Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * TI OMAP Real Time Clock interface for Linux
   4 *
   5 * Copyright (C) 2003 MontaVista Software, Inc.
   6 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
   7 *
   8 * Copyright (C) 2006 David Brownell (new RTC framework)
   9 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
 
 
 
 
 
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/init.h>
  16#include <linux/io.h>
  17#include <linux/ioport.h>
  18#include <linux/kernel.h>
 
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/pinctrl/pinctrl.h>
  22#include <linux/pinctrl/pinconf.h>
  23#include <linux/pinctrl/pinconf-generic.h>
  24#include <linux/platform_device.h>
 
 
  25#include <linux/pm_runtime.h>
  26#include <linux/property.h>
  27#include <linux/rtc.h>
  28#include <linux/rtc/rtc-omap.h>
  29
  30/*
  31 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
  32 * with century-range alarm matching, driven by the 32kHz clock.
  33 *
  34 * The main user-visible ways it differs from PC RTCs are by omitting
  35 * "don't care" alarm fields and sub-second periodic IRQs, and having
  36 * an autoadjust mechanism to calibrate to the true oscillator rate.
  37 *
  38 * Board-specific wiring options include using split power mode with
  39 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
  40 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
  41 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
  42 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
  43 */
  44
  45/* RTC registers */
  46#define OMAP_RTC_SECONDS_REG		0x00
  47#define OMAP_RTC_MINUTES_REG		0x04
  48#define OMAP_RTC_HOURS_REG		0x08
  49#define OMAP_RTC_DAYS_REG		0x0C
  50#define OMAP_RTC_MONTHS_REG		0x10
  51#define OMAP_RTC_YEARS_REG		0x14
  52#define OMAP_RTC_WEEKS_REG		0x18
  53
  54#define OMAP_RTC_ALARM_SECONDS_REG	0x20
  55#define OMAP_RTC_ALARM_MINUTES_REG	0x24
  56#define OMAP_RTC_ALARM_HOURS_REG	0x28
  57#define OMAP_RTC_ALARM_DAYS_REG		0x2c
  58#define OMAP_RTC_ALARM_MONTHS_REG	0x30
  59#define OMAP_RTC_ALARM_YEARS_REG	0x34
  60
  61#define OMAP_RTC_CTRL_REG		0x40
  62#define OMAP_RTC_STATUS_REG		0x44
  63#define OMAP_RTC_INTERRUPTS_REG		0x48
  64
  65#define OMAP_RTC_COMP_LSB_REG		0x4c
  66#define OMAP_RTC_COMP_MSB_REG		0x50
  67#define OMAP_RTC_OSC_REG		0x54
  68
  69#define OMAP_RTC_SCRATCH0_REG		0x60
  70#define OMAP_RTC_SCRATCH1_REG		0x64
  71#define OMAP_RTC_SCRATCH2_REG		0x68
  72
  73#define OMAP_RTC_KICK0_REG		0x6c
  74#define OMAP_RTC_KICK1_REG		0x70
  75
  76#define OMAP_RTC_IRQWAKEEN		0x7c
  77
  78#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
  79#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
  80#define OMAP_RTC_ALARM2_HOURS_REG	0x88
  81#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
  82#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
  83#define OMAP_RTC_ALARM2_YEARS_REG	0x94
  84
  85#define OMAP_RTC_PMIC_REG		0x98
  86
  87/* OMAP_RTC_CTRL_REG bit fields: */
  88#define OMAP_RTC_CTRL_SPLIT		BIT(7)
  89#define OMAP_RTC_CTRL_DISABLE		BIT(6)
  90#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
  91#define OMAP_RTC_CTRL_TEST		BIT(4)
  92#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
  93#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
  94#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
  95#define OMAP_RTC_CTRL_STOP		BIT(0)
  96
  97/* OMAP_RTC_STATUS_REG bit fields: */
  98#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
  99#define OMAP_RTC_STATUS_ALARM2		BIT(7)
 100#define OMAP_RTC_STATUS_ALARM		BIT(6)
 101#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
 102#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
 103#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
 104#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
 105#define OMAP_RTC_STATUS_RUN		BIT(1)
 106#define OMAP_RTC_STATUS_BUSY		BIT(0)
 107
 108/* OMAP_RTC_INTERRUPTS_REG bit fields: */
 109#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
 110#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
 111#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
 112
 113/* OMAP_RTC_OSC_REG bit fields: */
 114#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
 115#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
 116#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE	BIT(4)
 117
 118/* OMAP_RTC_IRQWAKEEN bit fields: */
 119#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
 120
 121/* OMAP_RTC_PMIC bit fields: */
 122#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
 123#define OMAP_RTC_PMIC_EXT_WKUP_EN(x)	BIT(x)
 124#define OMAP_RTC_PMIC_EXT_WKUP_POL(x)	BIT(4 + x)
 125
 126/* OMAP_RTC_KICKER values */
 127#define	KICK0_VALUE			0x83e70b13
 128#define	KICK1_VALUE			0x95a4f1e0
 129
 130struct omap_rtc;
 131
 132struct omap_rtc_device_type {
 133	bool has_32kclk_en;
 134	bool has_irqwakeen;
 135	bool has_pmic_mode;
 136	bool has_power_up_reset;
 137	void (*lock)(struct omap_rtc *rtc);
 138	void (*unlock)(struct omap_rtc *rtc);
 139};
 140
 141struct omap_rtc {
 142	struct rtc_device *rtc;
 143	void __iomem *base;
 144	struct clk *clk;
 145	int irq_alarm;
 146	int irq_timer;
 147	u8 interrupts_reg;
 148	bool is_pmic_controller;
 149	bool has_ext_clk;
 150	bool is_suspending;
 151	const struct omap_rtc_device_type *type;
 152	struct pinctrl_dev *pctldev;
 153};
 154
 155static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
 156{
 157	return readb(rtc->base + reg);
 158}
 159
 160static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
 161{
 162	return readl(rtc->base + reg);
 163}
 164
 165static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
 166{
 167	writeb(val, rtc->base + reg);
 168}
 169
 170static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
 171{
 172	writel(val, rtc->base + reg);
 173}
 174
 175static void am3352_rtc_unlock(struct omap_rtc *rtc)
 176{
 177	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
 178	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
 179}
 180
 181static void am3352_rtc_lock(struct omap_rtc *rtc)
 182{
 183	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
 184	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
 185}
 186
 187static void default_rtc_unlock(struct omap_rtc *rtc)
 188{
 189}
 190
 191static void default_rtc_lock(struct omap_rtc *rtc)
 192{
 193}
 194
 195/*
 196 * We rely on the rtc framework to handle locking (rtc->ops_lock),
 197 * so the only other requirement is that register accesses which
 198 * require BUSY to be clear are made with IRQs locally disabled
 199 */
 200static void rtc_wait_not_busy(struct omap_rtc *rtc)
 201{
 202	int count;
 203	u8 status;
 204
 205	/* BUSY may stay active for 1/32768 second (~30 usec) */
 206	for (count = 0; count < 50; count++) {
 207		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 208		if (!(status & OMAP_RTC_STATUS_BUSY))
 209			break;
 210		udelay(1);
 211	}
 212	/* now we have ~15 usec to read/write various registers */
 213}
 214
 215static irqreturn_t rtc_irq(int irq, void *dev_id)
 216{
 217	struct omap_rtc	*rtc = dev_id;
 218	unsigned long events = 0;
 219	u8 irq_data;
 220
 221	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 222
 223	/* alarm irq? */
 224	if (irq_data & OMAP_RTC_STATUS_ALARM) {
 225		rtc->type->unlock(rtc);
 226		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
 227		rtc->type->lock(rtc);
 228		events |= RTC_IRQF | RTC_AF;
 229	}
 230
 231	/* 1/sec periodic/update irq? */
 232	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
 233		events |= RTC_IRQF | RTC_UF;
 234
 235	rtc_update_irq(rtc->rtc, 1, events);
 236
 237	return IRQ_HANDLED;
 238}
 239
 240static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 241{
 242	struct omap_rtc *rtc = dev_get_drvdata(dev);
 243	u8 reg, irqwake_reg = 0;
 244
 245	local_irq_disable();
 246	rtc_wait_not_busy(rtc);
 247	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 248	if (rtc->type->has_irqwakeen)
 249		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
 250
 251	if (enabled) {
 252		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
 253		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 254	} else {
 255		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
 256		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 257	}
 258	rtc_wait_not_busy(rtc);
 259	rtc->type->unlock(rtc);
 260	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
 261	if (rtc->type->has_irqwakeen)
 262		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
 263	rtc->type->lock(rtc);
 264	local_irq_enable();
 265
 266	return 0;
 267}
 268
 269/* this hardware doesn't support "don't care" alarm fields */
 270static void tm2bcd(struct rtc_time *tm)
 271{
 
