Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/mm.h>
  3#include <linux/mmzone.h>
  4#include <linux/memblock.h>
  5#include <linux/page_ext.h>
  6#include <linux/memory.h>
  7#include <linux/vmalloc.h>
  8#include <linux/kmemleak.h>
  9#include <linux/page_owner.h>
 10#include <linux/page_idle.h>
 11#include <linux/page_table_check.h>
 12#include <linux/rcupdate.h>
 13
 14/*
 15 * struct page extension
 16 *
 17 * This is the feature to manage memory for extended data per page.
 18 *
 19 * Until now, we must modify struct page itself to store extra data per page.
 20 * This requires rebuilding the kernel and it is really time consuming process.
 21 * And, sometimes, rebuild is impossible due to third party module dependency.
 22 * At last, enlarging struct page could cause un-wanted system behaviour change.
 23 *
 24 * This feature is intended to overcome above mentioned problems. This feature
 25 * allocates memory for extended data per page in certain place rather than
 26 * the struct page itself. This memory can be accessed by the accessor
 27 * functions provided by this code. During the boot process, it checks whether
 28 * allocation of huge chunk of memory is needed or not. If not, it avoids
 29 * allocating memory at all. With this advantage, we can include this feature
 30 * into the kernel in default and can avoid rebuild and solve related problems.
 31 *
 32 * To help these things to work well, there are two callbacks for clients. One
 33 * is the need callback which is mandatory if user wants to avoid useless
 34 * memory allocation at boot-time. The other is optional, init callback, which
 35 * is used to do proper initialization after memory is allocated.
 36 *
 37 * The need callback is used to decide whether extended memory allocation is
 38 * needed or not. Sometimes users want to deactivate some features in this
 39 * boot and extra memory would be unnecessary. In this case, to avoid
 40 * allocating huge chunk of memory, each clients represent their need of
 41 * extra memory through the need callback. If one of the need callbacks
 42 * returns true, it means that someone needs extra memory so that
 43 * page extension core should allocates memory for page extension. If
 44 * none of need callbacks return true, memory isn't needed at all in this boot
 45 * and page extension core can skip to allocate memory. As result,
 46 * none of memory is wasted.
 47 *
 48 * When need callback returns true, page_ext checks if there is a request for
 49 * extra memory through size in struct page_ext_operations. If it is non-zero,
 50 * extra space is allocated for each page_ext entry and offset is returned to
 51 * user through offset in struct page_ext_operations.
 52 *
 53 * The init callback is used to do proper initialization after page extension
 54 * is completely initialized. In sparse memory system, extra memory is
 55 * allocated some time later than memmap is allocated. In other words, lifetime
 56 * of memory for page extension isn't same with memmap for struct page.
 57 * Therefore, clients can't store extra data until page extension is
 58 * initialized, even if pages are allocated and used freely. This could
 59 * cause inadequate state of extra data per page, so, to prevent it, client
 60 * can utilize this callback to initialize the state of it correctly.
 61 */
 62
 63#ifdef CONFIG_SPARSEMEM
 64#define PAGE_EXT_INVALID       (0x1)
 
