Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The USB Monitor, inspired by Dave Harding's USBMon.
   4 *
   5 * This is a binary format reader.
   6 *
   7 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
   8 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/sched/signal.h>
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/cdev.h>
  16#include <linux/export.h>
  17#include <linux/usb.h>
  18#include <linux/poll.h>
  19#include <linux/compat.h>
  20#include <linux/mm.h>
  21#include <linux/scatterlist.h>
  22#include <linux/slab.h>
  23#include <linux/time64.h>
  24
  25#include <linux/uaccess.h>
  26
  27#include "usb_mon.h"
  28
  29/*
  30 * Defined by USB 2.0 clause 9.3, table 9.2.
  31 */
  32#define SETUP_LEN  8
  33
  34/* ioctl macros */
  35#define MON_IOC_MAGIC 0x92
  36
  37#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
  38/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
  39#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
  40#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
  41#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
  42#define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
  43#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
  44#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
  45/* #9 was MON_IOCT_SETAPI */
  46#define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
  47
  48#ifdef CONFIG_COMPAT
  49#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
  50#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
  51#define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
  52#endif
  53
  54/*
  55 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
  56 * But it's all right. Just use a simple way to make sure the chunk is never
  57 * smaller than a page.
  58 *
  59 * N.B. An application does not know our chunk size.
  60 *
  61 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
  62 * page-sized chunks for the time being.
  63 */
  64#define CHUNK_SIZE   PAGE_SIZE
  65#define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
  66
  67/*
  68 * The magic limit was calculated so that it allows the monitoring
  69 * application to pick data once in two ticks. This way, another application,
  70 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
  71 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
  72 * enormous overhead built into the bus protocol, so we need about 1000 KB.
  73 *
  74 * This is still too much for most cases, where we just snoop a few
  75 * descriptor fetches for enumeration. So, the default is a "reasonable"
  76 * amount for systems with HZ=250 and incomplete bus saturation.
  77 *
  78 * XXX What about multi-megabyte URBs which take minutes to transfer?
  79 */
  80#define BUFF_MAX  CHUNK_ALIGN(1200*1024)
  81#define BUFF_DFL   CHUNK_ALIGN(300*1024)
  82#define BUFF_MIN     CHUNK_ALIGN(8*1024)
  83
  84/*
  85 * The per-event API header (2 per URB).
  86 *
  87 * This structure is seen in userland as defined by the documentation.
  88 */
  89struct mon_bin_hdr {
  90	u64 id;			/* URB ID - from submission to callback */
  91	unsigned char type;	/* Same as in text API; extensible. */
  92	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
  93	unsigned char epnum;	/* Endpoint number and transfer direction */
  94	unsigned char devnum;	/* Device address */
  95	unsigned short busnum;	/* Bus number */
  96	char flag_setup;
  97	char flag_data;
  98	s64 ts_sec;		/* ktime_get_real_ts64 */
  99	s32 ts_usec;		/* ktime_get_real_ts64 */
 100	int status;
 101	unsigned int len_urb;	/* Length of data (submitted or actual) */
 102	unsigned int len_cap;	/* Delivered length */
 103	union {
 104		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
 105		struct iso_rec {
 106			int error_count;
 107			int numdesc;
 108		} iso;
 109	} s;
 110	int interval;
 111	int start_frame;
 112	unsigned int xfer_flags;
 113	unsigned int ndesc;	/* Actual number of ISO descriptors */
 114};
 115
 116/*
 117 * ISO vector, packed into the head of data stream.
 118 * This has to take 16 bytes to make sure that the end of buffer
 119 * wrap is not happening in the middle of a descriptor.
 120 */
 121struct mon_bin_isodesc {
 122	int          iso_status;
 123	unsigned int iso_off;
 124	unsigned int iso_len;
 125	u32 _pad;
 126};
 127
 128/* per file statistic */
 129struct mon_bin_stats {
 130	u32 queued;
 131	u32 dropped;
 132};
 133
 134struct mon_bin_get {
 135	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
 136	void __user *data;
 137	size_t alloc;		/* Length of data (can be zero) */
 138};
 139
 140struct mon_bin_mfetch {
 141	u32 __user *offvec;	/* Vector of events fetched */
 142	u32 nfetch;		/* Number of events to fetch (out: fetched) */
 143	u32 nflush;		/* Number of events to flush */
 144};
 145
 146#ifdef CONFIG_COMPAT
 147struct mon_bin_get32 {
 148	u32 hdr32;
 149	u32 data32;
 150	u32 alloc32;
 151};
 152
 153struct mon_bin_mfetch32 {
 154        u32 offvec32;
 155        u32 nfetch32;
 156        u32 nflush32;
 157};
 158#endif
 159
 160/* Having these two values same prevents wrapping of the mon_bin_hdr */
 161#define PKT_ALIGN   64
 162#define PKT_SIZE    64
 163
 164#define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
 165#define PKT_SZ_API1 64	/* API 1 size: extra fields */
 166
 167#define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
 168
 169/* max number of USB bus supported */
 170#define MON_BIN_MAX_MINOR 128
 171
 172/*
 173 * The buffer: map of used pages.
 174 */
 175struct mon_pgmap {
 176	struct page *pg;
 177	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
 178};
 179
 180/*
 181 * This gets associated with an open file struct.
 182 */
 183struct mon_reader_bin {
 184	/* The buffer: one per open. */
 185	spinlock_t b_lock;		/* Protect b_cnt, b_in */
 186	unsigned int b_size;		/* Current size of the buffer - bytes */
 187	unsigned int b_cnt;		/* Bytes used */
 188	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
 189	unsigned int b_read;		/* Amount of read data in curr. pkt. */
 190	struct mon_pgmap *b_vec;	/* The map array */
 191	wait_queue_head_t b_wait;	/* Wait for data here */
 192
 193	struct mutex fetch_lock;	/* Protect b_read, b_out */
 194	int mmap_active;
 195
 196	/* A list of these is needed for "bus 0". Some time later. */
 197	struct mon_reader r;
 198
 199	/* Stats */
 200	unsigned int cnt_lost;
 201};
 202
 203static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
 204    unsigned int offset)
 205{
 206	return (struct mon_bin_hdr *)
 207	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
 208}
 209
 210#define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
 211
 212static unsigned char xfer_to_pipe[4] = {
 213	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
 214};
 215
 216static const struct class mon_bin_class = {
 217	.name = "usbmon",
 218};
 219
 220static dev_t mon_bin_dev0;
 221static struct cdev mon_bin_cdev;
 222
 223static void mon_buff_area_fill(const struct mon_reader_bin *rp,
 224    unsigned int offset, unsigned int size);
 225static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
 226static int mon_alloc_buff(struct mon_pgmap *map, int npages);
 227static void mon_free_buff(struct mon_pgmap *map, int npages);
 228
 229/*
 230 * This is a "chunked memcpy". It does not manipulate any counters.
 231 */
 232static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
 233    unsigned int off, const unsigned char *from, unsigned int length)
 234{
 235	unsigned int step_len;
 236	unsigned char *buf;
 237	unsigned int in_page;
 238
 239	while (length) {
 240		/*
 241		 * Determine step_len.
 242		 */
 243		step_len = length;
 244		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
 245		if (in_page < step_len)
 246			step_len = in_page;
 247
 248		/*
 249		 * Copy data and advance pointers.
 250		 */
 251		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
 252		memcpy(buf, from, step_len);
 253		if ((off += step_len) >= this->b_size) off = 0;
 254		from += step_len;
 255		length -= step_len;
 256	}
 257	return off;
 258}
 259
 260/*
 261 * This is a little worse than the above because it's "chunked copy_to_user".
 262 * The return value is an error code, not an offset.
 263 */
 264static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
 265    char __user *to, int length)
 266{
 267	unsigned int step_len;
 268	unsigned char *buf;
 269	unsigned int in_page;
 270
 271	while (length) {
 272		/*
 273		 * Determine step_len.
 274		 */
 275		step_len = length;
 276		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
 277		if (in_page < step_len)
 278			step_len = in_page;
 279
 280		/*
 281		 * Copy data and advance pointers.
 282		 */
 283		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
 284		if (copy_to_user(to, buf, step_len))
 285			return -EINVAL;
 286		if ((off += step_len) >= this->b_size) off = 0;
 287		to += step_len;
 288		length -= step_len;
 289	}
 290	return 0;
 291}
 292
 293/*
 294 * Allocate an (aligned) area in the buffer.
 295 * This is called under b_lock.
 296 * Returns ~0 on failure.
 297 */
 298static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
 299    unsigned int size)
 300{
 301	unsigned int offset;
 302
 303	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 304	if (rp->b_cnt + size > rp->b_size)
 305		return ~0;
 306	offset = rp->b_in;
 307	rp->b_cnt += size;
 308	if ((rp->b_in += size) >= rp->b_size)
 309		rp->b_in -= rp->b_size;
 310	return offset;
 311}
 312
 313/*
 314 * This is the same thing as mon_buff_area_alloc, only it does not allow
 315 * buffers to wrap. This is needed by applications which pass references
 316 * into mmap-ed buffers up their stacks (libpcap can do that).
