Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/array_size.h>
16#include <linux/cleanup.h>
17#include <linux/debugfs.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/export.h>
21#include <linux/init.h>
22#include <linux/kref.h>
23#include <linux/list.h>
24#include <linux/seq_file.h>
25#include <linux/slab.h>
26
27#include <linux/gpio.h>
28#include <linux/gpio/driver.h>
29
30#include <linux/pinctrl/consumer.h>
31#include <linux/pinctrl/devinfo.h>
32#include <linux/pinctrl/machine.h>
33#include <linux/pinctrl/pinctrl.h>
34
35#include "core.h"
36#include "devicetree.h"
37#include "pinconf.h"
38#include "pinmux.h"
39
40static bool pinctrl_dummy_state;
41
42/* Mutex taken to protect pinctrl_list */
43static DEFINE_MUTEX(pinctrl_list_mutex);
44
45/* Mutex taken to protect pinctrl_maps */
46DEFINE_MUTEX(pinctrl_maps_mutex);
47
48/* Mutex taken to protect pinctrldev_list */
49static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51/* Global list of pin control devices (struct pinctrl_dev) */
52static LIST_HEAD(pinctrldev_list);
53
54/* List of pin controller handles (struct pinctrl) */
55static LIST_HEAD(pinctrl_list);
56
57/* List of pinctrl maps (struct pinctrl_maps) */
58LIST_HEAD(pinctrl_maps);
59
60
61/**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
69void pinctrl_provide_dummies(void)
70{
71 pinctrl_dummy_state = true;
72}
73
74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75{
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78}
79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82{
83 return dev_name(pctldev->dev);
84}
85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88{
89 return pctldev->driver_data;
90}
91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93/**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101{
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120}
121
122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123{
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (device_match_of_node(pctldev->dev, np)) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137}
138
139/**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145{
146 unsigned int i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160}
161
162/**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
168{
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179}
180EXPORT_SYMBOL_GPL(pin_get_name);
181
182/* Deletes a range of pin descriptors */
183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned int num_pins)
186{
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202}
203
204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206{
207 struct pin_desc *pindesc;
208 int error;
209
210 pindesc = pin_desc_get(pctldev, pin->number);
211 if (pindesc) {
212 dev_err(pctldev->dev, "pin %d already registered\n",
213 pin->number);
214 return -EINVAL;
215 }
216
217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 if (!pindesc)
219 return -ENOMEM;
220
221 /* Set owner */
222 pindesc->pctldev = pctldev;
223
224 /* Copy basic pin info */
225 if (pin->name) {
226 pindesc->name = pin->name;
227 } else {
228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
229 if (!pindesc->name) {
230 error = -ENOMEM;
231 goto failed;
232 }
233 pindesc->dynamic_name = true;
234 }
235
236 pindesc->drv_data = pin->drv_data;
237
238 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
239 if (error)
240 goto failed;
241
242 pr_debug("registered pin %d (%s) on %s\n",
243 pin->number, pindesc->name, pctldev->desc->name);
244 return 0;
245
246failed:
247 kfree(pindesc);
248 return error;
249}
250
251static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
252 const struct pinctrl_pin_desc *pins,
253 unsigned int num_descs)
254{
255 unsigned int i;
256 int ret = 0;
257
258 for (i = 0; i < num_descs; i++) {
259 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
260 if (ret)
261 return ret;
262 }
263
264 return 0;
265}
266
267/**
268 * gpio_to_pin() - GPIO range GPIO number to pin number translation
269 * @range: GPIO range used for the translation
270 * @gc: GPIO chip structure from the GPIO subsystem
271 * @offset: hardware offset of the GPIO relative to the controller
272 *
273 * Finds the pin number for a given GPIO using the specified GPIO range
274 * as a base for translation. The distinction between linear GPIO ranges
275 * and pin list based GPIO ranges is managed correctly by this function.
276 *
277 * This function assumes the gpio is part of the specified GPIO range, use
278 * only after making sure this is the case (e.g. by calling it on the
279 * result of successful pinctrl_get_device_gpio_range calls)!
280 */
281static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
282 struct gpio_chip *gc, unsigned int offset)
283{
284 unsigned int pin = gc->base + offset - range->base;
285 if (range->pins)
286 return range->pins[pin];
287 else
288 return range->pin_base + pin;
289}
290
291/**
292 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
293 * @pctldev: pin controller device to check
294 * @gc: GPIO chip structure from the GPIO subsystem
295 * @offset: hardware offset of the GPIO relative to the controller
296 *
297 * Tries to match a GPIO pin number to the ranges handled by a certain pin
298 * controller, return the range or NULL
299 */
300static struct pinctrl_gpio_range *
301pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
302 unsigned int offset)
303{
304 struct pinctrl_gpio_range *range;
305
306 mutex_lock(&pctldev->mutex);
307 /* Loop over the ranges */
308 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
309 /* Check if we're in the valid range */
310 if ((gc->base + offset) >= range->base &&
311 (gc->base + offset) < range->base + range->npins) {
312 mutex_unlock(&pctldev->mutex);
313 return range;
314 }
315 }
316 mutex_unlock(&pctldev->mutex);
317 return NULL;
318}
319
320/**
321 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
322 * the same GPIO chip are in range
323 * @gc: GPIO chip structure from the GPIO subsystem
324 * @offset: hardware offset of the GPIO relative to the controller
325 *
326 * This function is complement of pinctrl_match_gpio_range(). If the return
327 * value of pinctrl_match_gpio_range() is NULL, this function could be used
328 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
329 * of the same GPIO chip don't have back-end pinctrl interface.
330 * If the return value is true, it means that pinctrl device is ready & the
331 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
332 * is false, it means that pinctrl device may not be ready.
333 */
334#ifdef CONFIG_GPIOLIB
335static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
336 unsigned int offset)
337{
338 struct pinctrl_dev *pctldev;
339 struct pinctrl_gpio_range *range = NULL;
340
341 mutex_lock(&pinctrldev_list_mutex);
342
343 /* Loop over the pin controllers */
344 list_for_each_entry(pctldev, &pinctrldev_list, node) {
345 /* Loop over the ranges */
346 mutex_lock(&pctldev->mutex);
347 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
348 /* Check if any gpio range overlapped with gpio chip */
349 if (range->base + range->npins - 1 < gc->base ||
350 range->base > gc->base + gc->ngpio - 1)
351 continue;
352 mutex_unlock(&pctldev->mutex);
353 mutex_unlock(&pinctrldev_list_mutex);
354 return true;
355 }
356 mutex_unlock(&pctldev->mutex);
357 }
358
359 mutex_unlock(&pinctrldev_list_mutex);
360
361 return false;
362}
363#else
364static inline bool
365pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
366{
367 return true;
368}
369#endif
370
371/**
372 * pinctrl_get_device_gpio_range() - find device for GPIO range
373 * @gc: GPIO chip structure from the GPIO subsystem
374 * @offset: hardware offset of the GPIO relative to the controller
375 * @outdev: the pin control device if found
376 * @outrange: the GPIO range if found
377 *
378 * Find the pin controller handling a certain GPIO pin from the pinspace of
379 * the GPIO subsystem, return the device and the matching GPIO range. Returns
380 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
381 * may still have not been registered.
382 */
383static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
384 unsigned int offset,
385 struct pinctrl_dev **outdev,
386 struct pinctrl_gpio_range **outrange)
387{
388 struct pinctrl_dev *pctldev;
389
390 mutex_lock(&pinctrldev_list_mutex);
391
392 /* Loop over the pin controllers */
393 list_for_each_entry(pctldev, &pinctrldev_list, node) {
394 struct pinctrl_gpio_range *range;
395
396 range = pinctrl_match_gpio_range(pctldev, gc, offset);
397 if (range) {
398 *outdev = pctldev;
399 *outrange = range;
400 mutex_unlock(&pinctrldev_list_mutex);
401 return 0;
402 }
403 }
404
405 mutex_unlock(&pinctrldev_list_mutex);
406
407 return -EPROBE_DEFER;
408}
409
410/**
411 * pinctrl_add_gpio_range() - register a GPIO range for a controller
412 * @pctldev: pin controller device to add the range to
413 * @range: the GPIO range to add
414 *
415 * This adds a range of GPIOs to be handled by a certain pin controller. Call
416 * this to register handled ranges after registering your pin controller.
417 */
418void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
419 struct pinctrl_gpio_range *range)
420{
421 mutex_lock(&pctldev->mutex);
422 list_add_tail(&range->node, &pctldev->gpio_ranges);
423 mutex_unlock(&pctldev->mutex);
424}
425EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
426
427void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
428 struct pinctrl_gpio_range *ranges,
429 unsigned int nranges)
430{
431 int i;
432
433 for (i = 0; i < nranges; i++)
434 pinctrl_add_gpio_range(pctldev, &ranges[i]);
435}
436EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
437
438struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
439 struct pinctrl_gpio_range *range)
440{
441 struct pinctrl_dev *pctldev;
442
443 pctldev = get_pinctrl_dev_from_devname(devname);
444
445 /*
446 * If we can't find this device, let's assume that is because
447 * it has not probed yet, so the driver trying to register this
448 * range need to defer probing.
449 */
450 if (!pctldev)
451 return ERR_PTR(-EPROBE_DEFER);
452
453 pinctrl_add_gpio_range(pctldev, range);
454
455 return pctldev;
456}
457EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
458
459int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
460 const unsigned int **pins, unsigned int *num_pins)
461{
462 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
463 int gs;
464
465 if (!pctlops->get_group_pins)
466 return -EINVAL;
467
468 gs = pinctrl_get_group_selector(pctldev, pin_group);
469 if (gs < 0)
470 return gs;
471
472 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
473}
474EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
475
476struct pinctrl_gpio_range *
477pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
478 unsigned int pin)
479{
480 struct pinctrl_gpio_range *range;
481
482 /* Loop over the ranges */
483 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
484 /* Check if we're in the valid range */
485 if (range->pins) {
486 int a;
487 for (a = 0; a < range->npins; a++) {
488 if (range->pins[a] == pin)
489 return range;
490 }
491 } else if (pin >= range->pin_base &&
492 pin < range->pin_base + range->npins)
493 return range;
494 }
495
496 return NULL;
497}
498EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
499
500/**
501 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
502 * @pctldev: the pin controller device to look in
503 * @pin: a controller-local number to find the range for
504 */
505struct pinctrl_gpio_range *
506pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
507 unsigned int pin)
508{
509 struct pinctrl_gpio_range *range;
510
511 mutex_lock(&pctldev->mutex);
512 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
513 mutex_unlock(&pctldev->mutex);
514
515 return range;
516}
517EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
518
519/**
520 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
521 * @pctldev: pin controller device to remove the range from
522 * @range: the GPIO range to remove
523 */
524void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
525 struct pinctrl_gpio_range *range)
526{
527 mutex_lock(&pctldev->mutex);
528 list_del(&range->node);
529 mutex_unlock(&pctldev->mutex);
530}
531EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
532
533#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
534
535/**
536 * pinctrl_generic_get_group_count() - returns the number of pin groups
537 * @pctldev: pin controller device
538 */
539int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
540{
541 return pctldev->num_groups;
542}
543EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
544
545/**
546 * pinctrl_generic_get_group_name() - returns the name of a pin group
547 * @pctldev: pin controller device
548 * @selector: group number
549 */
550const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
551 unsigned int selector)
552{
553 struct group_desc *group;
554
555 group = radix_tree_lookup(&pctldev->pin_group_tree,
556 selector);
557 if (!group)
558 return NULL;
559
560 return group->grp.name;
561}
562EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
563
564/**
565 * pinctrl_generic_get_group_pins() - gets the pin group pins
566 * @pctldev: pin controller device
567 * @selector: group number
568 * @pins: pins in the group
569 * @num_pins: number of pins in the group
570 */
571int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
572 unsigned int selector,
573 const unsigned int **pins,
574 unsigned int *num_pins)
575{
576 struct group_desc *group;
577
578 group = radix_tree_lookup(&pctldev->pin_group_tree,
579 selector);
580 if (!group) {
581 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
582 __func__, selector);
583 return -EINVAL;
584 }
585
586 *pins = group->grp.pins;
587 *num_pins = group->grp.npins;
588
589 return 0;
590}
591EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
592
593/**
594 * pinctrl_generic_get_group() - returns a pin group based on the number
595 * @pctldev: pin controller device
596 * @selector: group number
597 */
598struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
599 unsigned int selector)
600{
601 struct group_desc *group;
602
603 group = radix_tree_lookup(&pctldev->pin_group_tree,
604 selector);
605 if (!group)
606 return NULL;
607
608 return group;
609}
610EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
611
612static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
613 const char *function)
614{
615 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
616 int ngroups = ops->get_groups_count(pctldev);
617 int selector = 0;
618
619 /* See if this pctldev has this group */
620 while (selector < ngroups) {
621 const char *gname = ops->get_group_name(pctldev, selector);
622
623 if (gname && !strcmp(function, gname))
624 return selector;
625
626 selector++;
627 }
628
629 return -EINVAL;
630}
631
632/**
633 * pinctrl_generic_add_group() - adds a new pin group
634 * @pctldev: pin controller device
635 * @name: name of the pin group
636 * @pins: pins in the pin group
637 * @num_pins: number of pins in the pin group
638 * @data: pin controller driver specific data
639 *
640 * Note that the caller must take care of locking.
641 */
642int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
643 const unsigned int *pins, int num_pins, void *data)
644{
645 struct group_desc *group;
646 int selector, error;
647
648 if (!name)
649 return -EINVAL;
650
651 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
652 if (selector >= 0)
653 return selector;
654
655 selector = pctldev->num_groups;
656
657 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
658 if (!group)
659 return -ENOMEM;
660
661 *group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
662
663 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
664 if (error)
665 return error;
666
667 pctldev->num_groups++;
668
669 return selector;
670}
671EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
672
673/**
674 * pinctrl_generic_remove_group() - removes a numbered pin group
675 * @pctldev: pin controller device
676 * @selector: group number
677 *
678 * Note that the caller must take care of locking.