 
 65#endif
 66
 67#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
 68static bool need_page_idle(void)
 69{
 70	return true;
 71}
 72static struct page_ext_operations page_idle_ops __initdata = {
 73	.need = need_page_idle,
 74	.need_shared_flags = true,
 75};
 76#endif
 77
 78static struct page_ext_operations *page_ext_ops[] __initdata = {
 79#ifdef CONFIG_PAGE_OWNER
 80	&page_owner_ops,
 81#endif
 82#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
 83	&page_idle_ops,
 84#endif
 85#ifdef CONFIG_PAGE_TABLE_CHECK
 86	&page_table_check_ops,
 87#endif
 88};
 89
 90unsigned long page_ext_size;
 91
 92static unsigned long total_usage;
 93
 94bool early_page_ext __meminitdata;
 95static int __init setup_early_page_ext(char *str)
 96{
 97	early_page_ext = true;
 98	return 0;
 99}
100early_param("early_page_ext", setup_early_page_ext);
101
102static bool __init invoke_need_callbacks(void)
103{
104	int i;
105	int entries = ARRAY_SIZE(page_ext_ops);
106	bool need = false;
107
108	for (i = 0; i < entries; i++) {
109		if (page_ext_ops[i]->need()) {
110			if (page_ext_ops[i]->need_shared_flags) {
111				page_ext_size = sizeof(struct page_ext);
112				break;
113			}
114		}
115	}
116
117	for (i = 0; i < entries; i++) {
118		if (page_ext_ops[i]->need()) {
119			page_ext_ops[i]->offset = page_ext_size;
120			page_ext_size += page_ext_ops[i]->size;
121			need = true;
122		}
123	}
124
125	return need;
126}
127
128static void __init invoke_init_callbacks(void)
129{
130	int i;
131	int entries = ARRAY_SIZE(page_ext_ops);
132
133	for (i = 0; i < entries; i++) {
134		if (page_ext_ops[i]->init)
135			page_ext_ops[i]->init();
136	}
137}
138
139static inline struct page_ext *get_entry(void *base, unsigned long index)
140{
141	return base + page_ext_size * index;
142}
143
144#ifndef CONFIG_SPARSEMEM
145void __init page_ext_init_flatmem_late(void)
146{
147	invoke_init_callbacks();
148}
149
150void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
151{
152	pgdat->node_page_ext = NULL;
153}
154
155static struct page_ext *lookup_page_ext(const struct page *page)
156{
157	unsigned long pfn = page_to_pfn(page);
158	unsigned long index;
159	struct page_ext *base;
160
161	WARN_ON_ONCE(!rcu_read_lock_held());
162	base = NODE_DATA(page_to_nid(page))->node_page_ext;
 
163	/*
164	 * The sanity checks the page allocator does upon freeing a
165	 * page can reach here before the page_ext arrays are
166	 * allocated when feeding a range of pages to the allocator
167	 * for the first time during bootup or memory hotplug.
 
 
 
168	 */
169	if (unlikely(!base))
170		return NULL;
171	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
 
172					MAX_ORDER_NR_PAGES);
173	return get_entry(base, index);
174}
175
176static int __init alloc_node_page_ext(int nid)
177{
178	struct page_ext *base;
179	unsigned long table_size;
180	unsigned long nr_pages;
181
182	nr_pages = NODE_DATA(nid)->node_spanned_pages;
183	if (!nr_pages)
184		return 0;
185
186	/*
187	 * Need extra space if node range is not aligned with
188	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
189	 * checks buddy's status, range could be out of exact node range.
190	 */
191	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
192		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
193		nr_pages += MAX_ORDER_NR_PAGES;
194
195	table_size = page_ext_size * nr_pages;
196
197	base = memblock_alloc_try_nid(
198			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
199			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
200	if (!base)
201		return -ENOMEM;
202	NODE_DATA(nid)->node_page_ext = base;
203	total_usage += table_size;
204	return 0;
205}
206
207void __init page_ext_init_flatmem(void)
208{
209
210	int nid, fail;
211
212	if (!invoke_need_callbacks())
213		return;
214
215	for_each_online_node(nid)  {
216		fail = alloc_node_page_ext(nid);
217		if (fail)
218			goto fail;
219	}
220	pr_info("allocated %ld bytes of page_ext\n", total_usage);
 
221	return;
222
223fail:
224	pr_crit("allocation of page_ext failed.\n");
225	panic("Out of memory");
226}
227
228#else /* CONFIG_SPARSEMEM */
229static bool page_ext_invalid(struct page_ext *page_ext)
230{
231	return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
232}
233
234static struct page_ext *lookup_page_ext(const struct page *page)
235{
236	unsigned long pfn = page_to_pfn(page);
237	struct mem_section *section = __pfn_to_section(pfn);
238	struct page_ext *page_ext = READ_ONCE(section->page_ext);
239
240	WARN_ON_ONCE(!rcu_read_lock_held());
241	/*
242	 * The sanity checks the page allocator does upon freeing a
243	 * page can reach here before the page_ext arrays are
244	 * allocated when feeding a range of pages to the allocator
245	 * for the first time during bootup or memory hotplug.
 