 317 *
 318 * Currently, we always have the header stuck with the data, although
 319 * it is not strictly speaking necessary.
 320 *
 321 * When a buffer would wrap, we place a filler packet to mark the space.
 322 */
 323static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
 324    unsigned int size)
 325{
 326	unsigned int offset;
 327	unsigned int fill_size;
 328
 329	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 330	if (rp->b_cnt + size > rp->b_size)
 331		return ~0;
 332	if (rp->b_in + size > rp->b_size) {
 333		/*
 334		 * This would wrap. Find if we still have space after
 335		 * skipping to the end of the buffer. If we do, place
 336		 * a filler packet and allocate a new packet.
 337		 */
 338		fill_size = rp->b_size - rp->b_in;
 339		if (rp->b_cnt + size + fill_size > rp->b_size)
 340			return ~0;
 341		mon_buff_area_fill(rp, rp->b_in, fill_size);
 342
 343		offset = 0;
 344		rp->b_in = size;
 345		rp->b_cnt += size + fill_size;
 346	} else if (rp->b_in + size == rp->b_size) {
 347		offset = rp->b_in;
 348		rp->b_in = 0;
 349		rp->b_cnt += size;
 350	} else {
 351		offset = rp->b_in;
 352		rp->b_in += size;
 353		rp->b_cnt += size;
 354	}
 355	return offset;
 356}
 357
 358/*
 359 * Return a few (kilo-)bytes to the head of the buffer.
 360 * This is used if a data fetch fails.
 361 */
 362static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
 363{
 364
 365	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
 366	rp->b_cnt -= size;
 367	if (rp->b_in < size)
 368		rp->b_in += rp->b_size;
 369	rp->b_in -= size;
 370}
 371
 372/*
 373 * This has to be called under both b_lock and fetch_lock, because
 374 * it accesses both b_cnt and b_out.
 375 */
 376static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
 377{
 378
 379	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 380	rp->b_cnt -= size;
 381	if ((rp->b_out += size) >= rp->b_size)
 382		rp->b_out -= rp->b_size;
 383}
 384
 385static void mon_buff_area_fill(const struct mon_reader_bin *rp,
 386    unsigned int offset, unsigned int size)
 387{
 388	struct mon_bin_hdr *ep;
 389
 390	ep = MON_OFF2HDR(rp, offset);
 391	memset(ep, 0, PKT_SIZE);
 392	ep->type = '@';
 393	ep->len_cap = size - PKT_SIZE;
 394}
 395
 396static inline char mon_bin_get_setup(unsigned char *setupb,
 397    const struct urb *urb, char ev_type)
 398{
 399
 400	if (urb->setup_packet == NULL)
 401		return 'Z';
 402	memcpy(setupb, urb->setup_packet, SETUP_LEN);
 403	return 0;
 404}
 405
 406static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
 407    unsigned int offset, struct urb *urb, unsigned int length,
 408    char *flag)
 409{
 410	int i;
 411	struct scatterlist *sg;
 412	unsigned int this_len;
 413
 414	*flag = 0;
 415	if (urb->num_sgs == 0) {
 416		if (urb->transfer_buffer == NULL) {
 417			*flag = 'Z';
 418			return length;
 419		}
 420		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
 421		length = 0;
 422
 423	} else {
 424		/* If IOMMU coalescing occurred, we cannot trust sg_page */
 425		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
 426			*flag = 'D';
 427			return length;
 428		}
 429
 430		/* Copy up to the first non-addressable segment */
 431		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
 432			if (length == 0 || PageHighMem(sg_page(sg)))
 433				break;
 434			this_len = min_t(unsigned int, sg->length, length);
 435			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
 436					this_len);
 437			length -= this_len;
 438		}
 439		if (i == 0)
 440			*flag = 'D';
 441	}
 442
 443	return length;
 444}
 445
 446/*
 447 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
 448 * be used to determine the length of the whole contiguous buffer.
 449 */
 450static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
 451    struct urb *urb, unsigned int ndesc)
 452{
 453	struct usb_iso_packet_descriptor *fp;
 454	unsigned int length;
 455
 456	length = 0;
 457	fp = urb->iso_frame_desc;
 458	while (ndesc-- != 0) {
 459		if (fp->actual_length != 0) {
 460			if (fp->offset + fp->actual_length > length)
 461				length = fp->offset + fp->actual_length;
 462		}
 463		fp++;
 464	}
 465	return length;
 466}
 467
 468static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
 469    unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
 470{
 471	struct mon_bin_isodesc *dp;
 472	struct usb_iso_packet_descriptor *fp;
 473
 474	fp = urb->iso_frame_desc;
 475	while (ndesc-- != 0) {
 476		dp = (struct mon_bin_isodesc *)
 477		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
 478		dp->iso_status = fp->status;
 479		dp->iso_off = fp->offset;
 480		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
 481		dp->_pad = 0;
 482		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
 483			offset = 0;
 484		fp++;
 485	}
 486}
 487
 488static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
 489    char ev_type, int status)
 490{
 491	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
 492	struct timespec64 ts;
 493	unsigned long flags;
 494	unsigned int urb_length;
 495	unsigned int offset;
 496	unsigned int length;
 497	unsigned int delta;
 498	unsigned int ndesc, lendesc;
 499	unsigned char dir;
 500	struct mon_bin_hdr *ep;
 501	char data_tag = 0;
 502
 503	ktime_get_real_ts64(&ts);
 504
 505	spin_lock_irqsave(&rp->b_lock, flags);
 506
 507	/*
 508	 * Find the maximum allowable length, then allocate space.
 509	 */
 510	urb_length = (ev_type == 'S') ?
 511	    urb->transfer_buffer_length : urb->actual_length;
 512	length = urb_length;
 513
 514	if (usb_endpoint_xfer_isoc(epd)) {
 515		if (urb->number_of_packets < 0) {
 516			ndesc = 0;
 517		} else if (urb->number_of_packets >= ISODESC_MAX) {
 518			ndesc = ISODESC_MAX;
 519		} else {
 520			ndesc = urb->number_of_packets;
 521		}
 522		if (ev_type == 'C' && usb_urb_dir_in(urb))
 523			length = mon_bin_collate_isodesc(rp, urb, ndesc);
 524	} else {
 525		ndesc = 0;
 526	}
 527	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
 528
 529	/* not an issue unless there's a subtle bug in a HCD somewhere */
 530	if (length >= urb->transfer_buffer_length)
 531		length = urb->transfer_buffer_length;
 532
 533	if (length >= rp->b_size/5)
 534		length = rp->b_size/5;
 535
 536	if (usb_urb_dir_in(urb)) {
 537		if (ev_type == 'S') {
 538			length = 0;
 539			data_tag = '<';
 540		}
 541		/* Cannot rely on endpoint number in case of control ep.0 */
 542		dir = USB_DIR_IN;
 543	} else {
 544		if (ev_type == 'C') {
 545			length = 0;
 546			data_tag = '>';
 547		}
 548		dir = 0;
 549	}
 550
 551	if (rp->mmap_active) {
 552		offset = mon_buff_area_alloc_contiguous(rp,
 553						 length + PKT_SIZE + lendesc);
 554	} else {
 555		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
 556	}
 557	if (offset == ~0) {
 558		rp->cnt_lost++;
 559		spin_unlock_irqrestore(&rp->b_lock, flags);
 560		return;
 561	}
 562
 563	ep = MON_OFF2HDR(rp, offset);
 564	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
 565
 566	/*
 567	 * Fill the allocated area.
 568	 */
 569	memset(ep, 0, PKT_SIZE);
 570	ep->type = ev_type;
 571	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
 572	ep->epnum = dir | usb_endpoint_num(epd);
 573	ep->devnum = urb->dev->devnum;
 574	ep->busnum = urb->dev->bus->busnum;
 575	ep->id = (unsigned long) urb;
 576	ep->ts_sec = ts.tv_sec;
 577	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
 578	ep->status = status;
 579	ep->len_urb = urb_length;
 580	ep->len_cap = length + lendesc;
 581	ep->xfer_flags = urb->transfer_flags;
 582
 583	if (usb_endpoint_xfer_int(epd)) {
 584		ep->interval = urb->interval;
 585	} else if (usb_endpoint_xfer_isoc(epd)) {
 586		ep->interval = urb->interval;
 587		ep->start_frame = urb->start_frame;
 588		ep->s.iso.error_count = urb->error_count;
 589		ep->s.iso.numdesc = urb->number_of_packets;
 590	}
 591
 592	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
 593		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
 594	} else {
 595		ep->flag_setup = '-';
 596	}
 597
 598	if (ndesc != 0) {
 599		ep->ndesc = ndesc;
 600		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
 601		if ((offset += lendesc) >= rp->b_size)
 602			offset -= rp->b_size;
 603	}
 604
 605	if (length != 0) {
 606		length = mon_bin_get_data(rp, offset, urb, length,
 607				&ep->flag_data);
 608		if (length > 0) {
 609			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 610			ep->len_cap -= length;
 611			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 612			mon_buff_area_shrink(rp, delta);
 613		}
 614	} else {
 615		ep->flag_data = data_tag;
 616	}
 617
 618	spin_unlock_irqrestore(&rp->b_lock, flags);
 619
 620	wake_up(&rp->b_wait);
 621}
 622
 623static void mon_bin_submit(void *data, struct urb *urb)
 624{
 625	struct mon_reader_bin *rp = data;
 626	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
 627}
 628
 629static void mon_bin_complete(void *data, struct urb *urb, int status)
 630{
 631	struct mon_reader_bin *rp = data;
 632	mon_bin_event(rp, urb, 'C', status);
 633}
 634
 635static void mon_bin_error(void *data, struct urb *urb, int error)
 636{
 637	struct mon_reader_bin *rp = data;
 638	struct timespec64 ts;
 639	unsigned long flags;
 640	unsigned int offset;
 641	struct mon_bin_hdr *ep;
 642
 643	ktime_get_real_ts64(&ts);
 644
 645	spin_lock_irqsave(&rp->b_lock, flags);
 646
 647	offset = mon_buff_area_alloc(rp, PKT_SIZE);
 648	if (offset == ~0) {
 649		/* Not incrementing cnt_lost. Just because. */
 650		spin_unlock_irqrestore(&rp->b_lock, flags);
 651		return;
 652	}
 653
 654	ep = MON_OFF2HDR(rp, offset);
 655
 656	memset(ep, 0, PKT_SIZE);
 657	ep->type = 'E';
 658	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