679 */
680int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
681 unsigned int selector)
682{
683 struct group_desc *group;
684
685 group = radix_tree_lookup(&pctldev->pin_group_tree,
686 selector);
687 if (!group)
688 return -ENOENT;
689
690 radix_tree_delete(&pctldev->pin_group_tree, selector);
691 devm_kfree(pctldev->dev, group);
692
693 pctldev->num_groups--;
694
695 return 0;
696}
697EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
698
699/**
700 * pinctrl_generic_free_groups() - removes all pin groups
701 * @pctldev: pin controller device
702 *
703 * Note that the caller must take care of locking. The pinctrl groups
704 * are allocated with devm_kzalloc() so no need to free them here.
705 */
706static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
707{
708 struct radix_tree_iter iter;
709 void __rcu **slot;
710
711 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
712 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
713
714 pctldev->num_groups = 0;
715}
716
717#else
718static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
719{
720}
721#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
722
723/**
724 * pinctrl_get_group_selector() - returns the group selector for a group
725 * @pctldev: the pin controller handling the group
726 * @pin_group: the pin group to look up
727 */
728int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
729 const char *pin_group)
730{
731 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
732 unsigned int ngroups = pctlops->get_groups_count(pctldev);
733 unsigned int group_selector = 0;
734
735 while (group_selector < ngroups) {
736 const char *gname = pctlops->get_group_name(pctldev,
737 group_selector);
738 if (gname && !strcmp(gname, pin_group)) {
739 dev_dbg(pctldev->dev,
740 "found group selector %u for %s\n",
741 group_selector,
742 pin_group);
743 return group_selector;
744 }
745
746 group_selector++;
747 }
748
749 dev_err(pctldev->dev, "does not have pin group %s\n",
750 pin_group);
751
752 return -EINVAL;
753}
754
755bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
756{
757 struct pinctrl_dev *pctldev;
758 struct pinctrl_gpio_range *range;
759 bool result;
760 int pin;
761
762 /*
763 * Try to obtain GPIO range, if it fails
764 * we're probably dealing with GPIO driver
765 * without a backing pin controller - bail out.
766 */
767 if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
768 return true;
769
770 mutex_lock(&pctldev->mutex);
771
772 /* Convert to the pin controllers number space */
773 pin = gpio_to_pin(range, gc, offset);
774
775 result = pinmux_can_be_used_for_gpio(pctldev, pin);
776
777 mutex_unlock(&pctldev->mutex);
778
779 return result;
780}
781EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
782
783/**
784 * pinctrl_gpio_request() - request a single pin to be used as GPIO
785 * @gc: GPIO chip structure from the GPIO subsystem
786 * @offset: hardware offset of the GPIO relative to the controller
787 *
788 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
789 * as part of their gpio_request() semantics, platforms and individual drivers
790 * shall *NOT* request GPIO pins to be muxed in.
791 */
792int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
793{
794 struct pinctrl_gpio_range *range;
795 struct pinctrl_dev *pctldev;
796 int ret, pin;
797
798 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
799 if (ret) {
800 if (pinctrl_ready_for_gpio_range(gc, offset))
801 ret = 0;
802 return ret;
803 }
804
805 mutex_lock(&pctldev->mutex);
806
807 /* Convert to the pin controllers number space */
808 pin = gpio_to_pin(range, gc, offset);
809
810 ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
811
812 mutex_unlock(&pctldev->mutex);
813
814 return ret;
815}
816EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
817
818/**
819 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
820 * @gc: GPIO chip structure from the GPIO subsystem
821 * @offset: hardware offset of the GPIO relative to the controller
822 *
823 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
824 * as part of their gpio_request() semantics, platforms and individual drivers
825 * shall *NOT* request GPIO pins to be muxed in.
826 */
827void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
828{
829 struct pinctrl_gpio_range *range;
830 struct pinctrl_dev *pctldev;
831 int ret, pin;
832
833 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
834 if (ret)
835 return;
836
837 mutex_lock(&pctldev->mutex);
838
839 /* Convert to the pin controllers number space */
840 pin = gpio_to_pin(range, gc, offset);
841
842 pinmux_free_gpio(pctldev, pin, range);
843
844 mutex_unlock(&pctldev->mutex);
845}
846EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
847
848static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
849 bool input)
850{
851 struct pinctrl_dev *pctldev;
852 struct pinctrl_gpio_range *range;
853 int ret;
854 int pin;
855
856 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
857 if (ret) {
858 return ret;
859 }
860
861 mutex_lock(&pctldev->mutex);
862
863 /* Convert to the pin controllers number space */
864 pin = gpio_to_pin(range, gc, offset);
865 ret = pinmux_gpio_direction(pctldev, range, pin, input);
866
867 mutex_unlock(&pctldev->mutex);
868
869 return ret;
870}
871
872/**
873 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
874 * @gc: GPIO chip structure from the GPIO subsystem
875 * @offset: hardware offset of the GPIO relative to the controller
876 *
877 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
878 * as part of their gpio_direction_input() semantics, platforms and individual
879 * drivers shall *NOT* touch pin control GPIO calls.
880 */
881int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
882{
883 return pinctrl_gpio_direction(gc, offset, true);
884}
885EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
886
887/**
888 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
889 * @gc: GPIO chip structure from the GPIO subsystem
890 * @offset: hardware offset of the GPIO relative to the controller
891 *
892 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
893 * as part of their gpio_direction_output() semantics, platforms and individual
894 * drivers shall *NOT* touch pin control GPIO calls.
895 */
896int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
897{
898 return pinctrl_gpio_direction(gc, offset, false);
899}
900EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
901
902/**
903 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
904 * @gc: GPIO chip structure from the GPIO subsystem
905 * @offset: hardware offset of the GPIO relative to the controller
906 * @config: the configuration to apply to the GPIO
907 *
908 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
909 * they need to call the underlying pin controller to change GPIO config
910 * (for example set debounce time).
911 */
912int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
913 unsigned long config)
914{
915 unsigned long configs[] = { config };
916 struct pinctrl_gpio_range *range;
917 struct pinctrl_dev *pctldev;
918 int ret, pin;
919
920 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
921 if (ret)
922 return ret;
923
924 mutex_lock(&pctldev->mutex);
925 pin = gpio_to_pin(range, gc, offset);
926 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
927 mutex_unlock(&pctldev->mutex);
928
929 return ret;
930}
931EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
932
933static struct pinctrl_state *find_state(struct pinctrl *p,
934 const char *name)
935{
936 struct pinctrl_state *state;
937
938 list_for_each_entry(state, &p->states, node)
939 if (!strcmp(state->name, name))
940 return state;
941
942 return NULL;
943}
944
945static struct pinctrl_state *create_state(struct pinctrl *p,
946 const char *name)
947{
948 struct pinctrl_state *state;
949
950 state = kzalloc(sizeof(*state), GFP_KERNEL);
951 if (!state)
952 return ERR_PTR(-ENOMEM);
953
954 state->name = name;
955 INIT_LIST_HEAD(&state->settings);
956
957 list_add_tail(&state->node, &p->states);
958
959 return state;
960}
961
962static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
963 const struct pinctrl_map *map)
964{
965 struct pinctrl_state *state;
966 struct pinctrl_setting *setting;
967 int ret;
968
969 state = find_state(p, map->name);
970 if (!state)
971 state = create_state(p, map->name);
972 if (IS_ERR(state))
973 return PTR_ERR(state);
974
975 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
976 return 0;
977
978 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
979 if (!setting)
980 return -ENOMEM;
981
982 setting->type = map->type;
983
984 if (pctldev)
985 setting->pctldev = pctldev;
986 else
987 setting->pctldev =
988 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
989 if (!setting->pctldev) {
990 kfree(setting);
991 /* Do not defer probing of hogs (circular loop) */
992 if (!strcmp(map->ctrl_dev_name, map->dev_name))
993 return -ENODEV;
994 /*
995 * OK let us guess that the driver is not there yet, and
996 * let's defer obtaining this pinctrl handle to later...
997 */
998 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
999 map->ctrl_dev_name);
1000 return -EPROBE_DEFER;
1001 }
1002
1003 setting->dev_name = map->dev_name;
1004
1005 switch (map->type) {
1006 case PIN_MAP_TYPE_MUX_GROUP:
1007 ret = pinmux_map_to_setting(map, setting);
1008 break;
1009 case PIN_MAP_TYPE_CONFIGS_PIN:
1010 case PIN_MAP_TYPE_CONFIGS_GROUP:
1011 ret = pinconf_map_to_setting(map, setting);
1012 break;
1013 default:
1014 ret = -EINVAL;
1015 break;
1016 }
1017 if (ret < 0) {
1018 kfree(setting);
1019 return ret;
1020 }
1021
1022 list_add_tail(&setting->node, &state->settings);
1023
1024 return 0;
1025}
1026
1027static struct pinctrl *find_pinctrl(struct device *dev)
1028{
1029 struct pinctrl *p;
1030
1031 mutex_lock(&pinctrl_list_mutex);
1032 list_for_each_entry(p, &pinctrl_list, node)
1033 if (p->dev == dev) {
1034 mutex_unlock(&pinctrl_list_mutex);
1035 return p;
1036 }
1037
1038 mutex_unlock(&pinctrl_list_mutex);
1039 return NULL;
1040}
1041
1042static void pinctrl_free(struct pinctrl *p, bool inlist);
1043
1044static struct pinctrl *create_pinctrl(struct device *dev,
1045 struct pinctrl_dev *pctldev)
1046{
1047 struct pinctrl *p;
1048 const char *devname;
1049 struct pinctrl_maps *maps_node;
1050 const struct pinctrl_map *map;
1051 int ret;
1052
1053 /*
1054 * create the state cookie holder struct pinctrl for each
1055 * mapping, this is what consumers will get when requesting
1056 * a pin control handle with pinctrl_get()
1057 */
1058 p = kzalloc(sizeof(*p), GFP_KERNEL);
1059 if (!p)
1060 return ERR_PTR(-ENOMEM);
1061 p->dev = dev;
1062 INIT_LIST_HEAD(&p->states);
1063 INIT_LIST_HEAD(&p->dt_maps);
1064
1065 ret = pinctrl_dt_to_map(p, pctldev);
1066 if (ret < 0) {
1067 kfree(p);
1068 return ERR_PTR(ret);
1069 }
1070
1071 devname = dev_name(dev);
1072
1073 mutex_lock(&pinctrl_maps_mutex);
1074 /* Iterate over the pin control maps to locate the right ones */
1075 for_each_pin_map(maps_node, map) {
1076 /* Map must be for this device */
1077 if (strcmp(map->dev_name, devname))
1078 continue;
1079 /*
1080 * If pctldev is not null, we are claiming hog for it,
1081 * that means, setting that is served by pctldev by itself.
1082 *
1083 * Thus we must skip map that is for this device but is served
1084 * by other device.
1085 */
1086 if (pctldev &&
1087 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1088 continue;
1089
1090 ret = add_setting(p, pctldev, map);
1091 /*
1092 * At this point the adding of a setting may:
1093 *
1094 * - Defer, if the pinctrl device is not yet available
1095 * - Fail, if the pinctrl device is not yet available,
1096 * AND the setting is a hog. We cannot defer that, since
1097 * the hog will kick in immediately after the device
1098 * is registered.
1099 *
1100 * If the error returned was not -EPROBE_DEFER then we
1101 * accumulate the errors to see if we end up with
1102 * an -EPROBE_DEFER later, as that is the worst case.
1103 */
1104 if (ret == -EPROBE_DEFER) {
1105 pinctrl_free(p, false);
1106 mutex_unlock(&pinctrl_maps_mutex);
1107 return ERR_PTR(ret);
1108 }
1109 }
1110 mutex_unlock(&pinctrl_maps_mutex);
1111
1112 if (ret < 0) {
1113 /* If some other error than deferral occurred, return here */
1114 pinctrl_free(p, false);
1115 return ERR_PTR(ret);
1116 }
1117
1118 kref_init(&p->users);
1119
1120 /* Add the pinctrl handle to the global list */
1121 mutex_lock(&pinctrl_list_mutex);
1122 list_add_tail(&p->node, &pinctrl_list);
1123 mutex_unlock(&pinctrl_list_mutex);
1124
1125 return p;
1126}
1127
1128/**
1129 * pinctrl_get() - retrieves the pinctrl handle for a device
1130 * @dev: the device to obtain the handle for
1131 */
1132struct pinctrl *pinctrl_get(struct device *dev)
1133{
1134 struct pinctrl *p;
1135
1136 if (WARN_ON(!dev))
1137 return ERR_PTR(-EINVAL);
1138
1139 /*
1140 * See if somebody else (such as the device core) has already
1141 * obtained a handle to the pinctrl for this device. In that case,
1142 * return another pointer to it.
