Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * polling/bitbanging SPI master controller driver utilities
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/spinlock.h>
  7#include <linux/workqueue.h>
  8#include <linux/interrupt.h>
  9#include <linux/module.h>
 10#include <linux/delay.h>
 11#include <linux/errno.h>
 12#include <linux/platform_device.h>
 13#include <linux/slab.h>
 14
 15#include <linux/spi/spi.h>
 16#include <linux/spi/spi_bitbang.h>
 17
 18#define SPI_BITBANG_CS_DELAY	100
 19
 20
 21/*----------------------------------------------------------------------*/
 22
 23/*
 24 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 25 * Use this for GPIO or shift-register level hardware APIs.
 26 *
 27 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 28 * to glue code.  These bitbang setup() and cleanup() routines are always
 29 * used, though maybe they're called from controller-aware code.
 30 *
 31 * chipselect() and friends may use spi_device->controller_data and
 32 * controller registers as appropriate.
 33 *
 34 *
 35 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 36 * which means you could use a bitbang driver either to get hardware
 37 * working quickly, or testing for differences that aren't speed related.
 38 */
 39
 40struct spi_bitbang_cs {
 41	unsigned	nsecs;	/* (clock cycle time)/2 */
 42	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
 43					u32 word, u8 bits, unsigned flags);
 44	unsigned	(*txrx_bufs)(struct spi_device *,
 45					u32 (*txrx_word)(
 46						struct spi_device *spi,
 47						unsigned nsecs,
 48						u32 word, u8 bits,
 49						unsigned flags),
 50					unsigned, struct spi_transfer *,
 51					unsigned);
 52};
 53
 54static unsigned bitbang_txrx_8(
 55	struct spi_device	*spi,
 56	u32			(*txrx_word)(struct spi_device *spi,
 57					unsigned nsecs,
 58					u32 word, u8 bits,
 59					unsigned flags),
 60	unsigned		ns,
 61	struct spi_transfer	*t,
 62	unsigned flags
 63)
 64{
 65	unsigned		bits = t->bits_per_word;
 66	unsigned		count = t->len;
 67	const u8		*tx = t->tx_buf;
 68	u8			*rx = t->rx_buf;
 69
 70	while (likely(count > 0)) {
 71		u8		word = 0;
 72
 73		if (tx)
 74			word = *tx++;
 75		word = txrx_word(spi, ns, word, bits, flags);
 76		if (rx)
 77			*rx++ = word;
 78		count -= 1;
 79	}
 80	return t->len - count;
 81}
 82
 83static unsigned bitbang_txrx_16(
 84	struct spi_device	*spi,
 85	u32			(*txrx_word)(struct spi_device *spi,
 86					unsigned nsecs,
 87					u32 word, u8 bits,
 88					unsigned flags),
 89	unsigned		ns,
 90	struct spi_transfer	*t,
 91	unsigned flags
 92)
 93{
 94	unsigned		bits = t->bits_per_word;
 95	unsigned		count = t->len;
 96	const u16		*tx = t->tx_buf;
 97	u16			*rx = t->rx_buf;
 98
 99	while (likely(count > 1)) {
100		u16		word = 0;
101
102		if (tx)
103			word = *tx++;
104		word = txrx_word(spi, ns, word, bits, flags);
105		if (rx)
106			*rx++ = word;
107		count -= 2;
108	}
109	return t->len - count;
110}
111
112static unsigned bitbang_txrx_32(
113	struct spi_device	*spi,
114	u32			(*txrx_word)(struct spi_device *spi,
115					unsigned nsecs,
116					u32 word, u8 bits,
117					unsigned flags),
118	unsigned		ns,
119	struct spi_transfer	*t,
120	unsigned flags
121)
122{
123	unsigned		bits = t->bits_per_word;
124	unsigned		count = t->len;
125	const u32		*tx = t->tx_buf;
126	u32			*rx = t->rx_buf;
127
128	while (likely(count > 3)) {
129		u32		word = 0;
130
131		if (tx)
132			word = *tx++;
133		word = txrx_word(spi, ns, word, bits, flags);
134		if (rx)
135			*rx++ = word;
136		count -= 4;
137	}
138	return t->len - count;
139}
140
141int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142{
143	struct spi_bitbang_cs	*cs = spi->controller_state;
144	u8			bits_per_word;
145	u32			hz;
146
147	if (t) {
148		bits_per_word = t->bits_per_word;
149		hz = t->speed_hz;
150	} else {
151		bits_per_word = 0;
152		hz = 0;
153	}
154
155	/* spi_transfer level calls that work per-word */
156	if (!bits_per_word)
157		bits_per_word = spi->bits_per_word;
158	if (bits_per_word <= 8)
159		cs->txrx_bufs = bitbang_txrx_8;
160	else if (bits_per_word <= 16)
161		cs->txrx_bufs = bitbang_txrx_16;
162	else if (bits_per_word <= 32)
163		cs->txrx_bufs = bitbang_txrx_32;
164	else
165		return -EINVAL;
166
167	/* nsecs = (clock period)/2 */
168	if (!hz)
169		hz = spi->max_speed_hz;
170	if (hz) {
171		cs->nsecs = (1000000000/2) / hz;
172		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173			return -EINVAL;
174	}
175
176	return 0;
177}
178EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179
180/*
181 * spi_bitbang_setup - default setup for per-word I/O loops
182 */
183int spi_bitbang_setup(struct spi_device *spi)
184{
185	struct spi_bitbang_cs	*cs = spi->controller_state;
186	struct spi_bitbang	*bitbang;
187	bool			initial_setup = false;
188	int			retval;
189
190	bitbang = spi_master_get_devdata(spi->master);
191
192	if (!cs) {
193		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
194		if (!cs)
195			return -ENOMEM;
196		spi->controller_state = cs;
197		initial_setup = true;
198	}
199
200	/* per-word shift register access, in hardware or bitbanging */
201	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202	if (!cs->txrx_word) {
203		retval = -EINVAL;
204		goto err_free;
205	}
206
207	if (bitbang->setup_transfer) {
208		retval = bitbang->setup_transfer(spi, NULL);
209		if (retval < 0)
210			goto err_free;
211	}
212
213	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
214
215	return 0;
 
