Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright (C) 2018 Exceet Electronics GmbH
  4 * Copyright (C) 2018 Bootlin
  5 *
  6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
  7 */
  8#include <linux/dmaengine.h>
  9#include <linux/iopoll.h>
 10#include <linux/pm_runtime.h>
 11#include <linux/spi/spi.h>
 12#include <linux/spi/spi-mem.h>
 13#include <linux/sched/task_stack.h>
 14
 15#include "internals.h"
 16
 17#define SPI_MEM_MAX_BUSWIDTH		8
 18
 19/**
 20 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
 21 *					  memory operation
 22 * @ctlr: the SPI controller requesting this dma_map()
 23 * @op: the memory operation containing the buffer to map
 24 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
 25 *	 function
 26 *
 27 * Some controllers might want to do DMA on the data buffer embedded in @op.
 28 * This helper prepares everything for you and provides a ready-to-use
 29 * sg_table. This function is not intended to be called from spi drivers.
 30 * Only SPI controller drivers should use it.
 31 * Note that the caller must ensure the memory region pointed by
 32 * op->data.buf.{in,out} is DMA-able before calling this function.
 33 *
 34 * Return: 0 in case of success, a negative error code otherwise.
 35 */
 36int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
 37				       const struct spi_mem_op *op,
 38				       struct sg_table *sgt)
 39{
 40	struct device *dmadev;
 41
 42	if (!op->data.nbytes)
 43		return -EINVAL;
 44
 45	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
 46		dmadev = ctlr->dma_tx->device->dev;
 47	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
 48		dmadev = ctlr->dma_rx->device->dev;
 49	else
 50		dmadev = ctlr->dev.parent;
 51
 52	if (!dmadev)
 53		return -EINVAL;
 54
 55	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
 56			   op->data.dir == SPI_MEM_DATA_IN ?
 57			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
 58}
 59EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
 60
 61/**
 62 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
 63 *					    memory operation
 64 * @ctlr: the SPI controller requesting this dma_unmap()
 65 * @op: the memory operation containing the buffer to unmap
 66 * @sgt: a pointer to an sg_table previously initialized by
 67 *	 spi_controller_dma_map_mem_op_data()
 68 *
 69 * Some controllers might want to do DMA on the data buffer embedded in @op.
 70 * This helper prepares things so that the CPU can access the
 71 * op->data.buf.{in,out} buffer again.
 72 *
 73 * This function is not intended to be called from SPI drivers. Only SPI
 74 * controller drivers should use it.
 75 *
 76 * This function should be called after the DMA operation has finished and is
 77 * only valid if the previous spi_controller_dma_map_mem_op_data() call
 78 * returned 0.
 79 *
 80 * Return: 0 in case of success, a negative error code otherwise.
 81 */
 82void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
 83					  const struct spi_mem_op *op,
 84					  struct sg_table *sgt)
 85{
 86	struct device *dmadev;
 87
 88	if (!op->data.nbytes)
 89		return;
 90
 91	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
 92		dmadev = ctlr->dma_tx->device->dev;
 93	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
 94		dmadev = ctlr->dma_rx->device->dev;
 95	else
 96		dmadev = ctlr->dev.parent;
 97
 98	spi_unmap_buf(ctlr, dmadev, sgt,
 99		      op->data.dir == SPI_MEM_DATA_IN ?