1143 */
1144 p = find_pinctrl(dev);
1145 if (p) {
1146 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1147 kref_get(&p->users);
1148 return p;
1149 }
1150
1151 return create_pinctrl(dev, NULL);
1152}
1153EXPORT_SYMBOL_GPL(pinctrl_get);
1154
1155static void pinctrl_free_setting(bool disable_setting,
1156 struct pinctrl_setting *setting)
1157{
1158 switch (setting->type) {
1159 case PIN_MAP_TYPE_MUX_GROUP:
1160 if (disable_setting)
1161 pinmux_disable_setting(setting);
1162 pinmux_free_setting(setting);
1163 break;
1164 case PIN_MAP_TYPE_CONFIGS_PIN:
1165 case PIN_MAP_TYPE_CONFIGS_GROUP:
1166 pinconf_free_setting(setting);
1167 break;
1168 default:
1169 break;
1170 }
1171}
1172
1173static void pinctrl_free(struct pinctrl *p, bool inlist)
1174{
1175 struct pinctrl_state *state, *n1;
1176 struct pinctrl_setting *setting, *n2;
1177
1178 mutex_lock(&pinctrl_list_mutex);
1179 list_for_each_entry_safe(state, n1, &p->states, node) {
1180 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1181 pinctrl_free_setting(state == p->state, setting);
1182 list_del(&setting->node);
1183 kfree(setting);
1184 }
1185 list_del(&state->node);
1186 kfree(state);
1187 }
1188
1189 pinctrl_dt_free_maps(p);
1190
1191 if (inlist)
1192 list_del(&p->node);
1193 kfree(p);
1194 mutex_unlock(&pinctrl_list_mutex);
1195}
1196
1197/**
1198 * pinctrl_release() - release the pinctrl handle
1199 * @kref: the kref in the pinctrl being released
1200 */
1201static void pinctrl_release(struct kref *kref)
1202{
1203 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1204
1205 pinctrl_free(p, true);
1206}
1207
1208/**
1209 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1210 * @p: the pinctrl handle to release
1211 */
1212void pinctrl_put(struct pinctrl *p)
1213{
1214 kref_put(&p->users, pinctrl_release);
1215}
1216EXPORT_SYMBOL_GPL(pinctrl_put);
1217
1218/**
1219 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1220 * @p: the pinctrl handle to retrieve the state from
1221 * @name: the state name to retrieve
1222 */
1223struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1224 const char *name)
1225{
1226 struct pinctrl_state *state;
1227
1228 state = find_state(p, name);
1229 if (!state) {
1230 if (pinctrl_dummy_state) {
1231 /* create dummy state */
1232 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1233 name);
1234 state = create_state(p, name);
1235 } else
1236 state = ERR_PTR(-ENODEV);
1237 }
1238
1239 return state;
1240}
1241EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1242
1243static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1244 struct device *consumer)
1245{
1246 if (pctldev->desc->link_consumers)
1247 device_link_add(consumer, pctldev->dev,
1248 DL_FLAG_PM_RUNTIME |
1249 DL_FLAG_AUTOREMOVE_CONSUMER);
1250}
1251
1252/**
1253 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1254 * @p: the pinctrl handle for the device that requests configuration
1255 * @state: the state handle to select/activate/program
1256 */
1257static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1258{
1259 struct pinctrl_setting *setting, *setting2;
1260 struct pinctrl_state *old_state = READ_ONCE(p->state);
1261 int ret;
1262
1263 if (old_state) {
1264 /*
1265 * For each pinmux setting in the old state, forget SW's record
1266 * of mux owner for that pingroup. Any pingroups which are
1267 * still owned by the new state will be re-acquired by the call
1268 * to pinmux_enable_setting() in the loop below.
1269 */
1270 list_for_each_entry(setting, &old_state->settings, node) {
1271 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1272 continue;
1273 pinmux_disable_setting(setting);
1274 }
1275 }
1276
1277 p->state = NULL;
1278
1279 /* Apply all the settings for the new state - pinmux first */
1280 list_for_each_entry(setting, &state->settings, node) {
1281 switch (setting->type) {
1282 case PIN_MAP_TYPE_MUX_GROUP:
1283 ret = pinmux_enable_setting(setting);
1284 break;
1285 case PIN_MAP_TYPE_CONFIGS_PIN:
1286 case PIN_MAP_TYPE_CONFIGS_GROUP:
1287 ret = 0;
1288 break;
1289 default:
1290 ret = -EINVAL;
1291 break;
1292 }
1293
1294 if (ret < 0)
1295 goto unapply_new_state;
1296
1297 /* Do not link hogs (circular dependency) */
1298 if (p != setting->pctldev->p)
1299 pinctrl_link_add(setting->pctldev, p->dev);
1300 }
1301
1302 /* Apply all the settings for the new state - pinconf after */
1303 list_for_each_entry(setting, &state->settings, node) {
1304 switch (setting->type) {
1305 case PIN_MAP_TYPE_MUX_GROUP:
1306 ret = 0;
1307 break;
1308 case PIN_MAP_TYPE_CONFIGS_PIN:
1309 case PIN_MAP_TYPE_CONFIGS_GROUP:
1310 ret = pinconf_apply_setting(setting);
1311 break;
1312 default:
1313 ret = -EINVAL;
1314 break;
1315 }
1316
1317 if (ret < 0) {
1318 goto unapply_new_state;
1319 }
1320
1321 /* Do not link hogs (circular dependency) */
1322 if (p != setting->pctldev->p)
1323 pinctrl_link_add(setting->pctldev, p->dev);
1324 }
1325
1326 p->state = state;
1327
1328 return 0;
1329
1330unapply_new_state:
1331 dev_err(p->dev, "Error applying setting, reverse things back\n");
1332
1333 list_for_each_entry(setting2, &state->settings, node) {
1334 if (&setting2->node == &setting->node)
1335 break;
1336 /*
1337 * All we can do here is pinmux_disable_setting.
1338 * That means that some pins are muxed differently now
1339 * than they were before applying the setting (We can't
1340 * "unmux a pin"!), but it's not a big deal since the pins
1341 * are free to be muxed by another apply_setting.
1342 */
1343 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1344 pinmux_disable_setting(setting2);
1345 }
1346
1347 /* There's no infinite recursive loop here because p->state is NULL */
1348 if (old_state)
1349 pinctrl_select_state(p, old_state);
1350
1351 return ret;
1352}
1353
1354/**
1355 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1356 * @p: the pinctrl handle for the device that requests configuration
1357 * @state: the state handle to select/activate/program
1358 */
1359int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1360{
1361 if (p->state == state)
1362 return 0;
1363
1364 return pinctrl_commit_state(p, state);
1365}
1366EXPORT_SYMBOL_GPL(pinctrl_select_state);
1367
1368static void devm_pinctrl_release(struct device *dev, void *res)
1369{
1370 pinctrl_put(*(struct pinctrl **)res);
1371}
1372
1373/**
1374 * devm_pinctrl_get() - Resource managed pinctrl_get()
1375 * @dev: the device to obtain the handle for
1376 *
1377 * If there is a need to explicitly destroy the returned struct pinctrl,
1378 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1379 */
1380struct pinctrl *devm_pinctrl_get(struct device *dev)
1381{
1382 struct pinctrl **ptr, *p;
1383
1384 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1385 if (!ptr)
1386 return ERR_PTR(-ENOMEM);
1387
1388 p = pinctrl_get(dev);
1389 if (!IS_ERR(p)) {
1390 *ptr = p;
1391 devres_add(dev, ptr);
1392 } else {
1393 devres_free(ptr);
1394 }
1395
1396 return p;
1397}
1398EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1399
1400static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1401{
1402 struct pinctrl **p = res;
1403
1404 return *p == data;
1405}
1406
1407/**
1408 * devm_pinctrl_put() - Resource managed pinctrl_put()
1409 * @p: the pinctrl handle to release
1410 *
1411 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1412 * this function will not need to be called and the resource management
1413 * code will ensure that the resource is freed.
1414 */
1415void devm_pinctrl_put(struct pinctrl *p)
1416{
1417 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1418 devm_pinctrl_match, p));
1419}
1420EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1421
1422/**
1423 * pinctrl_register_mappings() - register a set of pin controller mappings
1424 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1425 * keeps a reference to the passed in maps, so they should _not_ be
1426 * marked with __initdata.
1427 * @num_maps: the number of maps in the mapping table
1428 */
1429int pinctrl_register_mappings(const struct pinctrl_map *maps,
1430 unsigned int num_maps)
1431{
1432 int i, ret;
1433 struct pinctrl_maps *maps_node;
1434
1435 pr_debug("add %u pinctrl maps\n", num_maps);
1436
1437 /* First sanity check the new mapping */
1438 for (i = 0; i < num_maps; i++) {
1439 if (!maps[i].dev_name) {
1440 pr_err("failed to register map %s (%d): no device given\n",
1441 maps[i].name, i);
1442 return -EINVAL;
1443 }
1444
1445 if (!maps[i].name) {
1446 pr_err("failed to register map %d: no map name given\n",
1447 i);
1448 return -EINVAL;
1449 }
1450
1451 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1452 !maps[i].ctrl_dev_name) {
1453 pr_err("failed to register map %s (%d): no pin control device given\n",
1454 maps[i].name, i);
1455 return -EINVAL;
1456 }
1457
1458 switch (maps[i].type) {
1459 case PIN_MAP_TYPE_DUMMY_STATE:
1460 break;
1461 case PIN_MAP_TYPE_MUX_GROUP:
1462 ret = pinmux_validate_map(&maps[i], i);
1463 if (ret < 0)
1464 return ret;
1465 break;
1466 case PIN_MAP_TYPE_CONFIGS_PIN:
1467 case PIN_MAP_TYPE_CONFIGS_GROUP:
1468 ret = pinconf_validate_map(&maps[i], i);
1469 if (ret < 0)
1470 return ret;
1471 break;
1472 default:
1473 pr_err("failed to register map %s (%d): invalid type given\n",
1474 maps[i].name, i);
1475 return -EINVAL;
1476 }
1477 }
1478
1479 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1480 if (!maps_node)
1481 return -ENOMEM;
1482
1483 maps_node->maps = maps;
1484 maps_node->num_maps = num_maps;
1485
1486 mutex_lock(&pinctrl_maps_mutex);
1487 list_add_tail(&maps_node->node, &pinctrl_maps);
1488 mutex_unlock(&pinctrl_maps_mutex);
1489
1490 return 0;
1491}
1492EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1493
1494/**
1495 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1496 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1497 * when registering the mappings.
1498 */
1499void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1500{
1501 struct pinctrl_maps *maps_node;
1502
1503 mutex_lock(&pinctrl_maps_mutex);
1504 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1505 if (maps_node->maps == map) {
1506 list_del(&maps_node->node);
1507 kfree(maps_node);
1508 mutex_unlock(&pinctrl_maps_mutex);
1509 return;
1510 }
1511 }
1512 mutex_unlock(&pinctrl_maps_mutex);
1513}
1514EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1515
1516/**
1517 * pinctrl_force_sleep() - turn a given controller device into sleep state
1518 * @pctldev: pin controller device
1519 */
1520int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1521{
1522 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1523 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1524 return 0;
1525}
1526EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1527
1528/**
1529 * pinctrl_force_default() - turn a given controller device into default state
1530 * @pctldev: pin controller device
1531 */
1532int pinctrl_force_default(struct pinctrl_dev *pctldev)
1533{
1534 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1535 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1536 return 0;
1537}
1538EXPORT_SYMBOL_GPL(pinctrl_force_default);
1539
1540/**
1541 * pinctrl_init_done() - tell pinctrl probe is done
1542 *
1543 * We'll use this time to switch the pins from "init" to "default" unless the
1544 * driver selected some other state.
1545 *
1546 * @dev: device to that's done probing
1547 */
1548int pinctrl_init_done(struct device *dev)
1549{
1550 struct dev_pin_info *pins = dev->pins;
1551 int ret;
1552
1553 if (!pins)
1554 return 0;
1555
1556 if (IS_ERR(pins->init_state))
1557 return 0; /* No such state */
1558
1559 if (pins->p->state != pins->init_state)
1560 return 0; /* Not at init anyway */
1561
1562 if (IS_ERR(pins->default_state))
1563 return 0; /* No default state */
1564
1565 ret = pinctrl_select_state(pins->p, pins->default_state);
1566 if (ret)
1567 dev_err(dev, "failed to activate default pinctrl state\n");
1568
1569 return ret;
1570}
1571
1572static int pinctrl_select_bound_state(struct device *dev,
1573 struct pinctrl_state *state)
1574{
1575 struct dev_pin_info *pins = dev->pins;
1576 int ret;
1577
1578 if (IS_ERR(state))
1579 return 0; /* No such state */
1580 ret = pinctrl_select_state(pins->p, state);
1581 if (ret)
1582 dev_err(dev, "failed to activate pinctrl state %s\n",
1583 state->name);
1584 return ret;
1585}
1586
1587/**
1588 * pinctrl_select_default_state() - select default pinctrl state
1589 * @dev: device to select default state for
1590 */
1591int pinctrl_select_default_state(struct device *dev)
1592{
1593 if (!dev->pins)
1594 return 0;
1595
1596 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1597}
1598EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1599
1600#ifdef CONFIG_PM
1601
1602/**
1603 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1604 * @dev: device to select default state for
1605 */
1606int pinctrl_pm_select_default_state(struct device *dev)
1607{
1608 return pinctrl_select_default_state(dev);
1609}
1610EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1611
1612/**
1613 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1614 * @dev: device to select sleep state for
1615 */
1616int pinctrl_pm_select_sleep_state(struct device *dev)
1617{
1618 if (!dev->pins)
1619 return 0;
1620
1621 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1622}
1623EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1624
1625/**
1626 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1627 * @dev: device to select idle state for
1628 */
1629int pinctrl_pm_select_idle_state(struct device *dev)
1630{
1631 if (!dev->pins)
1632 return 0;
1633
1634 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1635}
1636EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1637#endif
1638
1639#ifdef CONFIG_DEBUG_FS
1640
1641static int pinctrl_pins_show(struct seq_file *s, void *what)
1642{
1643 struct pinctrl_dev *pctldev = s->private;
1644 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1645 unsigned int i, pin;
1646#ifdef CONFIG_GPIOLIB
1647 struct gpio_device *gdev = NULL;
1648 struct pinctrl_gpio_range *range;
1649 int gpio_num;
1650#endif
1651
1652 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1653
1654 mutex_lock(&pctldev->mutex);
1655
1656 /* The pin number can be retrived from the pin controller descriptor */
1657 for (i = 0; i < pctldev->desc->npins; i++) {
1658 struct pin_desc *desc;
1659
1660 pin = pctldev->desc->pins[i].number;
1661 desc = pin_desc_get(pctldev, pin);
1662 /* Pin space may be sparse */
1663 if (!desc)
1664 continue;
1665
1666 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1667
1668#ifdef CONFIG_GPIOLIB
1669 gpio_num = -1;
1670 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1671 if ((pin >= range->pin_base) &&
1672 (pin < (range->pin_base + range->npins))) {
1673 gpio_num = range->base + (pin - range->pin_base);
1674 break;
1675 }
1676 }
1677 if (gpio_num >= 0)
1678 /*
1679 * FIXME: gpio_num comes from the global GPIO numberspace.
