '\n');
1486}
1487
1488/*
1489 * This walks the free areas for each zone.
1490 */
1491static int frag_show(struct seq_file *m, void *arg)
1492{
1493	pg_data_t *pgdat = (pg_data_t *)arg;
1494	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1495	return 0;
1496}
1497
1498static void pagetypeinfo_showfree_print(struct seq_file *m,
1499					pg_data_t *pgdat, struct zone *zone)
1500{
1501	int order, mtype;
1502
1503	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1504		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1505					pgdat->node_id,
1506					zone->name,
1507					migratetype_names[mtype]);
1508		for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1509			unsigned long freecount = 0;
1510			struct free_area *area;
1511			struct list_head *curr;
1512			bool overflow = false;
1513
1514			area = &(zone->free_area[order]);
1515
1516			list_for_each(curr, &area->free_list[mtype]) {
1517				/*
1518				 * Cap the free_list iteration because it might
1519				 * be really large and we are under a spinlock
1520				 * so a long time spent here could trigger a
1521				 * hard lockup detector. Anyway this is a
1522				 * debugging tool so knowing there is a handful
1523				 * of pages of this order should be more than
1524				 * sufficient.
1525				 */
1526				if (++freecount >= 100000) {
1527					overflow = true;
1528					break;
1529				}
1530			}
1531			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1532			spin_unlock_irq(&zone->lock);
1533			cond_resched();
1534			spin_lock_irq(&zone->lock);
1535		}
1536		seq_putc(m, '\n');
1537	}
1538}
1539
1540/* Print out the free pages at each order for each migatetype */
1541static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1542{
1543	int order;
1544	pg_data_t *pgdat = (pg_data_t *)arg;
1545
1546	/* Print header */
1547	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1548	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1549		seq_printf(m, "%6d ", order);
1550	seq_putc(m, '\n');
1551
1552	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
 
 
1553}
1554
1555static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1556					pg_data_t *pgdat, struct zone *zone)
1557{
1558	int mtype;
1559	unsigned long pfn;
1560	unsigned long start_pfn = zone->zone_start_pfn;
1561	unsigned long end_pfn = zone_end_pfn(zone);
1562	unsigned long count[MIGRATE_TYPES] = { 0, };
1563
1564	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1565		struct page *page;
1566
1567		page = pfn_to_online_page(pfn);
1568		if (!page)
1569			continue;
1570
1571		if (page_zone(page) != zone)
 
 
 
1572			continue;
1573
1574		mtype = get_pageblock_migratetype(page);
1575
1576		if (mtype < MIGRATE_TYPES)
1577			count[mtype]++;
1578	}
1579
1580	/* Print counts */
1581	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1582	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1583		seq_printf(m, "%12lu ", count[mtype]);
1584	seq_putc(m, '\n');
1585}
1586
1587/* Print out the number of pageblocks for each migratetype */
1588static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1589{
1590	int mtype;
1591	pg_data_t *pgdat = (pg_data_t *)arg;
1592
1593	seq_printf(m, "\n%-23s", "Number of blocks type ");
1594	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1595		seq_printf(m, "%12s ", migratetype_names[mtype]);
1596	seq_putc(m, '\n');
1597	walk_zones_in_node(m, pgdat, true, false,
1598		pagetypeinfo_showblockcount_print);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599}
 
1600
1601/*
1602 * Print out the number of pageblocks for each migratetype that contain pages
1603 * of other types. This gives an indication of how well fallbacks are being
1604 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1605 * to determine what is going on
1606 */
1607static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1608{
1609#ifdef CONFIG_PAGE_OWNER
1610	int mtype;
1611
1612	if (!static_branch_unlikely(&page_owner_inited))
1613		return;
1614
1615	drain_all_pages(NULL);
1616
1617	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1618	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1619		seq_printf(m, "%12s ", migratetype_names[mtype]);
1620	seq_putc(m, '\n');
1621
1622	walk_zones_in_node(m, pgdat, true, true,
1623		pagetypeinfo_showmixedcount_print);
1624#endif /* CONFIG_PAGE_OWNER */
1625}
1626
1627/*
1628 * This prints out statistics in relation to grouping pages by mobility.
1629 * It is expensive to collect so do not constantly read the file.
1630 */
1631static int pagetypeinfo_show(struct seq_file *m, void *arg)
1632{
1633	pg_data_t *pgdat = (pg_data_t *)arg;
1634
1635	/* check memoryless node */
1636	if (!node_state(pgdat->node_id, N_MEMORY))
1637		return 0;
1638
1639	seq_printf(m, "Page block order: %d\n", pageblock_order);
1640	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1641	seq_putc(m, '\n');
1642	pagetypeinfo_showfree(m, pgdat);
1643	pagetypeinfo_showblockcount(m, pgdat);
1644	pagetypeinfo_showmixedcount(m, pgdat);
1645
1646	return 0;
1647}
1648
1649static const struct seq_operations fragmentation_op = {
1650	.start	= frag_start,
1651	.next	= frag_next,
1652	.stop	= frag_stop,
1653	.show	= frag_show,
1654};
1655
 
 
 
 
 
 
 
 
 
 
 
 
1656static const struct seq_operations pagetypeinfo_op = {
1657	.start	= frag_start,
1658	.next	= frag_next,
1659	.stop	= frag_stop,
1660	.show	= pagetypeinfo_show,
1661};
1662
1663static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1664{
1665	int zid;
1666
1667	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1668		struct zone *compare = &pgdat->node_zones[zid];
1669
1670		if (populated_zone(compare))
1671			return zone == compare;
1672	}
1673
1674	return false;
1675}
1676
 
 
 
 
 
 
 
1677static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1678							struct zone *zone)
1679{
1680	int i;
1681	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1682	if (is_zone_first_populated(pgdat, zone)) {
1683		seq_printf(m, "\n  per-node stats");
1684		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1685			unsigned long pages = node_page_state_pages(pgdat, i);
1686
1687			if (vmstat_item_print_in_thp(i))
1688				pages /= HPAGE_PMD_NR;
1689			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1690				   pages);
1691		}
1692	}
1693	seq_printf(m,
1694		   "\n  pages free     %lu"
1695		   "\n        boost    %lu"
1696		   "\n        min      %lu"
1697		   "\n        low      %lu"
1698		   "\n        high     %lu"
 
1699		   "\n        spanned  %lu"
1700		   "\n        present  %lu"
1701		   "\n        managed  %lu"
1702		   "\n        cma      %lu",
1703		   zone_page_state(zone, NR_FREE_PAGES),
1704		   zone->watermark_boost,
1705		   min_wmark_pages(zone),
1706		   low_wmark_pages(zone),
1707		   high_wmark_pages(zone),
 
1708		   zone->spanned_pages,
1709		   zone->present_pages,
1710		   zone_managed_pages(zone),
1711		   zone_cma_pages(zone));
 
 
 
1712
1713	seq_printf(m,
1714		   "\n        protection: (%ld",
1715		   zone->lowmem_reserve[0]);
1716	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1717		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1718	seq_putc(m, ')');
1719
1720	/* If unpopulated, no other information is useful */
1721	if (!populated_zone(zone)) {
1722		seq_putc(m, '\n');
1723		return;
1724	}
1725
1726	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1727		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1728			   zone_page_state(zone, i));
1729
1730#ifdef CONFIG_NUMA
1731	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1732		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1733			   zone_numa_event_state(zone, i));
1734#endif
1735
1736	seq_printf(m, "\n  pagesets");
1737	for_each_online_cpu(i) {
1738		struct per_cpu_pages *pcp;
1739		struct per_cpu_zonestat __maybe_unused *pzstats;
1740
1741		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1742		seq_printf(m,
1743			   "\n    cpu: %i"
1744			   "\n              count: %i"
1745			   "\n              high:  %i"
1746			   "\n              batch: %i",
1747			   i,
1748			   pcp->count,
1749			   pcp->high,
1750			   pcp->batch);
1751#ifdef CONFIG_SMP
1752		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1753		seq_printf(m, "\n  vm stats threshold: %d",
1754				pzstats->stat_threshold);
1755#endif
1756	}
1757	seq_printf(m,
1758		   "\n  node_unreclaimable:  %u"
1759		   "\n  start_pfn:           %lu",
1760		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1761		   zone->zone_start_pfn);
 
 
1762	seq_putc(m, '\n');
1763}
1764
1765/*
1766 * Output information about zones in @pgdat.  All zones are printed regardless
1767 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1768 * set of all zones and userspace would not be aware of such zones if they are
1769 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1770 */
1771static int zoneinfo_show(struct seq_file *m, void *arg)
1772{
1773	pg_data_t *pgdat = (pg_data_t *)arg;
1774	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1775	return 0;
1776}
1777
1778static const struct seq_operations zoneinfo_op = {
1779	.start	= frag_start, /* iterate over all zones. The same as in
1780			       * fragmentation. */
1781	.next	= frag_next,
1782	.stop	= frag_stop,
1783	.show	= zoneinfo_show,
1784};
1785
1786#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1787			 NR_VM_NUMA_EVENT_ITEMS + \
1788			 NR_VM_NODE_STAT_ITEMS + \
1789			 NR_VM_WRITEBACK_STAT_ITEMS + \
1790			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1791			  NR_VM_EVENT_ITEMS : 0))
 
 
 
 
 
 
 
 
 
 
 
1792
1793static void *vmstat_start(struct seq_file *m, loff_t *pos)
1794{
1795	unsigned long *v;
1796	int i;
1797
1798	if (*pos >= NR_VMSTAT_ITEMS)
1799		return NULL;
 
 
1800
1801	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1802	fold_vm_numa_events();
1803	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
 