 
 
216
217err_free:
218	if (initial_setup)
219		kfree(cs);
220	return retval;
 
 
 
 
 
221}
222EXPORT_SYMBOL_GPL(spi_bitbang_setup);
223
224/*
225 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
226 */
227void spi_bitbang_cleanup(struct spi_device *spi)
228{
229	kfree(spi->controller_state);
230}
231EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
232
233static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
234{
235	struct spi_bitbang_cs	*cs = spi->controller_state;
236	unsigned		nsecs = cs->nsecs;
237	struct spi_bitbang	*bitbang;
238
239	bitbang = spi_master_get_devdata(spi->master);
240	if (bitbang->set_line_direction) {
241		int err;
242
243		err = bitbang->set_line_direction(spi, !!(t->tx_buf));
244		if (err < 0)
245			return err;
246	}
247
248	if (spi->mode & SPI_3WIRE) {
249		unsigned flags;
250
251		flags = t->tx_buf ? SPI_CONTROLLER_NO_RX : SPI_CONTROLLER_NO_TX;
252		return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
253	}
254	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
255}
256
257/*----------------------------------------------------------------------*/
258
259/*
260 * SECOND PART ... simple transfer queue runner.
261 *
262 * This costs a task context per controller, running the queue by
263 * performing each transfer in sequence.  Smarter hardware can queue
264 * several DMA transfers at once, and process several controller queues
265 * in parallel; this driver doesn't match such hardware very well.
266 *
267 * Drivers can provide word-at-a-time i/o primitives, or provide
268 * transfer-at-a-time ones to leverage dma or fifo hardware.
269 */
270
271static int spi_bitbang_prepare_hardware(struct spi_master *spi)
272{
273	struct spi_bitbang	*bitbang;
274
275	bitbang = spi_master_get_devdata(spi);
276
277	mutex_lock(&bitbang->lock);
278	bitbang->busy = 1;
279	mutex_unlock(&bitbang->lock);
280
281	return 0;
282}
283
284static int spi_bitbang_transfer_one(struct spi_master *master,
285				    struct spi_device *spi,
286				    struct spi_transfer *transfer)
287{
288	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
289	int status = 0;
290
291	if (bitbang->setup_transfer) {
292		status = bitbang->setup_transfer(spi, transfer);
293		if (status < 0)
294			goto out;
295	}
296
297	if (transfer->len)
298		status = bitbang->txrx_bufs(spi, transfer);
299
300	if (status == transfer->len)
301		status = 0;
302	else if (status >= 0)
303		status = -EREMOTEIO;
304
305out:
306	spi_finalize_current_transfer(master);
307
308	return status;
309}
310
311static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
312{
313	struct spi_bitbang	*bitbang;
314
315	bitbang = spi_master_get_devdata(spi);
316
317	mutex_lock(&bitbang->lock);
318	bitbang->busy = 0;
319	mutex_unlock(&bitbang->lock);
320
321	return 0;
322}
323
324static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
325{
326	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
327
328	/* SPI core provides CS high / low, but bitbang driver
329	 * expects CS active
330	 * spi device driver takes care of handling SPI_CS_HIGH
331	 */
332	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
333
334	ndelay(SPI_BITBANG_CS_DELAY);
335	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
336			    BITBANG_CS_INACTIVE);
337	ndelay(SPI_BITBANG_CS_DELAY);
338}
339
340/*----------------------------------------------------------------------*/
341
342int spi_bitbang_init(struct spi_bitbang *bitbang)
343{
344	struct spi_master *master = bitbang->master;
345	bool custom_cs;
346
347	if (!master)
348		return -EINVAL;
349	/*