1680 * we need to get rid of the range->base eventually and
1681 * get the descriptor directly from the gpio_chip.
1682 */
1683 gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1684 if (gdev)
1685 seq_printf(s, "%u:%s ",
1686 gpio_num - gpio_device_get_base(gdev),
1687 gpio_device_get_label(gdev));
1688 else
1689 seq_puts(s, "0:? ");
1690#endif
1691
1692 /* Driver-specific info per pin */
1693 if (ops->pin_dbg_show)
1694 ops->pin_dbg_show(pctldev, s, pin);
1695
1696 seq_puts(s, "\n");
1697 }
1698
1699 mutex_unlock(&pctldev->mutex);
1700
1701 return 0;
1702}
1703DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1704
1705static int pinctrl_groups_show(struct seq_file *s, void *what)
1706{
1707 struct pinctrl_dev *pctldev = s->private;
1708 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1709 unsigned int ngroups, selector = 0;
1710
1711 mutex_lock(&pctldev->mutex);
1712
1713 ngroups = ops->get_groups_count(pctldev);
1714
1715 seq_puts(s, "registered pin groups:\n");
1716 while (selector < ngroups) {
1717 const unsigned int *pins = NULL;
1718 unsigned int num_pins = 0;
1719 const char *gname = ops->get_group_name(pctldev, selector);
1720 const char *pname;
1721 int ret = 0;
1722 int i;
1723
1724 if (ops->get_group_pins)
1725 ret = ops->get_group_pins(pctldev, selector,
1726 &pins, &num_pins);
1727 if (ret)
1728 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1729 gname);
1730 else {
1731 seq_printf(s, "group: %s\n", gname);
1732 for (i = 0; i < num_pins; i++) {
1733 pname = pin_get_name(pctldev, pins[i]);
1734 if (WARN_ON(!pname)) {
1735 mutex_unlock(&pctldev->mutex);
1736 return -EINVAL;
1737 }
1738 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1739 }
1740 seq_puts(s, "\n");
1741 }
1742 selector++;
1743 }
1744
1745 mutex_unlock(&pctldev->mutex);
1746
1747 return 0;
1748}
1749DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1750
1751static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1752{
1753 struct pinctrl_dev *pctldev = s->private;
1754 struct pinctrl_gpio_range *range;
1755
1756 seq_puts(s, "GPIO ranges handled:\n");
1757
1758 mutex_lock(&pctldev->mutex);
1759
1760 /* Loop over the ranges */
1761 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1762 if (range->pins) {
1763 int a;
1764 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1765 range->id, range->name,
1766 range->base, (range->base + range->npins - 1));
1767 for (a = 0; a < range->npins - 1; a++)
1768 seq_printf(s, "%u, ", range->pins[a]);
1769 seq_printf(s, "%u}\n", range->pins[a]);
1770 }
1771 else
1772 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1773 range->id, range->name,
1774 range->base, (range->base + range->npins - 1),
1775 range->pin_base,
1776 (range->pin_base + range->npins - 1));
1777 }
1778
1779 mutex_unlock(&pctldev->mutex);
1780
1781 return 0;
1782}
1783DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1784
1785static int pinctrl_devices_show(struct seq_file *s, void *what)
1786{
1787 struct pinctrl_dev *pctldev;
1788
1789 seq_puts(s, "name [pinmux] [pinconf]\n");
1790
1791 mutex_lock(&pinctrldev_list_mutex);
1792
1793 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1794 seq_printf(s, "%s ", pctldev->desc->name);
1795 if (pctldev->desc->pmxops)
1796 seq_puts(s, "yes ");
1797 else
1798 seq_puts(s, "no ");
1799 if (pctldev->desc->confops)
1800 seq_puts(s, "yes");
1801 else
1802 seq_puts(s, "no");
1803 seq_puts(s, "\n");
1804 }
1805
1806 mutex_unlock(&pinctrldev_list_mutex);
1807
1808 return 0;
1809}
1810DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1811
1812static inline const char *map_type(enum pinctrl_map_type type)
1813{
1814 static const char * const names[] = {
1815 "INVALID",
1816 "DUMMY_STATE",
1817 "MUX_GROUP",
1818 "CONFIGS_PIN",
1819 "CONFIGS_GROUP",
1820 };
1821
1822 if (type >= ARRAY_SIZE(names))
1823 return "UNKNOWN";
1824
1825 return names[type];
1826}
1827
1828static int pinctrl_maps_show(struct seq_file *s, void *what)
1829{
1830 struct pinctrl_maps *maps_node;
1831 const struct pinctrl_map *map;
1832
1833 seq_puts(s, "Pinctrl maps:\n");
1834
1835 mutex_lock(&pinctrl_maps_mutex);
1836 for_each_pin_map(maps_node, map) {
1837 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1838 map->dev_name, map->name, map_type(map->type),
1839 map->type);
1840
1841 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1842 seq_printf(s, "controlling device %s\n",
1843 map->ctrl_dev_name);
1844
1845 switch (map->type) {
1846 case PIN_MAP_TYPE_MUX_GROUP:
1847 pinmux_show_map(s, map);
1848 break;
1849 case PIN_MAP_TYPE_CONFIGS_PIN:
1850 case PIN_MAP_TYPE_CONFIGS_GROUP:
1851 pinconf_show_map(s, map);
1852 break;
1853 default:
1854 break;
1855 }
1856
1857 seq_putc(s, '\n');
1858 }
1859 mutex_unlock(&pinctrl_maps_mutex);
1860
1861 return 0;
1862}
1863DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1864
1865static int pinctrl_show(struct seq_file *s, void *what)
1866{
1867 struct pinctrl *p;
1868 struct pinctrl_state *state;
1869 struct pinctrl_setting *setting;
1870
1871 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1872
1873 mutex_lock(&pinctrl_list_mutex);
1874
1875 list_for_each_entry(p, &pinctrl_list, node) {
1876 seq_printf(s, "device: %s current state: %s\n",
1877 dev_name(p->dev),
1878 p->state ? p->state->name : "none");
1879
1880 list_for_each_entry(state, &p->states, node) {
1881 seq_printf(s, " state: %s\n", state->name);
1882
1883 list_for_each_entry(setting, &state->settings, node) {
1884 struct pinctrl_dev *pctldev = setting->pctldev;
1885
1886 seq_printf(s, " type: %s controller %s ",
1887 map_type(setting->type),
1888 pinctrl_dev_get_name(pctldev));
1889
1890 switch (setting->type) {
1891 case PIN_MAP_TYPE_MUX_GROUP:
1892 pinmux_show_setting(s, setting);
1893 break;
1894 case PIN_MAP_TYPE_CONFIGS_PIN:
1895 case PIN_MAP_TYPE_CONFIGS_GROUP:
1896 pinconf_show_setting(s, setting);
1897 break;
1898 default:
1899 break;
1900 }
1901 }
1902 }
1903 }
1904
1905 mutex_unlock(&pinctrl_list_mutex);
1906
1907 return 0;
1908}
1909DEFINE_SHOW_ATTRIBUTE(pinctrl);
1910
1911static struct dentry *debugfs_root;
1912
1913static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1914{
1915 struct dentry *device_root;
1916 const char *debugfs_name;
1917
1918 if (pctldev->desc->name &&
1919 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1920 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1921 "%s-%s", dev_name(pctldev->dev),
1922 pctldev->desc->name);
1923 if (!debugfs_name) {
1924 pr_warn("failed to determine debugfs dir name for %s\n",
1925 dev_name(pctldev->dev));
1926 return;
1927 }
1928 } else {
1929 debugfs_name = dev_name(pctldev->dev);
1930 }
1931
1932 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1933 pctldev->device_root = device_root;
1934
1935 if (IS_ERR(device_root) || !device_root) {
1936 pr_warn("failed to create debugfs directory for %s\n",
1937 dev_name(pctldev->dev));
1938 return;
1939 }
1940 debugfs_create_file("pins", 0444,
1941 device_root, pctldev, &pinctrl_pins_fops);
1942 debugfs_create_file("pingroups", 0444,
1943 device_root, pctldev, &pinctrl_groups_fops);
1944 debugfs_create_file("gpio-ranges", 0444,
1945 device_root, pctldev, &pinctrl_gpioranges_fops);
1946 if (pctldev->desc->pmxops)
1947 pinmux_init_device_debugfs(device_root, pctldev);
1948 if (pctldev->desc->confops)
1949 pinconf_init_device_debugfs(device_root, pctldev);
1950}
1951
1952static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1953{
1954 debugfs_remove_recursive(pctldev->device_root);
1955}
1956
1957static void pinctrl_init_debugfs(void)
1958{
1959 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1960 if (IS_ERR(debugfs_root) || !debugfs_root) {
1961 pr_warn("failed to create debugfs directory\n");
1962 debugfs_root = NULL;
1963 return;
1964 }
1965
1966 debugfs_create_file("pinctrl-devices", 0444,
1967 debugfs_root, NULL, &pinctrl_devices_fops);
1968 debugfs_create_file("pinctrl-maps", 0444,
1969 debugfs_root, NULL, &pinctrl_maps_fops);
1970 debugfs_create_file("pinctrl-handles", 0444,
1971 debugfs_root, NULL, &pinctrl_fops);
1972}
1973
1974#else /* CONFIG_DEBUG_FS */
1975
1976static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1977{
1978}
1979
1980static void pinctrl_init_debugfs(void)
1981{
1982}
1983
1984static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1985{
1986}
1987
1988#endif
1989
1990static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1991{
1992 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1993
1994 if (!ops ||
1995 !ops->get_groups_count ||
1996 !ops->get_group_name)
1997 return -EINVAL;
1998
1999 return 0;
2000}
2001
2002/**
2003 * pinctrl_init_controller() - init a pin controller device
2004 * @pctldesc: descriptor for this pin controller
2005 * @dev: parent device for this pin controller
2006 * @driver_data: private pin controller data for this pin controller
2007 */
2008static struct pinctrl_dev *
2009pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2010 void *driver_data)
2011{
2012 struct pinctrl_dev *pctldev;
2013 int ret;
2014
2015 if (!pctldesc)
2016 return ERR_PTR(-EINVAL);
2017 if (!pctldesc->name)
2018 return ERR_PTR(-EINVAL);
2019
2020 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2021 if (!pctldev)
2022 return ERR_PTR(-ENOMEM);
2023
2024 /* Initialize pin control device struct */
2025 pctldev->owner = pctldesc->owner;
2026 pctldev->desc = pctldesc;
2027 pctldev->driver_data = driver_data;
2028 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2029#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2030 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2031#endif
2032#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2033 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2034#endif
2035 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2036 INIT_LIST_HEAD(&pctldev->node);
2037 pctldev->dev = dev;
2038 mutex_init(&pctldev->mutex);
2039
2040 /* check core ops for sanity */
2041 ret = pinctrl_check_ops(pctldev);
2042 if (ret) {
2043 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2044 goto out_err;
2045 }
2046
2047 /* If we're implementing pinmuxing, check the ops for sanity */
2048 if (pctldesc->pmxops) {
2049 ret = pinmux_check_ops(pctldev);
2050 if (ret)
2051 goto out_err;
2052 }
2053
2054 /* If we're implementing pinconfig, check the ops for sanity */
2055 if (pctldesc->confops) {
2056 ret = pinconf_check_ops(pctldev);
2057 if (ret)
2058 goto out_err;
2059 }
2060
2061 /* Register all the pins */
2062 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2063 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2064 if (ret) {
2065 dev_err(dev, "error during pin registration\n");
2066 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2067 pctldesc->npins);
2068 goto out_err;
2069 }
2070
2071 return pctldev;
2072
2073out_err:
2074 mutex_destroy(&pctldev->mutex);
2075 kfree(pctldev);
2076 return ERR_PTR(ret);
2077}
2078
2079static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2080{
2081 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2082 if (PTR_ERR(pctldev->p) == -ENODEV) {
2083 dev_dbg(pctldev->dev, "no hogs found\n");
2084
2085 return 0;
2086 }
2087
2088 if (IS_ERR(pctldev->p)) {
2089 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2090 PTR_ERR(pctldev->p));
2091
2092 return PTR_ERR(pctldev->p);
2093 }
2094
2095 pctldev->hog_default =
2096 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2097 if (IS_ERR(pctldev->hog_default)) {
2098 dev_dbg(pctldev->dev,
2099 "failed to lookup the default state\n");
2100 } else {
2101 if (pinctrl_select_state(pctldev->p,
2102 pctldev->hog_default))
2103 dev_err(pctldev->dev,
2104 "failed to select default state\n");
2105 }
2106
2107 pctldev->hog_sleep =
2108 pinctrl_lookup_state(pctldev->p,
2109 PINCTRL_STATE_SLEEP);
2110 if (IS_ERR(pctldev->hog_sleep))
2111 dev_dbg(pctldev->dev,
2112 "failed to lookup the sleep state\n");
2113
2114 return 0;
2115}
2116
2117int pinctrl_enable(struct pinctrl_dev *pctldev)
2118{
2119 int error;
2120
2121 error = pinctrl_claim_hogs(pctldev);
2122 if (error) {
2123 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2124 error);
2125 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2126 pctldev->desc->npins);
2127 mutex_destroy(&pctldev->mutex);
2128 kfree(pctldev);
2129
2130 return error;
2131 }
2132
2133 mutex_lock(&pinctrldev_list_mutex);
2134 list_add_tail(&pctldev->node, &pinctrldev_list);
2135 mutex_unlock(&pinctrldev_list_mutex);
2136
2137 pinctrl_init_device_debugfs(pctldev);
2138
2139 return 0;
2140}
2141EXPORT_SYMBOL_GPL(pinctrl_enable);
2142
2143/**
2144 * pinctrl_register() - register a pin controller device
2145 * @pctldesc: descriptor for this pin controller
2146 * @dev: parent device for this pin controller
2147 * @driver_data: private pin controller data for this pin controller
2148 *
2149 * Note that pinctrl_register() is known to have problems as the pin
2150 * controller driver functions are called before the driver has a
2151 * struct pinctrl_dev handle. To avoid issues later on, please use the
2152 * new pinctrl_register_and_init() below instead.