 659	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
 660	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
 661	ep->devnum = urb->dev->devnum;
 662	ep->busnum = urb->dev->bus->busnum;
 663	ep->id = (unsigned long) urb;
 664	ep->ts_sec = ts.tv_sec;
 665	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
 666	ep->status = error;
 667
 668	ep->flag_setup = '-';
 669	ep->flag_data = 'E';
 670
 671	spin_unlock_irqrestore(&rp->b_lock, flags);
 672
 673	wake_up(&rp->b_wait);
 674}
 675
 676static int mon_bin_open(struct inode *inode, struct file *file)
 677{
 678	struct mon_bus *mbus;
 679	struct mon_reader_bin *rp;
 680	size_t size;
 681	int rc;
 682
 683	mutex_lock(&mon_lock);
 684	mbus = mon_bus_lookup(iminor(inode));
 685	if (mbus == NULL) {
 686		mutex_unlock(&mon_lock);
 687		return -ENODEV;
 688	}
 689	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
 690		printk(KERN_ERR TAG ": consistency error on open\n");
 691		mutex_unlock(&mon_lock);
 692		return -ENODEV;
 693	}
 694
 695	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
 696	if (rp == NULL) {
 697		rc = -ENOMEM;
 698		goto err_alloc;
 699	}
 700	spin_lock_init(&rp->b_lock);
 701	init_waitqueue_head(&rp->b_wait);
 702	mutex_init(&rp->fetch_lock);
 703	rp->b_size = BUFF_DFL;
 704
 705	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
 706	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
 707		rc = -ENOMEM;
 708		goto err_allocvec;
 709	}
 710
 711	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
 712		goto err_allocbuff;
 713
 714	rp->r.m_bus = mbus;
 715	rp->r.r_data = rp;
 716	rp->r.rnf_submit = mon_bin_submit;
 717	rp->r.rnf_error = mon_bin_error;
 718	rp->r.rnf_complete = mon_bin_complete;
 719
 720	mon_reader_add(mbus, &rp->r);
 721
 722	file->private_data = rp;
 723	mutex_unlock(&mon_lock);
 724	return 0;
 725
 726err_allocbuff:
 727	kfree(rp->b_vec);
 728err_allocvec:
 729	kfree(rp);
 730err_alloc:
 731	mutex_unlock(&mon_lock);
 732	return rc;
 733}
 734
 735/*
 736 * Extract an event from buffer and copy it to user space.
 737 * Wait if there is no event ready.
 738 * Returns zero or error.
 739 */
 740static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
 741    struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
 742    void __user *data, unsigned int nbytes)
 743{
 744	unsigned long flags;
 745	struct mon_bin_hdr *ep;
 746	size_t step_len;
 747	unsigned int offset;
 748	int rc;
 749
 750	mutex_lock(&rp->fetch_lock);
 751
 752	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 753		mutex_unlock(&rp->fetch_lock);
 754		return rc;
 755	}
 756
 757	ep = MON_OFF2HDR(rp, rp->b_out);
 758
 759	if (copy_to_user(hdr, ep, hdrbytes)) {
 760		mutex_unlock(&rp->fetch_lock);
 761		return -EFAULT;
 762	}
 763
 764	step_len = min(ep->len_cap, nbytes);
 765	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
 766
 767	if (copy_from_buf(rp, offset, data, step_len)) {
 768		mutex_unlock(&rp->fetch_lock);
 769		return -EFAULT;
 770	}
 771
 772	spin_lock_irqsave(&rp->b_lock, flags);
 773	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 774	spin_unlock_irqrestore(&rp->b_lock, flags);
 775	rp->b_read = 0;
 776
 777	mutex_unlock(&rp->fetch_lock);
 778	return 0;
 779}
 780
 781static int mon_bin_release(struct inode *inode, struct file *file)
 782{
 783	struct mon_reader_bin *rp = file->private_data;
 784	struct mon_bus* mbus = rp->r.m_bus;
 785
 786	mutex_lock(&mon_lock);
 787
 788	if (mbus->nreaders <= 0) {
 789		printk(KERN_ERR TAG ": consistency error on close\n");
 790		mutex_unlock(&mon_lock);
 791		return 0;
 792	}
 793	mon_reader_del(mbus, &rp->r);
 794
 795	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
 796	kfree(rp->b_vec);
 797	kfree(rp);
 798
 799	mutex_unlock(&mon_lock);
 800	return 0;
 801}
 802
 803static ssize_t mon_bin_read(struct file *file, char __user *buf,
 804    size_t nbytes, loff_t *ppos)
 805{
 806	struct mon_reader_bin *rp = file->private_data;
 807	unsigned int hdrbytes = PKT_SZ_API0;
 808	unsigned long flags;
 809	struct mon_bin_hdr *ep;
 810	unsigned int offset;
 811	size_t step_len;
 812	char *ptr;
 813	ssize_t done = 0;
 814	int rc;
 815
 816	mutex_lock(&rp->fetch_lock);
 817
 818	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 819		mutex_unlock(&rp->fetch_lock);
 820		return rc;
 821	}
 822
 823	ep = MON_OFF2HDR(rp, rp->b_out);
 824
 825	if (rp->b_read < hdrbytes) {
 826		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
 827		ptr = ((char *)ep) + rp->b_read;
 828		if (step_len && copy_to_user(buf, ptr, step_len)) {
 829			mutex_unlock(&rp->fetch_lock);
 830			return -EFAULT;
 831		}
 832		nbytes -= step_len;
 833		buf += step_len;
 834		rp->b_read += step_len;
 835		done += step_len;
 836	}
 837
 838	if (rp->b_read >= hdrbytes) {
 839		step_len = ep->len_cap;
 840		step_len -= rp->b_read - hdrbytes;
 841		if (step_len > nbytes)
 842			step_len = nbytes;
 843		offset = rp->b_out + PKT_SIZE;
 844		offset += rp->b_read - hdrbytes;
 845		if (offset >= rp->b_size)
 846			offset -= rp->b_size;
 847		if (copy_from_buf(rp, offset, buf, step_len)) {
 848			mutex_unlock(&rp->fetch_lock);
 849			return -EFAULT;
 850		}
 851		nbytes -= step_len;
 852		buf += step_len;
 853		rp->b_read += step_len;
 854		done += step_len;
 855	}
 856
 857	/*
 858	 * Check if whole packet was read, and if so, jump to the next one.
 859	 */
 860	if (rp->b_read >= hdrbytes + ep->len_cap) {
 861		spin_lock_irqsave(&rp->b_lock, flags);
 862		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 863		spin_unlock_irqrestore(&rp->b_lock, flags);
 864		rp->b_read = 0;
 865	}
 866
 867	mutex_unlock(&rp->fetch_lock);
 868	return done;
 869}
 870
 871/*
 872 * Remove at most nevents from chunked buffer.
 873 * Returns the number of removed events.
 874 */
 875static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
 876{
 877	unsigned long flags;
 878	struct mon_bin_hdr *ep;
 879	int i;
 880
 881	mutex_lock(&rp->fetch_lock);
 882	spin_lock_irqsave(&rp->b_lock, flags);
 883	for (i = 0; i < nevents; ++i) {
 884		if (MON_RING_EMPTY(rp))
 885			break;
 886
 887		ep = MON_OFF2HDR(rp, rp->b_out);
 888		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 889	}
 890	spin_unlock_irqrestore(&rp->b_lock, flags);
 891	rp->b_read = 0;
 892	mutex_unlock(&rp->fetch_lock);
 893	return i;
 894}
 895
 896/*
 897 * Fetch at most max event offsets into the buffer and put them into vec.
 898 * The events are usually freed later with mon_bin_flush.
 899 * Return the effective number of events fetched.
 900 */
 901static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
 902    u32 __user *vec, unsigned int max)
 903{
 904	unsigned int cur_out;
 905	unsigned int bytes, avail;
 906	unsigned int size;
 907	unsigned int nevents;
 908	struct mon_bin_hdr *ep;
 909	unsigned long flags;
 910	int rc;
 911
 912	mutex_lock(&rp->fetch_lock);
 913
 914	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 915		mutex_unlock(&rp->fetch_lock);
 916		return rc;
 917	}
 918
 919	spin_lock_irqsave(&rp->b_lock, flags);
 920	avail = rp->b_cnt;
 921	spin_unlock_irqrestore(&rp->b_lock, flags);
 922
 923	cur_out = rp->b_out;
 924	nevents = 0;
 925	bytes = 0;
 926	while (bytes < avail) {
 927		if (nevents >= max)
 928			break;
 929
 930		ep = MON_OFF2HDR(rp, cur_out);
 931		if (put_user(cur_out, &vec[nevents])) {
 932			mutex_unlock(&rp->fetch_lock);
 933			return -EFAULT;
 934		}
 935
 936		nevents++;
 937		size = ep->len_cap + PKT_SIZE;
 938		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 939		if ((cur_out += size) >= rp->b_size)
 940			cur_out -= rp->b_size;
 941		bytes += size;
 942	}
 943
 944	mutex_unlock(&rp->fetch_lock);
 945	return nevents;
 946}
 947
 948/*
 949 * Count events. This is almost the same as the above mon_bin_fetch,
 950 * only we do not store offsets into user vector, and we have no limit.
 951 */
 952static int mon_bin_queued(struct mon_reader_bin *rp)
 953{
 954	unsigned int cur_out;
 955	unsigned int bytes, avail;
 956	unsigned int size;
 957	unsigned int nevents;
 958	struct mon_bin_hdr *ep;
 959	unsigned long flags;
 960
 961	mutex_lock(&rp->fetch_lock);
 962
 963	spin_lock_irqsave(&rp->b_lock, flags);
 964	avail = rp->b_cnt;
 965	spin_unlock_irqrestore(&rp->b_lock, flags);
 966
 967	cur_out = rp->b_out;
 968	nevents = 0;
 969	bytes = 0;
 970	while (bytes < avail) {
 971		ep = MON_OFF2HDR(rp, cur_out);
 972
 973		nevents++;
 974		size = ep->len_cap + PKT_SIZE;
 975		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 976		if ((cur_out += size) >= rp->b_size)
 977			cur_out -= rp->b_size;
 978		bytes += size;
 979	}
 980
 981	mutex_unlock(&rp->fetch_lock);
 982	return nevents;
 983}
 984
 985/*
 986 */
 987static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 988{
 989	struct mon_reader_bin *rp = file->private_data;
 990	// struct mon_bus* mbus = rp->r.m_bus;
 991	int ret = 0;
 992	struct mon_bin_hdr *ep;
 993	unsigned long flags;
 994
 995	switch (cmd) {
 996
 997	case MON_IOCQ_URB_LEN:
 998		/*
 999		 * N.B. This only returns the size of data, without the header.
1000		 */
1001		spin_lock_irqsave(&rp->b_lock, flags);
1002		if (!MON_RING_EMPTY(rp)) {
1003			ep = MON_OFF2HDR(rp, rp->b_out);
1004			ret = ep->len_cap;
1005		}
1006		spin_unlock_irqrestore(&rp->b_lock, flags);
1007		break;
1008
1009	case MON_IOCQ_RING_SIZE:
1010		mutex_lock(&rp->fetch_lock);
1011		ret = rp->b_size;
1012		mutex_unlock(&rp->fetch_lock);
1013		break;
1014
1015	case MON_IOCT_RING_SIZE:
1016		/*
1017		 * Changing the buffer size will flush it's contents; the new
1018		 * buffer is allocated before releasing the old one to be sure
1019		 * the device will stay functional also in case of memory
1020		 * pressure.
1021		 */
1022		{