 
 
 272	tm->tm_sec = bin2bcd(tm->tm_sec);
 273	tm->tm_min = bin2bcd(tm->tm_min);
 274	tm->tm_hour = bin2bcd(tm->tm_hour);
 275	tm->tm_mday = bin2bcd(tm->tm_mday);
 276
 277	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
 
 
 
 
 278	tm->tm_year = bin2bcd(tm->tm_year - 100);
 
 
 279}
 280
 281static void bcd2tm(struct rtc_time *tm)
 282{
 283	tm->tm_sec = bcd2bin(tm->tm_sec);
 284	tm->tm_min = bcd2bin(tm->tm_min);
 285	tm->tm_hour = bcd2bin(tm->tm_hour);
 286	tm->tm_mday = bcd2bin(tm->tm_mday);
 287	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
 288	/* epoch == 1900 */
 289	tm->tm_year = bcd2bin(tm->tm_year) + 100;
 290}
 291
 292static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
 293{
 294	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
 295	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
 296	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
 297	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
 298	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
 299	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
 300}
 301
 302static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
 303{
 304	struct omap_rtc *rtc = dev_get_drvdata(dev);
 305
 306	/* we don't report wday/yday/isdst ... */
 307	local_irq_disable();
 308	rtc_wait_not_busy(rtc);
 309	omap_rtc_read_time_raw(rtc, tm);
 310	local_irq_enable();
 311
 312	bcd2tm(tm);
 313
 314	return 0;
 315}
 316
 317static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
 318{
 319	struct omap_rtc *rtc = dev_get_drvdata(dev);
 320
 321	tm2bcd(tm);
 
 322
 323	local_irq_disable();
 324	rtc_wait_not_busy(rtc);
 325
 326	rtc->type->unlock(rtc);
 327	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
 328	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
 329	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
 330	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
 331	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
 332	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
 333	rtc->type->lock(rtc);
 334
 335	local_irq_enable();
 336
 337	return 0;
 338}
 339
 340static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
 341{
 342	struct omap_rtc *rtc = dev_get_drvdata(dev);
 343	u8 interrupts;
 344
 345	local_irq_disable();
 346	rtc_wait_not_busy(rtc);
 347
 348	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
 349	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
 350	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
 351	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
 352	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
 353	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
 354
 355	local_irq_enable();
 356
 357	bcd2tm(&alm->time);
 358
 359	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 360	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
 361
 362	return 0;
 363}
 364
 365static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
 366{
 367	struct omap_rtc *rtc = dev_get_drvdata(dev);
 368	u8 reg, irqwake_reg = 0;
 369
 370	tm2bcd(&alm->time);
 
 371
 372	local_irq_disable();
 373	rtc_wait_not_busy(rtc);
 374
 375	rtc->type->unlock(rtc);
 376	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
 377	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
 378	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
 379	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
 380	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
 381	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
 382
 383	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 384	if (rtc->type->has_irqwakeen)
 385		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
 386
 387	if (alm->enabled) {
 388		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
 389		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 390	} else {
 391		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
 392		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 393	}
 394	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
 395	if (rtc->type->has_irqwakeen)
 396		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
 397	rtc->type->lock(rtc);
 398
 399	local_irq_enable();
 400
 401	return 0;
 402}
 403
 404static struct omap_rtc *omap_rtc_power_off_rtc;
 405
 406/**
 407 * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC
 408 * generates pmic_pwr_enable control, which can be used to control an external
 409 * PMIC.
 
 
 
 
 
 
 
 
 
 410 */
 411int omap_rtc_power_off_program(struct device *dev)
 412{
 413	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
 414	struct rtc_time tm;
 415	unsigned long now;
 416	int seconds;
 417	u32 val;
 418
 419	rtc->type->unlock(rtc);
 420	/* enable pmic_power_en control */
 421	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 422	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
 423
 424again:
 425	/* Clear any existing ALARM2 event */
 426	rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2);
 427
 428	/* set alarm one second from now */
 429	omap_rtc_read_time_raw(rtc, &tm);
 430	seconds = tm.tm_sec;
 431	bcd2tm(&tm);
 432	now = rtc_tm_to_time64(&tm);
 433	rtc_time64_to_tm(now + 1, &tm);
 434
 435	tm2bcd(&tm);
 
 
 
