Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for NXP MCR20A 802.15.4 Wireless-PAN Networking controller
   4 *
   5 * Copyright (C) 2018 Xue Liu <liuxuenetmail@gmail.com>
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/gpio/consumer.h>
  10#include <linux/spi/spi.h>
  11#include <linux/workqueue.h>
  12#include <linux/interrupt.h>
  13#include <linux/irq.h>
  14#include <linux/skbuff.h>
  15#include <linux/of_gpio.h>
  16#include <linux/regmap.h>
  17#include <linux/ieee802154.h>
  18#include <linux/debugfs.h>
  19
  20#include <net/mac802154.h>
  21#include <net/cfg802154.h>
  22
  23#include <linux/device.h>
  24
  25#include "mcr20a.h"
  26
  27#define	SPI_COMMAND_BUFFER		3
  28
  29#define REGISTER_READ			BIT(7)
  30#define REGISTER_WRITE			(0 << 7)
  31#define REGISTER_ACCESS			(0 << 6)
  32#define PACKET_BUFF_BURST_ACCESS	BIT(6)
  33#define PACKET_BUFF_BYTE_ACCESS		BIT(5)
  34
  35#define MCR20A_WRITE_REG(x)		(x)
  36#define MCR20A_READ_REG(x)		(REGISTER_READ | (x))
  37#define MCR20A_BURST_READ_PACKET_BUF	(0xC0)
  38#define MCR20A_BURST_WRITE_PACKET_BUF	(0x40)
  39
  40#define MCR20A_CMD_REG		0x80
  41#define MCR20A_CMD_REG_MASK	0x3f
  42#define MCR20A_CMD_WRITE	0x40
  43#define MCR20A_CMD_FB		0x20
  44
  45/* Number of Interrupt Request Status Register */
  46#define MCR20A_IRQSTS_NUM 2 /* only IRQ_STS1 and IRQ_STS2 */
  47
  48/* MCR20A CCA Type */
  49enum {
  50	MCR20A_CCA_ED,	  // energy detect - CCA bit not active,
  51			  // not to be used for T and CCCA sequences
  52	MCR20A_CCA_MODE1, // energy detect - CCA bit ACTIVE
  53	MCR20A_CCA_MODE2, // 802.15.4 compliant signal detect - CCA bit ACTIVE
  54	MCR20A_CCA_MODE3
  55};
  56
  57enum {
  58	MCR20A_XCVSEQ_IDLE	= 0x00,
  59	MCR20A_XCVSEQ_RX	= 0x01,
  60	MCR20A_XCVSEQ_TX	= 0x02,
  61	MCR20A_XCVSEQ_CCA	= 0x03,
  62	MCR20A_XCVSEQ_TR	= 0x04,
  63	MCR20A_XCVSEQ_CCCA	= 0x05,
  64};
  65
  66/* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */
  67#define	MCR20A_MIN_CHANNEL	(11)
  68#define	MCR20A_MAX_CHANNEL	(26)
  69#define	MCR20A_CHANNEL_SPACING	(5)
  70
  71/* MCR20A CCA Threshold constans */
  72#define MCR20A_MIN_CCA_THRESHOLD (0x6EU)
  73#define MCR20A_MAX_CCA_THRESHOLD (0x00U)
  74
  75/* version 0C */
  76#define MCR20A_OVERWRITE_VERSION (0x0C)
  77
  78/* MCR20A PLL configurations */
  79static const u8  PLL_INT[16] = {
  80	/* 2405 */ 0x0B,	/* 2410 */ 0x0B,	/* 2415 */ 0x0B,
  81	/* 2420 */ 0x0B,	/* 2425 */ 0x0B,	/* 2430 */ 0x0B,
  82	/* 2435 */ 0x0C,	/* 2440 */ 0x0C,	/* 2445 */ 0x0C,
  83	/* 2450 */ 0x0C,	/* 2455 */ 0x0C,	/* 2460 */ 0x0C,
  84	/* 2465 */ 0x0D,	/* 2470 */ 0x0D,	/* 2475 */ 0x0D,
  85	/* 2480 */ 0x0D
  86};
  87
  88static const u8 PLL_FRAC[16] = {
  89	/* 2405 */ 0x28,	/* 2410 */ 0x50,	/* 2415 */ 0x78,
  90	/* 2420 */ 0xA0,	/* 2425 */ 0xC8,	/* 2430 */ 0xF0,
  91	/* 2435 */ 0x18,	/* 2440 */ 0x40,	/* 2445 */ 0x68,
  92	/* 2450 */ 0x90,	/* 2455 */ 0xB8,	/* 2460 */ 0xE0,
  93	/* 2465 */ 0x08,	/* 2470 */ 0x30,	/* 2475 */ 0x58,
  94	/* 2480 */ 0x80
  95};
  96
  97static const struct reg_sequence mar20a_iar_overwrites[] = {