 
1804	m->private = v;
1805	if (!v)
1806		return ERR_PTR(-ENOMEM);
1807	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1808		v[i] = global_zone_page_state(i);
1809	v += NR_VM_ZONE_STAT_ITEMS;
1810
1811#ifdef CONFIG_NUMA
1812	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1813		v[i] = global_numa_event_state(i);
1814	v += NR_VM_NUMA_EVENT_ITEMS;
1815#endif
1816
1817	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1818		v[i] = global_node_page_state_pages(i);
1819		if (vmstat_item_print_in_thp(i))
1820			v[i] /= HPAGE_PMD_NR;
1821	}
1822	v += NR_VM_NODE_STAT_ITEMS;
1823
1824	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1825			    v + NR_DIRTY_THRESHOLD);
1826	v += NR_VM_WRITEBACK_STAT_ITEMS;
1827
1828#ifdef CONFIG_VM_EVENT_COUNTERS
1829	all_vm_events(v);
1830	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1831	v[PGPGOUT] /= 2;
1832#endif
1833	return (unsigned long *)m->private + *pos;
1834}
1835
1836static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1837{
1838	(*pos)++;
1839	if (*pos >= NR_VMSTAT_ITEMS)
1840		return NULL;
1841	return (unsigned long *)m->private + *pos;
1842}
1843
1844static int vmstat_show(struct seq_file *m, void *arg)
1845{
1846	unsigned long *l = arg;
1847	unsigned long off = l - (unsigned long *)m->private;
1848
1849	seq_puts(m, vmstat_text[off]);
1850	seq_put_decimal_ull(m, " ", *l);
1851	seq_putc(m, '\n');
1852
1853	if (off == NR_VMSTAT_ITEMS - 1) {
1854		/*
1855		 * We've come to the end - add any deprecated counters to avoid
1856		 * breaking userspace which might depend on them being present.
1857		 */
1858		seq_puts(m, "nr_unstable 0\n");
1859	}
1860	return 0;
1861}
1862
1863static void vmstat_stop(struct seq_file *m, void *arg)
1864{
1865	kfree(m->private);
1866	m->private = NULL;
1867}
1868
1869static const struct seq_operations vmstat_op = {
1870	.start	= vmstat_start,
1871	.next	= vmstat_next,
1872	.stop	= vmstat_stop,
1873	.show	= vmstat_show,
1874};
1875#endif /* CONFIG_PROC_FS */
1876
1877#ifdef CONFIG_SMP
1878static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1879int sysctl_stat_interval __read_mostly = HZ;
1880
1881#ifdef CONFIG_PROC_FS
1882static void refresh_vm_stats(struct work_struct *work)
1883{
1884	refresh_cpu_vm_stats(true);
1885}
1886
1887int vmstat_refresh(struct ctl_table *table, int write,
1888		   void *buffer, size_t *lenp, loff_t *ppos)
1889{
1890	long val;
1891	int err;
1892	int i;
1893
1894	/*
1895	 * The regular update, every sysctl_stat_interval, may come later
1896	 * than expected: leaving a significant amount in per_cpu buckets.
1897	 * This is particularly misleading when checking a quantity of HUGE
1898	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1899	 * which can equally be echo'ed to or cat'ted from (by root),
1900	 * can be used to update the stats just before reading them.
1901	 *
1902	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1903	 * transiently negative values, report an error here if any of
1904	 * the stats is negative, so we know to go looking for imbalance.
1905	 */
1906	err = schedule_on_each_cpu(refresh_vm_stats);
1907	if (err)
1908		return err;
1909	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1910		/*
1911		 * Skip checking stats known to go negative occasionally.
1912		 */
1913		switch (i) {
1914		case NR_ZONE_WRITE_PENDING:
1915		case NR_FREE_CMA_PAGES:
1916			continue;
1917		}
1918		val = atomic_long_read(&vm_zone_stat[i]);
1919		if (val < 0) {
1920			pr_warn("%s: %s %ld\n",
1921				__func__, zone_stat_name(i), val);
1922		}
1923	}
1924	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1925		/*
1926		 * Skip checking stats known to go negative occasionally.
1927		 */
1928		switch (i) {
1929		case NR_WRITEBACK:
1930			continue;
1931		}
1932		val = atomic_long_read(&vm_node_stat[i]);
1933		if (val < 0) {
1934			pr_warn("%s: %s %ld\n",
1935				__func__, node_stat_name(i), val);
1936		}
1937	}
1938	if (write)
1939		*ppos += *lenp;
1940	else
1941		*lenp = 0;
1942	return 0;
1943}
1944#endif /* CONFIG_PROC_FS */
1945
 
 
 
 
 
 
1946static void vmstat_update(struct work_struct *w)
1947{
1948	if (refresh_cpu_vm_stats(true)) {
1949		/*
1950		 * Counters were updated so we expect more updates
1951		 * to occur in the future. Keep on running the
1952		 * update worker thread.
 
 
1953		 */
1954		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
 
 
1955				this_cpu_ptr(&vmstat_work),
1956				round_jiffies_relative(sysctl_stat_interval));
 
 
 
 
 
 
 
 
 
 
1957	}
1958}
1959
1960/*
 
 
 
 
 
1961 * Check if the diffs for a certain cpu indicate that
1962 * an update is needed.
1963 */
1964static bool need_update(int cpu)
1965{
1966	pg_data_t *last_pgdat = NULL;
1967	struct zone *zone;
1968
1969	for_each_populated_zone(zone) {
1970		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1971		struct per_cpu_nodestat *n;
1972
 
1973		/*
1974		 * The fast way of checking if there are any vmstat diffs.
 
1975		 */
1976		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1977			return true;
1978
1979		if (last_pgdat == zone->zone_pgdat)
1980			continue;
1981		last_pgdat = zone->zone_pgdat;
1982		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1983		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1984			return true;
1985	}
1986	return false;
1987}
1988
1989/*
1990 * Switch off vmstat processing and then fold all the remaining differentials
1991 * until the diffs stay at zero. The function is used by NOHZ and can only be
1992 * invoked when tick processing is not active.
1993 */
1994void quiet_vmstat(void)
1995{
1996	if (system_state != SYSTEM_RUNNING)
1997		return;
1998
1999	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
 
 
 
 
2000		return;
2001
2002	if (!need_update(smp_processor_id()))
2003		return;
2004
2005	/*
2006	 * Just refresh counters and do not care about the pending delayed
2007	 * vmstat_update. It doesn't fire that often to matter and canceling
2008	 * it would be too expensive from this path.
2009	 * vmstat_shepherd will take care about that for us.
2010	 */
2011	refresh_cpu_vm_stats(false);
2012}
2013
 
2014/*
2015 * Shepherd worker thread that checks the
2016 * differentials of processors that have their worker
2017 * threads for vm statistics updates disabled because of
2018 * inactivity.
2019 */
2020static void vmstat_shepherd(struct work_struct *w);
2021
2022static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2023
2024static void vmstat_shepherd(struct work_struct *w)
2025{
2026	int cpu;
2027
2028	cpus_read_lock();
2029	/* Check processors whose vmstat worker threads have been disabled */
2030	for_each_online_cpu(cpu) {
2031		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2032
2033		/*
2034		 * In kernel users of vmstat counters either require the precise value and
2035		 * they are using zone_page_state_snapshot interface or they can live with
2036		 * an imprecision as the regular flushing can happen at arbitrary time and
2037		 * cumulative error can grow (see calculate_normal_threshold).
2038		 *
2039		 * From that POV the regular flushing can be postponed for CPUs that have
2040		 * been isolated from the kernel interference without critical
2041		 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2042		 * for all isolated CPUs to avoid interference with the isolated workload.
2043		 */
2044		if (cpu_is_isolated(cpu))
2045			continue;
2046
2047		if (!delayed_work_pending(dw) && need_update(cpu))
2048			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2049
2050		cond_resched();
2051	}
2052	cpus_read_unlock();
2053
2054	schedule_delayed_work(&shepherd,
2055		round_jiffies_relative(sysctl_stat_interval));
2056}
2057
2058static void __init start_shepherd_timer(void)
2059{
2060	int cpu;
2061
2062	for_each_possible_cpu(cpu)
2063		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2064			vmstat_update);
2065
 
 
 
 
 
2066	schedule_delayed_work(&shepherd,
2067		round_jiffies_relative(sysctl_stat_interval));
2068}
2069
2070static void __init init_cpu_node_state(void)
2071{
2072	int node;
2073
2074	for_each_online_node(node) {
2075		if (!cpumask_empty(cpumask_of_node(node)))
2076			node_set_state(node, N_CPU);
2077	}
 
 
 
 
2078}
2079
2080static int vmstat_cpu_online(unsigned int cpu)
 
 
 
 
 
 
2081{
2082	refresh_zone_stat_thresholds();
2083
2084	if (!node_state(cpu_to_node(cpu), N_CPU)) {
 
 
 
2085		node_set_state(cpu_to_node(cpu), N_CPU);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086	}
2087
2088	return 0;
2089}
2090
2091static int vmstat_cpu_down_prep(unsigned int cpu)
2092{
2093	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2094	return 0;
2095}
2096
2097static int vmstat_cpu_dead(unsigned int cpu)
2098{
2099	const struct cpumask *node_cpus;
2100	int node;
2101
2102	node = cpu_to_node(cpu);
2103
2104	refresh_zone_stat_thresholds();
2105	node_cpus = cpumask_of_node(node);
2106	if (!cpumask_empty(node_cpus))
2107		return 0;
2108
2109	node_clear_state(node, N_CPU);
2110
2111	return 0;
2112}
2113
 
 
2114#endif
2115
2116struct workqueue_struct *mm_percpu_wq;
2117
2118void __init init_mm_internals(void)
2119{
2120	int ret __maybe_unused;
2121
2122	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2123
2124#ifdef CONFIG_SMP
2125	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2126					NULL, vmstat_cpu_dead);
2127	if (ret < 0)
2128		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2129
2130	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2131					vmstat_cpu_online,
2132					vmstat_cpu_down_prep);
2133	if (ret < 0)
2134		pr_err("vmstat: failed to register 'online' hotplug state\n");
2135
2136	cpus_read_lock();
2137	init_cpu_node_state();
2138	cpus_read_unlock();
2139
2140	start_shepherd_timer();
 