350	 * We only need the chipselect callback if we are actually using it.
351	 * If we just use GPIO descriptors, it is surplus. If the
352	 * SPI_CONTROLLER_GPIO_SS flag is set, we always need to call the
353	 * driver-specific chipselect routine.
354	 */
355	custom_cs = (!master->use_gpio_descriptors ||
356		     (master->flags & SPI_CONTROLLER_GPIO_SS));
357
358	if (custom_cs && !bitbang->chipselect)
359		return -EINVAL;
360
361	mutex_init(&bitbang->lock);
362
363	if (!master->mode_bits)
364		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
365
366	if (master->transfer || master->transfer_one_message)
367		return -EINVAL;
368
369	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
370	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
371	master->transfer_one = spi_bitbang_transfer_one;
372	/*
373	 * When using GPIO descriptors, the ->set_cs() callback doesn't even
374	 * get called unless SPI_CONTROLLER_GPIO_SS is set.
375	 */
376	if (custom_cs)
377		master->set_cs = spi_bitbang_set_cs;
378
379	if (!bitbang->txrx_bufs) {
380		bitbang->use_dma = 0;
381		bitbang->txrx_bufs = spi_bitbang_bufs;
382		if (!master->setup) {
383			if (!bitbang->setup_transfer)
384				bitbang->setup_transfer =
385					 spi_bitbang_setup_transfer;
386			master->setup = spi_bitbang_setup;
387			master->cleanup = spi_bitbang_cleanup;
388		}
389	}
390
391	return 0;
392}
393EXPORT_SYMBOL_GPL(spi_bitbang_init);
394
395/**
396 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
397 * @bitbang: driver handle
398 *
399 * Caller should have zero-initialized all parts of the structure, and then
400 * provided callbacks for chip selection and I/O loops.  If the master has
401 * a transfer method, its final step should call spi_bitbang_transfer; or,
402 * that's the default if the transfer routine is not initialized.  It should
403 * also set up the bus number and number of chipselects.
404 *
405 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
406 * hardware that basically exposes a shift register) or per-spi_transfer
407 * (which takes better advantage of hardware like fifos or DMA engines).
408 *
409 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
410 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
411 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
412 * routine isn't initialized.
413 *
414 * This routine registers the spi_master, which will process requests in a
415 * dedicated task, keeping IRQs unblocked most of the time.  To stop
416 * processing those requests, call spi_bitbang_stop().
417 *
418 * On success, this routine will take a reference to master. The caller is
419 * responsible for calling spi_bitbang_stop() to decrement the reference and
420 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
421 * leak.
422 */
423int spi_bitbang_start(struct spi_bitbang *bitbang)
424{
425	struct spi_master *master = bitbang->master;
426	int ret;
427
428	ret = spi_bitbang_init(bitbang);
429	if (ret)
430		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
432	/* driver may get busy before register() returns, especially
433	 * if someone registered boardinfo for devices
434	 */
435	ret = spi_register_master(spi_master_get(master));
436	if (ret)
437		spi_master_put(master);
438
439	return ret;
440}
441EXPORT_SYMBOL_GPL(spi_bitbang_start);
442
443/*
444 * spi_bitbang_stop - stops the task providing spi communication
445 */
446void spi_bitbang_stop(struct spi_bitbang *bitbang)
447{
448	spi_unregister_master(bitbang->master);
449}
450EXPORT_SYMBOL_GPL(spi_bitbang_stop);
451
452MODULE_LICENSE("GPL");
453
v4.6
 