 
 
246	 */
247	if (page_ext_invalid(page_ext))
248		return NULL;
249	return get_entry(page_ext, pfn);
 
250}
251
252static void *__meminit alloc_page_ext(size_t size, int nid)
253{
254	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
255	void *addr = NULL;
256
257	addr = alloc_pages_exact_nid(nid, size, flags);
258	if (addr) {
259		kmemleak_alloc(addr, size, 1, flags);
260		return addr;
261	}
262
263	addr = vzalloc_node(size, nid);
 
 
 
264
265	return addr;
266}
267
268static int __meminit init_section_page_ext(unsigned long pfn, int nid)
269{
270	struct mem_section *section;
271	struct page_ext *base;
272	unsigned long table_size;
273
274	section = __pfn_to_section(pfn);
275
276	if (section->page_ext)
277		return 0;
278
279	table_size = page_ext_size * PAGES_PER_SECTION;
280	base = alloc_page_ext(table_size, nid);
281
282	/*
283	 * The value stored in section->page_ext is (base - pfn)
284	 * and it does not point to the memory block allocated above,
285	 * causing kmemleak false positives.
286	 */
287	kmemleak_not_leak(base);
288
289	if (!base) {
290		pr_err("page ext allocation failure\n");
291		return -ENOMEM;
292	}
293
294	/*
295	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
296	 * we need to apply a mask.
297	 */
298	pfn &= PAGE_SECTION_MASK;
299	section->page_ext = (void *)base - page_ext_size * pfn;
300	total_usage += table_size;
301	return 0;
302}
303
304static void free_page_ext(void *addr)
305{
306	if (is_vmalloc_addr(addr)) {
307		vfree(addr);
308	} else {
309		struct page *page = virt_to_page(addr);
310		size_t table_size;
311
312		table_size = page_ext_size * PAGES_PER_SECTION;
313
314		BUG_ON(PageReserved(page));
315		kmemleak_free(addr);
316		free_pages_exact(addr, table_size);
317	}
318}
319
320static void __free_page_ext(unsigned long pfn)
321{
322	struct mem_section *ms;
323	struct page_ext *base;
324
325	ms = __pfn_to_section(pfn);
326	if (!ms || !ms->page_ext)
327		return;
328
329	base = READ_ONCE(ms->page_ext);
330	/*
331	 * page_ext here can be valid while doing the roll back
332	 * operation in online_page_ext().
333	 */
334	if (page_ext_invalid(base))
335		base = (void *)base - PAGE_EXT_INVALID;
336	WRITE_ONCE(ms->page_ext, NULL);
337
338	base = get_entry(base, pfn);
339	free_page_ext(base);
340}
341
342static void __invalidate_page_ext(unsigned long pfn)
343{
344	struct mem_section *ms;
345	void *val;
346
347	ms = __pfn_to_section(pfn);
348	if (!ms || !ms->page_ext)
349		return;
350	val = (void *)ms->page_ext + PAGE_EXT_INVALID;
351	WRITE_ONCE(ms->page_ext, val);
352}
353
354static int __meminit online_page_ext(unsigned long start_pfn,
355				unsigned long nr_pages,
356				int nid)
357{
358	unsigned long start, end, pfn;
359	int fail = 0;
360
361	start = SECTION_ALIGN_DOWN(start_pfn);
362	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
363
364	if (nid == NUMA_NO_NODE) {
365		/*
366		 * In this case, "nid" already exists and contains valid memory.
367		 * "start_pfn" passed to us is a pfn which is an arg for
368		 * online__pages(), and start_pfn should exist.
369		 */
370		nid = pfn_to_nid(start_pfn);
371		VM_BUG_ON(!node_online(nid));
372	}
373
374	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
 
 
375		fail = init_section_page_ext(pfn, nid);
 
376	if (!fail)
377		return 0;
378
379	/* rollback */
380	end = pfn - PAGES_PER_SECTION;
381	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
382		__free_page_ext(pfn);
383
384	return -ENOMEM;
385}
386
387static void __meminit offline_page_ext(unsigned long start_pfn,
388				unsigned long nr_pages)
389{
390	unsigned long start, end, pfn;
391
392	start = SECTION_ALIGN_DOWN(start_pfn);
393	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
394
395	/*
396	 * Freeing of page_ext is done in 3 steps to avoid
397	 * use-after-free of it:
398	 * 1) Traverse all the sections and mark their page_ext
399	 *    as invalid.
400	 * 2) Wait for all the existing users of page_ext who
401	 *    started before invalidation to finish.
402	 * 3) Free the page_ext.
403	 */
404	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
405		__invalidate_page_ext(pfn);
406
407	synchronize_rcu();
408
409	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
410		__free_page_ext(pfn);
 
