Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Freescale eSPI controller driver.
  4 *
  5 * Copyright 2010 Freescale Semiconductor, Inc.
 
 
 
 
 
  6 */
  7#include <linux/delay.h>
  8#include <linux/err.h>
  9#include <linux/fsl_devices.h>
 10#include <linux/interrupt.h>
 
 11#include <linux/module.h>
 12#include <linux/mm.h>
 13#include <linux/of.h>
 14#include <linux/of_address.h>
 15#include <linux/of_irq.h>
 16#include <linux/of_platform.h>
 17#include <linux/platform_device.h>
 18#include <linux/spi/spi.h>
 19#include <linux/pm_runtime.h>
 20#include <sysdev/fsl_soc.h>
 21
 
 
 22/* eSPI Controller registers */
 23#define ESPI_SPMODE	0x00	/* eSPI mode register */
 24#define ESPI_SPIE	0x04	/* eSPI event register */
 25#define ESPI_SPIM	0x08	/* eSPI mask register */
 26#define ESPI_SPCOM	0x0c	/* eSPI command register */
 27#define ESPI_SPITF	0x10	/* eSPI transmit FIFO access register*/
 28#define ESPI_SPIRF	0x14	/* eSPI receive FIFO access register*/
 29#define ESPI_SPMODE0	0x20	/* eSPI cs0 mode register */
 
 
 
 30
 31#define ESPI_SPMODEx(x)	(ESPI_SPMODE0 + (x) * 4)
 
 
 
 
 
 
 
 
 32
 33/* eSPI Controller mode register definitions */
 34#define SPMODE_ENABLE		BIT(31)
 35#define SPMODE_LOOP		BIT(30)
 36#define SPMODE_TXTHR(x)		((x) << 8)
 37#define SPMODE_RXTHR(x)		((x) << 0)
 38
 39/* eSPI Controller CS mode register definitions */
 40#define CSMODE_CI_INACTIVEHIGH	BIT(31)
 41#define CSMODE_CP_BEGIN_EDGECLK	BIT(30)
 42#define CSMODE_REV		BIT(29)
 43#define CSMODE_DIV16		BIT(28)
 44#define CSMODE_PM(x)		((x) << 24)
 45#define CSMODE_POL_1		BIT(20)
 46#define CSMODE_LEN(x)		((x) << 16)
 47#define CSMODE_BEF(x)		((x) << 12)
 48#define CSMODE_AFT(x)		((x) << 8)
 49#define CSMODE_CG(x)		((x) << 3)
 50
 51#define FSL_ESPI_FIFO_SIZE	32
 52#define FSL_ESPI_RXTHR		15
 53
 54/* Default mode/csmode for eSPI controller */
 55#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
 56#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
 57		| CSMODE_AFT(0) | CSMODE_CG(1))
 58
 59/* SPIE register values */
 60#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
 61#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
 62#define	SPIE_TXE		BIT(15)	/* TX FIFO empty */
 63#define	SPIE_DON		BIT(14)	/* TX done */
 64#define	SPIE_RXT		BIT(13)	/* RX FIFO threshold */
 65#define	SPIE_RXF		BIT(12)	/* RX FIFO full */
 66#define	SPIE_TXT		BIT(11)	/* TX FIFO threshold*/
 67#define	SPIE_RNE		BIT(9)	/* RX FIFO not empty */
 68#define	SPIE_TNF		BIT(8)	/* TX FIFO not full */
 69
 70/* SPIM register values */
 71#define	SPIM_TXE		BIT(15)	/* TX FIFO empty */
 72#define	SPIM_DON		BIT(14)	/* TX done */
 73#define	SPIM_RXT		BIT(13)	/* RX FIFO threshold */
 74#define	SPIM_RXF		BIT(12)	/* RX FIFO full */
 75#define	SPIM_TXT		BIT(11)	/* TX FIFO threshold*/
 76#define	SPIM_RNE		BIT(9)	/* RX FIFO not empty */
 77#define	SPIM_TNF		BIT(8)	/* TX FIFO not full */
 78
 79/* SPCOM register values */
 80#define SPCOM_CS(x)		((x) << 30)
 81#define SPCOM_DO		BIT(28) /* Dual output */
 82#define SPCOM_TO		BIT(27) /* TX only */
 83#define SPCOM_RXSKIP(x)		((x) << 16)
 84#define SPCOM_TRANLEN(x)	((x) << 0)
 85
 86#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
 87
 88#define AUTOSUSPEND_TIMEOUT 2000
 89
 90struct fsl_espi {
 91	struct device *dev;
 92	void __iomem *reg_base;
 93
 94	struct list_head *m_transfers;
 95	struct spi_transfer *tx_t;
 96	unsigned int tx_pos;
 97	bool tx_done;
 98	struct spi_transfer *rx_t;
 99	unsigned int rx_pos;
100	bool rx_done;
101
102	bool swab;
103	unsigned int rxskip;
104
105	spinlock_t lock;
 
 
 
 
106
107	u32 spibrg;             /* SPIBRG input clock */
 
108
109	struct completion done;
110};
 
 
 
 
111
112struct fsl_espi_cs {
113	u32 hw_mode;
114};
115
116static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
117{
118	return ioread32be(espi->reg_base + offset);
119}
 
 
120
121static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
122{
123	return ioread16be(espi->reg_base + offset);
124}
125
126static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
 
127{
128	return ioread8(espi->reg_base + offset);
129}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
131static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
132				      u32 val)
133{
134	iowrite32be(val, espi->reg_base + offset);
135}
136
137static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
138					u16 val)
139{
140	iowrite16be(val, espi->reg_base + offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141}
142
143static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
144				       u8 val)
145{
146	iowrite8(val, espi->reg_base + offset);
 
 
 
 
 
 
 
 
 
 
 
 
147}
148
149static int fsl_espi_check_message(struct spi_message *m)
150{
151	struct fsl_espi *espi = spi_controller_get_devdata(m->spi->controller);
152	struct spi_transfer *t, *first;
 
 
153
154	if (m->frame_length > SPCOM_TRANLEN_MAX) {
155		dev_err(espi->dev, "message too long, size is %u bytes\n",
156			m->frame_length);
157		return -EMSGSIZE;
158	}
159
160	first = list_first_entry(&m->transfers, struct spi_transfer,
161				 transfer_list);
162
163	list_for_each_entry(t, &m->transfers, transfer_list) {
164		if (first->bits_per_word != t->bits_per_word ||
165		    first->speed_hz != t->speed_hz) {
166			dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
167			return -EINVAL;
168		}
169	}
170
171	/* ESPI supports MSB-first transfers for word size 8 / 16 only */
172	if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
173	    first->bits_per_word != 16) {
174		dev_err(espi->dev,
175			"MSB-first transfer not supported for wordsize %u\n",
176			first->bits_per_word);
177		return -EINVAL;
178	}
 