2153 */
2154struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2155 struct device *dev, void *driver_data)
2156{
2157 struct pinctrl_dev *pctldev;
2158 int error;
2159
2160 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2161 if (IS_ERR(pctldev))
2162 return pctldev;
2163
2164 error = pinctrl_enable(pctldev);
2165 if (error)
2166 return ERR_PTR(error);
2167
2168 return pctldev;
2169}
2170EXPORT_SYMBOL_GPL(pinctrl_register);
2171
2172/**
2173 * pinctrl_register_and_init() - register and init pin controller device
2174 * @pctldesc: descriptor for this pin controller
2175 * @dev: parent device for this pin controller
2176 * @driver_data: private pin controller data for this pin controller
2177 * @pctldev: pin controller device
2178 *
2179 * Note that pinctrl_enable() still needs to be manually called after
2180 * this once the driver is ready.
2181 */
2182int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2183 struct device *dev, void *driver_data,
2184 struct pinctrl_dev **pctldev)
2185{
2186 struct pinctrl_dev *p;
2187
2188 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2189 if (IS_ERR(p))
2190 return PTR_ERR(p);
2191
2192 /*
2193 * We have pinctrl_start() call functions in the pin controller
2194 * driver with create_pinctrl() for at least dt_node_to_map(). So
2195 * let's make sure pctldev is properly initialized for the
2196 * pin controller driver before we do anything.
2197 */
2198 *pctldev = p;
2199
2200 return 0;
2201}
2202EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2203
2204/**
2205 * pinctrl_unregister() - unregister pinmux
2206 * @pctldev: pin controller to unregister
2207 *
2208 * Called by pinmux drivers to unregister a pinmux.
2209 */
2210void pinctrl_unregister(struct pinctrl_dev *pctldev)
2211{
2212 struct pinctrl_gpio_range *range, *n;
2213
2214 if (!pctldev)
2215 return;
2216
2217 mutex_lock(&pctldev->mutex);
2218 pinctrl_remove_device_debugfs(pctldev);
2219 mutex_unlock(&pctldev->mutex);
2220
2221 if (!IS_ERR_OR_NULL(pctldev->p))
2222 pinctrl_put(pctldev->p);
2223
2224 mutex_lock(&pinctrldev_list_mutex);
2225 mutex_lock(&pctldev->mutex);
2226 /* TODO: check that no pinmuxes are still active? */
2227 list_del(&pctldev->node);
2228 pinmux_generic_free_functions(pctldev);
2229 pinctrl_generic_free_groups(pctldev);
2230 /* Destroy descriptor tree */
2231 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2232 pctldev->desc->npins);
2233 /* remove gpio ranges map */
2234 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2235 list_del(&range->node);
2236
2237 mutex_unlock(&pctldev->mutex);
2238 mutex_destroy(&pctldev->mutex);
2239 kfree(pctldev);
2240 mutex_unlock(&pinctrldev_list_mutex);
2241}
2242EXPORT_SYMBOL_GPL(pinctrl_unregister);
2243
2244static void devm_pinctrl_dev_release(struct device *dev, void *res)
2245{
2246 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2247
2248 pinctrl_unregister(pctldev);
2249}
2250
2251static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2252{
2253 struct pctldev **r = res;
2254
2255 if (WARN_ON(!r || !*r))
2256 return 0;
2257
2258 return *r == data;
2259}
2260
2261/**
2262 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2263 * @dev: parent device for this pin controller
2264 * @pctldesc: descriptor for this pin controller
2265 * @driver_data: private pin controller data for this pin controller
2266 *
2267 * Returns an error pointer if pincontrol register failed. Otherwise
2268 * it returns valid pinctrl handle.
2269 *
2270 * The pinctrl device will be automatically released when the device is unbound.
2271 */
2272struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2273 struct pinctrl_desc *pctldesc,
2274 void *driver_data)
2275{
2276 struct pinctrl_dev **ptr, *pctldev;
2277
2278 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2279 if (!ptr)
2280 return ERR_PTR(-ENOMEM);
2281
2282 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2283 if (IS_ERR(pctldev)) {
2284 devres_free(ptr);
2285 return pctldev;
2286 }
2287
2288 *ptr = pctldev;
2289 devres_add(dev, ptr);
2290
2291 return pctldev;
2292}
2293EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2294
2295/**
2296 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2297 * @dev: parent device for this pin controller
2298 * @pctldesc: descriptor for this pin controller
2299 * @driver_data: private pin controller data for this pin controller
2300 * @pctldev: pin controller device
2301 *
2302 * Returns zero on success or an error number on failure.
2303 *
2304 * The pinctrl device will be automatically released when the device is unbound.
2305 */
2306int devm_pinctrl_register_and_init(struct device *dev,
2307 struct pinctrl_desc *pctldesc,
2308 void *driver_data,
2309 struct pinctrl_dev **pctldev)
2310{
2311 struct pinctrl_dev **ptr;
2312 int error;
2313
2314 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2315 if (!ptr)
2316 return -ENOMEM;
2317
2318 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2319 if (error) {
2320 devres_free(ptr);
2321 return error;
2322 }
2323
2324 *ptr = *pctldev;
2325 devres_add(dev, ptr);
2326
2327 return 0;
2328}
2329EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2330
2331/**
2332 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2333 * @dev: device for which resource was allocated
2334 * @pctldev: the pinctrl device to unregister.
2335 */
2336void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2337{
2338 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2339 devm_pinctrl_dev_match, pctldev));
2340}
2341EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2342
2343static int __init pinctrl_init(void)
2344{
2345 pr_info("initialized pinctrl subsystem\n");
2346 pinctrl_init_debugfs();
2347 return 0;
2348}
2349
2350/* init early since many drivers really need to initialized pinmux early */
2351core_initcall(pinctrl_init);
1/*
2 * Core driver for the pin control subsystem
3 *
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
7 *
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11 *
12 * License terms: GNU General Public License (GPL) version 2
13 */
14#define pr_fmt(fmt) "pinctrl core: " fmt
15
16#include <linux/kernel.h>
17#include <linux/kref.h>
18#include <linux/export.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/slab.h>
22#include <linux/err.h>
23#include <linux/list.h>
24#include <linux/sysfs.h>
25#include <linux/debugfs.h>
26#include <linux/seq_file.h>
27#include <linux/pinctrl/consumer.h>
28#include <linux/pinctrl/pinctrl.h>
29#include <linux/pinctrl/machine.h>
30
31#ifdef CONFIG_GPIOLIB
32#include <asm-generic/gpio.h>
33#endif
34
35#include "core.h"
36#include "devicetree.h"
37#include "pinmux.h"
38#include "pinconf.h"
39
40
41static bool pinctrl_dummy_state;
42
43/* Mutex taken to protect pinctrl_list */
44static DEFINE_MUTEX(pinctrl_list_mutex);
45
46/* Mutex taken to protect pinctrl_maps */
47DEFINE_MUTEX(pinctrl_maps_mutex);
48
49/* Mutex taken to protect pinctrldev_list */
50static DEFINE_MUTEX(pinctrldev_list_mutex);
51
52/* Global list of pin control devices (struct pinctrl_dev) */
53static LIST_HEAD(pinctrldev_list);
54
55/* List of pin controller handles (struct pinctrl) */
56static LIST_HEAD(pinctrl_list);
57
58/* List of pinctrl maps (struct pinctrl_maps) */
59LIST_HEAD(pinctrl_maps);
60
61
62/**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64 *
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
69 */
70void pinctrl_provide_dummies(void)
71{
72 pinctrl_dummy_state = true;
73}
74
75const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76{
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
79}
80EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81
82const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83{
84 return dev_name(pctldev->dev);
85}
86EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87
88void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89{
90 return pctldev->driver_data;
91}
92EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93
94/**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
97 *
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
100 */
101struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102{
103 struct pinctrl_dev *pctldev = NULL;
104
105 if (!devname)
106 return NULL;
107
108 mutex_lock(&pinctrldev_list_mutex);
109
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
115 }
116 }
117
118 mutex_unlock(&pinctrldev_list_mutex);
119
120 return NULL;
121}
122
123struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124{
125 struct pinctrl_dev *pctldev;
126
127 mutex_lock(&pinctrldev_list_mutex);
128
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
133 }
134
135 mutex_unlock(&pinctrldev_list_mutex);
136
137 return NULL;
138}
139
140/**
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
144 */
145int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146{
147 unsigned i, pin;
148
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
152
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
158 }
159
160 return -EINVAL;
161}
162
163/**
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
167 */
168const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169{
170 const struct pin_desc *desc;
171
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
177 }
178
179 return desc->name;
180}
181
182/**
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
186 *
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
189 */
190bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191{
192 struct pin_desc *pindesc;
193
194 if (pin < 0)
195 return false;
196
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
200
201 return pindesc != NULL;
202}
203EXPORT_SYMBOL_GPL(pin_is_valid);
204
205/* Deletes a range of pin descriptors */
206static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
209{
210 int i;
211
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
214
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
222 }
223 kfree(pindesc);
224 }
225}
226
227static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
229{
230 struct pin_desc *pindesc;
231
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 dev_err(pctldev->dev, "pin %d already registered\n", number);
235 return -EINVAL;
236 }
237
238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 if (pindesc == NULL) {
240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241 return -ENOMEM;
242 }
243
244 /* Set owner */
245 pindesc->pctldev = pctldev;
246
247 /* Copy basic pin info */
248 if (name) {
249 pindesc->name = name;
250 } else {
251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 if (pindesc->name == NULL) {
253 kfree(pindesc);
254 return -ENOMEM;
255 }
256 pindesc->dynamic_name = true;
257 }
258
259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 pr_debug("registered pin %d (%s) on %s\n",
261 number, pindesc->name, pctldev->desc->name);
262 return 0;
263}
264
265static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 struct pinctrl_pin_desc const *pins,
267 unsigned num_descs)
268{
269 unsigned i;
270 int ret = 0;
271
272 for (i = 0; i < num_descs; i++) {
273 ret = pinctrl_register_one_pin(pctldev,
274 pins[i].number, pins[i].name);
275 if (ret)
276 return ret;
277 }
278
279 return 0;
280}
281
282/**
283 * gpio_to_pin() - GPIO range GPIO number to pin number translation
284 * @range: GPIO range used for the translation
285 * @gpio: gpio pin to translate to a pin number
286 *
287 * Finds the pin number for a given GPIO using the specified GPIO range
288 * as a base for translation. The distinction between linear GPIO ranges
289 * and pin list based GPIO ranges is managed correctly by this function.
290 *
291 * This function assumes the gpio is part of the specified GPIO range, use
292 * only after making sure this is the case (e.g. by calling it on the
293 * result of successful pinctrl_get_device_gpio_range calls)!
294 */
295static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 unsigned int gpio)
297{
298 unsigned int offset = gpio - range->base;
299 if (range->pins)
300 return range->pins[offset];
301 else
302 return range->pin_base + offset;
303}
304
305/**
306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307 * @pctldev: pin controller device to check
308 * @gpio: gpio pin to check taken from the global GPIO pin space
309 *
310 * Tries to match a GPIO pin number to the ranges handled by a certain pin
311 * controller, return the range or NULL
312 */
313static struct pinctrl_gpio_range *
314pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315{
316 struct pinctrl_gpio_range *range = NULL;
317
318 mutex_lock(&pctldev->mutex);
319 /* Loop over the ranges */
320 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 /* Check if we're in the valid range */
322 if (gpio >= range->base &&
323 gpio < range->base + range->npins) {
324 mutex_unlock(&pctldev->mutex);
325 return range;
326 }
327 }
328 mutex_unlock(&pctldev->mutex);
329 return NULL;
330}
331
332/**
333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334 * the same GPIO chip are in range
335 * @gpio: gpio pin to check taken from the global GPIO pin space
336 *
337 * This function is complement of pinctrl_match_gpio_range(). If the return
338 * value of pinctrl_match_gpio_range() is NULL, this function could be used
339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340 * of the same GPIO chip don't have back-end pinctrl interface.
341 * If the return value is true, it means that pinctrl device is ready & the
342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343 * is false, it means that pinctrl device may not be ready.
344 */
345#ifdef CONFIG_GPIOLIB
346static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347{
348 struct pinctrl_dev *pctldev;
349 struct pinctrl_gpio_range *range = NULL;
350 struct gpio_chip *chip = gpio_to_chip(gpio);
351
352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 return false;
354
355 mutex_lock(&pinctrldev_list_mutex);
356
357 /* Loop over the pin controllers */
358 list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 /* Loop over the ranges */
360 mutex_lock(&pctldev->mutex);
361 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 /* Check if any gpio range overlapped with gpio chip */
363 if (range->base + range->npins - 1 < chip->base ||
364 range->base > chip->base + chip->ngpio - 1)
365 continue;
366 mutex_unlock(&pctldev->mutex);
367 mutex_unlock(&pinctrldev_list_mutex);
368 return true;
369 }
370 mutex_unlock(&pctldev->mutex);
371 }
372
373 mutex_unlock(&pinctrldev_list_mutex);
374
375 return false;
376}
377#else
378static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379#endif
380
381/**
382 * pinctrl_get_device_gpio_range() - find device for GPIO range
383 * @gpio: the pin to locate the pin controller for
384 * @outdev: the pin control device if found
385 * @outrange: the GPIO range if found
386 *
387 * Find the pin controller handling a certain GPIO pin from the pinspace of
388 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390 * may still have not been registered.