  1/*
  2 * polling/bitbanging SPI master controller driver utilities
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 */
 14
 15#include <linux/spinlock.h>
 16#include <linux/workqueue.h>
 17#include <linux/interrupt.h>
 18#include <linux/module.h>
 19#include <linux/delay.h>
 20#include <linux/errno.h>
 21#include <linux/platform_device.h>
 22#include <linux/slab.h>
 23
 24#include <linux/spi/spi.h>
 25#include <linux/spi/spi_bitbang.h>
 26
 27#define SPI_BITBANG_CS_DELAY	100
 28
 29
 30/*----------------------------------------------------------------------*/
 31
 32/*
 33 * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
 34 * Use this for GPIO or shift-register level hardware APIs.
 35 *
 36 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
 37 * to glue code.  These bitbang setup() and cleanup() routines are always
 38 * used, though maybe they're called from controller-aware code.
 39 *
 40 * chipselect() and friends may use spi_device->controller_data and
 41 * controller registers as appropriate.
 42 *
 43 *
 44 * NOTE:  SPI controller pins can often be used as GPIO pins instead,
 45 * which means you could use a bitbang driver either to get hardware
 46 * working quickly, or testing for differences that aren't speed related.
 47 */
 48
 49struct spi_bitbang_cs {
 50	unsigned	nsecs;	/* (clock cycle time)/2 */
 51	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
 52					u32 word, u8 bits);
 53	unsigned	(*txrx_bufs)(struct spi_device *,
 54					u32 (*txrx_word)(
 55						struct spi_device *spi,
 56						unsigned nsecs,
 57						u32 word, u8 bits),
 58					unsigned, struct spi_transfer *);
 
 
 59};
 60
 61static unsigned bitbang_txrx_8(
 62	struct spi_device	*spi,
 63	u32			(*txrx_word)(struct spi_device *spi,
 64					unsigned nsecs,
 65					u32 word, u8 bits),
 
 66	unsigned		ns,
 67	struct spi_transfer	*t
 68) {
 
 
 69	unsigned		bits = t->bits_per_word;
 70	unsigned		count = t->len;
 71	const u8		*tx = t->tx_buf;
 72	u8			*rx = t->rx_buf;
 73
 74	while (likely(count > 0)) {
 75		u8		word = 0;
 76
 77		if (tx)
 78			word = *tx++;
 79		word = txrx_word(spi, ns, word, bits);
 80		if (rx)
 81			*rx++ = word;
 82		count -= 1;
 83	}
 84	return t->len - count;
 85}
 86
 87static unsigned bitbang_txrx_16(
 88	struct spi_device	*spi,
 89	u32			(*txrx_word)(struct spi_device *spi,
 90					unsigned nsecs,
 91					u32 word, u8 bits),
 
 92	unsigned		ns,
 93	struct spi_transfer	*t
 94) {
 
 
 95	unsigned		bits = t->bits_per_word;
 96	unsigned		count = t->len;
 97	const u16		*tx = t->tx_buf;
 98	u16			*rx = t->rx_buf;
 99
100	while (likely(count > 1)) {
101		u16		word = 0;
102
103		if (tx)
104			word = *tx++;
105		word = txrx_word(spi, ns, word, bits);
106		if (rx)
107			*rx++ = word;
108		count -= 2;
109	}
110	return t->len - count;
111}
112
113static unsigned bitbang_txrx_32(
114	struct spi_device	*spi,
115	u32			(*txrx_word)(struct spi_device *spi,
116					unsigned nsecs,
117					u32 word, u8 bits),
 