2141#endif
2142#ifdef CONFIG_PROC_FS
2143	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2144	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2145	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2146	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2147#endif
 
2148}
 
2149
2150#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2151
2152/*
2153 * Return an index indicating how much of the available free memory is
2154 * unusable for an allocation of the requested size.
2155 */
2156static int unusable_free_index(unsigned int order,
2157				struct contig_page_info *info)
2158{
2159	/* No free memory is interpreted as all free memory is unusable */
2160	if (info->free_pages == 0)
2161		return 1000;
2162
2163	/*
2164	 * Index should be a value between 0 and 1. Return a value to 3
2165	 * decimal places.
2166	 *
2167	 * 0 => no fragmentation
2168	 * 1 => high fragmentation
2169	 */
2170	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2171
2172}
2173
2174static void unusable_show_print(struct seq_file *m,
2175					pg_data_t *pgdat, struct zone *zone)
2176{
2177	unsigned int order;
2178	int index;
2179	struct contig_page_info info;
2180
2181	seq_printf(m, "Node %d, zone %8s ",
2182				pgdat->node_id,
2183				zone->name);
2184	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2185		fill_contig_page_info(zone, order, &info);
2186		index = unusable_free_index(order, &info);
2187		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2188	}
2189
2190	seq_putc(m, '\n');
2191}
2192
2193/*
2194 * Display unusable free space index
2195 *
2196 * The unusable free space index measures how much of the available free
2197 * memory cannot be used to satisfy an allocation of a given size and is a
2198 * value between 0 and 1. The higher the value, the more of free memory is
2199 * unusable and by implication, the worse the external fragmentation is. This
2200 * can be expressed as a percentage by multiplying by 100.
2201 */
2202static int unusable_show(struct seq_file *m, void *arg)
2203{
2204	pg_data_t *pgdat = (pg_data_t *)arg;
2205
2206	/* check memoryless node */
2207	if (!node_state(pgdat->node_id, N_MEMORY))
2208		return 0;
2209
2210	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2211
2212	return 0;
2213}
2214
2215static const struct seq_operations unusable_sops = {
2216	.start	= frag_start,
2217	.next	= frag_next,
2218	.stop	= frag_stop,
2219	.show	= unusable_show,
2220};
2221
2222DEFINE_SEQ_ATTRIBUTE(unusable);
 
 
 
 
 
 
 
 
 
 
2223
2224static void extfrag_show_print(struct seq_file *m,
2225					pg_data_t *pgdat, struct zone *zone)
2226{
2227	unsigned int order;
2228	int index;
2229
2230	/* Alloc on stack as interrupts are disabled for zone walk */
2231	struct contig_page_info info;
2232
2233	seq_printf(m, "Node %d, zone %8s ",
2234				pgdat->node_id,
2235				zone->name);
2236	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2237		fill_contig_page_info(zone, order, &info);
2238		index = __fragmentation_index(order, &info);
2239		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2240	}
2241
2242	seq_putc(m, '\n');
2243}
2244
2245/*
2246 * Display fragmentation index for orders that allocations would fail for
2247 */
2248static int extfrag_show(struct seq_file *m, void *arg)
2249{
2250	pg_data_t *pgdat = (pg_data_t *)arg;
2251
2252	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2253
2254	return 0;
2255}
2256
2257static const struct seq_operations extfrag_sops = {
2258	.start	= frag_start,
2259	.next	= frag_next,
2260	.stop	= frag_stop,
2261	.show	= extfrag_show,
2262};
2263
2264DEFINE_SEQ_ATTRIBUTE(extfrag);
 
 
 
 
 
 
 
 
 
 
2265
2266static int __init extfrag_debug_init(void)
2267{
2268	struct dentry *extfrag_debug_root;
2269
2270	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
 
 
2271
2272	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2273			    &unusable_fops);
2274
2275	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2276			    &extfrag_fops);
 
 
2277
2278	return 0;
 
 
 
2279}
2280
2281module_init(extfrag_debug_init);
2282#endif
v4.6
 
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *		Christoph Lameter <christoph@lameter.com>
  10 *  Copyright (C) 2008-2014 Christoph Lameter
  11 */
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/cpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/vmstat.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/debugfs.h>
  23#include <linux/sched.h>
  24#include <linux/math64.h>
  25#include <linux/writeback.h>
  26#include <linux/compaction.h>
  27#include <linux/mm_inline.h>
  28#include <linux/page_ext.h>
  29#include <linux/page_owner.h>
 
  30
  31#include "internal.h"
  32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33#ifdef CONFIG_VM_EVENT_COUNTERS
  34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  35EXPORT_PER_CPU_SYMBOL(vm_event_states);
  36
  37static void sum_vm_events(unsigned long *ret)
  38{
  39	int cpu;
  40	int i;
  41
  42	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  43
  44	for_each_online_cpu(cpu) {
  45		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  46
  47		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  48			ret[i] += this->event[i];
  49	}
  50}
  51
  52/*
  53 * Accumulate the vm event counters across all CPUs.
  54 * The result is unavoidably approximate - it can change
  55 * during and after execution of this function.
  56*/
  57void all_vm_events(unsigned long *ret)
  58{
  59	get_online_cpus();
  60	sum_vm_events(ret);
  61	put_online_cpus();
  62}
  63EXPORT_SYMBOL_GPL(all_vm_events);
  64
  65/*
  66 * Fold the foreign cpu events into our own.
  67 *
  68 * This is adding to the events on one processor
  69 * but keeps the global counts constant.
  70 */
  71void vm_events_fold_cpu(int cpu)
  72{
  73	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  74	int i;
  75
  76	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  77		count_vm_events(i, fold_state->event[i]);
  78		fold_state->event[i] = 0;
  79	}
  80}
  81
  82#endif /* CONFIG_VM_EVENT_COUNTERS */
  83
  84/*
  85 * Manage combined zone based / global counters
  86 *
  87 * vm_stat contains the global counters
  88 */
  89atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  90EXPORT_SYMBOL(vm_stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92#ifdef CONFIG_SMP
  93
  94int calculate_pressure_threshold(struct zone *zone)
  95{
  96	int threshold;
  97	int watermark_distance;
  98
  99	/*
 100	 * As vmstats are not up to date, there is drift between the estimated
 101	 * and real values. For high thresholds and a high number of CPUs, it
 102	 * is possible for the min watermark to be breached while the estimated
 103	 * value looks fine. The pressure threshold is a reduced value such
 104	 * that even the maximum amount of drift will not accidentally breach
 105	 * the min watermark
 106	 */
 107	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 108	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 109
 110	/*
 111	 * Maximum threshold is 125
 112	 */
 113	threshold = min(125, threshold);
 114
 115	return threshold;
 116}
 117
 118int calculate_normal_threshold(struct zone *zone)
 119{
 120	int threshold;
 121	int mem;	/* memory in 128 MB units */
 122
 123	/*
 124	 * The threshold scales with the number of processors and the amount
 125	 * of memory per zone. More memory means that we can defer updates for
 126	 * longer, more processors could lead to more contention.
 127 	 * fls() is used to have a cheap way of logarithmic scaling.
 128	 *
 129	 * Some sample thresholds:
 130	 *
 131	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
 132	 * ------------------------------------------------------------------
 133	 * 8		1		1	0.9-1 GB	4
 134	 * 16		2		2	0.9-1 GB	4
 135	 * 20 		2		2	1-2 GB		5
 136	 * 24		2		2	2-4 GB		6
 137	 * 28		2		2	4-8 GB		7
 138	 * 32		2		2	8-16 GB		8
 139	 * 4		2		2	<128M		1
 140	 * 30		4		3	2-4 GB		5
 141	 * 48		4		3	8-16 GB		8
 142	 * 32		8		4	1-2 GB		4
 143	 * 32		8		4	0.9-1GB		4
 144	 * 10		16		5	<128M		1
 145	 * 40		16		5	900M		4
 146	 * 70		64		7	2-4 GB		5
 147	 * 84		64		7	4-8 GB		6
 148	 * 108		512		9	4-8 GB		6
 149	 * 125		1024		10	8-16 GB		8
 150	 * 125		1024		10	16-32 GB	9
 151	 */
 152
 153	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
 154
 155	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 156
 157	/*
 158	 * Maximum threshold is 125
 159	 */
 160	threshold = min(125, threshold);
 161
 162	return threshold;
 163}
 164
 165/*
 166 * Refresh the thresholds for each zone.
 167 */
 168void refresh_zone_stat_thresholds(void)
 169{
 
 170	struct zone *zone;
 171	int cpu;
 172	int threshold;
 173
 
 
 
 
 
 
 
 174	for_each_populated_zone(zone) {
 
 175		unsigned long max_drift, tolerate_drift;
 176
 177		threshold = calculate_normal_threshold(zone);
 178
 179		for_each_online_cpu(cpu)
 180			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 
 
 181							= threshold;
 182
 
 
 
 
 