 436
 437	rtc_wait_not_busy(rtc);
 438
 439	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
 440	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
 441	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
 442	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
 443	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
 444	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
 445
 446	/*
 447	 * enable ALARM2 interrupt
 448	 *
 449	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
 450	 */
 451	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 452	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
 453			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
 454
 455	/* Retry in case roll over happened before alarm was armed. */
 456	if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) {
 457		val = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 458		if (!(val & OMAP_RTC_STATUS_ALARM2))
 459			goto again;
 460	}
 461
 462	rtc->type->lock(rtc);
 463
 464	return 0;
 465}
 466EXPORT_SYMBOL(omap_rtc_power_off_program);
 467
 468/*
 469 * omap_rtc_poweroff: RTC-controlled power off
 470 *
 471 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
 472 * which can be configured to transition to OFF on ALARM2 events.
 473 *
 474 * Notes:
 475 * The one-second alarm offset is the shortest offset possible as the alarm
 476 * registers must be set before the next timer update and the offset
 477 * calculation is too heavy for everything to be done within a single access
 478 * period (~15 us).
 479 *
 480 * Called with local interrupts disabled.
 481 */
 482static void omap_rtc_power_off(void)
 483{
 484	struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc;
 485	u32 val;
 486
 487	omap_rtc_power_off_program(rtc->dev.parent);
 488
 489	/* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */
 490	omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc);
 491	val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG);
 492	val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) |
 493			OMAP_RTC_PMIC_EXT_WKUP_EN(0);
 494	rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val);
 495	omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc);
 496
 497	/*
 498	 * Wait for alarm to trigger (within one second) and external PMIC to
 499	 * power off the system. Add a 500 ms margin for external latencies
 500	 * (e.g. debounce circuits).
 501	 */
 502	mdelay(1500);
 503}
 504
 505static const struct rtc_class_ops omap_rtc_ops = {
 506	.read_time	= omap_rtc_read_time,
 507	.set_time	= omap_rtc_set_time,
 508	.read_alarm	= omap_rtc_read_alarm,
 509	.set_alarm	= omap_rtc_set_alarm,
 510	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
 511};
 512
 513static const struct omap_rtc_device_type omap_rtc_default_type = {
 514	.has_power_up_reset = true,
 515	.lock		= default_rtc_lock,
 516	.unlock		= default_rtc_unlock,
 517};
 518
 519static const struct omap_rtc_device_type omap_rtc_am3352_type = {
 520	.has_32kclk_en	= true,
 521	.has_irqwakeen	= true,
 522	.has_pmic_mode	= true,
 523	.lock		= am3352_rtc_lock,
 524	.unlock		= am3352_rtc_unlock,
 525};
 526
 527static const struct omap_rtc_device_type omap_rtc_da830_type = {
 528	.lock		= am3352_rtc_lock,
 529	.unlock		= am3352_rtc_unlock,
 530};
 531
 532static const struct platform_device_id omap_rtc_id_table[] = {
 533	{
 534		.name	= "omap_rtc",
 535		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
 536	}, {
 537		.name	= "am3352-rtc",
 538		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
 539	}, {
 540		.name	= "da830-rtc",
 541		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
 542	}, {
 543		/* sentinel */
 544	}
 545};
 546MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
 547
 548static const struct of_device_id omap_rtc_of_match[] = {
 549	{
 550		.compatible	= "ti,am3352-rtc",
 551		.data		= &omap_rtc_am3352_type,
 552	}, {
 553		.compatible	= "ti,da830-rtc",
 554		.data		= &omap_rtc_da830_type,
 555	}, {
 556		/* sentinel */
 557	}
 558};
 559MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
 560
 561static const struct pinctrl_pin_desc rtc_pins_desc[] = {
 562	PINCTRL_PIN(0, "ext_wakeup0"),
 563	PINCTRL_PIN(1, "ext_wakeup1"),
 564	PINCTRL_PIN(2, "ext_wakeup2"),
 565	PINCTRL_PIN(3, "ext_wakeup3"),
 566};
 567
 568static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
 569{
 570	return 0;
 571}
 572
 573static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
 574					unsigned int group)
 575{
 576	return NULL;
 577}
 578
 579static const struct pinctrl_ops rtc_pinctrl_ops = {
 580	.get_groups_count = rtc_pinctrl_get_groups_count,
 581	.get_group_name = rtc_pinctrl_get_group_name,
 582	.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
 583	.dt_free_map = pinconf_generic_dt_free_map,
 584};
 585
 586#define PIN_CONFIG_ACTIVE_HIGH		(PIN_CONFIG_END + 1)
 587
 588static const struct pinconf_generic_params rtc_params[] = {
 589	{"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
 590};
 591
 592#ifdef CONFIG_DEBUG_FS
 593static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
 594	PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
 595};
 596#endif
 597
 598static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
 599			unsigned int pin, unsigned long *config)
 600{
 601	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
 602	unsigned int param = pinconf_to_config_param(*config);
 603	u32 val;
 604	u16 arg = 0;
 605
 606	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 607
 608	switch (param) {
 609	case PIN_CONFIG_INPUT_ENABLE:
 610		if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
 611			return -EINVAL;
 612		break;
 613	case PIN_CONFIG_ACTIVE_HIGH:
 614		if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
 615			return -EINVAL;
 616		break;
 617	default:
 618		return -ENOTSUPP;
 619	}
 620
 621	*config = pinconf_to_config_packed(param, arg);
 622
 623	return 0;
 624}
 625
 626static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
 627			unsigned int pin, unsigned long *configs,
 628			unsigned int num_configs)
 629{
 630	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
 631	u32 val;
 632	unsigned int param;
 633	u32 param_val;
 634	int i;
 635
 636	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 637
 638	/* active low by default */
 639	val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
 640
 641	for (i = 0; i < num_configs; i++) {
 642		param = pinconf_to_config_param(configs[i]);
 643		param_val = pinconf_to_config_argument(configs[i]);
 644
 645		switch (param) {
 646		case PIN_CONFIG_INPUT_ENABLE:
 647			if (param_val)
 648				val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
 649			else
 650				val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
 651			break;
 652		case PIN_CONFIG_ACTIVE_HIGH:
 653			val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
 654			break;
 655		default:
 656			dev_err(&rtc->rtc->dev, "Property %u not supported\n",
 657				param);
 658			return -ENOTSUPP;
 659		}
 660	}
 661
 662	rtc->type->unlock(rtc);
 663	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
 664	rtc->type->lock(rtc);
 665
 666	return 0;
 667}
 668
 669static const struct pinconf_ops rtc_pinconf_ops = {
 670	.is_generic = true,
 671	.pin_config_get = rtc_pinconf_get,
 672	.pin_config_set = rtc_pinconf_set,
 673};
 674
 675static struct pinctrl_desc rtc_pinctrl_desc = {
 676	.pins = rtc_pins_desc,
 677	.npins = ARRAY_SIZE(rtc_pins_desc),
 678	.pctlops = &rtc_pinctrl_ops,
 679	.confops = &rtc_pinconf_ops,
 680	.custom_params = rtc_params,
 681	.num_custom_params = ARRAY_SIZE(rtc_params),
 682#ifdef CONFIG_DEBUG_FS
 683	.custom_conf_items = rtc_conf_items,
 684#endif
 685	.owner = THIS_MODULE,
 686};
 687
 688static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
 689				 size_t bytes)
 690{
 691	struct omap_rtc	*rtc = priv;
 692	u32 *val = _val;
 693	int i;
 694
 695	for (i = 0; i < bytes / 4; i++)
 696		val[i] = rtc_readl(rtc,
 697				   OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
 698
 699	return 0;
 700}
 701
 702static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
 703				  size_t bytes)
 704{
 705	struct omap_rtc	*rtc = priv;
 706	u32 *val = _val;
 707	int i;
 708
 709	rtc->type->unlock(rtc);
 710	for (i = 0; i < bytes / 4; i++)
 711		rtc_writel(rtc,
 712			   OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
 713	rtc->type->lock(rtc);
 714
 715	return 0;
 716}
 717
 718static struct nvmem_config omap_rtc_nvmem_config = {
 719	.name = "omap_rtc_scratch",
 720	.word_size = 4,
 721	.stride = 4,
 722	.size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
 723	.reg_read = omap_rtc_scratch_read,
 724	.reg_write = omap_rtc_scratch_write,
 725};
 726
 727static int omap_rtc_probe(struct platform_device *pdev)
 728{
 729	struct omap_rtc	*rtc;
 