391 */
392static int pinctrl_get_device_gpio_range(unsigned gpio,
393 struct pinctrl_dev **outdev,
394 struct pinctrl_gpio_range **outrange)
395{
396 struct pinctrl_dev *pctldev = NULL;
397
398 mutex_lock(&pinctrldev_list_mutex);
399
400 /* Loop over the pin controllers */
401 list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 struct pinctrl_gpio_range *range;
403
404 range = pinctrl_match_gpio_range(pctldev, gpio);
405 if (range != NULL) {
406 *outdev = pctldev;
407 *outrange = range;
408 mutex_unlock(&pinctrldev_list_mutex);
409 return 0;
410 }
411 }
412
413 mutex_unlock(&pinctrldev_list_mutex);
414
415 return -EPROBE_DEFER;
416}
417
418/**
419 * pinctrl_add_gpio_range() - register a GPIO range for a controller
420 * @pctldev: pin controller device to add the range to
421 * @range: the GPIO range to add
422 *
423 * This adds a range of GPIOs to be handled by a certain pin controller. Call
424 * this to register handled ranges after registering your pin controller.
425 */
426void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 struct pinctrl_gpio_range *range)
428{
429 mutex_lock(&pctldev->mutex);
430 list_add_tail(&range->node, &pctldev->gpio_ranges);
431 mutex_unlock(&pctldev->mutex);
432}
433EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434
435void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 struct pinctrl_gpio_range *ranges,
437 unsigned nranges)
438{
439 int i;
440
441 for (i = 0; i < nranges; i++)
442 pinctrl_add_gpio_range(pctldev, &ranges[i]);
443}
444EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445
446struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 struct pinctrl_gpio_range *range)
448{
449 struct pinctrl_dev *pctldev;
450
451 pctldev = get_pinctrl_dev_from_devname(devname);
452
453 /*
454 * If we can't find this device, let's assume that is because
455 * it has not probed yet, so the driver trying to register this
456 * range need to defer probing.
457 */
458 if (!pctldev) {
459 return ERR_PTR(-EPROBE_DEFER);
460 }
461 pinctrl_add_gpio_range(pctldev, range);
462
463 return pctldev;
464}
465EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466
467int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 const unsigned **pins, unsigned *num_pins)
469{
470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 int gs;
472
473 if (!pctlops->get_group_pins)
474 return -EINVAL;
475
476 gs = pinctrl_get_group_selector(pctldev, pin_group);
477 if (gs < 0)
478 return gs;
479
480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481}
482EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483
484struct pinctrl_gpio_range *
485pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 unsigned int pin)
487{
488 struct pinctrl_gpio_range *range;
489
490 /* Loop over the ranges */
491 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 /* Check if we're in the valid range */
493 if (range->pins) {
494 int a;
495 for (a = 0; a < range->npins; a++) {
496 if (range->pins[a] == pin)
497 return range;
498 }
499 } else if (pin >= range->pin_base &&
500 pin < range->pin_base + range->npins)
501 return range;
502 }
503
504 return NULL;
505}
506EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507
508/**
509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510 * @pctldev: the pin controller device to look in
511 * @pin: a controller-local number to find the range for
512 */
513struct pinctrl_gpio_range *
514pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 unsigned int pin)
516{
517 struct pinctrl_gpio_range *range;
518
519 mutex_lock(&pctldev->mutex);
520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 mutex_unlock(&pctldev->mutex);
522
523 return range;
524}
525EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526
527/**
528 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
529 * @pctldev: pin controller device to remove the range from
530 * @range: the GPIO range to remove
531 */
532void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 struct pinctrl_gpio_range *range)
534{
535 mutex_lock(&pctldev->mutex);
536 list_del(&range->node);
537 mutex_unlock(&pctldev->mutex);
538}
539EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540
541/**
542 * pinctrl_get_group_selector() - returns the group selector for a group
543 * @pctldev: the pin controller handling the group
544 * @pin_group: the pin group to look up
545 */
546int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
547 const char *pin_group)
548{
549 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
550 unsigned ngroups = pctlops->get_groups_count(pctldev);
551 unsigned group_selector = 0;
552
553 while (group_selector < ngroups) {
554 const char *gname = pctlops->get_group_name(pctldev,
555 group_selector);
556 if (!strcmp(gname, pin_group)) {
557 dev_dbg(pctldev->dev,
558 "found group selector %u for %s\n",
559 group_selector,
560 pin_group);
561 return group_selector;
562 }
563
564 group_selector++;
565 }
566
567 dev_err(pctldev->dev, "does not have pin group %s\n",
568 pin_group);
569
570 return -EINVAL;
571}
572
573/**
574 * pinctrl_request_gpio() - request a single pin to be used as GPIO
575 * @gpio: the GPIO pin number from the GPIO subsystem number space
576 *
577 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
578 * as part of their gpio_request() semantics, platforms and individual drivers
579 * shall *NOT* request GPIO pins to be muxed in.
580 */
581int pinctrl_request_gpio(unsigned gpio)
582{
583 struct pinctrl_dev *pctldev;
584 struct pinctrl_gpio_range *range;
585 int ret;
586 int pin;
587
588 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
589 if (ret) {
590 if (pinctrl_ready_for_gpio_range(gpio))
591 ret = 0;
592 return ret;
593 }
594
595 mutex_lock(&pctldev->mutex);
596
597 /* Convert to the pin controllers number space */
598 pin = gpio_to_pin(range, gpio);
599
600 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
601
602 mutex_unlock(&pctldev->mutex);
603
604 return ret;
605}
606EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
607
608/**
609 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
610 * @gpio: the GPIO pin number from the GPIO subsystem number space
611 *
612 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
613 * as part of their gpio_free() semantics, platforms and individual drivers
614 * shall *NOT* request GPIO pins to be muxed out.
615 */
616void pinctrl_free_gpio(unsigned gpio)
617{
618 struct pinctrl_dev *pctldev;
619 struct pinctrl_gpio_range *range;
620 int ret;
621 int pin;
622
623 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
624 if (ret) {
625 return;
626 }
627 mutex_lock(&pctldev->mutex);
628
629 /* Convert to the pin controllers number space */
630 pin = gpio_to_pin(range, gpio);
631
632 pinmux_free_gpio(pctldev, pin, range);
633
634 mutex_unlock(&pctldev->mutex);
635}
636EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
637
638static int pinctrl_gpio_direction(unsigned gpio, bool input)
639{
640 struct pinctrl_dev *pctldev;
641 struct pinctrl_gpio_range *range;
642 int ret;
643 int pin;
644
645 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
646 if (ret) {
647 return ret;
648 }
649
650 mutex_lock(&pctldev->mutex);
651
652 /* Convert to the pin controllers number space */
653 pin = gpio_to_pin(range, gpio);
654 ret = pinmux_gpio_direction(pctldev, range, pin, input);
655
656 mutex_unlock(&pctldev->mutex);
657
658 return ret;
659}
660
661/**
662 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
663 * @gpio: the GPIO pin number from the GPIO subsystem number space
664 *
665 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
666 * as part of their gpio_direction_input() semantics, platforms and individual
667 * drivers shall *NOT* touch pin control GPIO calls.
668 */
669int pinctrl_gpio_direction_input(unsigned gpio)
670{
671 return pinctrl_gpio_direction(gpio, true);
672}
673EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
674
675/**
676 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
677 * @gpio: the GPIO pin number from the GPIO subsystem number space
678 *
679 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
680 * as part of their gpio_direction_output() semantics, platforms and individual
681 * drivers shall *NOT* touch pin control GPIO calls.
682 */
683int pinctrl_gpio_direction_output(unsigned gpio)
684{
685 return pinctrl_gpio_direction(gpio, false);
686}
687EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
688
689static struct pinctrl_state *find_state(struct pinctrl *p,
690 const char *name)
691{
692 struct pinctrl_state *state;
693
694 list_for_each_entry(state, &p->states, node)
695 if (!strcmp(state->name, name))
696 return state;
697
698 return NULL;
699}
700
701static struct pinctrl_state *create_state(struct pinctrl *p,
702 const char *name)
703{
704 struct pinctrl_state *state;
705
706 state = kzalloc(sizeof(*state), GFP_KERNEL);
707 if (state == NULL) {
708 dev_err(p->dev,
709 "failed to alloc struct pinctrl_state\n");
710 return ERR_PTR(-ENOMEM);
711 }
712
713 state->name = name;
714 INIT_LIST_HEAD(&state->settings);
715
716 list_add_tail(&state->node, &p->states);
717
718 return state;
719}
720
721static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
722{
723 struct pinctrl_state *state;
724 struct pinctrl_setting *setting;
725 int ret;
726
727 state = find_state(p, map->name);
728 if (!state)
729 state = create_state(p, map->name);
730 if (IS_ERR(state))
731 return PTR_ERR(state);
732
733 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
734 return 0;
735
736 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
737 if (setting == NULL) {
738 dev_err(p->dev,
739 "failed to alloc struct pinctrl_setting\n");
740 return -ENOMEM;
741 }
742
743 setting->type = map->type;
744
745 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
746 if (setting->pctldev == NULL) {
747 kfree(setting);
748 /* Do not defer probing of hogs (circular loop) */
749 if (!strcmp(map->ctrl_dev_name, map->dev_name))
750 return -ENODEV;
751 /*
752 * OK let us guess that the driver is not there yet, and
753 * let's defer obtaining this pinctrl handle to later...
754 */
755 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
756 map->ctrl_dev_name);
757 return -EPROBE_DEFER;
758 }
759
760 setting->dev_name = map->dev_name;
761
762 switch (map->type) {
763 case PIN_MAP_TYPE_MUX_GROUP:
764 ret = pinmux_map_to_setting(map, setting);
765 break;
766 case PIN_MAP_TYPE_CONFIGS_PIN:
767 case PIN_MAP_TYPE_CONFIGS_GROUP:
768 ret = pinconf_map_to_setting(map, setting);
769 break;
770 default:
771 ret = -EINVAL;
772 break;
773 }
774 if (ret < 0) {
775 kfree(setting);
776 return ret;
777 }
778
779 list_add_tail(&setting->node, &state->settings);
780
781 return 0;
782}
783
784static struct pinctrl *find_pinctrl(struct device *dev)
785{
786 struct pinctrl *p;
787
788 mutex_lock(&pinctrl_list_mutex);
789 list_for_each_entry(p, &pinctrl_list, node)
790 if (p->dev == dev) {
791 mutex_unlock(&pinctrl_list_mutex);
792 return p;
793 }
794
795 mutex_unlock(&pinctrl_list_mutex);
796 return NULL;
797}
798
799static void pinctrl_free(struct pinctrl *p, bool inlist);
800
801static struct pinctrl *create_pinctrl(struct device *dev)
802{
803 struct pinctrl *p;
804 const char *devname;
805 struct pinctrl_maps *maps_node;
806 int i;
807 struct pinctrl_map const *map;
808 int ret;
809
810 /*
811 * create the state cookie holder struct pinctrl for each
812 * mapping, this is what consumers will get when requesting
813 * a pin control handle with pinctrl_get()
814 */
815 p = kzalloc(sizeof(*p), GFP_KERNEL);
816 if (p == NULL) {
817 dev_err(dev, "failed to alloc struct pinctrl\n");
818 return ERR_PTR(-ENOMEM);
819 }
820 p->dev = dev;
821 INIT_LIST_HEAD(&p->states);
822 INIT_LIST_HEAD(&p->dt_maps);
823
824 ret = pinctrl_dt_to_map(p);
825 if (ret < 0) {
826 kfree(p);
827 return ERR_PTR(ret);
828 }
829
830 devname = dev_name(dev);
831
832 mutex_lock(&pinctrl_maps_mutex);
833 /* Iterate over the pin control maps to locate the right ones */
834 for_each_maps(maps_node, i, map) {
835 /* Map must be for this device */
836 if (strcmp(map->dev_name, devname))
837 continue;
838
839 ret = add_setting(p, map);
840 /*
841 * At this point the adding of a setting may:
842 *
843 * - Defer, if the pinctrl device is not yet available
844 * - Fail, if the pinctrl device is not yet available,
845 * AND the setting is a hog. We cannot defer that, since
846 * the hog will kick in immediately after the device
847 * is registered.
848 *
849 * If the error returned was not -EPROBE_DEFER then we
850 * accumulate the errors to see if we end up with
851 * an -EPROBE_DEFER later, as that is the worst case.
852 */
853 if (ret == -EPROBE_DEFER) {
854 pinctrl_free(p, false);
855 mutex_unlock(&pinctrl_maps_mutex);
856 return ERR_PTR(ret);
857 }
858 }
859 mutex_unlock(&pinctrl_maps_mutex);
860
861 if (ret < 0) {
862 /* If some other error than deferral occured, return here */
863 pinctrl_free(p, false);
864 return ERR_PTR(ret);
865 }
866
867 kref_init(&p->users);
868
869 /* Add the pinctrl handle to the global list */
870 mutex_lock(&pinctrl_list_mutex);
871 list_add_tail(&p->node, &pinctrl_list);
872 mutex_unlock(&pinctrl_list_mutex);
873
874 return p;
875}
876
877/**
878 * pinctrl_get() - retrieves the pinctrl handle for a device
879 * @dev: the device to obtain the handle for
880 */
881struct pinctrl *pinctrl_get(struct device *dev)
882{
883 struct pinctrl *p;
884
885 if (WARN_ON(!dev))
886 return ERR_PTR(-EINVAL);
887
888 /*
889 * See if somebody else (such as the device core) has already
890 * obtained a handle to the pinctrl for this device. In that case,
891 * return another pointer to it.