100		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
101}
102EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
103
104static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
105{
106	u32 mode = mem->spi->mode;
107
108	switch (buswidth) {
109	case 1:
110		return 0;
111
112	case 2:
113		if ((tx &&
114		     (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
115		    (!tx &&
116		     (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
117			return 0;
118
119		break;
120
121	case 4:
122		if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
123		    (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
124			return 0;
125
126		break;
127
128	case 8:
129		if ((tx && (mode & SPI_TX_OCTAL)) ||
130		    (!tx && (mode & SPI_RX_OCTAL)))
131			return 0;
132
133		break;
134
135	default:
136		break;
137	}
138
139	return -ENOTSUPP;
140}
141
142static bool spi_mem_check_buswidth(struct spi_mem *mem,
143				   const struct spi_mem_op *op)
144{
145	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
146		return false;
147
148	if (op->addr.nbytes &&
149	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
150		return false;
151
152	if (op->dummy.nbytes &&
153	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
154		return false;
155
156	if (op->data.dir != SPI_MEM_NO_DATA &&
157	    spi_check_buswidth_req(mem, op->data.buswidth,
158				   op->data.dir == SPI_MEM_DATA_OUT))
159		return false;
160
161	return true;
162}
163
164bool spi_mem_default_supports_op(struct spi_mem *mem,
165				 const struct spi_mem_op *op)
166{
167	struct spi_controller *ctlr = mem->spi->controller;
168	bool op_is_dtr =
169		op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr;
170
171	if (op_is_dtr) {
172		if (!spi_mem_controller_is_capable(ctlr, dtr))
173			return false;
174
175		if (op->cmd.nbytes != 2)
176			return false;
177	} else {
178		if (op->cmd.nbytes != 1)
179			return false;
180	}
181
182	if (op->data.ecc) {
183		if (!spi_mem_controller_is_capable(ctlr, ecc))
184			return false;
185	}
186
187	return spi_mem_check_buswidth(mem, op);
188}
189EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
190
191static bool spi_mem_buswidth_is_valid(u8 buswidth)
192{
193	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
194		return false;
195
196	return true;
197}
198
199static int spi_mem_check_op(const struct spi_mem_op *op)
200{
201	if (!op->cmd.buswidth || !op->cmd.nbytes)
202		return -EINVAL;
203
204	if ((op->addr.nbytes && !op->addr.buswidth) ||
205	    (op->dummy.nbytes && !op->dummy.buswidth) ||
206	    (op->data.nbytes && !op->data.buswidth))
207		return -EINVAL;
208
209	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
210	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
211	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
212	    !spi_mem_buswidth_is_valid(op->data.buswidth))
213		return -EINVAL;
214
215	/* Buffers must be DMA-able. */
216	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN &&
217			 object_is_on_stack(op->data.buf.in)))
218		return -EINVAL;
219
220	if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT &&
221			 object_is_on_stack(op->data.buf.out)))
222		return -EINVAL;
223
224	return 0;
225}
226
227static bool spi_mem_internal_supports_op(struct spi_mem *mem,
228					 const struct spi_mem_op *op)
229{
230	struct spi_controller *ctlr = mem->spi->controller;
231
232	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
233		return ctlr->mem_ops->supports_op(mem, op);
234
235	return spi_mem_default_supports_op(mem, op);
236}
237
238/**
239 * spi_mem_supports_op() - Check if a memory device and the controller it is
240 *			   connected to support a specific memory operation
241 * @mem: the SPI memory
242 * @op: the memory operation to check
243 *
244 * Some controllers are only supporting Single or Dual IOs, others might only
245 * support specific opcodes, or it can even be that the controller and device
246 * both support Quad IOs but the hardware prevents you from using it because
247 * only 2 IO lines are connected.
248 *
249 * This function checks whether a specific operation is supported.
250 *
251 * Return: true if @op is supported, false otherwise.
252 */
253bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
254{
255	if (spi_mem_check_op(op))
256		return false;
257
258	return spi_mem_internal_supports_op(mem, op);
259}
260EXPORT_SYMBOL_GPL(spi_mem_supports_op);
261
262static int spi_mem_access_start(struct spi_mem *mem)
263{
264	struct spi_controller *ctlr = mem->spi->controller;
265
266	/*
267	 * Flush the message queue before executing our SPI memory
268	 * operation to prevent preemption of regular SPI transfers.
269	 */
270	spi_flush_queue(ctlr);
271
272	if (ctlr->auto_runtime_pm) {
273		int ret;
274
275		ret = pm_runtime_resume_and_get(ctlr->dev.parent);
276		if (ret < 0) {
277			dev_err(&ctlr->dev, "Failed to power device: %d\n",
278				ret);
279			return ret;
280		}
281	}
282
283	mutex_lock(&ctlr->bus_lock_mutex);
284	mutex_lock(&ctlr->io_mutex);
285
286	return 0;
287}
288
289static void spi_mem_access_end(struct spi_mem *mem)
290{
291	struct spi_controller *ctlr = mem->spi->controller;
292
293	mutex_unlock(&ctlr->io_mutex);
294	mutex_unlock(&ctlr->bus_lock_mutex);
295
296	if (ctlr->auto_runtime_pm)
297		pm_runtime_put(ctlr->dev.parent);
298}
299
300/**
301 * spi_mem_exec_op() - Execute a memory operation
302 * @mem: the SPI memory
303 * @op: the memory operation to execute
304 *
305 * Executes a memory operation.
306 *
307 * This function first checks that @op is supported and then tries to execute
308 * it.