 730	u8 reg, mask, new_ctrl;
 731	const struct platform_device_id *id_entry;
 
 732	int ret;
 733
 734	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
 735	if (!rtc)
 736		return -ENOMEM;
 737
 738	rtc->type = device_get_match_data(&pdev->dev);
 739	if (rtc->type) {
 
 740		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
 741			of_device_is_system_power_controller(pdev->dev.of_node);
 
 742	} else {
 743		id_entry = platform_get_device_id(pdev);
 744		rtc->type = (void *)id_entry->driver_data;
 745	}
 746
 747	rtc->irq_timer = platform_get_irq(pdev, 0);
 748	if (rtc->irq_timer < 0)
 749		return rtc->irq_timer;
 750
 751	rtc->irq_alarm = platform_get_irq(pdev, 1);
 752	if (rtc->irq_alarm < 0)
 753		return rtc->irq_alarm;
 754
 755	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
 756	if (!IS_ERR(rtc->clk))
 757		rtc->has_ext_clk = true;
 758	else
 759		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
 760
 761	if (!IS_ERR(rtc->clk))
 762		clk_prepare_enable(rtc->clk);
 763
 764	rtc->base = devm_platform_ioremap_resource(pdev, 0);
 765	if (IS_ERR(rtc->base)) {
 766		clk_disable_unprepare(rtc->clk);
 767		return PTR_ERR(rtc->base);
 768	}
 769
 770	platform_set_drvdata(pdev, rtc);
 771
 772	/* Enable the clock/module so that we can access the registers */
 773	pm_runtime_enable(&pdev->dev);
 774	pm_runtime_get_sync(&pdev->dev);
 775
 776	rtc->type->unlock(rtc);
 777
 778	/*
 779	 * disable interrupts
 780	 *
 781	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
 782	 */
 783	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 784
 785	/* enable RTC functional clock */
 786	if (rtc->type->has_32kclk_en) {
 787		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 788		rtc_write(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN);
 
 789	}
 790
 791	/* clear old status */
 792	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 793
 794	mask = OMAP_RTC_STATUS_ALARM;
 795
 796	if (rtc->type->has_pmic_mode)
 797		mask |= OMAP_RTC_STATUS_ALARM2;
 798
 799	if (rtc->type->has_power_up_reset) {
 800		mask |= OMAP_RTC_STATUS_POWER_UP;
 801		if (reg & OMAP_RTC_STATUS_POWER_UP)
 802			dev_info(&pdev->dev, "RTC power up reset detected\n");
 803	}
 804
 805	if (reg & mask)
 806		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
 807
 808	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
 809	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
 810	if (reg & OMAP_RTC_CTRL_STOP)
 811		dev_info(&pdev->dev, "already running\n");
 812
 813	/* force to 24 hour mode */
 814	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
 815	new_ctrl |= OMAP_RTC_CTRL_STOP;
 816
 817	/*
 818	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
 819	 *
 820	 *  - Device wake-up capability setting should come through chip
 821	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
 822	 *    flag in the platform device if the board is wired right for
 823	 *    being woken up by RTC alarm. For OMAP-L138, this capability
 824	 *    is built into the SoC by the "Deep Sleep" capability.
 825	 *
 826	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
 827	 *    rather than nPWRON_RESET, should forcibly enable split
 828	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
 829	 *    is write-only, and always reads as zero...)
 830	 */
 831
 832	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
 833		dev_info(&pdev->dev, "split power mode\n");
 834
 835	if (reg != new_ctrl)
 836		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
 837
 838	/*
 839	 * If we have the external clock then switch to it so we can keep
 840	 * ticking across suspend.
 841	 */
 842	if (rtc->has_ext_clk) {
 843		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 844		reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
 845		reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
 846		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
 847	}
 848
 849	rtc->type->lock(rtc);
 850
 851	device_init_wakeup(&pdev->dev, true);
 852
 853	rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
 
 854	if (IS_ERR(rtc->rtc)) {
 855		ret = PTR_ERR(rtc->rtc);
 856		goto err;
 857	}
 858
 859	rtc->rtc->ops = &omap_rtc_ops;
 860	rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
 861	rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
 862	omap_rtc_nvmem_config.priv = rtc;
 863
 864	/* handle periodic and alarm irqs */
 865	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
 866			dev_name(&rtc->rtc->dev), rtc);
 867	if (ret)
 868		goto err;
 869
 870	if (rtc->irq_timer != rtc->irq_alarm) {
 871		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
 872				dev_name(&rtc->rtc->dev), rtc);
 873		if (ret)
 874			goto err;
 875	}
 876
 877	/* Support ext_wakeup pinconf */
 878	rtc_pinctrl_desc.name = dev_name(&pdev->dev);
 879
 880	rtc->pctldev = devm_pinctrl_register(&pdev->dev, &rtc_pinctrl_desc, rtc);
 881	if (IS_ERR(rtc->pctldev)) {
 882		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
 883		ret = PTR_ERR(rtc->pctldev);
 884		goto err;
 885	}
 886
 887	ret = devm_rtc_register_device(rtc->rtc);
 888	if (ret)
 889		goto err;
 890
 891	devm_rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
 892
 893	if (rtc->is_pmic_controller) {
 894		if (!pm_power_off) {
 895			omap_rtc_power_off_rtc = rtc;
 896			pm_power_off = omap_rtc_power_off;
 897		}
 898	}
 899
 900	return 0;
 901
 902err:
 903	clk_disable_unprepare(rtc->clk);
 904	device_init_wakeup(&pdev->dev, false);
 905	rtc->type->lock(rtc);
 906	pm_runtime_put_sync(&pdev->dev);
 907	pm_runtime_disable(&pdev->dev);
 908
 909	return ret;
 910}
 911
 912static void omap_rtc_remove(struct platform_device *pdev)
 913{
 914	struct omap_rtc *rtc = platform_get_drvdata(pdev);
 915	u8 reg;
 916
 917	if (pm_power_off == omap_rtc_power_off &&
 918			omap_rtc_power_off_rtc == rtc) {
 919		pm_power_off = NULL;
 920		omap_rtc_power_off_rtc = NULL;
 921	}
 922
 923	device_init_wakeup(&pdev->dev, 0);
 924
 925	if (!IS_ERR(rtc->clk))
 926		clk_disable_unprepare(rtc->clk);
 927
 928	rtc->type->unlock(rtc);
 929	/* leave rtc running, but disable irqs */
 930	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 931
 932	if (rtc->has_ext_clk) {
 933		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 934		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
 935		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
 936	}
 937
 938	rtc->type->lock(rtc);
 939
 940	/* Disable the clock/module */
 941	pm_runtime_put_sync(&pdev->dev);
 942	pm_runtime_disable(&pdev->dev);
 
