Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OMAP2 McSPI controller driver
4 *
5 * Copyright (C) 2005, 2006 Nokia Corporation
6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
7 * Juha Yrjola <juha.yrjola@nokia.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/module.h>
13#include <linux/device.h>
14#include <linux/delay.h>
15#include <linux/dma-mapping.h>
16#include <linux/dmaengine.h>
17#include <linux/pinctrl/consumer.h>
18#include <linux/platform_device.h>
19#include <linux/err.h>
20#include <linux/clk.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/pm_runtime.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/gcd.h>
27
28#include <linux/spi/spi.h>
29
30#include <linux/platform_data/spi-omap2-mcspi.h>
31
32#define OMAP2_MCSPI_MAX_FREQ 48000000
33#define OMAP2_MCSPI_MAX_DIVIDER 4096
34#define OMAP2_MCSPI_MAX_FIFODEPTH 64
35#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
36#define SPI_AUTOSUSPEND_TIMEOUT 2000
37
38#define OMAP2_MCSPI_REVISION 0x00
39#define OMAP2_MCSPI_SYSSTATUS 0x14
40#define OMAP2_MCSPI_IRQSTATUS 0x18
41#define OMAP2_MCSPI_IRQENABLE 0x1c
42#define OMAP2_MCSPI_WAKEUPENABLE 0x20
43#define OMAP2_MCSPI_SYST 0x24
44#define OMAP2_MCSPI_MODULCTRL 0x28
45#define OMAP2_MCSPI_XFERLEVEL 0x7c
46
47/* per-channel banks, 0x14 bytes each, first is: */
48#define OMAP2_MCSPI_CHCONF0 0x2c
49#define OMAP2_MCSPI_CHSTAT0 0x30
50#define OMAP2_MCSPI_CHCTRL0 0x34
51#define OMAP2_MCSPI_TX0 0x38
52#define OMAP2_MCSPI_RX0 0x3c
53
54/* per-register bitmasks: */
55#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
56
57#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
58#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
59#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
60
61#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
62#define OMAP2_MCSPI_CHCONF_POL BIT(1)
63#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
64#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
65#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
66#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
67#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
68#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
69#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
70#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
71#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
72#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
73#define OMAP2_MCSPI_CHCONF_IS BIT(18)
74#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
75#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
76#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
77#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
78#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
79
80#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
81#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
82#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
83#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
84
85#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
86#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
87
88#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
89
90/* We have 2 DMA channels per CS, one for RX and one for TX */
91struct omap2_mcspi_dma {
92 struct dma_chan *dma_tx;
93 struct dma_chan *dma_rx;
94
95 struct completion dma_tx_completion;
96 struct completion dma_rx_completion;
97
98 char dma_rx_ch_name[14];
99 char dma_tx_ch_name[14];
100};
101
102/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
103 * cache operations; better heuristics consider wordsize and bitrate.
104 */
105#define DMA_MIN_BYTES 160
106
107
108/*
109 * Used for context save and restore, structure members to be updated whenever
110 * corresponding registers are modified.
111 */
112struct omap2_mcspi_regs {
113 u32 modulctrl;
114 u32 wakeupenable;
115 struct list_head cs;
116};
117
118struct omap2_mcspi {
119 struct completion txdone;
120 struct spi_controller *ctlr;
121 /* Virtual base address of the controller */
122 void __iomem *base;
123 unsigned long phys;
124 /* SPI1 has 4 channels, while SPI2 has 2 */
125 struct omap2_mcspi_dma *dma_channels;
126 struct device *dev;
127 struct omap2_mcspi_regs ctx;
128 struct clk *ref_clk;
129 int fifo_depth;
130 bool target_aborted;
131 unsigned int pin_dir:1;
132 size_t max_xfer_len;
133 u32 ref_clk_hz;
134};
135
136struct omap2_mcspi_cs {
137 void __iomem *base;
138 unsigned long phys;
139 int word_len;
140 u16 mode;
141 struct list_head node;
142 /* Context save and restore shadow register */
143 u32 chconf0, chctrl0;
144};
145
146static inline void mcspi_write_reg(struct spi_controller *ctlr,
147 int idx, u32 val)
148{
149 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
150
151 writel_relaxed(val, mcspi->base + idx);
152}
153
154static inline u32 mcspi_read_reg(struct spi_controller *ctlr, int idx)
155{
156 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
157
158 return readl_relaxed(mcspi->base + idx);
159}
160
161static inline void mcspi_write_cs_reg(const struct spi_device *spi,
162 int idx, u32 val)
163{
164 struct omap2_mcspi_cs *cs = spi->controller_state;
165
166 writel_relaxed(val, cs->base + idx);
167}
168
169static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
170{
171 struct omap2_mcspi_cs *cs = spi->controller_state;
172
173 return readl_relaxed(cs->base + idx);
174}
175
176static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
177{
178 struct omap2_mcspi_cs *cs = spi->controller_state;
179
180 return cs->chconf0;
181}
182
183static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
184{
185 struct omap2_mcspi_cs *cs = spi->controller_state;
186
187 cs->chconf0 = val;
188 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
189 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
190}
191
192static inline int mcspi_bytes_per_word(int word_len)
193{
194 if (word_len <= 8)
195 return 1;
196 else if (word_len <= 16)
197 return 2;
198 else /* word_len <= 32 */
199 return 4;
200}
201
202static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
203 int is_read, int enable)
204{
205 u32 l, rw;
206
207 l = mcspi_cached_chconf0(spi);
208
209 if (is_read) /* 1 is read, 0 write */
210 rw = OMAP2_MCSPI_CHCONF_DMAR;
211 else
212 rw = OMAP2_MCSPI_CHCONF_DMAW;
213
214 if (enable)
215 l |= rw;
216 else
217 l &= ~rw;
218
219 mcspi_write_chconf0(spi, l);
220}
221
222static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
223{
224 struct omap2_mcspi_cs *cs = spi->controller_state;
225 u32 l;
226
227 l = cs->chctrl0;
228 if (enable)
229 l |= OMAP2_MCSPI_CHCTRL_EN;
230 else
231 l &= ~OMAP2_MCSPI_CHCTRL_EN;
232 cs->chctrl0 = l;
233 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
234 /* Flash post-writes */
235 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
236}
237
238static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
239{
240 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
241 u32 l;
242
243 /* The controller handles the inverted chip selects
244 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
245 * the inversion from the core spi_set_cs function.
246 */
247 if (spi->mode & SPI_CS_HIGH)
248 enable = !enable;
249
250 if (spi->controller_state) {
251 int err = pm_runtime_resume_and_get(mcspi->dev);
252 if (err < 0) {
253 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
254 return;
255 }
256
257 l = mcspi_cached_chconf0(spi);
258
259 if (enable)
260 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
261 else
262 l |= OMAP2_MCSPI_CHCONF_FORCE;
263
264 mcspi_write_chconf0(spi, l);
265
266 pm_runtime_mark_last_busy(mcspi->dev);
267 pm_runtime_put_autosuspend(mcspi->dev);
268 }
269}
270
271static void omap2_mcspi_set_mode(struct spi_controller *ctlr)
272{
273 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
274 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
275 u32 l;
276
277 /*
278 * Choose host or target mode
279 */
280 l = mcspi_read_reg(ctlr, OMAP2_MCSPI_MODULCTRL);
281 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
282 if (spi_controller_is_target(ctlr)) {
283 l |= (OMAP2_MCSPI_MODULCTRL_MS);
284 } else {
285 l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
286 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
287 }
288 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, l);
289
290 ctx->modulctrl = l;
291}
292
293static void omap2_mcspi_set_fifo(const struct spi_device *spi,
294 struct spi_transfer *t, int enable)
295{
296 struct spi_controller *ctlr = spi->controller;
297 struct omap2_mcspi_cs *cs = spi->controller_state;
298 struct omap2_mcspi *mcspi;
299 unsigned int wcnt;
300 int max_fifo_depth, bytes_per_word;
301 u32 chconf, xferlevel;
302
303 mcspi = spi_controller_get_devdata(ctlr);
304
305 chconf = mcspi_cached_chconf0(spi);
306 if (enable) {
307 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
308 if (t->len % bytes_per_word != 0)
309 goto disable_fifo;
310
311 if (t->rx_buf != NULL && t->tx_buf != NULL)
312 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
313 else
314 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
315
316 wcnt = t->len / bytes_per_word;
317 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
318 goto disable_fifo;
319
320 xferlevel = wcnt << 16;
321 if (t->rx_buf != NULL) {
322 chconf |= OMAP2_MCSPI_CHCONF_FFER;
323 xferlevel |= (bytes_per_word - 1) << 8;
324 }
325
326 if (t->tx_buf != NULL) {
327 chconf |= OMAP2_MCSPI_CHCONF_FFET;
328 xferlevel |= bytes_per_word - 1;
329 }
330
331 mcspi_write_reg(ctlr, OMAP2_MCSPI_XFERLEVEL, xferlevel);
332 mcspi_write_chconf0(spi, chconf);
333 mcspi->fifo_depth = max_fifo_depth;
334
335 return;
336 }
337
338disable_fifo:
339 if (t->rx_buf != NULL)
340 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
341
342 if (t->tx_buf != NULL)
343 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
344
345 mcspi_write_chconf0(spi, chconf);
346 mcspi->fifo_depth = 0;
347}
348
349static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
350{
351 unsigned long timeout;
352
353 timeout = jiffies + msecs_to_jiffies(1000);
354 while (!(readl_relaxed(reg) & bit)) {
355 if (time_after(jiffies, timeout)) {
356 if (!(readl_relaxed(reg) & bit))
357 return -ETIMEDOUT;
358 else
359 return 0;
360 }
361 cpu_relax();
362 }
363 return 0;
364}
365
366static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi,
367 struct completion *x)
368{
369 if (spi_controller_is_target(mcspi->ctlr)) {
370 if (wait_for_completion_interruptible(x) ||
371 mcspi->target_aborted)
372 return -EINTR;
373 } else {
374 wait_for_completion(x);
375 }
376
377 return 0;
378}
379
380static void omap2_mcspi_rx_callback(void *data)
381{
382 struct spi_device *spi = data;
383 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
384 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
385
386 /* We must disable the DMA RX request */
387 omap2_mcspi_set_dma_req(spi, 1, 0);
388
389 complete(&mcspi_dma->dma_rx_completion);
390}
391
392static void omap2_mcspi_tx_callback(void *data)
393{
394 struct spi_device *spi = data;
395 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
396 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
397
398 /* We must disable the DMA TX request */
399 omap2_mcspi_set_dma_req(spi, 0, 0);
400
401 complete(&mcspi_dma->dma_tx_completion);
402}
403
404static void omap2_mcspi_tx_dma(struct spi_device *spi,
405 struct spi_transfer *xfer,
406 struct dma_slave_config cfg)
407{
408 struct omap2_mcspi *mcspi;
409 struct omap2_mcspi_dma *mcspi_dma;
410 struct dma_async_tx_descriptor *tx;
411
412 mcspi = spi_controller_get_devdata(spi->controller);
413 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
414
415 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
416
417 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
418 xfer->tx_sg.nents,
419 DMA_MEM_TO_DEV,
420 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
421 if (tx) {
422 tx->callback = omap2_mcspi_tx_callback;
423 tx->callback_param = spi;
424 dmaengine_submit(tx);
425 } else {
426 /* FIXME: fall back to PIO? */
427 }
428 dma_async_issue_pending(mcspi_dma->dma_tx);
429 omap2_mcspi_set_dma_req(spi, 0, 1);
430}
431
432static unsigned
433omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
434 struct dma_slave_config cfg,
435 unsigned es)
436{
437 struct omap2_mcspi *mcspi;
438 struct omap2_mcspi_dma *mcspi_dma;
439 unsigned int count, transfer_reduction = 0;
440 struct scatterlist *sg_out[2];
441 int nb_sizes = 0, out_mapped_nents[2], ret, x;
442 size_t sizes[2];
443 u32 l;
444 int elements = 0;
445 int word_len, element_count;
446 struct omap2_mcspi_cs *cs = spi->controller_state;
447 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
448 struct dma_async_tx_descriptor *tx;
449
450 mcspi = spi_controller_get_devdata(spi->controller);
451 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
452 count = xfer->len;
453
454 /*
455 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
456 * it mentions reducing DMA transfer length by one element in host
457 * normal mode.