 
179
180	return 0;
181}
 
182
183static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
184{
185	struct spi_transfer *t;
186	unsigned int i = 0, rxskip = 0;
187
188	/*
189	 * prerequisites for ESPI rxskip mode:
190	 * - message has two transfers
191	 * - first transfer is a write and second is a read
192	 *
193	 * In addition the current low-level transfer mechanism requires
194	 * that the rxskip bytes fit into the TX FIFO. Else the transfer
195	 * would hang because after the first FSL_ESPI_FIFO_SIZE bytes
196	 * the TX FIFO isn't re-filled.
197	 */
198	list_for_each_entry(t, &m->transfers, transfer_list) {
199		if (i == 0) {
200			if (!t->tx_buf || t->rx_buf ||
201			    t->len > FSL_ESPI_FIFO_SIZE)
202				return 0;
203			rxskip = t->len;
204		} else if (i == 1) {
205			if (t->tx_buf || !t->rx_buf)
206				return 0;
207		}
208		i++;
209	}
210
211	return i == 2 ? rxskip : 0;
212}
213
214static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
215{
216	u32 tx_fifo_avail;
217	unsigned int tx_left;
218	const void *tx_buf;
219
220	/* if events is zero transfer has not started and tx fifo is empty */
221	tx_fifo_avail = events ? SPIE_TXCNT(events) :  FSL_ESPI_FIFO_SIZE;
222start:
223	tx_left = espi->tx_t->len - espi->tx_pos;
224	tx_buf = espi->tx_t->tx_buf;
225	while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
226		if (tx_left >= 4) {
227			if (!tx_buf)
228				fsl_espi_write_reg(espi, ESPI_SPITF, 0);
229			else if (espi->swab)
230				fsl_espi_write_reg(espi, ESPI_SPITF,
231					swahb32p(tx_buf + espi->tx_pos));
232			else
233				fsl_espi_write_reg(espi, ESPI_SPITF,
234					*(u32 *)(tx_buf + espi->tx_pos));
235			espi->tx_pos += 4;
236			tx_left -= 4;
237			tx_fifo_avail -= 4;
238		} else if (tx_left >= 2 && tx_buf && espi->swab) {
239			fsl_espi_write_reg16(espi, ESPI_SPITF,
240					swab16p(tx_buf + espi->tx_pos));
241			espi->tx_pos += 2;
242			tx_left -= 2;
243			tx_fifo_avail -= 2;
244		} else {
245			if (!tx_buf)
246				fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
247			else
248				fsl_espi_write_reg8(espi, ESPI_SPITF,
249					*(u8 *)(tx_buf + espi->tx_pos));
250			espi->tx_pos += 1;
251			tx_left -= 1;
252			tx_fifo_avail -= 1;
253		}
254	}
255
256	if (!tx_left) {
257		/* Last transfer finished, in rxskip mode only one is needed */
258		if (list_is_last(&espi->tx_t->transfer_list,
259		    espi->m_transfers) || espi->rxskip) {
260			espi->tx_done = true;
261			return;
262		}
263		espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
264		espi->tx_pos = 0;
265		/* continue with next transfer if tx fifo is not full */
266		if (tx_fifo_avail)
267			goto start;
268	}
269}
270
271static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
272{
273	u32 rx_fifo_avail = SPIE_RXCNT(events);
274	unsigned int rx_left;
275	void *rx_buf;
276
277start:
278	rx_left = espi->rx_t->len - espi->rx_pos;
279	rx_buf = espi->rx_t->rx_buf;
280	while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
281		if (rx_left >= 4) {
282			u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
283
284			if (rx_buf && espi->swab)
285				*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
286			else if (rx_buf)
287				*(u32 *)(rx_buf + espi->rx_pos) = val;
288			espi->rx_pos += 4;
289			rx_left -= 4;
290			rx_fifo_avail -= 4;
291		} else if (rx_left >= 2 && rx_buf && espi->swab) {
292			u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
293
294			*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
295			espi->rx_pos += 2;
296			rx_left -= 2;
297			rx_fifo_avail -= 2;
298		} else {
299			u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
300
301			if (rx_buf)
302				*(u8 *)(rx_buf + espi->rx_pos) = val;
303			espi->rx_pos += 1;
304			rx_left -= 1;
305			rx_fifo_avail -= 1;
306		}
307	}
 
 
308
309	if (!rx_left) {
310		if (list_is_last(&espi->rx_t->transfer_list,
311		    espi->m_transfers)) {
312			espi->rx_done = true;
 
 
 
 
 
 
 
313			return;
314		}
315		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
316		espi->rx_pos = 0;
317		/* continue with next transfer if rx fifo is not empty */
318		if (rx_fifo_avail)
319			goto start;
320	}
321}
322
323static void fsl_espi_setup_transfer(struct spi_device *spi,
324					struct spi_transfer *t)
325{
326	struct fsl_espi *espi = spi_controller_get_devdata(spi->controller);
327	int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
328	u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
329	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
330	u32 hw_mode_old = cs->hw_mode;
331
332	/* mask out bits we are going to set */
333	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
 
 
 
 
 
 
 
334
335	cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
 
336
337	pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
 
 
 
338
339	if (pm > 15) {
340		cs->hw_mode |= CSMODE_DIV16;
341		pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
342	}
343
344	cs->hw_mode |= CSMODE_PM(pm);
345
346	/* don't write the mode register if the mode doesn't change */
347	if (cs->hw_mode != hw_mode_old)
348		fsl_espi_write_reg(espi, ESPI_SPMODEx(spi_get_chipselect(spi, 0)),
349				   cs->hw_mode);
350}
351
352static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
 
353{
354	struct fsl_espi *espi = spi_controller_get_devdata(spi->controller);
355	unsigned int rx_len = t->len;
356	u32 mask, spcom;
357	int ret;
358
359	reinit_completion(&espi->done);
 
 
 
 
360
361	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
362	spcom = SPCOM_CS(spi_get_chipselect(spi, 0));
363	spcom |= SPCOM_TRANLEN(t->len - 1);
 
 
 
364
365	/* configure RXSKIP mode */
366	if (espi->rxskip) {
367		spcom |= SPCOM_RXSKIP(espi->rxskip);
368		rx_len = t->len - espi->rxskip;
369		if (t->rx_nbits == SPI_NBITS_DUAL)
370			spcom |= SPCOM_DO;
371	}
372
373	fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
374
375	/* enable interrupts */
376	mask = SPIM_DON;
377	if (rx_len > FSL_ESPI_FIFO_SIZE)
378		mask |= SPIM_RXT;
379	fsl_espi_write_reg(espi, ESPI_SPIM, mask);
380
381	/* Prevent filling the fifo from getting interrupted */
382	spin_lock_irq(&espi->lock);
383	fsl_espi_fill_tx_fifo(espi, 0);
384	spin_unlock_irq(&espi->lock);
385
386	/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
387	ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
388	if (ret == 0)
389		dev_err(espi->dev, "Transfer timed out!\n");
390
391	/* disable rx ints */
392	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
393
394	return ret == 0 ? -ETIMEDOUT : 0;
395}
396
397static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
 