 
 943}
 944
 945static int __maybe_unused omap_rtc_suspend(struct device *dev)
 
 946{
 947	struct omap_rtc *rtc = dev_get_drvdata(dev);
 948
 949	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 950
 951	rtc->type->unlock(rtc);
 952	/*
 953	 * FIXME: the RTC alarm is not currently acting as a wakeup event
 954	 * source on some platforms, and in fact this enable() call is just
 955	 * saving a flag that's never used...
 956	 */
 957	if (device_may_wakeup(dev))
 958		enable_irq_wake(rtc->irq_alarm);
 959	else
 960		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 961	rtc->type->lock(rtc);
 962
 963	rtc->is_suspending = true;
 
 964
 965	return 0;
 966}
 967
 968static int __maybe_unused omap_rtc_resume(struct device *dev)
 969{
 970	struct omap_rtc *rtc = dev_get_drvdata(dev);
 971
 
 
 
 972	rtc->type->unlock(rtc);
 973	if (device_may_wakeup(dev))
 974		disable_irq_wake(rtc->irq_alarm);
 975	else
 976		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
 977	rtc->type->lock(rtc);
 978
 979	rtc->is_suspending = false;
 980
 981	return 0;
 982}
 983
 984static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
 985{
 986	struct omap_rtc *rtc = dev_get_drvdata(dev);
 987
 988	if (rtc->is_suspending && !rtc->has_ext_clk)
 989		return -EBUSY;
 990
 991	return 0;
 992}
 
 993
 994static const struct dev_pm_ops omap_rtc_pm_ops = {
 995	SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
 996	SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
 997};
 998
 999static void omap_rtc_shutdown(struct platform_device *pdev)
1000{
1001	struct omap_rtc *rtc = platform_get_drvdata(pdev);
1002	u8 mask;
1003
1004	/*
1005	 * Keep the ALARM interrupt enabled to allow the system to power up on
1006	 * alarm events.
1007	 */
1008	rtc->type->unlock(rtc);
1009	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1010	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1011	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1012	rtc->type->lock(rtc);
1013}
1014
1015static struct platform_driver omap_rtc_driver = {
1016	.probe		= omap_rtc_probe,
1017	.remove_new	= omap_rtc_remove,
1018	.shutdown	= omap_rtc_shutdown,
1019	.driver		= {
1020		.name	= "omap_rtc",
1021		.pm	= &omap_rtc_pm_ops,
1022		.of_match_table = omap_rtc_of_match,
1023	},
1024	.id_table	= omap_rtc_id_table,
1025};
1026
1027module_platform_driver(omap_rtc_driver);
1028
 
1029MODULE_AUTHOR("George G. Davis (and others)");
1030MODULE_LICENSE("GPL");
v4.6
 
  1/*
  2 * TI OMAP Real Time Clock interface for Linux
  3 *
  4 * Copyright (C) 2003 MontaVista Software, Inc.
  5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
  6 *
  7 * Copyright (C) 2006 David Brownell (new RTC framework)
  8 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
  9 *
 10 * This program is free software; you can redistribute it and/or
 11 * modify it under the terms of the GNU General Public License
 12 * as published by the Free Software Foundation; either version
 13 * 2 of the License, or (at your option) any later version.
 14 */
 15
 
 
 
 
 
 
 16#include <linux/kernel.h>
 17#include <linux/init.h>
 18#include <linux/module.h>
 19#include <linux/ioport.h>
 20#include <linux/delay.h>
 21#include <linux/rtc.h>
 22#include <linux/bcd.h>
 23#include <linux/platform_device.h>
 24#include <linux/of.h>
 25#include <linux/of_device.h>
 26#include <linux/pm_runtime.h>
 27#include <linux/io.h>
 28#include <linux/clk.h>
 
 29
 30/*
 31 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
 32 * with century-range alarm matching, driven by the 32kHz clock.
 33 *
 34 * The main user-visible ways it differs from PC RTCs are by omitting
 35 * "don't care" alarm fields and sub-second periodic IRQs, and having
 36 * an autoadjust mechanism to calibrate to the true oscillator rate.
 37 *
 38 * Board-specific wiring options include using split power mode with
 39 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
 40 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
 41 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
 42 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
 43 */
 44
 45/* RTC registers */
 46#define OMAP_RTC_SECONDS_REG		0x00
 47#define OMAP_RTC_MINUTES_REG		0x04
 48#define OMAP_RTC_HOURS_REG		0x08
 49#define OMAP_RTC_DAYS_REG		0x0C
 50#define OMAP_RTC_MONTHS_REG		0x10
 51#define OMAP_RTC_YEARS_REG		0x14
 52#define OMAP_RTC_WEEKS_REG		0x18
 53
 54#define OMAP_RTC_ALARM_SECONDS_REG	0x20
 55#define OMAP_RTC_ALARM_MINUTES_REG	0x24
 56#define OMAP_RTC_ALARM_HOURS_REG	0x28
 57#define OMAP_RTC_ALARM_DAYS_REG		0x2c
 58#define OMAP_RTC_ALARM_MONTHS_REG	0x30
 59#define OMAP_RTC_ALARM_YEARS_REG	0x34
 60
 61#define OMAP_RTC_CTRL_REG		0x40
 62#define OMAP_RTC_STATUS_REG		0x44
 63#define OMAP_RTC_INTERRUPTS_REG		0x48
 64
 65#define OMAP_RTC_COMP_LSB_REG		0x4c
 66#define OMAP_RTC_COMP_MSB_REG		0x50
 67#define OMAP_RTC_OSC_REG		0x54
 68
 
 
 
