Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Core driver for the pin control subsystem
   4 *
   5 * Copyright (C) 2011-2012 ST-Ericsson SA
   6 * Written on behalf of Linaro for ST-Ericsson
   7 * Based on bits of regulator core, gpio core and clk core
   8 *
   9 * Author: Linus Walleij <linus.walleij@linaro.org>
  10 *
  11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
 
 
  12 */
  13#define pr_fmt(fmt) "pinctrl core: " fmt
  14
  15#include <linux/array_size.h>
  16#include <linux/cleanup.h>
  17#include <linux/debugfs.h>
  18#include <linux/device.h>
  19#include <linux/err.h>
  20#include <linux/export.h>
  21#include <linux/init.h>
  22#include <linux/kref.h>
 
 
  23#include <linux/list.h>
 
 
  24#include <linux/seq_file.h>
  25#include <linux/slab.h>
  26
  27#include <linux/gpio.h>
  28#include <linux/gpio/driver.h>
  29
  30#include <linux/pinctrl/consumer.h>
  31#include <linux/pinctrl/devinfo.h>
  32#include <linux/pinctrl/machine.h>
  33#include <linux/pinctrl/pinctrl.h>
 
 
 
 
 
  34
  35#include "core.h"
  36#include "devicetree.h"
  37#include "pinconf.h"
  38#include "pinmux.h"
 
 
  39
  40static bool pinctrl_dummy_state;
  41
  42/* Mutex taken to protect pinctrl_list */
  43static DEFINE_MUTEX(pinctrl_list_mutex);
  44
  45/* Mutex taken to protect pinctrl_maps */
  46DEFINE_MUTEX(pinctrl_maps_mutex);
  47
  48/* Mutex taken to protect pinctrldev_list */
  49static DEFINE_MUTEX(pinctrldev_list_mutex);
  50
  51/* Global list of pin control devices (struct pinctrl_dev) */
  52static LIST_HEAD(pinctrldev_list);
  53
  54/* List of pin controller handles (struct pinctrl) */
  55static LIST_HEAD(pinctrl_list);
  56
  57/* List of pinctrl maps (struct pinctrl_maps) */
  58LIST_HEAD(pinctrl_maps);
  59
  60
  61/**
  62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  63 *
  64 * Usually this function is called by platforms without pinctrl driver support
  65 * but run with some shared drivers using pinctrl APIs.
  66 * After calling this function, the pinctrl core will return successfully
  67 * with creating a dummy state for the driver to keep going smoothly.
  68 */
  69void pinctrl_provide_dummies(void)
  70{
  71	pinctrl_dummy_state = true;
  72}
  73
  74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  75{
  76	/* We're not allowed to register devices without name */
  77	return pctldev->desc->name;
  78}
  79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  80
  81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  82{
  83	return dev_name(pctldev->dev);
  84}
  85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  86
  87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  88{
  89	return pctldev->driver_data;
  90}
  91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  92
  93/**
  94 * get_pinctrl_dev_from_devname() - look up pin controller device
  95 * @devname: the name of a device instance, as returned by dev_name()
  96 *
  97 * Looks up a pin control device matching a certain device name or pure device
  98 * pointer, the pure device pointer will take precedence.
  99 */
 100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 101{
 102	struct pinctrl_dev *pctldev;
 103
 104	if (!devname)
 105		return NULL;
 106
 107	mutex_lock(&pinctrldev_list_mutex);
 108
 109	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 110		if (!strcmp(dev_name(pctldev->dev), devname)) {
 111			/* Matched on device name */
 112			mutex_unlock(&pinctrldev_list_mutex);
 113			return pctldev;
 114		}
 115	}
 116
 117	mutex_unlock(&pinctrldev_list_mutex);
 118
 119	return NULL;
 120}
 121
 122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 123{
 124	struct pinctrl_dev *pctldev;
 125
 126	mutex_lock(&pinctrldev_list_mutex);
 127
 128	list_for_each_entry(pctldev, &pinctrldev_list, node)
 129		if (device_match_of_node(pctldev->dev, np)) {
 130			mutex_unlock(&pinctrldev_list_mutex);
 131			return pctldev;
 132		}
 133
 134	mutex_unlock(&pinctrldev_list_mutex);
 135
 136	return NULL;
 137}
 138
 139/**
 140 * pin_get_from_name() - look up a pin number from a name
 141 * @pctldev: the pin control device to lookup the pin on
 142 * @name: the name of the pin to look up
 143 */
 144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 145{
 146	unsigned int i, pin;
 147
 148	/* The pin number can be retrived from the pin controller descriptor */
 149	for (i = 0; i < pctldev->desc->npins; i++) {
 150		struct pin_desc *desc;
 151
 152		pin = pctldev->desc->pins[i].number;
 153		desc = pin_desc_get(pctldev, pin);
 154		/* Pin space may be sparse */
 155		if (desc && !strcmp(name, desc->name))
 156			return pin;
 157	}
 158
 159	return -EINVAL;
 160}
 161
 162/**
 163 * pin_get_name() - look up a pin name from a pin id
 164 * @pctldev: the pin control device to lookup the pin on
 165 * @pin: pin number/id to look up
 166 */
 167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
 168{
 169	const struct pin_desc *desc;
 170
 171	desc = pin_desc_get(pctldev, pin);
 172	if (!desc) {
 173		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 174			pin);
 175		return NULL;
 176	}
 177
 178	return desc->name;
 179}
 180EXPORT_SYMBOL_GPL(pin_get_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181
 182/* Deletes a range of pin descriptors */
 183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 184				  const struct pinctrl_pin_desc *pins,
 185				  unsigned int num_pins)
 186{
 187	int i;
 188
 189	for (i = 0; i < num_pins; i++) {
 190		struct pin_desc *pindesc;
 191
 192		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 193					    pins[i].number);
 194		if (pindesc) {
 195			radix_tree_delete(&pctldev->pin_desc_tree,
 196					  pins[i].number);
 197			if (pindesc->dynamic_name)
 198				kfree(pindesc->name);
 199		}
 200		kfree(pindesc);
 201	}
 202}
 203
 204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 205				    const struct pinctrl_pin_desc *pin)
 206{
 207	struct pin_desc *pindesc;
 208	int error;
 209
 210	pindesc = pin_desc_get(pctldev, pin->number);
 211	if (pindesc) {
 212		dev_err(pctldev->dev, "pin %d already registered\n",
 213			pin->number);
 214		return -EINVAL;
 215	}
 216
 217	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 218	if (!pindesc)
 
 219		return -ENOMEM;
 
 220
 221	/* Set owner */
 222	pindesc->pctldev = pctldev;
 223
 224	/* Copy basic pin info */
 225	if (pin->name) {
 226		pindesc->name = pin->name;
 227	} else {
 228		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 229		if (!pindesc->name) {
 230			error = -ENOMEM;
 231			goto failed;
 232		}
 233		pindesc->dynamic_name = true;
 234	}
 235
 236	pindesc->drv_data = pin->drv_data;
 237
 238	error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 239	if (error)
 240		goto failed;
 241
 242	pr_debug("registered pin %d (%s) on %s\n",
 243		 pin->number, pindesc->name, pctldev->desc->name);
 244	return 0;
 245
 246failed:
 247	kfree(pindesc);
 248	return error;
 249}
 250
 251static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 252				 const struct pinctrl_pin_desc *pins,
 253				 unsigned int num_descs)
 254{
 255	unsigned int i;
 256	int ret = 0;
 257
 258	for (i = 0; i < num_descs; i++) {
 259		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 
 260		if (ret)
 261			return ret;
 262	}
 263
 264	return 0;
 265}
 266
 267/**
 268 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 269 * @range: GPIO range used for the translation
 270 * @gc: GPIO chip structure from the GPIO subsystem
 271 * @offset: hardware offset of the GPIO relative to the controller
 272 *
 273 * Finds the pin number for a given GPIO using the specified GPIO range
 274 * as a base for translation. The distinction between linear GPIO ranges
 275 * and pin list based GPIO ranges is managed correctly by this function.
 276 *
 277 * This function assumes the gpio is part of the specified GPIO range, use
 278 * only after making sure this is the case (e.g. by calling it on the
 279 * result of successful pinctrl_get_device_gpio_range calls)!
 280 */
 281static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 282			      struct gpio_chip *gc, unsigned int offset)
 283{
 284	unsigned int pin = gc->base + offset - range->base;
 285	if (range->pins)
 286		return range->pins[pin];
 287	else
 288		return range->pin_base + pin;
 289}
 290
 291/**
 292 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 293 * @pctldev: pin controller device to check
 294 * @gc: GPIO chip structure from the GPIO subsystem
 295 * @offset: hardware offset of the GPIO relative to the controller
 296 *
 297 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 298 * controller, return the range or NULL
 299 */
 300static struct pinctrl_gpio_range *
 301pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
 302			 unsigned int offset)
 303{
 304	struct pinctrl_gpio_range *range;
 305
 306	mutex_lock(&pctldev->mutex);
 307	/* Loop over the ranges */
 308	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 309		/* Check if we're in the valid range */
 310		if ((gc->base + offset) >= range->base &&
 311		    (gc->base + offset) < range->base + range->npins) {
 312			mutex_unlock(&pctldev->mutex);
 313			return range;
 314		}
 315	}
 316	mutex_unlock(&pctldev->mutex);
 317	return NULL;
 318}
 319
 320/**
 321 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 322 * the same GPIO chip are in range
 323 * @gc: GPIO chip structure from the GPIO subsystem
 324 * @offset: hardware offset of the GPIO relative to the controller
 325 *
 326 * This function is complement of pinctrl_match_gpio_range(). If the return
 327 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 328 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 329 * of the same GPIO chip don't have back-end pinctrl interface.
 330 * If the return value is true, it means that pinctrl device is ready & the
 331 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 332 * is false, it means that pinctrl device may not be ready.
 333 */
 334#ifdef CONFIG_GPIOLIB
 335static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
 336					 unsigned int offset)
 337{
 338	struct pinctrl_dev *pctldev;
 339	struct pinctrl_gpio_range *range = NULL;
 
 
 