398{
399	struct fsl_espi *espi = spi_controller_get_devdata(m->spi->controller);
400	struct spi_device *spi = m->spi;
401	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402
403	/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
404	espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
405
406	espi->m_transfers = &m->transfers;
407	espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
408				      transfer_list);
409	espi->tx_pos = 0;
410	espi->tx_done = false;
411	espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
412				      transfer_list);
413	espi->rx_pos = 0;
414	espi->rx_done = false;
415
416	espi->rxskip = fsl_espi_check_rxskip_mode(m);
417	if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
418		dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
419		return -EINVAL;
420	}
421
422	/* In RXSKIP mode skip first transfer for reads */
423	if (espi->rxskip)
424		espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
 
 
 
 
 
 
 
 
 
 
425
426	fsl_espi_setup_transfer(spi, trans);
 
 
 
427
428	ret = fsl_espi_bufs(spi, trans);
 
 
 
429
430	spi_transfer_delay_exec(trans);
431
432	return ret;
 
 
 
 
 
 
433}
434
435static int fsl_espi_do_one_msg(struct spi_controller *host,
436			       struct spi_message *m)
437{
438	unsigned int rx_nbits = 0, delay_nsecs = 0;
439	struct spi_transfer *t, trans = {};
440	int ret;
441
442	ret = fsl_espi_check_message(m);
443	if (ret)
444		goto out;
445
446	list_for_each_entry(t, &m->transfers, transfer_list) {
447		unsigned int delay = spi_delay_to_ns(&t->delay, t);
448
449		if (delay > delay_nsecs)
450			delay_nsecs = delay;
451		if (t->rx_nbits > rx_nbits)
452			rx_nbits = t->rx_nbits;
 
 
453	}
454
455	t = list_first_entry(&m->transfers, struct spi_transfer,
456			     transfer_list);
457
458	trans.len = m->frame_length;
459	trans.speed_hz = t->speed_hz;
460	trans.bits_per_word = t->bits_per_word;
461	trans.delay.value = delay_nsecs;
462	trans.delay.unit = SPI_DELAY_UNIT_NSECS;
463	trans.rx_nbits = rx_nbits;
464
465	if (trans.len)
466		ret = fsl_espi_trans(m, &trans);
467
468	m->actual_length = ret ? 0 : trans.len;
469out:
470	if (m->status == -EINPROGRESS)
471		m->status = ret;
472
473	spi_finalize_current_message(host);
474
475	return ret;
476}
477
478static int fsl_espi_setup(struct spi_device *spi)
479{
480	struct fsl_espi *espi;
 
 
 
481	u32 loop_mode;
482	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
 
 
 
483
484	if (!cs) {
485		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
486		if (!cs)
487			return -ENOMEM;
488		spi_set_ctldata(spi, cs);
489	}
490
491	espi = spi_controller_get_devdata(spi->controller);
 
492
493	pm_runtime_get_sync(espi->dev);
494
495	cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi_get_chipselect(spi, 0)));
 
 
496	/* mask out bits we are going to set */
497	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
498			 | CSMODE_REV);
499
500	if (spi->mode & SPI_CPHA)
501		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
502	if (spi->mode & SPI_CPOL)
503		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
504	if (!(spi->mode & SPI_LSB_FIRST))
505		cs->hw_mode |= CSMODE_REV;
506
507	/* Handle the loop mode */
508	loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
509	loop_mode &= ~SPMODE_LOOP;
510	if (spi->mode & SPI_LOOP)
511		loop_mode |= SPMODE_LOOP;
512	fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
513
514	fsl_espi_setup_transfer(spi, NULL);
515
516	pm_runtime_mark_last_busy(espi->dev);
517	pm_runtime_put_autosuspend(espi->dev);
518
 
 
 
 
519	return 0;
520}
521
522static void fsl_espi_cleanup(struct spi_device *spi)
523{
524	struct fsl_espi_cs *cs = spi_get_ctldata(spi);
525
526	kfree(cs);
527	spi_set_ctldata(spi, NULL);
528}
529
530static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
531{
532	if (!espi->rx_done)
533		fsl_espi_read_rx_fifo(espi, events);
534
535	if (!espi->tx_done)
536		fsl_espi_fill_tx_fifo(espi, events);
 
 
 
 
 
 
 
 
537
538	if (!espi->tx_done || !espi->rx_done)
539		return;
 
 
 
 
 
 
 
540
541	/* we're done, but check for errors before returning */
542	events = fsl_espi_read_reg(espi, ESPI_SPIE);
543
544	if (!(events & SPIE_DON))
545		dev_err(espi->dev,
546			"Transfer done but SPIE_DON isn't set!\n");
547
548	if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE) {
549		dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
550		dev_err(espi->dev, "SPIE_RXCNT = %d, SPIE_TXCNT = %d\n",
551			SPIE_RXCNT(events), SPIE_TXCNT(events));
552	}
553
554	complete(&espi->done);
555}
556
557static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
558{
559	struct fsl_espi *espi = context_data;
560	u32 events, mask;
 
561
562	spin_lock(&espi->lock);
 
 
 
 
 
563
564	/* Get interrupt events(tx/rx) */
565	events = fsl_espi_read_reg(espi, ESPI_SPIE);
566	mask = fsl_espi_read_reg(espi, ESPI_SPIM);
567	if (!(events & mask)) {
568		spin_unlock(&espi->lock);
569		return IRQ_NONE;
 
 
 
 
570	}
 
571
572	dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
 
 
 
 
 
573
574	fsl_espi_cpu_irq(espi, events);
 
 
 
575
576	/* Clear the events */
577	fsl_espi_write_reg(espi, ESPI_SPIE, events);
578
579	spin_unlock(&espi->lock);
580
581	return IRQ_HANDLED;
582}
583
584#ifdef CONFIG_PM
585static int fsl_espi_runtime_suspend(struct device *dev)
586{
587	struct spi_controller *host = dev_get_drvdata(dev);
588	struct fsl_espi *espi = spi_controller_get_devdata(host);
 
589	u32 regval;
590
591	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
592	regval &= ~SPMODE_ENABLE;
593	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
594
595	return 0;
596}
597
598static int fsl_espi_runtime_resume(struct device *dev)
599{
600	struct spi_controller *host = dev_get_drvdata(dev);
601	struct fsl_espi *espi = spi_controller_get_devdata(host);
 
602	u32 regval;
603
604	regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
605	regval |= SPMODE_ENABLE;
606	fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
607
608	return 0;
609}
610#endif
611
612static size_t fsl_espi_max_message_size(struct spi_device *spi)
613{
614	return SPCOM_TRANLEN_MAX;
615}
616
617static void fsl_espi_init_regs(struct device *dev, bool initial)
 
618{
619	struct spi_controller *host = dev_get_drvdata(dev);
620	struct fsl_espi *espi = spi_controller_get_devdata(host);
 
 
621	struct device_node *nc;
622	u32 csmode, cs, prop;
623	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
624
625	/* SPI controller initializations */
626	fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
627	fsl_espi_write_reg(espi, ESPI_SPIM, 0);
628	fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
629	fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
630
631	/* Init eSPI CS mode register */
632	for_each_available_child_of_node(host->dev.of_node, nc) {
633		/* get chip select */
634		ret = of_property_read_u32(nc, "reg", &cs);
635		if (ret || cs >= host->num_chipselect)
 
 
 