 
 69#define OMAP_RTC_KICK0_REG		0x6c
 70#define OMAP_RTC_KICK1_REG		0x70
 71
 72#define OMAP_RTC_IRQWAKEEN		0x7c
 73
 74#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
 75#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
 76#define OMAP_RTC_ALARM2_HOURS_REG	0x88
 77#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
 78#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
 79#define OMAP_RTC_ALARM2_YEARS_REG	0x94
 80
 81#define OMAP_RTC_PMIC_REG		0x98
 82
 83/* OMAP_RTC_CTRL_REG bit fields: */
 84#define OMAP_RTC_CTRL_SPLIT		BIT(7)
 85#define OMAP_RTC_CTRL_DISABLE		BIT(6)
 86#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
 87#define OMAP_RTC_CTRL_TEST		BIT(4)
 88#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
 89#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
 90#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
 91#define OMAP_RTC_CTRL_STOP		BIT(0)
 92
 93/* OMAP_RTC_STATUS_REG bit fields: */
 94#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
 95#define OMAP_RTC_STATUS_ALARM2		BIT(7)
 96#define OMAP_RTC_STATUS_ALARM		BIT(6)
 97#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
 98#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
 99#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
100#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
101#define OMAP_RTC_STATUS_RUN		BIT(1)
102#define OMAP_RTC_STATUS_BUSY		BIT(0)
103
104/* OMAP_RTC_INTERRUPTS_REG bit fields: */
105#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
106#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
107#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
108
109/* OMAP_RTC_OSC_REG bit fields: */
110#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
111#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
 
112
113/* OMAP_RTC_IRQWAKEEN bit fields: */
114#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
115
116/* OMAP_RTC_PMIC bit fields: */
117#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
 
 
118
119/* OMAP_RTC_KICKER values */
120#define	KICK0_VALUE			0x83e70b13
121#define	KICK1_VALUE			0x95a4f1e0
122
123struct omap_rtc;
124
125struct omap_rtc_device_type {
126	bool has_32kclk_en;
127	bool has_irqwakeen;
128	bool has_pmic_mode;
129	bool has_power_up_reset;
130	void (*lock)(struct omap_rtc *rtc);
131	void (*unlock)(struct omap_rtc *rtc);
132};
133
134struct omap_rtc {
135	struct rtc_device *rtc;
136	void __iomem *base;
137	struct clk *clk;
138	int irq_alarm;
139	int irq_timer;
140	u8 interrupts_reg;
141	bool is_pmic_controller;
142	bool has_ext_clk;
 
143	const struct omap_rtc_device_type *type;
 
144};
145
146static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
147{
148	return readb(rtc->base + reg);
149}
150
151static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
152{
153	return readl(rtc->base + reg);
154}
155
156static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
157{
158	writeb(val, rtc->base + reg);
159}
160
161static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
162{
163	writel(val, rtc->base + reg);
164}
165
166static void am3352_rtc_unlock(struct omap_rtc *rtc)
167{
168	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
169	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
170}
171
172static void am3352_rtc_lock(struct omap_rtc *rtc)
173{
174	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
175	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
176}
177
178static void default_rtc_unlock(struct omap_rtc *rtc)
179{
180}
181
182static void default_rtc_lock(struct omap_rtc *rtc)
183{
184}
185
186/*
187 * We rely on the rtc framework to handle locking (rtc->ops_lock),
188 * so the only other requirement is that register accesses which
189 * require BUSY to be clear are made with IRQs locally disabled
190 */
191static void rtc_wait_not_busy(struct omap_rtc *rtc)
192{
193	int count;
194	u8 status;
195
196	/* BUSY may stay active for 1/32768 second (~30 usec) */
197	for (count = 0; count < 50; count++) {
198		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
199		if (!(status & OMAP_RTC_STATUS_BUSY))
200			break;
201		udelay(1);
202	}
203	/* now we have ~15 usec to read/write various registers */
204}
205
206static irqreturn_t rtc_irq(int irq, void *dev_id)
207{
208	struct omap_rtc	*rtc = dev_id;
209	unsigned long events = 0;
210	u8 irq_data;
211
212	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
213
214	/* alarm irq? */
215	if (irq_data & OMAP_RTC_STATUS_ALARM) {
216		rtc->type->unlock(rtc);
217		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
218		rtc->type->lock(rtc);
219		events |= RTC_IRQF | RTC_AF;
220	}
221
222	/* 1/sec periodic/update irq? */
223	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
224		events |= RTC_IRQF | RTC_UF;
225
226	rtc_update_irq(rtc->rtc, 1, events);
227
228	return IRQ_HANDLED;
229}
230
231static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
232{
233	struct omap_rtc *rtc = dev_get_drvdata(dev);
234	u8 reg, irqwake_reg = 0;
235
236	local_irq_disable();
237	rtc_wait_not_busy(rtc);
238	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
239	if (rtc->type->has_irqwakeen)
240		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
241
242	if (enabled) {
243		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
244		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
245	} else {
246		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
247		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
248	}
249	rtc_wait_not_busy(rtc);
250	rtc->type->unlock(rtc);
251	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
252	if (rtc->type->has_irqwakeen)
253		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
254	rtc->type->lock(rtc);
255	local_irq_enable();
256
257	return 0;
258}
259
260/* this hardware doesn't support "don't care" alarm fields */
261static int tm2bcd(struct rtc_time *tm)
262{
263	if (rtc_valid_tm(tm) != 0)
264		return -EINVAL;
265
266	tm->tm_sec = bin2bcd(tm->tm_sec);
267	tm->tm_min = bin2bcd(tm->tm_min);
268	tm->tm_hour = bin2bcd(tm->tm_hour);
269	tm->tm_mday = bin2bcd(tm->tm_mday);
270
271	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
272
273	/* epoch == 1900 */
274	if (tm->tm_year < 100 || tm->tm_year > 199)
275		return -EINVAL;
276	tm->tm_year = bin2bcd(tm->tm_year - 100);
277
278	return 0;
279}
280
281static void bcd2tm(struct rtc_time *tm)
282{
283	tm->tm_sec = bcd2bin(tm->tm_sec);
284	tm->tm_min = bcd2bin(tm->tm_min);
285	tm->tm_hour = bcd2bin(tm->tm_hour);
286	tm->tm_mday = bcd2bin(tm->tm_mday);
287	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
288	/* epoch == 1900 */
289	tm->tm_year = bcd2bin(tm->tm_year) + 100;
290}
291
292static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
293{
294	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
295	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
296	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
297	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
298	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
299	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
300}
301
302static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
303{
304	struct omap_rtc *rtc = dev_get_drvdata(dev);
305
306	/* we don't report wday/yday/isdst ... */
307	local_irq_disable();
308	rtc_wait_not_busy(rtc);
309	omap_rtc_read_time_raw(rtc, tm);
310	local_irq_enable();
311
312	bcd2tm(tm);
313
314	return 0;
315}
316
317static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
318{
319	struct omap_rtc *rtc = dev_get_drvdata(dev);
320
321	if (tm2bcd(tm) < 0)
322		return -EINVAL;
323
324	local_irq_disable();
325	rtc_wait_not_busy(rtc);
326
327	rtc->type->unlock(rtc);
328	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
329	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
330	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
331	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
332	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
333	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
334	rtc->type->lock(rtc);
335
336	local_irq_enable();
337
338	return 0;
339}
340
341static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
342{
343	struct omap_rtc *rtc = dev_get_drvdata(dev);
344	u8 interrupts;
345
346	local_irq_disable();
347	rtc_wait_not_busy(rtc);
348
349	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
350	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
351	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
352	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
353	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
354	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
355
356	local_irq_enable();
357
358	bcd2tm(&alm->time);
359
360	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
361	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
362
363	return 0;
364}
365
366static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
367{
368	struct omap_rtc *rtc = dev_get_drvdata(dev);
369	u8 reg, irqwake_reg = 0;
370
371	if (tm2bcd(&alm->time) < 0)
372		return -EINVAL;
373
374	local_irq_disable();
375	rtc_wait_not_busy(rtc);
376
377	rtc->type->unlock(rtc);
378	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
379	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
380	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
381	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
382	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
383	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
384
385	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
386	if (rtc->type->has_irqwakeen)
387		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
388
389	if (alm->enabled) {
390		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
391		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
392	} else {
393		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
394		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
395	}
396	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
397	if (rtc->type->has_irqwakeen)
398		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
399	rtc->type->lock(rtc);
400
401	local_irq_enable();
402
403	return 0;
404}
405
406static struct omap_rtc *omap_rtc_power_off_rtc;
407
408/*
409 * omap_rtc_poweroff: RTC-controlled power off
410 *
411 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
412 * which can be configured to transition to OFF on ALARM2 events.
413 *
414 * Notes:
415 * The two-second alarm offset is the shortest offset possible as the alarm
416 * registers must be set before the next timer update and the offset
417 * calculation is too heavy for everything to be done within a single access
418 * period (~15 us).
419 *
420 * Called with local interrupts disabled.
421 */
422static void omap_rtc_power_off(void)
423{
424	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
425	struct rtc_time tm;
426	unsigned long now;
 