118	unsigned		ns,
119	struct spi_transfer	*t
120) {
 
 
121	unsigned		bits = t->bits_per_word;
122	unsigned		count = t->len;
123	const u32		*tx = t->tx_buf;
124	u32			*rx = t->rx_buf;
125
126	while (likely(count > 3)) {
127		u32		word = 0;
128
129		if (tx)
130			word = *tx++;
131		word = txrx_word(spi, ns, word, bits);
132		if (rx)
133			*rx++ = word;
134		count -= 4;
135	}
136	return t->len - count;
137}
138
139int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
140{
141	struct spi_bitbang_cs	*cs = spi->controller_state;
142	u8			bits_per_word;
143	u32			hz;
144
145	if (t) {
146		bits_per_word = t->bits_per_word;
147		hz = t->speed_hz;
148	} else {
149		bits_per_word = 0;
150		hz = 0;
151	}
152
153	/* spi_transfer level calls that work per-word */
154	if (!bits_per_word)
155		bits_per_word = spi->bits_per_word;
156	if (bits_per_word <= 8)
157		cs->txrx_bufs = bitbang_txrx_8;
158	else if (bits_per_word <= 16)
159		cs->txrx_bufs = bitbang_txrx_16;
160	else if (bits_per_word <= 32)
161		cs->txrx_bufs = bitbang_txrx_32;
162	else
163		return -EINVAL;
164
165	/* nsecs = (clock period)/2 */
166	if (!hz)
167		hz = spi->max_speed_hz;
168	if (hz) {
169		cs->nsecs = (1000000000/2) / hz;
170		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
171			return -EINVAL;
172	}
173
174	return 0;
175}
176EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
177
178/**
179 * spi_bitbang_setup - default setup for per-word I/O loops
180 */
181int spi_bitbang_setup(struct spi_device *spi)
182{
183	struct spi_bitbang_cs	*cs = spi->controller_state;
184	struct spi_bitbang	*bitbang;
 
 
185
186	bitbang = spi_master_get_devdata(spi->master);
187
188	if (!cs) {
189		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
190		if (!cs)
191			return -ENOMEM;
192		spi->controller_state = cs;
 
193	}
194
195	/* per-word shift register access, in hardware or bitbanging */
196	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
197	if (!cs->txrx_word)
198		return -EINVAL;
 
 
199
200	if (bitbang->setup_transfer) {
201		int retval = bitbang->setup_transfer(spi, NULL);
202		if (retval < 0)
203			return retval;
204	}
205
206	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
207
208	/* NOTE we _need_ to call chipselect() early, ideally with adapter
209	 * setup, unless the hardware defaults cooperate to avoid confusion
210	 * between normal (active low) and inverted chipselects.
211	 */
212
213	/* deselect chip (low or high) */
214	mutex_lock(&bitbang->lock);
215	if (!bitbang->busy) {
216		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
217		ndelay(cs->nsecs);
218	}
219	mutex_unlock(&bitbang->lock);
220
221	return 0;
222}
223EXPORT_SYMBOL_GPL(spi_bitbang_setup);
224
225/**
226 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
227 */
228void spi_bitbang_cleanup(struct spi_device *spi)
229{
230	kfree(spi->controller_state);
231}
232EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
233
234static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
235{
236	struct spi_bitbang_cs	*cs = spi->controller_state;
237	unsigned		nsecs = cs->nsecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
238
239	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
 
 
 