636			continue;
637
638		csmode = CSMODE_INIT_VAL;
639
640		/* check if CSBEF is set in device tree */
641		ret = of_property_read_u32(nc, "fsl,csbef", &prop);
642		if (!ret) {
643			csmode &= ~(CSMODE_BEF(0xf));
644			csmode |= CSMODE_BEF(prop);
645		}
646
647		/* check if CSAFT is set in device tree */
648		ret = of_property_read_u32(nc, "fsl,csaft", &prop);
649		if (!ret) {
650			csmode &= ~(CSMODE_AFT(0xf));
651			csmode |= CSMODE_AFT(prop);
652		}
 
653
654		fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
655
656		if (initial)
657			dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
658	}
659
660	/* Enable SPI interface */
661	fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
662}
663
664static int fsl_espi_probe(struct device *dev, struct resource *mem,
665			  unsigned int irq, unsigned int num_cs)
666{
667	struct spi_controller *host;
668	struct fsl_espi *espi;
669	int ret;
670
671	host = spi_alloc_host(dev, sizeof(struct fsl_espi));
672	if (!host)
673		return -ENOMEM;
674
675	dev_set_drvdata(dev, host);
676
677	host->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
678			  SPI_LSB_FIRST | SPI_LOOP;
679	host->dev.of_node = dev->of_node;
680	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
681	host->setup = fsl_espi_setup;
682	host->cleanup = fsl_espi_cleanup;
683	host->transfer_one_message = fsl_espi_do_one_msg;
684	host->auto_runtime_pm = true;
685	host->max_message_size = fsl_espi_max_message_size;
686	host->num_chipselect = num_cs;
687
688	espi = spi_controller_get_devdata(host);
689	spin_lock_init(&espi->lock);
690
691	espi->dev = dev;
692	espi->spibrg = fsl_get_sys_freq();
693	if (espi->spibrg == -1) {
694		dev_err(dev, "Can't get sys frequency!\n");
695		ret = -EINVAL;
696		goto err_probe;
697	}
698	/* determined by clock divider fields DIV16/PM in register SPMODEx */
699	host->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
700	host->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
701
702	init_completion(&espi->done);
703
704	espi->reg_base = devm_ioremap_resource(dev, mem);
705	if (IS_ERR(espi->reg_base)) {
706		ret = PTR_ERR(espi->reg_base);
707		goto err_probe;
708	}
709
710	/* Register for SPI Interrupt */
711	ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
712	if (ret)
713		goto err_probe;
714
715	fsl_espi_init_regs(dev, true);
716
717	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
718	pm_runtime_use_autosuspend(dev);
719	pm_runtime_set_active(dev);
720	pm_runtime_enable(dev);
721	pm_runtime_get_sync(dev);
722
723	ret = devm_spi_register_controller(dev, host);
724	if (ret < 0)
725		goto err_pm;
726
727	dev_info(dev, "irq = %u\n", irq);
728
729	pm_runtime_mark_last_busy(dev);
730	pm_runtime_put_autosuspend(dev);
731
732	return 0;
733
734err_pm:
735	pm_runtime_put_noidle(dev);
736	pm_runtime_disable(dev);
737	pm_runtime_set_suspended(dev);
738err_probe:
739	spi_controller_put(host);
740	return ret;
 
741}
742
743static int of_fsl_espi_get_chipselects(struct device *dev)
744{
745	struct device_node *np = dev->of_node;
746	u32 num_cs;
747	int ret;
 
748
749	ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
750	if (ret) {
751		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
752		return 0;
753	}
754
755	return num_cs;
 
 
 
756}
757
758static int of_fsl_espi_probe(struct platform_device *ofdev)
759{
760	struct device *dev = &ofdev->dev;
761	struct device_node *np = ofdev->dev.of_node;
 
762	struct resource mem;
763	unsigned int irq, num_cs;
764	int ret;
765
766	if (of_property_read_bool(np, "mode")) {
767		dev_err(dev, "mode property is not supported on ESPI!\n");
768		return -EINVAL;
769	}
770
771	num_cs = of_fsl_espi_get_chipselects(dev);
772	if (!num_cs)
773		return -EINVAL;
774
775	ret = of_address_to_resource(np, 0, &mem);
776	if (ret)
777		return ret;
778
779	irq = irq_of_parse_and_map(np, 0);
780	if (!irq)
781		return -EINVAL;
 
 
 
 
 
 
 
 
782
783	return fsl_espi_probe(dev, &mem, irq, num_cs);
 
 
 
784}
785
786static void of_fsl_espi_remove(struct platform_device *dev)
787{
788	pm_runtime_disable(&dev->dev);
 
 
789}
790
791#ifdef CONFIG_PM_SLEEP
792static int of_fsl_espi_suspend(struct device *dev)
793{
794	struct spi_controller *host = dev_get_drvdata(dev);
795	int ret;
796
797	ret = spi_controller_suspend(host);
798	if (ret)
 
 
 
 
 
 
799		return ret;
800
801	return pm_runtime_force_suspend(dev);
802}
803
804static int of_fsl_espi_resume(struct device *dev)
805{
806	struct spi_controller *host = dev_get_drvdata(dev);
807	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808
809	fsl_espi_init_regs(dev, false);
810
811	ret = pm_runtime_force_resume(dev);
812	if (ret < 0)
813		return ret;
814
815	return spi_controller_resume(host);
816}
817#endif /* CONFIG_PM_SLEEP */
818
819static const struct dev_pm_ops espi_pm = {
820	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
821			   fsl_espi_runtime_resume, NULL)
822	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
823};
824
825static const struct of_device_id of_fsl_espi_match[] = {
826	{ .compatible = "fsl,mpc8536-espi" },
827	{}
828};
829MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
830
831static struct platform_driver fsl_espi_driver = {
832	.driver = {
833		.name = "fsl_espi",
834		.of_match_table = of_fsl_espi_match,
835		.pm = &espi_pm,
836	},
837	.probe		= of_fsl_espi_probe,
838	.remove_new	= of_fsl_espi_remove,
839};
840module_platform_driver(fsl_espi_driver);
841
842MODULE_AUTHOR("Mingkai Hu");
843MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
844MODULE_LICENSE("GPL");
v4.6
 