458 */
459 if (mcspi->fifo_depth == 0)
460 transfer_reduction = es;
461
462 word_len = cs->word_len;
463 l = mcspi_cached_chconf0(spi);
464
465 if (word_len <= 8)
466 element_count = count;
467 else if (word_len <= 16)
468 element_count = count >> 1;
469 else /* word_len <= 32 */
470 element_count = count >> 2;
471
472
473 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
474
475 /*
476 * Reduce DMA transfer length by one more if McSPI is
477 * configured in turbo mode.
478 */
479 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
480 transfer_reduction += es;
481
482 if (transfer_reduction) {
483 /* Split sgl into two. The second sgl won't be used. */
484 sizes[0] = count - transfer_reduction;
485 sizes[1] = transfer_reduction;
486 nb_sizes = 2;
487 } else {
488 /*
489 * Don't bother splitting the sgl. This essentially
490 * clones the original sgl.
491 */
492 sizes[0] = count;
493 nb_sizes = 1;
494 }
495
496 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
497 sizes, sg_out, out_mapped_nents, GFP_KERNEL);
498
499 if (ret < 0) {
500 dev_err(&spi->dev, "sg_split failed\n");
501 return 0;
502 }
503
504 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
505 out_mapped_nents[0], DMA_DEV_TO_MEM,
506 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
507 if (tx) {
508 tx->callback = omap2_mcspi_rx_callback;
509 tx->callback_param = spi;
510 dmaengine_submit(tx);
511 } else {
512 /* FIXME: fall back to PIO? */
513 }
514
515 dma_async_issue_pending(mcspi_dma->dma_rx);
516 omap2_mcspi_set_dma_req(spi, 1, 1);
517
518 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
519 if (ret || mcspi->target_aborted) {
520 dmaengine_terminate_sync(mcspi_dma->dma_rx);
521 omap2_mcspi_set_dma_req(spi, 1, 0);
522 return 0;
523 }
524
525 for (x = 0; x < nb_sizes; x++)
526 kfree(sg_out[x]);
527
528 if (mcspi->fifo_depth > 0)
529 return count;
530
531 /*
532 * Due to the DMA transfer length reduction the missing bytes must
533 * be read manually to receive all of the expected data.
534 */
535 omap2_mcspi_set_enable(spi, 0);
536
537 elements = element_count - 1;
538
539 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
540 elements--;
541
542 if (!mcspi_wait_for_reg_bit(chstat_reg,
543 OMAP2_MCSPI_CHSTAT_RXS)) {
544 u32 w;
545
546 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
547 if (word_len <= 8)
548 ((u8 *)xfer->rx_buf)[elements++] = w;
549 else if (word_len <= 16)
550 ((u16 *)xfer->rx_buf)[elements++] = w;
551 else /* word_len <= 32 */
552 ((u32 *)xfer->rx_buf)[elements++] = w;
553 } else {
554 int bytes_per_word = mcspi_bytes_per_word(word_len);
555 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
556 count -= (bytes_per_word << 1);
557 omap2_mcspi_set_enable(spi, 1);
558 return count;
559 }
560 }
561 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
562 u32 w;
563
564 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
565 if (word_len <= 8)
566 ((u8 *)xfer->rx_buf)[elements] = w;
567 else if (word_len <= 16)
568 ((u16 *)xfer->rx_buf)[elements] = w;
569 else /* word_len <= 32 */
570 ((u32 *)xfer->rx_buf)[elements] = w;
571 } else {
572 dev_err(&spi->dev, "DMA RX last word empty\n");
573 count -= mcspi_bytes_per_word(word_len);
574 }
575 omap2_mcspi_set_enable(spi, 1);
576 return count;
577}
578
579static unsigned
580omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
581{
582 struct omap2_mcspi *mcspi;
583 struct omap2_mcspi_cs *cs = spi->controller_state;
584 struct omap2_mcspi_dma *mcspi_dma;
585 unsigned int count;
586 u8 *rx;
587 const u8 *tx;
588 struct dma_slave_config cfg;
589 enum dma_slave_buswidth width;
590 unsigned es;
591 void __iomem *chstat_reg;
592 void __iomem *irqstat_reg;
593 int wait_res;
594
595 mcspi = spi_controller_get_devdata(spi->controller);
596 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
597
598 if (cs->word_len <= 8) {
599 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
600 es = 1;
601 } else if (cs->word_len <= 16) {
602 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
603 es = 2;
604 } else {
605 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
606 es = 4;
607 }
608
609 count = xfer->len;
610
611 memset(&cfg, 0, sizeof(cfg));
612 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
613 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
614 cfg.src_addr_width = width;
615 cfg.dst_addr_width = width;
616 cfg.src_maxburst = 1;
617 cfg.dst_maxburst = 1;
618
619 rx = xfer->rx_buf;
620 tx = xfer->tx_buf;
621
622 mcspi->target_aborted = false;
623 reinit_completion(&mcspi_dma->dma_tx_completion);
624 reinit_completion(&mcspi_dma->dma_rx_completion);
625 reinit_completion(&mcspi->txdone);
626 if (tx) {
627 /* Enable EOW IRQ to know end of tx in target mode */
628 if (spi_controller_is_target(spi->controller))
629 mcspi_write_reg(spi->controller,
630 OMAP2_MCSPI_IRQENABLE,
631 OMAP2_MCSPI_IRQSTATUS_EOW);
632 omap2_mcspi_tx_dma(spi, xfer, cfg);
633 }
634
635 if (rx != NULL)
636 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
637
638 if (tx != NULL) {
639 int ret;
640
641 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
642 if (ret || mcspi->target_aborted) {
643 dmaengine_terminate_sync(mcspi_dma->dma_tx);
644 omap2_mcspi_set_dma_req(spi, 0, 0);
645 return 0;
646 }
647
648 if (spi_controller_is_target(mcspi->ctlr)) {
649 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
650 if (ret || mcspi->target_aborted)
651 return 0;
652 }
653
654 if (mcspi->fifo_depth > 0) {
655 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
656
657 if (mcspi_wait_for_reg_bit(irqstat_reg,
658 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
659 dev_err(&spi->dev, "EOW timed out\n");
660
661 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS,
662 OMAP2_MCSPI_IRQSTATUS_EOW);
663 }
664
665 /* for TX_ONLY mode, be sure all words have shifted out */
666 if (rx == NULL) {
667 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
668 if (mcspi->fifo_depth > 0) {
669 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
670 OMAP2_MCSPI_CHSTAT_TXFFE);
671 if (wait_res < 0)
672 dev_err(&spi->dev, "TXFFE timed out\n");
673 } else {
674 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
675 OMAP2_MCSPI_CHSTAT_TXS);
676 if (wait_res < 0)
677 dev_err(&spi->dev, "TXS timed out\n");
678 }
679 if (wait_res >= 0 &&
680 (mcspi_wait_for_reg_bit(chstat_reg,
681 OMAP2_MCSPI_CHSTAT_EOT) < 0))
682 dev_err(&spi->dev, "EOT timed out\n");
683 }
684 }
685 return count;
686}
687
688static unsigned
689omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
690{
691 struct omap2_mcspi_cs *cs = spi->controller_state;
692 unsigned int count, c;
693 u32 l;
694 void __iomem *base = cs->base;
695 void __iomem *tx_reg;
696 void __iomem *rx_reg;
697 void __iomem *chstat_reg;
698 int word_len;
699
700 count = xfer->len;
701 c = count;
702 word_len = cs->word_len;
703
704 l = mcspi_cached_chconf0(spi);
705
706 /* We store the pre-calculated register addresses on stack to speed
707 * up the transfer loop. */
708 tx_reg = base + OMAP2_MCSPI_TX0;
709 rx_reg = base + OMAP2_MCSPI_RX0;
710 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
711
712 if (c < (word_len>>3))
713 return 0;
714
715 if (word_len <= 8) {
716 u8 *rx;
717 const u8 *tx;
718
719 rx = xfer->rx_buf;
720 tx = xfer->tx_buf;
721
722 do {
723 c -= 1;
724 if (tx != NULL) {
725 if (mcspi_wait_for_reg_bit(chstat_reg,
726 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
727 dev_err(&spi->dev, "TXS timed out\n");
728 goto out;
729 }
730 dev_vdbg(&spi->dev, "write-%d %02x\n",
731 word_len, *tx);
732 writel_relaxed(*tx++, tx_reg);
733 }
734 if (rx != NULL) {
735 if (mcspi_wait_for_reg_bit(chstat_reg,
736 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
737 dev_err(&spi->dev, "RXS timed out\n");
738 goto out;
739 }
740
741 if (c == 1 && tx == NULL &&
742 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
743 omap2_mcspi_set_enable(spi, 0);
744 *rx++ = readl_relaxed(rx_reg);
745 dev_vdbg(&spi->dev, "read-%d %02x\n",
746 word_len, *(rx - 1));
747 if (mcspi_wait_for_reg_bit(chstat_reg,
748 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
749 dev_err(&spi->dev,
750 "RXS timed out\n");
751 goto out;
752 }
753 c = 0;
754 } else if (c == 0 && tx == NULL) {
755 omap2_mcspi_set_enable(spi, 0);
756 }
757
758 *rx++ = readl_relaxed(rx_reg);
759 dev_vdbg(&spi->dev, "read-%d %02x\n",
760 word_len, *(rx - 1));
761 }
762 /* Add word delay between each word */
763 spi_delay_exec(&xfer->word_delay, xfer);
764 } while (c);
765 } else if (word_len <= 16) {
766 u16 *rx;
767 const u16 *tx;
768
769 rx = xfer->rx_buf;
770 tx = xfer->tx_buf;
771 do {
772 c -= 2;
773 if (tx != NULL) {
774 if (mcspi_wait_for_reg_bit(chstat_reg,
775 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
776 dev_err(&spi->dev, "TXS timed out\n");
777 goto out;
778 }
779 dev_vdbg(&spi->dev, "write-%d %04x\n",
780 word_len, *tx);
781 writel_relaxed(*tx++, tx_reg);
782 }
783 if (rx != NULL) {
784 if (mcspi_wait_for_reg_bit(chstat_reg,
785 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
786 dev_err(&spi->dev, "RXS timed out\n");
787 goto out;
788 }
789
790 if (c == 2 && tx == NULL &&
791 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
792 omap2_mcspi_set_enable(spi, 0);
793 *rx++ = readl_relaxed(rx_reg);
794 dev_vdbg(&spi->dev, "read-%d %04x\n",
795 word_len, *(rx - 1));
796 if (mcspi_wait_for_reg_bit(chstat_reg,
797 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
798 dev_err(&spi->dev,
799 "RXS timed out\n");
800 goto out;
801 }
802 c = 0;
803 } else if (c == 0 && tx == NULL) {
804 omap2_mcspi_set_enable(spi, 0);
805 }
806
807 *rx++ = readl_relaxed(rx_reg);
808 dev_vdbg(&spi->dev, "read-%d %04x\n",
809 word_len, *(rx - 1));
810 }
811 /* Add word delay between each word */
812 spi_delay_exec(&xfer->word_delay, xfer);
813 } while (c >= 2);
814 } else if (word_len <= 32) {
815 u32 *rx;
816 const u32 *tx;
817
818 rx = xfer->rx_buf;
819 tx = xfer->tx_buf;
820 do {
821 c -= 4;
822 if (tx != NULL) {
823 if (mcspi_wait_for_reg_bit(chstat_reg,
824 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
825 dev_err(&spi->dev, "TXS timed out\n");
826 goto out;
827 }
828 dev_vdbg(&spi->dev, "write-%d %08x\n",
829 word_len, *tx);
830 writel_relaxed(*tx++, tx_reg);
831 }
832 if (rx != NULL) {
833 if (mcspi_wait_for_reg_bit(chstat_reg,
834 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
835 dev_err(&spi->dev, "RXS timed out\n");
836 goto out;
837 }
838
839 if (c == 4 && tx == NULL &&
840 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
841 omap2_mcspi_set_enable(spi, 0);
842 *rx++ = readl_relaxed(rx_reg);
843 dev_vdbg(&spi->dev, "read-%d %08x\n",
844 word_len, *(rx - 1));
845 if (mcspi_wait_for_reg_bit(chstat_reg,
846 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
847 dev_err(&spi->dev,
848 "RXS timed out\n");
849 goto out;
850 }
851 c = 0;
852 } else if (c == 0 && tx == NULL) {
853 omap2_mcspi_set_enable(spi, 0);
854 }
855
856 *rx++ = readl_relaxed(rx_reg);
857 dev_vdbg(&spi->dev, "read-%d %08x\n",
858 word_len, *(rx - 1));
859 }
860 /* Add word delay between each word */
861 spi_delay_exec(&xfer->word_delay, xfer);
862 } while (c >= 4);
863 }
864
865 /* for TX_ONLY mode, be sure all words have shifted out */
866 if (xfer->rx_buf == NULL) {
867 if (mcspi_wait_for_reg_bit(chstat_reg,
868 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
869 dev_err(&spi->dev, "TXS timed out\n");
870 } else if (mcspi_wait_for_reg_bit(chstat_reg,
871 OMAP2_MCSPI_CHSTAT_EOT) < 0)
872 dev_err(&spi->dev, "EOT timed out\n");
873
874 /* disable chan to purge rx datas received in TX_ONLY transfer,
875 * otherwise these rx datas will affect the direct following
876 * RX_ONLY transfer.
