Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H
  3#define _BCACHEFS_BTREE_UPDATE_INTERIOR_H
  4
  5#include "btree_cache.h"
  6#include "btree_locking.h"
  7#include "btree_update.h"
  8
  9#define BTREE_UPDATE_NODES_MAX		((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES)
 10
 11#define BTREE_UPDATE_JOURNAL_RES	(BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1))
 12
 13/*
 14 * Tracks an in progress split/rewrite of a btree node and the update to the
 15 * parent node:
 16 *
 17 * When we split/rewrite a node, we do all the updates in memory without
 18 * waiting for any writes to complete - we allocate the new node(s) and update
 19 * the parent node, possibly recursively up to the root.
 20 *
 21 * The end result is that we have one or more new nodes being written -
 22 * possibly several, if there were multiple splits - and then a write (updating
 23 * an interior node) which will make all these new nodes visible.
 24 *
 25 * Additionally, as we split/rewrite nodes we free the old nodes - but the old
 26 * nodes can't be freed (their space on disk can't be reclaimed) until the
 27 * update to the interior node that makes the new node visible completes -
 28 * until then, the old nodes are still reachable on disk.
 29 *
 30 */
 31struct btree_update {
 32	struct closure			cl;
 33	struct bch_fs			*c;
 34	u64				start_time;
 35
 36	struct list_head		list;
 37	struct list_head		unwritten_list;
 38
 39	/* What kind of update are we doing? */
 40	enum {
 41		BTREE_INTERIOR_NO_UPDATE,
 42		BTREE_INTERIOR_UPDATING_NODE,
 43		BTREE_INTERIOR_UPDATING_ROOT,
 44		BTREE_INTERIOR_UPDATING_AS,
 45	} mode;
 46
 47	unsigned			nodes_written:1;
 48	unsigned			took_gc_lock:1;
 49
 50	enum btree_id			btree_id;
 51	unsigned			update_level;
 52
 53	struct disk_reservation		disk_res;
 54
 55	/*
 56	 * BTREE_INTERIOR_UPDATING_NODE:
 57	 * The update that made the new nodes visible was a regular update to an
 58	 * existing interior node - @b. We can't write out the update to @b
 59	 * until the new nodes we created are finished writing, so we block @b
 60	 * from writing by putting this btree_interior update on the
 61	 * @b->write_blocked list with @write_blocked_list:
 62	 */
 63	struct btree			*b;
 64	struct list_head		write_blocked_list;
 65
 66	/*
 67	 * We may be freeing nodes that were dirty, and thus had journal entries
 68	 * pinned: we need to transfer the oldest of those pins to the
 69	 * btree_update operation, and release it when the new node(s)
 70	 * are all persistent and reachable:
 71	 */
 72	struct journal_entry_pin	journal;
 73
 74	/* Preallocated nodes we reserve when we start the update: */
 75	struct prealloc_nodes {
 76		struct btree		*b[BTREE_UPDATE_NODES_MAX];
 77		unsigned		nr;
 78	}				prealloc_nodes[2];
 79
 80	/* Nodes being freed: */
 81	struct keylist			old_keys;
 82	u64				_old_keys[BTREE_UPDATE_NODES_MAX *
 83						  BKEY_BTREE_PTR_U64s_MAX];
 84
 85	/* Nodes being added: */
 86	struct keylist			new_keys;
 87	u64				_new_keys[BTREE_UPDATE_NODES_MAX *
 88						  BKEY_BTREE_PTR_U64s_MAX];
 89
 90	/* New nodes, that will be made reachable by this update: */
 91	struct btree			*new_nodes[BTREE_UPDATE_NODES_MAX];
 92	unsigned			nr_new_nodes;
 93
 94	struct btree			*old_nodes[BTREE_UPDATE_NODES_MAX];
 95	__le64				old_nodes_seq[BTREE_UPDATE_NODES_MAX];
 96	unsigned			nr_old_nodes;
 97
 98	open_bucket_idx_t		open_buckets[BTREE_UPDATE_NODES_MAX *
 99						     BCH_REPLICAS_MAX];
100	open_bucket_idx_t		nr_open_buckets;
101
102	unsigned			journal_u64s;
103	u64				journal_entries[BTREE_UPDATE_JOURNAL_RES];
104
105	/* Only here to reduce stack usage on recursive splits: */
106	struct keylist			parent_keys;
107	/*
108	 * Enough room for btree_split's keys without realloc - btree node
109	 * pointers never have crc/compression info, so we only need to acount
110	 * for the pointers for three keys
111	 */
112	u64				inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3];
113};
114
115struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *,
116						  struct btree_trans *,
117						  struct btree *,
118						  struct bkey_format);
119
120int bch2_btree_split_leaf(struct btree_trans *, btree_path_idx_t, unsigned);
121
122int __bch2_foreground_maybe_merge(struct btree_trans *, btree_path_idx_t,
123				  unsigned, unsigned, enum btree_node_sibling);
124
125static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans,
126					btree_path_idx_t path_idx,
127					unsigned level, unsigned flags,
128					enum btree_node_sibling sib)
129{
130	struct btree_path *path = trans->paths + path_idx;
131	struct btree *b;
132
133	EBUG_ON(!btree_node_locked(path, level));
134
135	b = path->l[level].b;
136	if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold)
137		return 0;
138
139	return __bch2_foreground_maybe_merge(trans, path_idx, level, flags, sib);
140}
141
142static inline int bch2_foreground_maybe_merge(struct btree_trans *trans,
143					      btree_path_idx_t path,
144					      unsigned level,
145					      unsigned flags)
146{
147	return  bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
148						    btree_prev_sib) ?:
149		bch2_foreground_maybe_merge_sibling(trans, path, level, flags,