309 *
310 * Return: 0 in case of success, a negative error code otherwise.
311 */
312int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
313{
314	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
315	struct spi_controller *ctlr = mem->spi->controller;
316	struct spi_transfer xfers[4] = { };
317	struct spi_message msg;
318	u8 *tmpbuf;
319	int ret;
320
321	ret = spi_mem_check_op(op);
322	if (ret)
323		return ret;
324
325	if (!spi_mem_internal_supports_op(mem, op))
326		return -EOPNOTSUPP;
327
328	if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) {
329		ret = spi_mem_access_start(mem);
330		if (ret)
331			return ret;
332
333		ret = ctlr->mem_ops->exec_op(mem, op);
334
335		spi_mem_access_end(mem);
336
337		/*
338		 * Some controllers only optimize specific paths (typically the
339		 * read path) and expect the core to use the regular SPI
340		 * interface in other cases.
341		 */
342		if (!ret || ret != -ENOTSUPP || ret != -EOPNOTSUPP)
343			return ret;
344	}
345
346	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
347
348	/*
349	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
350	 * we're guaranteed that this buffer is DMA-able, as required by the
351	 * SPI layer.
352	 */
353	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
354	if (!tmpbuf)
355		return -ENOMEM;
356
357	spi_message_init(&msg);
358
359	tmpbuf[0] = op->cmd.opcode;
360	xfers[xferpos].tx_buf = tmpbuf;
361	xfers[xferpos].len = op->cmd.nbytes;
362	xfers[xferpos].tx_nbits = op->cmd.buswidth;
363	spi_message_add_tail(&xfers[xferpos], &msg);
364	xferpos++;
365	totalxferlen++;
366
367	if (op->addr.nbytes) {
368		int i;
369
370		for (i = 0; i < op->addr.nbytes; i++)
371			tmpbuf[i + 1] = op->addr.val >>
372					(8 * (op->addr.nbytes - i - 1));
373
374		xfers[xferpos].tx_buf = tmpbuf + 1;
375		xfers[xferpos].len = op->addr.nbytes;
376		xfers[xferpos].tx_nbits = op->addr.buswidth;
377		spi_message_add_tail(&xfers[xferpos], &msg);
378		xferpos++;
379		totalxferlen += op->addr.nbytes;
380	}
381
382	if (op->dummy.nbytes) {
383		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
384		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
385		xfers[xferpos].len = op->dummy.nbytes;
386		xfers[xferpos].tx_nbits = op->dummy.buswidth;
387		xfers[xferpos].dummy_data = 1;
388		spi_message_add_tail(&xfers[xferpos], &msg);
389		xferpos++;
390		totalxferlen += op->dummy.nbytes;
391	}
392
393	if (op->data.nbytes) {
394		if (op->data.dir == SPI_MEM_DATA_IN) {
395			xfers[xferpos].rx_buf = op->data.buf.in;
396			xfers[xferpos].rx_nbits = op->data.buswidth;
397		} else {
398			xfers[xferpos].tx_buf = op->data.buf.out;
399			xfers[xferpos].tx_nbits = op->data.buswidth;
400		}
401
402		xfers[xferpos].len = op->data.nbytes;
403		spi_message_add_tail(&xfers[xferpos], &msg);
404		xferpos++;
405		totalxferlen += op->data.nbytes;
406	}
407
408	ret = spi_sync(mem->spi, &msg);
409
410	kfree(tmpbuf);
411
412	if (ret)
413		return ret;
414
415	if (msg.actual_length != totalxferlen)
416		return -EIO;
417
418	return 0;
419}
420EXPORT_SYMBOL_GPL(spi_mem_exec_op);
421
422/**
423 * spi_mem_get_name() - Return the SPI mem device name to be used by the
424 *			upper layer if necessary
425 * @mem: the SPI memory
426 *
427 * This function allows SPI mem users to retrieve the SPI mem device name.
428 * It is useful if the upper layer needs to expose a custom name for
429 * compatibility reasons.
430 *
431 * Return: a string containing the name of the memory device to be used
432 *	   by the SPI mem user
433 */
434const char *spi_mem_get_name(struct spi_mem *mem)
435{
436	return mem->name;
437}
438EXPORT_SYMBOL_GPL(spi_mem_get_name);
439
440/**
441 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
442 *			      match controller limitations
443 * @mem: the SPI memory
444 * @op: the operation to adjust
445 *
446 * Some controllers have FIFO limitations and must split a data transfer
447 * operation into multiple ones, others require a specific alignment for
448 * optimized accesses. This function allows SPI mem drivers to split a single
449 * operation into multiple sub-operations when required.