1023		int size;
1024		struct mon_pgmap *vec;
1025
1026		if (arg < BUFF_MIN || arg > BUFF_MAX)
1027			return -EINVAL;
1028
1029		size = CHUNK_ALIGN(arg);
1030		vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap),
1031			      GFP_KERNEL);
1032		if (vec == NULL) {
1033			ret = -ENOMEM;
1034			break;
1035		}
1036
1037		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1038		if (ret < 0) {
1039			kfree(vec);
1040			break;
1041		}
1042
1043		mutex_lock(&rp->fetch_lock);
1044		spin_lock_irqsave(&rp->b_lock, flags);
1045		if (rp->mmap_active) {
1046			mon_free_buff(vec, size/CHUNK_SIZE);
1047			kfree(vec);
1048			ret = -EBUSY;
1049		} else {
1050			mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1051			kfree(rp->b_vec);
1052			rp->b_vec  = vec;
1053			rp->b_size = size;
1054			rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1055			rp->cnt_lost = 0;
1056		}
1057		spin_unlock_irqrestore(&rp->b_lock, flags);
1058		mutex_unlock(&rp->fetch_lock);
1059		}
1060		break;
1061
1062	case MON_IOCH_MFLUSH:
1063		ret = mon_bin_flush(rp, arg);
1064		break;
1065
1066	case MON_IOCX_GET:
1067	case MON_IOCX_GETX:
1068		{
1069		struct mon_bin_get getb;
1070
1071		if (copy_from_user(&getb, (void __user *)arg,
1072					    sizeof(struct mon_bin_get)))
1073			return -EFAULT;
1074
1075		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1076			return -EINVAL;
1077		ret = mon_bin_get_event(file, rp, getb.hdr,
1078		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1079		    getb.data, (unsigned int)getb.alloc);
1080		}
1081		break;
1082
1083	case MON_IOCX_MFETCH:
1084		{
1085		struct mon_bin_mfetch mfetch;
1086		struct mon_bin_mfetch __user *uptr;
1087
1088		uptr = (struct mon_bin_mfetch __user *)arg;
1089
1090		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1091			return -EFAULT;
1092
1093		if (mfetch.nflush) {
1094			ret = mon_bin_flush(rp, mfetch.nflush);
1095			if (ret < 0)
1096				return ret;
1097			if (put_user(ret, &uptr->nflush))
1098				return -EFAULT;
1099		}
1100		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1101		if (ret < 0)
1102			return ret;
1103		if (put_user(ret, &uptr->nfetch))
1104			return -EFAULT;
1105		ret = 0;
1106		}
1107		break;
1108
1109	case MON_IOCG_STATS: {
1110		struct mon_bin_stats __user *sp;
1111		unsigned int nevents;
1112		unsigned int ndropped;
1113
1114		spin_lock_irqsave(&rp->b_lock, flags);
1115		ndropped = rp->cnt_lost;
1116		rp->cnt_lost = 0;
1117		spin_unlock_irqrestore(&rp->b_lock, flags);
1118		nevents = mon_bin_queued(rp);
1119
1120		sp = (struct mon_bin_stats __user *)arg;
1121		if (put_user(ndropped, &sp->dropped))
1122			return -EFAULT;
1123		if (put_user(nevents, &sp->queued))
1124			return -EFAULT;
1125
1126		}
1127		break;
1128
1129	default:
1130		return -ENOTTY;
1131	}
1132
1133	return ret;
1134}
1135
1136#ifdef CONFIG_COMPAT
1137static long mon_bin_compat_ioctl(struct file *file,
1138    unsigned int cmd, unsigned long arg)
1139{
1140	struct mon_reader_bin *rp = file->private_data;
1141	int ret;
1142
1143	switch (cmd) {
1144
1145	case MON_IOCX_GET32:
1146	case MON_IOCX_GETX32:
1147		{
1148		struct mon_bin_get32 getb;
1149
1150		if (copy_from_user(&getb, (void __user *)arg,
1151					    sizeof(struct mon_bin_get32)))
1152			return -EFAULT;
1153
1154		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1155		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1156		    compat_ptr(getb.data32), getb.alloc32);
1157		if (ret < 0)
1158			return ret;
1159		}
1160		return 0;
1161
1162	case MON_IOCX_MFETCH32:
1163		{
1164		struct mon_bin_mfetch32 mfetch;
1165		struct mon_bin_mfetch32 __user *uptr;
1166
1167		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1168
1169		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1170			return -EFAULT;
1171
1172		if (mfetch.nflush32) {
1173			ret = mon_bin_flush(rp, mfetch.nflush32);
1174			if (ret < 0)
1175				return ret;
1176			if (put_user(ret, &uptr->nflush32))
1177				return -EFAULT;
1178		}
1179		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1180		    mfetch.nfetch32);
1181		if (ret < 0)
1182			return ret;
1183		if (put_user(ret, &uptr->nfetch32))
1184			return -EFAULT;
1185		}
1186		return 0;
1187
1188	case MON_IOCG_STATS:
1189		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1190
1191	case MON_IOCQ_URB_LEN:
1192	case MON_IOCQ_RING_SIZE:
1193	case MON_IOCT_RING_SIZE:
1194	case MON_IOCH_MFLUSH:
1195		return mon_bin_ioctl(file, cmd, arg);
1196
1197	default:
1198		;
1199	}
1200	return -ENOTTY;
1201}
1202#endif /* CONFIG_COMPAT */
1203
1204static __poll_t
1205mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1206{
1207	struct mon_reader_bin *rp = file->private_data;
1208	__poll_t mask = 0;
1209	unsigned long flags;
1210
1211	if (file->f_mode & FMODE_READ)
1212		poll_wait(file, &rp->b_wait, wait);
1213
1214	spin_lock_irqsave(&rp->b_lock, flags);
1215	if (!MON_RING_EMPTY(rp))
1216		mask |= EPOLLIN | EPOLLRDNORM;    /* readable */
1217	spin_unlock_irqrestore(&rp->b_lock, flags);
1218	return mask;
1219}
1220
1221/*
1222 * open and close: just keep track of how many times the device is
1223 * mapped, to use the proper memory allocation function.
1224 */
1225static void mon_bin_vma_open(struct vm_area_struct *vma)
1226{
1227	struct mon_reader_bin *rp = vma->vm_private_data;
1228	unsigned long flags;
1229
1230	spin_lock_irqsave(&rp->b_lock, flags);
1231	rp->mmap_active++;
1232	spin_unlock_irqrestore(&rp->b_lock, flags);
1233}
1234
1235static void mon_bin_vma_close(struct vm_area_struct *vma)
1236{
1237	unsigned long flags;
1238
1239	struct mon_reader_bin *rp = vma->vm_private_data;
1240	spin_lock_irqsave(&rp->b_lock, flags);
1241	rp->mmap_active--;
1242	spin_unlock_irqrestore(&rp->b_lock, flags);
1243}
1244
1245/*
1246 * Map ring pages to user space.
1247 */
1248static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf)
1249{
1250	struct mon_reader_bin *rp = vmf->vma->vm_private_data;
1251	unsigned long offset, chunk_idx;
1252	struct page *pageptr;
1253	unsigned long flags;
1254
1255	spin_lock_irqsave(&rp->b_lock, flags);
1256	offset = vmf->pgoff << PAGE_SHIFT;
1257	if (offset >= rp->b_size) {
1258		spin_unlock_irqrestore(&rp->b_lock, flags);
1259		return VM_FAULT_SIGBUS;
1260	}
1261	chunk_idx = offset / CHUNK_SIZE;
1262	pageptr = rp->b_vec[chunk_idx].pg;
1263	get_page(pageptr);
1264	vmf->page = pageptr;
1265	spin_unlock_irqrestore(&rp->b_lock, flags);
1266	return 0;
1267}
1268
1269static const struct vm_operations_struct mon_bin_vm_ops = {
1270	.open =     mon_bin_vma_open,
1271	.close =    mon_bin_vma_close,
1272	.fault =    mon_bin_vma_fault,
1273};
1274
1275static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1276{
1277	/* don't do anything here: "fault" will set up page table entries */
1278	vma->vm_ops = &mon_bin_vm_ops;
1279
1280	if (vma->vm_flags & VM_WRITE)
1281		return -EPERM;
1282
1283	vm_flags_mod(vma, VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE);
1284	vma->vm_private_data = filp->private_data;
1285	mon_bin_vma_open(vma);
1286	return 0;
1287}
1288
1289static const struct file_operations mon_fops_binary = {
1290	.owner =	THIS_MODULE,
1291	.open =		mon_bin_open,
1292	.llseek =	no_llseek,
1293	.read =		mon_bin_read,
1294	/* .write =	mon_text_write, */
1295	.poll =		mon_bin_poll,
1296	.unlocked_ioctl = mon_bin_ioctl,
1297#ifdef CONFIG_COMPAT
1298	.compat_ioctl =	mon_bin_compat_ioctl,
1299#endif
1300	.release =	mon_bin_release,
1301	.mmap =		mon_bin_mmap,
1302};
1303
1304static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1305{
1306	DECLARE_WAITQUEUE(waita, current);
1307	unsigned long flags;
1308
1309	add_wait_queue(&rp->b_wait, &waita);
1310	set_current_state(TASK_INTERRUPTIBLE);
1311
1312	spin_lock_irqsave(&rp->b_lock, flags);
1313	while (MON_RING_EMPTY(rp)) {
1314		spin_unlock_irqrestore(&rp->b_lock, flags);
1315
1316		if (file->f_flags & O_NONBLOCK) {
1317			set_current_state(TASK_RUNNING);
1318			remove_wait_queue(&rp->b_wait, &waita);
1319			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1320		}
1321		schedule();
1322		if (signal_pending(current)) {
1323			remove_wait_queue(&rp->b_wait, &waita);
1324			return -EINTR;
1325		}
1326		set_current_state(TASK_INTERRUPTIBLE);
1327
1328		spin_lock_irqsave(&rp->b_lock, flags);
1329	}
1330	spin_unlock_irqrestore(&rp->b_lock, flags);
1331
1332	set_current_state(TASK_RUNNING);
1333	remove_wait_queue(&rp->b_wait, &waita);
1334	return 0;
1335}
1336
1337static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1338{
1339	int n;
1340	unsigned long vaddr;
1341
1342	for (n = 0; n < npages; n++) {
1343		vaddr = get_zeroed_page(GFP_KERNEL);
1344		if (vaddr == 0) {
1345			while (n-- != 0)
1346				free_page((unsigned long) map[n].ptr);
1347			return -ENOMEM;
1348		}
1349		map[n].ptr = (unsigned char *) vaddr;
1350		map[n].pg = virt_to_page((void *) vaddr);
1351	}
1352	return 0;
1353}
1354
1355static void mon_free_buff(struct mon_pgmap *map, int npages)
1356{
1357	int n;
1358
1359	for (n = 0; n < npages; n++)
1360		free_page((unsigned long) map[n].ptr);
1361}
1362
1363int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1364{
1365	struct device *dev;
1366	unsigned minor = ubus? ubus->busnum: 0;
1367
1368	if (minor >= MON_BIN_MAX_MINOR)
1369		return 0;
1370
1371	dev = device_create(&mon_bin_class, ubus ? ubus->controller : NULL,
1372			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1373			    "usbmon%d", minor);
1374	if (IS_ERR(dev))
1375		return 0;
1376
1377	mbus->classdev = dev;
1378	return 1;
1379}
1380
1381void mon_bin_del(struct mon_bus *mbus)
1382{
1383	device_destroy(&mon_bin_class, mbus->classdev->devt);
1384}
1385
1386int __init mon_bin_init(void)
1387{
1388	int rc;
1389
1390	rc = class_register(&mon_bin_class);
1391	if (rc)
 