 
 340
 341	mutex_lock(&pinctrldev_list_mutex);
 342
 343	/* Loop over the pin controllers */
 344	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 345		/* Loop over the ranges */
 346		mutex_lock(&pctldev->mutex);
 347		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 348			/* Check if any gpio range overlapped with gpio chip */
 349			if (range->base + range->npins - 1 < gc->base ||
 350			    range->base > gc->base + gc->ngpio - 1)
 351				continue;
 352			mutex_unlock(&pctldev->mutex);
 353			mutex_unlock(&pinctrldev_list_mutex);
 354			return true;
 355		}
 356		mutex_unlock(&pctldev->mutex);
 357	}
 358
 359	mutex_unlock(&pinctrldev_list_mutex);
 360
 361	return false;
 362}
 363#else
 364static inline bool
 365pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
 366{
 367	return true;
 368}
 369#endif
 370
 371/**
 372 * pinctrl_get_device_gpio_range() - find device for GPIO range
 373 * @gc: GPIO chip structure from the GPIO subsystem
 374 * @offset: hardware offset of the GPIO relative to the controller
 375 * @outdev: the pin control device if found
 376 * @outrange: the GPIO range if found
 377 *
 378 * Find the pin controller handling a certain GPIO pin from the pinspace of
 379 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 380 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 381 * may still have not been registered.
 382 */
 383static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
 384					 unsigned int offset,
 385					 struct pinctrl_dev **outdev,
 386					 struct pinctrl_gpio_range **outrange)
 387{
 388	struct pinctrl_dev *pctldev;
 389
 390	mutex_lock(&pinctrldev_list_mutex);
 391
 392	/* Loop over the pin controllers */
 393	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 394		struct pinctrl_gpio_range *range;
 395
 396		range = pinctrl_match_gpio_range(pctldev, gc, offset);
 397		if (range) {
 398			*outdev = pctldev;
 399			*outrange = range;
 400			mutex_unlock(&pinctrldev_list_mutex);
 401			return 0;
 402		}
 403	}
 404
 405	mutex_unlock(&pinctrldev_list_mutex);
 406
 407	return -EPROBE_DEFER;
 408}
 409
 410/**
 411 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 412 * @pctldev: pin controller device to add the range to
 413 * @range: the GPIO range to add
 414 *
 415 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 416 * this to register handled ranges after registering your pin controller.
 417 */
 418void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 419			    struct pinctrl_gpio_range *range)
 420{
 421	mutex_lock(&pctldev->mutex);
 422	list_add_tail(&range->node, &pctldev->gpio_ranges);
 423	mutex_unlock(&pctldev->mutex);
 424}
 425EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 426
 427void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 428			     struct pinctrl_gpio_range *ranges,
 429			     unsigned int nranges)
 430{
 431	int i;
 432
 433	for (i = 0; i < nranges; i++)
 434		pinctrl_add_gpio_range(pctldev, &ranges[i]);
 435}
 436EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 437
 438struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 439		struct pinctrl_gpio_range *range)
 440{
 441	struct pinctrl_dev *pctldev;
 442
 443	pctldev = get_pinctrl_dev_from_devname(devname);
 444
 445	/*
 446	 * If we can't find this device, let's assume that is because
 447	 * it has not probed yet, so the driver trying to register this
 448	 * range need to defer probing.
 449	 */
 450	if (!pctldev)
 451		return ERR_PTR(-EPROBE_DEFER);
 452
 453	pinctrl_add_gpio_range(pctldev, range);
 454
 455	return pctldev;
 456}
 457EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 458
 459int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 460			   const unsigned int **pins, unsigned int *num_pins)
 461{
 462	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 463	int gs;
 464
 465	if (!pctlops->get_group_pins)
 466		return -EINVAL;
 467
 468	gs = pinctrl_get_group_selector(pctldev, pin_group);
 469	if (gs < 0)
 470		return gs;
 471
 472	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 473}
 474EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 475
 476struct pinctrl_gpio_range *
 477pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 478					unsigned int pin)
 479{
 480	struct pinctrl_gpio_range *range;
 481
 482	/* Loop over the ranges */
 483	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 484		/* Check if we're in the valid range */
 485		if (range->pins) {
 486			int a;
 487			for (a = 0; a < range->npins; a++) {
 488				if (range->pins[a] == pin)
 489					return range;
 490			}
 491		} else if (pin >= range->pin_base &&
 492			   pin < range->pin_base + range->npins)
 493			return range;
 494	}
 495
 496	return NULL;
 497}
 498EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 499
 500/**
 501 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 502 * @pctldev: the pin controller device to look in
 503 * @pin: a controller-local number to find the range for
 504 */
 505struct pinctrl_gpio_range *
 506pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 507				 unsigned int pin)
 508{
 509	struct pinctrl_gpio_range *range;
 510
 511	mutex_lock(&pctldev->mutex);
 512	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 513	mutex_unlock(&pctldev->mutex);
 514
 515	return range;
 516}
 517EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 518
 519/**
 520 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 521 * @pctldev: pin controller device to remove the range from
 522 * @range: the GPIO range to remove
 523 */
 524void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 525			       struct pinctrl_gpio_range *range)
 526{
 527	mutex_lock(&pctldev->mutex);
 528	list_del(&range->node);
 529	mutex_unlock(&pctldev->mutex);
 530}
 531EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 532
 533#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 534
 535/**
 536 * pinctrl_generic_get_group_count() - returns the number of pin groups
 537 * @pctldev: pin controller device
 538 */
 539int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 540{
 541	return pctldev->num_groups;
 542}
 543EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 544
 545/**
 546 * pinctrl_generic_get_group_name() - returns the name of a pin group
 547 * @pctldev: pin controller device
 548 * @selector: group number
 549 */
 550const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 551					   unsigned int selector)
 552{
 553	struct group_desc *group;
 554
 555	group = radix_tree_lookup(&pctldev->pin_group_tree,
 556				  selector);
 557	if (!group)
 558		return NULL;
 559
 560	return group->grp.name;
 561}
 562EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 563
 564/**
 565 * pinctrl_generic_get_group_pins() - gets the pin group pins
 566 * @pctldev: pin controller device
 567 * @selector: group number
 568 * @pins: pins in the group
 569 * @num_pins: number of pins in the group
 570 */
 571int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 572				   unsigned int selector,
 573				   const unsigned int **pins,
 574				   unsigned int *num_pins)
 575{
 576	struct group_desc *group;
 577
 578	group = radix_tree_lookup(&pctldev->pin_group_tree,
 579				  selector);
 580	if (!group) {
 581		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 582			__func__, selector);
 583		return -EINVAL;
 584	}
 585
 586	*pins = group->grp.pins;
 587	*num_pins = group->grp.npins;
 588
 589	return 0;
 590}
 591EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 592
 593/**
 594 * pinctrl_generic_get_group() - returns a pin group based on the number
 595 * @pctldev: pin controller device
 596 * @selector: group number
 597 */
 598struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 599					     unsigned int selector)
 600{
 601	struct group_desc *group;
 602
 603	group = radix_tree_lookup(&pctldev->pin_group_tree,
 604				  selector);
 605	if (!group)
 606		return NULL;
 607
 608	return group;
 609}
 610EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 611
 612static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 613						  const char *function)
 614{
 615	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 616	int ngroups = ops->get_groups_count(pctldev);
 617	int selector = 0;
 618
 619	/* See if this pctldev has this group */
 620	while (selector < ngroups) {
 621		const char *gname = ops->get_group_name(pctldev, selector);
 622
 623		if (gname && !strcmp(function, gname))
 624			return selector;
 625
 626		selector++;
 627	}
 628
 629	return -EINVAL;
 630}
 631
 632/**
 633 * pinctrl_generic_add_group() - adds a new pin group
 634 * @pctldev: pin controller device
 635 * @name: name of the pin group
 636 * @pins: pins in the pin group
 637 * @num_pins: number of pins in the pin group
 638 * @data: pin controller driver specific data
 639 *
 640 * Note that the caller must take care of locking.
 641 */
 642int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 643			      const unsigned int *pins, int num_pins, void *data)
 644{
 645	struct group_desc *group;
 646	int selector, error;
 647
 648	if (!name)
 649		return -EINVAL;
 650
 651	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 652	if (selector >= 0)
 653		return selector;
 654
 655	selector = pctldev->num_groups;
 656
 657	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 658	if (!group)
 659		return -ENOMEM;
 660
 661	*group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
 662
 663	error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 664	if (error)
 665		return error;
 666
 667	pctldev->num_groups++;
 668
 669	return selector;
 670}
 671EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 672
 673/**
 674 * pinctrl_generic_remove_group() - removes a numbered pin group
 675 * @pctldev: pin controller device
 676 * @selector: group number
 677 *
 678 * Note that the caller must take care of locking.
 679 */
 680int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 681				 unsigned int selector)
 682{
 683	struct group_desc *group;
 684
 685	group = radix_tree_lookup(&pctldev->pin_group_tree,
 686				  selector);
 687	if (!group)
 688		return -ENOENT;
 689
 690	radix_tree_delete(&pctldev->pin_group_tree, selector);
 691	devm_kfree(pctldev->dev, group);
 692
 693	pctldev->num_groups--;
 694
 695	return 0;
 696}
 697EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 698
 699/**
 700 * pinctrl_generic_free_groups() - removes all pin groups
 701 * @pctldev: pin controller device
 702 *
 703 * Note that the caller must take care of locking. The pinctrl groups
 704 * are allocated with devm_kzalloc() so no need to free them here.
 705 */
 706static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 707{
 708	struct radix_tree_iter iter;
 709	void __rcu **slot;
 710
 711	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 712		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 713
 714	pctldev->num_groups = 0;
 715}
 716
 717#else
 718static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 719{
 720}
 721#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 722
 723/**
 724 * pinctrl_get_group_selector() - returns the group selector for a group
 725 * @pctldev: the pin controller handling the group
 726 * @pin_group: the pin group to look up
 727 */
 728int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 729			       const char *pin_group)
 730{
 731	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 732	unsigned int ngroups = pctlops->get_groups_count(pctldev);
 733	unsigned int group_selector = 0;
 734
 735	while (group_selector < ngroups) {
 736		const char *gname = pctlops->get_group_name(pctldev,
 737							    group_selector);
 738		if (gname && !strcmp(gname, pin_group)) {
 739			dev_dbg(pctldev->dev,
 740				"found group selector %u for %s\n",
 741				group_selector,
 742				pin_group);
 743			return group_selector;
 744		}
 745
 746		group_selector++;
 747	}
 748
 749	dev_err(pctldev->dev, "does not have pin group %s\n",
 750		pin_group);
 751
 752	return -EINVAL;
 753}
 754
 755bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
 756{
 757	struct pinctrl_dev *pctldev;
 758	struct pinctrl_gpio_range *range;
 759	bool result;
 760	int pin;
 761
 762	/*
 763	 * Try to obtain GPIO range, if it fails
 764	 * we're probably dealing with GPIO driver
 765	 * without a backing pin controller - bail out.
 766	 */
 767	if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
 768		return true;
 769
 770	mutex_lock(&pctldev->mutex);
 771
 772	/* Convert to the pin controllers number space */
 773	pin = gpio_to_pin(range, gc, offset);
 774
 775	result = pinmux_can_be_used_for_gpio(pctldev, pin);
 776
 777	mutex_unlock(&pctldev->mutex);
 778
 779	return result;
 780}
 781EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
 782
 783/**
 784 * pinctrl_gpio_request() - request a single pin to be used as GPIO
 785 * @gc: GPIO chip structure from the GPIO subsystem
 786 * @offset: hardware offset of the GPIO relative to the controller
 787 *
 788 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 789 * as part of their gpio_request() semantics, platforms and individual drivers
 790 * shall *NOT* request GPIO pins to be muxed in.
 791 */
 792int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
 793{
 794	struct pinctrl_gpio_range *range;
 795	struct pinctrl_dev *pctldev;
 796	int ret, pin;
 
 
 797
 798	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
 799	if (ret) {
 800		if (pinctrl_ready_for_gpio_range(gc, offset))
 801			ret = 0;
 802		return ret;
 803	}
 804
 805	mutex_lock(&pctldev->mutex);
 806
 807	/* Convert to the pin controllers number space */
 808	pin = gpio_to_pin(range, gc, offset);
 809
 810	ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
 811
 812	mutex_unlock(&pctldev->mutex);
 813
 814	return ret;
 815}
 816EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 817
 818/**
 819 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 820 * @gc: GPIO chip structure from the GPIO subsystem
 821 * @offset: hardware offset of the GPIO relative to the controller
 822 *
 823 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 824 * as part of their gpio_request() semantics, platforms and individual drivers
 825 * shall *NOT* request GPIO pins to be muxed in.
 826 */
 827void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
 828{
 829	struct pinctrl_gpio_range *range;
 830	struct pinctrl_dev *pctldev;
 831	int ret, pin;
 
 
 832
 833	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
 834	if (ret)
 835		return;
 836
 837	mutex_lock(&pctldev->mutex);
 838
 839	/* Convert to the pin controllers number space */
 840	pin = gpio_to_pin(range, gc, offset);
 841
 842	pinmux_free_gpio(pctldev, pin, range);
 843
 844	mutex_unlock(&pctldev->mutex);
 845}
 846EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 847
 848static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
 849				  bool input)
 850{
 851	struct pinctrl_dev *pctldev;
 852	struct pinctrl_gpio_range *range;
 853	int ret;
 854	int pin;
 855
 856	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
 857	if (ret) {
 858		return ret;
 859	}
 860
 861	mutex_lock(&pctldev->mutex);
 862
 863	/* Convert to the pin controllers number space */
 864	pin = gpio_to_pin(range, gc, offset);
 865	ret = pinmux_gpio_direction(pctldev, range, pin, input);
 866
 867	mutex_unlock(&pctldev->mutex);
 868
 869	return ret;
 870}
 871
 872/**
 873 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 874 * @gc: GPIO chip structure from the GPIO subsystem
 875 * @offset: hardware offset of the GPIO relative to the controller
 876 *
 877 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 878 * as part of their gpio_direction_input() semantics, platforms and individual
 879 * drivers shall *NOT* touch pin control GPIO calls.
 880 */
 881int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
 882{
 883	return pinctrl_gpio_direction(gc, offset, true);
 884}
 885EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 886
 887/**
 888 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 889 * @gc: GPIO chip structure from the GPIO subsystem
 890 * @offset: hardware offset of the GPIO relative to the controller
 891 *
 892 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 893 * as part of their gpio_direction_output() semantics, platforms and individual
 894 * drivers shall *NOT* touch pin control GPIO calls.
 895 */
 896int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
 897{
 898	return pinctrl_gpio_direction(gc, offset, false);
 899}
 900EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 901
 902/**
 903 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 904 * @gc: GPIO chip structure from the GPIO subsystem
 905 * @offset: hardware offset of the GPIO relative to the controller
 906 * @config: the configuration to apply to the GPIO
 907 *
 908 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 909 * they need to call the underlying pin controller to change GPIO config
 910 * (for example set debounce time).
 911 */
 912int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
 913				unsigned long config)
 914{
 915	unsigned long configs[] = { config };
 916	struct pinctrl_gpio_range *range;
 917	struct pinctrl_dev *pctldev;
 918	int ret, pin;
 919
 920	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
 921	if (ret)
 922		return ret;
 923
 924	mutex_lock(&pctldev->mutex);
 925	pin = gpio_to_pin(range, gc, offset);
 926	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 927	mutex_unlock(&pctldev->mutex);
 928
 929	return ret;
 930}
 931EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 932
 933static struct pinctrl_state *find_state(struct pinctrl *p,
 934					const char *name)
 935{
 936	struct pinctrl_state *state;
 937
 938	list_for_each_entry(state, &p->states, node)
 939		if (!strcmp(state->name, name))
 940			return state;
 941
 942	return NULL;
 943}
 944
 945static struct pinctrl_state *create_state(struct pinctrl *p,
 946					  const char *name)
 947{
 948	struct pinctrl_state *state;
 949
 950	state = kzalloc(sizeof(*state), GFP_KERNEL);
 951	if (!state)
 
 
 952		return ERR_PTR(-ENOMEM);
 
 953
 954	state->name = name;
 955	INIT_LIST_HEAD(&state->settings);
 956
 957	list_add_tail(&state->node, &p->states);
 958
 959	return state;
 960}
 961
 962static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 963		       const struct pinctrl_map *map)
 964{
 965	struct pinctrl_state *state;
 966	struct pinctrl_setting *setting;
 967	int ret;
 968
 969	state = find_state(p, map->name);
 970	if (!state)
 971		state = create_state(p, map->name);
 972	if (IS_ERR(state))
 973		return PTR_ERR(state);
 974
 975	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 976		return 0;
 977
 978	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 979	if (!setting)
 
 
 980		return -ENOMEM;
 
 981
 982	setting->type = map->type;
 983
 984	if (pctldev)
 985		setting->pctldev = pctldev;
 986	else
 987		setting->pctldev =
 988			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 989	if (!setting->pctldev) {
 990		kfree(setting);
 991		/* Do not defer probing of hogs (circular loop) */
 992		if (!strcmp(map->ctrl_dev_name, map->dev_name))
 993			return -ENODEV;
 994		/*
 995		 * OK let us guess that the driver is not there yet, and
 996		 * let's defer obtaining this pinctrl handle to later...
 997		 */
 998		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 999			map->ctrl_dev_name);
1000		return -EPROBE_DEFER;
1001	}
1002
1003	setting->dev_name = map->dev_name;
1004
1005	switch (map->type) {
1006	case PIN_MAP_TYPE_MUX_GROUP:
1007		ret = pinmux_map_to_setting(map, setting);
1008		break;
1009	case PIN_MAP_TYPE_CONFIGS_PIN:
1010	case PIN_MAP_TYPE_CONFIGS_GROUP:
1011		ret = pinconf_map_to_setting(map, setting);
1012		break;
1013	default:
1014		ret = -EINVAL;
1015		break;
1016	}
1017	if (ret < 0) {
1018		kfree(setting);
1019		return ret;
1020	}
1021
1022	list_add_tail(&setting->node, &state->settings);
1023
1024	return 0;
1025}
1026
1027static struct pinctrl *find_pinctrl(struct device *dev)
1028{
1029	struct pinctrl *p;
1030
1031	mutex_lock(&pinctrl_list_mutex);
1032	list_for_each_entry(p, &pinctrl_list, node)
1033		if (p->dev == dev) {
1034			mutex_unlock(&pinctrl_list_mutex);
1035			return p;
1036		}
1037
1038	mutex_unlock(&pinctrl_list_mutex);
1039	return NULL;
1040}
1041
1042static void pinctrl_free(struct pinctrl *p, bool inlist);
1043
1044static struct pinctrl *create_pinctrl(struct device *dev,
1045				      struct pinctrl_dev *pctldev)
1046{
1047	struct pinctrl *p;
1048	const char *devname;
1049	struct pinctrl_maps *maps_node;
1050	const struct pinctrl_map *map;
 
1051	int ret;
1052
1053	/*
1054	 * create the state cookie holder struct pinctrl for each
1055	 * mapping, this is what consumers will get when requesting
1056	 * a pin control handle with pinctrl_get()
1057	 */
1058	p = kzalloc(sizeof(*p), GFP_KERNEL);
1059	if (!p)
 
1060		return ERR_PTR(-ENOMEM);
 