877 */
878 omap2_mcspi_set_enable(spi, 0);
879 }
880out:
881 omap2_mcspi_set_enable(spi, 1);
882 return count - c;
883}
884
885static u32 omap2_mcspi_calc_divisor(u32 speed_hz, u32 ref_clk_hz)
886{
887 u32 div;
888
889 for (div = 0; div < 15; div++)
890 if (speed_hz >= (ref_clk_hz >> div))
891 return div;
892
893 return 15;
894}
895
896/* called only when no transfer is active to this device */
897static int omap2_mcspi_setup_transfer(struct spi_device *spi,
898 struct spi_transfer *t)
899{
900 struct omap2_mcspi_cs *cs = spi->controller_state;
901 struct omap2_mcspi *mcspi;
902 u32 ref_clk_hz, l = 0, clkd = 0, div, extclk = 0, clkg = 0;
903 u8 word_len = spi->bits_per_word;
904 u32 speed_hz = spi->max_speed_hz;
905
906 mcspi = spi_controller_get_devdata(spi->controller);
907
908 if (t != NULL && t->bits_per_word)
909 word_len = t->bits_per_word;
910
911 cs->word_len = word_len;
912
913 if (t && t->speed_hz)
914 speed_hz = t->speed_hz;
915
916 ref_clk_hz = mcspi->ref_clk_hz;
917 speed_hz = min_t(u32, speed_hz, ref_clk_hz);
918 if (speed_hz < (ref_clk_hz / OMAP2_MCSPI_MAX_DIVIDER)) {
919 clkd = omap2_mcspi_calc_divisor(speed_hz, ref_clk_hz);
920 speed_hz = ref_clk_hz >> clkd;
921 clkg = 0;
922 } else {
923 div = (ref_clk_hz + speed_hz - 1) / speed_hz;
924 speed_hz = ref_clk_hz / div;
925 clkd = (div - 1) & 0xf;
926 extclk = (div - 1) >> 4;
927 clkg = OMAP2_MCSPI_CHCONF_CLKG;
928 }
929
930 l = mcspi_cached_chconf0(spi);
931
932 /* standard 4-wire host mode: SCK, MOSI/out, MISO/in, nCS
933 * REVISIT: this controller could support SPI_3WIRE mode.
934 */
935 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
936 l &= ~OMAP2_MCSPI_CHCONF_IS;
937 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
938 l |= OMAP2_MCSPI_CHCONF_DPE0;
939 } else {
940 l |= OMAP2_MCSPI_CHCONF_IS;
941 l |= OMAP2_MCSPI_CHCONF_DPE1;
942 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
943 }
944
945 /* wordlength */
946 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
947 l |= (word_len - 1) << 7;
948
949 /* set chipselect polarity; manage with FORCE */
950 if (!(spi->mode & SPI_CS_HIGH))
951 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
952 else
953 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
954
955 /* set clock divisor */
956 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
957 l |= clkd << 2;
958
959 /* set clock granularity */
960 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
961 l |= clkg;
962 if (clkg) {
963 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
964 cs->chctrl0 |= extclk << 8;
965 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
966 }
967
968 /* set SPI mode 0..3 */
969 if (spi->mode & SPI_CPOL)
970 l |= OMAP2_MCSPI_CHCONF_POL;
971 else
972 l &= ~OMAP2_MCSPI_CHCONF_POL;
973 if (spi->mode & SPI_CPHA)
974 l |= OMAP2_MCSPI_CHCONF_PHA;
975 else
976 l &= ~OMAP2_MCSPI_CHCONF_PHA;
977
978 mcspi_write_chconf0(spi, l);
979
980 cs->mode = spi->mode;
981
982 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
983 speed_hz,
984 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
985 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
986
987 return 0;
988}
989
990/*
991 * Note that we currently allow DMA only if we get a channel
992 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
993 */
994static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
995 struct omap2_mcspi_dma *mcspi_dma)
996{
997 int ret = 0;
998
999 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
1000 mcspi_dma->dma_rx_ch_name);
1001 if (IS_ERR(mcspi_dma->dma_rx)) {
1002 ret = PTR_ERR(mcspi_dma->dma_rx);
1003 mcspi_dma->dma_rx = NULL;
1004 goto no_dma;
1005 }
1006
1007 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1008 mcspi_dma->dma_tx_ch_name);
1009 if (IS_ERR(mcspi_dma->dma_tx)) {
1010 ret = PTR_ERR(mcspi_dma->dma_tx);
1011 mcspi_dma->dma_tx = NULL;
1012 dma_release_channel(mcspi_dma->dma_rx);
1013 mcspi_dma->dma_rx = NULL;
1014 }
1015
1016 init_completion(&mcspi_dma->dma_rx_completion);
1017 init_completion(&mcspi_dma->dma_tx_completion);
1018
1019no_dma:
1020 return ret;
1021}
1022
1023static void omap2_mcspi_release_dma(struct spi_controller *ctlr)
1024{
1025 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1026 struct omap2_mcspi_dma *mcspi_dma;
1027 int i;
1028
1029 for (i = 0; i < ctlr->num_chipselect; i++) {
1030 mcspi_dma = &mcspi->dma_channels[i];
1031
1032 if (mcspi_dma->dma_rx) {
1033 dma_release_channel(mcspi_dma->dma_rx);
1034 mcspi_dma->dma_rx = NULL;
1035 }
1036 if (mcspi_dma->dma_tx) {
1037 dma_release_channel(mcspi_dma->dma_tx);
1038 mcspi_dma->dma_tx = NULL;
1039 }
1040 }
1041}
1042
1043static void omap2_mcspi_cleanup(struct spi_device *spi)
1044{
1045 struct omap2_mcspi_cs *cs;
1046
1047 if (spi->controller_state) {
1048 /* Unlink controller state from context save list */
1049 cs = spi->controller_state;
1050 list_del(&cs->node);
1051
1052 kfree(cs);
1053 }
1054}
1055
1056static int omap2_mcspi_setup(struct spi_device *spi)
1057{
1058 bool initial_setup = false;
1059 int ret;
1060 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1061 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1062 struct omap2_mcspi_cs *cs = spi->controller_state;
1063
1064 if (!cs) {
1065 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1066 if (!cs)
1067 return -ENOMEM;
1068 cs->base = mcspi->base + spi_get_chipselect(spi, 0) * 0x14;
1069 cs->phys = mcspi->phys + spi_get_chipselect(spi, 0) * 0x14;
1070 cs->mode = 0;
1071 cs->chconf0 = 0;
1072 cs->chctrl0 = 0;
1073 spi->controller_state = cs;
1074 /* Link this to context save list */
1075 list_add_tail(&cs->node, &ctx->cs);
1076 initial_setup = true;
1077 }
1078
1079 ret = pm_runtime_resume_and_get(mcspi->dev);
1080 if (ret < 0) {
1081 if (initial_setup)
1082 omap2_mcspi_cleanup(spi);
1083
1084 return ret;
1085 }
1086
1087 ret = omap2_mcspi_setup_transfer(spi, NULL);
1088 if (ret && initial_setup)
1089 omap2_mcspi_cleanup(spi);
1090
1091 pm_runtime_mark_last_busy(mcspi->dev);
1092 pm_runtime_put_autosuspend(mcspi->dev);
1093
1094 return ret;
1095}
1096
1097static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1098{
1099 struct omap2_mcspi *mcspi = data;
1100 u32 irqstat;
1101
1102 irqstat = mcspi_read_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS);
1103 if (!irqstat)
1104 return IRQ_NONE;
1105
1106 /* Disable IRQ and wakeup target xfer task */
1107 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQENABLE, 0);
1108 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1109 complete(&mcspi->txdone);
1110
1111 return IRQ_HANDLED;
1112}
1113
1114static int omap2_mcspi_target_abort(struct spi_controller *ctlr)
1115{
1116 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1117 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1118
1119 mcspi->target_aborted = true;
1120 complete(&mcspi_dma->dma_rx_completion);
1121 complete(&mcspi_dma->dma_tx_completion);
1122 complete(&mcspi->txdone);
1123
1124 return 0;
1125}
1126
1127static int omap2_mcspi_transfer_one(struct spi_controller *ctlr,
1128 struct spi_device *spi,
1129 struct spi_transfer *t)
1130{
1131
1132 /* We only enable one channel at a time -- the one whose message is
1133 * -- although this controller would gladly
1134 * arbitrate among multiple channels. This corresponds to "single
1135 * channel" host mode. As a side effect, we need to manage the
1136 * chipselect with the FORCE bit ... CS != channel enable.
1137 */
1138
1139 struct omap2_mcspi *mcspi;
1140 struct omap2_mcspi_dma *mcspi_dma;
1141 struct omap2_mcspi_cs *cs;
1142 struct omap2_mcspi_device_config *cd;
1143 int par_override = 0;
1144 int status = 0;
1145 u32 chconf;
1146
1147 mcspi = spi_controller_get_devdata(ctlr);
1148 mcspi_dma = mcspi->dma_channels + spi_get_chipselect(spi, 0);
1149 cs = spi->controller_state;
1150 cd = spi->controller_data;
1151
1152 /*
1153 * The target driver could have changed spi->mode in which case
1154 * it will be different from cs->mode (the current hardware setup).
1155 * If so, set par_override (even though its not a parity issue) so
1156 * omap2_mcspi_setup_transfer will be called to configure the hardware
1157 * with the correct mode on the first iteration of the loop below.