427	u32 val;
428
429	rtc->type->unlock(rtc);
430	/* enable pmic_power_en control */
431	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
432	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
433
434	/* set alarm two seconds from now */
 
 
 
 
435	omap_rtc_read_time_raw(rtc, &tm);
 
436	bcd2tm(&tm);
437	rtc_tm_to_time(&tm, &now);
438	rtc_time_to_tm(now + 2, &tm);
439
440	if (tm2bcd(&tm) < 0) {
441		dev_err(&rtc->rtc->dev, "power off failed\n");
442		return;
443	}
444
445	rtc_wait_not_busy(rtc);
446
447	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
448	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
449	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
450	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
451	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
452	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
453
454	/*
455	 * enable ALARM2 interrupt
456	 *
457	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
458	 */
459	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
460	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
461			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
 
 
 
 
 
 
 
 
462	rtc->type->lock(rtc);
463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464	/*
465	 * Wait for alarm to trigger (within two seconds) and external PMIC to
466	 * power off the system. Add a 500 ms margin for external latencies
467	 * (e.g. debounce circuits).
468	 */
469	mdelay(2500);
470}
471
472static struct rtc_class_ops omap_rtc_ops = {
473	.read_time	= omap_rtc_read_time,
474	.set_time	= omap_rtc_set_time,
475	.read_alarm	= omap_rtc_read_alarm,
476	.set_alarm	= omap_rtc_set_alarm,
477	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
478};
479
480static const struct omap_rtc_device_type omap_rtc_default_type = {
481	.has_power_up_reset = true,
482	.lock		= default_rtc_lock,
483	.unlock		= default_rtc_unlock,
484};
485
486static const struct omap_rtc_device_type omap_rtc_am3352_type = {
487	.has_32kclk_en	= true,
488	.has_irqwakeen	= true,
489	.has_pmic_mode	= true,
490	.lock		= am3352_rtc_lock,
491	.unlock		= am3352_rtc_unlock,
492};
493
494static const struct omap_rtc_device_type omap_rtc_da830_type = {
495	.lock		= am3352_rtc_lock,
496	.unlock		= am3352_rtc_unlock,
497};
498
499static const struct platform_device_id omap_rtc_id_table[] = {
500	{
501		.name	= "omap_rtc",
502		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
503	}, {
504		.name	= "am3352-rtc",
505		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
506	}, {
507		.name	= "da830-rtc",
508		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
509	}, {
510		/* sentinel */
511	}
512};
513MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
514
515static const struct of_device_id omap_rtc_of_match[] = {
516	{
517		.compatible	= "ti,am3352-rtc",
518		.data		= &omap_rtc_am3352_type,
519	}, {
520		.compatible	= "ti,da830-rtc",
521		.data		= &omap_rtc_da830_type,
522	}, {
523		/* sentinel */
524	}
525};
526MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528static int omap_rtc_probe(struct platform_device *pdev)
529{
530	struct omap_rtc	*rtc;
531	struct resource	*res;
532	u8 reg, mask, new_ctrl;
533	const struct platform_device_id *id_entry;
534	const struct of_device_id *of_id;
535	int ret;
536
537	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
538	if (!rtc)
539		return -ENOMEM;
540
541	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
542	if (of_id) {
543		rtc->type = of_id->data;
544		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
545				of_property_read_bool(pdev->dev.of_node,
546						"system-power-controller");
547	} else {
548		id_entry = platform_get_device_id(pdev);
549		rtc->type = (void *)id_entry->driver_data;
550	}
551
552	rtc->irq_timer = platform_get_irq(pdev, 0);
553	if (rtc->irq_timer <= 0)
554		return -ENOENT;
555
556	rtc->irq_alarm = platform_get_irq(pdev, 1);
557	if (rtc->irq_alarm <= 0)
558		return -ENOENT;
559
560	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
561	if (!IS_ERR(rtc->clk))
562		rtc->has_ext_clk = true;
563	else
564		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
565
566	if (!IS_ERR(rtc->clk))
567		clk_prepare_enable(rtc->clk);
568
569	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
570	rtc->base = devm_ioremap_resource(&pdev->dev, res);
571	if (IS_ERR(rtc->base))
572		return PTR_ERR(rtc->base);
 