1061	p->dev = dev;
1062	INIT_LIST_HEAD(&p->states);
1063	INIT_LIST_HEAD(&p->dt_maps);
1064
1065	ret = pinctrl_dt_to_map(p, pctldev);
1066	if (ret < 0) {
1067		kfree(p);
1068		return ERR_PTR(ret);
1069	}
1070
1071	devname = dev_name(dev);
1072
1073	mutex_lock(&pinctrl_maps_mutex);
1074	/* Iterate over the pin control maps to locate the right ones */
1075	for_each_pin_map(maps_node, map) {
1076		/* Map must be for this device */
1077		if (strcmp(map->dev_name, devname))
1078			continue;
1079		/*
1080		 * If pctldev is not null, we are claiming hog for it,
1081		 * that means, setting that is served by pctldev by itself.
1082		 *
1083		 * Thus we must skip map that is for this device but is served
1084		 * by other device.
1085		 */
1086		if (pctldev &&
1087		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1088			continue;
1089
1090		ret = add_setting(p, pctldev, map);
1091		/*
1092		 * At this point the adding of a setting may:
1093		 *
1094		 * - Defer, if the pinctrl device is not yet available
1095		 * - Fail, if the pinctrl device is not yet available,
1096		 *   AND the setting is a hog. We cannot defer that, since
1097		 *   the hog will kick in immediately after the device
1098		 *   is registered.
1099		 *
1100		 * If the error returned was not -EPROBE_DEFER then we
1101		 * accumulate the errors to see if we end up with
1102		 * an -EPROBE_DEFER later, as that is the worst case.
1103		 */
1104		if (ret == -EPROBE_DEFER) {
1105			pinctrl_free(p, false);
1106			mutex_unlock(&pinctrl_maps_mutex);
1107			return ERR_PTR(ret);
1108		}
1109	}
1110	mutex_unlock(&pinctrl_maps_mutex);
1111
1112	if (ret < 0) {
1113		/* If some other error than deferral occurred, return here */
1114		pinctrl_free(p, false);
1115		return ERR_PTR(ret);
1116	}
1117
1118	kref_init(&p->users);
1119
1120	/* Add the pinctrl handle to the global list */
1121	mutex_lock(&pinctrl_list_mutex);
1122	list_add_tail(&p->node, &pinctrl_list);
1123	mutex_unlock(&pinctrl_list_mutex);
1124
1125	return p;
1126}
1127
1128/**
1129 * pinctrl_get() - retrieves the pinctrl handle for a device
1130 * @dev: the device to obtain the handle for
1131 */
1132struct pinctrl *pinctrl_get(struct device *dev)
1133{
1134	struct pinctrl *p;
1135
1136	if (WARN_ON(!dev))
1137		return ERR_PTR(-EINVAL);
1138
1139	/*
1140	 * See if somebody else (such as the device core) has already
1141	 * obtained a handle to the pinctrl for this device. In that case,
1142	 * return another pointer to it.
1143	 */
1144	p = find_pinctrl(dev);
1145	if (p) {
1146		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1147		kref_get(&p->users);
1148		return p;
1149	}
1150
1151	return create_pinctrl(dev, NULL);
1152}
1153EXPORT_SYMBOL_GPL(pinctrl_get);
1154
1155static void pinctrl_free_setting(bool disable_setting,
1156				 struct pinctrl_setting *setting)
1157{
1158	switch (setting->type) {
1159	case PIN_MAP_TYPE_MUX_GROUP:
1160		if (disable_setting)
1161			pinmux_disable_setting(setting);
1162		pinmux_free_setting(setting);
1163		break;
1164	case PIN_MAP_TYPE_CONFIGS_PIN:
1165	case PIN_MAP_TYPE_CONFIGS_GROUP:
1166		pinconf_free_setting(setting);
1167		break;
1168	default:
1169		break;
1170	}
1171}
1172
1173static void pinctrl_free(struct pinctrl *p, bool inlist)
1174{
1175	struct pinctrl_state *state, *n1;
1176	struct pinctrl_setting *setting, *n2;
1177
1178	mutex_lock(&pinctrl_list_mutex);
1179	list_for_each_entry_safe(state, n1, &p->states, node) {
1180		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1181			pinctrl_free_setting(state == p->state, setting);
1182			list_del(&setting->node);
1183			kfree(setting);
1184		}
1185		list_del(&state->node);
1186		kfree(state);
1187	}
1188
1189	pinctrl_dt_free_maps(p);
1190
1191	if (inlist)
1192		list_del(&p->node);
1193	kfree(p);
1194	mutex_unlock(&pinctrl_list_mutex);
1195}
1196
1197/**
1198 * pinctrl_release() - release the pinctrl handle
1199 * @kref: the kref in the pinctrl being released
1200 */
1201static void pinctrl_release(struct kref *kref)
1202{
1203	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1204
1205	pinctrl_free(p, true);
1206}
1207
1208/**
1209 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1210 * @p: the pinctrl handle to release
1211 */
1212void pinctrl_put(struct pinctrl *p)
1213{
1214	kref_put(&p->users, pinctrl_release);
1215}
1216EXPORT_SYMBOL_GPL(pinctrl_put);
1217
1218/**
1219 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1220 * @p: the pinctrl handle to retrieve the state from
1221 * @name: the state name to retrieve
1222 */
1223struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1224						 const char *name)
1225{
1226	struct pinctrl_state *state;
1227
1228	state = find_state(p, name);
1229	if (!state) {
1230		if (pinctrl_dummy_state) {
1231			/* create dummy state */
1232			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1233				name);
1234			state = create_state(p, name);
1235		} else
1236			state = ERR_PTR(-ENODEV);
1237	}
1238
1239	return state;
1240}
1241EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1242
1243static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1244			     struct device *consumer)
1245{
1246	if (pctldev->desc->link_consumers)
1247		device_link_add(consumer, pctldev->dev,
1248				DL_FLAG_PM_RUNTIME |
1249				DL_FLAG_AUTOREMOVE_CONSUMER);
1250}
1251
1252/**
1253 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1254 * @p: the pinctrl handle for the device that requests configuration
1255 * @state: the state handle to select/activate/program
1256 */
1257static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1258{
1259	struct pinctrl_setting *setting, *setting2;
1260	struct pinctrl_state *old_state = READ_ONCE(p->state);
1261	int ret;
1262
1263	if (old_state) {
 
 
 
1264		/*
1265		 * For each pinmux setting in the old state, forget SW's record
1266		 * of mux owner for that pingroup. Any pingroups which are
1267		 * still owned by the new state will be re-acquired by the call
1268		 * to pinmux_enable_setting() in the loop below.
1269		 */
1270		list_for_each_entry(setting, &old_state->settings, node) {
1271			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1272				continue;
1273			pinmux_disable_setting(setting);
1274		}
1275	}
1276
1277	p->state = NULL;
1278
1279	/* Apply all the settings for the new state - pinmux first */
1280	list_for_each_entry(setting, &state->settings, node) {
1281		switch (setting->type) {
1282		case PIN_MAP_TYPE_MUX_GROUP:
1283			ret = pinmux_enable_setting(setting);
1284			break;
1285		case PIN_MAP_TYPE_CONFIGS_PIN:
1286		case PIN_MAP_TYPE_CONFIGS_GROUP:
1287			ret = 0;
1288			break;
1289		default:
1290			ret = -EINVAL;
1291			break;
1292		}
1293
1294		if (ret < 0)
1295			goto unapply_new_state;
1296
1297		/* Do not link hogs (circular dependency) */
1298		if (p != setting->pctldev->p)
1299			pinctrl_link_add(setting->pctldev, p->dev);
1300	}
1301
1302	/* Apply all the settings for the new state - pinconf after */
1303	list_for_each_entry(setting, &state->settings, node) {
1304		switch (setting->type) {
1305		case PIN_MAP_TYPE_MUX_GROUP:
1306			ret = 0;
1307			break;
1308		case PIN_MAP_TYPE_CONFIGS_PIN:
1309		case PIN_MAP_TYPE_CONFIGS_GROUP:
1310			ret = pinconf_apply_setting(setting);
1311			break;
1312		default:
1313			ret = -EINVAL;
1314			break;
1315		}
1316
1317		if (ret < 0) {
1318			goto unapply_new_state;
1319		}
1320
1321		/* Do not link hogs (circular dependency) */
1322		if (p != setting->pctldev->p)
1323			pinctrl_link_add(setting->pctldev, p->dev);
1324	}
1325
1326	p->state = state;
1327
1328	return 0;
1329
1330unapply_new_state:
1331	dev_err(p->dev, "Error applying setting, reverse things back\n");
1332
1333	list_for_each_entry(setting2, &state->settings, node) {
1334		if (&setting2->node == &setting->node)
1335			break;
1336		/*
1337		 * All we can do here is pinmux_disable_setting.
1338		 * That means that some pins are muxed differently now
1339		 * than they were before applying the setting (We can't
1340		 * "unmux a pin"!), but it's not a big deal since the pins
1341		 * are free to be muxed by another apply_setting.
1342		 */
1343		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1344			pinmux_disable_setting(setting2);
1345	}
1346
1347	/* There's no infinite recursive loop here because p->state is NULL */
1348	if (old_state)
1349		pinctrl_select_state(p, old_state);
1350
1351	return ret;
1352}
1353
1354/**
1355 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1356 * @p: the pinctrl handle for the device that requests configuration
1357 * @state: the state handle to select/activate/program
1358 */
1359int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1360{
1361	if (p->state == state)
1362		return 0;
1363
1364	return pinctrl_commit_state(p, state);
1365}
1366EXPORT_SYMBOL_GPL(pinctrl_select_state);
1367
1368static void devm_pinctrl_release(struct device *dev, void *res)
1369{
1370	pinctrl_put(*(struct pinctrl **)res);
1371}
1372
1373/**
1374 * devm_pinctrl_get() - Resource managed pinctrl_get()
1375 * @dev: the device to obtain the handle for
1376 *
1377 * If there is a need to explicitly destroy the returned struct pinctrl,
1378 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1379 */
1380struct pinctrl *devm_pinctrl_get(struct device *dev)
1381{
1382	struct pinctrl **ptr, *p;
1383
1384	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1385	if (!ptr)
1386		return ERR_PTR(-ENOMEM);
1387
1388	p = pinctrl_get(dev);
1389	if (!IS_ERR(p)) {
1390		*ptr = p;
1391		devres_add(dev, ptr);
1392	} else {
1393		devres_free(ptr);
1394	}
1395
1396	return p;
1397}
1398EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1399
1400static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1401{
1402	struct pinctrl **p = res;
1403
1404	return *p == data;
1405}
1406
1407/**
1408 * devm_pinctrl_put() - Resource managed pinctrl_put()
1409 * @p: the pinctrl handle to release
1410 *
1411 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1412 * this function will not need to be called and the resource management
1413 * code will ensure that the resource is freed.
1414 */
1415void devm_pinctrl_put(struct pinctrl *p)
1416{
1417	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1418			       devm_pinctrl_match, p));
1419}
1420EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1421
1422/**
1423 * pinctrl_register_mappings() - register a set of pin controller mappings
1424 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1425 *	keeps a reference to the passed in maps, so they should _not_ be
1426 *	marked with __initdata.
1427 * @num_maps: the number of maps in the mapping table
1428 */
1429int pinctrl_register_mappings(const struct pinctrl_map *maps,
1430			      unsigned int num_maps)
1431{
1432	int i, ret;
1433	struct pinctrl_maps *maps_node;
1434
1435	pr_debug("add %u pinctrl maps\n", num_maps);
1436
1437	/* First sanity check the new mapping */
1438	for (i = 0; i < num_maps; i++) {
1439		if (!maps[i].dev_name) {
1440			pr_err("failed to register map %s (%d): no device given\n",
1441			       maps[i].name, i);
1442			return -EINVAL;
1443		}
1444
1445		if (!maps[i].name) {
1446			pr_err("failed to register map %d: no map name given\n",
1447			       i);
1448			return -EINVAL;
1449		}
1450
1451		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1452				!maps[i].ctrl_dev_name) {
1453			pr_err("failed to register map %s (%d): no pin control device given\n",
1454			       maps[i].name, i);
1455			return -EINVAL;
1456		}
1457
1458		switch (maps[i].type) {
1459		case PIN_MAP_TYPE_DUMMY_STATE:
1460			break;
1461		case PIN_MAP_TYPE_MUX_GROUP:
1462			ret = pinmux_validate_map(&maps[i], i);
1463			if (ret < 0)
1464				return ret;
1465			break;
1466		case PIN_MAP_TYPE_CONFIGS_PIN:
1467		case PIN_MAP_TYPE_CONFIGS_GROUP:
1468			ret = pinconf_validate_map(&maps[i], i);
1469			if (ret < 0)
1470				return ret;
1471			break;
1472		default:
1473			pr_err("failed to register map %s (%d): invalid type given\n",
1474			       maps[i].name, i);
1475			return -EINVAL;
1476		}
1477	}
1478
1479	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1480	if (!maps_node)
 
1481		return -ENOMEM;
 
1482
1483	maps_node->maps = maps;
1484	maps_node->num_maps = num_maps;
 
 
 
 
 
 
 
 
 
 
 
1485
1486	mutex_lock(&pinctrl_maps_mutex);
1487	list_add_tail(&maps_node->node, &pinctrl_maps);
1488	mutex_unlock(&pinctrl_maps_mutex);
1489
1490	return 0;
1491}
1492EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1493
1494/**
1495 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1496 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1497 *	when registering the mappings.
 
 
1498 */
1499void pinctrl_unregister_mappings(const struct pinctrl_map *map)
 
 
 
 
 
 
1500{
1501	struct pinctrl_maps *maps_node;
1502
1503	mutex_lock(&pinctrl_maps_mutex);
1504	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1505		if (maps_node->maps == map) {
1506			list_del(&maps_node->node);
1507			kfree(maps_node);
1508			mutex_unlock(&pinctrl_maps_mutex);
1509			return;
1510		}
1511	}
1512	mutex_unlock(&pinctrl_maps_mutex);
1513}
1514EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1515
1516/**
1517 * pinctrl_force_sleep() - turn a given controller device into sleep state
1518 * @pctldev: pin controller device
1519 */
1520int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1521{
1522	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1523		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1524	return 0;
1525}
1526EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1527
1528/**
1529 * pinctrl_force_default() - turn a given controller device into default state
1530 * @pctldev: pin controller device
1531 */
1532int pinctrl_force_default(struct pinctrl_dev *pctldev)
1533{
1534	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1535		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1536	return 0;
1537}
1538EXPORT_SYMBOL_GPL(pinctrl_force_default);
1539
1540/**
1541 * pinctrl_init_done() - tell pinctrl probe is done
1542 *
1543 * We'll use this time to switch the pins from "init" to "default" unless the
1544 * driver selected some other state.
1545 *
1546 * @dev: device to that's done probing
1547 */
1548int pinctrl_init_done(struct device *dev)
1549{
1550	struct dev_pin_info *pins = dev->pins;
1551	int ret;
1552
1553	if (!pins)
1554		return 0;
1555
1556	if (IS_ERR(pins->init_state))
1557		return 0; /* No such state */
1558
1559	if (pins->p->state != pins->init_state)
1560		return 0; /* Not at init anyway */
1561
1562	if (IS_ERR(pins->default_state))
1563		return 0; /* No default state */
1564
1565	ret = pinctrl_select_state(pins->p, pins->default_state);
1566	if (ret)
1567		dev_err(dev, "failed to activate default pinctrl state\n");
1568
1569	return ret;
1570}
1571
1572static int pinctrl_select_bound_state(struct device *dev,
1573				      struct pinctrl_state *state)
 
 
 
 
 
 
 