1158 */
1159 if (spi->mode != cs->mode)
1160 par_override = 1;
1161
1162 omap2_mcspi_set_enable(spi, 0);
1163
1164 if (spi_get_csgpiod(spi, 0))
1165 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1166
1167 if (par_override ||
1168 (t->speed_hz != spi->max_speed_hz) ||
1169 (t->bits_per_word != spi->bits_per_word)) {
1170 par_override = 1;
1171 status = omap2_mcspi_setup_transfer(spi, t);
1172 if (status < 0)
1173 goto out;
1174 if (t->speed_hz == spi->max_speed_hz &&
1175 t->bits_per_word == spi->bits_per_word)
1176 par_override = 0;
1177 }
1178 if (cd && cd->cs_per_word) {
1179 chconf = mcspi->ctx.modulctrl;
1180 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1181 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, chconf);
1182 mcspi->ctx.modulctrl =
1183 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1184 }
1185
1186 chconf = mcspi_cached_chconf0(spi);
1187 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1188 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1189
1190 if (t->tx_buf == NULL)
1191 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1192 else if (t->rx_buf == NULL)
1193 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1194
1195 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1196 /* Turbo mode is for more than one word */
1197 if (t->len > ((cs->word_len + 7) >> 3))
1198 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1199 }
1200
1201 mcspi_write_chconf0(spi, chconf);
1202
1203 if (t->len) {
1204 unsigned count;
1205
1206 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1207 ctlr->cur_msg_mapped &&
1208 ctlr->can_dma(ctlr, spi, t))
1209 omap2_mcspi_set_fifo(spi, t, 1);
1210
1211 omap2_mcspi_set_enable(spi, 1);
1212
1213 /* RX_ONLY mode needs dummy data in TX reg */
1214 if (t->tx_buf == NULL)
1215 writel_relaxed(0, cs->base
1216 + OMAP2_MCSPI_TX0);
1217
1218 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1219 ctlr->cur_msg_mapped &&
1220 ctlr->can_dma(ctlr, spi, t))
1221 count = omap2_mcspi_txrx_dma(spi, t);
1222 else
1223 count = omap2_mcspi_txrx_pio(spi, t);
1224
1225 if (count != t->len) {
1226 status = -EIO;
1227 goto out;
1228 }
1229 }
1230
1231 omap2_mcspi_set_enable(spi, 0);
1232
1233 if (mcspi->fifo_depth > 0)
1234 omap2_mcspi_set_fifo(spi, t, 0);
1235
1236out:
1237 /* Restore defaults if they were overriden */
1238 if (par_override) {
1239 par_override = 0;
1240 status = omap2_mcspi_setup_transfer(spi, NULL);
1241 }
1242
1243 if (cd && cd->cs_per_word) {
1244 chconf = mcspi->ctx.modulctrl;
1245 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1246 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, chconf);
1247 mcspi->ctx.modulctrl =
1248 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1249 }
1250
1251 omap2_mcspi_set_enable(spi, 0);
1252
1253 if (spi_get_csgpiod(spi, 0))
1254 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1255
1256 if (mcspi->fifo_depth > 0 && t)
1257 omap2_mcspi_set_fifo(spi, t, 0);
1258
1259 return status;
1260}
1261
1262static int omap2_mcspi_prepare_message(struct spi_controller *ctlr,
1263 struct spi_message *msg)
1264{
1265 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1266 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1267 struct omap2_mcspi_cs *cs;
1268
1269 /* Only a single channel can have the FORCE bit enabled
1270 * in its chconf0 register.
1271 * Scan all channels and disable them except the current one.
1272 * A FORCE can remain from a last transfer having cs_change enabled
1273 */
1274 list_for_each_entry(cs, &ctx->cs, node) {
1275 if (msg->spi->controller_state == cs)
1276 continue;
1277
1278 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1279 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1280 writel_relaxed(cs->chconf0,
1281 cs->base + OMAP2_MCSPI_CHCONF0);
1282 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1283 }
1284 }
1285
1286 return 0;
1287}
1288
1289static bool omap2_mcspi_can_dma(struct spi_controller *ctlr,
1290 struct spi_device *spi,
1291 struct spi_transfer *xfer)
1292{
1293 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1294 struct omap2_mcspi_dma *mcspi_dma =
1295 &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1296
1297 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1298 return false;
1299
1300 if (spi_controller_is_target(ctlr))
1301 return true;
1302
1303 ctlr->dma_rx = mcspi_dma->dma_rx;
1304 ctlr->dma_tx = mcspi_dma->dma_tx;
1305
1306 return (xfer->len >= DMA_MIN_BYTES);
1307}
1308
1309static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1310{
1311 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1312 struct omap2_mcspi_dma *mcspi_dma =
1313 &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1314
1315 if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1316 return mcspi->max_xfer_len;
1317
1318 return SIZE_MAX;
1319}
1320
1321static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1322{
1323 struct spi_controller *ctlr = mcspi->ctlr;
1324 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1325 int ret = 0;
1326
1327 ret = pm_runtime_resume_and_get(mcspi->dev);
1328 if (ret < 0)
1329 return ret;
1330
1331 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE,
1332 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1333 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1334
1335 omap2_mcspi_set_mode(ctlr);
1336 pm_runtime_mark_last_busy(mcspi->dev);
1337 pm_runtime_put_autosuspend(mcspi->dev);
1338 return 0;
1339}
1340
1341static int omap_mcspi_runtime_suspend(struct device *dev)
1342{
1343 int error;
1344
1345 error = pinctrl_pm_select_idle_state(dev);
1346 if (error)
1347 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1348
1349 return 0;
1350}
1351
1352/*
1353 * When SPI wake up from off-mode, CS is in activate state. If it was in
1354 * inactive state when driver was suspend, then force it to inactive state at
1355 * wake up.
1356 */
1357static int omap_mcspi_runtime_resume(struct device *dev)
1358{
1359 struct spi_controller *ctlr = dev_get_drvdata(dev);
1360 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1361 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1362 struct omap2_mcspi_cs *cs;
1363 int error;
1364
1365 error = pinctrl_pm_select_default_state(dev);
1366 if (error)
1367 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1368
1369 /* McSPI: context restore */
1370 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1371 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1372
1373 list_for_each_entry(cs, &ctx->cs, node) {
1374 /*
1375 * We need to toggle CS state for OMAP take this
1376 * change in account.
1377 */
1378 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1379 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1380 writel_relaxed(cs->chconf0,
1381 cs->base + OMAP2_MCSPI_CHCONF0);
1382 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1383 writel_relaxed(cs->chconf0,
1384 cs->base + OMAP2_MCSPI_CHCONF0);
1385 } else {
1386 writel_relaxed(cs->chconf0,
1387 cs->base + OMAP2_MCSPI_CHCONF0);
1388 }
1389 }
1390
1391 return 0;
1392}
1393
1394static struct omap2_mcspi_platform_config omap2_pdata = {
1395 .regs_offset = 0,
1396};
1397
1398static struct omap2_mcspi_platform_config omap4_pdata = {
1399 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1400};
1401
1402static struct omap2_mcspi_platform_config am654_pdata = {
1403 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1404 .max_xfer_len = SZ_4K - 1,
1405};
1406
1407static const struct of_device_id omap_mcspi_of_match[] = {
1408 {
1409 .compatible = "ti,omap2-mcspi",
1410 .data = &omap2_pdata,
1411 },
1412 {
1413 .compatible = "ti,omap4-mcspi",
1414 .data = &omap4_pdata,
1415 },
1416 {
1417 .compatible = "ti,am654-mcspi",
1418 .data = &am654_pdata,
1419 },
1420 { },
1421};
1422MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1423
1424static int omap2_mcspi_probe(struct platform_device *pdev)
1425{
1426 struct spi_controller *ctlr;
1427 const struct omap2_mcspi_platform_config *pdata;
1428 struct omap2_mcspi *mcspi;
1429 struct resource *r;
1430 int status = 0, i;
1431 u32 regs_offset = 0;
1432 struct device_node *node = pdev->dev.of_node;
1433 const struct of_device_id *match;
1434
1435 if (of_property_read_bool(node, "spi-slave"))
1436 ctlr = spi_alloc_target(&pdev->dev, sizeof(*mcspi));
1437 else
1438 ctlr = spi_alloc_host(&pdev->dev, sizeof(*mcspi));
1439 if (!ctlr)
1440 return -ENOMEM;
1441
1442 /* the spi->mode bits understood by this driver: */
1443 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1444 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1445 ctlr->setup = omap2_mcspi_setup;
1446 ctlr->auto_runtime_pm = true;
1447 ctlr->prepare_message = omap2_mcspi_prepare_message;
1448 ctlr->can_dma = omap2_mcspi_can_dma;
1449 ctlr->transfer_one = omap2_mcspi_transfer_one;
1450 ctlr->set_cs = omap2_mcspi_set_cs;
1451 ctlr->cleanup = omap2_mcspi_cleanup;
1452 ctlr->target_abort = omap2_mcspi_target_abort;
1453 ctlr->dev.of_node = node;
1454 ctlr->use_gpio_descriptors = true;
1455
1456 platform_set_drvdata(pdev, ctlr);
1457
1458 mcspi = spi_controller_get_devdata(ctlr);
1459 mcspi->ctlr = ctlr;
1460
1461 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1462 if (match) {
1463 u32 num_cs = 1; /* default number of chipselect */
1464 pdata = match->data;
1465
1466 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1467 ctlr->num_chipselect = num_cs;
1468 if (of_property_read_bool(node, "ti,pindir-d0-out-d1-in"))
1469 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1470 } else {
1471 pdata = dev_get_platdata(&pdev->dev);
1472 ctlr->num_chipselect = pdata->num_cs;
1473 mcspi->pin_dir = pdata->pin_dir;
1474 }
1475 regs_offset = pdata->regs_offset;
1476 if (pdata->max_xfer_len) {
1477 mcspi->max_xfer_len = pdata->max_xfer_len;
1478 ctlr->max_transfer_size = omap2_mcspi_max_xfer_size;
1479 }
1480
1481 mcspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1482 if (IS_ERR(mcspi->base)) {
1483 status = PTR_ERR(mcspi->base);
1484 goto free_ctlr;
1485 }
1486 mcspi->phys = r->start + regs_offset;
1487 mcspi->base += regs_offset;
1488
1489 mcspi->dev = &pdev->dev;
1490
1491 INIT_LIST_HEAD(&mcspi->ctx.cs);
1492
1493 mcspi->dma_channels = devm_kcalloc(&pdev->dev, ctlr->num_chipselect,
1494 sizeof(struct omap2_mcspi_dma),
1495 GFP_KERNEL);
1496 if (mcspi->dma_channels == NULL) {
1497 status = -ENOMEM;
1498 goto free_ctlr;
1499 }
1500
1501 for (i = 0; i < ctlr->num_chipselect; i++) {
1502 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1503 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1504
1505 status = omap2_mcspi_request_dma(mcspi,
1506 &mcspi->dma_channels[i]);
1507 if (status == -EPROBE_DEFER)
1508 goto free_ctlr;
1509 }
1510
1511 status = platform_get_irq(pdev, 0);
1512 if (status < 0)
1513 goto free_ctlr;
1514 init_completion(&mcspi->txdone);
1515 status = devm_request_irq(&pdev->dev, status,
1516 omap2_mcspi_irq_handler, 0, pdev->name,
1517 mcspi);
1518 if (status) {
1519 dev_err(&pdev->dev, "Cannot request IRQ");
1520 goto free_ctlr;
1521 }
1522
1523 mcspi->ref_clk = devm_clk_get_optional_enabled(&pdev->dev, NULL);
1524 if (mcspi->ref_clk)
1525 mcspi->ref_clk_hz = clk_get_rate(mcspi->ref_clk);
1526 else
1527 mcspi->ref_clk_hz = OMAP2_MCSPI_MAX_FREQ;
1528 ctlr->max_speed_hz = mcspi->ref_clk_hz;
1529 ctlr->min_speed_hz = mcspi->ref_clk_hz >> 15;
1530
1531 pm_runtime_use_autosuspend(&pdev->dev);
1532 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1533 pm_runtime_enable(&pdev->dev);
1534
1535 status = omap2_mcspi_controller_setup(mcspi);
1536 if (status < 0)
1537 goto disable_pm;
1538
1539 status = devm_spi_register_controller(&pdev->dev, ctlr);
1540 if (status < 0)
1541 goto disable_pm;
1542
1543 return status;
1544
1545disable_pm:
1546 pm_runtime_dont_use_autosuspend(&pdev->dev);
1547 pm_runtime_put_sync(&pdev->dev);
1548 pm_runtime_disable(&pdev->dev);
1549free_ctlr:
1550 omap2_mcspi_release_dma(ctlr);
1551 spi_controller_put(ctlr);
1552 return status;
1553}
1554
1555static void omap2_mcspi_remove(struct platform_device *pdev)
1556{
1557 struct spi_controller *ctlr = platform_get_drvdata(pdev);
1558 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1559
1560 omap2_mcspi_release_dma(ctlr);
1561
1562 pm_runtime_dont_use_autosuspend(mcspi->dev);
1563 pm_runtime_put_sync(mcspi->dev);
1564 pm_runtime_disable(&pdev->dev);
1565}
1566
1567/* work with hotplug and coldplug */
1568MODULE_ALIAS("platform:omap2_mcspi");
1569