  1/*
  2 * Freescale eSPI controller driver.
  3 *
  4 * Copyright 2010 Freescale Semiconductor, Inc.
  5 *
  6 * This program is free software; you can redistribute  it and/or modify it
  7 * under  the terms of  the GNU General  Public License as published by the
  8 * Free Software Foundation;  either version 2 of the  License, or (at your
  9 * option) any later version.
 10 */
 11#include <linux/delay.h>
 12#include <linux/err.h>
 13#include <linux/fsl_devices.h>
 14#include <linux/interrupt.h>
 15#include <linux/irq.h>
 16#include <linux/module.h>
 17#include <linux/mm.h>
 18#include <linux/of.h>
 19#include <linux/of_address.h>
 20#include <linux/of_irq.h>
 21#include <linux/of_platform.h>
 22#include <linux/platform_device.h>
 23#include <linux/spi/spi.h>
 24#include <linux/pm_runtime.h>
 25#include <sysdev/fsl_soc.h>
 26
 27#include "spi-fsl-lib.h"
 28
 29/* eSPI Controller registers */
 30struct fsl_espi_reg {
 31	__be32 mode;		/* 0x000 - eSPI mode register */
 32	__be32 event;		/* 0x004 - eSPI event register */
 33	__be32 mask;		/* 0x008 - eSPI mask register */
 34	__be32 command;		/* 0x00c - eSPI command register */
 35	__be32 transmit;	/* 0x010 - eSPI transmit FIFO access register*/
 36	__be32 receive;		/* 0x014 - eSPI receive FIFO access register*/
 37	u8 res[8];		/* 0x018 - 0x01c reserved */
 38	__be32 csmode[4];	/* 0x020 - 0x02c eSPI cs mode register */
 39};
 40
 41struct fsl_espi_transfer {
 42	const void *tx_buf;
 43	void *rx_buf;
 44	unsigned len;
 45	unsigned n_tx;
 46	unsigned n_rx;
 47	unsigned actual_length;
 48	int status;
 49};
 50
 51/* eSPI Controller mode register definitions */
 52#define SPMODE_ENABLE		(1 << 31)
 53#define SPMODE_LOOP		(1 << 30)
 54#define SPMODE_TXTHR(x)		((x) << 8)
 55#define SPMODE_RXTHR(x)		((x) << 0)
 56
 57/* eSPI Controller CS mode register definitions */
 58#define CSMODE_CI_INACTIVEHIGH	(1 << 31)
 59#define CSMODE_CP_BEGIN_EDGECLK	(1 << 30)
 60#define CSMODE_REV		(1 << 29)
 61#define CSMODE_DIV16		(1 << 28)
 62#define CSMODE_PM(x)		((x) << 24)
 63#define CSMODE_POL_1		(1 << 20)
 64#define CSMODE_LEN(x)		((x) << 16)
 65#define CSMODE_BEF(x)		((x) << 12)
 66#define CSMODE_AFT(x)		((x) << 8)
 67#define CSMODE_CG(x)		((x) << 3)
 68
 
 
 
 69/* Default mode/csmode for eSPI controller */
 70#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
 71#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
 72		| CSMODE_AFT(0) | CSMODE_CG(1))
 73
 74/* SPIE register values */
 75#define	SPIE_NE		0x00000200	/* Not empty */
 76#define	SPIE_NF		0x00000100	/* Not full */
 
 
 
 
 
 
 
 77
 78/* SPIM register values */
 79#define	SPIM_NE		0x00000200	/* Not empty */
 80#define	SPIM_NF		0x00000100	/* Not full */
 81#define SPIE_RXCNT(reg)     ((reg >> 24) & 0x3F)
 82#define SPIE_TXCNT(reg)     ((reg >> 16) & 0x3F)
 
 
 
 83
 84/* SPCOM register values */
 85#define SPCOM_CS(x)		((x) << 30)
 
 
 
 86#define SPCOM_TRANLEN(x)	((x) << 0)
 
 87#define	SPCOM_TRANLEN_MAX	0x10000	/* Max transaction length */
 88
 89#define AUTOSUSPEND_TIMEOUT 2000
 90
 91static void fsl_espi_change_mode(struct spi_device *spi)
 92{
 93	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
 94	struct spi_mpc8xxx_cs *cs = spi->controller_state;
 95	struct fsl_espi_reg *reg_base = mspi->reg_base;
 96	__be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
 97	__be32 __iomem *espi_mode = &reg_base->mode;
 98	u32 tmp;
 99	unsigned long flags;
 
 
100
101	/* Turn off IRQs locally to minimize time that SPI is disabled. */
102	local_irq_save(flags);
103
104	/* Turn off SPI unit prior changing mode */
105	tmp = mpc8xxx_spi_read_reg(espi_mode);
106	mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
107	mpc8xxx_spi_write_reg(mode, cs->hw_mode);
108	mpc8xxx_spi_write_reg(espi_mode, tmp);
109
110	local_irq_restore(flags);
111}
112
113static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
114{
115	u32 data;
116	u16 data_h;
117	u16 data_l;
118	const u32 *tx = mpc8xxx_spi->tx;
119
120	if (!tx)
121		return 0;
 
122
123	data = *tx++ << mpc8xxx_spi->tx_shift;
124	data_l = data & 0xffff;
125	data_h = (data >> 16) & 0xffff;
126	swab16s(&data_l);
127	swab16s(&data_h);
128	data = data_h | data_l;
129
130	mpc8xxx_spi->tx = tx;
131	return data;
 
132}
133
134static int fsl_espi_setup_transfer(struct spi_device *spi,
135					struct spi_transfer *t)
136{
137	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
138	int bits_per_word = 0;
139	u8 pm;
140	u32 hz = 0;
141	struct spi_mpc8xxx_cs *cs = spi->controller_state;
142
143	if (t) {
144		bits_per_word = t->bits_per_word;
145		hz = t->speed_hz;
146	}
147
148	/* spi_transfer level calls that work per-word */
149	if (!bits_per_word)
150		bits_per_word = spi->bits_per_word;
151
152	if (!hz)
153		hz = spi->max_speed_hz;
154
155	cs->rx_shift = 0;
156	cs->tx_shift = 0;
157	cs->get_rx = mpc8xxx_spi_rx_buf_u32;
158	cs->get_tx = mpc8xxx_spi_tx_buf_u32;
159	if (bits_per_word <= 8) {
160		cs->rx_shift = 8 - bits_per_word;
161	} else {
162		cs->rx_shift = 16 - bits_per_word;
163		if (spi->mode & SPI_LSB_FIRST)
164			cs->get_tx = fsl_espi_tx_buf_lsb;
165	}
166
167	mpc8xxx_spi->rx_shift = cs->rx_shift;
168	mpc8xxx_spi->tx_shift = cs->tx_shift;
169	mpc8xxx_spi->get_rx = cs->get_rx;
170	mpc8xxx_spi->get_tx = cs->get_tx;
171
172	bits_per_word = bits_per_word - 1;
 
 
 
 
173
174	/* mask out bits we are going to set */
175	cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
176
177	cs->hw_mode |= CSMODE_LEN(bits_per_word);
178
179	if ((mpc8xxx_spi->spibrg / hz) > 64) {
180		cs->hw_mode |= CSMODE_DIV16;
181		pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
182
183		WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
184			  "Will use %d Hz instead.\n", dev_name(&spi->dev),
185				hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
186		if (pm > 33)
187			pm = 33;
188	} else {
189		pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
190	}
191	if (pm)
192		pm--;
193	if (pm < 2)
194		pm = 2;
195
196	cs->hw_mode |= CSMODE_PM(pm);
197
198	fsl_espi_change_mode(spi);
199	return 0;
200}
201
202static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
203		unsigned int len)
204{
205	u32 word;
206	struct fsl_espi_reg *reg_base = mspi->reg_base;
207
208	mspi->count = len;
209
210	/* enable rx ints */
211	mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
212
213	/* transmit word */
214	word = mspi->get_tx(mspi);
215	mpc8xxx_spi_write_reg(&reg_base->transmit, word);
216
217	return 0;
218}
219
220static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
221{
222	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
223	struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
224	unsigned int len = t->len;
225	int ret;
226
227	mpc8xxx_spi->len = t->len;
228	len = roundup(len, 4) / 4;
 