1574{
1575	struct dev_pin_info *pins = dev->pins;
1576	int ret;
1577
1578	if (IS_ERR(state))
1579		return 0; /* No such state */
1580	ret = pinctrl_select_state(pins->p, state);
1581	if (ret)
1582		dev_err(dev, "failed to activate pinctrl state %s\n",
1583			state->name);
1584	return ret;
1585}
1586
1587/**
1588 * pinctrl_select_default_state() - select default pinctrl state
1589 * @dev: device to select default state for
1590 */
1591int pinctrl_select_default_state(struct device *dev)
1592{
1593	if (!dev->pins)
1594		return 0;
1595
1596	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1597}
1598EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1599
1600#ifdef CONFIG_PM
1601
1602/**
1603 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1604 * @dev: device to select default state for
1605 */
1606int pinctrl_pm_select_default_state(struct device *dev)
1607{
1608	return pinctrl_select_default_state(dev);
1609}
1610EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1611
1612/**
1613 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1614 * @dev: device to select sleep state for
1615 */
1616int pinctrl_pm_select_sleep_state(struct device *dev)
1617{
1618	if (!dev->pins)
1619		return 0;
1620
1621	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1622}
1623EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1624
1625/**
1626 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1627 * @dev: device to select idle state for
1628 */
1629int pinctrl_pm_select_idle_state(struct device *dev)
1630{
1631	if (!dev->pins)
1632		return 0;
1633
1634	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1635}
1636EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1637#endif
1638
1639#ifdef CONFIG_DEBUG_FS
1640
1641static int pinctrl_pins_show(struct seq_file *s, void *what)
1642{
1643	struct pinctrl_dev *pctldev = s->private;
1644	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1645	unsigned int i, pin;
1646#ifdef CONFIG_GPIOLIB
1647	struct gpio_device *gdev = NULL;
1648	struct pinctrl_gpio_range *range;
1649	int gpio_num;
1650#endif
1651
1652	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1653
1654	mutex_lock(&pctldev->mutex);
1655
1656	/* The pin number can be retrived from the pin controller descriptor */
1657	for (i = 0; i < pctldev->desc->npins; i++) {
1658		struct pin_desc *desc;
1659
1660		pin = pctldev->desc->pins[i].number;
1661		desc = pin_desc_get(pctldev, pin);
1662		/* Pin space may be sparse */
1663		if (!desc)
1664			continue;
1665
1666		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1667
1668#ifdef CONFIG_GPIOLIB
1669		gpio_num = -1;
1670		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1671			if ((pin >= range->pin_base) &&
1672			    (pin < (range->pin_base + range->npins))) {
1673				gpio_num = range->base + (pin - range->pin_base);
1674				break;
1675			}
1676		}
1677		if (gpio_num >= 0)
1678			/*
1679			 * FIXME: gpio_num comes from the global GPIO numberspace.
1680			 * we need to get rid of the range->base eventually and
1681			 * get the descriptor directly from the gpio_chip.
1682			 */
1683			gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1684		if (gdev)
1685			seq_printf(s, "%u:%s ",
1686				   gpio_num - gpio_device_get_base(gdev),
1687				   gpio_device_get_label(gdev));
1688		else
1689			seq_puts(s, "0:? ");
1690#endif
1691
1692		/* Driver-specific info per pin */
1693		if (ops->pin_dbg_show)
1694			ops->pin_dbg_show(pctldev, s, pin);
1695
1696		seq_puts(s, "\n");
1697	}
1698
1699	mutex_unlock(&pctldev->mutex);
1700
1701	return 0;
1702}
1703DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1704
1705static int pinctrl_groups_show(struct seq_file *s, void *what)
1706{
1707	struct pinctrl_dev *pctldev = s->private;
1708	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1709	unsigned int ngroups, selector = 0;
1710
1711	mutex_lock(&pctldev->mutex);
1712
1713	ngroups = ops->get_groups_count(pctldev);
1714
1715	seq_puts(s, "registered pin groups:\n");
1716	while (selector < ngroups) {
1717		const unsigned int *pins = NULL;
1718		unsigned int num_pins = 0;
1719		const char *gname = ops->get_group_name(pctldev, selector);
1720		const char *pname;
1721		int ret = 0;
1722		int i;
1723
1724		if (ops->get_group_pins)
1725			ret = ops->get_group_pins(pctldev, selector,
1726						  &pins, &num_pins);
1727		if (ret)
1728			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1729				   gname);
1730		else {
1731			seq_printf(s, "group: %s\n", gname);
1732			for (i = 0; i < num_pins; i++) {
1733				pname = pin_get_name(pctldev, pins[i]);
1734				if (WARN_ON(!pname)) {
1735					mutex_unlock(&pctldev->mutex);
1736					return -EINVAL;
1737				}
1738				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1739			}
1740			seq_puts(s, "\n");
1741		}
1742		selector++;
1743	}
1744
1745	mutex_unlock(&pctldev->mutex);
1746
1747	return 0;
1748}
1749DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1750
1751static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1752{
1753	struct pinctrl_dev *pctldev = s->private;
1754	struct pinctrl_gpio_range *range;
1755
1756	seq_puts(s, "GPIO ranges handled:\n");
1757
1758	mutex_lock(&pctldev->mutex);
1759
1760	/* Loop over the ranges */
1761	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1762		if (range->pins) {
1763			int a;
1764			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1765				range->id, range->name,
1766				range->base, (range->base + range->npins - 1));
1767			for (a = 0; a < range->npins - 1; a++)
1768				seq_printf(s, "%u, ", range->pins[a]);
1769			seq_printf(s, "%u}\n", range->pins[a]);
1770		}
1771		else
1772			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1773				range->id, range->name,
1774				range->base, (range->base + range->npins - 1),
1775				range->pin_base,
1776				(range->pin_base + range->npins - 1));
1777	}
1778
1779	mutex_unlock(&pctldev->mutex);
1780
1781	return 0;
1782}
1783DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1784
1785static int pinctrl_devices_show(struct seq_file *s, void *what)
1786{
1787	struct pinctrl_dev *pctldev;
1788
1789	seq_puts(s, "name [pinmux] [pinconf]\n");
1790
1791	mutex_lock(&pinctrldev_list_mutex);
1792
1793	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1794		seq_printf(s, "%s ", pctldev->desc->name);
1795		if (pctldev->desc->pmxops)
1796			seq_puts(s, "yes ");
1797		else
1798			seq_puts(s, "no ");
1799		if (pctldev->desc->confops)
1800			seq_puts(s, "yes");
1801		else
1802			seq_puts(s, "no");
1803		seq_puts(s, "\n");
1804	}
1805
1806	mutex_unlock(&pinctrldev_list_mutex);
1807
1808	return 0;
1809}
1810DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1811
1812static inline const char *map_type(enum pinctrl_map_type type)
1813{
1814	static const char * const names[] = {
1815		"INVALID",
1816		"DUMMY_STATE",
1817		"MUX_GROUP",
1818		"CONFIGS_PIN",
1819		"CONFIGS_GROUP",
1820	};
1821
1822	if (type >= ARRAY_SIZE(names))
1823		return "UNKNOWN";
1824
1825	return names[type];
1826}
1827
1828static int pinctrl_maps_show(struct seq_file *s, void *what)
1829{
1830	struct pinctrl_maps *maps_node;
1831	const struct pinctrl_map *map;
 
1832
1833	seq_puts(s, "Pinctrl maps:\n");
1834
1835	mutex_lock(&pinctrl_maps_mutex);
1836	for_each_pin_map(maps_node, map) {
1837		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1838			   map->dev_name, map->name, map_type(map->type),
1839			   map->type);
1840
1841		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1842			seq_printf(s, "controlling device %s\n",
1843				   map->ctrl_dev_name);
1844
1845		switch (map->type) {
1846		case PIN_MAP_TYPE_MUX_GROUP:
1847			pinmux_show_map(s, map);
1848			break;
1849		case PIN_MAP_TYPE_CONFIGS_PIN:
1850		case PIN_MAP_TYPE_CONFIGS_GROUP:
1851			pinconf_show_map(s, map);
1852			break;
1853		default:
1854			break;
1855		}
1856
1857		seq_putc(s, '\n');
1858	}
1859	mutex_unlock(&pinctrl_maps_mutex);
1860
1861	return 0;
1862}
1863DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1864
1865static int pinctrl_show(struct seq_file *s, void *what)
1866{
1867	struct pinctrl *p;
1868	struct pinctrl_state *state;
1869	struct pinctrl_setting *setting;
1870
1871	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1872
1873	mutex_lock(&pinctrl_list_mutex);
1874
1875	list_for_each_entry(p, &pinctrl_list, node) {
1876		seq_printf(s, "device: %s current state: %s\n",
1877			   dev_name(p->dev),
1878			   p->state ? p->state->name : "none");
1879
1880		list_for_each_entry(state, &p->states, node) {
1881			seq_printf(s, "  state: %s\n", state->name);
1882
1883			list_for_each_entry(setting, &state->settings, node) {
1884				struct pinctrl_dev *pctldev = setting->pctldev;
1885
1886				seq_printf(s, "    type: %s controller %s ",
1887					   map_type(setting->type),
1888					   pinctrl_dev_get_name(pctldev));
1889
1890				switch (setting->type) {
1891				case PIN_MAP_TYPE_MUX_GROUP:
1892					pinmux_show_setting(s, setting);
1893					break;
1894				case PIN_MAP_TYPE_CONFIGS_PIN:
1895				case PIN_MAP_TYPE_CONFIGS_GROUP:
1896					pinconf_show_setting(s, setting);
1897					break;
1898				default:
1899					break;
1900				}
1901			}
1902		}
1903	}
1904
1905	mutex_unlock(&pinctrl_list_mutex);
1906
1907	return 0;
1908}
1909DEFINE_SHOW_ATTRIBUTE(pinctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910
1911static struct dentry *debugfs_root;
1912
1913static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1914{
1915	struct dentry *device_root;
1916	const char *debugfs_name;
1917
1918	if (pctldev->desc->name &&
1919			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1920		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1921				"%s-%s", dev_name(pctldev->dev),
1922				pctldev->desc->name);
1923		if (!debugfs_name) {
1924			pr_warn("failed to determine debugfs dir name for %s\n",
1925				dev_name(pctldev->dev));
1926			return;
1927		}
1928	} else {
1929		debugfs_name = dev_name(pctldev->dev);
1930	}
1931
1932	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
 
1933	pctldev->device_root = device_root;
1934
1935	if (IS_ERR(device_root) || !device_root) {
1936		pr_warn("failed to create debugfs directory for %s\n",
1937			dev_name(pctldev->dev));
1938		return;
1939	}
1940	debugfs_create_file("pins", 0444,
1941			    device_root, pctldev, &pinctrl_pins_fops);
1942	debugfs_create_file("pingroups", 0444,
1943			    device_root, pctldev, &pinctrl_groups_fops);
1944	debugfs_create_file("gpio-ranges", 0444,
1945			    device_root, pctldev, &pinctrl_gpioranges_fops);
1946	if (pctldev->desc->pmxops)
1947		pinmux_init_device_debugfs(device_root, pctldev);
1948	if (pctldev->desc->confops)
1949		pinconf_init_device_debugfs(device_root, pctldev);
1950}
1951
1952static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1953{
1954	debugfs_remove_recursive(pctldev->device_root);
1955}
1956
1957static void pinctrl_init_debugfs(void)
1958{
1959	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1960	if (IS_ERR(debugfs_root) || !debugfs_root) {
1961		pr_warn("failed to create debugfs directory\n");
1962		debugfs_root = NULL;
1963		return;
1964	}
1965
1966	debugfs_create_file("pinctrl-devices", 0444,
1967			    debugfs_root, NULL, &pinctrl_devices_fops);
1968	debugfs_create_file("pinctrl-maps", 0444,
1969			    debugfs_root, NULL, &pinctrl_maps_fops);
1970	debugfs_create_file("pinctrl-handles", 0444,
1971			    debugfs_root, NULL, &pinctrl_fops);
1972}
1973
1974#else /* CONFIG_DEBUG_FS */
1975
1976static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1977{
1978}
1979
1980static void pinctrl_init_debugfs(void)
1981{
1982}
1983
1984static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1985{
1986}
1987
1988#endif
1989
1990static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1991{
1992	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1993
1994	if (!ops ||
1995	    !ops->get_groups_count ||
1996	    !ops->get_group_name)
1997		return -EINVAL;
1998
 
 
 
1999	return 0;
2000}
2001
2002/**
2003 * pinctrl_init_controller() - init a pin controller device
2004 * @pctldesc: descriptor for this pin controller
2005 * @dev: parent device for this pin controller
2006 * @driver_data: private pin controller data for this pin controller
2007 */
2008static struct pinctrl_dev *
2009pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2010			void *driver_data)
2011{
2012	struct pinctrl_dev *pctldev;
2013	int ret;
2014
2015	if (!pctldesc)
2016		return ERR_PTR(-EINVAL);
2017	if (!pctldesc->name)
2018		return ERR_PTR(-EINVAL);
2019
2020	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2021	if (!pctldev)
 
2022		return ERR_PTR(-ENOMEM);
 