1570static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1571{
1572 struct spi_controller *ctlr = dev_get_drvdata(dev);
1573 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1574 int error;
1575
1576 error = pinctrl_pm_select_sleep_state(dev);
1577 if (error)
1578 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1579 __func__, error);
1580
1581 error = spi_controller_suspend(ctlr);
1582 if (error)
1583 dev_warn(mcspi->dev, "%s: controller suspend failed: %i\n",
1584 __func__, error);
1585
1586 return pm_runtime_force_suspend(dev);
1587}
1588
1589static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1590{
1591 struct spi_controller *ctlr = dev_get_drvdata(dev);
1592 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1593 int error;
1594
1595 error = spi_controller_resume(ctlr);
1596 if (error)
1597 dev_warn(mcspi->dev, "%s: controller resume failed: %i\n",
1598 __func__, error);
1599
1600 return pm_runtime_force_resume(dev);
1601}
1602
1603static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1604 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1605 omap2_mcspi_resume)
1606 .runtime_suspend = omap_mcspi_runtime_suspend,
1607 .runtime_resume = omap_mcspi_runtime_resume,
1608};
1609
1610static struct platform_driver omap2_mcspi_driver = {
1611 .driver = {
1612 .name = "omap2_mcspi",
1613 .pm = &omap2_mcspi_pm_ops,
1614 .of_match_table = omap_mcspi_of_match,
1615 },
1616 .probe = omap2_mcspi_probe,
1617 .remove_new = omap2_mcspi_remove,
1618};
1619
1620module_platform_driver(omap2_mcspi_driver);
1621MODULE_LICENSE("GPL");
1/*
2 * OMAP2 McSPI controller driver
3 *
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19#include <linux/kernel.h>
20#include <linux/interrupt.h>
21#include <linux/module.h>
22#include <linux/device.h>
23#include <linux/delay.h>
24#include <linux/dma-mapping.h>
25#include <linux/dmaengine.h>
26#include <linux/omap-dma.h>
27#include <linux/pinctrl/consumer.h>
28#include <linux/platform_device.h>
29#include <linux/err.h>
30#include <linux/clk.h>
31#include <linux/io.h>
32#include <linux/slab.h>
33#include <linux/pm_runtime.h>
34#include <linux/of.h>
35#include <linux/of_device.h>
36#include <linux/gcd.h>
37
38#include <linux/spi/spi.h>
39#include <linux/gpio.h>
40
41#include <linux/platform_data/spi-omap2-mcspi.h>
42
43#define OMAP2_MCSPI_MAX_FREQ 48000000
44#define OMAP2_MCSPI_MAX_DIVIDER 4096
45#define OMAP2_MCSPI_MAX_FIFODEPTH 64
46#define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF
47#define SPI_AUTOSUSPEND_TIMEOUT 2000
48
49#define OMAP2_MCSPI_REVISION 0x00
50#define OMAP2_MCSPI_SYSSTATUS 0x14
51#define OMAP2_MCSPI_IRQSTATUS 0x18
52#define OMAP2_MCSPI_IRQENABLE 0x1c
53#define OMAP2_MCSPI_WAKEUPENABLE 0x20
54#define OMAP2_MCSPI_SYST 0x24
55#define OMAP2_MCSPI_MODULCTRL 0x28
56#define OMAP2_MCSPI_XFERLEVEL 0x7c
57
58/* per-channel banks, 0x14 bytes each, first is: */
59#define OMAP2_MCSPI_CHCONF0 0x2c
60#define OMAP2_MCSPI_CHSTAT0 0x30
61#define OMAP2_MCSPI_CHCTRL0 0x34
62#define OMAP2_MCSPI_TX0 0x38
63#define OMAP2_MCSPI_RX0 0x3c
64
65/* per-register bitmasks: */
66#define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17)
67
68#define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
69#define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
70#define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
71
72#define OMAP2_MCSPI_CHCONF_PHA BIT(0)
73#define OMAP2_MCSPI_CHCONF_POL BIT(1)
74#define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
75#define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
76#define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
77#define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
78#define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
79#define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
80#define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
81#define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
82#define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
83#define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
84#define OMAP2_MCSPI_CHCONF_IS BIT(18)
85#define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
86#define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
87#define OMAP2_MCSPI_CHCONF_FFET BIT(27)
88#define OMAP2_MCSPI_CHCONF_FFER BIT(28)
89#define OMAP2_MCSPI_CHCONF_CLKG BIT(29)
90
91#define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
92#define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
93#define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
94#define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3)
95
96#define OMAP2_MCSPI_CHCTRL_EN BIT(0)
97#define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8)
98
99#define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
100
101/* We have 2 DMA channels per CS, one for RX and one for TX */
102struct omap2_mcspi_dma {
103 struct dma_chan *dma_tx;
104 struct dma_chan *dma_rx;
105
106 int dma_tx_sync_dev;
107 int dma_rx_sync_dev;
108
109 struct completion dma_tx_completion;
110 struct completion dma_rx_completion;
111
112 char dma_rx_ch_name[14];
113 char dma_tx_ch_name[14];
114};
115
116/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
117 * cache operations; better heuristics consider wordsize and bitrate.
118 */
119#define DMA_MIN_BYTES 160
120
121
122/*
123 * Used for context save and restore, structure members to be updated whenever
124 * corresponding registers are modified.
125 */
126struct omap2_mcspi_regs {
127 u32 modulctrl;
128 u32 wakeupenable;
129 struct list_head cs;
130};
131
132struct omap2_mcspi {
133 struct spi_master *master;
134 /* Virtual base address of the controller */
135 void __iomem *base;
136 unsigned long phys;
137 /* SPI1 has 4 channels, while SPI2 has 2 */
138 struct omap2_mcspi_dma *dma_channels;
139 struct device *dev;
140 struct omap2_mcspi_regs ctx;
141 int fifo_depth;
142 unsigned int pin_dir:1;
143};
144
145struct omap2_mcspi_cs {
146 void __iomem *base;
147 unsigned long phys;
148 int word_len;
149 u16 mode;
150 struct list_head node;
151 /* Context save and restore shadow register */
152 u32 chconf0, chctrl0;
153};
154
155static inline void mcspi_write_reg(struct spi_master *master,
156 int idx, u32 val)
157{
158 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
159
160 writel_relaxed(val, mcspi->base + idx);
161}
162
163static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
164{
165 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
166
167 return readl_relaxed(mcspi->base + idx);
168}
169
170static inline void mcspi_write_cs_reg(const struct spi_device *spi,
171 int idx, u32 val)
172{
173 struct omap2_mcspi_cs *cs = spi->controller_state;
174
175 writel_relaxed(val, cs->base + idx);
176}
177
178static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
179{
180 struct omap2_mcspi_cs *cs = spi->controller_state;
181
182 return readl_relaxed(cs->base + idx);
183}
184
185static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
186{
187 struct omap2_mcspi_cs *cs = spi->controller_state;
188
189 return cs->chconf0;
190}
191
192static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
193{
194 struct omap2_mcspi_cs *cs = spi->controller_state;
195
196 cs->chconf0 = val;
197 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
198 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
199}
200
201static inline int mcspi_bytes_per_word(int word_len)
202{
203 if (word_len <= 8)
204 return 1;
205 else if (word_len <= 16)
206 return 2;
207 else /* word_len <= 32 */
208 return 4;
209}
210
211static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
212 int is_read, int enable)
213{
214 u32 l, rw;
215
216 l = mcspi_cached_chconf0(spi);
217
218 if (is_read) /* 1 is read, 0 write */
219 rw = OMAP2_MCSPI_CHCONF_DMAR;
220 else
221 rw = OMAP2_MCSPI_CHCONF_DMAW;
222
223 if (enable)
224 l |= rw;
225 else
226 l &= ~rw;
227
228 mcspi_write_chconf0(spi, l);
229}
230
231static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
232{
233 struct omap2_mcspi_cs *cs = spi->controller_state;
234 u32 l;
235
236 l = cs->chctrl0;
237 if (enable)
238 l |= OMAP2_MCSPI_CHCTRL_EN;
239 else
240 l &= ~OMAP2_MCSPI_CHCTRL_EN;
241 cs->chctrl0 = l;
242 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
243 /* Flash post-writes */
244 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
245}
246
247static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
248{
249 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
250 u32 l;
251
252 /* The controller handles the inverted chip selects
253 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
254 * the inversion from the core spi_set_cs function.
255 */
256 if (spi->mode & SPI_CS_HIGH)
257 enable = !enable;
258
259 if (spi->controller_state) {
260 int err = pm_runtime_get_sync(mcspi->dev);
261 if (err < 0) {
262 dev_err(mcspi->dev, "failed to get sync: %d\n", err);
263 return;
264 }
265
266 l = mcspi_cached_chconf0(spi);
267
268 if (enable)
269 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
270 else
271 l |= OMAP2_MCSPI_CHCONF_FORCE;
272
273 mcspi_write_chconf0(spi, l);
274
275 pm_runtime_mark_last_busy(mcspi->dev);
276 pm_runtime_put_autosuspend(mcspi->dev);
277 }
278}
279
280static void omap2_mcspi_set_master_mode(struct spi_master *master)
281{
282 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
283 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
284 u32 l;
285
286 /*
287 * Setup when switching from (reset default) slave mode
288 * to single-channel master mode
289 */
290 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
291 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
292 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
293 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
294
295 ctx->modulctrl = l;
296}
297
298static void omap2_mcspi_set_fifo(const struct spi_device *spi,
299 struct spi_transfer *t, int enable)
300{
301 struct spi_master *master = spi->master;
302 struct omap2_mcspi_cs *cs = spi->controller_state;
303 struct omap2_mcspi *mcspi;
304 unsigned int wcnt;
305 int max_fifo_depth, fifo_depth, bytes_per_word;
306 u32 chconf, xferlevel;
307
308 mcspi = spi_master_get_devdata(master);
309
310 chconf = mcspi_cached_chconf0(spi);
311 if (enable) {
312 bytes_per_word = mcspi_bytes_per_word(cs->word_len);
313 if (t->len % bytes_per_word != 0)
314 goto disable_fifo;
315
316 if (t->rx_buf != NULL && t->tx_buf != NULL)
317 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
318 else
319 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
320
321 fifo_depth = gcd(t->len, max_fifo_depth);
322 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
323 goto disable_fifo;
324
325 wcnt = t->len / bytes_per_word;
326 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
327 goto disable_fifo;
328
329 xferlevel = wcnt << 16;
330 if (t->rx_buf != NULL) {
331 chconf |= OMAP2_MCSPI_CHCONF_FFER;
332 xferlevel |= (fifo_depth - 1) << 8;
333 }
334 if (t->tx_buf != NULL) {
335 chconf |= OMAP2_MCSPI_CHCONF_FFET;
336 xferlevel |= fifo_depth - 1;
337 }
338
339 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
340 mcspi_write_chconf0(spi, chconf);
341 mcspi->fifo_depth = fifo_depth;
342
343 return;
344 }
345
346disable_fifo:
347 if (t->rx_buf != NULL)
348 chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
349
350 if (t->tx_buf != NULL)
351 chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
352
353 mcspi_write_chconf0(spi, chconf);
354 mcspi->fifo_depth = 0;
355}
356
357static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
358{
359 struct spi_master *spi_cntrl = mcspi->master;
360 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
361 struct omap2_mcspi_cs *cs;
362
363 /* McSPI: context restore */
364 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
365 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
366
367 list_for_each_entry(cs, &ctx->cs, node)
368 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
369}
370
371static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
372{
373 unsigned long timeout;
374
375 timeout = jiffies + msecs_to_jiffies(1000);
376 while (!(readl_relaxed(reg) & bit)) {
377 if (time_after(jiffies, timeout)) {
378 if (!(readl_relaxed(reg) & bit))
379 return -ETIMEDOUT;
380 else
381 return 0;
382 }
383 cpu_relax();
384 }
385 return 0;
386}
387
388static void omap2_mcspi_rx_callback(void *data)
389{
390 struct spi_device *spi = data;
391 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