573
574	platform_set_drvdata(pdev, rtc);
575
576	/* Enable the clock/module so that we can access the registers */
577	pm_runtime_enable(&pdev->dev);
578	pm_runtime_get_sync(&pdev->dev);
579
580	rtc->type->unlock(rtc);
581
582	/*
583	 * disable interrupts
584	 *
585	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
586	 */
587	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
588
589	/* enable RTC functional clock */
590	if (rtc->type->has_32kclk_en) {
591		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
592		rtc_writel(rtc, OMAP_RTC_OSC_REG,
593				reg | OMAP_RTC_OSC_32KCLK_EN);
594	}
595
596	/* clear old status */
597	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
598
599	mask = OMAP_RTC_STATUS_ALARM;
600
601	if (rtc->type->has_pmic_mode)
602		mask |= OMAP_RTC_STATUS_ALARM2;
603
604	if (rtc->type->has_power_up_reset) {
605		mask |= OMAP_RTC_STATUS_POWER_UP;
606		if (reg & OMAP_RTC_STATUS_POWER_UP)
607			dev_info(&pdev->dev, "RTC power up reset detected\n");
608	}
609
610	if (reg & mask)
611		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
612
613	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
614	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
615	if (reg & OMAP_RTC_CTRL_STOP)
616		dev_info(&pdev->dev, "already running\n");
617
618	/* force to 24 hour mode */
619	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
620	new_ctrl |= OMAP_RTC_CTRL_STOP;
621
622	/*
623	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
624	 *
625	 *  - Device wake-up capability setting should come through chip
626	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
627	 *    flag in the platform device if the board is wired right for
628	 *    being woken up by RTC alarm. For OMAP-L138, this capability
629	 *    is built into the SoC by the "Deep Sleep" capability.
630	 *
631	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
632	 *    rather than nPWRON_RESET, should forcibly enable split
633	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
634	 *    is write-only, and always reads as zero...)
635	 */
636
637	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
638		dev_info(&pdev->dev, "split power mode\n");
639
640	if (reg != new_ctrl)
641		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
642
643	/*
644	 * If we have the external clock then switch to it so we can keep
645	 * ticking across suspend.
646	 */
647	if (rtc->has_ext_clk) {
648		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
649		rtc_write(rtc, OMAP_RTC_OSC_REG,
650			  reg | OMAP_RTC_OSC_SEL_32KCLK_SRC);
 
651	}
652
653	rtc->type->lock(rtc);
654
655	device_init_wakeup(&pdev->dev, true);
656
657	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
658			&omap_rtc_ops, THIS_MODULE);
659	if (IS_ERR(rtc->rtc)) {
660		ret = PTR_ERR(rtc->rtc);
661		goto err;
662	}
663
 
 
 
 
 
664	/* handle periodic and alarm irqs */
665	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
666			dev_name(&rtc->rtc->dev), rtc);
667	if (ret)
668		goto err;
669
670	if (rtc->irq_timer != rtc->irq_alarm) {
671		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
672				dev_name(&rtc->rtc->dev), rtc);
673		if (ret)
674			goto err;
675	}
676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677	if (rtc->is_pmic_controller) {
678		if (!pm_power_off) {
679			omap_rtc_power_off_rtc = rtc;
680			pm_power_off = omap_rtc_power_off;
681		}
682	}
683
684	return 0;
685
686err:
 
687	device_init_wakeup(&pdev->dev, false);
688	rtc->type->lock(rtc);
689	pm_runtime_put_sync(&pdev->dev);
690	pm_runtime_disable(&pdev->dev);
691
692	return ret;
693}
694
695static int __exit omap_rtc_remove(struct platform_device *pdev)
696{
697	struct omap_rtc *rtc = platform_get_drvdata(pdev);
698	u8 reg;
699
700	if (pm_power_off == omap_rtc_power_off &&
701			omap_rtc_power_off_rtc == rtc) {
702		pm_power_off = NULL;
703		omap_rtc_power_off_rtc = NULL;
704	}
705
706	device_init_wakeup(&pdev->dev, 0);
707
708	if (!IS_ERR(rtc->clk))
709		clk_disable_unprepare(rtc->clk);
710
711	rtc->type->unlock(rtc);
712	/* leave rtc running, but disable irqs */
713	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
714
715	if (rtc->has_ext_clk) {
716		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
717		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
718		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
719	}
720
721	rtc->type->lock(rtc);
722
723	/* Disable the clock/module */
724	pm_runtime_put_sync(&pdev->dev);
725	pm_runtime_disable(&pdev->dev);
726
727	return 0;
728}
729
730#ifdef CONFIG_PM_SLEEP
731static int omap_rtc_suspend(struct device *dev)
732{
733	struct omap_rtc *rtc = dev_get_drvdata(dev);
734
735	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
736
737	rtc->type->unlock(rtc);
738	/*
739	 * FIXME: the RTC alarm is not currently acting as a wakeup event
740	 * source on some platforms, and in fact this enable() call is just
741	 * saving a flag that's never used...
742	 */
743	if (device_may_wakeup(dev))
744		enable_irq_wake(rtc->irq_alarm);
745	else
746		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
747	rtc->type->lock(rtc);
748
749	/* Disable the clock/module */
750	pm_runtime_put_sync(dev);
751
752	return 0;
753}
754
755static int omap_rtc_resume(struct device *dev)
756{
757	struct omap_rtc *rtc = dev_get_drvdata(dev);
758
759	/* Enable the clock/module so that we can access the registers */
760	pm_runtime_get_sync(dev);
761
762	rtc->type->unlock(rtc);
763	if (device_may_wakeup(dev))
764		disable_irq_wake(rtc->irq_alarm);
765	else
766		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
767	rtc->type->lock(rtc);
768
 
 
 
 
 
 
 
 
 
 
 
 
769	return 0;
770}
771#endif
772
773static SIMPLE_DEV_PM_OPS(omap_rtc_pm_ops, omap_rtc_suspend, omap_rtc_resume);
 
 
 
774
775static void omap_rtc_shutdown(struct platform_device *pdev)
776{
777	struct omap_rtc *rtc = platform_get_drvdata(pdev);
778	u8 mask;
779
780	/*
781	 * Keep the ALARM interrupt enabled to allow the system to power up on
782	 * alarm events.
783	 */
784	rtc->type->unlock(rtc);
785	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
786	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
787	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
788	rtc->type->lock(rtc);
789}
790
791static struct platform_driver omap_rtc_driver = {
792	.probe		= omap_rtc_probe,
793	.remove		= __exit_p(omap_rtc_remove),
794	.shutdown	= omap_rtc_shutdown,
795	.driver		= {
796		.name	= "omap_rtc",
797		.pm	= &omap_rtc_pm_ops,
798		.of_match_table = omap_rtc_of_match,
799	},
800	.id_table	= omap_rtc_id_table,
801};
802
803module_platform_driver(omap_rtc_driver);
804
805MODULE_ALIAS("platform:omap_rtc");
806MODULE_AUTHOR("George G. Davis (and others)");
807MODULE_LICENSE("GPL");