2023
2024	/* Initialize pin control device struct */
2025	pctldev->owner = pctldesc->owner;
2026	pctldev->desc = pctldesc;
2027	pctldev->driver_data = driver_data;
2028	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2029#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2030	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2031#endif
2032#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2033	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2034#endif
2035	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2036	INIT_LIST_HEAD(&pctldev->node);
2037	pctldev->dev = dev;
2038	mutex_init(&pctldev->mutex);
2039
2040	/* check core ops for sanity */
2041	ret = pinctrl_check_ops(pctldev);
2042	if (ret) {
2043		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2044		goto out_err;
2045	}
2046
2047	/* If we're implementing pinmuxing, check the ops for sanity */
2048	if (pctldesc->pmxops) {
2049		ret = pinmux_check_ops(pctldev);
2050		if (ret)
2051			goto out_err;
2052	}
2053
2054	/* If we're implementing pinconfig, check the ops for sanity */
2055	if (pctldesc->confops) {
2056		ret = pinconf_check_ops(pctldev);
2057		if (ret)
2058			goto out_err;
2059	}
2060
2061	/* Register all the pins */
2062	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2063	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2064	if (ret) {
2065		dev_err(dev, "error during pin registration\n");
2066		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2067				      pctldesc->npins);
2068		goto out_err;
2069	}
2070
2071	return pctldev;
2072
2073out_err:
2074	mutex_destroy(&pctldev->mutex);
2075	kfree(pctldev);
2076	return ERR_PTR(ret);
2077}
2078
2079static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2080{
2081	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2082	if (PTR_ERR(pctldev->p) == -ENODEV) {
2083		dev_dbg(pctldev->dev, "no hogs found\n");
2084
2085		return 0;
2086	}
2087
2088	if (IS_ERR(pctldev->p)) {
2089		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2090			PTR_ERR(pctldev->p));
2091
2092		return PTR_ERR(pctldev->p);
2093	}
2094
2095	pctldev->hog_default =
2096		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2097	if (IS_ERR(pctldev->hog_default)) {
2098		dev_dbg(pctldev->dev,
2099			"failed to lookup the default state\n");
2100	} else {
2101		if (pinctrl_select_state(pctldev->p,
2102					 pctldev->hog_default))
2103			dev_err(pctldev->dev,
2104				"failed to select default state\n");
2105	}
2106
2107	pctldev->hog_sleep =
2108		pinctrl_lookup_state(pctldev->p,
2109				     PINCTRL_STATE_SLEEP);
2110	if (IS_ERR(pctldev->hog_sleep))
2111		dev_dbg(pctldev->dev,
2112			"failed to lookup the sleep state\n");
2113
2114	return 0;
2115}
2116
2117int pinctrl_enable(struct pinctrl_dev *pctldev)
2118{
2119	int error;
2120
2121	error = pinctrl_claim_hogs(pctldev);
2122	if (error) {
2123		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2124			error);
2125		pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2126				      pctldev->desc->npins);
2127		mutex_destroy(&pctldev->mutex);
2128		kfree(pctldev);
2129
2130		return error;
2131	}
2132
2133	mutex_lock(&pinctrldev_list_mutex);
2134	list_add_tail(&pctldev->node, &pinctrldev_list);
2135	mutex_unlock(&pinctrldev_list_mutex);
2136
2137	pinctrl_init_device_debugfs(pctldev);
2138
2139	return 0;
2140}
2141EXPORT_SYMBOL_GPL(pinctrl_enable);
2142
2143/**
2144 * pinctrl_register() - register a pin controller device
2145 * @pctldesc: descriptor for this pin controller
2146 * @dev: parent device for this pin controller
2147 * @driver_data: private pin controller data for this pin controller
2148 *
2149 * Note that pinctrl_register() is known to have problems as the pin
2150 * controller driver functions are called before the driver has a
2151 * struct pinctrl_dev handle. To avoid issues later on, please use the
2152 * new pinctrl_register_and_init() below instead.
2153 */
2154struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2155				    struct device *dev, void *driver_data)
2156{
2157	struct pinctrl_dev *pctldev;
2158	int error;
2159
2160	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2161	if (IS_ERR(pctldev))
2162		return pctldev;
2163
2164	error = pinctrl_enable(pctldev);
2165	if (error)
2166		return ERR_PTR(error);
2167
2168	return pctldev;
2169}
2170EXPORT_SYMBOL_GPL(pinctrl_register);
2171
2172/**
2173 * pinctrl_register_and_init() - register and init pin controller device
2174 * @pctldesc: descriptor for this pin controller
2175 * @dev: parent device for this pin controller
2176 * @driver_data: private pin controller data for this pin controller
2177 * @pctldev: pin controller device
2178 *
2179 * Note that pinctrl_enable() still needs to be manually called after
2180 * this once the driver is ready.
2181 */
2182int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2183			      struct device *dev, void *driver_data,
2184			      struct pinctrl_dev **pctldev)
2185{
2186	struct pinctrl_dev *p;
2187
2188	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2189	if (IS_ERR(p))
2190		return PTR_ERR(p);
2191
2192	/*
2193	 * We have pinctrl_start() call functions in the pin controller
2194	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2195	 * let's make sure pctldev is properly initialized for the
2196	 * pin controller driver before we do anything.
2197	 */
2198	*pctldev = p;
2199
2200	return 0;
2201}
2202EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2203
2204/**
2205 * pinctrl_unregister() - unregister pinmux
2206 * @pctldev: pin controller to unregister
2207 *
2208 * Called by pinmux drivers to unregister a pinmux.
2209 */
2210void pinctrl_unregister(struct pinctrl_dev *pctldev)
2211{
2212	struct pinctrl_gpio_range *range, *n;
2213
2214	if (!pctldev)
2215		return;
2216
2217	mutex_lock(&pctldev->mutex);
2218	pinctrl_remove_device_debugfs(pctldev);
2219	mutex_unlock(&pctldev->mutex);
2220
2221	if (!IS_ERR_OR_NULL(pctldev->p))
2222		pinctrl_put(pctldev->p);
2223
2224	mutex_lock(&pinctrldev_list_mutex);
2225	mutex_lock(&pctldev->mutex);
2226	/* TODO: check that no pinmuxes are still active? */
2227	list_del(&pctldev->node);
2228	pinmux_generic_free_functions(pctldev);
2229	pinctrl_generic_free_groups(pctldev);
2230	/* Destroy descriptor tree */
2231	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2232			      pctldev->desc->npins);
2233	/* remove gpio ranges map */
2234	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2235		list_del(&range->node);
2236
2237	mutex_unlock(&pctldev->mutex);
2238	mutex_destroy(&pctldev->mutex);
2239	kfree(pctldev);
2240	mutex_unlock(&pinctrldev_list_mutex);
2241}
2242EXPORT_SYMBOL_GPL(pinctrl_unregister);
2243
2244static void devm_pinctrl_dev_release(struct device *dev, void *res)
2245{
2246	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2247
2248	pinctrl_unregister(pctldev);
2249}
2250
2251static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2252{
2253	struct pctldev **r = res;
2254
2255	if (WARN_ON(!r || !*r))
2256		return 0;
2257
2258	return *r == data;
2259}
2260
2261/**
2262 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2263 * @dev: parent device for this pin controller
2264 * @pctldesc: descriptor for this pin controller
2265 * @driver_data: private pin controller data for this pin controller
2266 *
2267 * Returns an error pointer if pincontrol register failed. Otherwise
2268 * it returns valid pinctrl handle.
2269 *
2270 * The pinctrl device will be automatically released when the device is unbound.
2271 */
2272struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2273					  struct pinctrl_desc *pctldesc,
2274					  void *driver_data)
2275{
2276	struct pinctrl_dev **ptr, *pctldev;
2277
2278	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2279	if (!ptr)
2280		return ERR_PTR(-ENOMEM);
2281
2282	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2283	if (IS_ERR(pctldev)) {
2284		devres_free(ptr);
2285		return pctldev;
2286	}
2287
2288	*ptr = pctldev;
2289	devres_add(dev, ptr);
2290
2291	return pctldev;
2292}
2293EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2294
2295/**
2296 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2297 * @dev: parent device for this pin controller
2298 * @pctldesc: descriptor for this pin controller
2299 * @driver_data: private pin controller data for this pin controller
2300 * @pctldev: pin controller device
2301 *
2302 * Returns zero on success or an error number on failure.
2303 *
2304 * The pinctrl device will be automatically released when the device is unbound.
2305 */
2306int devm_pinctrl_register_and_init(struct device *dev,
2307				   struct pinctrl_desc *pctldesc,
2308				   void *driver_data,
2309				   struct pinctrl_dev **pctldev)
2310{
2311	struct pinctrl_dev **ptr;
2312	int error;
2313
2314	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2315	if (!ptr)
2316		return -ENOMEM;
2317
2318	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2319	if (error) {
2320		devres_free(ptr);
2321		return error;
2322	}
2323
2324	*ptr = *pctldev;
2325	devres_add(dev, ptr);
2326
2327	return 0;
2328}
2329EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2330
2331/**
2332 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2333 * @dev: device for which resource was allocated
2334 * @pctldev: the pinctrl device to unregister.
2335 */
2336void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2337{
2338	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2339			       devm_pinctrl_dev_match, pctldev));
2340}
2341EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2342
2343static int __init pinctrl_init(void)
2344{
2345	pr_info("initialized pinctrl subsystem\n");
2346	pinctrl_init_debugfs();
2347	return 0;
2348}
2349
2350/* init early since many drivers really need to initialized pinmux early */
2351core_initcall(pinctrl_init);
v4.6
 
   1/*
   2 * Core driver for the pin control subsystem
   3 *
   4 * Copyright (C) 2011-2012 ST-Ericsson SA
   5 * Written on behalf of Linaro for ST-Ericsson
   6 * Based on bits of regulator core, gpio core and clk core
   7 *
   8 * Author: Linus Walleij <linus.walleij@linaro.org>
   9 *
  10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  11 *
  12 * License terms: GNU General Public License (GPL) version 2
  13 */
  14#define pr_fmt(fmt) "pinctrl core: " fmt
  15
  16#include <linux/kernel.h>
  17#include <linux/kref.h>
 
 
 
  18#include <linux/export.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/slab.h>
  22#include <linux/err.h>
  23#include <linux/list.h>
  24#include <linux/sysfs.h>
  25#include <linux/debugfs.h>
  26#include <linux/seq_file.h>
 
 
 
 
 
  27#include <linux/pinctrl/consumer.h>
 
 
  28#include <linux/pinctrl/pinctrl.h>
  29#include <linux/pinctrl/machine.h>
  30
  31#ifdef CONFIG_GPIOLIB
  32#include <asm-generic/gpio.h>
  33#endif
  34
  35#include "core.h"
  36#include "devicetree.h"
 
  37#include "pinmux.h"
  38#include "pinconf.h"
  39
  40
  41static bool pinctrl_dummy_state;
  42
  43/* Mutex taken to protect pinctrl_list */
  44static DEFINE_MUTEX(pinctrl_list_mutex);
  45
  46/* Mutex taken to protect pinctrl_maps */
  47DEFINE_MUTEX(pinctrl_maps_mutex);
  48
  49/* Mutex taken to protect pinctrldev_list */
  50static DEFINE_MUTEX(pinctrldev_list_mutex);
  51
  52/* Global list of pin control devices (struct pinctrl_dev) */
  53static LIST_HEAD(pinctrldev_list);
  54
  55/* List of pin controller handles (struct pinctrl) */
  56static LIST_HEAD(pinctrl_list);
  57
  58/* List of pinctrl maps (struct pinctrl_maps) */
  59LIST_HEAD(pinctrl_maps);
  60
  61
  62/**
  63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  64 *
  65 * Usually this function is called by platforms without pinctrl driver support
  66 * but run with some shared drivers using pinctrl APIs.
  67 * After calling this function, the pinctrl core will return successfully
  68 * with creating a dummy state for the driver to keep going smoothly.
  69 */
  70void pinctrl_provide_dummies(void)
  71{
  72	pinctrl_dummy_state = true;
  73}
  74
  75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  76{
  77	/* We're not allowed to register devices without name */
  78	return pctldev->desc->name;
  79}
  80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  81
  82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  83{
  84	return dev_name(pctldev->dev);
  85}
  86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  87
  88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  89{
  90	return pctldev->driver_data;
  91}
  92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  93
  94/**
  95 * get_pinctrl_dev_from_devname() - look up pin controller device
  96 * @devname: the name of a device instance, as returned by dev_name()
  97 *
  98 * Looks up a pin control device matching a certain device name or pure device
  99 * pointer, the pure device pointer will take precedence.
 100 */
 101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 102{
 103	struct pinctrl_dev *pctldev = NULL;
 104
 105	if (!devname)
 106		return NULL;
 107
 108	mutex_lock(&pinctrldev_list_mutex);
 109
 110	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 111		if (!strcmp(dev_name(pctldev->dev), devname)) {
 112			/* Matched on device name */
 113			mutex_unlock(&pinctrldev_list_mutex);
 114			return pctldev;
 115		}
 116	}
 117
 118	mutex_unlock(&pinctrldev_list_mutex);
 119
 120	return NULL;
 121}
 122
 123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 124{
 125	struct pinctrl_dev *pctldev;
 126
 127	mutex_lock(&pinctrldev_list_mutex);
 128
 129	list_for_each_entry(pctldev, &pinctrldev_list, node)
 130		if (pctldev->dev->of_node == np) {
 131			mutex_unlock(&pinctrldev_list_mutex);
 132			return pctldev;
 133		}
 134
 135	mutex_unlock(&pinctrldev_list_mutex);
 136
 137	return NULL;
 138}
 139
 140/**
 141 * pin_get_from_name() - look up a pin number from a name
 142 * @pctldev: the pin control device to lookup the pin on
 143 * @name: the name of the pin to look up
 144 */
 145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 146{
 147	unsigned i, pin;
 148
 149	/* The pin number can be retrived from the pin controller descriptor */
 150	for (i = 0; i < pctldev->desc->npins; i++) {
 151		struct pin_desc *desc;
 152
 153		pin = pctldev->desc->pins[i].number;
 154		desc = pin_desc_get(pctldev, pin);
 155		/* Pin space may be sparse */
 156		if (desc && !strcmp(name, desc->name))
 157			return pin;
 158	}
 159
 160	return -EINVAL;
 161}
 162
 163/**
 164 * pin_get_name_from_id() - look up a pin name from a pin id
 165 * @pctldev: the pin control device to lookup the pin on
 166 * @name: the name of the pin to look up
 167 */
 168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 169{
 170	const struct pin_desc *desc;
 171
 172	desc = pin_desc_get(pctldev, pin);
 173	if (desc == NULL) {
 174		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 175			pin);
 176		return NULL;
 177	}
 178
 179	return desc->name;
 180}
 181
 182/**
 183 * pin_is_valid() - check if pin exists on controller
 184 * @pctldev: the pin control device to check the pin on
 185 * @pin: pin to check, use the local pin controller index number
 186 *
 187 * This tells us whether a certain pin exist on a certain pin controller or
 188 * not. Pin lists may be sparse, so some pins may not exist.
 189 */
 190bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
 191{
 192	struct pin_desc *pindesc;
 193
 194	if (pin < 0)
 195		return false;
 196
 197	mutex_lock(&pctldev->mutex);
 198	pindesc = pin_desc_get(pctldev, pin);
 199	mutex_unlock(&pctldev->mutex);
 200
 201	return pindesc != NULL;
 202}
 203EXPORT_SYMBOL_GPL(pin_is_valid);
 204
 205/* Deletes a range of pin descriptors */
 206static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 207				  const struct pinctrl_pin_desc *pins,
 208				  unsigned num_pins)
 209{
 210	int i;
 211
 212	for (i = 0; i < num_pins; i++) {
 213		struct pin_desc *pindesc;
 214
 215		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 216					    pins[i].number);
 217		if (pindesc != NULL) {
 218			radix_tree_delete(&pctldev->pin_desc_tree,
 219					  pins[i].number);
 220			if (pindesc->dynamic_name)
 221				kfree(pindesc->name);
 222		}
 223		kfree(pindesc);
 224	}
 225}
 226
 227static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 228				    unsigned number, const char *name)
 229{
 230	struct pin_desc *pindesc;
 
 231
 232	pindesc = pin_desc_get(pctldev, number);
 233	if (pindesc != NULL) {
 234		dev_err(pctldev->dev, "pin %d already registered\n", number);
 
 235		return -EINVAL;
 236	}
 237
 238	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 239	if (pindesc == NULL) {
 240		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
 241		return -ENOMEM;
 242	}
 243
 244	/* Set owner */
 245	pindesc->pctldev = pctldev;
 246
 247	/* Copy basic pin info */
 248	if (name) {
 249		pindesc->name = name;
 250	} else {
 251		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
 252		if (pindesc->name == NULL) {
 253			kfree(pindesc);
 254			return -ENOMEM;
 255		}
 256		pindesc->dynamic_name = true;
 257	}
 258
 259	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
 
 
 
 
 
 260	pr_debug("registered pin %d (%s) on %s\n",
 261		 number, pindesc->name, pctldev->desc->name);
 262	return 0;
 
 
 
 
 263}
 264
 265static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 266				 struct pinctrl_pin_desc const *pins,
 267				 unsigned num_descs)
 268{
 269	unsigned i;
 270	int ret = 0;
 271
 272	for (i = 0; i < num_descs; i++) {
 273		ret = pinctrl_register_one_pin(pctldev,
 274					       pins[i].number, pins[i].name);
 275		if (ret)
 276			return ret;
 277	}
 278
 279	return 0;
 280}
 281
 282/**
 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 284 * @range: GPIO range used for the translation
 285 * @gpio: gpio pin to translate to a pin number
 
 286 *
 287 * Finds the pin number for a given GPIO using the specified GPIO range
 288 * as a base for translation. The distinction between linear GPIO ranges
 289 * and pin list based GPIO ranges is managed correctly by this function.
 290 *
 291 * This function assumes the gpio is part of the specified GPIO range, use
 292 * only after making sure this is the case (e.g. by calling it on the
 293 * result of successful pinctrl_get_device_gpio_range calls)!
 294 */
 295static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 296				unsigned int gpio)
 297{
 298	unsigned int offset = gpio - range->base;
 299	if (range->pins)
 300		return range->pins[offset];
 301	else
 302		return range->pin_base + offset;
 303}
 304
 305/**
 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 307 * @pctldev: pin controller device to check
 308 * @gpio: gpio pin to check taken from the global GPIO pin space
 
 309 *
 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 311 * controller, return the range or NULL
 312 */
 313static struct pinctrl_gpio_range *
 314pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 
 315{
 316	struct pinctrl_gpio_range *range = NULL;
 317
 318	mutex_lock(&pctldev->mutex);
 319	/* Loop over the ranges */
 320	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 321		/* Check if we're in the valid range */
 322		if (gpio >= range->base &&
 323		    gpio < range->base + range->npins) {
 324			mutex_unlock(&pctldev->mutex);
 325			return range;
 326		}
 327	}
 328	mutex_unlock(&pctldev->mutex);
 329	return NULL;
 330}
 331
 332/**
 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 334 * the same GPIO chip are in range
 335 * @gpio: gpio pin to check taken from the global GPIO pin space
 