1392		goto err_class;
 
1393
1394	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1395	if (rc < 0)
1396		goto err_dev;
1397
1398	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1399	mon_bin_cdev.owner = THIS_MODULE;
1400
1401	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1402	if (rc < 0)
1403		goto err_add;
1404
1405	return 0;
1406
1407err_add:
1408	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1409err_dev:
1410	class_unregister(&mon_bin_class);
1411err_class:
1412	return rc;
1413}
1414
1415void mon_bin_exit(void)
1416{
1417	cdev_del(&mon_bin_cdev);
1418	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1419	class_unregister(&mon_bin_class);
1420}
v4.6
 
   1/*
   2 * The USB Monitor, inspired by Dave Harding's USBMon.
   3 *
   4 * This is a binary format reader.
   5 *
   6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
   7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
   8 */
   9
  10#include <linux/kernel.h>
 
  11#include <linux/types.h>
  12#include <linux/fs.h>
  13#include <linux/cdev.h>
  14#include <linux/export.h>
  15#include <linux/usb.h>
  16#include <linux/poll.h>
  17#include <linux/compat.h>
  18#include <linux/mm.h>
  19#include <linux/scatterlist.h>
  20#include <linux/slab.h>
  21#include <linux/time64.h>
  22
  23#include <asm/uaccess.h>
  24
  25#include "usb_mon.h"
  26
  27/*
  28 * Defined by USB 2.0 clause 9.3, table 9.2.
  29 */
  30#define SETUP_LEN  8
  31
  32/* ioctl macros */
  33#define MON_IOC_MAGIC 0x92
  34
  35#define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
  36/* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
  37#define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
  38#define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
  39#define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
  40#define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
  41#define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
  42#define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
  43/* #9 was MON_IOCT_SETAPI */
  44#define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
  45
  46#ifdef CONFIG_COMPAT
  47#define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
  48#define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
  49#define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
  50#endif
  51
  52/*
  53 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
  54 * But it's all right. Just use a simple way to make sure the chunk is never
  55 * smaller than a page.
  56 *
  57 * N.B. An application does not know our chunk size.
  58 *
  59 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
  60 * page-sized chunks for the time being.
  61 */
  62#define CHUNK_SIZE   PAGE_SIZE
  63#define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
  64
  65/*
  66 * The magic limit was calculated so that it allows the monitoring
  67 * application to pick data once in two ticks. This way, another application,
  68 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
  69 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
  70 * enormous overhead built into the bus protocol, so we need about 1000 KB.
  71 *
  72 * This is still too much for most cases, where we just snoop a few
  73 * descriptor fetches for enumeration. So, the default is a "reasonable"
  74 * amount for systems with HZ=250 and incomplete bus saturation.
  75 *
  76 * XXX What about multi-megabyte URBs which take minutes to transfer?
  77 */
  78#define BUFF_MAX  CHUNK_ALIGN(1200*1024)
  79#define BUFF_DFL   CHUNK_ALIGN(300*1024)
  80#define BUFF_MIN     CHUNK_ALIGN(8*1024)
  81
  82/*
  83 * The per-event API header (2 per URB).
  84 *
  85 * This structure is seen in userland as defined by the documentation.
  86 */
  87struct mon_bin_hdr {
  88	u64 id;			/* URB ID - from submission to callback */
  89	unsigned char type;	/* Same as in text API; extensible. */
  90	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
  91	unsigned char epnum;	/* Endpoint number and transfer direction */
  92	unsigned char devnum;	/* Device address */
  93	unsigned short busnum;	/* Bus number */
  94	char flag_setup;
  95	char flag_data;
  96	s64 ts_sec;		/* getnstimeofday64 */
  97	s32 ts_usec;		/* getnstimeofday64 */
  98	int status;
  99	unsigned int len_urb;	/* Length of data (submitted or actual) */
 100	unsigned int len_cap;	/* Delivered length */
 101	union {
 102		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
 103		struct iso_rec {
 104			int error_count;
 105			int numdesc;
 106		} iso;
 107	} s;
 108	int interval;
 109	int start_frame;
 110	unsigned int xfer_flags;
 111	unsigned int ndesc;	/* Actual number of ISO descriptors */
 112};
 113
 114/*
 115 * ISO vector, packed into the head of data stream.
 116 * This has to take 16 bytes to make sure that the end of buffer
 117 * wrap is not happening in the middle of a descriptor.
 118 */
 119struct mon_bin_isodesc {
 120	int          iso_status;
 121	unsigned int iso_off;
 122	unsigned int iso_len;
 123	u32 _pad;
 124};
 125
 126/* per file statistic */
 127struct mon_bin_stats {
 128	u32 queued;
 129	u32 dropped;
 130};
 131
 132struct mon_bin_get {
 133	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
 134	void __user *data;
 135	size_t alloc;		/* Length of data (can be zero) */
 136};
 137
 138struct mon_bin_mfetch {
 139	u32 __user *offvec;	/* Vector of events fetched */
 140	u32 nfetch;		/* Number of events to fetch (out: fetched) */
 141	u32 nflush;		/* Number of events to flush */
 142};
 143
 144#ifdef CONFIG_COMPAT
 145struct mon_bin_get32 {
 146	u32 hdr32;
 147	u32 data32;
 148	u32 alloc32;
 149};
 150
 151struct mon_bin_mfetch32 {
 152        u32 offvec32;
 153        u32 nfetch32;
 154        u32 nflush32;
 155};
 156#endif
 157
 158/* Having these two values same prevents wrapping of the mon_bin_hdr */
 159#define PKT_ALIGN   64
 160#define PKT_SIZE    64
 161
 162#define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
 163#define PKT_SZ_API1 64	/* API 1 size: extra fields */
 164
 165#define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
 166
 167/* max number of USB bus supported */
 168#define MON_BIN_MAX_MINOR 128
 169
 170/*
 171 * The buffer: map of used pages.
 172 */
 173struct mon_pgmap {
 174	struct page *pg;
 175	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
 176};
 177
 178/*
 179 * This gets associated with an open file struct.
 180 */
 181struct mon_reader_bin {
 182	/* The buffer: one per open. */
 183	spinlock_t b_lock;		/* Protect b_cnt, b_in */
 184	unsigned int b_size;		/* Current size of the buffer - bytes */
 185	unsigned int b_cnt;		/* Bytes used */
 186	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
 187	unsigned int b_read;		/* Amount of read data in curr. pkt. */
 188	struct mon_pgmap *b_vec;	/* The map array */
 189	wait_queue_head_t b_wait;	/* Wait for data here */
 190
 191	struct mutex fetch_lock;	/* Protect b_read, b_out */
 192	int mmap_active;
 193
 194	/* A list of these is needed for "bus 0". Some time later. */
 195	struct mon_reader r;
 196
 197	/* Stats */
 198	unsigned int cnt_lost;
 199};
 200
 201static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
 202    unsigned int offset)
 203{
 204	return (struct mon_bin_hdr *)
 205	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
 206}
 207
 208#define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
 209
 210static unsigned char xfer_to_pipe[4] = {
 211	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
 212};
 213
 214static struct class *mon_bin_class;
 
 
 