 
 183		/*
 184		 * Only set percpu_drift_mark if there is a danger that
 185		 * NR_FREE_PAGES reports the low watermark is ok when in fact
 186		 * the min watermark could be breached by an allocation
 187		 */
 188		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 189		max_drift = num_online_cpus() * threshold;
 190		if (max_drift > tolerate_drift)
 191			zone->percpu_drift_mark = high_wmark_pages(zone) +
 192					max_drift;
 193	}
 194}
 195
 196void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 197				int (*calculate_pressure)(struct zone *))
 198{
 199	struct zone *zone;
 200	int cpu;
 201	int threshold;
 202	int i;
 203
 204	for (i = 0; i < pgdat->nr_zones; i++) {
 205		zone = &pgdat->node_zones[i];
 206		if (!zone->percpu_drift_mark)
 207			continue;
 208
 209		threshold = (*calculate_pressure)(zone);
 210		for_each_online_cpu(cpu)
 211			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 212							= threshold;
 213	}
 214}
 215
 216/*
 217 * For use when we know that interrupts are disabled,
 218 * or when we know that preemption is disabled and that
 219 * particular counter cannot be updated from interrupt context.
 220 */
 221void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 222			   long delta)
 223{
 224	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 225	s8 __percpu *p = pcp->vm_stat_diff + item;
 226	long x;
 227	long t;
 228
 
 
 
 
 
 
 
 
 
 229	x = delta + __this_cpu_read(*p);
 230
 231	t = __this_cpu_read(pcp->stat_threshold);
 232
 233	if (unlikely(x > t || x < -t)) {
 234		zone_page_state_add(x, zone, item);
 235		x = 0;
 236	}
 237	__this_cpu_write(*p, x);
 
 
 238}
 239EXPORT_SYMBOL(__mod_zone_page_state);
 240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241/*
 242 * Optimized increment and decrement functions.
 243 *
 244 * These are only for a single page and therefore can take a struct page *
 245 * argument instead of struct zone *. This allows the inclusion of the code
 246 * generated for page_zone(page) into the optimized functions.
 247 *
 248 * No overflow check is necessary and therefore the differential can be
 249 * incremented or decremented in place which may allow the compilers to
 250 * generate better code.
 251 * The increment or decrement is known and therefore one boundary check can
 252 * be omitted.
 253 *
 254 * NOTE: These functions are very performance sensitive. Change only
 255 * with care.
 256 *
 257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 258 * However, the code must first determine the differential location in a zone
 259 * based on the processor number and then inc/dec the counter. There is no
 260 * guarantee without disabling preemption that the processor will not change
 261 * in between and therefore the atomicity vs. interrupt cannot be exploited
 262 * in a useful way here.
 263 */
 264void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 265{
 266	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 267	s8 __percpu *p = pcp->vm_stat_diff + item;
 268	s8 v, t;
 269
 
 
 
 270	v = __this_cpu_inc_return(*p);
 271	t = __this_cpu_read(pcp->stat_threshold);
 272	if (unlikely(v > t)) {
 273		s8 overstep = t >> 1;
 274
 275		zone_page_state_add(v + overstep, zone, item);
 276		__this_cpu_write(*p, -overstep);
 277	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 281{
 282	__inc_zone_state(page_zone(page), item);
 283}
 284EXPORT_SYMBOL(__inc_zone_page_state);
 285
 
 
 
 
 
 
 286void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 287{
 288	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 289	s8 __percpu *p = pcp->vm_stat_diff + item;
 290	s8 v, t;
 291
 
 
 
 292	v = __this_cpu_dec_return(*p);
 293	t = __this_cpu_read(pcp->stat_threshold);
 294	if (unlikely(v < - t)) {
 295		s8 overstep = t >> 1;
 296
 297		zone_page_state_add(v - overstep, zone, item);
 298		__this_cpu_write(*p, overstep);
 299	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300}
 301
 302void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 303{
 304	__dec_zone_state(page_zone(page), item);
 305}
 306EXPORT_SYMBOL(__dec_zone_page_state);
 307
 
 
 
 
 
 
 308#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 309/*
 310 * If we have cmpxchg_local support then we do not need to incur the overhead
 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 312 *
 313 * mod_state() modifies the zone counter state through atomic per cpu
 314 * operations.
 315 *
 316 * Overstep mode specifies how overstep should handled:
 317 *     0       No overstepping
 318 *     1       Overstepping half of threshold
 319 *     -1      Overstepping minus half of threshold
 320*/
 321static inline void mod_state(struct zone *zone, enum zone_stat_item item,
 322			     long delta, int overstep_mode)
 323{
 324	struct per_cpu_pageset __percpu *pcp = zone->pageset;
 325	s8 __percpu *p = pcp->vm_stat_diff + item;
 326	long o, n, t, z;
 
 327
 
 328	do {
 329		z = 0;  /* overflow to zone counters */
 330
 331		/*
 332		 * The fetching of the stat_threshold is racy. We may apply
 333		 * a counter threshold to the wrong the cpu if we get
 334		 * rescheduled while executing here. However, the next
 335		 * counter update will apply the threshold again and
 336		 * therefore bring the counter under the threshold again.
 337		 *
 338		 * Most of the time the thresholds are the same anyways
 339		 * for all cpus in a zone.
 340		 */
 341		t = this_cpu_read(pcp->stat_threshold);
 342
 343		o = this_cpu_read(*p);
 344		n = delta + o;
 345
 346		if (n > t || n < -t) {
 347			int os = overstep_mode * (t >> 1) ;
 348
 349			/* Overflow must be added to zone counters */
 350			z = n + os;
 351			n = -os;
 352		}
 353	} while (this_cpu_cmpxchg(*p, o, n) != o);
 354
 355	if (z)
 356		zone_page_state_add(z, zone, item);
 357}
 358
 359void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 360			 long delta)
 361{
 362	mod_state(zone, item, delta, 0);
 363}
 364EXPORT_SYMBOL(mod_zone_page_state);
 365
 366void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 367{
 368	mod_state(zone, item, 1, 1);
 369}
 370
 371void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 372{
 373	mod_state(page_zone(page), item, 1, 1);
 374}
 375EXPORT_SYMBOL(inc_zone_page_state);
 376
 377void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 378{
 379	mod_state(page_zone(page), item, -1, -1);
 380}
 381EXPORT_SYMBOL(dec_zone_page_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382#else
 383/*
 384 * Use interrupt disable to serialize counter updates
 385 */
 386void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 387			 long delta)
 388{
 389	unsigned long flags;
 390
 391	local_irq_save(flags);
 392	__mod_zone_page_state(zone, item, delta);
 393	local_irq_restore(flags);
 394}
 395EXPORT_SYMBOL(mod_zone_page_state);
 396
 397void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 398{
 399	unsigned long flags;
 
 400
 
 401	local_irq_save(flags);
 402	__inc_zone_state(zone, item);
 403	local_irq_restore(flags);
 404}
 
 
 
 
 
 
 
 
 
 
 
 405
 406void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407{
 408	unsigned long flags;
 409	struct zone *zone;
 410
 411	zone = page_zone(page);
 412	local_irq_save(flags);
 413	__inc_zone_state(zone, item);
 414	local_irq_restore(flags);
 415}
 416EXPORT_SYMBOL(inc_zone_page_state);
 417
 418void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 419{
 420	unsigned long flags;
 421
 422	local_irq_save(flags);
 423	__dec_zone_page_state(page, item);
 424	local_irq_restore(flags);
 425}
 426EXPORT_SYMBOL(dec_zone_page_state);
 427#endif
 428
 429
 430/*
 431 * Fold a differential into the global counters.
 432 * Returns the number of counters updated.
 433 */
 434static int fold_diff(int *diff)
 435{
 436	int i;
 437	int changes = 0;
 438
 439	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 440		if (diff[i]) {
 441			atomic_long_add(diff[i], &vm_stat[i]);
 
 
 
 
 
 
 442			changes++;
 443	}
 444	return changes;
 445}
 446
 447/*
 448 * Update the zone counters for the current cpu.
 449 *
 450 * Note that refresh_cpu_vm_stats strives to only access
 451 * node local memory. The per cpu pagesets on remote zones are placed
 452 * in the memory local to the processor using that pageset. So the
 453 * loop over all zones will access a series of cachelines local to
 454 * the processor.
 455 *
 456 * The call to zone_page_state_add updates the cachelines with the
 457 * statistics in the remote zone struct as well as the global cachelines
 458 * with the global counters. These could cause remote node cache line
 459 * bouncing and will have to be only done when necessary.
 460 *
 461 * The function returns the number of global counters updated.
 462 */
 463static int refresh_cpu_vm_stats(bool do_pagesets)
 464{
 
 465	struct zone *zone;
 466	int i;
 467	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 
 468	int changes = 0;
 469
 470	for_each_populated_zone(zone) {
 471		struct per_cpu_pageset __percpu *p = zone->pageset;
 
 472
 473		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 474			int v;
 475
 476			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 477			if (v) {
 478
 479				atomic_long_add(v, &zone->vm_stat[i]);
 480				global_diff[i] += v;
 481#ifdef CONFIG_NUMA
 482				/* 3 seconds idle till flush */
 483				__this_cpu_write(p->expire, 3);
 484#endif
 485			}
 486		}
 487#ifdef CONFIG_NUMA
 488		if (do_pagesets) {
 489			cond_resched();
 
 
 
 490			/*
 491			 * Deal with draining the remote pageset of this
 492			 * processor
 493			 *
 494			 * Check if there are pages remaining in this pageset
 495			 * if not then there is nothing to expire.
 496			 */
 497			if (!__this_cpu_read(p->expire) ||
 498			       !__this_cpu_read(p->pcp.count))
 499				continue;
 500
 501			/*
 502			 * We never drain zones local to this processor.
 503			 */
 504			if (zone_to_nid(zone) == numa_node_id()) {
 505				__this_cpu_write(p->expire, 0);
 506				continue;
 507			}
 508
 509			if (__this_cpu_dec_return(p->expire))
 
 510				continue;
 
 511
 512			if (__this_cpu_read(p->pcp.count)) {
 513				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 514				changes++;
 515			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516		}
 517#endif
 518	}
 519	changes += fold_diff(global_diff);
 
 520	return changes;
 521}
 522
 523/*
 524 * Fold the data for an offline cpu into the global array.
 525 * There cannot be any access by the offline cpu and therefore
 526 * synchronization is simplified.
 527 */
 528void cpu_vm_stats_fold(int cpu)
 529{
 