 336 *
 337 * This function is complement of pinctrl_match_gpio_range(). If the return
 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 340 * of the same GPIO chip don't have back-end pinctrl interface.
 341 * If the return value is true, it means that pinctrl device is ready & the
 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 343 * is false, it means that pinctrl device may not be ready.
 344 */
 345#ifdef CONFIG_GPIOLIB
 346static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 
 347{
 348	struct pinctrl_dev *pctldev;
 349	struct pinctrl_gpio_range *range = NULL;
 350	struct gpio_chip *chip = gpio_to_chip(gpio);
 351
 352	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 353		return false;
 354
 355	mutex_lock(&pinctrldev_list_mutex);
 356
 357	/* Loop over the pin controllers */
 358	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 359		/* Loop over the ranges */
 360		mutex_lock(&pctldev->mutex);
 361		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 362			/* Check if any gpio range overlapped with gpio chip */
 363			if (range->base + range->npins - 1 < chip->base ||
 364			    range->base > chip->base + chip->ngpio - 1)
 365				continue;
 366			mutex_unlock(&pctldev->mutex);
 367			mutex_unlock(&pinctrldev_list_mutex);
 368			return true;
 369		}
 370		mutex_unlock(&pctldev->mutex);
 371	}
 372
 373	mutex_unlock(&pinctrldev_list_mutex);
 374
 375	return false;
 376}
 377#else
 378static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 
 
 
 
 379#endif
 380
 381/**
 382 * pinctrl_get_device_gpio_range() - find device for GPIO range
 383 * @gpio: the pin to locate the pin controller for
 
 384 * @outdev: the pin control device if found
 385 * @outrange: the GPIO range if found
 386 *
 387 * Find the pin controller handling a certain GPIO pin from the pinspace of
 388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 390 * may still have not been registered.
 391 */
 392static int pinctrl_get_device_gpio_range(unsigned gpio,
 
 393					 struct pinctrl_dev **outdev,
 394					 struct pinctrl_gpio_range **outrange)
 395{
 396	struct pinctrl_dev *pctldev = NULL;
 397
 398	mutex_lock(&pinctrldev_list_mutex);
 399
 400	/* Loop over the pin controllers */
 401	list_for_each_entry(pctldev, &pinctrldev_list, node) {
 402		struct pinctrl_gpio_range *range;
 403
 404		range = pinctrl_match_gpio_range(pctldev, gpio);
 405		if (range != NULL) {
 406			*outdev = pctldev;
 407			*outrange = range;
 408			mutex_unlock(&pinctrldev_list_mutex);
 409			return 0;
 410		}
 411	}
 412
 413	mutex_unlock(&pinctrldev_list_mutex);
 414
 415	return -EPROBE_DEFER;
 416}
 417
 418/**
 419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 420 * @pctldev: pin controller device to add the range to
 421 * @range: the GPIO range to add
 422 *
 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 424 * this to register handled ranges after registering your pin controller.
 425 */
 426void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 427			    struct pinctrl_gpio_range *range)
 428{
 429	mutex_lock(&pctldev->mutex);
 430	list_add_tail(&range->node, &pctldev->gpio_ranges);
 431	mutex_unlock(&pctldev->mutex);
 432}
 433EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 434
 435void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 436			     struct pinctrl_gpio_range *ranges,
 437			     unsigned nranges)
 438{
 439	int i;
 440
 441	for (i = 0; i < nranges; i++)
 442		pinctrl_add_gpio_range(pctldev, &ranges[i]);
 443}
 444EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 445
 446struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 447		struct pinctrl_gpio_range *range)
 448{
 449	struct pinctrl_dev *pctldev;
 450
 451	pctldev = get_pinctrl_dev_from_devname(devname);
 452
 453	/*
 454	 * If we can't find this device, let's assume that is because
 455	 * it has not probed yet, so the driver trying to register this
 456	 * range need to defer probing.
 457	 */
 458	if (!pctldev) {
 459		return ERR_PTR(-EPROBE_DEFER);
 460	}
 461	pinctrl_add_gpio_range(pctldev, range);
 462
 463	return pctldev;
 464}
 465EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 466
 467int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 468				const unsigned **pins, unsigned *num_pins)
 469{
 470	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 471	int gs;
 472
 473	if (!pctlops->get_group_pins)
 474		return -EINVAL;
 475
 476	gs = pinctrl_get_group_selector(pctldev, pin_group);
 477	if (gs < 0)
 478		return gs;
 479
 480	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 481}
 482EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 483
 484struct pinctrl_gpio_range *
 485pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 486					unsigned int pin)
 487{
 488	struct pinctrl_gpio_range *range;
 489
 490	/* Loop over the ranges */
 491	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 492		/* Check if we're in the valid range */
 493		if (range->pins) {
 494			int a;
 495			for (a = 0; a < range->npins; a++) {
 496				if (range->pins[a] == pin)
 497					return range;
 498			}
 499		} else if (pin >= range->pin_base &&
 500			   pin < range->pin_base + range->npins)
 501			return range;
 502	}
 503
 504	return NULL;
 505}
 506EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 507
 508/**
 509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 510 * @pctldev: the pin controller device to look in
 511 * @pin: a controller-local number to find the range for
 512 */
 513struct pinctrl_gpio_range *
 514pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 515				 unsigned int pin)
 516{
 517	struct pinctrl_gpio_range *range;
 518
 519	mutex_lock(&pctldev->mutex);
 520	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 521	mutex_unlock(&pctldev->mutex);
 522
 523	return range;
 524}
 525EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 526
 527/**
 528 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 529 * @pctldev: pin controller device to remove the range from
 530 * @range: the GPIO range to remove
 531 */
 532void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 533			       struct pinctrl_gpio_range *range)
 534{
 535	mutex_lock(&pctldev->mutex);
 536	list_del(&range->node);
 537	mutex_unlock(&pctldev->mutex);
 538}
 539EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541/**
 542 * pinctrl_get_group_selector() - returns the group selector for a group
 543 * @pctldev: the pin controller handling the group
 544 * @pin_group: the pin group to look up
 545 */
 546int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 547			       const char *pin_group)
 548{
 549	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 550	unsigned ngroups = pctlops->get_groups_count(pctldev);
 551	unsigned group_selector = 0;
 552
 553	while (group_selector < ngroups) {
 554		const char *gname = pctlops->get_group_name(pctldev,
 555							    group_selector);
 556		if (!strcmp(gname, pin_group)) {
 557			dev_dbg(pctldev->dev,
 558				"found group selector %u for %s\n",
 559				group_selector,
 560				pin_group);
 561			return group_selector;
 562		}
 563
 564		group_selector++;
 565	}
 566
 567	dev_err(pctldev->dev, "does not have pin group %s\n",
 568		pin_group);
 569
 570	return -EINVAL;
 571}
 572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573/**
 574 * pinctrl_request_gpio() - request a single pin to be used as GPIO
 575 * @gpio: the GPIO pin number from the GPIO subsystem number space
 
 576 *
 577 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 578 * as part of their gpio_request() semantics, platforms and individual drivers
 579 * shall *NOT* request GPIO pins to be muxed in.
 580 */
 581int pinctrl_request_gpio(unsigned gpio)
 582{
 
 583	struct pinctrl_dev *pctldev;
 584	struct pinctrl_gpio_range *range;
 585	int ret;
 586	int pin;
 587
 588	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 589	if (ret) {
 590		if (pinctrl_ready_for_gpio_range(gpio))
 591			ret = 0;
 592		return ret;
 593	}
 594
 595	mutex_lock(&pctldev->mutex);
 596
 597	/* Convert to the pin controllers number space */
 598	pin = gpio_to_pin(range, gpio);
 599
 600	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 601
 602	mutex_unlock(&pctldev->mutex);
 603
 604	return ret;
 605}
 606EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
 607
 608/**
 609 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 610 * @gpio: the GPIO pin number from the GPIO subsystem number space
 
 611 *
 612 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 613 * as part of their gpio_free() semantics, platforms and individual drivers
 614 * shall *NOT* request GPIO pins to be muxed out.
 615 */
 616void pinctrl_free_gpio(unsigned gpio)
 617{
 
 618	struct pinctrl_dev *pctldev;
 619	struct pinctrl_gpio_range *range;
 620	int ret;
 621	int pin;
 622
 623	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 624	if (ret) {
 625		return;
 626	}
 627	mutex_lock(&pctldev->mutex);
 628
 629	/* Convert to the pin controllers number space */
 630	pin = gpio_to_pin(range, gpio);
 631
 632	pinmux_free_gpio(pctldev, pin, range);
 633
 634	mutex_unlock(&pctldev->mutex);
 635}
 636EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
 637
 638static int pinctrl_gpio_direction(unsigned gpio, bool input)
 
 639{
 640	struct pinctrl_dev *pctldev;
 641	struct pinctrl_gpio_range *range;
 642	int ret;
 643	int pin;
 644
 645	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 646	if (ret) {
 647		return ret;
 648	}
 649
 650	mutex_lock(&pctldev->mutex);
 651
 652	/* Convert to the pin controllers number space */
 653	pin = gpio_to_pin(range, gpio);
 654	ret = pinmux_gpio_direction(pctldev, range, pin, input);
 655
 656	mutex_unlock(&pctldev->mutex);
 657
 658	return ret;
 659}
 660
 661/**
 662 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 663 * @gpio: the GPIO pin number from the GPIO subsystem number space
 
 664 *
 665 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 666 * as part of their gpio_direction_input() semantics, platforms and individual
 667 * drivers shall *NOT* touch pin control GPIO calls.
 668 */
 669int pinctrl_gpio_direction_input(unsigned gpio)
 670{
 671	return pinctrl_gpio_direction(gpio, true);
 672}
 673EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 674
 675/**
 676 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 677 * @gpio: the GPIO pin number from the GPIO subsystem number space
 
 678 *
 679 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 680 * as part of their gpio_direction_output() semantics, platforms and individual
 681 * drivers shall *NOT* touch pin control GPIO calls.
 682 */
 683int pinctrl_gpio_direction_output(unsigned gpio)
 684{
 685	return pinctrl_gpio_direction(gpio, false);
 686}
 687EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689static struct pinctrl_state *find_state(struct pinctrl *p,
 690					const char *name)
 691{
 692	struct pinctrl_state *state;
 693
 694	list_for_each_entry(state, &p->states, node)
 695		if (!strcmp(state->name, name))
 696			return state;
 697
 698	return NULL;
 699}
 700
 701static struct pinctrl_state *create_state(struct pinctrl *p,
 702					  const char *name)
 703{
 704	struct pinctrl_state *state;
 705
 706	state = kzalloc(sizeof(*state), GFP_KERNEL);
 707	if (state == NULL) {
 708		dev_err(p->dev,
 709			"failed to alloc struct pinctrl_state\n");
 710		return ERR_PTR(-ENOMEM);
 711	}
 712
 713	state->name = name;
 714	INIT_LIST_HEAD(&state->settings);
 715
 716	list_add_tail(&state->node, &p->states);
 717
 718	return state;
 719}
 720
 721static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
 
 722{
 723	struct pinctrl_state *state;
 724	struct pinctrl_setting *setting;
 725	int ret;
 726
 727	state = find_state(p, map->name);
 728	if (!state)
 729		state = create_state(p, map->name);
 730	if (IS_ERR(state))
 731		return PTR_ERR(state);
 732
 733	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 734		return 0;
 735
 736	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 737	if (setting == NULL) {
 738		dev_err(p->dev,
 739			"failed to alloc struct pinctrl_setting\n");
 740		return -ENOMEM;
 741	}
 742
 743	setting->type = map->type;
 744
 745	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 746	if (setting->pctldev == NULL) {
 
 
 
 
 747		kfree(setting);
 748		/* Do not defer probing of hogs (circular loop) */
 749		if (!strcmp(map->ctrl_dev_name, map->dev_name))
 750			return -ENODEV;
 751		/*
 752		 * OK let us guess that the driver is not there yet, and
 753		 * let's defer obtaining this pinctrl handle to later...
 754		 */
 755		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 756			map->ctrl_dev_name);
 757		return -EPROBE_DEFER;
 758	}
 759
 760	setting->dev_name = map->dev_name;
 761
 762	switch (map->type) {
 763	case PIN_MAP_TYPE_MUX_GROUP:
 764		ret = pinmux_map_to_setting(map, setting);
 765		break;
 766	case PIN_MAP_TYPE_CONFIGS_PIN:
 767	case PIN_MAP_TYPE_CONFIGS_GROUP:
 768		ret = pinconf_map_to_setting(map, setting);
 769		break;
 770	default:
 771		ret = -EINVAL;
 772		break;
 773	}
 774	if (ret < 0) {
 775		kfree(setting);
 776		return ret;
 777	}
 778
 779	list_add_tail(&setting->node, &state->settings);
 780
 781	return 0;
 782}
 783
 784static struct pinctrl *find_pinctrl(struct device *dev)
 785{
 786	struct pinctrl *p;
 787
 788	mutex_lock(&pinctrl_list_mutex);
 789	list_for_each_entry(p, &pinctrl_list, node)
 790		if (p->dev == dev) {
 791			mutex_unlock(&pinctrl_list_mutex);
 792			return p;
 793		}
 794
 795	mutex_unlock(&pinctrl_list_mutex);
 796	return NULL;
 797}
 798
 799static void pinctrl_free(struct pinctrl *p, bool inlist);
 800
 801static struct pinctrl *create_pinctrl(struct device *dev)
 
 802{
 803	struct pinctrl *p;
 804	const char *devname;
 805	struct pinctrl_maps *maps_node;
 806	int i;
 807	struct pinctrl_map const *map;
 808	int ret;
 809
 810	/*
 811	 * create the state cookie holder struct pinctrl for each
 812	 * mapping, this is what consumers will get when requesting
 813	 * a pin control handle with pinctrl_get()
 814	 */
 815	p = kzalloc(sizeof(*p), GFP_KERNEL);
 816	if (p == NULL) {
 817		dev_err(dev, "failed to alloc struct pinctrl\n");
 818		return ERR_PTR(-ENOMEM);
 819	}
 820	p->dev = dev;
 821	INIT_LIST_HEAD(&p->states);
 822	INIT_LIST_HEAD(&p->dt_maps);
 823
 824	ret = pinctrl_dt_to_map(p);
 825	if (ret < 0) {
 826		kfree(p);
 827		return ERR_PTR(ret);
 828	}
 829
 830	devname = dev_name(dev);
 831
 832	mutex_lock(&pinctrl_maps_mutex);
 833	/* Iterate over the pin control maps to locate the right ones */
 834	for_each_maps(maps_node, i, map) {
 835		/* Map must be for this device */
 836		if (strcmp(map->dev_name, devname))
 837			continue;
 
 
 
 
 
 
 
 
 