 215static dev_t mon_bin_dev0;
 216static struct cdev mon_bin_cdev;
 217
 218static void mon_buff_area_fill(const struct mon_reader_bin *rp,
 219    unsigned int offset, unsigned int size);
 220static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
 221static int mon_alloc_buff(struct mon_pgmap *map, int npages);
 222static void mon_free_buff(struct mon_pgmap *map, int npages);
 223
 224/*
 225 * This is a "chunked memcpy". It does not manipulate any counters.
 226 */
 227static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
 228    unsigned int off, const unsigned char *from, unsigned int length)
 229{
 230	unsigned int step_len;
 231	unsigned char *buf;
 232	unsigned int in_page;
 233
 234	while (length) {
 235		/*
 236		 * Determine step_len.
 237		 */
 238		step_len = length;
 239		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
 240		if (in_page < step_len)
 241			step_len = in_page;
 242
 243		/*
 244		 * Copy data and advance pointers.
 245		 */
 246		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
 247		memcpy(buf, from, step_len);
 248		if ((off += step_len) >= this->b_size) off = 0;
 249		from += step_len;
 250		length -= step_len;
 251	}
 252	return off;
 253}
 254
 255/*
 256 * This is a little worse than the above because it's "chunked copy_to_user".
 257 * The return value is an error code, not an offset.
 258 */
 259static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
 260    char __user *to, int length)
 261{
 262	unsigned int step_len;
 263	unsigned char *buf;
 264	unsigned int in_page;
 265
 266	while (length) {
 267		/*
 268		 * Determine step_len.
 269		 */
 270		step_len = length;
 271		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
 272		if (in_page < step_len)
 273			step_len = in_page;
 274
 275		/*
 276		 * Copy data and advance pointers.
 277		 */
 278		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
 279		if (copy_to_user(to, buf, step_len))
 280			return -EINVAL;
 281		if ((off += step_len) >= this->b_size) off = 0;
 282		to += step_len;
 283		length -= step_len;
 284	}
 285	return 0;
 286}
 287
 288/*
 289 * Allocate an (aligned) area in the buffer.
 290 * This is called under b_lock.
 291 * Returns ~0 on failure.
 292 */
 293static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
 294    unsigned int size)
 295{
 296	unsigned int offset;
 297
 298	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 299	if (rp->b_cnt + size > rp->b_size)
 300		return ~0;
 301	offset = rp->b_in;
 302	rp->b_cnt += size;
 303	if ((rp->b_in += size) >= rp->b_size)
 304		rp->b_in -= rp->b_size;
 305	return offset;
 306}
 307
 308/*
 309 * This is the same thing as mon_buff_area_alloc, only it does not allow
 310 * buffers to wrap. This is needed by applications which pass references
 311 * into mmap-ed buffers up their stacks (libpcap can do that).
 312 *
 313 * Currently, we always have the header stuck with the data, although
 314 * it is not strictly speaking necessary.
 315 *
 316 * When a buffer would wrap, we place a filler packet to mark the space.
 317 */
 318static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
 319    unsigned int size)
 320{
 321	unsigned int offset;
 322	unsigned int fill_size;
 323
 324	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 325	if (rp->b_cnt + size > rp->b_size)
 326		return ~0;
 327	if (rp->b_in + size > rp->b_size) {
 328		/*
 329		 * This would wrap. Find if we still have space after
 330		 * skipping to the end of the buffer. If we do, place
 331		 * a filler packet and allocate a new packet.
 332		 */
 333		fill_size = rp->b_size - rp->b_in;
 334		if (rp->b_cnt + size + fill_size > rp->b_size)
 335			return ~0;
 336		mon_buff_area_fill(rp, rp->b_in, fill_size);
 337
 338		offset = 0;
 339		rp->b_in = size;
 340		rp->b_cnt += size + fill_size;
 341	} else if (rp->b_in + size == rp->b_size) {
 342		offset = rp->b_in;
 343		rp->b_in = 0;
 344		rp->b_cnt += size;
 345	} else {
 346		offset = rp->b_in;
 347		rp->b_in += size;
 348		rp->b_cnt += size;
 349	}
 350	return offset;
 351}
 352
 353/*
 354 * Return a few (kilo-)bytes to the head of the buffer.
 355 * This is used if a data fetch fails.
 356 */
 357static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
 358{
 359
 360	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
 361	rp->b_cnt -= size;
 362	if (rp->b_in < size)
 363		rp->b_in += rp->b_size;
 364	rp->b_in -= size;
 365}
 366
 367/*
 368 * This has to be called under both b_lock and fetch_lock, because
 369 * it accesses both b_cnt and b_out.
 370 */
 371static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
 372{
 373
 374	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 375	rp->b_cnt -= size;
 376	if ((rp->b_out += size) >= rp->b_size)
 377		rp->b_out -= rp->b_size;
 378}
 379
 380static void mon_buff_area_fill(const struct mon_reader_bin *rp,
 381    unsigned int offset, unsigned int size)
 382{
 383	struct mon_bin_hdr *ep;
 384
 385	ep = MON_OFF2HDR(rp, offset);
 386	memset(ep, 0, PKT_SIZE);
 387	ep->type = '@';
 388	ep->len_cap = size - PKT_SIZE;
 389}
 390
 391static inline char mon_bin_get_setup(unsigned char *setupb,
 392    const struct urb *urb, char ev_type)
 393{
 394
 395	if (urb->setup_packet == NULL)
 396		return 'Z';
 397	memcpy(setupb, urb->setup_packet, SETUP_LEN);
 398	return 0;
 399}
 400
 401static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
 402    unsigned int offset, struct urb *urb, unsigned int length,
 403    char *flag)
 404{
 405	int i;
 406	struct scatterlist *sg;
 407	unsigned int this_len;
 408
 409	*flag = 0;
 410	if (urb->num_sgs == 0) {
 411		if (urb->transfer_buffer == NULL) {
 412			*flag = 'Z';
 413			return length;
 414		}
 415		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
 416		length = 0;
 417
 418	} else {
 419		/* If IOMMU coalescing occurred, we cannot trust sg_page */
 420		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
 421			*flag = 'D';
 422			return length;
 423		}
 424
 425		/* Copy up to the first non-addressable segment */
 426		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
 427			if (length == 0 || PageHighMem(sg_page(sg)))
 428				break;
 429			this_len = min_t(unsigned int, sg->length, length);
 430			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
 431					this_len);
 432			length -= this_len;
 433		}
 434		if (i == 0)
 435			*flag = 'D';
 436	}
 437
 438	return length;
 439}
 440
 441/*
 442 * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
 443 * be used to determine the length of the whole contiguous buffer.
 444 */
 445static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
 446    struct urb *urb, unsigned int ndesc)
 447{
 448	struct usb_iso_packet_descriptor *fp;
 449	unsigned int length;
 450
 451	length = 0;
 452	fp = urb->iso_frame_desc;
 453	while (ndesc-- != 0) {
 454		if (fp->actual_length != 0) {
 455			if (fp->offset + fp->actual_length > length)
 456				length = fp->offset + fp->actual_length;
 457		}
 458		fp++;
 459	}
 460	return length;
 461}
 462
 463static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
 464    unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
 465{
 466	struct mon_bin_isodesc *dp;
 467	struct usb_iso_packet_descriptor *fp;
 468
 469	fp = urb->iso_frame_desc;
 470	while (ndesc-- != 0) {
 471		dp = (struct mon_bin_isodesc *)
 472		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
 473		dp->iso_status = fp->status;
 474		dp->iso_off = fp->offset;
 475		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
 476		dp->_pad = 0;
 477		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
 478			offset = 0;
 479		fp++;
 480	}
 481}
 482
 483static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
 484    char ev_type, int status)
 485{
 486	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
 487	struct timespec64 ts;
 488	unsigned long flags;
 489	unsigned int urb_length;
 490	unsigned int offset;
 491	unsigned int length;
 492	unsigned int delta;
 493	unsigned int ndesc, lendesc;
 494	unsigned char dir;
 495	struct mon_bin_hdr *ep;
 496	char data_tag = 0;
 497
 498	getnstimeofday64(&ts);
 499
 500	spin_lock_irqsave(&rp->b_lock, flags);
 501
 502	/*
 503	 * Find the maximum allowable length, then allocate space.
 504	 */
 505	urb_length = (ev_type == 'S') ?
 506	    urb->transfer_buffer_length : urb->actual_length;
 507	length = urb_length;
 508
 509	if (usb_endpoint_xfer_isoc(epd)) {
 510		if (urb->number_of_packets < 0) {
 511			ndesc = 0;
 512		} else if (urb->number_of_packets >= ISODESC_MAX) {
 513			ndesc = ISODESC_MAX;
 514		} else {
 515			ndesc = urb->number_of_packets;
 516		}
 517		if (ev_type == 'C' && usb_urb_dir_in(urb))
 518			length = mon_bin_collate_isodesc(rp, urb, ndesc);
 519	} else {
 520		ndesc = 0;
 521	}
 522	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
 523
 524	/* not an issue unless there's a subtle bug in a HCD somewhere */
 525	if (length >= urb->transfer_buffer_length)
 526		length = urb->transfer_buffer_length;
 527
 528	if (length >= rp->b_size/5)
 529		length = rp->b_size/5;
 530
 531	if (usb_urb_dir_in(urb)) {
 532		if (ev_type == 'S') {
 533			length = 0;
 534			data_tag = '<';
 535		}
 536		/* Cannot rely on endpoint number in case of control ep.0 */
 537		dir = USB_DIR_IN;
 538	} else {
 539		if (ev_type == 'C') {
 540			length = 0;
 541			data_tag = '>';
 542		}
 543		dir = 0;
 544	}
 545
 546	if (rp->mmap_active) {
 547		offset = mon_buff_area_alloc_contiguous(rp,
 548						 length + PKT_SIZE + lendesc);
 549	} else {
 550		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
 551	}
 552	if (offset == ~0) {
 553		rp->cnt_lost++;
 554		spin_unlock_irqrestore(&rp->b_lock, flags);
 555		return;
 556	}
 557
 558	ep = MON_OFF2HDR(rp, offset);
 559	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
 560
 561	/*
 562	 * Fill the allocated area.
 563	 */
 564	memset(ep, 0, PKT_SIZE);
 565	ep->type = ev_type;
 566	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
 567	ep->epnum = dir | usb_endpoint_num(epd);
 568	ep->devnum = urb->dev->devnum;
 569	ep->busnum = urb->dev->bus->busnum;
 570	ep->id = (unsigned long) urb;
 571	ep->ts_sec = ts.tv_sec;
 572	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
 573	ep->status = status;
 574	ep->len_urb = urb_length;
 575	ep->len_cap = length + lendesc;
 576	ep->xfer_flags = urb->transfer_flags;
 577
 578	if (usb_endpoint_xfer_int(epd)) {
 579		ep->interval = urb->interval;
 580	} else if (usb_endpoint_xfer_isoc(epd)) {
 581		ep->interval = urb->interval;
 582		ep->start_frame = urb->start_frame;
 583		ep->s.iso.error_count = urb->error_count;
 584		ep->s.iso.numdesc = urb->number_of_packets;
 585	}
 586
 587	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
 588		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
 589	} else {
 590		ep->flag_setup = '-';
 591	}
 592
 593	if (ndesc != 0) {
 594		ep->ndesc = ndesc;