450 *
451 * Return: a negative error code if the controller can't properly adjust @op,
452 *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
453 *	   can't be handled in a single step.
454 */
455int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
456{
457	struct spi_controller *ctlr = mem->spi->controller;
458	size_t len;
459
460	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
461		return ctlr->mem_ops->adjust_op_size(mem, op);
462
463	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
464		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
465
466		if (len > spi_max_transfer_size(mem->spi))
467			return -EINVAL;
468
469		op->data.nbytes = min3((size_t)op->data.nbytes,
470				       spi_max_transfer_size(mem->spi),
471				       spi_max_message_size(mem->spi) -
472				       len);
473		if (!op->data.nbytes)
474			return -EINVAL;
475	}
476
477	return 0;
478}
479EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
480
481static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
482				      u64 offs, size_t len, void *buf)
483{
484	struct spi_mem_op op = desc->info.op_tmpl;
485	int ret;
486
487	op.addr.val = desc->info.offset + offs;
488	op.data.buf.in = buf;
489	op.data.nbytes = len;
490	ret = spi_mem_adjust_op_size(desc->mem, &op);
491	if (ret)
492		return ret;
493
494	ret = spi_mem_exec_op(desc->mem, &op);
495	if (ret)
496		return ret;
497
498	return op.data.nbytes;
499}
500
501static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
502				       u64 offs, size_t len, const void *buf)
503{
504	struct spi_mem_op op = desc->info.op_tmpl;
505	int ret;
506
507	op.addr.val = desc->info.offset + offs;
508	op.data.buf.out = buf;
509	op.data.nbytes = len;
510	ret = spi_mem_adjust_op_size(desc->mem, &op);
511	if (ret)
512		return ret;
513
514	ret = spi_mem_exec_op(desc->mem, &op);
515	if (ret)
516		return ret;
517
518	return op.data.nbytes;
519}
520
521/**
522 * spi_mem_dirmap_create() - Create a direct mapping descriptor
523 * @mem: SPI mem device this direct mapping should be created for
524 * @info: direct mapping information
525 *
526 * This function is creating a direct mapping descriptor which can then be used
527 * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
528 * If the SPI controller driver does not support direct mapping, this function
529 * falls back to an implementation using spi_mem_exec_op(), so that the caller
530 * doesn't have to bother implementing a fallback on his own.
531 *
532 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
533 */
534struct spi_mem_dirmap_desc *
535spi_mem_dirmap_create(struct spi_mem *mem,
536		      const struct spi_mem_dirmap_info *info)
537{
538	struct spi_controller *ctlr = mem->spi->controller;
539	struct spi_mem_dirmap_desc *desc;
540	int ret = -ENOTSUPP;
541
542	/* Make sure the number of address cycles is between 1 and 8 bytes. */
543	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
544		return ERR_PTR(-EINVAL);
545
546	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
547	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
548		return ERR_PTR(-EINVAL);
549
550	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
551	if (!desc)
552		return ERR_PTR(-ENOMEM);
553
554	desc->mem = mem;
555	desc->info = *info;
556	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
557		ret = ctlr->mem_ops->dirmap_create(desc);
558
559	if (ret) {
560		desc->nodirmap = true;
561		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
562			ret = -EOPNOTSUPP;
563		else
564			ret = 0;
565	}
566
567	if (ret) {
568		kfree(desc);
569		return ERR_PTR(ret);
570	}
571
572	return desc;
573}
574EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
575
576/**
577 * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
578 * @desc: the direct mapping descriptor to destroy
579 *
580 * This function destroys a direct mapping descriptor previously created by
581 * spi_mem_dirmap_create().
582 */
583void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
584{
585	struct spi_controller *ctlr = desc->mem->spi->controller;
586
587	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
588		ctlr->mem_ops->dirmap_destroy(desc);
589
590	kfree(desc);
591}
592EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
593
594static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
595{
596	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
597
598	spi_mem_dirmap_destroy(desc);
599}
600
601/**
602 * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
603 *				  it to a device
604 * @dev: device the dirmap desc will be attached to
605 * @mem: SPI mem device this direct mapping should be created for
606 * @info: direct mapping information
607 *
608 * devm_ variant of the spi_mem_dirmap_create() function. See
609 * spi_mem_dirmap_create() for more details.