 
 838
 839		ret = add_setting(p, map);
 840		/*
 841		 * At this point the adding of a setting may:
 842		 *
 843		 * - Defer, if the pinctrl device is not yet available
 844		 * - Fail, if the pinctrl device is not yet available,
 845		 *   AND the setting is a hog. We cannot defer that, since
 846		 *   the hog will kick in immediately after the device
 847		 *   is registered.
 848		 *
 849		 * If the error returned was not -EPROBE_DEFER then we
 850		 * accumulate the errors to see if we end up with
 851		 * an -EPROBE_DEFER later, as that is the worst case.
 852		 */
 853		if (ret == -EPROBE_DEFER) {
 854			pinctrl_free(p, false);
 855			mutex_unlock(&pinctrl_maps_mutex);
 856			return ERR_PTR(ret);
 857		}
 858	}
 859	mutex_unlock(&pinctrl_maps_mutex);
 860
 861	if (ret < 0) {
 862		/* If some other error than deferral occured, return here */
 863		pinctrl_free(p, false);
 864		return ERR_PTR(ret);
 865	}
 866
 867	kref_init(&p->users);
 868
 869	/* Add the pinctrl handle to the global list */
 870	mutex_lock(&pinctrl_list_mutex);
 871	list_add_tail(&p->node, &pinctrl_list);
 872	mutex_unlock(&pinctrl_list_mutex);
 873
 874	return p;
 875}
 876
 877/**
 878 * pinctrl_get() - retrieves the pinctrl handle for a device
 879 * @dev: the device to obtain the handle for
 880 */
 881struct pinctrl *pinctrl_get(struct device *dev)
 882{
 883	struct pinctrl *p;
 884
 885	if (WARN_ON(!dev))
 886		return ERR_PTR(-EINVAL);
 887
 888	/*
 889	 * See if somebody else (such as the device core) has already
 890	 * obtained a handle to the pinctrl for this device. In that case,
 891	 * return another pointer to it.
 892	 */
 893	p = find_pinctrl(dev);
 894	if (p != NULL) {
 895		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
 896		kref_get(&p->users);
 897		return p;
 898	}
 899
 900	return create_pinctrl(dev);
 901}
 902EXPORT_SYMBOL_GPL(pinctrl_get);
 903
 904static void pinctrl_free_setting(bool disable_setting,
 905				 struct pinctrl_setting *setting)
 906{
 907	switch (setting->type) {
 908	case PIN_MAP_TYPE_MUX_GROUP:
 909		if (disable_setting)
 910			pinmux_disable_setting(setting);
 911		pinmux_free_setting(setting);
 912		break;
 913	case PIN_MAP_TYPE_CONFIGS_PIN:
 914	case PIN_MAP_TYPE_CONFIGS_GROUP:
 915		pinconf_free_setting(setting);
 916		break;
 917	default:
 918		break;
 919	}
 920}
 921
 922static void pinctrl_free(struct pinctrl *p, bool inlist)
 923{
 924	struct pinctrl_state *state, *n1;
 925	struct pinctrl_setting *setting, *n2;
 926
 927	mutex_lock(&pinctrl_list_mutex);
 928	list_for_each_entry_safe(state, n1, &p->states, node) {
 929		list_for_each_entry_safe(setting, n2, &state->settings, node) {
 930			pinctrl_free_setting(state == p->state, setting);
 931			list_del(&setting->node);
 932			kfree(setting);
 933		}
 934		list_del(&state->node);
 935		kfree(state);
 936	}
 937
 938	pinctrl_dt_free_maps(p);
 939
 940	if (inlist)
 941		list_del(&p->node);
 942	kfree(p);
 943	mutex_unlock(&pinctrl_list_mutex);
 944}
 945
 946/**
 947 * pinctrl_release() - release the pinctrl handle
 948 * @kref: the kref in the pinctrl being released
 949 */
 950static void pinctrl_release(struct kref *kref)
 951{
 952	struct pinctrl *p = container_of(kref, struct pinctrl, users);
 953
 954	pinctrl_free(p, true);
 955}
 956
 957/**
 958 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
 959 * @p: the pinctrl handle to release
 960 */
 961void pinctrl_put(struct pinctrl *p)
 962{
 963	kref_put(&p->users, pinctrl_release);
 964}
 965EXPORT_SYMBOL_GPL(pinctrl_put);
 966
 967/**
 968 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 969 * @p: the pinctrl handle to retrieve the state from
 970 * @name: the state name to retrieve
 971 */
 972struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
 973						 const char *name)
 974{
 975	struct pinctrl_state *state;
 976
 977	state = find_state(p, name);
 978	if (!state) {
 979		if (pinctrl_dummy_state) {
 980			/* create dummy state */
 981			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
 982				name);
 983			state = create_state(p, name);
 984		} else
 985			state = ERR_PTR(-ENODEV);
 986	}
 987
 988	return state;
 989}
 990EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
 991
 
 
 
 
 
 
 
 
 
 992/**
 993 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
 994 * @p: the pinctrl handle for the device that requests configuration
 995 * @state: the state handle to select/activate/program
 996 */
 997int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
 998{
 999	struct pinctrl_setting *setting, *setting2;
1000	struct pinctrl_state *old_state = p->state;
1001	int ret;
1002
1003	if (p->state == state)
1004		return 0;
1005
1006	if (p->state) {
1007		/*
1008		 * For each pinmux setting in the old state, forget SW's record
1009		 * of mux owner for that pingroup. Any pingroups which are
1010		 * still owned by the new state will be re-acquired by the call
1011		 * to pinmux_enable_setting() in the loop below.
1012		 */
1013		list_for_each_entry(setting, &p->state->settings, node) {
1014			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1015				continue;
1016			pinmux_disable_setting(setting);
1017		}
1018	}
1019
1020	p->state = NULL;
1021
1022	/* Apply all the settings for the new state */
1023	list_for_each_entry(setting, &state->settings, node) {
1024		switch (setting->type) {
1025		case PIN_MAP_TYPE_MUX_GROUP:
1026			ret = pinmux_enable_setting(setting);
1027			break;
1028		case PIN_MAP_TYPE_CONFIGS_PIN:
1029		case PIN_MAP_TYPE_CONFIGS_GROUP:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030			ret = pinconf_apply_setting(setting);
1031			break;
1032		default:
1033			ret = -EINVAL;
1034			break;
1035		}
1036
1037		if (ret < 0) {
1038			goto unapply_new_state;
1039		}
 
 
 
 
1040	}
1041
1042	p->state = state;
1043
1044	return 0;
1045
1046unapply_new_state:
1047	dev_err(p->dev, "Error applying setting, reverse things back\n");
1048
1049	list_for_each_entry(setting2, &state->settings, node) {
1050		if (&setting2->node == &setting->node)
1051			break;
1052		/*
1053		 * All we can do here is pinmux_disable_setting.
1054		 * That means that some pins are muxed differently now
1055		 * than they were before applying the setting (We can't
1056		 * "unmux a pin"!), but it's not a big deal since the pins
1057		 * are free to be muxed by another apply_setting.
1058		 */
1059		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1060			pinmux_disable_setting(setting2);
1061	}
1062
1063	/* There's no infinite recursive loop here because p->state is NULL */
1064	if (old_state)
1065		pinctrl_select_state(p, old_state);
1066
1067	return ret;
1068}
 
 
 
 
 
 
 
 
 
 
 
 
 
1069EXPORT_SYMBOL_GPL(pinctrl_select_state);
1070
1071static void devm_pinctrl_release(struct device *dev, void *res)
1072{
1073	pinctrl_put(*(struct pinctrl **)res);
1074}
1075
1076/**
1077 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1078 * @dev: the device to obtain the handle for
1079 *
1080 * If there is a need to explicitly destroy the returned struct pinctrl,
1081 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1082 */
1083struct pinctrl *devm_pinctrl_get(struct device *dev)
1084{
1085	struct pinctrl **ptr, *p;
1086
1087	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1088	if (!ptr)
1089		return ERR_PTR(-ENOMEM);
1090
1091	p = pinctrl_get(dev);
1092	if (!IS_ERR(p)) {
1093		*ptr = p;
1094		devres_add(dev, ptr);
1095	} else {
1096		devres_free(ptr);
1097	}
1098
1099	return p;
1100}
1101EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1102
1103static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1104{
1105	struct pinctrl **p = res;
1106
1107	return *p == data;
1108}
1109
1110/**
1111 * devm_pinctrl_put() - Resource managed pinctrl_put()
1112 * @p: the pinctrl handle to release
1113 *
1114 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1115 * this function will not need to be called and the resource management
1116 * code will ensure that the resource is freed.
1117 */
1118void devm_pinctrl_put(struct pinctrl *p)
1119{
1120	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1121			       devm_pinctrl_match, p));
1122}
1123EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1124
1125int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1126			 bool dup)
 
 
 
 
 
 
 
1127{
1128	int i, ret;
1129	struct pinctrl_maps *maps_node;
1130
1131	pr_debug("add %u pinctrl maps\n", num_maps);
1132
1133	/* First sanity check the new mapping */
1134	for (i = 0; i < num_maps; i++) {
1135		if (!maps[i].dev_name) {
1136			pr_err("failed to register map %s (%d): no device given\n",
1137			       maps[i].name, i);
1138			return -EINVAL;
1139		}
1140
1141		if (!maps[i].name) {
1142			pr_err("failed to register map %d: no map name given\n",
1143			       i);
1144			return -EINVAL;
1145		}
1146
1147		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1148				!maps[i].ctrl_dev_name) {
1149			pr_err("failed to register map %s (%d): no pin control device given\n",
1150			       maps[i].name, i);
1151			return -EINVAL;
1152		}
1153
1154		switch (maps[i].type) {
1155		case PIN_MAP_TYPE_DUMMY_STATE:
1156			break;
1157		case PIN_MAP_TYPE_MUX_GROUP:
1158			ret = pinmux_validate_map(&maps[i], i);
1159			if (ret < 0)
1160				return ret;
1161			break;
1162		case PIN_MAP_TYPE_CONFIGS_PIN:
1163		case PIN_MAP_TYPE_CONFIGS_GROUP:
1164			ret = pinconf_validate_map(&maps[i], i);
1165			if (ret < 0)
1166				return ret;
1167			break;
1168		default:
1169			pr_err("failed to register map %s (%d): invalid type given\n",
1170			       maps[i].name, i);
1171			return -EINVAL;
1172		}
1173	}
1174
1175	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1176	if (!maps_node) {
1177		pr_err("failed to alloc struct pinctrl_maps\n");
1178		return -ENOMEM;
1179	}
1180
 
1181	maps_node->num_maps = num_maps;
1182	if (dup) {
1183		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1184					  GFP_KERNEL);
1185		if (!maps_node->maps) {
1186			pr_err("failed to duplicate mapping table\n");
1187			kfree(maps_node);
1188			return -ENOMEM;
1189		}
1190	} else {
1191		maps_node->maps = maps;
1192	}
1193
1194	mutex_lock(&pinctrl_maps_mutex);
1195	list_add_tail(&maps_node->node, &pinctrl_maps);
1196	mutex_unlock(&pinctrl_maps_mutex);
1197
1198	return 0;
1199}
 
1200
1201/**
1202 * pinctrl_register_mappings() - register a set of pin controller mappings
1203 * @maps: the pincontrol mappings table to register. This should probably be
1204 *	marked with __initdata so it can be discarded after boot. This
1205 *	function will perform a shallow copy for the mapping entries.
1206 * @num_maps: the number of maps in the mapping table
1207 */
1208int pinctrl_register_mappings(struct pinctrl_map const *maps,
1209			      unsigned num_maps)
1210{
1211	return pinctrl_register_map(maps, num_maps, true);
1212}
1213
1214void pinctrl_unregister_map(struct pinctrl_map const *map)
1215{
1216	struct pinctrl_maps *maps_node;
1217
1218	mutex_lock(&pinctrl_maps_mutex);
1219	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1220		if (maps_node->maps == map) {
1221			list_del(&maps_node->node);
1222			kfree(maps_node);
1223			mutex_unlock(&pinctrl_maps_mutex);
1224			return;
1225		}
1226	}
1227	mutex_unlock(&pinctrl_maps_mutex);
1228}
 
1229
1230/**
1231 * pinctrl_force_sleep() - turn a given controller device into sleep state
1232 * @pctldev: pin controller device
1233 */
1234int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1235{
1236	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1237		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1238	return 0;
1239}
1240EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1241
1242/**
1243 * pinctrl_force_default() - turn a given controller device into default state
1244 * @pctldev: pin controller device
1245 */
1246int pinctrl_force_default(struct pinctrl_dev *pctldev)
1247{
1248	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1249		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1250	return 0;
1251}
1252EXPORT_SYMBOL_GPL(pinctrl_force_default);
1253
1254/**
1255 * pinctrl_init_done() - tell pinctrl probe is done
1256 *
1257 * We'll use this time to switch the pins from "init" to "default" unless the
1258 * driver selected some other state.
1259 *
1260 * @dev: device to that's done probing
1261 */
1262int pinctrl_init_done(struct device *dev)
1263{
1264	struct dev_pin_info *pins = dev->pins;
1265	int ret;
1266
1267	if (!pins)
1268		return 0;
1269
1270	if (IS_ERR(pins->init_state))
1271		return 0; /* No such state */
1272
1273	if (pins->p->state != pins->init_state)
1274		return 0; /* Not at init anyway */
1275
1276	if (IS_ERR(pins->default_state))
1277		return 0; /* No default state */
1278
1279	ret = pinctrl_select_state(pins->p, pins->default_state);
1280	if (ret)
1281		dev_err(dev, "failed to activate default pinctrl state\n");
1282
1283	return ret;
1284}
1285
1286#ifdef CONFIG_PM
1287
1288/**
1289 * pinctrl_pm_select_state() - select pinctrl state for PM
1290 * @dev: device to select default state for
1291 * @state: state to set
1292 */
1293static int pinctrl_pm_select_state(struct device *dev,
1294				   struct pinctrl_state *state)
1295{
1296	struct dev_pin_info *pins = dev->pins;
1297	int ret;
1298
1299	if (IS_ERR(state))
1300		return 0; /* No such state */
1301	ret = pinctrl_select_state(pins->p, state);
1302	if (ret)
1303		dev_err(dev, "failed to activate pinctrl state %s\n",
1304			state->name);
1305	return ret;
1306}
1307
1308/**
1309 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1310 * @dev: device to select default state for
1311 */
1312int pinctrl_pm_select_default_state(struct device *dev)
1313{
1314	if (!dev->pins)
1315		return 0;
1316
1317	return pinctrl_pm_select_state(dev, dev->pins->default_state);
 
 
 
 
 
 
 
 
 
 
 
 
1318}
1319EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1320
1321/**
1322 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1323 * @dev: device to select sleep state for
1324 */
1325int pinctrl_pm_select_sleep_state(struct device *dev)
1326{
1327	if (!dev->pins)
1328		return 0;
1329
1330	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1331}
1332EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1333
1334/**
1335 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1336 * @dev: device to select idle state for
1337 */
1338int pinctrl_pm_select_idle_state(struct device *dev)
1339{
1340	if (!dev->pins)
1341		return 0;
1342
1343	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1344}
1345EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1346#endif
1347
1348#ifdef CONFIG_DEBUG_FS
1349
1350static int pinctrl_pins_show(struct seq_file *s, void *what)
1351{
1352	struct pinctrl_dev *pctldev = s->private;
1353	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1354	unsigned i, pin;
 
 
 
 
 
1355
1356	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1357
1358	mutex_lock(&pctldev->mutex);
1359
1360	/* The pin number can be retrived from the pin controller descriptor */
1361	for (i = 0; i < pctldev->desc->npins; i++) {
1362		struct pin_desc *desc;
1363
1364		pin = pctldev->desc->pins[i].number;
1365		desc = pin_desc_get(pctldev, pin);
1366		/* Pin space may be sparse */
1367		if (desc == NULL)
1368			continue;
1369
1370		seq_printf(s, "pin %d (%s) ", pin,
1371			   desc->name ? desc->name : "unnamed");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372
1373		/* Driver-specific info per pin */
1374		if (ops->pin_dbg_show)
1375			ops->pin_dbg_show(pctldev, s, pin);
1376
1377		seq_puts(s, "\n");
1378	}
1379
1380	mutex_unlock(&pctldev->mutex);
1381
1382	return 0;
1383}
 