 
 
229
230	mpc8xxx_spi->tx = t->tx_buf;
231	mpc8xxx_spi->rx = t->rx_buf;
232
233	reinit_completion(&mpc8xxx_spi->done);
 
 
 
 
 
 
234
235	/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
236	if (t->len > SPCOM_TRANLEN_MAX) {
237		dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
238				" beyond the SPCOM[TRANLEN] field\n", t->len);
 
 
239		return -EINVAL;
240	}
241	mpc8xxx_spi_write_reg(&reg_base->command,
242		(SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
243
244	ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
245	if (ret)
246		return ret;
247
248	wait_for_completion(&mpc8xxx_spi->done);
 
 
 
249
250	/* disable rx ints */
251	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
253	return mpc8xxx_spi->count;
254}
255
256static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
257{
258	if (cmd) {
259		cmd[1] = (u8)(addr >> 16);
260		cmd[2] = (u8)(addr >> 8);
261		cmd[3] = (u8)(addr >> 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262	}
263}
264
265static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
266{
267	if (cmd)
268		return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
 
269
270	return 0;
271}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272
273static void fsl_espi_do_trans(struct spi_message *m,
274				struct fsl_espi_transfer *tr)
275{
276	struct spi_device *spi = m->spi;
277	struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
278	struct fsl_espi_transfer *espi_trans = tr;
279	struct spi_message message;
280	struct spi_transfer *t, *first, trans;
281	int status = 0;
282
283	spi_message_init(&message);
284	memset(&trans, 0, sizeof(trans));
285
286	first = list_first_entry(&m->transfers, struct spi_transfer,
287			transfer_list);
288	list_for_each_entry(t, &m->transfers, transfer_list) {
289		if ((first->bits_per_word != t->bits_per_word) ||
290			(first->speed_hz != t->speed_hz)) {
291			espi_trans->status = -EINVAL;
292			dev_err(mspi->dev,
293				"bits_per_word/speed_hz should be same for the same SPI transfer\n");
294			return;
295		}
 
 
 
 
 
 
 
296
297		trans.speed_hz = t->speed_hz;
298		trans.bits_per_word = t->bits_per_word;
299		trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
300	}
301
302	trans.len = espi_trans->len;
303	trans.tx_buf = espi_trans->tx_buf;
304	trans.rx_buf = espi_trans->rx_buf;
305	spi_message_add_tail(&trans, &message);
306
307	list_for_each_entry(t, &message.transfers, transfer_list) {
308		if (t->bits_per_word || t->speed_hz) {
309			status = -EINVAL;
310
311			status = fsl_espi_setup_transfer(spi, t);
312			if (status < 0)
313				break;
314		}
315
316		if (t->len)
317			status = fsl_espi_bufs(spi, t);
318
319		if (status) {
320			status = -EMSGSIZE;
321			break;
322		}
323
324		if (t->delay_usecs)
325			udelay(t->delay_usecs);
 
326	}
327
328	espi_trans->status = status;
329	fsl_espi_setup_transfer(spi, NULL);
 
 
 
 
330}
331
332static void fsl_espi_cmd_trans(struct spi_message *m,
333				struct fsl_espi_transfer *trans, u8 *rx_buff)
334{
335	struct spi_transfer *t;
336	u8 *local_buf;
337	int i = 0;
338	struct fsl_espi_transfer *espi_trans = trans;
339
340	local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
341	if (!local_buf) {
342		espi_trans->status = -ENOMEM;
343		return;
344	}
345
346	list_for_each_entry(t, &m->transfers, transfer_list) {
347		if (t->tx_buf) {
348			memcpy(local_buf + i, t->tx_buf, t->len);
349			i += t->len;
350		}
351	}
352
353	espi_trans->tx_buf = local_buf;
354	espi_trans->rx_buf = local_buf;
355	fsl_espi_do_trans(m, espi_trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356
357	espi_trans->actual_length = espi_trans->len;
358	kfree(local_buf);
 
 
359}
360
361static void fsl_espi_rw_trans(struct spi_message *m,
362				struct fsl_espi_transfer *trans, u8 *rx_buff)
363{
364	struct fsl_espi_transfer *espi_trans = trans;
365	unsigned int total_len = espi_trans->len;
366	struct spi_transfer *t;
367	u8 *local_buf;
368	u8 *rx_buf = rx_buff;
369	unsigned int trans_len;
370	unsigned int addr;
371	unsigned int tx_only;
372	unsigned int rx_pos = 0;
373	unsigned int pos;
374	int i, loop;
375
376	local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
377	if (!local_buf) {
378		espi_trans->status = -ENOMEM;
379		return;
380	}
381
382	for (pos = 0, loop = 0; pos < total_len; pos += trans_len, loop++) {
383		trans_len = total_len - pos;
384
385		i = 0;
386		tx_only = 0;
387		list_for_each_entry(t, &m->transfers, transfer_list) {
388			if (t->tx_buf) {
389				memcpy(local_buf + i, t->tx_buf, t->len);
390				i += t->len;
391				if (!t->rx_buf)
392					tx_only += t->len;
393			}
394		}
 
 
 
 
 
395
396		/* Add additional TX bytes to compensate SPCOM_TRANLEN_MAX */
397		if (loop > 0)
398			trans_len += tx_only;
399
400		if (trans_len > SPCOM_TRANLEN_MAX)
401			trans_len = SPCOM_TRANLEN_MAX;
402
403		/* Update device offset */
404		if (pos > 0) {
405			addr = fsl_espi_cmd2addr(local_buf);
406			addr += rx_pos;
407			fsl_espi_addr2cmd(addr, local_buf);
408		}
409
410		espi_trans->len = trans_len;
411		espi_trans->tx_buf = local_buf;
412		espi_trans->rx_buf = local_buf;
413		fsl_espi_do_trans(m, espi_trans);
414
415		/* If there is at least one RX byte then copy it to rx_buf */
416		if (tx_only < SPCOM_TRANLEN_MAX)
417			memcpy(rx_buf + rx_pos, espi_trans->rx_buf + tx_only,
418					trans_len - tx_only);
419
420		rx_pos += trans_len - tx_only;
421
422		if (loop > 0)
423			espi_trans->actual_length += espi_trans->len - tx_only;
424		else
425			espi_trans->actual_length += espi_trans->len;
426	}
427
428	kfree(local_buf);
429}
430
431static int fsl_espi_do_one_msg(struct spi_master *master,
432			       struct spi_message *m)
433{
434	struct spi_transfer *t;
435	u8 *rx_buf = NULL;
436	unsigned int n_tx = 0;
437	unsigned int n_rx = 0;
438	unsigned int xfer_len = 0;
439	struct fsl_espi_transfer espi_trans;
 