892 */
893 p = find_pinctrl(dev);
894 if (p != NULL) {
895 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
896 kref_get(&p->users);
897 return p;
898 }
899
900 return create_pinctrl(dev);
901}
902EXPORT_SYMBOL_GPL(pinctrl_get);
903
904static void pinctrl_free_setting(bool disable_setting,
905 struct pinctrl_setting *setting)
906{
907 switch (setting->type) {
908 case PIN_MAP_TYPE_MUX_GROUP:
909 if (disable_setting)
910 pinmux_disable_setting(setting);
911 pinmux_free_setting(setting);
912 break;
913 case PIN_MAP_TYPE_CONFIGS_PIN:
914 case PIN_MAP_TYPE_CONFIGS_GROUP:
915 pinconf_free_setting(setting);
916 break;
917 default:
918 break;
919 }
920}
921
922static void pinctrl_free(struct pinctrl *p, bool inlist)
923{
924 struct pinctrl_state *state, *n1;
925 struct pinctrl_setting *setting, *n2;
926
927 mutex_lock(&pinctrl_list_mutex);
928 list_for_each_entry_safe(state, n1, &p->states, node) {
929 list_for_each_entry_safe(setting, n2, &state->settings, node) {
930 pinctrl_free_setting(state == p->state, setting);
931 list_del(&setting->node);
932 kfree(setting);
933 }
934 list_del(&state->node);
935 kfree(state);
936 }
937
938 pinctrl_dt_free_maps(p);
939
940 if (inlist)
941 list_del(&p->node);
942 kfree(p);
943 mutex_unlock(&pinctrl_list_mutex);
944}
945
946/**
947 * pinctrl_release() - release the pinctrl handle
948 * @kref: the kref in the pinctrl being released
949 */
950static void pinctrl_release(struct kref *kref)
951{
952 struct pinctrl *p = container_of(kref, struct pinctrl, users);
953
954 pinctrl_free(p, true);
955}
956
957/**
958 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
959 * @p: the pinctrl handle to release
960 */
961void pinctrl_put(struct pinctrl *p)
962{
963 kref_put(&p->users, pinctrl_release);
964}
965EXPORT_SYMBOL_GPL(pinctrl_put);
966
967/**
968 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
969 * @p: the pinctrl handle to retrieve the state from
970 * @name: the state name to retrieve
971 */
972struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
973 const char *name)
974{
975 struct pinctrl_state *state;
976
977 state = find_state(p, name);
978 if (!state) {
979 if (pinctrl_dummy_state) {
980 /* create dummy state */
981 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
982 name);
983 state = create_state(p, name);
984 } else
985 state = ERR_PTR(-ENODEV);
986 }
987
988 return state;
989}
990EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
991
992/**
993 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
994 * @p: the pinctrl handle for the device that requests configuration
995 * @state: the state handle to select/activate/program
996 */
997int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
998{
999 struct pinctrl_setting *setting, *setting2;
1000 struct pinctrl_state *old_state = p->state;
1001 int ret;
1002
1003 if (p->state == state)
1004 return 0;
1005
1006 if (p->state) {
1007 /*
1008 * For each pinmux setting in the old state, forget SW's record
1009 * of mux owner for that pingroup. Any pingroups which are
1010 * still owned by the new state will be re-acquired by the call
1011 * to pinmux_enable_setting() in the loop below.
1012 */
1013 list_for_each_entry(setting, &p->state->settings, node) {
1014 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1015 continue;
1016 pinmux_disable_setting(setting);
1017 }
1018 }
1019
1020 p->state = NULL;
1021
1022 /* Apply all the settings for the new state */
1023 list_for_each_entry(setting, &state->settings, node) {
1024 switch (setting->type) {
1025 case PIN_MAP_TYPE_MUX_GROUP:
1026 ret = pinmux_enable_setting(setting);
1027 break;
1028 case PIN_MAP_TYPE_CONFIGS_PIN:
1029 case PIN_MAP_TYPE_CONFIGS_GROUP:
1030 ret = pinconf_apply_setting(setting);
1031 break;
1032 default:
1033 ret = -EINVAL;
1034 break;
1035 }
1036
1037 if (ret < 0) {
1038 goto unapply_new_state;
1039 }
1040 }
1041
1042 p->state = state;
1043
1044 return 0;
1045
1046unapply_new_state:
1047 dev_err(p->dev, "Error applying setting, reverse things back\n");
1048
1049 list_for_each_entry(setting2, &state->settings, node) {
1050 if (&setting2->node == &setting->node)
1051 break;
1052 /*
1053 * All we can do here is pinmux_disable_setting.
1054 * That means that some pins are muxed differently now
1055 * than they were before applying the setting (We can't
1056 * "unmux a pin"!), but it's not a big deal since the pins
1057 * are free to be muxed by another apply_setting.
1058 */
1059 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1060 pinmux_disable_setting(setting2);
1061 }
1062
1063 /* There's no infinite recursive loop here because p->state is NULL */
1064 if (old_state)
1065 pinctrl_select_state(p, old_state);
1066
1067 return ret;
1068}
1069EXPORT_SYMBOL_GPL(pinctrl_select_state);
1070
1071static void devm_pinctrl_release(struct device *dev, void *res)
1072{
1073 pinctrl_put(*(struct pinctrl **)res);
1074}
1075
1076/**
1077 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1078 * @dev: the device to obtain the handle for
1079 *
1080 * If there is a need to explicitly destroy the returned struct pinctrl,
1081 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1082 */
1083struct pinctrl *devm_pinctrl_get(struct device *dev)
1084{
1085 struct pinctrl **ptr, *p;
1086
1087 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1088 if (!ptr)
1089 return ERR_PTR(-ENOMEM);
1090
1091 p = pinctrl_get(dev);
1092 if (!IS_ERR(p)) {
1093 *ptr = p;
1094 devres_add(dev, ptr);
1095 } else {
1096 devres_free(ptr);
1097 }
1098
1099 return p;
1100}
1101EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1102
1103static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1104{
1105 struct pinctrl **p = res;
1106
1107 return *p == data;
1108}
1109
1110/**
1111 * devm_pinctrl_put() - Resource managed pinctrl_put()
1112 * @p: the pinctrl handle to release
1113 *
1114 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1115 * this function will not need to be called and the resource management
1116 * code will ensure that the resource is freed.
1117 */
1118void devm_pinctrl_put(struct pinctrl *p)
1119{
1120 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1121 devm_pinctrl_match, p));
1122}
1123EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1124
1125int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1126 bool dup)
1127{
1128 int i, ret;
1129 struct pinctrl_maps *maps_node;
1130
1131 pr_debug("add %u pinctrl maps\n", num_maps);
1132
1133 /* First sanity check the new mapping */
1134 for (i = 0; i < num_maps; i++) {
1135 if (!maps[i].dev_name) {
1136 pr_err("failed to register map %s (%d): no device given\n",
1137 maps[i].name, i);
1138 return -EINVAL;
1139 }
1140
1141 if (!maps[i].name) {
1142 pr_err("failed to register map %d: no map name given\n",
1143 i);
1144 return -EINVAL;
1145 }
1146
1147 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1148 !maps[i].ctrl_dev_name) {
1149 pr_err("failed to register map %s (%d): no pin control device given\n",
1150 maps[i].name, i);
1151 return -EINVAL;
1152 }
1153
1154 switch (maps[i].type) {
1155 case PIN_MAP_TYPE_DUMMY_STATE:
1156 break;
1157 case PIN_MAP_TYPE_MUX_GROUP:
1158 ret = pinmux_validate_map(&maps[i], i);
1159 if (ret < 0)
1160 return ret;
1161 break;
1162 case PIN_MAP_TYPE_CONFIGS_PIN:
1163 case PIN_MAP_TYPE_CONFIGS_GROUP:
1164 ret = pinconf_validate_map(&maps[i], i);
1165 if (ret < 0)
1166 return ret;
1167 break;
1168 default:
1169 pr_err("failed to register map %s (%d): invalid type given\n",
1170 maps[i].name, i);
1171 return -EINVAL;
1172 }
1173 }
1174
1175 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1176 if (!maps_node) {
1177 pr_err("failed to alloc struct pinctrl_maps\n");
1178 return -ENOMEM;
1179 }
1180
1181 maps_node->num_maps = num_maps;
1182 if (dup) {
1183 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1184 GFP_KERNEL);
1185 if (!maps_node->maps) {
1186 pr_err("failed to duplicate mapping table\n");
1187 kfree(maps_node);
1188 return -ENOMEM;
1189 }
1190 } else {
1191 maps_node->maps = maps;
1192 }
1193
1194 mutex_lock(&pinctrl_maps_mutex);
1195 list_add_tail(&maps_node->node, &pinctrl_maps);
1196 mutex_unlock(&pinctrl_maps_mutex);
1197
1198 return 0;
1199}
1200
1201/**
1202 * pinctrl_register_mappings() - register a set of pin controller mappings
1203 * @maps: the pincontrol mappings table to register. This should probably be
1204 * marked with __initdata so it can be discarded after boot. This
1205 * function will perform a shallow copy for the mapping entries.
1206 * @num_maps: the number of maps in the mapping table
1207 */
1208int pinctrl_register_mappings(struct pinctrl_map const *maps,
1209 unsigned num_maps)
1210{
1211 return pinctrl_register_map(maps, num_maps, true);
1212}
1213
1214void pinctrl_unregister_map(struct pinctrl_map const *map)
1215{
1216 struct pinctrl_maps *maps_node;
1217
1218 mutex_lock(&pinctrl_maps_mutex);
1219 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1220 if (maps_node->maps == map) {
1221 list_del(&maps_node->node);
1222 kfree(maps_node);
1223 mutex_unlock(&pinctrl_maps_mutex);
1224 return;
1225 }
1226 }
1227 mutex_unlock(&pinctrl_maps_mutex);
1228}
1229
1230/**
1231 * pinctrl_force_sleep() - turn a given controller device into sleep state
1232 * @pctldev: pin controller device
1233 */
1234int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1235{
1236 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1237 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1238 return 0;
1239}
1240EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1241
1242/**
1243 * pinctrl_force_default() - turn a given controller device into default state
1244 * @pctldev: pin controller device
1245 */
1246int pinctrl_force_default(struct pinctrl_dev *pctldev)
1247{
1248 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1249 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1250 return 0;
1251}
1252EXPORT_SYMBOL_GPL(pinctrl_force_default);
1253
1254/**
1255 * pinctrl_init_done() - tell pinctrl probe is done
1256 *
1257 * We'll use this time to switch the pins from "init" to "default" unless the
1258 * driver selected some other state.
1259 *
1260 * @dev: device to that's done probing
1261 */
1262int pinctrl_init_done(struct device *dev)
1263{
1264 struct dev_pin_info *pins = dev->pins;
1265 int ret;
1266
1267 if (!pins)
1268 return 0;
1269
1270 if (IS_ERR(pins->init_state))
1271 return 0; /* No such state */
1272
1273 if (pins->p->state != pins->init_state)
1274 return 0; /* Not at init anyway */
1275
1276 if (IS_ERR(pins->default_state))
1277 return 0; /* No default state */
1278
1279 ret = pinctrl_select_state(pins->p, pins->default_state);
1280 if (ret)
1281 dev_err(dev, "failed to activate default pinctrl state\n");
1282
1283 return ret;
1284}
1285
1286#ifdef CONFIG_PM
1287
1288/**
1289 * pinctrl_pm_select_state() - select pinctrl state for PM
1290 * @dev: device to select default state for
1291 * @state: state to set
1292 */
1293static int pinctrl_pm_select_state(struct device *dev,
1294 struct pinctrl_state *state)
1295{
1296 struct dev_pin_info *pins = dev->pins;
1297 int ret;
1298
1299 if (IS_ERR(state))
1300 return 0; /* No such state */
1301 ret = pinctrl_select_state(pins->p, state);
1302 if (ret)
1303 dev_err(dev, "failed to activate pinctrl state %s\n",
1304 state->name);
1305 return ret;
1306}
1307
1308/**
1309 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1310 * @dev: device to select default state for
1311 */
1312int pinctrl_pm_select_default_state(struct device *dev)
1313{
1314 if (!dev->pins)
1315 return 0;
1316
1317 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1318}
1319EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1320
1321/**
1322 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1323 * @dev: device to select sleep state for
1324 */
1325int pinctrl_pm_select_sleep_state(struct device *dev)
1326{
1327 if (!dev->pins)
1328 return 0;
1329
1330 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1331}
1332EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1333
1334/**
1335 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1336 * @dev: device to select idle state for
1337 */
1338int pinctrl_pm_select_idle_state(struct device *dev)
1339{
1340 if (!dev->pins)
1341 return 0;
1342
1343 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1344}
1345EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1346#endif
1347
1348#ifdef CONFIG_DEBUG_FS
1349
1350static int pinctrl_pins_show(struct seq_file *s, void *what)
1351{
1352 struct pinctrl_dev *pctldev = s->private;
1353 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1354 unsigned i, pin;
1355
1356 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1357
1358 mutex_lock(&pctldev->mutex);
1359
1360 /* The pin number can be retrived from the pin controller descriptor */
1361 for (i = 0; i < pctldev->desc->npins; i++) {
1362 struct pin_desc *desc;
1363
1364 pin = pctldev->desc->pins[i].number;
1365 desc = pin_desc_get(pctldev, pin);
1366 /* Pin space may be sparse */
1367 if (desc == NULL)
1368 continue;
1369
1370 seq_printf(s, "pin %d (%s) ", pin,
1371 desc->name ? desc->name : "unnamed");
1372
1373 /* Driver-specific info per pin */
1374 if (ops->pin_dbg_show)
1375 ops->pin_dbg_show(pctldev, s, pin);
1376
1377 seq_puts(s, "\n");
1378 }
1379
1380 mutex_unlock(&pctldev->mutex);
1381
1382 return 0;
1383}
1384
1385static int pinctrl_groups_show(struct seq_file *s, void *what)
1386{
1387 struct pinctrl_dev *pctldev = s->private;
1388 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1389 unsigned ngroups, selector = 0;