 530	struct zone *zone;
 531	int i;
 532	int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 
 533
 534	for_each_populated_zone(zone) {
 535		struct per_cpu_pageset *p;
 536
 537		p = per_cpu_ptr(zone->pageset, cpu);
 538
 539		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 540			if (p->vm_stat_diff[i]) {
 541				int v;
 542
 543				v = p->vm_stat_diff[i];
 544				p->vm_stat_diff[i] = 0;
 545				atomic_long_add(v, &zone->vm_stat[i]);
 546				global_diff[i] += v;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547			}
 548	}
 549
 550	fold_diff(global_diff);
 551}
 552
 553/*
 554 * this is only called if !populated_zone(zone), which implies no other users of
 555 * pset->vm_stat_diff[] exsist.
 556 */
 557void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 558{
 
 559	int i;
 560
 561	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 562		if (pset->vm_stat_diff[i]) {
 563			int v = pset->vm_stat_diff[i];
 564			pset->vm_stat_diff[i] = 0;
 565			atomic_long_add(v, &zone->vm_stat[i]);
 566			atomic_long_add(v, &vm_stat[i]);
 
 
 
 
 
 
 
 
 567		}
 
 
 568}
 569#endif
 570
 571#ifdef CONFIG_NUMA
 572/*
 573 * zonelist = the list of zones passed to the allocator
 574 * z 	    = the zone from which the allocation occurred.
 575 *
 576 * Must be called with interrupts disabled.
 577 *
 578 * When __GFP_OTHER_NODE is set assume the node of the preferred
 579 * zone is the local node. This is useful for daemons who allocate
 580 * memory on behalf of other processes.
 581 */
 582void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
 
 583{
 584	if (z->zone_pgdat == preferred_zone->zone_pgdat) {
 585		__inc_zone_state(z, NUMA_HIT);
 586	} else {
 587		__inc_zone_state(z, NUMA_MISS);
 588		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
 589	}
 590	if (z->node == ((flags & __GFP_OTHER_NODE) ?
 591			preferred_zone->node : numa_node_id()))
 592		__inc_zone_state(z, NUMA_LOCAL);
 593	else
 594		__inc_zone_state(z, NUMA_OTHER);
 
 
 
 
 
 
 
 
 
 
 
 595}
 596
 597/*
 598 * Determine the per node value of a stat item.
 599 */
 600unsigned long node_page_state(int node, enum zone_stat_item item)
 
 601{
 602	struct zone *zones = NODE_DATA(node)->node_zones;
 603
 604	return
 605#ifdef CONFIG_ZONE_DMA
 606		zone_page_state(&zones[ZONE_DMA], item) +
 607#endif
 608#ifdef CONFIG_ZONE_DMA32
 609		zone_page_state(&zones[ZONE_DMA32], item) +
 610#endif
 611#ifdef CONFIG_HIGHMEM
 612		zone_page_state(&zones[ZONE_HIGHMEM], item) +
 613#endif
 614		zone_page_state(&zones[ZONE_NORMAL], item) +
 615		zone_page_state(&zones[ZONE_MOVABLE], item);
 616}
 617
 
 
 
 
 
 
 
 618#endif
 619
 620#ifdef CONFIG_COMPACTION
 621
 622struct contig_page_info {
 623	unsigned long free_pages;
 624	unsigned long free_blocks_total;
 625	unsigned long free_blocks_suitable;
 626};
 627
 628/*
 629 * Calculate the number of free pages in a zone, how many contiguous
 630 * pages are free and how many are large enough to satisfy an allocation of
 631 * the target size. Note that this function makes no attempt to estimate
 632 * how many suitable free blocks there *might* be if MOVABLE pages were
 633 * migrated. Calculating that is possible, but expensive and can be
 634 * figured out from userspace
 635 */
 636static void fill_contig_page_info(struct zone *zone,
 637				unsigned int suitable_order,
 638				struct contig_page_info *info)
 639{
 640	unsigned int order;
 641
 642	info->free_pages = 0;
 643	info->free_blocks_total = 0;
 644	info->free_blocks_suitable = 0;
 645
 646	for (order = 0; order < MAX_ORDER; order++) {
 647		unsigned long blocks;
 648
 649		/* Count number of free blocks */
 650		blocks = zone->free_area[order].nr_free;
 
 
 
 
 
 651		info->free_blocks_total += blocks;
 652
 653		/* Count free base pages */
 654		info->free_pages += blocks << order;
 655
 656		/* Count the suitable free blocks */
 657		if (order >= suitable_order)
 658			info->free_blocks_suitable += blocks <<
 659						(order - suitable_order);
 660	}
 661}
 662
 663/*
 664 * A fragmentation index only makes sense if an allocation of a requested
 665 * size would fail. If that is true, the fragmentation index indicates
 666 * whether external fragmentation or a lack of memory was the problem.
 667 * The value can be used to determine if page reclaim or compaction
 668 * should be used
 669 */
 670static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 671{
 672	unsigned long requested = 1UL << order;
 673
 
 
 
 674	if (!info->free_blocks_total)
 675		return 0;
 676
 677	/* Fragmentation index only makes sense when a request would fail */
 678	if (info->free_blocks_suitable)
 679		return -1000;
 680
 681	/*
 682	 * Index is between 0 and 1 so return within 3 decimal places
 683	 *
 684	 * 0 => allocation would fail due to lack of memory
 685	 * 1 => allocation would fail due to fragmentation
 686	 */
 687	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 688}
 689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690/* Same as __fragmentation index but allocs contig_page_info on stack */
 691int fragmentation_index(struct zone *zone, unsigned int order)
 692{
 693	struct contig_page_info info;
 694
 695	fill_contig_page_info(zone, order, &info);
 696	return __fragmentation_index(order, &info);
 697}
 698#endif
 699
 700#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
 
 701#ifdef CONFIG_ZONE_DMA
 702#define TEXT_FOR_DMA(xx) xx "_dma",
 703#else
 704#define TEXT_FOR_DMA(xx)
 705#endif
 706
 707#ifdef CONFIG_ZONE_DMA32
 708#define TEXT_FOR_DMA32(xx) xx "_dma32",
 709#else
 710#define TEXT_FOR_DMA32(xx)
 711#endif
 712
 713#ifdef CONFIG_HIGHMEM
 714#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 715#else
 716#define TEXT_FOR_HIGHMEM(xx)
 717#endif
 718
 
 
 
 
 
 
 719#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 720					TEXT_FOR_HIGHMEM(xx) xx "_movable",
 
 721
 722const char * const vmstat_text[] = {
 723	/* enum zone_stat_item countes */
 724	"nr_free_pages",
 725	"nr_alloc_batch",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726	"nr_inactive_anon",
 727	"nr_active_anon",
 728	"nr_inactive_file",
 729	"nr_active_file",
 730	"nr_unevictable",
 731	"nr_mlock",
 
 
 
 
 
 
 
 
 
 
 
 732	"nr_anon_pages",
 733	"nr_mapped",
 734	"nr_file_pages",
 735	"nr_dirty",
 736	"nr_writeback",
 737	"nr_slab_reclaimable",
 738	"nr_slab_unreclaimable",
 739	"nr_page_table_pages",
 740	"nr_kernel_stack",
 741	"nr_unstable",
 742	"nr_bounce",
 
 743	"nr_vmscan_write",
 744	"nr_vmscan_immediate_reclaim",
 745	"nr_writeback_temp",
 746	"nr_isolated_anon",
 747	"nr_isolated_file",
 748	"nr_shmem",
 749	"nr_dirtied",
 750	"nr_written",
 751	"nr_pages_scanned",
 752
 753#ifdef CONFIG_NUMA
 754	"numa_hit",
 755	"numa_miss",
 756	"numa_foreign",
 757	"numa_interleave",
 758	"numa_local",
 759	"numa_other",
 
 
 
 
 
 
 
 760#endif
 761	"workingset_refault",
 762	"workingset_activate",
 763	"workingset_nodereclaim",
 764	"nr_anon_transparent_hugepages",
 765	"nr_free_cma",
 766
 767	/* enum writeback_stat_item counters */
 768	"nr_dirty_threshold",
 769	"nr_dirty_background_threshold",
 770
 771#ifdef CONFIG_VM_EVENT_COUNTERS
 772	/* enum vm_event_item counters */
 773	"pgpgin",
 774	"pgpgout",
 775	"pswpin",
 776	"pswpout",
 777
 778	TEXTS_FOR_ZONES("pgalloc")
 
 
 779
 780	"pgfree",
 781	"pgactivate",
 782	"pgdeactivate",
 
 783
 784	"pgfault",
 785	"pgmajfault",
 786	"pglazyfreed",
 787
 788	TEXTS_FOR_ZONES("pgrefill")
 789	TEXTS_FOR_ZONES("pgsteal_kswapd")
 790	TEXTS_FOR_ZONES("pgsteal_direct")
 791	TEXTS_FOR_ZONES("pgscan_kswapd")
 792	TEXTS_FOR_ZONES("pgscan_direct")
 
 
 
 793	"pgscan_direct_throttle",
 
 
 
 
 794
 795#ifdef CONFIG_NUMA
 796	"zone_reclaim_failed",
 797#endif
 798	"pginodesteal",
 799	"slabs_scanned",
 800	"kswapd_inodesteal",
 801	"kswapd_low_wmark_hit_quickly",
 802	"kswapd_high_wmark_hit_quickly",
 803	"pageoutrun",
 804	"allocstall",
 805
 806	"pgrotated",
 807
 808	"drop_pagecache",
 809	"drop_slab",
 