392 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
393
394 /* We must disable the DMA RX request */
395 omap2_mcspi_set_dma_req(spi, 1, 0);
396
397 complete(&mcspi_dma->dma_rx_completion);
398}
399
400static void omap2_mcspi_tx_callback(void *data)
401{
402 struct spi_device *spi = data;
403 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
404 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
405
406 /* We must disable the DMA TX request */
407 omap2_mcspi_set_dma_req(spi, 0, 0);
408
409 complete(&mcspi_dma->dma_tx_completion);
410}
411
412static void omap2_mcspi_tx_dma(struct spi_device *spi,
413 struct spi_transfer *xfer,
414 struct dma_slave_config cfg)
415{
416 struct omap2_mcspi *mcspi;
417 struct omap2_mcspi_dma *mcspi_dma;
418 unsigned int count;
419
420 mcspi = spi_master_get_devdata(spi->master);
421 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
422 count = xfer->len;
423
424 if (mcspi_dma->dma_tx) {
425 struct dma_async_tx_descriptor *tx;
426 struct scatterlist sg;
427
428 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
429
430 sg_init_table(&sg, 1);
431 sg_dma_address(&sg) = xfer->tx_dma;
432 sg_dma_len(&sg) = xfer->len;
433
434 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
435 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
436 if (tx) {
437 tx->callback = omap2_mcspi_tx_callback;
438 tx->callback_param = spi;
439 dmaengine_submit(tx);
440 } else {
441 /* FIXME: fall back to PIO? */
442 }
443 }
444 dma_async_issue_pending(mcspi_dma->dma_tx);
445 omap2_mcspi_set_dma_req(spi, 0, 1);
446
447}
448
449static unsigned
450omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
451 struct dma_slave_config cfg,
452 unsigned es)
453{
454 struct omap2_mcspi *mcspi;
455 struct omap2_mcspi_dma *mcspi_dma;
456 unsigned int count, dma_count;
457 u32 l;
458 int elements = 0;
459 int word_len, element_count;
460 struct omap2_mcspi_cs *cs = spi->controller_state;
461 mcspi = spi_master_get_devdata(spi->master);
462 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
463 count = xfer->len;
464 dma_count = xfer->len;
465
466 if (mcspi->fifo_depth == 0)
467 dma_count -= es;
468
469 word_len = cs->word_len;
470 l = mcspi_cached_chconf0(spi);
471
472 if (word_len <= 8)
473 element_count = count;
474 else if (word_len <= 16)
475 element_count = count >> 1;
476 else /* word_len <= 32 */
477 element_count = count >> 2;
478
479 if (mcspi_dma->dma_rx) {
480 struct dma_async_tx_descriptor *tx;
481 struct scatterlist sg;
482
483 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
484
485 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
486 dma_count -= es;
487
488 sg_init_table(&sg, 1);
489 sg_dma_address(&sg) = xfer->rx_dma;
490 sg_dma_len(&sg) = dma_count;
491
492 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
493 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
494 DMA_CTRL_ACK);
495 if (tx) {
496 tx->callback = omap2_mcspi_rx_callback;
497 tx->callback_param = spi;
498 dmaengine_submit(tx);
499 } else {
500 /* FIXME: fall back to PIO? */
501 }
502 }
503
504 dma_async_issue_pending(mcspi_dma->dma_rx);
505 omap2_mcspi_set_dma_req(spi, 1, 1);
506
507 wait_for_completion(&mcspi_dma->dma_rx_completion);
508 dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
509 DMA_FROM_DEVICE);
510
511 if (mcspi->fifo_depth > 0)
512 return count;
513
514 omap2_mcspi_set_enable(spi, 0);
515
516 elements = element_count - 1;
517
518 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
519 elements--;
520
521 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
522 & OMAP2_MCSPI_CHSTAT_RXS)) {
523 u32 w;
524
525 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
526 if (word_len <= 8)
527 ((u8 *)xfer->rx_buf)[elements++] = w;
528 else if (word_len <= 16)
529 ((u16 *)xfer->rx_buf)[elements++] = w;
530 else /* word_len <= 32 */
531 ((u32 *)xfer->rx_buf)[elements++] = w;
532 } else {
533 int bytes_per_word = mcspi_bytes_per_word(word_len);
534 dev_err(&spi->dev, "DMA RX penultimate word empty\n");
535 count -= (bytes_per_word << 1);
536 omap2_mcspi_set_enable(spi, 1);
537 return count;
538 }
539 }
540 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
541 & OMAP2_MCSPI_CHSTAT_RXS)) {
542 u32 w;
543
544 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
545 if (word_len <= 8)
546 ((u8 *)xfer->rx_buf)[elements] = w;
547 else if (word_len <= 16)
548 ((u16 *)xfer->rx_buf)[elements] = w;
549 else /* word_len <= 32 */
550 ((u32 *)xfer->rx_buf)[elements] = w;
551 } else {
552 dev_err(&spi->dev, "DMA RX last word empty\n");
553 count -= mcspi_bytes_per_word(word_len);
554 }
555 omap2_mcspi_set_enable(spi, 1);
556 return count;
557}
558
559static unsigned
560omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
561{
562 struct omap2_mcspi *mcspi;
563 struct omap2_mcspi_cs *cs = spi->controller_state;
564 struct omap2_mcspi_dma *mcspi_dma;
565 unsigned int count;
566 u32 l;
567 u8 *rx;
568 const u8 *tx;
569 struct dma_slave_config cfg;
570 enum dma_slave_buswidth width;
571 unsigned es;
572 u32 burst;
573 void __iomem *chstat_reg;
574 void __iomem *irqstat_reg;
575 int wait_res;
576
577 mcspi = spi_master_get_devdata(spi->master);
578 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
579 l = mcspi_cached_chconf0(spi);
580
581
582 if (cs->word_len <= 8) {
583 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
584 es = 1;
585 } else if (cs->word_len <= 16) {
586 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
587 es = 2;
588 } else {
589 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
590 es = 4;
591 }
592
593 count = xfer->len;
594 burst = 1;
595
596 if (mcspi->fifo_depth > 0) {
597 if (count > mcspi->fifo_depth)
598 burst = mcspi->fifo_depth / es;
599 else
600 burst = count / es;
601 }
602
603 memset(&cfg, 0, sizeof(cfg));
604 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
605 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
606 cfg.src_addr_width = width;
607 cfg.dst_addr_width = width;
608 cfg.src_maxburst = burst;
609 cfg.dst_maxburst = burst;
610
611 rx = xfer->rx_buf;
612 tx = xfer->tx_buf;
613
614 if (tx != NULL)
615 omap2_mcspi_tx_dma(spi, xfer, cfg);
616
617 if (rx != NULL)
618 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
619
620 if (tx != NULL) {
621 wait_for_completion(&mcspi_dma->dma_tx_completion);
622 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
623 DMA_TO_DEVICE);
624
625 if (mcspi->fifo_depth > 0) {
626 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
627
628 if (mcspi_wait_for_reg_bit(irqstat_reg,
629 OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
630 dev_err(&spi->dev, "EOW timed out\n");
631
632 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
633 OMAP2_MCSPI_IRQSTATUS_EOW);
634 }
635
636 /* for TX_ONLY mode, be sure all words have shifted out */
637 if (rx == NULL) {
638 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
639 if (mcspi->fifo_depth > 0) {
640 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
641 OMAP2_MCSPI_CHSTAT_TXFFE);
642 if (wait_res < 0)
643 dev_err(&spi->dev, "TXFFE timed out\n");
644 } else {
645 wait_res = mcspi_wait_for_reg_bit(chstat_reg,
646 OMAP2_MCSPI_CHSTAT_TXS);
647 if (wait_res < 0)
648 dev_err(&spi->dev, "TXS timed out\n");
649 }
650 if (wait_res >= 0 &&
651 (mcspi_wait_for_reg_bit(chstat_reg,
652 OMAP2_MCSPI_CHSTAT_EOT) < 0))
653 dev_err(&spi->dev, "EOT timed out\n");
654 }
655 }
656 return count;
657}
658
659static unsigned
660omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
661{
662 struct omap2_mcspi *mcspi;
663 struct omap2_mcspi_cs *cs = spi->controller_state;
664 unsigned int count, c;
665 u32 l;
666 void __iomem *base = cs->base;
667 void __iomem *tx_reg;
668 void __iomem *rx_reg;
669 void __iomem *chstat_reg;
670 int word_len;
671
672 mcspi = spi_master_get_devdata(spi->master);
673 count = xfer->len;
674 c = count;
675 word_len = cs->word_len;
676
677 l = mcspi_cached_chconf0(spi);
678
679 /* We store the pre-calculated register addresses on stack to speed
680 * up the transfer loop. */
681 tx_reg = base + OMAP2_MCSPI_TX0;
682 rx_reg = base + OMAP2_MCSPI_RX0;
683 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
684
685 if (c < (word_len>>3))
686 return 0;
687
688 if (word_len <= 8) {
689 u8 *rx;
690 const u8 *tx;
691
692 rx = xfer->rx_buf;
693 tx = xfer->tx_buf;
694
695 do {
696 c -= 1;
697 if (tx != NULL) {
698 if (mcspi_wait_for_reg_bit(chstat_reg,
699 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
700 dev_err(&spi->dev, "TXS timed out\n");
701 goto out;
702 }
703 dev_vdbg(&spi->dev, "write-%d %02x\n",
704 word_len, *tx);
705 writel_relaxed(*tx++, tx_reg);
706 }
707 if (rx != NULL) {
708 if (mcspi_wait_for_reg_bit(chstat_reg,
709 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
710 dev_err(&spi->dev, "RXS timed out\n");
711 goto out;
712 }
713
714 if (c == 1 && tx == NULL &&
715 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
716 omap2_mcspi_set_enable(spi, 0);
717 *rx++ = readl_relaxed(rx_reg);
718 dev_vdbg(&spi->dev, "read-%d %02x\n",
719 word_len, *(rx - 1));
720 if (mcspi_wait_for_reg_bit(chstat_reg,
721 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
722 dev_err(&spi->dev,
723 "RXS timed out\n");
724 goto out;
725 }
726 c = 0;
727 } else if (c == 0 && tx == NULL) {
728 omap2_mcspi_set_enable(spi, 0);
729 }
730
731 *rx++ = readl_relaxed(rx_reg);
732 dev_vdbg(&spi->dev, "read-%d %02x\n",
733 word_len, *(rx - 1));
734 }
735 } while (c);
736 } else if (word_len <= 16) {
737 u16 *rx;
738 const u16 *tx;
739
740 rx = xfer->rx_buf;
741 tx = xfer->tx_buf;
742 do {
743 c -= 2;
744 if (tx != NULL) {
745 if (mcspi_wait_for_reg_bit(chstat_reg,
746 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
747 dev_err(&spi->dev, "TXS timed out\n");
748 goto out;
749 }
750 dev_vdbg(&spi->dev, "write-%d %04x\n",
751 word_len, *tx);
752 writel_relaxed(*tx++, tx_reg);
753 }
754 if (rx != NULL) {
755 if (mcspi_wait_for_reg_bit(chstat_reg,
756 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
757 dev_err(&spi->dev, "RXS timed out\n");
758 goto out;
759 }
760
761 if (c == 2 && tx == NULL &&
762 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
763 omap2_mcspi_set_enable(spi, 0);
764 *rx++ = readl_relaxed(rx_reg);
765 dev_vdbg(&spi->dev, "read-%d %04x\n",
766 word_len, *(rx - 1));
767 if (mcspi_wait_for_reg_bit(chstat_reg,
768 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
769 dev_err(&spi->dev,
770 "RXS timed out\n");
771 goto out;
772 }
773 c = 0;
774 } else if (c == 0 && tx == NULL) {
775 omap2_mcspi_set_enable(spi, 0);
776 }
777
778 *rx++ = readl_relaxed(rx_reg);
779 dev_vdbg(&spi->dev, "read-%d %04x\n",
780 word_len, *(rx - 1));
781 }
782 } while (c >= 2);
783 } else if (word_len <= 32) {
784 u32 *rx;
785 const u32 *tx;
786
787 rx = xfer->rx_buf;
788 tx = xfer->tx_buf;
789 do {
790 c -= 4;
791 if (tx != NULL) {
792 if (mcspi_wait_for_reg_bit(chstat_reg,
793 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
794 dev_err(&spi->dev, "TXS timed out\n");
795 goto out;
796 }
797 dev_vdbg(&spi->dev, "write-%d %08x\n",
798 word_len, *tx);
799 writel_relaxed(*tx++, tx_reg);
800 }
801 if (rx != NULL) {
802 if (mcspi_wait_for_reg_bit(chstat_reg,
803 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
804 dev_err(&spi->dev, "RXS timed out\n");
805 goto out;
806 }
807
808 if (c == 4 && tx == NULL &&
809 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
810 omap2_mcspi_set_enable(spi, 0);
811 *rx++ = readl_relaxed(rx_reg);
812 dev_vdbg(&spi->dev, "read-%d %08x\n",
813 word_len, *(rx - 1));
814 if (mcspi_wait_for_reg_bit(chstat_reg,
815 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
816 dev_err(&spi->dev,
817 "RXS timed out\n");
818 goto out;
819 }
820 c = 0;
821 } else if (c == 0 && tx == NULL) {
822 omap2_mcspi_set_enable(spi, 0);
823 }
824
825 *rx++ = readl_relaxed(rx_reg);
826 dev_vdbg(&spi->dev, "read-%d %08x\n",
827 word_len, *(rx - 1));
828 }
829 } while (c >= 4);
830 }
831
832 /* for TX_ONLY mode, be sure all words have shifted out */
833 if (xfer->rx_buf == NULL) {
834 if (mcspi_wait_for_reg_bit(chstat_reg,
835 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
836 dev_err(&spi->dev, "TXS timed out\n");
837 } else if (mcspi_wait_for_reg_bit(chstat_reg,
838 OMAP2_MCSPI_CHSTAT_EOT) < 0)
839 dev_err(&spi->dev, "EOT timed out\n");
840
841 /* disable chan to purge rx datas received in TX_ONLY transfer,
842 * otherwise these rx datas will affect the direct following
843 * RX_ONLY transfer.