 
411}
412
413static int __meminit page_ext_callback(struct notifier_block *self,
414			       unsigned long action, void *arg)
415{
416	struct memory_notify *mn = arg;
417	int ret = 0;
418
419	switch (action) {
420	case MEM_GOING_ONLINE:
421		ret = online_page_ext(mn->start_pfn,
422				   mn->nr_pages, mn->status_change_nid);
423		break;
424	case MEM_OFFLINE:
425		offline_page_ext(mn->start_pfn,
426				mn->nr_pages);
427		break;
428	case MEM_CANCEL_ONLINE:
429		offline_page_ext(mn->start_pfn,
430				mn->nr_pages);
431		break;
432	case MEM_GOING_OFFLINE:
433		break;
434	case MEM_ONLINE:
435	case MEM_CANCEL_OFFLINE:
436		break;
437	}
438
439	return notifier_from_errno(ret);
440}
441
 
 
442void __init page_ext_init(void)
443{
444	unsigned long pfn;
445	int nid;
446
447	if (!invoke_need_callbacks())
448		return;
449
450	for_each_node_state(nid, N_MEMORY) {
451		unsigned long start_pfn, end_pfn;
452
453		start_pfn = node_start_pfn(nid);
454		end_pfn = node_end_pfn(nid);
455		/*
456		 * start_pfn and end_pfn may not be aligned to SECTION and the
457		 * page->flags of out of node pages are not initialized.  So we
458		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
459		 */
460		for (pfn = start_pfn; pfn < end_pfn;
461			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
462
463			if (!pfn_valid(pfn))
464				continue;
465			/*
466			 * Nodes's pfns can be overlapping.
467			 * We know some arch can have a nodes layout such as
468			 * -------------pfn-------------->
469			 * N0 | N1 | N2 | N0 | N1 | N2|....
470			 */
471			if (pfn_to_nid(pfn) != nid)
472				continue;
473			if (init_section_page_ext(pfn, nid))
474				goto oom;
475			cond_resched();
476		}
477	}
478	hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
479	pr_info("allocated %ld bytes of page_ext\n", total_usage);
480	invoke_init_callbacks();
481	return;
482
483oom:
484	panic("Out of memory");
485}
486
487void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
488{
489}
490
491#endif
492
493/**
494 * page_ext_get() - Get the extended information for a page.
495 * @page: The page we're interested in.
496 *
497 * Ensures that the page_ext will remain valid until page_ext_put()
498 * is called.
499 *
500 * Return: NULL if no page_ext exists for this page.
501 * Context: Any context.  Caller may not sleep until they have called
502 * page_ext_put().
503 */
504struct page_ext *page_ext_get(struct page *page)
505{
506	struct page_ext *page_ext;
507
508	rcu_read_lock();
509	page_ext = lookup_page_ext(page);
510	if (!page_ext) {
511		rcu_read_unlock();
512		return NULL;
513	}
514
515	return page_ext;
516}
517
518/**
519 * page_ext_put() - Working with page extended information is done.
520 * @page_ext: Page extended information received from page_ext_get().
521 *
522 * The page extended information of the page may not be valid after this
523 * function is called.
524 *
525 * Return: None.
526 * Context: Any context with corresponding page_ext_get() is called.
527 */
528void page_ext_put(struct page_ext *page_ext)
529{
530	if (unlikely(!page_ext))
531		return;
532
533	rcu_read_unlock();
534}
v4.6
 
  1#include <linux/mm.h>
  2#include <linux/mmzone.h>
  3#include <linux/bootmem.h>
  4#include <linux/page_ext.h>
  5#include <linux/memory.h>
  6#include <linux/vmalloc.h>
  7#include <linux/kmemleak.h>
  8#include <linux/page_owner.h>
  9#include <linux/page_idle.h>
 