440
441	list_for_each_entry(t, &m->transfers, transfer_list) {
442		if (t->tx_buf)
443			n_tx += t->len;
444		if (t->rx_buf) {
445			n_rx += t->len;
446			rx_buf = t->rx_buf;
447		}
448		if ((t->tx_buf) || (t->rx_buf))
449			xfer_len += t->len;
450	}
451
452	espi_trans.n_tx = n_tx;
453	espi_trans.n_rx = n_rx;
454	espi_trans.len = xfer_len;
455	espi_trans.actual_length = 0;
456	espi_trans.status = 0;
457
458	if (!rx_buf)
459		fsl_espi_cmd_trans(m, &espi_trans, NULL);
460	else
461		fsl_espi_rw_trans(m, &espi_trans, rx_buf);
462
463	m->actual_length = espi_trans.actual_length;
464	m->status = espi_trans.status;
465	spi_finalize_current_message(master);
466	return 0;
 
 
 
 
 
 
467}
468
469static int fsl_espi_setup(struct spi_device *spi)
470{
471	struct mpc8xxx_spi *mpc8xxx_spi;
472	struct fsl_espi_reg *reg_base;
473	int retval;
474	u32 hw_mode;
475	u32 loop_mode;
476	struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
477
478	if (!spi->max_speed_hz)
479		return -EINVAL;
480
481	if (!cs) {
482		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
483		if (!cs)
484			return -ENOMEM;
485		spi_set_ctldata(spi, cs);
486	}
487
488	mpc8xxx_spi = spi_master_get_devdata(spi->master);
489	reg_base = mpc8xxx_spi->reg_base;
490
491	pm_runtime_get_sync(mpc8xxx_spi->dev);
492
493	hw_mode = cs->hw_mode; /* Save original settings */
494	cs->hw_mode = mpc8xxx_spi_read_reg(
495			&reg_base->csmode[spi->chip_select]);
496	/* mask out bits we are going to set */
497	cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
498			 | CSMODE_REV);
499
500	if (spi->mode & SPI_CPHA)
501		cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
502	if (spi->mode & SPI_CPOL)
503		cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
504	if (!(spi->mode & SPI_LSB_FIRST))
505		cs->hw_mode |= CSMODE_REV;
506
507	/* Handle the loop mode */
508	loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
509	loop_mode &= ~SPMODE_LOOP;
510	if (spi->mode & SPI_LOOP)
511		loop_mode |= SPMODE_LOOP;
512	mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
513
514	retval = fsl_espi_setup_transfer(spi, NULL);
515
516	pm_runtime_mark_last_busy(mpc8xxx_spi->dev);
517	pm_runtime_put_autosuspend(mpc8xxx_spi->dev);
518
519	if (retval < 0) {
520		cs->hw_mode = hw_mode; /* Restore settings */
521		return retval;
522	}
523	return 0;
524}
525
526static void fsl_espi_cleanup(struct spi_device *spi)
527{
528	struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
529
530	kfree(cs);
531	spi_set_ctldata(spi, NULL);
532}
533
534void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
535{
536	struct fsl_espi_reg *reg_base = mspi->reg_base;
 
537
538	/* We need handle RX first */
539	if (events & SPIE_NE) {
540		u32 rx_data, tmp;
541		u8 rx_data_8;
542
543		/* Spin until RX is done */
544		while (SPIE_RXCNT(events) < min(4, mspi->len)) {
545			cpu_relax();
546			events = mpc8xxx_spi_read_reg(&reg_base->event);
547		}
548
549		if (mspi->len >= 4) {
550			rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
551		} else {
552			tmp = mspi->len;
553			rx_data = 0;
554			while (tmp--) {
555				rx_data_8 = in_8((u8 *)&reg_base->receive);
556				rx_data |= (rx_data_8 << (tmp * 8));
557			}
558
559			rx_data <<= (4 - mspi->len) * 8;
560		}
561
562		mspi->len -= 4;
 
 
563
564		if (mspi->rx)
565			mspi->get_rx(rx_data, mspi);
 
 
566	}
567
568	if (!(events & SPIE_NF)) {
569		int ret;
570
571		/* spin until TX is done */
572		ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
573				&reg_base->event)) & SPIE_NF), 1000, 0);
574		if (!ret) {
575			dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
576
577			/* Clear the SPIE bits */
578			mpc8xxx_spi_write_reg(&reg_base->event, events);
579			complete(&mspi->done);
580			return;
581		}
582	}
583
584	/* Clear the events */
585	mpc8xxx_spi_write_reg(&reg_base->event, events);
586
587	mspi->count -= 1;
588	if (mspi->count) {
589		u32 word = mspi->get_tx(mspi);
590
591		mpc8xxx_spi_write_reg(&reg_base->transmit, word);
592	} else {
593		complete(&mspi->done);
594	}
595}
596
597static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
598{
599	struct mpc8xxx_spi *mspi = context_data;
600	struct fsl_espi_reg *reg_base = mspi->reg_base;
601	irqreturn_t ret = IRQ_NONE;
602	u32 events;
603
604	/* Get interrupt events(tx/rx) */
605	events = mpc8xxx_spi_read_reg(&reg_base->event);
606	if (events)
607		ret = IRQ_HANDLED;
608
609	dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
 
610
611	fsl_espi_cpu_irq(mspi, events);
612
613	return ret;
614}
615
616#ifdef CONFIG_PM
617static int fsl_espi_runtime_suspend(struct device *dev)
618{
619	struct spi_master *master = dev_get_drvdata(dev);
620	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
621	struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
622	u32 regval;
623
624	regval = mpc8xxx_spi_read_reg(&reg_base->mode);
625	regval &= ~SPMODE_ENABLE;
626	mpc8xxx_spi_write_reg(&reg_base->mode, regval);
627
628	return 0;
629}
630
631static int fsl_espi_runtime_resume(struct device *dev)
632{
633	struct spi_master *master = dev_get_drvdata(dev);
634	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
635	struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
636	u32 regval;
637
638	regval = mpc8xxx_spi_read_reg(&reg_base->mode);
639	regval |= SPMODE_ENABLE;
640	mpc8xxx_spi_write_reg(&reg_base->mode, regval);
641
642	return 0;
643}
644#endif
645
646static size_t fsl_espi_max_transfer_size(struct spi_device *spi)
647{
648	return SPCOM_TRANLEN_MAX;
649}
650
651static struct spi_master * fsl_espi_probe(struct device *dev,
652		struct resource *mem, unsigned int irq)
653{
654	struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
655	struct spi_master *master;
656	struct mpc8xxx_spi *mpc8xxx_spi;
657	struct fsl_espi_reg *reg_base;
658	struct device_node *nc;
659	const __be32 *prop;
660	u32 regval, csmode;
661	int i, len, ret = 0;
662
663	master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
664	if (!master) {
665		ret = -ENOMEM;
666		goto err;
667	}
668
669	dev_set_drvdata(dev, master);
670
671	mpc8xxx_spi_probe(dev, mem, irq);
672
673	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
674	master->setup = fsl_espi_setup;
675	master->cleanup = fsl_espi_cleanup;
676	master->transfer_one_message = fsl_espi_do_one_msg;
677	master->auto_runtime_pm = true;
678	master->max_transfer_size = fsl_espi_max_transfer_size;
679
680	mpc8xxx_spi = spi_master_get_devdata(master);
681
682	mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem);
683	if (IS_ERR(mpc8xxx_spi->reg_base)) {
684		ret = PTR_ERR(mpc8xxx_spi->reg_base);
685		goto err_probe;
686	}
687
688	reg_base = mpc8xxx_spi->reg_base;
689
690	/* Register for SPI Interrupt */
691	ret = devm_request_irq(dev, mpc8xxx_spi->irq, fsl_espi_irq,
692			  0, "fsl_espi", mpc8xxx_spi);
693	if (ret)
694		goto err_probe;
695
696	if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
697		mpc8xxx_spi->rx_shift = 16;
698		mpc8xxx_spi->tx_shift = 24;
699	}
700
701	/* SPI controller initializations */
702	mpc8xxx_spi_write_reg(&reg_base->mode, 0);
703	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
704	mpc8xxx_spi_write_reg(&reg_base->command, 0);
705	mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
706
707	/* Init eSPI CS mode register */
708	for_each_available_child_of_node(master->dev.of_node, nc) {
709		/* get chip select */
710		prop = of_get_property(nc, "reg", &len);
711		if (!prop || len < sizeof(*prop))
712			continue;
713		i = be32_to_cpup(prop);
714		if (i < 0 || i >= pdata->max_chipselect)
715			continue;
716
717		csmode = CSMODE_INIT_VAL;
 