844 */
845 omap2_mcspi_set_enable(spi, 0);
846 }
847out:
848 omap2_mcspi_set_enable(spi, 1);
849 return count - c;
850}
851
852static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
853{
854 u32 div;
855
856 for (div = 0; div < 15; div++)
857 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
858 return div;
859
860 return 15;
861}
862
863/* called only when no transfer is active to this device */
864static int omap2_mcspi_setup_transfer(struct spi_device *spi,
865 struct spi_transfer *t)
866{
867 struct omap2_mcspi_cs *cs = spi->controller_state;
868 struct omap2_mcspi *mcspi;
869 struct spi_master *spi_cntrl;
870 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
871 u8 word_len = spi->bits_per_word;
872 u32 speed_hz = spi->max_speed_hz;
873
874 mcspi = spi_master_get_devdata(spi->master);
875 spi_cntrl = mcspi->master;
876
877 if (t != NULL && t->bits_per_word)
878 word_len = t->bits_per_word;
879
880 cs->word_len = word_len;
881
882 if (t && t->speed_hz)
883 speed_hz = t->speed_hz;
884
885 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
886 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
887 clkd = omap2_mcspi_calc_divisor(speed_hz);
888 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
889 clkg = 0;
890 } else {
891 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
892 speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
893 clkd = (div - 1) & 0xf;
894 extclk = (div - 1) >> 4;
895 clkg = OMAP2_MCSPI_CHCONF_CLKG;
896 }
897
898 l = mcspi_cached_chconf0(spi);
899
900 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
901 * REVISIT: this controller could support SPI_3WIRE mode.
902 */
903 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
904 l &= ~OMAP2_MCSPI_CHCONF_IS;
905 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
906 l |= OMAP2_MCSPI_CHCONF_DPE0;
907 } else {
908 l |= OMAP2_MCSPI_CHCONF_IS;
909 l |= OMAP2_MCSPI_CHCONF_DPE1;
910 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
911 }
912
913 /* wordlength */
914 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
915 l |= (word_len - 1) << 7;
916
917 /* set chipselect polarity; manage with FORCE */
918 if (!(spi->mode & SPI_CS_HIGH))
919 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
920 else
921 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
922
923 /* set clock divisor */
924 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
925 l |= clkd << 2;
926
927 /* set clock granularity */
928 l &= ~OMAP2_MCSPI_CHCONF_CLKG;
929 l |= clkg;
930 if (clkg) {
931 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
932 cs->chctrl0 |= extclk << 8;
933 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
934 }
935
936 /* set SPI mode 0..3 */
937 if (spi->mode & SPI_CPOL)
938 l |= OMAP2_MCSPI_CHCONF_POL;
939 else
940 l &= ~OMAP2_MCSPI_CHCONF_POL;
941 if (spi->mode & SPI_CPHA)
942 l |= OMAP2_MCSPI_CHCONF_PHA;
943 else
944 l &= ~OMAP2_MCSPI_CHCONF_PHA;
945
946 mcspi_write_chconf0(spi, l);
947
948 cs->mode = spi->mode;
949
950 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
951 speed_hz,
952 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
953 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
954
955 return 0;
956}
957
958/*
959 * Note that we currently allow DMA only if we get a channel
960 * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
961 */
962static int omap2_mcspi_request_dma(struct spi_device *spi)
963{
964 struct spi_master *master = spi->master;
965 struct omap2_mcspi *mcspi;
966 struct omap2_mcspi_dma *mcspi_dma;
967 dma_cap_mask_t mask;
968 unsigned sig;
969
970 mcspi = spi_master_get_devdata(master);
971 mcspi_dma = mcspi->dma_channels + spi->chip_select;
972
973 init_completion(&mcspi_dma->dma_rx_completion);
974 init_completion(&mcspi_dma->dma_tx_completion);
975
976 dma_cap_zero(mask);
977 dma_cap_set(DMA_SLAVE, mask);
978 sig = mcspi_dma->dma_rx_sync_dev;
979
980 mcspi_dma->dma_rx =
981 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
982 &sig, &master->dev,
983 mcspi_dma->dma_rx_ch_name);
984 if (!mcspi_dma->dma_rx)
985 goto no_dma;
986
987 sig = mcspi_dma->dma_tx_sync_dev;
988 mcspi_dma->dma_tx =
989 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
990 &sig, &master->dev,
991 mcspi_dma->dma_tx_ch_name);
992
993 if (!mcspi_dma->dma_tx) {
994 dma_release_channel(mcspi_dma->dma_rx);
995 mcspi_dma->dma_rx = NULL;
996 goto no_dma;
997 }
998
999 return 0;
1000
1001no_dma:
1002 dev_warn(&spi->dev, "not using DMA for McSPI\n");
1003 return -EAGAIN;
1004}
1005
1006static int omap2_mcspi_setup(struct spi_device *spi)
1007{
1008 int ret;
1009 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1010 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1011 struct omap2_mcspi_dma *mcspi_dma;
1012 struct omap2_mcspi_cs *cs = spi->controller_state;
1013
1014 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1015
1016 if (!cs) {
1017 cs = kzalloc(sizeof *cs, GFP_KERNEL);
1018 if (!cs)
1019 return -ENOMEM;
1020 cs->base = mcspi->base + spi->chip_select * 0x14;
1021 cs->phys = mcspi->phys + spi->chip_select * 0x14;
1022 cs->mode = 0;
1023 cs->chconf0 = 0;
1024 cs->chctrl0 = 0;
1025 spi->controller_state = cs;
1026 /* Link this to context save list */
1027 list_add_tail(&cs->node, &ctx->cs);
1028
1029 if (gpio_is_valid(spi->cs_gpio)) {
1030 ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
1031 if (ret) {
1032 dev_err(&spi->dev, "failed to request gpio\n");
1033 return ret;
1034 }
1035 gpio_direction_output(spi->cs_gpio,
1036 !(spi->mode & SPI_CS_HIGH));
1037 }
1038 }
1039
1040 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1041 ret = omap2_mcspi_request_dma(spi);
1042 if (ret < 0 && ret != -EAGAIN)
1043 return ret;
1044 }
1045
1046 ret = pm_runtime_get_sync(mcspi->dev);
1047 if (ret < 0)
1048 return ret;
1049
1050 ret = omap2_mcspi_setup_transfer(spi, NULL);
1051 pm_runtime_mark_last_busy(mcspi->dev);
1052 pm_runtime_put_autosuspend(mcspi->dev);
1053
1054 return ret;
1055}
1056
1057static void omap2_mcspi_cleanup(struct spi_device *spi)
1058{
1059 struct omap2_mcspi *mcspi;
1060 struct omap2_mcspi_dma *mcspi_dma;
1061 struct omap2_mcspi_cs *cs;
1062
1063 mcspi = spi_master_get_devdata(spi->master);
1064
1065 if (spi->controller_state) {
1066 /* Unlink controller state from context save list */
1067 cs = spi->controller_state;
1068 list_del(&cs->node);
1069
1070 kfree(cs);
1071 }
1072
1073 if (spi->chip_select < spi->master->num_chipselect) {
1074 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1075
1076 if (mcspi_dma->dma_rx) {
1077 dma_release_channel(mcspi_dma->dma_rx);
1078 mcspi_dma->dma_rx = NULL;
1079 }
1080 if (mcspi_dma->dma_tx) {
1081 dma_release_channel(mcspi_dma->dma_tx);
1082 mcspi_dma->dma_tx = NULL;
1083 }
1084 }
1085
1086 if (gpio_is_valid(spi->cs_gpio))
1087 gpio_free(spi->cs_gpio);
1088}
1089
1090static int omap2_mcspi_work_one(struct omap2_mcspi *mcspi,
1091 struct spi_device *spi, struct spi_transfer *t)
1092{
1093
1094 /* We only enable one channel at a time -- the one whose message is
1095 * -- although this controller would gladly
1096 * arbitrate among multiple channels. This corresponds to "single
1097 * channel" master mode. As a side effect, we need to manage the
1098 * chipselect with the FORCE bit ... CS != channel enable.
1099 */
1100
1101 struct spi_master *master;
1102 struct omap2_mcspi_dma *mcspi_dma;
1103 struct omap2_mcspi_cs *cs;
1104 struct omap2_mcspi_device_config *cd;
1105 int par_override = 0;
1106 int status = 0;
1107 u32 chconf;
1108
1109 master = spi->master;
1110 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1111 cs = spi->controller_state;
1112 cd = spi->controller_data;
1113
1114 /*
1115 * The slave driver could have changed spi->mode in which case
1116 * it will be different from cs->mode (the current hardware setup).
1117 * If so, set par_override (even though its not a parity issue) so
1118 * omap2_mcspi_setup_transfer will be called to configure the hardware
1119 * with the correct mode on the first iteration of the loop below.
1120 */
1121 if (spi->mode != cs->mode)
1122 par_override = 1;
1123
1124 omap2_mcspi_set_enable(spi, 0);
1125
1126 if (gpio_is_valid(spi->cs_gpio))
1127 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1128
1129 if (par_override ||
1130 (t->speed_hz != spi->max_speed_hz) ||
1131 (t->bits_per_word != spi->bits_per_word)) {
1132 par_override = 1;
1133 status = omap2_mcspi_setup_transfer(spi, t);
1134 if (status < 0)
1135 goto out;
1136 if (t->speed_hz == spi->max_speed_hz &&
1137 t->bits_per_word == spi->bits_per_word)
1138 par_override = 0;
1139 }
1140 if (cd && cd->cs_per_word) {
1141 chconf = mcspi->ctx.modulctrl;
1142 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1143 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1144 mcspi->ctx.modulctrl =
1145 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1146 }
1147
1148 chconf = mcspi_cached_chconf0(spi);
1149 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1150 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1151
1152 if (t->tx_buf == NULL)
1153 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1154 else if (t->rx_buf == NULL)
1155 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1156
1157 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1158 /* Turbo mode is for more than one word */
1159 if (t->len > ((cs->word_len + 7) >> 3))
1160 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1161 }
1162
1163 mcspi_write_chconf0(spi, chconf);
1164
1165 if (t->len) {
1166 unsigned count;
1167
1168 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1169 (t->len >= DMA_MIN_BYTES))
1170 omap2_mcspi_set_fifo(spi, t, 1);
1171
1172 omap2_mcspi_set_enable(spi, 1);
1173
1174 /* RX_ONLY mode needs dummy data in TX reg */
1175 if (t->tx_buf == NULL)
1176 writel_relaxed(0, cs->base
1177 + OMAP2_MCSPI_TX0);
1178
1179 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1180 (t->len >= DMA_MIN_BYTES))
1181 count = omap2_mcspi_txrx_dma(spi, t);
1182 else
1183 count = omap2_mcspi_txrx_pio(spi, t);
1184
1185 if (count != t->len) {
1186 status = -EIO;
1187 goto out;
1188 }
1189 }
1190
1191 omap2_mcspi_set_enable(spi, 0);
1192
1193 if (mcspi->fifo_depth > 0)
1194 omap2_mcspi_set_fifo(spi, t, 0);
1195
1196out:
1197 /* Restore defaults if they were overriden */
1198 if (par_override) {
1199 par_override = 0;
1200 status = omap2_mcspi_setup_transfer(spi, NULL);
1201 }
1202
1203 if (cd && cd->cs_per_word) {
1204 chconf = mcspi->ctx.modulctrl;
1205 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1206 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1207 mcspi->ctx.modulctrl =
1208 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1209 }
1210
1211 omap2_mcspi_set_enable(spi, 0);
1212
1213 if (gpio_is_valid(spi->cs_gpio))
1214 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1215
1216 if (mcspi->fifo_depth > 0 && t)
1217 omap2_mcspi_set_fifo(spi, t, 0);
1218
1219 return status;
1220}
1221
1222static int omap2_mcspi_prepare_message(struct spi_master *master,
1223 struct spi_message *msg)
1224{
1225 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1226 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1227 struct omap2_mcspi_cs *cs;
1228
1229 /* Only a single channel can have the FORCE bit enabled
1230 * in its chconf0 register.