 
 10
 11/*
 12 * struct page extension
 13 *
 14 * This is the feature to manage memory for extended data per page.
 15 *
 16 * Until now, we must modify struct page itself to store extra data per page.
 17 * This requires rebuilding the kernel and it is really time consuming process.
 18 * And, sometimes, rebuild is impossible due to third party module dependency.
 19 * At last, enlarging struct page could cause un-wanted system behaviour change.
 20 *
 21 * This feature is intended to overcome above mentioned problems. This feature
 22 * allocates memory for extended data per page in certain place rather than
 23 * the struct page itself. This memory can be accessed by the accessor
 24 * functions provided by this code. During the boot process, it checks whether
 25 * allocation of huge chunk of memory is needed or not. If not, it avoids
 26 * allocating memory at all. With this advantage, we can include this feature
 27 * into the kernel in default and can avoid rebuild and solve related problems.
 28 *
 29 * To help these things to work well, there are two callbacks for clients. One
 30 * is the need callback which is mandatory if user wants to avoid useless
 31 * memory allocation at boot-time. The other is optional, init callback, which
 32 * is used to do proper initialization after memory is allocated.
 33 *
 34 * The need callback is used to decide whether extended memory allocation is
 35 * needed or not. Sometimes users want to deactivate some features in this
 36 * boot and extra memory would be unneccessary. In this case, to avoid
 37 * allocating huge chunk of memory, each clients represent their need of
 38 * extra memory through the need callback. If one of the need callbacks
 39 * returns true, it means that someone needs extra memory so that
 40 * page extension core should allocates memory for page extension. If
 41 * none of need callbacks return true, memory isn't needed at all in this boot
 42 * and page extension core can skip to allocate memory. As result,
 43 * none of memory is wasted.
 44 *
 
 
 
 
 
 45 * The init callback is used to do proper initialization after page extension
 46 * is completely initialized. In sparse memory system, extra memory is
 47 * allocated some time later than memmap is allocated. In other words, lifetime
 48 * of memory for page extension isn't same with memmap for struct page.
 49 * Therefore, clients can't store extra data until page extension is
 50 * initialized, even if pages are allocated and used freely. This could
 51 * cause inadequate state of extra data per page, so, to prevent it, client
 52 * can utilize this callback to initialize the state of it correctly.
 53 */
 54
 55static struct page_ext_operations *page_ext_ops[] = {
 56	&debug_guardpage_ops,
 57#ifdef CONFIG_PAGE_POISONING
 58	&page_poisoning_ops,
 59#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 60#ifdef CONFIG_PAGE_OWNER
 61	&page_owner_ops,
 62#endif
 63#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
 64	&page_idle_ops,
 65#endif
 
 
 
 66};
 67
 
 
 68static unsigned long total_usage;
 69
 
 
 
 
 
 
 
 
 70static bool __init invoke_need_callbacks(void)
 71{
 72	int i;
 73	int entries = ARRAY_SIZE(page_ext_ops);
 
 74
 75	for (i = 0; i < entries; i++) {
 76		if (page_ext_ops[i]->need && page_ext_ops[i]->need())
 77			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 78	}
 79
 80	return false;
 81}
 82
 83static void __init invoke_init_callbacks(void)
 84{
 85	int i;
 86	int entries = ARRAY_SIZE(page_ext_ops);
 87
 88	for (i = 0; i < entries; i++) {
 89		if (page_ext_ops[i]->init)
 90			page_ext_ops[i]->init();
 91	}
 92}
 93
 94#if !defined(CONFIG_SPARSEMEM)
 
 
 
 95
 
 
 
 
 
 96
 97void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 98{
 99	pgdat->node_page_ext = NULL;
100}
101
102struct page_ext *lookup_page_ext(struct page *page)
103{
104	unsigned long pfn = page_to_pfn(page);
105	unsigned long offset;
106	struct page_ext *base;
107
 