1384
1385static int pinctrl_groups_show(struct seq_file *s, void *what)
1386{
1387	struct pinctrl_dev *pctldev = s->private;
1388	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1389	unsigned ngroups, selector = 0;
1390
1391	mutex_lock(&pctldev->mutex);
1392
1393	ngroups = ops->get_groups_count(pctldev);
1394
1395	seq_puts(s, "registered pin groups:\n");
1396	while (selector < ngroups) {
1397		const unsigned *pins = NULL;
1398		unsigned num_pins = 0;
1399		const char *gname = ops->get_group_name(pctldev, selector);
1400		const char *pname;
1401		int ret = 0;
1402		int i;
1403
1404		if (ops->get_group_pins)
1405			ret = ops->get_group_pins(pctldev, selector,
1406						  &pins, &num_pins);
1407		if (ret)
1408			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1409				   gname);
1410		else {
1411			seq_printf(s, "group: %s\n", gname);
1412			for (i = 0; i < num_pins; i++) {
1413				pname = pin_get_name(pctldev, pins[i]);
1414				if (WARN_ON(!pname)) {
1415					mutex_unlock(&pctldev->mutex);
1416					return -EINVAL;
1417				}
1418				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1419			}
1420			seq_puts(s, "\n");
1421		}
1422		selector++;
1423	}
1424
1425	mutex_unlock(&pctldev->mutex);
1426
1427	return 0;
1428}
 
1429
1430static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1431{
1432	struct pinctrl_dev *pctldev = s->private;
1433	struct pinctrl_gpio_range *range = NULL;
1434
1435	seq_puts(s, "GPIO ranges handled:\n");
1436
1437	mutex_lock(&pctldev->mutex);
1438
1439	/* Loop over the ranges */
1440	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1441		if (range->pins) {
1442			int a;
1443			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1444				range->id, range->name,
1445				range->base, (range->base + range->npins - 1));
1446			for (a = 0; a < range->npins - 1; a++)
1447				seq_printf(s, "%u, ", range->pins[a]);
1448			seq_printf(s, "%u}\n", range->pins[a]);
1449		}
1450		else
1451			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1452				range->id, range->name,
1453				range->base, (range->base + range->npins - 1),
1454				range->pin_base,
1455				(range->pin_base + range->npins - 1));
1456	}
1457
1458	mutex_unlock(&pctldev->mutex);
1459
1460	return 0;
1461}
 
1462
1463static int pinctrl_devices_show(struct seq_file *s, void *what)
1464{
1465	struct pinctrl_dev *pctldev;
1466
1467	seq_puts(s, "name [pinmux] [pinconf]\n");
1468
1469	mutex_lock(&pinctrldev_list_mutex);
1470
1471	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1472		seq_printf(s, "%s ", pctldev->desc->name);
1473		if (pctldev->desc->pmxops)
1474			seq_puts(s, "yes ");
1475		else
1476			seq_puts(s, "no ");
1477		if (pctldev->desc->confops)
1478			seq_puts(s, "yes");
1479		else
1480			seq_puts(s, "no");
1481		seq_puts(s, "\n");
1482	}
1483
1484	mutex_unlock(&pinctrldev_list_mutex);
1485
1486	return 0;
1487}
 
1488
1489static inline const char *map_type(enum pinctrl_map_type type)
1490{
1491	static const char * const names[] = {
1492		"INVALID",
1493		"DUMMY_STATE",
1494		"MUX_GROUP",
1495		"CONFIGS_PIN",
1496		"CONFIGS_GROUP",
1497	};
1498
1499	if (type >= ARRAY_SIZE(names))
1500		return "UNKNOWN";
1501
1502	return names[type];
1503}
1504
1505static int pinctrl_maps_show(struct seq_file *s, void *what)
1506{
1507	struct pinctrl_maps *maps_node;
1508	int i;
1509	struct pinctrl_map const *map;
1510
1511	seq_puts(s, "Pinctrl maps:\n");
1512
1513	mutex_lock(&pinctrl_maps_mutex);
1514	for_each_maps(maps_node, i, map) {
1515		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1516			   map->dev_name, map->name, map_type(map->type),
1517			   map->type);
1518
1519		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1520			seq_printf(s, "controlling device %s\n",
1521				   map->ctrl_dev_name);
1522
1523		switch (map->type) {
1524		case PIN_MAP_TYPE_MUX_GROUP:
1525			pinmux_show_map(s, map);
1526			break;
1527		case PIN_MAP_TYPE_CONFIGS_PIN:
1528		case PIN_MAP_TYPE_CONFIGS_GROUP:
1529			pinconf_show_map(s, map);
1530			break;
1531		default:
1532			break;
1533		}
1534
1535		seq_printf(s, "\n");
1536	}
1537	mutex_unlock(&pinctrl_maps_mutex);
1538
1539	return 0;
1540}
 
1541
1542static int pinctrl_show(struct seq_file *s, void *what)
1543{
1544	struct pinctrl *p;
1545	struct pinctrl_state *state;
1546	struct pinctrl_setting *setting;
1547
1548	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1549
1550	mutex_lock(&pinctrl_list_mutex);
1551
1552	list_for_each_entry(p, &pinctrl_list, node) {
1553		seq_printf(s, "device: %s current state: %s\n",
1554			   dev_name(p->dev),
1555			   p->state ? p->state->name : "none");
1556
1557		list_for_each_entry(state, &p->states, node) {
1558			seq_printf(s, "  state: %s\n", state->name);
1559
1560			list_for_each_entry(setting, &state->settings, node) {
1561				struct pinctrl_dev *pctldev = setting->pctldev;
1562
1563				seq_printf(s, "    type: %s controller %s ",
1564					   map_type(setting->type),
1565					   pinctrl_dev_get_name(pctldev));
1566
1567				switch (setting->type) {
1568				case PIN_MAP_TYPE_MUX_GROUP:
1569					pinmux_show_setting(s, setting);
1570					break;
1571				case PIN_MAP_TYPE_CONFIGS_PIN:
1572				case PIN_MAP_TYPE_CONFIGS_GROUP:
1573					pinconf_show_setting(s, setting);
1574					break;
1575				default:
1576					break;
1577				}
1578			}
1579		}
1580	}
1581
1582	mutex_unlock(&pinctrl_list_mutex);
1583
1584	return 0;
1585}
1586
1587static int pinctrl_pins_open(struct inode *inode, struct file *file)
1588{
1589	return single_open(file, pinctrl_pins_show, inode->i_private);
1590}
1591
1592static int pinctrl_groups_open(struct inode *inode, struct file *file)
1593{
1594	return single_open(file, pinctrl_groups_show, inode->i_private);
1595}
1596
1597static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1598{
1599	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1600}
1601
1602static int pinctrl_devices_open(struct inode *inode, struct file *file)
1603{
1604	return single_open(file, pinctrl_devices_show, NULL);
1605}
1606
1607static int pinctrl_maps_open(struct inode *inode, struct file *file)
1608{
1609	return single_open(file, pinctrl_maps_show, NULL);
1610}
1611
1612static int pinctrl_open(struct inode *inode, struct file *file)
1613{
1614	return single_open(file, pinctrl_show, NULL);
1615}
1616
1617static const struct file_operations pinctrl_pins_ops = {
1618	.open		= pinctrl_pins_open,
1619	.read		= seq_read,
1620	.llseek		= seq_lseek,
1621	.release	= single_release,
1622};
1623
1624static const struct file_operations pinctrl_groups_ops = {
1625	.open		= pinctrl_groups_open,
1626	.read		= seq_read,
1627	.llseek		= seq_lseek,
1628	.release	= single_release,
1629};
1630
1631static const struct file_operations pinctrl_gpioranges_ops = {
1632	.open		= pinctrl_gpioranges_open,
1633	.read		= seq_read,
1634	.llseek		= seq_lseek,
1635	.release	= single_release,
1636};
1637
1638static const struct file_operations pinctrl_devices_ops = {
1639	.open		= pinctrl_devices_open,
1640	.read		= seq_read,
1641	.llseek		= seq_lseek,
1642	.release	= single_release,
1643};
1644
1645static const struct file_operations pinctrl_maps_ops = {
1646	.open		= pinctrl_maps_open,
1647	.read		= seq_read,
1648	.llseek		= seq_lseek,
1649	.release	= single_release,
1650};
1651
1652static const struct file_operations pinctrl_ops = {
1653	.open		= pinctrl_open,
1654	.read		= seq_read,
1655	.llseek		= seq_lseek,
1656	.release	= single_release,
1657};
1658
1659static struct dentry *debugfs_root;
1660
1661static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1662{
1663	struct dentry *device_root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664
1665	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1666					 debugfs_root);
1667	pctldev->device_root = device_root;
1668
1669	if (IS_ERR(device_root) || !device_root) {
1670		pr_warn("failed to create debugfs directory for %s\n",
1671			dev_name(pctldev->dev));
1672		return;
1673	}
1674	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1675			    device_root, pctldev, &pinctrl_pins_ops);
1676	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1677			    device_root, pctldev, &pinctrl_groups_ops);
1678	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1679			    device_root, pctldev, &pinctrl_gpioranges_ops);
1680	if (pctldev->desc->pmxops)
1681		pinmux_init_device_debugfs(device_root, pctldev);
1682	if (pctldev->desc->confops)
1683		pinconf_init_device_debugfs(device_root, pctldev);
1684}
1685
1686static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1687{
1688	debugfs_remove_recursive(pctldev->device_root);
1689}
1690
1691static void pinctrl_init_debugfs(void)
1692{
1693	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1694	if (IS_ERR(debugfs_root) || !debugfs_root) {
1695		pr_warn("failed to create debugfs directory\n");
1696		debugfs_root = NULL;
1697		return;
1698	}
1699
1700	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1701			    debugfs_root, NULL, &pinctrl_devices_ops);
1702	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1703			    debugfs_root, NULL, &pinctrl_maps_ops);
1704	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1705			    debugfs_root, NULL, &pinctrl_ops);
1706}
1707
1708#else /* CONFIG_DEBUG_FS */
1709
1710static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1711{
1712}
1713
1714static void pinctrl_init_debugfs(void)
1715{
1716}
1717
1718static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1719{
1720}
1721
1722#endif
1723
1724static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1725{
1726	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1727
1728	if (!ops ||
1729	    !ops->get_groups_count ||
1730	    !ops->get_group_name)
1731		return -EINVAL;
1732
1733	if (ops->dt_node_to_map && !ops->dt_free_map)
1734		return -EINVAL;
1735
1736	return 0;
1737}
1738
1739/**
1740 * pinctrl_register() - register a pin controller device
1741 * @pctldesc: descriptor for this pin controller
1742 * @dev: parent device for this pin controller
1743 * @driver_data: private pin controller data for this pin controller
1744 */
1745struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1746				    struct device *dev, void *driver_data)
 
1747{
1748	struct pinctrl_dev *pctldev;
1749	int ret;
1750
1751	if (!pctldesc)
1752		return ERR_PTR(-EINVAL);
1753	if (!pctldesc->name)
1754		return ERR_PTR(-EINVAL);
1755
1756	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1757	if (pctldev == NULL) {
1758		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1759		return ERR_PTR(-ENOMEM);
1760	}
1761
1762	/* Initialize pin control device struct */
1763	pctldev->owner = pctldesc->owner;
1764	pctldev->desc = pctldesc;
1765	pctldev->driver_data = driver_data;
1766	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
 
 
 
 
 
 
1767	INIT_LIST_HEAD(&pctldev->gpio_ranges);
 
1768	pctldev->dev = dev;
1769	mutex_init(&pctldev->mutex);
1770
1771	/* check core ops for sanity */
1772	ret = pinctrl_check_ops(pctldev);
1773	if (ret) {
1774		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1775		goto out_err;
1776	}
1777
1778	/* If we're implementing pinmuxing, check the ops for sanity */
1779	if (pctldesc->pmxops) {
1780		ret = pinmux_check_ops(pctldev);
1781		if (ret)
1782			goto out_err;
1783	}
1784
1785	/* If we're implementing pinconfig, check the ops for sanity */
1786	if (pctldesc->confops) {
1787		ret = pinconf_check_ops(pctldev);
1788		if (ret)
1789			goto out_err;
1790	}
1791
1792	/* Register all the pins */
1793	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1794	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1795	if (ret) {
1796		dev_err(dev, "error during pin registration\n");
1797		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1798				      pctldesc->npins);
1799		goto out_err;
1800	}
1801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1802	mutex_lock(&pinctrldev_list_mutex);
1803	list_add_tail(&pctldev->node, &pinctrldev_list);
1804	mutex_unlock(&pinctrldev_list_mutex);
1805
1806	pctldev->p = pinctrl_get(pctldev->dev);
1807
1808	if (!IS_ERR(pctldev->p)) {
1809		pctldev->hog_default =
1810			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1811		if (IS_ERR(pctldev->hog_default)) {
1812			dev_dbg(dev, "failed to lookup the default state\n");
1813		} else {
1814			if (pinctrl_select_state(pctldev->p,
1815						pctldev->hog_default))
1816				dev_err(dev,
1817					"failed to select default state\n");
1818		}
1819
1820		pctldev->hog_sleep =
1821			pinctrl_lookup_state(pctldev->p,
1822						    PINCTRL_STATE_SLEEP);
1823		if (IS_ERR(pctldev->hog_sleep))
1824			dev_dbg(dev, "failed to lookup the sleep state\n");
1825	}
 
 
1826
1827	pinctrl_init_device_debugfs(pctldev);
 
 
 
 
 
 
1828
1829	return pctldev;
 
 
1830
1831out_err:
1832	mutex_destroy(&pctldev->mutex);
1833	kfree(pctldev);
1834	return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835}
1836EXPORT_SYMBOL_GPL(pinctrl_register);
1837
1838/**
1839 * pinctrl_unregister() - unregister pinmux
1840 * @pctldev: pin controller to unregister
1841 *
1842 * Called by pinmux drivers to unregister a pinmux.
1843 */
1844void pinctrl_unregister(struct pinctrl_dev *pctldev)
1845{
1846	struct pinctrl_gpio_range *range, *n;
1847	if (pctldev == NULL)
 
1848		return;
1849
1850	mutex_lock(&pctldev->mutex);
1851	pinctrl_remove_device_debugfs(pctldev);
1852	mutex_unlock(&pctldev->mutex);
1853
1854	if (!IS_ERR(pctldev->p))
1855		pinctrl_put(pctldev->p);
1856
1857	mutex_lock(&pinctrldev_list_mutex);
1858	mutex_lock(&pctldev->mutex);
1859	/* TODO: check that no pinmuxes are still active? */
1860	list_del(&pctldev->node);
 
 
1861	/* Destroy descriptor tree */
1862	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1863			      pctldev->desc->npins);
1864	/* remove gpio ranges map */
1865	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1866		list_del(&range->node);
1867
1868	mutex_unlock(&pctldev->mutex);
1869	mutex_destroy(&pctldev->mutex);
1870	kfree(pctldev);
1871	mutex_unlock(&pinctrldev_list_mutex);
1872}
1873EXPORT_SYMBOL_GPL(pinctrl_unregister);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874
1875static int __init pinctrl_init(void)
1876{
1877	pr_info("initialized pinctrl subsystem\n");
1878	pinctrl_init_debugfs();
1879	return 0;
1880}
1881
1882/* init early since many drivers really need to initialized pinmux early */
1883core_initcall(pinctrl_init);