1390
1391 mutex_lock(&pctldev->mutex);
1392
1393 ngroups = ops->get_groups_count(pctldev);
1394
1395 seq_puts(s, "registered pin groups:\n");
1396 while (selector < ngroups) {
1397 const unsigned *pins = NULL;
1398 unsigned num_pins = 0;
1399 const char *gname = ops->get_group_name(pctldev, selector);
1400 const char *pname;
1401 int ret = 0;
1402 int i;
1403
1404 if (ops->get_group_pins)
1405 ret = ops->get_group_pins(pctldev, selector,
1406 &pins, &num_pins);
1407 if (ret)
1408 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1409 gname);
1410 else {
1411 seq_printf(s, "group: %s\n", gname);
1412 for (i = 0; i < num_pins; i++) {
1413 pname = pin_get_name(pctldev, pins[i]);
1414 if (WARN_ON(!pname)) {
1415 mutex_unlock(&pctldev->mutex);
1416 return -EINVAL;
1417 }
1418 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1419 }
1420 seq_puts(s, "\n");
1421 }
1422 selector++;
1423 }
1424
1425 mutex_unlock(&pctldev->mutex);
1426
1427 return 0;
1428}
1429
1430static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1431{
1432 struct pinctrl_dev *pctldev = s->private;
1433 struct pinctrl_gpio_range *range = NULL;
1434
1435 seq_puts(s, "GPIO ranges handled:\n");
1436
1437 mutex_lock(&pctldev->mutex);
1438
1439 /* Loop over the ranges */
1440 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1441 if (range->pins) {
1442 int a;
1443 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1444 range->id, range->name,
1445 range->base, (range->base + range->npins - 1));
1446 for (a = 0; a < range->npins - 1; a++)
1447 seq_printf(s, "%u, ", range->pins[a]);
1448 seq_printf(s, "%u}\n", range->pins[a]);
1449 }
1450 else
1451 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1452 range->id, range->name,
1453 range->base, (range->base + range->npins - 1),
1454 range->pin_base,
1455 (range->pin_base + range->npins - 1));
1456 }
1457
1458 mutex_unlock(&pctldev->mutex);
1459
1460 return 0;
1461}
1462
1463static int pinctrl_devices_show(struct seq_file *s, void *what)
1464{
1465 struct pinctrl_dev *pctldev;
1466
1467 seq_puts(s, "name [pinmux] [pinconf]\n");
1468
1469 mutex_lock(&pinctrldev_list_mutex);
1470
1471 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1472 seq_printf(s, "%s ", pctldev->desc->name);
1473 if (pctldev->desc->pmxops)
1474 seq_puts(s, "yes ");
1475 else
1476 seq_puts(s, "no ");
1477 if (pctldev->desc->confops)
1478 seq_puts(s, "yes");
1479 else
1480 seq_puts(s, "no");
1481 seq_puts(s, "\n");
1482 }
1483
1484 mutex_unlock(&pinctrldev_list_mutex);
1485
1486 return 0;
1487}
1488
1489static inline const char *map_type(enum pinctrl_map_type type)
1490{
1491 static const char * const names[] = {
1492 "INVALID",
1493 "DUMMY_STATE",
1494 "MUX_GROUP",
1495 "CONFIGS_PIN",
1496 "CONFIGS_GROUP",
1497 };
1498
1499 if (type >= ARRAY_SIZE(names))
1500 return "UNKNOWN";
1501
1502 return names[type];
1503}
1504
1505static int pinctrl_maps_show(struct seq_file *s, void *what)
1506{
1507 struct pinctrl_maps *maps_node;
1508 int i;
1509 struct pinctrl_map const *map;
1510
1511 seq_puts(s, "Pinctrl maps:\n");
1512
1513 mutex_lock(&pinctrl_maps_mutex);
1514 for_each_maps(maps_node, i, map) {
1515 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1516 map->dev_name, map->name, map_type(map->type),
1517 map->type);
1518
1519 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1520 seq_printf(s, "controlling device %s\n",
1521 map->ctrl_dev_name);
1522
1523 switch (map->type) {
1524 case PIN_MAP_TYPE_MUX_GROUP:
1525 pinmux_show_map(s, map);
1526 break;
1527 case PIN_MAP_TYPE_CONFIGS_PIN:
1528 case PIN_MAP_TYPE_CONFIGS_GROUP:
1529 pinconf_show_map(s, map);
1530 break;
1531 default:
1532 break;
1533 }
1534
1535 seq_printf(s, "\n");
1536 }
1537 mutex_unlock(&pinctrl_maps_mutex);
1538
1539 return 0;
1540}
1541
1542static int pinctrl_show(struct seq_file *s, void *what)
1543{
1544 struct pinctrl *p;
1545 struct pinctrl_state *state;
1546 struct pinctrl_setting *setting;
1547
1548 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1549
1550 mutex_lock(&pinctrl_list_mutex);
1551
1552 list_for_each_entry(p, &pinctrl_list, node) {
1553 seq_printf(s, "device: %s current state: %s\n",
1554 dev_name(p->dev),
1555 p->state ? p->state->name : "none");
1556
1557 list_for_each_entry(state, &p->states, node) {
1558 seq_printf(s, " state: %s\n", state->name);
1559
1560 list_for_each_entry(setting, &state->settings, node) {
1561 struct pinctrl_dev *pctldev = setting->pctldev;
1562
1563 seq_printf(s, " type: %s controller %s ",
1564 map_type(setting->type),
1565 pinctrl_dev_get_name(pctldev));
1566
1567 switch (setting->type) {
1568 case PIN_MAP_TYPE_MUX_GROUP:
1569 pinmux_show_setting(s, setting);
1570 break;
1571 case PIN_MAP_TYPE_CONFIGS_PIN:
1572 case PIN_MAP_TYPE_CONFIGS_GROUP:
1573 pinconf_show_setting(s, setting);
1574 break;
1575 default:
1576 break;
1577 }
1578 }
1579 }
1580 }
1581
1582 mutex_unlock(&pinctrl_list_mutex);
1583
1584 return 0;
1585}
1586
1587static int pinctrl_pins_open(struct inode *inode, struct file *file)
1588{
1589 return single_open(file, pinctrl_pins_show, inode->i_private);
1590}
1591
1592static int pinctrl_groups_open(struct inode *inode, struct file *file)
1593{
1594 return single_open(file, pinctrl_groups_show, inode->i_private);
1595}
1596
1597static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1598{
1599 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1600}
1601
1602static int pinctrl_devices_open(struct inode *inode, struct file *file)
1603{
1604 return single_open(file, pinctrl_devices_show, NULL);
1605}
1606
1607static int pinctrl_maps_open(struct inode *inode, struct file *file)
1608{
1609 return single_open(file, pinctrl_maps_show, NULL);
1610}
1611
1612static int pinctrl_open(struct inode *inode, struct file *file)
1613{
1614 return single_open(file, pinctrl_show, NULL);
1615}
1616
1617static const struct file_operations pinctrl_pins_ops = {
1618 .open = pinctrl_pins_open,
1619 .read = seq_read,
1620 .llseek = seq_lseek,
1621 .release = single_release,
1622};
1623
1624static const struct file_operations pinctrl_groups_ops = {
1625 .open = pinctrl_groups_open,
1626 .read = seq_read,
1627 .llseek = seq_lseek,
1628 .release = single_release,
1629};
1630
1631static const struct file_operations pinctrl_gpioranges_ops = {
1632 .open = pinctrl_gpioranges_open,
1633 .read = seq_read,
1634 .llseek = seq_lseek,
1635 .release = single_release,
1636};
1637
1638static const struct file_operations pinctrl_devices_ops = {
1639 .open = pinctrl_devices_open,
1640 .read = seq_read,
1641 .llseek = seq_lseek,
1642 .release = single_release,
1643};
1644
1645static const struct file_operations pinctrl_maps_ops = {
1646 .open = pinctrl_maps_open,
1647 .read = seq_read,
1648 .llseek = seq_lseek,
1649 .release = single_release,
1650};
1651
1652static const struct file_operations pinctrl_ops = {
1653 .open = pinctrl_open,
1654 .read = seq_read,
1655 .llseek = seq_lseek,
1656 .release = single_release,
1657};
1658
1659static struct dentry *debugfs_root;
1660
1661static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1662{
1663 struct dentry *device_root;
1664
1665 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1666 debugfs_root);
1667 pctldev->device_root = device_root;
1668
1669 if (IS_ERR(device_root) || !device_root) {
1670 pr_warn("failed to create debugfs directory for %s\n",
1671 dev_name(pctldev->dev));
1672 return;
1673 }
1674 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1675 device_root, pctldev, &pinctrl_pins_ops);
1676 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1677 device_root, pctldev, &pinctrl_groups_ops);
1678 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1679 device_root, pctldev, &pinctrl_gpioranges_ops);
1680 if (pctldev->desc->pmxops)
1681 pinmux_init_device_debugfs(device_root, pctldev);
1682 if (pctldev->desc->confops)
1683 pinconf_init_device_debugfs(device_root, pctldev);
1684}
1685
1686static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1687{
1688 debugfs_remove_recursive(pctldev->device_root);
1689}
1690
1691static void pinctrl_init_debugfs(void)
1692{
1693 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1694 if (IS_ERR(debugfs_root) || !debugfs_root) {
1695 pr_warn("failed to create debugfs directory\n");
1696 debugfs_root = NULL;
1697 return;
1698 }
1699
1700 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1701 debugfs_root, NULL, &pinctrl_devices_ops);
1702 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1703 debugfs_root, NULL, &pinctrl_maps_ops);
1704 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1705 debugfs_root, NULL, &pinctrl_ops);
1706}
1707
1708#else /* CONFIG_DEBUG_FS */
1709
1710static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1711{
1712}
1713
1714static void pinctrl_init_debugfs(void)
1715{
1716}
1717
1718static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1719{
1720}
1721
1722#endif
1723
1724static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1725{
1726 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1727
1728 if (!ops ||
1729 !ops->get_groups_count ||
1730 !ops->get_group_name)
1731 return -EINVAL;
1732
1733 if (ops->dt_node_to_map && !ops->dt_free_map)
1734 return -EINVAL;
1735
1736 return 0;
1737}
1738
1739/**
1740 * pinctrl_register() - register a pin controller device
1741 * @pctldesc: descriptor for this pin controller
1742 * @dev: parent device for this pin controller
1743 * @driver_data: private pin controller data for this pin controller
1744 */
1745struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1746 struct device *dev, void *driver_data)
1747{
1748 struct pinctrl_dev *pctldev;
1749 int ret;
1750
1751 if (!pctldesc)
1752 return ERR_PTR(-EINVAL);
1753 if (!pctldesc->name)
1754 return ERR_PTR(-EINVAL);
1755
1756 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1757 if (pctldev == NULL) {
1758 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1759 return ERR_PTR(-ENOMEM);
1760 }
1761
1762 /* Initialize pin control device struct */
1763 pctldev->owner = pctldesc->owner;
1764 pctldev->desc = pctldesc;
1765 pctldev->driver_data = driver_data;
1766 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1767 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1768 pctldev->dev = dev;
1769 mutex_init(&pctldev->mutex);
1770
1771 /* check core ops for sanity */
1772 ret = pinctrl_check_ops(pctldev);
1773 if (ret) {
1774 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1775 goto out_err;
1776 }
1777
1778 /* If we're implementing pinmuxing, check the ops for sanity */
1779 if (pctldesc->pmxops) {
1780 ret = pinmux_check_ops(pctldev);
1781 if (ret)
1782 goto out_err;
1783 }
1784
1785 /* If we're implementing pinconfig, check the ops for sanity */
1786 if (pctldesc->confops) {
1787 ret = pinconf_check_ops(pctldev);
1788 if (ret)
1789 goto out_err;
1790 }
1791
1792 /* Register all the pins */
1793 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1794 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1795 if (ret) {
1796 dev_err(dev, "error during pin registration\n");
1797 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1798 pctldesc->npins);
1799 goto out_err;
1800 }
1801
1802 mutex_lock(&pinctrldev_list_mutex);
1803 list_add_tail(&pctldev->node, &pinctrldev_list);
1804 mutex_unlock(&pinctrldev_list_mutex);
1805
1806 pctldev->p = pinctrl_get(pctldev->dev);
1807
1808 if (!IS_ERR(pctldev->p)) {
1809 pctldev->hog_default =
1810 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1811 if (IS_ERR(pctldev->hog_default)) {
1812 dev_dbg(dev, "failed to lookup the default state\n");
1813 } else {
1814 if (pinctrl_select_state(pctldev->p,
1815 pctldev->hog_default))
1816 dev_err(dev,
1817 "failed to select default state\n");
1818 }
1819
1820 pctldev->hog_sleep =
1821 pinctrl_lookup_state(pctldev->p,
1822 PINCTRL_STATE_SLEEP);
1823 if (IS_ERR(pctldev->hog_sleep))
1824 dev_dbg(dev, "failed to lookup the sleep state\n");
1825 }
1826
1827 pinctrl_init_device_debugfs(pctldev);
1828
1829 return pctldev;
1830
1831out_err:
1832 mutex_destroy(&pctldev->mutex);
1833 kfree(pctldev);
1834 return ERR_PTR(ret);
1835}
1836EXPORT_SYMBOL_GPL(pinctrl_register);
1837
1838/**
1839 * pinctrl_unregister() - unregister pinmux
1840 * @pctldev: pin controller to unregister
1841 *
1842 * Called by pinmux drivers to unregister a pinmux.
1843 */
1844void pinctrl_unregister(struct pinctrl_dev *pctldev)
1845{
1846 struct pinctrl_gpio_range *range, *n;
1847 if (pctldev == NULL)
1848 return;
1849
1850 mutex_lock(&pctldev->mutex);
1851 pinctrl_remove_device_debugfs(pctldev);
1852 mutex_unlock(&pctldev->mutex);
1853
1854 if (!IS_ERR(pctldev->p))
1855 pinctrl_put(pctldev->p);
1856
1857 mutex_lock(&pinctrldev_list_mutex);
1858 mutex_lock(&pctldev->mutex);
1859 /* TODO: check that no pinmuxes are still active? */
1860 list_del(&pctldev->node);
1861 /* Destroy descriptor tree */
1862 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1863 pctldev->desc->npins);
1864 /* remove gpio ranges map */
1865 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1866 list_del(&range->node);
1867
1868 mutex_unlock(&pctldev->mutex);
1869 mutex_destroy(&pctldev->mutex);
1870 kfree(pctldev);
1871 mutex_unlock(&pinctrldev_list_mutex);
1872}
1873EXPORT_SYMBOL_GPL(pinctrl_unregister);
1874
1875static int __init pinctrl_init(void)
1876{
1877 pr_info("initialized pinctrl subsystem\n");
1878 pinctrl_init_debugfs();
1879 return 0;
1880}
1881
1882/* init early since many drivers really need to initialized pinmux early */
1883core_initcall(pinctrl_init);