150						    btree_next_sib);
151}
152
153int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *,
154			    struct btree *, unsigned);
155void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *);
156int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *,
157			       struct btree *, struct bkey_i *,
158			       unsigned, bool);
159int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *,
160					struct bkey_i *, unsigned, bool);
161
162void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *);
163void bch2_btree_root_alloc(struct bch_fs *, enum btree_id);
164
165static inline unsigned btree_update_reserve_required(struct bch_fs *c,
166						     struct btree *b)
167{
168	unsigned depth = btree_node_root(c, b)->c.level + 1;
169
170	/*
171	 * Number of nodes we might have to allocate in a worst case btree
172	 * split operation - we split all the way up to the root, then allocate
173	 * a new root, unless we're already at max depth:
174	 */
175	if (depth < BTREE_MAX_DEPTH)
176		return (depth - b->c.level) * 2 + 1;
177	else
178		return (depth - b->c.level) * 2 - 1;
179}
180
181static inline void btree_node_reset_sib_u64s(struct btree *b)
182{
183	b->sib_u64s[0] = b->nr.live_u64s;
184	b->sib_u64s[1] = b->nr.live_u64s;
185}
186
187static inline void *btree_data_end(struct btree *b)
188{
189	return (void *) b->data + btree_buf_bytes(b);
190}
191
192static inline struct bkey_packed *unwritten_whiteouts_start(struct btree *b)
193{
194	return (void *) ((u64 *) btree_data_end(b) - b->whiteout_u64s);
195}
196
197static inline struct bkey_packed *unwritten_whiteouts_end(struct btree *b)
198{
199	return btree_data_end(b);
200}
201
202static inline void *write_block(struct btree *b)
203{
204	return (void *) b->data + (b->written << 9);
205}
206
207static inline bool __btree_addr_written(struct btree *b, void *p)
208{
209	return p < write_block(b);
210}
211
212static inline bool bset_written(struct btree *b, struct bset *i)
213{
214	return __btree_addr_written(b, i);
215}
216
217static inline bool bkey_written(struct btree *b, struct bkey_packed *k)
218{
219	return __btree_addr_written(b, k);
220}
221
222static inline ssize_t __bch2_btree_u64s_remaining(struct btree *b, void *end)
223{
224	ssize_t used = bset_byte_offset(b, end) / sizeof(u64) +
225		b->whiteout_u64s;
226	ssize_t total = btree_buf_bytes(b) >> 3;
227
228	/* Always leave one extra u64 for bch2_varint_decode: */
229	used++;
230
231	return total - used;
232}
233
234static inline size_t bch2_btree_keys_u64s_remaining(struct btree *b)
235{
236	ssize_t remaining = __bch2_btree_u64s_remaining(b,
237				btree_bkey_last(b, bset_tree_last(b)));
238
239	BUG_ON(remaining < 0);
240
241	if (bset_written(b, btree_bset_last(b)))
242		return 0;
243
244	return remaining;
245}
246
247#define BTREE_WRITE_SET_U64s_BITS	9
248
249static inline unsigned btree_write_set_buffer(struct btree *b)
250{
251	/*
252	 * Could buffer up larger amounts of keys for btrees with larger keys,
253	 * pending benchmarking:
254	 */
255	return 8 << BTREE_WRITE_SET_U64s_BITS;
256}
257
258static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b)
259{
260	struct bset_tree *t = bset_tree_last(b);
261	struct btree_node_entry *bne = max(write_block(b),
262			(void *) btree_bkey_last(b, bset_tree_last(b)));
263	ssize_t remaining_space =
264		__bch2_btree_u64s_remaining(b, bne->keys.start);
265
266	if (unlikely(bset_written(b, bset(b, t)))) {
267		if (remaining_space > (ssize_t) (block_bytes(c) >> 3))
268			return bne;
269	} else {
270		if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) &&
271		    remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3))
272			return bne;
273	}
274
275	return NULL;
276}
277
278static inline void push_whiteout(struct btree *b, struct bpos pos)
279{
280	struct bkey_packed k;
281
282	BUG_ON(bch2_btree_keys_u64s_remaining(b) < BKEY_U64s);
283	EBUG_ON(btree_node_just_written(b));
284
285	if (!bkey_pack_pos(&k, pos, b)) {
286		struct bkey *u = (void *) &k;
287
288		bkey_init(u);
289		u->p = pos;
290	}
291
292	k.needs_whiteout = true;
293
294	b->whiteout_u64s += k.u64s;
295	bkey_p_copy(unwritten_whiteouts_start(b), &k);
296}
297
298/*
299 * write lock must be held on @b (else the dirty bset that we were going to
300 * insert into could be written out from under us)
301 */
302static inline bool bch2_btree_node_insert_fits(struct btree *b, unsigned u64s)
303{
304	if (unlikely(btree_node_need_rewrite(b)))
305		return false;
306
307	return u64s <= bch2_btree_keys_u64s_remaining(b);
308}
309
310void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *);
311
312bool bch2_btree_interior_updates_flush(struct bch_fs *);
313
314void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *);
315struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *,
316					struct jset_entry *, unsigned long);
317
318void bch2_do_pending_node_rewrites(struct bch_fs *);
319void bch2_free_pending_node_rewrites(struct bch_fs *);
320
321void bch2_fs_btree_interior_update_exit(struct bch_fs *);
322void bch2_fs_btree_interior_update_init_early(struct bch_fs *);
323int bch2_fs_btree_interior_update_init(struct bch_fs *);
324
325#endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */