Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Special handling for DW core on Intel MID platform
  3 *
  4 * Copyright (c) 2009, 2014 Intel Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms and conditions of the GNU General Public License,
  8 * version 2, as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 */
 15
 16#include <linux/dma-mapping.h>
 17#include <linux/dmaengine.h>
 18#include <linux/interrupt.h>
 19#include <linux/slab.h>
 20#include <linux/spi/spi.h>
 21#include <linux/types.h>
 22
 23#include "spi-dw.h"
 24
 25#ifdef CONFIG_SPI_DW_MID_DMA
 26#include <linux/pci.h>
 27#include <linux/platform_data/dma-dw.h>
 28
 29#define RX_BUSY		0
 30#define TX_BUSY		1
 31
 32static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
 33static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
 34
 35static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 36{
 37	struct dw_dma_slave *s = param;
 38
 39	if (s->dma_dev != chan->device->dev)
 40		return false;
 41
 42	chan->private = s;
 43	return true;
 44}
 45
 46static int mid_spi_dma_init(struct dw_spi *dws)
 47{
 48	struct pci_dev *dma_dev;
 49	struct dw_dma_slave *tx = dws->dma_tx;
 50	struct dw_dma_slave *rx = dws->dma_rx;
 51	dma_cap_mask_t mask;
 52
 53	/*
 54	 * Get pci device for DMA controller, currently it could only
 55	 * be the DMA controller of Medfield
 56	 */
 57	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
 58	if (!dma_dev)
 59		return -ENODEV;
 60
 61	dma_cap_zero(mask);
 62	dma_cap_set(DMA_SLAVE, mask);
 63
 64	/* 1. Init rx channel */
 65	rx->dma_dev = &dma_dev->dev;
 66	dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
 67	if (!dws->rxchan)
 68		goto err_exit;
 69	dws->master->dma_rx = dws->rxchan;
 70
 71	/* 2. Init tx channel */
 72	tx->dma_dev = &dma_dev->dev;
 73	dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
 74	if (!dws->txchan)
 75		goto free_rxchan;
 76	dws->master->dma_tx = dws->txchan;
 77
 78	dws->dma_inited = 1;
 79	return 0;
 80
 81free_rxchan:
 82	dma_release_channel(dws->rxchan);
 83err_exit:
 84	return -EBUSY;
 85}
 86
 87static void mid_spi_dma_exit(struct dw_spi *dws)
 88{
 89	if (!dws->dma_inited)
 90		return;
 91
 92	dmaengine_terminate_sync(dws->txchan);
 93	dma_release_channel(dws->txchan);
 94
 95	dmaengine_terminate_sync(dws->rxchan);
 96	dma_release_channel(dws->rxchan);
 97}
 98
 99static irqreturn_t dma_transfer(struct dw_spi *dws)
100{
101	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
102
103	if (!irq_status)
104		return IRQ_NONE;
105
106	dw_readl(dws, DW_SPI_ICR);
107	spi_reset_chip(dws);
108
109	dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
110	dws->master->cur_msg->status = -EIO;
111	spi_finalize_current_transfer(dws->master);
112	return IRQ_HANDLED;
113}
114
115static bool mid_spi_can_dma(struct spi_master *master, struct spi_device *spi,
116		struct spi_transfer *xfer)
117{
118	struct dw_spi *dws = spi_master_get_devdata(master);
119
120	if (!dws->dma_inited)
121		return false;
122
123	return xfer->len > dws->fifo_len;
124}
125
126static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
127	if (dma_width == 1)
128		return DMA_SLAVE_BUSWIDTH_1_BYTE;
129	else if (dma_width == 2)
130		return DMA_SLAVE_BUSWIDTH_2_BYTES;
131
132	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
133}
134
135/*
136 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
137 * channel will clear a corresponding bit.
138 */
139static void dw_spi_dma_tx_done(void *arg)
140{
141	struct dw_spi *dws = arg;
142
143	clear_bit(TX_BUSY, &dws->dma_chan_busy);
144	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
145		return;
146	spi_finalize_current_transfer(dws->master);
147}
148
149static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
150		struct spi_transfer *xfer)
151{
152	struct dma_slave_config txconf;
153	struct dma_async_tx_descriptor *txdesc;
154
155	if (!xfer->tx_buf)
156		return NULL;
157
158	txconf.direction = DMA_MEM_TO_DEV;
159	txconf.dst_addr = dws->dma_addr;
160	txconf.dst_maxburst = 16;
161	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
162	txconf.dst_addr_width = convert_dma_width(dws->dma_width);
163	txconf.device_fc = false;
164
165	dmaengine_slave_config(dws->txchan, &txconf);
166
167	txdesc = dmaengine_prep_slave_sg(dws->txchan,
168				xfer->tx_sg.sgl,
169				xfer->tx_sg.nents,
170				DMA_MEM_TO_DEV,
171				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
172	if (!txdesc)
173		return NULL;
174
175	txdesc->callback = dw_spi_dma_tx_done;
176	txdesc->callback_param = dws;
177
178	return txdesc;
179}
180
181/*
182 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
183 * channel will clear a corresponding bit.