610 *
611 * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
612 */
613struct spi_mem_dirmap_desc *
614devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
615			   const struct spi_mem_dirmap_info *info)
616{
617	struct spi_mem_dirmap_desc **ptr, *desc;
618
619	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
620			   GFP_KERNEL);
621	if (!ptr)
622		return ERR_PTR(-ENOMEM);
623
624	desc = spi_mem_dirmap_create(mem, info);
625	if (IS_ERR(desc)) {
626		devres_free(ptr);
627	} else {
628		*ptr = desc;
629		devres_add(dev, ptr);
630	}
631
632	return desc;
633}
634EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
635
636static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
637{
638	struct spi_mem_dirmap_desc **ptr = res;
639
640	if (WARN_ON(!ptr || !*ptr))
641		return 0;
642
643	return *ptr == data;
644}
645
646/**
647 * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
648 *				   to a device
649 * @dev: device the dirmap desc is attached to
650 * @desc: the direct mapping descriptor to destroy
651 *
652 * devm_ variant of the spi_mem_dirmap_destroy() function. See
653 * spi_mem_dirmap_destroy() for more details.
654 */
655void devm_spi_mem_dirmap_destroy(struct device *dev,
656				 struct spi_mem_dirmap_desc *desc)
657{
658	devres_release(dev, devm_spi_mem_dirmap_release,
659		       devm_spi_mem_dirmap_match, desc);
660}
661EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
662
663/**
664 * spi_mem_dirmap_read() - Read data through a direct mapping
665 * @desc: direct mapping descriptor
666 * @offs: offset to start reading from. Note that this is not an absolute
667 *	  offset, but the offset within the direct mapping which already has
668 *	  its own offset
669 * @len: length in bytes
670 * @buf: destination buffer. This buffer must be DMA-able
671 *
672 * This function reads data from a memory device using a direct mapping
673 * previously instantiated with spi_mem_dirmap_create().
674 *
675 * Return: the amount of data read from the memory device or a negative error
676 * code. Note that the returned size might be smaller than @len, and the caller
677 * is responsible for calling spi_mem_dirmap_read() again when that happens.
678 */
679ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
680			    u64 offs, size_t len, void *buf)
681{
682	struct spi_controller *ctlr = desc->mem->spi->controller;
683	ssize_t ret;
684
685	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
686		return -EINVAL;
687
688	if (!len)
689		return 0;
690
691	if (desc->nodirmap) {
692		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
693	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
694		ret = spi_mem_access_start(desc->mem);
695		if (ret)
696			return ret;
697
698		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
699
700		spi_mem_access_end(desc->mem);
701	} else {
702		ret = -ENOTSUPP;
703	}
704
705	return ret;
706}
707EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
708
709/**
710 * spi_mem_dirmap_write() - Write data through a direct mapping
711 * @desc: direct mapping descriptor
712 * @offs: offset to start writing from. Note that this is not an absolute
713 *	  offset, but the offset within the direct mapping which already has
714 *	  its own offset
715 * @len: length in bytes
716 * @buf: source buffer. This buffer must be DMA-able
717 *
718 * This function writes data to a memory device using a direct mapping
719 * previously instantiated with spi_mem_dirmap_create().
720 *
721 * Return: the amount of data written to the memory device or a negative error
722 * code. Note that the returned size might be smaller than @len, and the caller
723 * is responsible for calling spi_mem_dirmap_write() again when that happens.
724 */
725ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
726			     u64 offs, size_t len, const void *buf)
727{
728	struct spi_controller *ctlr = desc->mem->spi->controller;
729	ssize_t ret;
730
731	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
732		return -EINVAL;
733
734	if (!len)
735		return 0;
736
737	if (desc->nodirmap) {
738		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
739	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
740		ret = spi_mem_access_start(desc->mem);
741		if (ret)
742			return ret;
743
744		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
745
746		spi_mem_access_end(desc->mem);
747	} else {
748		ret = -ENOTSUPP;
749	}
750
751	return ret;
752}
753EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
754
755static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
756{
757	return container_of(drv, struct spi_mem_driver, spidrv.driver);
758}
759
760static int spi_mem_read_status(struct spi_mem *mem,
761			       const struct spi_mem_op *op,
762			       u16 *status)
763{
764	const u8 *bytes = (u8 *)op->data.buf.in;
765	int ret;
766
767	ret = spi_mem_exec_op(mem, op);
768	if (ret)
769		return ret;
770
771	if (op->data.nbytes > 1)
772		*status = ((u16)bytes[0] << 8) | bytes[1];
773	else
774		*status = bytes[0];
775
776	return 0;
777}
778
779/**
780 * spi_mem_poll_status() - Poll memory device status
781 * @mem: SPI memory device
782 * @op: the memory operation to execute
783 * @mask: status bitmask to ckeck
784 * @match: (status & mask) expected value
785 * @initial_delay_us: delay in us before starting to poll
786 * @polling_delay_us: time to sleep between reads in us
787 * @timeout_ms: timeout in milliseconds
788 *
789 * This function polls a status register and returns when
790 * (status & mask) == match or when the timeout has expired.