 810
 811#ifdef CONFIG_NUMA_BALANCING
 812	"numa_pte_updates",
 813	"numa_huge_pte_updates",
 814	"numa_hint_faults",
 815	"numa_hint_faults_local",
 816	"numa_pages_migrated",
 817#endif
 818#ifdef CONFIG_MIGRATION
 819	"pgmigrate_success",
 820	"pgmigrate_fail",
 
 
 
 821#endif
 822#ifdef CONFIG_COMPACTION
 823	"compact_migrate_scanned",
 824	"compact_free_scanned",
 825	"compact_isolated",
 826	"compact_stall",
 827	"compact_fail",
 828	"compact_success",
 829	"compact_daemon_wake",
 
 
 830#endif
 831
 832#ifdef CONFIG_HUGETLB_PAGE
 833	"htlb_buddy_alloc_success",
 834	"htlb_buddy_alloc_fail",
 835#endif
 
 
 
 
 836	"unevictable_pgs_culled",
 837	"unevictable_pgs_scanned",
 838	"unevictable_pgs_rescued",
 839	"unevictable_pgs_mlocked",
 840	"unevictable_pgs_munlocked",
 841	"unevictable_pgs_cleared",
 842	"unevictable_pgs_stranded",
 843
 844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 845	"thp_fault_alloc",
 846	"thp_fault_fallback",
 
 847	"thp_collapse_alloc",
 848	"thp_collapse_alloc_failed",
 
 
 
 
 849	"thp_split_page",
 850	"thp_split_page_failed",
 851	"thp_deferred_split_page",
 852	"thp_split_pmd",
 
 
 
 
 
 
 853	"thp_zero_page_alloc",
 854	"thp_zero_page_alloc_failed",
 
 
 855#endif
 856#ifdef CONFIG_MEMORY_BALLOON
 857	"balloon_inflate",
 858	"balloon_deflate",
 859#ifdef CONFIG_BALLOON_COMPACTION
 860	"balloon_migrate",
 861#endif
 862#endif /* CONFIG_MEMORY_BALLOON */
 863#ifdef CONFIG_DEBUG_TLBFLUSH
 864#ifdef CONFIG_SMP
 865	"nr_tlb_remote_flush",
 866	"nr_tlb_remote_flush_received",
 867#endif /* CONFIG_SMP */
 868	"nr_tlb_local_flush_all",
 869	"nr_tlb_local_flush_one",
 870#endif /* CONFIG_DEBUG_TLBFLUSH */
 871
 872#ifdef CONFIG_DEBUG_VM_VMACACHE
 873	"vmacache_find_calls",
 874	"vmacache_find_hits",
 875	"vmacache_full_flushes",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876#endif
 877#endif /* CONFIG_VM_EVENTS_COUNTERS */
 878};
 879#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
 880
 881
 882#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
 883     defined(CONFIG_PROC_FS)
 884static void *frag_start(struct seq_file *m, loff_t *pos)
 885{
 886	pg_data_t *pgdat;
 887	loff_t node = *pos;
 888
 889	for (pgdat = first_online_pgdat();
 890	     pgdat && node;
 891	     pgdat = next_online_pgdat(pgdat))
 892		--node;
 893
 894	return pgdat;
 895}
 896
 897static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 898{
 899	pg_data_t *pgdat = (pg_data_t *)arg;
 900
 901	(*pos)++;
 902	return next_online_pgdat(pgdat);
 903}
 904
 905static void frag_stop(struct seq_file *m, void *arg)
 906{
 907}
 908
 909/* Walk all the zones in a node and print using a callback */
 
 
 
 910static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
 
 911		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
 912{
 913	struct zone *zone;
 914	struct zone *node_zones = pgdat->node_zones;
 915	unsigned long flags;
 916
 917	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 918		if (!populated_zone(zone))
 919			continue;
 920
 921		spin_lock_irqsave(&zone->lock, flags);
 
 922		print(m, pgdat, zone);
 923		spin_unlock_irqrestore(&zone->lock, flags);
 
 924	}
 925}
 926#endif
 927
 928#ifdef CONFIG_PROC_FS
 929static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
 930						struct zone *zone)
 931{
 932	int order;
 933
 934	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 935	for (order = 0; order < MAX_ORDER; ++order)
 936		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 
 
 
 
 937	seq_putc(m, '\n');
 938}
 939
 940/*
 941 * This walks the free areas for each zone.
 942 */
 943static int frag_show(struct seq_file *m, void *arg)
 944{
 945	pg_data_t *pgdat = (pg_data_t *)arg;
 946	walk_zones_in_node(m, pgdat, frag_show_print);
 947	return 0;
 948}
 949
 950static void pagetypeinfo_showfree_print(struct seq_file *m,
 951					pg_data_t *pgdat, struct zone *zone)
 952{
 953	int order, mtype;
 954
 955	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
 956		seq_printf(m, "Node %4d, zone %8s, type %12s ",
 957					pgdat->node_id,
 958					zone->name,
 959					migratetype_names[mtype]);
 960		for (order = 0; order < MAX_ORDER; ++order) {
 961			unsigned long freecount = 0;
 962			struct free_area *area;
 963			struct list_head *curr;
 
 964
 965			area = &(zone->free_area[order]);
 966
 967			list_for_each(curr, &area->free_list[mtype])
 968				freecount++;
 969			seq_printf(m, "%6lu ", freecount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970		}
 971		seq_putc(m, '\n');
 972	}
 973}
 974
 975/* Print out the free pages at each order for each migatetype */
 976static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
 977{
 978	int order;
 979	pg_data_t *pgdat = (pg_data_t *)arg;
 980
 981	/* Print header */
 982	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
 983	for (order = 0; order < MAX_ORDER; ++order)
 984		seq_printf(m, "%6d ", order);
 985	seq_putc(m, '\n');
 986
 987	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
 988
 989	return 0;
 990}
 991
 992static void pagetypeinfo_showblockcount_print(struct seq_file *m,
 993					pg_data_t *pgdat, struct zone *zone)
 994{
 995	int mtype;
 996	unsigned long pfn;
 997	unsigned long start_pfn = zone->zone_start_pfn;
 998	unsigned long end_pfn = zone_end_pfn(zone);
 999	unsigned long count[MIGRATE_TYPES] = { 0, };
1000
1001	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1002		struct page *page;
1003
1004		if (!pfn_valid(pfn))
 
1005			continue;
1006
1007		page = pfn_to_page(pfn);
1008
1009		/* Watch for unexpected holes punched in the memmap */
1010		if (!memmap_valid_within(pfn, page, zone))
1011			continue;
1012
1013		mtype = get_pageblock_migratetype(page);
1014
1015		if (mtype < MIGRATE_TYPES)
1016			count[mtype]++;
1017	}
1018
1019	/* Print counts */
1020	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1021	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1022		seq_printf(m, "%12lu ", count[mtype]);
1023	seq_putc(m, '\n');
1024}
1025
1026/* Print out the free pages at each order for each migratetype */
1027static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1028{
1029	int mtype;
1030	pg_data_t *pgdat = (pg_data_t *)arg;
1031
1032	seq_printf(m, "\n%-23s", "Number of blocks type ");
1033	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1034		seq_printf(m, "%12s ", migratetype_names[mtype]);
1035	seq_putc(m, '\n');
1036	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1037
1038	return 0;
1039}
1040
1041#ifdef CONFIG_PAGE_OWNER
1042static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1043							pg_data_t *pgdat,
1044							struct zone *zone)
1045{
1046	struct page *page;
1047	struct page_ext *page_ext;
1048	unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1049	unsigned long end_pfn = pfn + zone->spanned_pages;
1050	unsigned long count[MIGRATE_TYPES] = { 0, };
1051	int pageblock_mt, page_mt;
1052	int i;
1053
1054	/* Scan block by block. First and last block may be incomplete */
1055	pfn = zone->zone_start_pfn;
1056
1057	/*
1058	 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1059	 * a zone boundary, it will be double counted between zones. This does
1060	 * not matter as the mixed block count will still be correct
1061	 */
1062	for (; pfn < end_pfn; ) {
1063		if (!pfn_valid(pfn)) {
1064			pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1065			continue;
1066		}
1067
1068		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1069		block_end_pfn = min(block_end_pfn, end_pfn);
1070
1071		page = pfn_to_page(pfn);
1072		pageblock_mt = get_pfnblock_migratetype(page, pfn);
1073
1074		for (; pfn < block_end_pfn; pfn++) {
1075			if (!pfn_valid_within(pfn))
1076				continue;
1077
1078			page = pfn_to_page(pfn);
1079			if (PageBuddy(page)) {
1080				pfn += (1UL << page_order(page)) - 1;
1081				continue;
1082			}
1083
1084			if (PageReserved(page))
1085				continue;
1086
1087			page_ext = lookup_page_ext(page);
1088
1089			if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1090				continue;
1091
1092			page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1093			if (pageblock_mt != page_mt) {
1094				if (is_migrate_cma(pageblock_mt))
1095					count[MIGRATE_MOVABLE]++;
1096				else
1097					count[pageblock_mt]++;
1098
1099				pfn = block_end_pfn;
1100				break;
1101			}
1102			pfn += (1UL << page_ext->order) - 1;
1103		}
1104	}
1105
1106	/* Print counts */
1107	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1108	for (i = 0; i < MIGRATE_TYPES; i++)
1109		seq_printf(m, "%12lu ", count[i]);
1110	seq_putc(m, '\n');
1111}
1112#endif /* CONFIG_PAGE_OWNER */
1113
1114/*
1115 * Print out the number of pageblocks for each migratetype that contain pages
1116 * of other types. This gives an indication of how well fallbacks are being
1117 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1118 * to determine what is going on
1119 */
1120static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1121{
1122#ifdef CONFIG_PAGE_OWNER
1123	int mtype;
1124
1125	if (!static_branch_unlikely(&page_owner_inited))
1126		return;
1127
1128	drain_all_pages(NULL);
1129
1130	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1131	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1132		seq_printf(m, "%12s ", migratetype_names[mtype]);
1133	seq_putc(m, '\n');
1134
1135	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
 