1231 * Scan all channels and disable them except the current one.
1232 * A FORCE can remain from a last transfer having cs_change enabled
1233 */
1234 list_for_each_entry(cs, &ctx->cs, node) {
1235 if (msg->spi->controller_state == cs)
1236 continue;
1237
1238 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1239 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1240 writel_relaxed(cs->chconf0,
1241 cs->base + OMAP2_MCSPI_CHCONF0);
1242 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1243 }
1244 }
1245
1246 return 0;
1247}
1248
1249static int omap2_mcspi_transfer_one(struct spi_master *master,
1250 struct spi_device *spi, struct spi_transfer *t)
1251{
1252 struct omap2_mcspi *mcspi;
1253 struct omap2_mcspi_dma *mcspi_dma;
1254 const void *tx_buf = t->tx_buf;
1255 void *rx_buf = t->rx_buf;
1256 unsigned len = t->len;
1257
1258 mcspi = spi_master_get_devdata(master);
1259 mcspi_dma = mcspi->dma_channels + spi->chip_select;
1260
1261 if ((len && !(rx_buf || tx_buf))) {
1262 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1263 t->speed_hz,
1264 len,
1265 tx_buf ? "tx" : "",
1266 rx_buf ? "rx" : "",
1267 t->bits_per_word);
1268 return -EINVAL;
1269 }
1270
1271 if (len < DMA_MIN_BYTES)
1272 goto skip_dma_map;
1273
1274 if (mcspi_dma->dma_tx && tx_buf != NULL) {
1275 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1276 len, DMA_TO_DEVICE);
1277 if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1278 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1279 'T', len);
1280 return -EINVAL;
1281 }
1282 }
1283 if (mcspi_dma->dma_rx && rx_buf != NULL) {
1284 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1285 DMA_FROM_DEVICE);
1286 if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1287 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1288 'R', len);
1289 if (tx_buf != NULL)
1290 dma_unmap_single(mcspi->dev, t->tx_dma,
1291 len, DMA_TO_DEVICE);
1292 return -EINVAL;
1293 }
1294 }
1295
1296skip_dma_map:
1297 return omap2_mcspi_work_one(mcspi, spi, t);
1298}
1299
1300static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1301{
1302 struct spi_master *master = mcspi->master;
1303 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1304 int ret = 0;
1305
1306 ret = pm_runtime_get_sync(mcspi->dev);
1307 if (ret < 0)
1308 return ret;
1309
1310 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1311 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1312 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1313
1314 omap2_mcspi_set_master_mode(master);
1315 pm_runtime_mark_last_busy(mcspi->dev);
1316 pm_runtime_put_autosuspend(mcspi->dev);
1317 return 0;
1318}
1319
1320static int omap_mcspi_runtime_resume(struct device *dev)
1321{
1322 struct omap2_mcspi *mcspi;
1323 struct spi_master *master;
1324
1325 master = dev_get_drvdata(dev);
1326 mcspi = spi_master_get_devdata(master);
1327 omap2_mcspi_restore_ctx(mcspi);
1328
1329 return 0;
1330}
1331
1332static struct omap2_mcspi_platform_config omap2_pdata = {
1333 .regs_offset = 0,
1334};
1335
1336static struct omap2_mcspi_platform_config omap4_pdata = {
1337 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1338};
1339
1340static const struct of_device_id omap_mcspi_of_match[] = {
1341 {
1342 .compatible = "ti,omap2-mcspi",
1343 .data = &omap2_pdata,
1344 },
1345 {
1346 .compatible = "ti,omap4-mcspi",
1347 .data = &omap4_pdata,
1348 },
1349 { },
1350};
1351MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1352
1353static int omap2_mcspi_probe(struct platform_device *pdev)
1354{
1355 struct spi_master *master;
1356 const struct omap2_mcspi_platform_config *pdata;
1357 struct omap2_mcspi *mcspi;
1358 struct resource *r;
1359 int status = 0, i;
1360 u32 regs_offset = 0;
1361 static int bus_num = 1;
1362 struct device_node *node = pdev->dev.of_node;
1363 const struct of_device_id *match;
1364
1365 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1366 if (master == NULL) {
1367 dev_dbg(&pdev->dev, "master allocation failed\n");
1368 return -ENOMEM;
1369 }
1370
1371 /* the spi->mode bits understood by this driver: */
1372 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1373 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1374 master->setup = omap2_mcspi_setup;
1375 master->auto_runtime_pm = true;
1376 master->prepare_message = omap2_mcspi_prepare_message;
1377 master->transfer_one = omap2_mcspi_transfer_one;
1378 master->set_cs = omap2_mcspi_set_cs;
1379 master->cleanup = omap2_mcspi_cleanup;
1380 master->dev.of_node = node;
1381 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1382 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1383
1384 platform_set_drvdata(pdev, master);
1385
1386 mcspi = spi_master_get_devdata(master);
1387 mcspi->master = master;
1388
1389 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1390 if (match) {
1391 u32 num_cs = 1; /* default number of chipselect */
1392 pdata = match->data;
1393
1394 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1395 master->num_chipselect = num_cs;
1396 master->bus_num = bus_num++;
1397 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1398 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1399 } else {
1400 pdata = dev_get_platdata(&pdev->dev);
1401 master->num_chipselect = pdata->num_cs;
1402 if (pdev->id != -1)
1403 master->bus_num = pdev->id;
1404 mcspi->pin_dir = pdata->pin_dir;
1405 }
1406 regs_offset = pdata->regs_offset;
1407
1408 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1409 if (r == NULL) {
1410 status = -ENODEV;
1411 goto free_master;
1412 }
1413
1414 r->start += regs_offset;
1415 r->end += regs_offset;
1416 mcspi->phys = r->start;
1417
1418 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1419 if (IS_ERR(mcspi->base)) {
1420 status = PTR_ERR(mcspi->base);
1421 goto free_master;
1422 }
1423
1424 mcspi->dev = &pdev->dev;
1425
1426 INIT_LIST_HEAD(&mcspi->ctx.cs);
1427
1428 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1429 sizeof(struct omap2_mcspi_dma),
1430 GFP_KERNEL);
1431 if (mcspi->dma_channels == NULL) {
1432 status = -ENOMEM;
1433 goto free_master;
1434 }
1435
1436 for (i = 0; i < master->num_chipselect; i++) {
1437 char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name;
1438 char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name;
1439 struct resource *dma_res;
1440
1441 sprintf(dma_rx_ch_name, "rx%d", i);
1442 if (!pdev->dev.of_node) {
1443 dma_res =
1444 platform_get_resource_byname(pdev,
1445 IORESOURCE_DMA,
1446 dma_rx_ch_name);
1447 if (!dma_res) {
1448 dev_dbg(&pdev->dev,
1449 "cannot get DMA RX channel\n");
1450 status = -ENODEV;
1451 break;
1452 }
1453
1454 mcspi->dma_channels[i].dma_rx_sync_dev =
1455 dma_res->start;
1456 }
1457 sprintf(dma_tx_ch_name, "tx%d", i);
1458 if (!pdev->dev.of_node) {
1459 dma_res =
1460 platform_get_resource_byname(pdev,
1461 IORESOURCE_DMA,
1462 dma_tx_ch_name);
1463 if (!dma_res) {
1464 dev_dbg(&pdev->dev,
1465 "cannot get DMA TX channel\n");
1466 status = -ENODEV;
1467 break;
1468 }
1469
1470 mcspi->dma_channels[i].dma_tx_sync_dev =
1471 dma_res->start;
1472 }
1473 }
1474
1475 if (status < 0)
1476 goto free_master;
1477
1478 pm_runtime_use_autosuspend(&pdev->dev);
1479 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1480 pm_runtime_enable(&pdev->dev);
1481
1482 status = omap2_mcspi_master_setup(mcspi);
1483 if (status < 0)
1484 goto disable_pm;
1485
1486 status = devm_spi_register_master(&pdev->dev, master);
1487 if (status < 0)
1488 goto disable_pm;
1489
1490 return status;
1491
1492disable_pm:
1493 pm_runtime_dont_use_autosuspend(&pdev->dev);
1494 pm_runtime_put_sync(&pdev->dev);
1495 pm_runtime_disable(&pdev->dev);
1496free_master:
1497 spi_master_put(master);
1498 return status;
1499}
1500
1501static int omap2_mcspi_remove(struct platform_device *pdev)
1502{
1503 struct spi_master *master = platform_get_drvdata(pdev);
1504 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1505
1506 pm_runtime_dont_use_autosuspend(mcspi->dev);
1507 pm_runtime_put_sync(mcspi->dev);
1508 pm_runtime_disable(&pdev->dev);
1509
1510 return 0;
1511}
1512
1513/* work with hotplug and coldplug */
1514MODULE_ALIAS("platform:omap2_mcspi");
1515
1516#ifdef CONFIG_SUSPEND
1517/*
1518 * When SPI wake up from off-mode, CS is in activate state. If it was in
1519 * unactive state when driver was suspend, then force it to unactive state at
1520 * wake up.
1521 */
1522static int omap2_mcspi_resume(struct device *dev)
1523{
1524 struct spi_master *master = dev_get_drvdata(dev);
1525 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1526 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1527 struct omap2_mcspi_cs *cs;
1528
1529 pm_runtime_get_sync(mcspi->dev);
1530 list_for_each_entry(cs, &ctx->cs, node) {
1531 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1532 /*
1533 * We need to toggle CS state for OMAP take this
1534 * change in account.
1535 */
1536 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1537 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1538 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1539 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1540 }
1541 }
1542 pm_runtime_mark_last_busy(mcspi->dev);
1543 pm_runtime_put_autosuspend(mcspi->dev);
1544
1545 return pinctrl_pm_select_default_state(dev);
1546}
1547
1548static int omap2_mcspi_suspend(struct device *dev)
1549{
1550 return pinctrl_pm_select_sleep_state(dev);
1551}
1552
1553#else
1554#define omap2_mcspi_suspend NULL
1555#define omap2_mcspi_resume NULL
1556#endif
1557
1558static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1559 .resume = omap2_mcspi_resume,
1560 .suspend = omap2_mcspi_suspend,
1561 .runtime_resume = omap_mcspi_runtime_resume,
1562};
1563
1564static struct platform_driver omap2_mcspi_driver = {
1565 .driver = {
1566 .name = "omap2_mcspi",
1567 .pm = &omap2_mcspi_pm_ops,
1568 .of_match_table = omap_mcspi_of_match,
1569 },
1570 .probe = omap2_mcspi_probe,
1571 .remove = omap2_mcspi_remove,
1572};
1573
1574module_platform_driver(omap2_mcspi_driver);
1575MODULE_LICENSE("GPL");