 595		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
 596		if ((offset += lendesc) >= rp->b_size)
 597			offset -= rp->b_size;
 598	}
 599
 600	if (length != 0) {
 601		length = mon_bin_get_data(rp, offset, urb, length,
 602				&ep->flag_data);
 603		if (length > 0) {
 604			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 605			ep->len_cap -= length;
 606			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 607			mon_buff_area_shrink(rp, delta);
 608		}
 609	} else {
 610		ep->flag_data = data_tag;
 611	}
 612
 613	spin_unlock_irqrestore(&rp->b_lock, flags);
 614
 615	wake_up(&rp->b_wait);
 616}
 617
 618static void mon_bin_submit(void *data, struct urb *urb)
 619{
 620	struct mon_reader_bin *rp = data;
 621	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
 622}
 623
 624static void mon_bin_complete(void *data, struct urb *urb, int status)
 625{
 626	struct mon_reader_bin *rp = data;
 627	mon_bin_event(rp, urb, 'C', status);
 628}
 629
 630static void mon_bin_error(void *data, struct urb *urb, int error)
 631{
 632	struct mon_reader_bin *rp = data;
 633	struct timespec64 ts;
 634	unsigned long flags;
 635	unsigned int offset;
 636	struct mon_bin_hdr *ep;
 637
 638	getnstimeofday64(&ts);
 639
 640	spin_lock_irqsave(&rp->b_lock, flags);
 641
 642	offset = mon_buff_area_alloc(rp, PKT_SIZE);
 643	if (offset == ~0) {
 644		/* Not incrementing cnt_lost. Just because. */
 645		spin_unlock_irqrestore(&rp->b_lock, flags);
 646		return;
 647	}
 648
 649	ep = MON_OFF2HDR(rp, offset);
 650
 651	memset(ep, 0, PKT_SIZE);
 652	ep->type = 'E';
 653	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
 654	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
 655	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
 656	ep->devnum = urb->dev->devnum;
 657	ep->busnum = urb->dev->bus->busnum;
 658	ep->id = (unsigned long) urb;
 659	ep->ts_sec = ts.tv_sec;
 660	ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC;
 661	ep->status = error;
 662
 663	ep->flag_setup = '-';
 664	ep->flag_data = 'E';
 665
 666	spin_unlock_irqrestore(&rp->b_lock, flags);
 667
 668	wake_up(&rp->b_wait);
 669}
 670
 671static int mon_bin_open(struct inode *inode, struct file *file)
 672{
 673	struct mon_bus *mbus;
 674	struct mon_reader_bin *rp;
 675	size_t size;
 676	int rc;
 677
 678	mutex_lock(&mon_lock);
 679	mbus = mon_bus_lookup(iminor(inode));
 680	if (mbus == NULL) {
 681		mutex_unlock(&mon_lock);
 682		return -ENODEV;
 683	}
 684	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
 685		printk(KERN_ERR TAG ": consistency error on open\n");
 686		mutex_unlock(&mon_lock);
 687		return -ENODEV;
 688	}
 689
 690	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
 691	if (rp == NULL) {
 692		rc = -ENOMEM;
 693		goto err_alloc;
 694	}
 695	spin_lock_init(&rp->b_lock);
 696	init_waitqueue_head(&rp->b_wait);
 697	mutex_init(&rp->fetch_lock);
 698	rp->b_size = BUFF_DFL;
 699
 700	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
 701	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
 702		rc = -ENOMEM;
 703		goto err_allocvec;
 704	}
 705
 706	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
 707		goto err_allocbuff;
 708
 709	rp->r.m_bus = mbus;
 710	rp->r.r_data = rp;
 711	rp->r.rnf_submit = mon_bin_submit;
 712	rp->r.rnf_error = mon_bin_error;
 713	rp->r.rnf_complete = mon_bin_complete;
 714
 715	mon_reader_add(mbus, &rp->r);
 716
 717	file->private_data = rp;
 718	mutex_unlock(&mon_lock);
 719	return 0;
 720
 721err_allocbuff:
 722	kfree(rp->b_vec);
 723err_allocvec:
 724	kfree(rp);
 725err_alloc:
 726	mutex_unlock(&mon_lock);
 727	return rc;
 728}
 729
 730/*
 731 * Extract an event from buffer and copy it to user space.
 732 * Wait if there is no event ready.
 733 * Returns zero or error.
 734 */
 735static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
 736    struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
 737    void __user *data, unsigned int nbytes)
 738{
 739	unsigned long flags;
 740	struct mon_bin_hdr *ep;
 741	size_t step_len;
 742	unsigned int offset;
 743	int rc;
 744
 745	mutex_lock(&rp->fetch_lock);
 746
 747	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 748		mutex_unlock(&rp->fetch_lock);
 749		return rc;
 750	}
 751
 752	ep = MON_OFF2HDR(rp, rp->b_out);
 753
 754	if (copy_to_user(hdr, ep, hdrbytes)) {
 755		mutex_unlock(&rp->fetch_lock);
 756		return -EFAULT;
 757	}
 758
 759	step_len = min(ep->len_cap, nbytes);
 760	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
 761
 762	if (copy_from_buf(rp, offset, data, step_len)) {
 763		mutex_unlock(&rp->fetch_lock);
 764		return -EFAULT;
 765	}
 766
 767	spin_lock_irqsave(&rp->b_lock, flags);
 768	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 769	spin_unlock_irqrestore(&rp->b_lock, flags);
 770	rp->b_read = 0;
 771
 772	mutex_unlock(&rp->fetch_lock);
 773	return 0;
 774}
 775
 776static int mon_bin_release(struct inode *inode, struct file *file)
 777{
 778	struct mon_reader_bin *rp = file->private_data;
 779	struct mon_bus* mbus = rp->r.m_bus;
 780
 781	mutex_lock(&mon_lock);
 782
 783	if (mbus->nreaders <= 0) {
 784		printk(KERN_ERR TAG ": consistency error on close\n");
 785		mutex_unlock(&mon_lock);
 786		return 0;
 787	}
 788	mon_reader_del(mbus, &rp->r);
 789
 790	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
 791	kfree(rp->b_vec);
 792	kfree(rp);
 793
 794	mutex_unlock(&mon_lock);
 795	return 0;
 796}
 797
 798static ssize_t mon_bin_read(struct file *file, char __user *buf,
 799    size_t nbytes, loff_t *ppos)
 800{
 801	struct mon_reader_bin *rp = file->private_data;
 802	unsigned int hdrbytes = PKT_SZ_API0;
 803	unsigned long flags;
 804	struct mon_bin_hdr *ep;
 805	unsigned int offset;
 806	size_t step_len;
 807	char *ptr;
 808	ssize_t done = 0;
 809	int rc;
 810
 811	mutex_lock(&rp->fetch_lock);
 812
 813	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 814		mutex_unlock(&rp->fetch_lock);
 815		return rc;
 816	}
 817
 818	ep = MON_OFF2HDR(rp, rp->b_out);
 819
 820	if (rp->b_read < hdrbytes) {
 821		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
 822		ptr = ((char *)ep) + rp->b_read;
 823		if (step_len && copy_to_user(buf, ptr, step_len)) {
 824			mutex_unlock(&rp->fetch_lock);
 825			return -EFAULT;
 826		}
 827		nbytes -= step_len;
 828		buf += step_len;
 829		rp->b_read += step_len;
 830		done += step_len;
 831	}
 832
 833	if (rp->b_read >= hdrbytes) {
 834		step_len = ep->len_cap;
 835		step_len -= rp->b_read - hdrbytes;
 836		if (step_len > nbytes)
 837			step_len = nbytes;
 838		offset = rp->b_out + PKT_SIZE;
 839		offset += rp->b_read - hdrbytes;
 840		if (offset >= rp->b_size)
 841			offset -= rp->b_size;
 842		if (copy_from_buf(rp, offset, buf, step_len)) {
 843			mutex_unlock(&rp->fetch_lock);
 844			return -EFAULT;
 845		}
 846		nbytes -= step_len;
 847		buf += step_len;
 848		rp->b_read += step_len;
 849		done += step_len;
 850	}
 851
 852	/*
 853	 * Check if whole packet was read, and if so, jump to the next one.
 854	 */
 855	if (rp->b_read >= hdrbytes + ep->len_cap) {
 856		spin_lock_irqsave(&rp->b_lock, flags);
 857		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 858		spin_unlock_irqrestore(&rp->b_lock, flags);
 859		rp->b_read = 0;
 860	}
 861
 862	mutex_unlock(&rp->fetch_lock);
 863	return done;
 864}
 865
 866/*
 867 * Remove at most nevents from chunked buffer.
 868 * Returns the number of removed events.
 869 */
 870static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
 871{
 872	unsigned long flags;
 873	struct mon_bin_hdr *ep;
 874	int i;
 875
 876	mutex_lock(&rp->fetch_lock);
 877	spin_lock_irqsave(&rp->b_lock, flags);
 878	for (i = 0; i < nevents; ++i) {
 879		if (MON_RING_EMPTY(rp))
 880			break;
 881
 882		ep = MON_OFF2HDR(rp, rp->b_out);
 883		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
 884	}
 885	spin_unlock_irqrestore(&rp->b_lock, flags);
 886	rp->b_read = 0;
 887	mutex_unlock(&rp->fetch_lock);
 888	return i;
 889}
 890
 891/*
 892 * Fetch at most max event offsets into the buffer and put them into vec.
 893 * The events are usually freed later with mon_bin_flush.
 894 * Return the effective number of events fetched.
 895 */
 896static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
 897    u32 __user *vec, unsigned int max)
 898{
 899	unsigned int cur_out;
 900	unsigned int bytes, avail;
 901	unsigned int size;
 902	unsigned int nevents;
 903	struct mon_bin_hdr *ep;
 904	unsigned long flags;
 905	int rc;
 906
 907	mutex_lock(&rp->fetch_lock);
 908
 909	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
 910		mutex_unlock(&rp->fetch_lock);
 911		return rc;
 912	}
 913
 914	spin_lock_irqsave(&rp->b_lock, flags);
 915	avail = rp->b_cnt;
 916	spin_unlock_irqrestore(&rp->b_lock, flags);
 917
 918	cur_out = rp->b_out;
 919	nevents = 0;
 920	bytes = 0;
 921	while (bytes < avail) {
 922		if (nevents >= max)
 923			break;
 924
 925		ep = MON_OFF2HDR(rp, cur_out);
 926		if (put_user(cur_out, &vec[nevents])) {
 927			mutex_unlock(&rp->fetch_lock);
 928			return -EFAULT;
 929		}
 930
 931		nevents++;
 932		size = ep->len_cap + PKT_SIZE;
 933		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 934		if ((cur_out += size) >= rp->b_size)
 935			cur_out -= rp->b_size;
 936		bytes += size;
 937	}
 938
 939	mutex_unlock(&rp->fetch_lock);
 940	return nevents;
 941}
 942
 943/*
 944 * Count events. This is almost the same as the above mon_bin_fetch,
 945 * only we do not store offsets into user vector, and we have no limit.
 946 */
 947static int mon_bin_queued(struct mon_reader_bin *rp)
 948{
 949	unsigned int cur_out;
 950	unsigned int bytes, avail;
 951	unsigned int size;
 952	unsigned int nevents;
 953	struct mon_bin_hdr *ep;
 954	unsigned long flags;
 955
 956	mutex_lock(&rp->fetch_lock);
 957
 958	spin_lock_irqsave(&rp->b_lock, flags);
 959	avail = rp->b_cnt;
 960	spin_unlock_irqrestore(&rp->b_lock, flags);
 961
 962	cur_out = rp->b_out;
 963	nevents = 0;
 964	bytes = 0;
 965	while (bytes < avail) {
 966		ep = MON_OFF2HDR(rp, cur_out);
 967
 968		nevents++;
 969		size = ep->len_cap + PKT_SIZE;
 970		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
 971		if ((cur_out += size) >= rp->b_size)
 972			cur_out -= rp->b_size;
 973		bytes += size;
 974	}
 975
 976	mutex_unlock(&rp->fetch_lock);
 977	return nevents;
 978}
 979
 980/*
 981 */
 982static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 983{
 984	struct mon_reader_bin *rp = file->private_data;
 985	// struct mon_bus* mbus = rp->r.m_bus;
 986	int ret = 0;
 987	struct mon_bin_hdr *ep;
 988	unsigned long flags;
 989
 990	switch (cmd) {
 991
 992	case MON_IOCQ_URB_LEN:
 993		/*
 994		 * N.B. This only returns the size of data, without the header.
 995		 */
 996		spin_lock_irqsave(&rp->b_lock, flags);
 997		if (!MON_RING_EMPTY(rp)) {
 998			ep = MON_OFF2HDR(rp, rp->b_out);
 999			ret = ep->len_cap;
1000		}
1001		spin_unlock_irqrestore(&rp->b_lock, flags);
1002		break;
1003
1004	case MON_IOCQ_RING_SIZE:
 