240}
241
242/*----------------------------------------------------------------------*/
243
244/*
245 * SECOND PART ... simple transfer queue runner.
246 *
247 * This costs a task context per controller, running the queue by
248 * performing each transfer in sequence.  Smarter hardware can queue
249 * several DMA transfers at once, and process several controller queues
250 * in parallel; this driver doesn't match such hardware very well.
251 *
252 * Drivers can provide word-at-a-time i/o primitives, or provide
253 * transfer-at-a-time ones to leverage dma or fifo hardware.
254 */
255
256static int spi_bitbang_prepare_hardware(struct spi_master *spi)
257{
258	struct spi_bitbang	*bitbang;
259
260	bitbang = spi_master_get_devdata(spi);
261
262	mutex_lock(&bitbang->lock);
263	bitbang->busy = 1;
264	mutex_unlock(&bitbang->lock);
265
266	return 0;
267}
268
269static int spi_bitbang_transfer_one(struct spi_master *master,
270				    struct spi_device *spi,
271				    struct spi_transfer *transfer)
272{
273	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
274	int status = 0;
275
276	if (bitbang->setup_transfer) {
277		status = bitbang->setup_transfer(spi, transfer);
278		if (status < 0)
279			goto out;
280	}
281
282	if (transfer->len)
283		status = bitbang->txrx_bufs(spi, transfer);
284
285	if (status == transfer->len)
286		status = 0;
287	else if (status >= 0)
288		status = -EREMOTEIO;
289
290out:
291	spi_finalize_current_transfer(master);
292
293	return status;
294}
295
296static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
297{
298	struct spi_bitbang	*bitbang;
299
300	bitbang = spi_master_get_devdata(spi);
301
302	mutex_lock(&bitbang->lock);
303	bitbang->busy = 0;
304	mutex_unlock(&bitbang->lock);
305
306	return 0;
307}
308
309static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
310{
311	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
312
313	/* SPI core provides CS high / low, but bitbang driver
314	 * expects CS active
315	 * spi device driver takes care of handling SPI_CS_HIGH
316	 */
317	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
318
319	ndelay(SPI_BITBANG_CS_DELAY);
320	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
321			    BITBANG_CS_INACTIVE);
322	ndelay(SPI_BITBANG_CS_DELAY);
323}
324
325/*----------------------------------------------------------------------*/
326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327/**
328 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
329 * @bitbang: driver handle
330 *
331 * Caller should have zero-initialized all parts of the structure, and then
332 * provided callbacks for chip selection and I/O loops.  If the master has
333 * a transfer method, its final step should call spi_bitbang_transfer; or,
334 * that's the default if the transfer routine is not initialized.  It should
335 * also set up the bus number and number of chipselects.
336 *
337 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
338 * hardware that basically exposes a shift register) or per-spi_transfer
339 * (which takes better advantage of hardware like fifos or DMA engines).
340 *
341 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
342 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
343 * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
344 * routine isn't initialized.
345 *
346 * This routine registers the spi_master, which will process requests in a
347 * dedicated task, keeping IRQs unblocked most of the time.  To stop
348 * processing those requests, call spi_bitbang_stop().
349 *
350 * On success, this routine will take a reference to master. The caller is
351 * responsible for calling spi_bitbang_stop() to decrement the reference and
352 * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
353 * leak.
354 */
355int spi_bitbang_start(struct spi_bitbang *bitbang)
356{
357	struct spi_master *master = bitbang->master;
358	int ret;
359
360	if (!master || !bitbang->chipselect)
361		return -EINVAL;
362
363	mutex_init(&bitbang->lock);
364
365	if (!master->mode_bits)
366		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
367
368	if (master->transfer || master->transfer_one_message)
369		return -EINVAL;
370
371	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
372	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
373	master->transfer_one = spi_bitbang_transfer_one;
374	master->set_cs = spi_bitbang_set_cs;
375
376	if (!bitbang->txrx_bufs) {
377		bitbang->use_dma = 0;
378		bitbang->txrx_bufs = spi_bitbang_bufs;
379		if (!master->setup) {
380			if (!bitbang->setup_transfer)
381				bitbang->setup_transfer =
382					 spi_bitbang_setup_transfer;
383			master->setup = spi_bitbang_setup;
384			master->cleanup = spi_bitbang_cleanup;
385		}
386	}
387
388	/* driver may get busy before register() returns, especially
389	 * if someone registered boardinfo for devices
390	 */
391	ret = spi_register_master(spi_master_get(master));
392	if (ret)
393		spi_master_put(master);
394
395	return 0;
396}
397EXPORT_SYMBOL_GPL(spi_bitbang_start);
398
399/**
400 * spi_bitbang_stop - stops the task providing spi communication
401 */
402void spi_bitbang_stop(struct spi_bitbang *bitbang)
403{
404	spi_unregister_master(bitbang->master);
405}
406EXPORT_SYMBOL_GPL(spi_bitbang_stop);
407
408MODULE_LICENSE("GPL");
409