1136#endif /* CONFIG_PAGE_OWNER */
1137}
1138
1139/*
1140 * This prints out statistics in relation to grouping pages by mobility.
1141 * It is expensive to collect so do not constantly read the file.
1142 */
1143static int pagetypeinfo_show(struct seq_file *m, void *arg)
1144{
1145	pg_data_t *pgdat = (pg_data_t *)arg;
1146
1147	/* check memoryless node */
1148	if (!node_state(pgdat->node_id, N_MEMORY))
1149		return 0;
1150
1151	seq_printf(m, "Page block order: %d\n", pageblock_order);
1152	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1153	seq_putc(m, '\n');
1154	pagetypeinfo_showfree(m, pgdat);
1155	pagetypeinfo_showblockcount(m, pgdat);
1156	pagetypeinfo_showmixedcount(m, pgdat);
1157
1158	return 0;
1159}
1160
1161static const struct seq_operations fragmentation_op = {
1162	.start	= frag_start,
1163	.next	= frag_next,
1164	.stop	= frag_stop,
1165	.show	= frag_show,
1166};
1167
1168static int fragmentation_open(struct inode *inode, struct file *file)
1169{
1170	return seq_open(file, &fragmentation_op);
1171}
1172
1173static const struct file_operations fragmentation_file_operations = {
1174	.open		= fragmentation_open,
1175	.read		= seq_read,
1176	.llseek		= seq_lseek,
1177	.release	= seq_release,
1178};
1179
1180static const struct seq_operations pagetypeinfo_op = {
1181	.start	= frag_start,
1182	.next	= frag_next,
1183	.stop	= frag_stop,
1184	.show	= pagetypeinfo_show,
1185};
1186
1187static int pagetypeinfo_open(struct inode *inode, struct file *file)
1188{
1189	return seq_open(file, &pagetypeinfo_op);
 
 
 
 
 
 
 
 
 
1190}
1191
1192static const struct file_operations pagetypeinfo_file_ops = {
1193	.open		= pagetypeinfo_open,
1194	.read		= seq_read,
1195	.llseek		= seq_lseek,
1196	.release	= seq_release,
1197};
1198
1199static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1200							struct zone *zone)
1201{
1202	int i;
1203	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
 
 
 
 
 
 
 
 
 
 
 
1204	seq_printf(m,
1205		   "\n  pages free     %lu"
 
1206		   "\n        min      %lu"
1207		   "\n        low      %lu"
1208		   "\n        high     %lu"
1209		   "\n        scanned  %lu"
1210		   "\n        spanned  %lu"
1211		   "\n        present  %lu"
1212		   "\n        managed  %lu",
 
1213		   zone_page_state(zone, NR_FREE_PAGES),
 
1214		   min_wmark_pages(zone),
1215		   low_wmark_pages(zone),
1216		   high_wmark_pages(zone),
1217		   zone_page_state(zone, NR_PAGES_SCANNED),
1218		   zone->spanned_pages,
1219		   zone->present_pages,
1220		   zone->managed_pages);
1221
1222	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1223		seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1224				zone_page_state(zone, i));
1225
1226	seq_printf(m,
1227		   "\n        protection: (%ld",
1228		   zone->lowmem_reserve[0]);
1229	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1230		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1231	seq_printf(m,
1232		   ")"
1233		   "\n  pagesets");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234	for_each_online_cpu(i) {
1235		struct per_cpu_pageset *pageset;
 
1236
1237		pageset = per_cpu_ptr(zone->pageset, i);
1238		seq_printf(m,
1239			   "\n    cpu: %i"
1240			   "\n              count: %i"
1241			   "\n              high:  %i"
1242			   "\n              batch: %i",
1243			   i,
1244			   pageset->pcp.count,
1245			   pageset->pcp.high,
1246			   pageset->pcp.batch);
1247#ifdef CONFIG_SMP
 
1248		seq_printf(m, "\n  vm stats threshold: %d",
1249				pageset->stat_threshold);
1250#endif
1251	}
1252	seq_printf(m,
1253		   "\n  all_unreclaimable: %u"
1254		   "\n  start_pfn:         %lu"
1255		   "\n  inactive_ratio:    %u",
1256		   !zone_reclaimable(zone),
1257		   zone->zone_start_pfn,
1258		   zone->inactive_ratio);
1259	seq_putc(m, '\n');
1260}
1261
1262/*
1263 * Output information about zones in @pgdat.
 
 
 
1264 */
1265static int zoneinfo_show(struct seq_file *m, void *arg)
1266{
1267	pg_data_t *pgdat = (pg_data_t *)arg;
1268	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1269	return 0;
1270}
1271
1272static const struct seq_operations zoneinfo_op = {
1273	.start	= frag_start, /* iterate over all zones. The same as in
1274			       * fragmentation. */
1275	.next	= frag_next,
1276	.stop	= frag_stop,
1277	.show	= zoneinfo_show,
1278};
1279
1280static int zoneinfo_open(struct inode *inode, struct file *file)
1281{
1282	return seq_open(file, &zoneinfo_op);
1283}
1284
1285static const struct file_operations proc_zoneinfo_file_operations = {
1286	.open		= zoneinfo_open,
1287	.read		= seq_read,
1288	.llseek		= seq_lseek,
1289	.release	= seq_release,
1290};
1291
1292enum writeback_stat_item {
1293	NR_DIRTY_THRESHOLD,
1294	NR_DIRTY_BG_THRESHOLD,
1295	NR_VM_WRITEBACK_STAT_ITEMS,
1296};
1297
1298static void *vmstat_start(struct seq_file *m, loff_t *pos)
1299{
1300	unsigned long *v;
1301	int i, stat_items_size;
1302
1303	if (*pos >= ARRAY_SIZE(vmstat_text))
1304		return NULL;
1305	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1306			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1307
1308#ifdef CONFIG_VM_EVENT_COUNTERS
1309	stat_items_size += sizeof(struct vm_event_state);
1310#endif
1311
1312	v = kmalloc(stat_items_size, GFP_KERNEL);
1313	m->private = v;
1314	if (!v)
1315		return ERR_PTR(-ENOMEM);
1316	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1317		v[i] = global_page_state(i);
1318	v += NR_VM_ZONE_STAT_ITEMS;
1319
 
 
 
 
 
 
 
 
 
 
 
 
 
1320	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1321			    v + NR_DIRTY_THRESHOLD);
1322	v += NR_VM_WRITEBACK_STAT_ITEMS;
1323
1324#ifdef CONFIG_VM_EVENT_COUNTERS
1325	all_vm_events(v);
1326	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1327	v[PGPGOUT] /= 2;
1328#endif
1329	return (unsigned long *)m->private + *pos;
1330}
1331
1332static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1333{
1334	(*pos)++;
1335	if (*pos >= ARRAY_SIZE(vmstat_text))
1336		return NULL;
1337	return (unsigned long *)m->private + *pos;
1338}
1339
1340static int vmstat_show(struct seq_file *m, void *arg)
1341{
1342	unsigned long *l = arg;
1343	unsigned long off = l - (unsigned long *)m->private;
1344
1345	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
 
 
 
 
 
 
 
 
 
 
1346	return 0;
1347}
1348
1349static void vmstat_stop(struct seq_file *m, void *arg)
1350{
1351	kfree(m->private);
1352	m->private = NULL;
1353}
1354
1355static const struct seq_operations vmstat_op = {
1356	.start	= vmstat_start,
1357	.next	= vmstat_next,
1358	.stop	= vmstat_stop,
1359	.show	= vmstat_show,
1360};
 
1361
1362static int vmstat_open(struct inode *inode, struct file *file)
 
 
 
 
 
1363{
1364	return seq_open(file, &vmstat_op);
1365}
1366
1367static const struct file_operations proc_vmstat_file_operations = {
1368	.open		= vmstat_open,
1369	.read		= seq_read,
1370	.llseek		= seq_lseek,
1371	.release	= seq_release,
1372};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373#endif /* CONFIG_PROC_FS */
1374
1375#ifdef CONFIG_SMP
1376static struct workqueue_struct *vmstat_wq;
1377static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1378int sysctl_stat_interval __read_mostly = HZ;
1379static cpumask_var_t cpu_stat_off;
1380
1381static void vmstat_update(struct work_struct *w)
1382{
1383	if (refresh_cpu_vm_stats(true)) {
1384		/*
1385		 * Counters were updated so we expect more updates
1386		 * to occur in the future. Keep on running the
1387		 * update worker thread.
1388		 * If we were marked on cpu_stat_off clear the flag
1389		 * so that vmstat_shepherd doesn't schedule us again.
1390		 */
1391		if (!cpumask_test_and_clear_cpu(smp_processor_id(),
1392						cpu_stat_off)) {
1393			queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1394				this_cpu_ptr(&vmstat_work),
1395				round_jiffies_relative(sysctl_stat_interval));
1396		}
1397	} else {
1398		/*
1399		 * We did not update any counters so the app may be in
1400		 * a mode where it does not cause counter updates.
1401		 * We may be uselessly running vmstat_update.
1402		 * Defer the checking for differentials to the
1403		 * shepherd thread on a different processor.
1404		 */
1405		cpumask_set_cpu(smp_processor_id(), cpu_stat_off);
1406	}
1407}
1408
1409/*
1410 * Switch off vmstat processing and then fold all the remaining differentials
1411 * until the diffs stay at zero. The function is used by NOHZ and can only be
1412 * invoked when tick processing is not active.
1413 */
1414/*
1415 * Check if the diffs for a certain cpu indicate that
1416 * an update is needed.
1417 */
1418static bool need_update(int cpu)
1419{
 
1420	struct zone *zone;
1421
1422	for_each_populated_zone(zone) {
1423		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
 