1005		ret = rp->b_size;
 
1006		break;
1007
1008	case MON_IOCT_RING_SIZE:
1009		/*
1010		 * Changing the buffer size will flush it's contents; the new
1011		 * buffer is allocated before releasing the old one to be sure
1012		 * the device will stay functional also in case of memory
1013		 * pressure.
1014		 */
1015		{
1016		int size;
1017		struct mon_pgmap *vec;
1018
1019		if (arg < BUFF_MIN || arg > BUFF_MAX)
1020			return -EINVAL;
1021
1022		size = CHUNK_ALIGN(arg);
1023		vec = kzalloc(sizeof(struct mon_pgmap) * (size / CHUNK_SIZE), GFP_KERNEL);
 
1024		if (vec == NULL) {
1025			ret = -ENOMEM;
1026			break;
1027		}
1028
1029		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1030		if (ret < 0) {
1031			kfree(vec);
1032			break;
1033		}
1034
1035		mutex_lock(&rp->fetch_lock);
1036		spin_lock_irqsave(&rp->b_lock, flags);
1037		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1038		kfree(rp->b_vec);
1039		rp->b_vec  = vec;
1040		rp->b_size = size;
1041		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1042		rp->cnt_lost = 0;
 
 
 
 
 
 
1043		spin_unlock_irqrestore(&rp->b_lock, flags);
1044		mutex_unlock(&rp->fetch_lock);
1045		}
1046		break;
1047
1048	case MON_IOCH_MFLUSH:
1049		ret = mon_bin_flush(rp, arg);
1050		break;
1051
1052	case MON_IOCX_GET:
1053	case MON_IOCX_GETX:
1054		{
1055		struct mon_bin_get getb;
1056
1057		if (copy_from_user(&getb, (void __user *)arg,
1058					    sizeof(struct mon_bin_get)))
1059			return -EFAULT;
1060
1061		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1062			return -EINVAL;
1063		ret = mon_bin_get_event(file, rp, getb.hdr,
1064		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1065		    getb.data, (unsigned int)getb.alloc);
1066		}
1067		break;
1068
1069	case MON_IOCX_MFETCH:
1070		{
1071		struct mon_bin_mfetch mfetch;
1072		struct mon_bin_mfetch __user *uptr;
1073
1074		uptr = (struct mon_bin_mfetch __user *)arg;
1075
1076		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1077			return -EFAULT;
1078
1079		if (mfetch.nflush) {
1080			ret = mon_bin_flush(rp, mfetch.nflush);
1081			if (ret < 0)
1082				return ret;
1083			if (put_user(ret, &uptr->nflush))
1084				return -EFAULT;
1085		}
1086		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1087		if (ret < 0)
1088			return ret;
1089		if (put_user(ret, &uptr->nfetch))
1090			return -EFAULT;
1091		ret = 0;
1092		}
1093		break;
1094
1095	case MON_IOCG_STATS: {
1096		struct mon_bin_stats __user *sp;
1097		unsigned int nevents;
1098		unsigned int ndropped;
1099
1100		spin_lock_irqsave(&rp->b_lock, flags);
1101		ndropped = rp->cnt_lost;
1102		rp->cnt_lost = 0;
1103		spin_unlock_irqrestore(&rp->b_lock, flags);
1104		nevents = mon_bin_queued(rp);
1105
1106		sp = (struct mon_bin_stats __user *)arg;
1107		if (put_user(ndropped, &sp->dropped))
1108			return -EFAULT;
1109		if (put_user(nevents, &sp->queued))
1110			return -EFAULT;
1111
1112		}
1113		break;
1114
1115	default:
1116		return -ENOTTY;
1117	}
1118
1119	return ret;
1120}
1121
1122#ifdef CONFIG_COMPAT
1123static long mon_bin_compat_ioctl(struct file *file,
1124    unsigned int cmd, unsigned long arg)
1125{
1126	struct mon_reader_bin *rp = file->private_data;
1127	int ret;
1128
1129	switch (cmd) {
1130
1131	case MON_IOCX_GET32:
1132	case MON_IOCX_GETX32:
1133		{
1134		struct mon_bin_get32 getb;
1135
1136		if (copy_from_user(&getb, (void __user *)arg,
1137					    sizeof(struct mon_bin_get32)))
1138			return -EFAULT;
1139
1140		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1141		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1142		    compat_ptr(getb.data32), getb.alloc32);
1143		if (ret < 0)
1144			return ret;
1145		}
1146		return 0;
1147
1148	case MON_IOCX_MFETCH32:
1149		{
1150		struct mon_bin_mfetch32 mfetch;
1151		struct mon_bin_mfetch32 __user *uptr;
1152
1153		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1154
1155		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1156			return -EFAULT;
1157
1158		if (mfetch.nflush32) {
1159			ret = mon_bin_flush(rp, mfetch.nflush32);
1160			if (ret < 0)
1161				return ret;
1162			if (put_user(ret, &uptr->nflush32))
1163				return -EFAULT;
1164		}
1165		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1166		    mfetch.nfetch32);
1167		if (ret < 0)
1168			return ret;
1169		if (put_user(ret, &uptr->nfetch32))
1170			return -EFAULT;
1171		}
1172		return 0;
1173
1174	case MON_IOCG_STATS:
1175		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1176
1177	case MON_IOCQ_URB_LEN:
1178	case MON_IOCQ_RING_SIZE:
1179	case MON_IOCT_RING_SIZE:
1180	case MON_IOCH_MFLUSH:
1181		return mon_bin_ioctl(file, cmd, arg);
1182
1183	default:
1184		;
1185	}
1186	return -ENOTTY;
1187}
1188#endif /* CONFIG_COMPAT */
1189
1190static unsigned int
1191mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1192{
1193	struct mon_reader_bin *rp = file->private_data;
1194	unsigned int mask = 0;
1195	unsigned long flags;
1196
1197	if (file->f_mode & FMODE_READ)
1198		poll_wait(file, &rp->b_wait, wait);
1199
1200	spin_lock_irqsave(&rp->b_lock, flags);
1201	if (!MON_RING_EMPTY(rp))
1202		mask |= POLLIN | POLLRDNORM;    /* readable */
1203	spin_unlock_irqrestore(&rp->b_lock, flags);
1204	return mask;
1205}
1206
1207/*
1208 * open and close: just keep track of how many times the device is
1209 * mapped, to use the proper memory allocation function.
1210 */
1211static void mon_bin_vma_open(struct vm_area_struct *vma)
1212{
1213	struct mon_reader_bin *rp = vma->vm_private_data;
 
 
 
1214	rp->mmap_active++;
 
1215}
1216
1217static void mon_bin_vma_close(struct vm_area_struct *vma)
1218{
 
 
1219	struct mon_reader_bin *rp = vma->vm_private_data;
 
1220	rp->mmap_active--;
 
1221}
1222
1223/*
1224 * Map ring pages to user space.
1225 */
1226static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1227{
1228	struct mon_reader_bin *rp = vma->vm_private_data;
1229	unsigned long offset, chunk_idx;
1230	struct page *pageptr;
 
1231
 
1232	offset = vmf->pgoff << PAGE_SHIFT;
1233	if (offset >= rp->b_size)
 
1234		return VM_FAULT_SIGBUS;
 
1235	chunk_idx = offset / CHUNK_SIZE;
1236	pageptr = rp->b_vec[chunk_idx].pg;
1237	get_page(pageptr);
1238	vmf->page = pageptr;
 
1239	return 0;
1240}
1241
1242static const struct vm_operations_struct mon_bin_vm_ops = {
1243	.open =     mon_bin_vma_open,
1244	.close =    mon_bin_vma_close,
1245	.fault =    mon_bin_vma_fault,
1246};
1247
1248static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1249{
1250	/* don't do anything here: "fault" will set up page table entries */
1251	vma->vm_ops = &mon_bin_vm_ops;
1252	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
 
 
 
 
1253	vma->vm_private_data = filp->private_data;
1254	mon_bin_vma_open(vma);
1255	return 0;
1256}
1257
1258static const struct file_operations mon_fops_binary = {
1259	.owner =	THIS_MODULE,
1260	.open =		mon_bin_open,
1261	.llseek =	no_llseek,
1262	.read =		mon_bin_read,
1263	/* .write =	mon_text_write, */
1264	.poll =		mon_bin_poll,
1265	.unlocked_ioctl = mon_bin_ioctl,
1266#ifdef CONFIG_COMPAT
1267	.compat_ioctl =	mon_bin_compat_ioctl,
1268#endif
1269	.release =	mon_bin_release,
1270	.mmap =		mon_bin_mmap,
1271};
1272
1273static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1274{
1275	DECLARE_WAITQUEUE(waita, current);
1276	unsigned long flags;
1277
1278	add_wait_queue(&rp->b_wait, &waita);
1279	set_current_state(TASK_INTERRUPTIBLE);
1280
1281	spin_lock_irqsave(&rp->b_lock, flags);
1282	while (MON_RING_EMPTY(rp)) {
1283		spin_unlock_irqrestore(&rp->b_lock, flags);
1284
1285		if (file->f_flags & O_NONBLOCK) {
1286			set_current_state(TASK_RUNNING);
1287			remove_wait_queue(&rp->b_wait, &waita);
1288			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1289		}
1290		schedule();
1291		if (signal_pending(current)) {
1292			remove_wait_queue(&rp->b_wait, &waita);
1293			return -EINTR;
1294		}
1295		set_current_state(TASK_INTERRUPTIBLE);
1296
1297		spin_lock_irqsave(&rp->b_lock, flags);
1298	}
1299	spin_unlock_irqrestore(&rp->b_lock, flags);
1300
1301	set_current_state(TASK_RUNNING);
1302	remove_wait_queue(&rp->b_wait, &waita);
1303	return 0;
1304}
1305
1306static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1307{
1308	int n;
1309	unsigned long vaddr;
1310
1311	for (n = 0; n < npages; n++) {
1312		vaddr = get_zeroed_page(GFP_KERNEL);
1313		if (vaddr == 0) {
1314			while (n-- != 0)
1315				free_page((unsigned long) map[n].ptr);
1316			return -ENOMEM;
1317		}
1318		map[n].ptr = (unsigned char *) vaddr;
1319		map[n].pg = virt_to_page((void *) vaddr);
1320	}
1321	return 0;
1322}
1323
1324static void mon_free_buff(struct mon_pgmap *map, int npages)
1325{
1326	int n;
1327
1328	for (n = 0; n < npages; n++)
1329		free_page((unsigned long) map[n].ptr);
1330}
1331
1332int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1333{
1334	struct device *dev;
1335	unsigned minor = ubus? ubus->busnum: 0;
1336
1337	if (minor >= MON_BIN_MAX_MINOR)
1338		return 0;
1339
1340	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1341			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1342			    "usbmon%d", minor);
1343	if (IS_ERR(dev))
1344		return 0;
1345
1346	mbus->classdev = dev;
1347	return 1;
1348}
1349
1350void mon_bin_del(struct mon_bus *mbus)
1351{
1352	device_destroy(mon_bin_class, mbus->classdev->devt);
1353}
1354
1355int __init mon_bin_init(void)
1356{
1357	int rc;
1358
1359	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1360	if (IS_ERR(mon_bin_class)) {
1361		rc = PTR_ERR(mon_bin_class);
1362		goto err_class;
1363	}
1364
1365	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1366	if (rc < 0)
1367		goto err_dev;
1368
1369	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1370	mon_bin_cdev.owner = THIS_MODULE;
1371
1372	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1373	if (rc < 0)
1374		goto err_add;
1375
1376	return 0;
1377
1378err_add:
1379	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1380err_dev:
1381	class_destroy(mon_bin_class);
1382err_class:
1383	return rc;
1384}
1385
1386void mon_bin_exit(void)
1387{
1388	cdev_del(&mon_bin_cdev);
1389	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1390	class_destroy(mon_bin_class);
1391}