184 */
185static void dw_spi_dma_rx_done(void *arg)
186{
187	struct dw_spi *dws = arg;
188
189	clear_bit(RX_BUSY, &dws->dma_chan_busy);
190	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
191		return;
192	spi_finalize_current_transfer(dws->master);
193}
194
195static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
196		struct spi_transfer *xfer)
197{
198	struct dma_slave_config rxconf;
199	struct dma_async_tx_descriptor *rxdesc;
200
201	if (!xfer->rx_buf)
202		return NULL;
203
204	rxconf.direction = DMA_DEV_TO_MEM;
205	rxconf.src_addr = dws->dma_addr;
206	rxconf.src_maxburst = 16;
207	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
208	rxconf.src_addr_width = convert_dma_width(dws->dma_width);
209	rxconf.device_fc = false;
210
211	dmaengine_slave_config(dws->rxchan, &rxconf);
212
213	rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
214				xfer->rx_sg.sgl,
215				xfer->rx_sg.nents,
216				DMA_DEV_TO_MEM,
217				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
218	if (!rxdesc)
219		return NULL;
220
221	rxdesc->callback = dw_spi_dma_rx_done;
222	rxdesc->callback_param = dws;
223
224	return rxdesc;
225}
226
227static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
228{
229	u16 dma_ctrl = 0;
230
231	dw_writel(dws, DW_SPI_DMARDLR, 0xf);
232	dw_writel(dws, DW_SPI_DMATDLR, 0x10);
233
234	if (xfer->tx_buf)
235		dma_ctrl |= SPI_DMA_TDMAE;
236	if (xfer->rx_buf)
237		dma_ctrl |= SPI_DMA_RDMAE;
238	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
239
240	/* Set the interrupt mask */
241	spi_umask_intr(dws, SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI);
242
243	dws->transfer_handler = dma_transfer;
244
245	return 0;
246}
247
248static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
249{
250	struct dma_async_tx_descriptor *txdesc, *rxdesc;
251
252	/* Prepare the TX dma transfer */
253	txdesc = dw_spi_dma_prepare_tx(dws, xfer);
254
255	/* Prepare the RX dma transfer */
256	rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
257
258	/* rx must be started before tx due to spi instinct */
259	if (rxdesc) {
260		set_bit(RX_BUSY, &dws->dma_chan_busy);
261		dmaengine_submit(rxdesc);
262		dma_async_issue_pending(dws->rxchan);
263	}
264
265	if (txdesc) {
266		set_bit(TX_BUSY, &dws->dma_chan_busy);
267		dmaengine_submit(txdesc);
268		dma_async_issue_pending(dws->txchan);
269	}
270
271	return 0;
272}
273
274static void mid_spi_dma_stop(struct dw_spi *dws)
275{
276	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
277		dmaengine_terminate_all(dws->txchan);
278		clear_bit(TX_BUSY, &dws->dma_chan_busy);
279	}
280	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
281		dmaengine_terminate_all(dws->rxchan);
282		clear_bit(RX_BUSY, &dws->dma_chan_busy);
283	}
284}
285
286static const struct dw_spi_dma_ops mid_dma_ops = {
287	.dma_init	= mid_spi_dma_init,
288	.dma_exit	= mid_spi_dma_exit,
289	.dma_setup	= mid_spi_dma_setup,
290	.can_dma	= mid_spi_can_dma,
291	.dma_transfer	= mid_spi_dma_transfer,
292	.dma_stop	= mid_spi_dma_stop,
293};
294#endif
295
296/* Some specific info for SPI0 controller on Intel MID */
297
298/* HW info for MRST Clk Control Unit, 32b reg per controller */
299#define MRST_SPI_CLK_BASE	100000000	/* 100m */
300#define MRST_CLK_SPI_REG	0xff11d86c
301#define CLK_SPI_BDIV_OFFSET	0
302#define CLK_SPI_BDIV_MASK	0x00000007
303#define CLK_SPI_CDIV_OFFSET	9
304#define CLK_SPI_CDIV_MASK	0x00000e00
305#define CLK_SPI_DISABLE_OFFSET	8
306
307int dw_spi_mid_init(struct dw_spi *dws)
308{
309	void __iomem *clk_reg;
310	u32 clk_cdiv;
311
312	clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
313	if (!clk_reg)
314		return -ENOMEM;
315
316	/* Get SPI controller operating freq info */
317	clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
318	clk_cdiv &= CLK_SPI_CDIV_MASK;
319	clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
320	dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
321
322	iounmap(clk_reg);
323
324#ifdef CONFIG_SPI_DW_MID_DMA
325	dws->dma_tx = &mid_dma_tx;
326	dws->dma_rx = &mid_dma_rx;
327	dws->dma_ops = &mid_dma_ops;
328#endif
329	return 0;
330}