1424
1425		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1426		/*
1427		 * The fast way of checking if there are any vmstat diffs.
1428		 * This works because the diffs are byte sized items.
1429		 */
1430		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1431			return true;
1432
 
 
 
 
 
 
1433	}
1434	return false;
1435}
1436
 
 
 
 
 
1437void quiet_vmstat(void)
1438{
1439	if (system_state != SYSTEM_RUNNING)
1440		return;
1441
1442	/*
1443	 * If we are already in hands of the shepherd then there
1444	 * is nothing for us to do here.
1445	 */
1446	if (cpumask_test_and_set_cpu(smp_processor_id(), cpu_stat_off))
1447		return;
1448
1449	if (!need_update(smp_processor_id()))
1450		return;
1451
1452	/*
1453	 * Just refresh counters and do not care about the pending delayed
1454	 * vmstat_update. It doesn't fire that often to matter and canceling
1455	 * it would be too expensive from this path.
1456	 * vmstat_shepherd will take care about that for us.
1457	 */
1458	refresh_cpu_vm_stats(false);
1459}
1460
1461
1462/*
1463 * Shepherd worker thread that checks the
1464 * differentials of processors that have their worker
1465 * threads for vm statistics updates disabled because of
1466 * inactivity.
1467 */
1468static void vmstat_shepherd(struct work_struct *w);
1469
1470static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1471
1472static void vmstat_shepherd(struct work_struct *w)
1473{
1474	int cpu;
1475
1476	get_online_cpus();
1477	/* Check processors whose vmstat worker threads have been disabled */
1478	for_each_cpu(cpu, cpu_stat_off) {
1479		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1480
1481		if (need_update(cpu)) {
1482			if (cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1483				queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1484		} else {
1485			/*
1486			 * Cancel the work if quiet_vmstat has put this
1487			 * cpu on cpu_stat_off because the work item might
1488			 * be still scheduled
1489			 */
1490			cancel_delayed_work(dw);
1491		}
 
 
 
 
 
 
 
1492	}
1493	put_online_cpus();
1494
1495	schedule_delayed_work(&shepherd,
1496		round_jiffies_relative(sysctl_stat_interval));
1497}
1498
1499static void __init start_shepherd_timer(void)
1500{
1501	int cpu;
1502
1503	for_each_possible_cpu(cpu)
1504		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1505			vmstat_update);
1506
1507	if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1508		BUG();
1509	cpumask_copy(cpu_stat_off, cpu_online_mask);
1510
1511	vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1512	schedule_delayed_work(&shepherd,
1513		round_jiffies_relative(sysctl_stat_interval));
1514}
1515
1516static void vmstat_cpu_dead(int node)
1517{
1518	int cpu;
1519
1520	get_online_cpus();
1521	for_each_online_cpu(cpu)
1522		if (cpu_to_node(cpu) == node)
1523			goto end;
1524
1525	node_clear_state(node, N_CPU);
1526end:
1527	put_online_cpus();
1528}
1529
1530/*
1531 * Use the cpu notifier to insure that the thresholds are recalculated
1532 * when necessary.
1533 */
1534static int vmstat_cpuup_callback(struct notifier_block *nfb,
1535		unsigned long action,
1536		void *hcpu)
1537{
1538	long cpu = (long)hcpu;
1539
1540	switch (action) {
1541	case CPU_ONLINE:
1542	case CPU_ONLINE_FROZEN:
1543		refresh_zone_stat_thresholds();
1544		node_set_state(cpu_to_node(cpu), N_CPU);
1545		cpumask_set_cpu(cpu, cpu_stat_off);
1546		break;
1547	case CPU_DOWN_PREPARE:
1548	case CPU_DOWN_PREPARE_FROZEN:
1549		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1550		cpumask_clear_cpu(cpu, cpu_stat_off);
1551		break;
1552	case CPU_DOWN_FAILED:
1553	case CPU_DOWN_FAILED_FROZEN:
1554		cpumask_set_cpu(cpu, cpu_stat_off);
1555		break;
1556	case CPU_DEAD:
1557	case CPU_DEAD_FROZEN:
1558		refresh_zone_stat_thresholds();
1559		vmstat_cpu_dead(cpu_to_node(cpu));
1560		break;
1561	default:
1562		break;
1563	}
1564	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565}
1566
1567static struct notifier_block vmstat_notifier =
1568	{ &vmstat_cpuup_callback, NULL, 0 };
1569#endif
1570
1571static int __init setup_vmstat(void)
 
 
1572{
 
 
 
 
1573#ifdef CONFIG_SMP
1574	cpu_notifier_register_begin();
1575	__register_cpu_notifier(&vmstat_notifier);
 
 
 
 
 
 
 
 
 
 
 
 
1576
1577	start_shepherd_timer();
1578	cpu_notifier_register_done();
1579#endif
1580#ifdef CONFIG_PROC_FS
1581	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1582	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1583	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1584	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1585#endif
1586	return 0;
1587}
1588module_init(setup_vmstat)
1589
1590#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1591
1592/*
1593 * Return an index indicating how much of the available free memory is
1594 * unusable for an allocation of the requested size.
1595 */
1596static int unusable_free_index(unsigned int order,
1597				struct contig_page_info *info)
1598{
1599	/* No free memory is interpreted as all free memory is unusable */
1600	if (info->free_pages == 0)
1601		return 1000;
1602
1603	/*
1604	 * Index should be a value between 0 and 1. Return a value to 3
1605	 * decimal places.
1606	 *
1607	 * 0 => no fragmentation
1608	 * 1 => high fragmentation
1609	 */
1610	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1611
1612}
1613
1614static void unusable_show_print(struct seq_file *m,
1615					pg_data_t *pgdat, struct zone *zone)
1616{
1617	unsigned int order;
1618	int index;
1619	struct contig_page_info info;
1620
1621	seq_printf(m, "Node %d, zone %8s ",
1622				pgdat->node_id,
1623				zone->name);
1624	for (order = 0; order < MAX_ORDER; ++order) {
1625		fill_contig_page_info(zone, order, &info);
1626		index = unusable_free_index(order, &info);
1627		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1628	}
1629
1630	seq_putc(m, '\n');
1631}
1632
1633/*
1634 * Display unusable free space index
1635 *
1636 * The unusable free space index measures how much of the available free
1637 * memory cannot be used to satisfy an allocation of a given size and is a
1638 * value between 0 and 1. The higher the value, the more of free memory is
1639 * unusable and by implication, the worse the external fragmentation is. This
1640 * can be expressed as a percentage by multiplying by 100.
1641 */
1642static int unusable_show(struct seq_file *m, void *arg)
1643{
1644	pg_data_t *pgdat = (pg_data_t *)arg;
1645
1646	/* check memoryless node */
1647	if (!node_state(pgdat->node_id, N_MEMORY))
1648		return 0;
1649
1650	walk_zones_in_node(m, pgdat, unusable_show_print);
1651
1652	return 0;
1653}
1654
1655static const struct seq_operations unusable_op = {
1656	.start	= frag_start,
1657	.next	= frag_next,
1658	.stop	= frag_stop,
1659	.show	= unusable_show,
1660};
1661
1662static int unusable_open(struct inode *inode, struct file *file)
1663{
1664	return seq_open(file, &unusable_op);
1665}
1666
1667static const struct file_operations unusable_file_ops = {
1668	.open		= unusable_open,
1669	.read		= seq_read,
1670	.llseek		= seq_lseek,
1671	.release	= seq_release,
1672};
1673
1674static void extfrag_show_print(struct seq_file *m,
1675					pg_data_t *pgdat, struct zone *zone)
1676{
1677	unsigned int order;
1678	int index;
1679
1680	/* Alloc on stack as interrupts are disabled for zone walk */
1681	struct contig_page_info info;
1682
1683	seq_printf(m, "Node %d, zone %8s ",
1684				pgdat->node_id,
1685				zone->name);
1686	for (order = 0; order < MAX_ORDER; ++order) {
1687		fill_contig_page_info(zone, order, &info);
1688		index = __fragmentation_index(order, &info);
1689		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1690	}
1691
1692	seq_putc(m, '\n');
1693}
1694
1695/*
1696 * Display fragmentation index for orders that allocations would fail for
1697 */
1698static int extfrag_show(struct seq_file *m, void *arg)
1699{
1700	pg_data_t *pgdat = (pg_data_t *)arg;
1701
1702	walk_zones_in_node(m, pgdat, extfrag_show_print);
1703
1704	return 0;
1705}
1706
1707static const struct seq_operations extfrag_op = {
1708	.start	= frag_start,
1709	.next	= frag_next,
1710	.stop	= frag_stop,
1711	.show	= extfrag_show,
1712};
1713
1714static int extfrag_open(struct inode *inode, struct file *file)
1715{
1716	return seq_open(file, &extfrag_op);
1717}
1718
1719static const struct file_operations extfrag_file_ops = {
1720	.open		= extfrag_open,
1721	.read		= seq_read,
1722	.llseek		= seq_lseek,
1723	.release	= seq_release,
1724};
1725
1726static int __init extfrag_debug_init(void)
1727{
1728	struct dentry *extfrag_debug_root;
1729
1730	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1731	if (!extfrag_debug_root)
1732		return -ENOMEM;
1733
1734	if (!debugfs_create_file("unusable_index", 0444,
1735			extfrag_debug_root, NULL, &unusable_file_ops))
1736		goto fail;
1737
1738	if (!debugfs_create_file("extfrag_index", 0444,
1739			extfrag_debug_root, NULL, &extfrag_file_ops))
1740		goto fail;
1741
1742	return 0;
1743fail:
1744	debugfs_remove_recursive(extfrag_debug_root);
1745	return -ENOMEM;
1746}
1747
1748module_init(extfrag_debug_init);
1749#endif