791 *
792 * Return: 0 in case of success, -ETIMEDOUT in case of error,
793 *         -EOPNOTSUPP if not supported.
794 */
795int spi_mem_poll_status(struct spi_mem *mem,
796			const struct spi_mem_op *op,
797			u16 mask, u16 match,
798			unsigned long initial_delay_us,
799			unsigned long polling_delay_us,
800			u16 timeout_ms)
801{
802	struct spi_controller *ctlr = mem->spi->controller;
803	int ret = -EOPNOTSUPP;
804	int read_status_ret;
805	u16 status;
806
807	if (op->data.nbytes < 1 || op->data.nbytes > 2 ||
808	    op->data.dir != SPI_MEM_DATA_IN)
809		return -EINVAL;
810
811	if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) {
812		ret = spi_mem_access_start(mem);
813		if (ret)
814			return ret;
815
816		ret = ctlr->mem_ops->poll_status(mem, op, mask, match,
817						 initial_delay_us, polling_delay_us,
818						 timeout_ms);
819
820		spi_mem_access_end(mem);
821	}
822
823	if (ret == -EOPNOTSUPP) {
824		if (!spi_mem_supports_op(mem, op))
825			return ret;
826
827		if (initial_delay_us < 10)
828			udelay(initial_delay_us);
829		else
830			usleep_range((initial_delay_us >> 2) + 1,
831				     initial_delay_us);
832
833		ret = read_poll_timeout(spi_mem_read_status, read_status_ret,
834					(read_status_ret || ((status) & mask) == match),
835					polling_delay_us, timeout_ms * 1000, false, mem,
836					op, &status);
837		if (read_status_ret)
838			return read_status_ret;
839	}
840
841	return ret;
842}
843EXPORT_SYMBOL_GPL(spi_mem_poll_status);
844
845static int spi_mem_probe(struct spi_device *spi)
846{
847	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
848	struct spi_controller *ctlr = spi->controller;
849	struct spi_mem *mem;
850
851	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
852	if (!mem)
853		return -ENOMEM;
854
855	mem->spi = spi;
856
857	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
858		mem->name = ctlr->mem_ops->get_name(mem);
859	else
860		mem->name = dev_name(&spi->dev);
861
862	if (IS_ERR_OR_NULL(mem->name))
863		return PTR_ERR_OR_ZERO(mem->name);
864
865	spi_set_drvdata(spi, mem);
866
867	return memdrv->probe(mem);
868}
869
870static void spi_mem_remove(struct spi_device *spi)
871{
872	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
873	struct spi_mem *mem = spi_get_drvdata(spi);
874
875	if (memdrv->remove)
876		memdrv->remove(mem);
877}
878
879static void spi_mem_shutdown(struct spi_device *spi)
880{
881	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
882	struct spi_mem *mem = spi_get_drvdata(spi);
883
884	if (memdrv->shutdown)
885		memdrv->shutdown(mem);
886}
887
888/**
889 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
890 * @memdrv: the SPI memory driver to register
891 * @owner: the owner of this driver
892 *
893 * Registers a SPI memory driver.
894 *
895 * Return: 0 in case of success, a negative error core otherwise.
896 */
897
898int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
899				       struct module *owner)
900{
901	memdrv->spidrv.probe = spi_mem_probe;
902	memdrv->spidrv.remove = spi_mem_remove;
903	memdrv->spidrv.shutdown = spi_mem_shutdown;
904
905	return __spi_register_driver(owner, &memdrv->spidrv);
906}
907EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
908
909/**
910 * spi_mem_driver_unregister() - Unregister a SPI memory driver
911 * @memdrv: the SPI memory driver to unregister
912 *
913 * Unregisters a SPI memory driver.
914 */
915void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
916{
917	spi_unregister_driver(&memdrv->spidrv);
918}
919EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);