108	base = NODE_DATA(page_to_nid(page))->node_page_ext;
109#if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
110	/*
111	 * The sanity checks the page allocator does upon freeing a
112	 * page can reach here before the page_ext arrays are
113	 * allocated when feeding a range of pages to the allocator
114	 * for the first time during bootup or memory hotplug.
115	 *
116	 * This check is also necessary for ensuring page poisoning
117	 * works as expected when enabled
118	 */
119	if (unlikely(!base))
120		return NULL;
121#endif
122	offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
123					MAX_ORDER_NR_PAGES);
124	return base + offset;
125}
126
127static int __init alloc_node_page_ext(int nid)
128{
129	struct page_ext *base;
130	unsigned long table_size;
131	unsigned long nr_pages;
132
133	nr_pages = NODE_DATA(nid)->node_spanned_pages;
134	if (!nr_pages)
135		return 0;
136
137	/*
138	 * Need extra space if node range is not aligned with
139	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
140	 * checks buddy's status, range could be out of exact node range.
141	 */
142	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
143		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
144		nr_pages += MAX_ORDER_NR_PAGES;
145
146	table_size = sizeof(struct page_ext) * nr_pages;
147
148	base = memblock_virt_alloc_try_nid_nopanic(
149			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
150			BOOTMEM_ALLOC_ACCESSIBLE, nid);
151	if (!base)
152		return -ENOMEM;
153	NODE_DATA(nid)->node_page_ext = base;
154	total_usage += table_size;
155	return 0;
156}
157
158void __init page_ext_init_flatmem(void)
159{
160
161	int nid, fail;
162
163	if (!invoke_need_callbacks())
164		return;
165
166	for_each_online_node(nid)  {
167		fail = alloc_node_page_ext(nid);
168		if (fail)
169			goto fail;
170	}
171	pr_info("allocated %ld bytes of page_ext\n", total_usage);
172	invoke_init_callbacks();
173	return;
174
175fail:
176	pr_crit("allocation of page_ext failed.\n");
177	panic("Out of memory");
178}
179
180#else /* CONFIG_FLAT_NODE_MEM_MAP */
 
 
 
 
181
182struct page_ext *lookup_page_ext(struct page *page)
183{
184	unsigned long pfn = page_to_pfn(page);
185	struct mem_section *section = __pfn_to_section(pfn);
186#if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING)
 
 
187	/*
188	 * The sanity checks the page allocator does upon freeing a
189	 * page can reach here before the page_ext arrays are
190	 * allocated when feeding a range of pages to the allocator
191	 * for the first time during bootup or memory hotplug.
192	 *
193	 * This check is also necessary for ensuring page poisoning
194	 * works as expected when enabled
195	 */
196	if (!section->page_ext)
197		return NULL;
198#endif
199	return section->page_ext + pfn;
200}
201
202static void *__meminit alloc_page_ext(size_t size, int nid)
203{
204	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
205	void *addr = NULL;
206
207	addr = alloc_pages_exact_nid(nid, size, flags);
208	if (addr) {
209		kmemleak_alloc(addr, size, 1, flags);
210		return addr;
211	}
212
213	if (node_state(nid, N_HIGH_MEMORY))
214		addr = vzalloc_node(size, nid);
215	else
216		addr = vzalloc(size);
217
218	return addr;
219}
220
221static int __meminit init_section_page_ext(unsigned long pfn, int nid)
222{
223	struct mem_section *section;
224	struct page_ext *base;
225	unsigned long table_size;
226
227	section = __pfn_to_section(pfn);
228
229	if (section->page_ext)
230		return 0;
231
232	table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
233	base = alloc_page_ext(table_size, nid);
234
235	/*
236	 * The value stored in section->page_ext is (base - pfn)
237	 * and it does not point to the memory block allocated above,
238	 * causing kmemleak false positives.
239	 */
240	kmemleak_not_leak(base);
241
242	if (!base) {
243		pr_err("page ext allocation failure\n");
244		return -ENOMEM;
245	}
246
247	/*
248	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
249	 * we need to apply a mask.
250	 */
251	pfn &= PAGE_SECTION_MASK;
252	section->page_ext = base - pfn;
253	total_usage += table_size;
254	return 0;
255}
256#ifdef CONFIG_MEMORY_HOTPLUG
257static void free_page_ext(void *addr)
258{
259	if (is_vmalloc_addr(addr)) {
260		vfree(addr);
261	} else {
262		struct page *page = virt_to_page(addr);
263		size_t table_size;
264
265		table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
266
267		BUG_ON(PageReserved(page));
 