718		/* check if CSBEF is set in device tree */
719		prop = of_get_property(nc, "fsl,csbef", &len);
720		if (prop && len >= sizeof(*prop)) {
721			csmode &= ~(CSMODE_BEF(0xf));
722			csmode |= CSMODE_BEF(be32_to_cpup(prop));
723		}
 
724		/* check if CSAFT is set in device tree */
725		prop = of_get_property(nc, "fsl,csaft", &len);
726		if (prop && len >= sizeof(*prop)) {
727			csmode &= ~(CSMODE_AFT(0xf));
728			csmode |= CSMODE_AFT(be32_to_cpup(prop));
729		}
730		mpc8xxx_spi_write_reg(&reg_base->csmode[i], csmode);
731
732		dev_info(dev, "cs=%d, init_csmode=0x%x\n", i, csmode);
 
 
 
733	}
734
735	/* Enable SPI interface */
736	regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
 
 
 
 
 
 
 
 
737
738	mpc8xxx_spi_write_reg(&reg_base->mode, regval);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739
740	pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
741	pm_runtime_use_autosuspend(dev);
742	pm_runtime_set_active(dev);
743	pm_runtime_enable(dev);
744	pm_runtime_get_sync(dev);
745
746	ret = devm_spi_register_master(dev, master);
747	if (ret < 0)
748		goto err_pm;
749
750	dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
751
752	pm_runtime_mark_last_busy(dev);
753	pm_runtime_put_autosuspend(dev);
754
755	return master;
756
757err_pm:
758	pm_runtime_put_noidle(dev);
759	pm_runtime_disable(dev);
760	pm_runtime_set_suspended(dev);
761err_probe:
762	spi_master_put(master);
763err:
764	return ERR_PTR(ret);
765}
766
767static int of_fsl_espi_get_chipselects(struct device *dev)
768{
769	struct device_node *np = dev->of_node;
770	struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
771	const u32 *prop;
772	int len;
773
774	prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
775	if (!prop || len < sizeof(*prop)) {
776		dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
777		return -EINVAL;
778	}
779
780	pdata->max_chipselect = *prop;
781	pdata->cs_control = NULL;
782
783	return 0;
784}
785
786static int of_fsl_espi_probe(struct platform_device *ofdev)
787{
788	struct device *dev = &ofdev->dev;
789	struct device_node *np = ofdev->dev.of_node;
790	struct spi_master *master;
791	struct resource mem;
792	unsigned int irq;
793	int ret = -ENOMEM;
794
795	ret = of_mpc8xxx_spi_probe(ofdev);
796	if (ret)
797		return ret;
 
798
799	ret = of_fsl_espi_get_chipselects(dev);
800	if (ret)
801		goto err;
802
803	ret = of_address_to_resource(np, 0, &mem);
804	if (ret)
805		goto err;
806
807	irq = irq_of_parse_and_map(np, 0);
808	if (!irq) {
809		ret = -EINVAL;
810		goto err;
811	}
812
813	master = fsl_espi_probe(dev, &mem, irq);
814	if (IS_ERR(master)) {
815		ret = PTR_ERR(master);
816		goto err;
817	}
818
819	return 0;
820
821err:
822	return ret;
823}
824
825static int of_fsl_espi_remove(struct platform_device *dev)
826{
827	pm_runtime_disable(&dev->dev);
828
829	return 0;
830}
831
832#ifdef CONFIG_PM_SLEEP
833static int of_fsl_espi_suspend(struct device *dev)
834{
835	struct spi_master *master = dev_get_drvdata(dev);
836	int ret;
837
838	ret = spi_master_suspend(master);
839	if (ret) {
840		dev_warn(dev, "cannot suspend master\n");
841		return ret;
842	}
843
844	ret = pm_runtime_force_suspend(dev);
845	if (ret < 0)
846		return ret;
847
848	return 0;
849}
850
851static int of_fsl_espi_resume(struct device *dev)
852{
853	struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
854	struct spi_master *master = dev_get_drvdata(dev);
855	struct mpc8xxx_spi *mpc8xxx_spi;
856	struct fsl_espi_reg *reg_base;
857	u32 regval;
858	int i, ret;
859
860	mpc8xxx_spi = spi_master_get_devdata(master);
861	reg_base = mpc8xxx_spi->reg_base;
862
863	/* SPI controller initializations */
864	mpc8xxx_spi_write_reg(&reg_base->mode, 0);
865	mpc8xxx_spi_write_reg(&reg_base->mask, 0);
866	mpc8xxx_spi_write_reg(&reg_base->command, 0);
867	mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
868
869	/* Init eSPI CS mode register */
870	for (i = 0; i < pdata->max_chipselect; i++)
871		mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
872
873	/* Enable SPI interface */
874	regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
875
876	mpc8xxx_spi_write_reg(&reg_base->mode, regval);
877
878	ret = pm_runtime_force_resume(dev);
879	if (ret < 0)
880		return ret;
881
882	return spi_master_resume(master);
883}
884#endif /* CONFIG_PM_SLEEP */
885
886static const struct dev_pm_ops espi_pm = {
887	SET_RUNTIME_PM_OPS(fsl_espi_runtime_suspend,
888			   fsl_espi_runtime_resume, NULL)
889	SET_SYSTEM_SLEEP_PM_OPS(of_fsl_espi_suspend, of_fsl_espi_resume)
890};
891
892static const struct of_device_id of_fsl_espi_match[] = {
893	{ .compatible = "fsl,mpc8536-espi" },
894	{}
895};
896MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
897
898static struct platform_driver fsl_espi_driver = {
899	.driver = {
900		.name = "fsl_espi",
901		.of_match_table = of_fsl_espi_match,
902		.pm = &espi_pm,
903	},
904	.probe		= of_fsl_espi_probe,
905	.remove		= of_fsl_espi_remove,
906};
907module_platform_driver(fsl_espi_driver);
908
909MODULE_AUTHOR("Mingkai Hu");
910MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
911MODULE_LICENSE("GPL");