268		free_pages_exact(addr, table_size);
269	}
270}
271
272static void __free_page_ext(unsigned long pfn)
273{
274	struct mem_section *ms;
275	struct page_ext *base;
276
277	ms = __pfn_to_section(pfn);
278	if (!ms || !ms->page_ext)
279		return;
280	base = ms->page_ext + pfn;
 
 
 
 
 
 
 
 
 
 
281	free_page_ext(base);
282	ms->page_ext = NULL;
 
 
 
 
 
 
 
 
 
 
 
283}
284
285static int __meminit online_page_ext(unsigned long start_pfn,
286				unsigned long nr_pages,
287				int nid)
288{
289	unsigned long start, end, pfn;
290	int fail = 0;
291
292	start = SECTION_ALIGN_DOWN(start_pfn);
293	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
294
295	if (nid == -1) {
296		/*
297		 * In this case, "nid" already exists and contains valid memory.
298		 * "start_pfn" passed to us is a pfn which is an arg for
299		 * online__pages(), and start_pfn should exist.
300		 */
301		nid = pfn_to_nid(start_pfn);
302		VM_BUG_ON(!node_state(nid, N_ONLINE));
303	}
304
305	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
306		if (!pfn_present(pfn))
307			continue;
308		fail = init_section_page_ext(pfn, nid);
309	}
310	if (!fail)
311		return 0;
312
313	/* rollback */
 
314	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
315		__free_page_ext(pfn);
316
317	return -ENOMEM;
318}
319
320static int __meminit offline_page_ext(unsigned long start_pfn,
321				unsigned long nr_pages, int nid)
322{
323	unsigned long start, end, pfn;
324
325	start = SECTION_ALIGN_DOWN(start_pfn);
326	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
329		__free_page_ext(pfn);
330	return 0;
331
332}
333
334static int __meminit page_ext_callback(struct notifier_block *self,
335			       unsigned long action, void *arg)
336{
337	struct memory_notify *mn = arg;
338	int ret = 0;
339
340	switch (action) {
341	case MEM_GOING_ONLINE:
342		ret = online_page_ext(mn->start_pfn,
343				   mn->nr_pages, mn->status_change_nid);
344		break;
345	case MEM_OFFLINE:
346		offline_page_ext(mn->start_pfn,
347				mn->nr_pages, mn->status_change_nid);
348		break;
349	case MEM_CANCEL_ONLINE:
350		offline_page_ext(mn->start_pfn,
351				mn->nr_pages, mn->status_change_nid);
352		break;
353	case MEM_GOING_OFFLINE:
354		break;
355	case MEM_ONLINE:
356	case MEM_CANCEL_OFFLINE:
357		break;
358	}
359
360	return notifier_from_errno(ret);
361}
362
363#endif
364
365void __init page_ext_init(void)
366{
367	unsigned long pfn;
368	int nid;
369
370	if (!invoke_need_callbacks())
371		return;
372
373	for_each_node_state(nid, N_MEMORY) {
374		unsigned long start_pfn, end_pfn;
375
376		start_pfn = node_start_pfn(nid);
377		end_pfn = node_end_pfn(nid);
378		/*
379		 * start_pfn and end_pfn may not be aligned to SECTION and the
380		 * page->flags of out of node pages are not initialized.  So we
381		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
382		 */
383		for (pfn = start_pfn; pfn < end_pfn;
384			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
385
386			if (!pfn_valid(pfn))
387				continue;
388			/*
389			 * Nodes's pfns can be overlapping.
390			 * We know some arch can have a nodes layout such as
391			 * -------------pfn-------------->
392			 * N0 | N1 | N2 | N0 | N1 | N2|....
393			 */
394			if (pfn_to_nid(pfn) != nid)
395				continue;
396			if (init_section_page_ext(pfn, nid))
397				goto oom;
 
398		}
399	}
400	hotplug_memory_notifier(page_ext_callback, 0);
401	pr_info("allocated %ld bytes of page_ext\n", total_usage);
402	invoke_init_callbacks();
403	return;
404
405oom:
406	panic("Out of memory");
407}
408
409void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
410{
411}
412
413#endif