  98	{ IAR_MISC_PAD_CTRL,	0x02 },
  99	{ IAR_VCO_CTRL1,	0xB3 },
 100	{ IAR_VCO_CTRL2,	0x07 },
 101	{ IAR_PA_TUNING,	0x71 },
 102	{ IAR_CHF_IBUF,		0x2F },
 103	{ IAR_CHF_QBUF,		0x2F },
 104	{ IAR_CHF_IRIN,		0x24 },
 105	{ IAR_CHF_QRIN,		0x24 },
 106	{ IAR_CHF_IL,		0x24 },
 107	{ IAR_CHF_QL,		0x24 },
 108	{ IAR_CHF_CC1,		0x32 },
 109	{ IAR_CHF_CCL,		0x1D },
 110	{ IAR_CHF_CC2,		0x2D },
 111	{ IAR_CHF_IROUT,	0x24 },
 112	{ IAR_CHF_QROUT,	0x24 },
 113	{ IAR_PA_CAL,		0x28 },
 114	{ IAR_AGC_THR1,		0x55 },
 115	{ IAR_AGC_THR2,		0x2D },
 116	{ IAR_ATT_RSSI1,	0x5F },
 117	{ IAR_ATT_RSSI2,	0x8F },
 118	{ IAR_RSSI_OFFSET,	0x61 },
 119	{ IAR_CHF_PMA_GAIN,	0x03 },
 120	{ IAR_CCA1_THRESH,	0x50 },
 121	{ IAR_CORR_NVAL,	0x13 },
 122	{ IAR_ACKDELAY,		0x3D },
 123};
 124
 125#define MCR20A_VALID_CHANNELS (0x07FFF800)
 126#define MCR20A_MAX_BUF		(127)
 127
 128#define printdev(X) (&X->spi->dev)
 129
 130/* regmap information for Direct Access Register (DAR) access */
 131#define MCR20A_DAR_WRITE	0x01
 132#define MCR20A_DAR_READ		0x00
 133#define MCR20A_DAR_NUMREGS	0x3F
 134
 135/* regmap information for Indirect Access Register (IAR) access */
 136#define MCR20A_IAR_ACCESS	0x80
 137#define MCR20A_IAR_NUMREGS	0xBEFF
 138
 139/* Read/Write SPI Commands for DAR and IAR registers. */
 140#define MCR20A_READSHORT(reg)	((reg) << 1)
 141#define MCR20A_WRITESHORT(reg)	((reg) << 1 | 1)
 142#define MCR20A_READLONG(reg)	(1 << 15 | (reg) << 5)
 143#define MCR20A_WRITELONG(reg)	(1 << 15 | (reg) << 5 | 1 << 4)
 144
 145/* Type definitions for link configuration of instantiable layers  */
 146#define MCR20A_PHY_INDIRECT_QUEUE_SIZE (12)
 147
 148static bool
 149mcr20a_dar_writeable(struct device *dev, unsigned int reg)
 150{
 151	switch (reg) {
 152	case DAR_IRQ_STS1:
 153	case DAR_IRQ_STS2:
 154	case DAR_IRQ_STS3:
 155	case DAR_PHY_CTRL1:
 156	case DAR_PHY_CTRL2:
 157	case DAR_PHY_CTRL3:
 158	case DAR_PHY_CTRL4:
 159	case DAR_SRC_CTRL:
 160	case DAR_SRC_ADDRS_SUM_LSB:
 161	case DAR_SRC_ADDRS_SUM_MSB:
 162	case DAR_T3CMP_LSB:
 163	case DAR_T3CMP_MSB:
 164	case DAR_T3CMP_USB:
 165	case DAR_T2PRIMECMP_LSB:
 166	case DAR_T2PRIMECMP_MSB:
 167	case DAR_T1CMP_LSB:
 168	case DAR_T1CMP_MSB:
 169	case DAR_T1CMP_USB:
 170	case DAR_T2CMP_LSB:
 171	case DAR_T2CMP_MSB:
 172	case DAR_T2CMP_USB:
 173	case DAR_T4CMP_LSB:
 174	case DAR_T4CMP_MSB:
 175	case DAR_T4CMP_USB:
 176	case DAR_PLL_INT0:
 177	case DAR_PLL_FRAC0_LSB:
 178	case DAR_PLL_FRAC0_MSB:
 179	case DAR_PA_PWR:
 180	/* no DAR_ACM */
 181	case DAR_OVERWRITE_VER:
 182	case DAR_CLK_OUT_CTRL:
 183	case DAR_PWR_MODES:
 184		return true;
 185	default:
 186		return false;
 187	}
 188}
 189
 190static bool
 191mcr20a_dar_readable(struct device *dev, unsigned int reg)
 192{
 193	bool rc;
 194
 195	/* all writeable are also readable */
 196	rc = mcr20a_dar_writeable(dev, reg);
 197	if (rc)
 198		return rc;
 199
 200	/* readonly regs */
 201	switch (reg) {
 202	case DAR_RX_FRM_LEN:
 203	case DAR_CCA1_ED_FNL:
 204	case DAR_EVENT_TMR_LSB:
 205	case DAR_EVENT_TMR_MSB:
 206	case DAR_EVENT_TMR_USB:
 207	case DAR_TIMESTAMP_LSB:
 208	case DAR_TIMESTAMP_MSB:
 209	case DAR_TIMESTAMP_USB:
 210	case DAR_SEQ_STATE:
 211	case DAR_LQI_VALUE:
 212	case DAR_RSSI_CCA_CONT:
 213		return true;
 214	default:
 215		return false;
 216	}
 217}
 218
 219static bool
 220mcr20a_dar_volatile(struct device *dev, unsigned int reg)
 221{
 222	/* can be changed during runtime */
 223	switch (reg) {
 224	case DAR_IRQ_STS1:
 225	case DAR_IRQ_STS2:
 226	case DAR_IRQ_STS3:
 227	/* use them in spi_async and regmap so it's volatile */
 228		return true;
 229	default:
 230		return false;
 231	}
 232}
 233
 234static bool
 235mcr20a_dar_precious(struct device *dev, unsigned int reg)
 236{
 237	/* don't clear irq line on read */
 238	switch (reg) {
 239	case DAR_IRQ_STS1:
 240	case DAR_IRQ_STS2:
 241	case DAR_IRQ_STS3:
 242		return true;
 243	default:
 244		return false;
 245	}
 246}
 247
 248static const struct regmap_config mcr20a_dar_regmap = {
 249	.name			= "mcr20a_dar",
 250	.reg_bits		= 8,
 251	.val_bits		= 8,
 252	.write_flag_mask	= REGISTER_ACCESS | REGISTER_WRITE,
 253	.read_flag_mask		= REGISTER_ACCESS | REGISTER_READ,
 254	.cache_type		= REGCACHE_RBTREE,
 255	.writeable_reg		= mcr20a_dar_writeable,
 256	.readable_reg		= mcr20a_dar_readable,
 257	.volatile_reg		= mcr20a_dar_volatile,
 258	.precious_reg		= mcr20a_dar_precious,
 259	.fast_io		= true,
 260	.can_multi_write	= true,
 261};
 262
 263static bool
 264mcr20a_iar_writeable(struct device *dev, unsigned int reg)
 265{
 266	switch (reg) {
 267	case IAR_XTAL_TRIM:
 268	case IAR_PMC_LP_TRIM:
 269	case IAR_MACPANID0_LSB:
 270	case IAR_MACPANID0_MSB:
 271	case IAR_MACSHORTADDRS0_LSB:
 272	case IAR_MACSHORTADDRS0_MSB:
 273	case IAR_MACLONGADDRS0_0:
 274	case IAR_MACLONGADDRS0_8:
 275	case IAR_MACLONGADDRS0_16:
 276	case IAR_MACLONGADDRS0_24:
 277	case IAR_MACLONGADDRS0_32:
 278	case IAR_MACLONGADDRS0_40:
 279	case IAR_MACLONGADDRS0_48:
 280	case IAR_MACLONGADDRS0_56:
 281	case IAR_RX_FRAME_FILTER:
 282	case IAR_PLL_INT1:
 283	case IAR_PLL_FRAC1_LSB:
 284	case IAR_PLL_FRAC1_MSB:
 285	case IAR_MACPANID1_LSB:
 286	case IAR_MACPANID1_MSB:
 287	case IAR_MACSHORTADDRS1_LSB:
 288	case IAR_MACSHORTADDRS1_MSB:
 289	case IAR_MACLONGADDRS1_0:
 290	case IAR_MACLONGADDRS1_8:
 291	case IAR_MACLONGADDRS1_16:
 292	case IAR_MACLONGADDRS1_24:
 293	case IAR_MACLONGADDRS1_32:
 294	case IAR_MACLONGADDRS1_40:
 295	case IAR_MACLONGADDRS1_48:
 296	case IAR_MACLONGADDRS1_56:
 297	case IAR_DUAL_PAN_CTRL:
 298	case IAR_DUAL_PAN_DWELL:
 299	case IAR_CCA1_THRESH:
 300	case IAR_CCA1_ED_OFFSET_COMP:
 301	case IAR_LQI_OFFSET_COMP:
 302	case IAR_CCA_CTRL:
 303	case IAR_CCA2_CORR_PEAKS:
 304	case IAR_CCA2_CORR_THRESH:
 305	case IAR_TMR_PRESCALE:
 306	case IAR_ANT_PAD_CTRL:
 307	case IAR_MISC_PAD_CTRL:
 308	case IAR_BSM_CTRL:
 309	case IAR_RNG:
 310	case IAR_RX_WTR_MARK:
 311	case IAR_SOFT_RESET:
 312	case IAR_TXDELAY:
 313	case IAR_ACKDELAY:
 314	case IAR_CORR_NVAL:
 315	case IAR_ANT_AGC_CTRL:
 316	case IAR_AGC_THR1:
 317	case IAR_AGC_THR2:
 318	case IAR_PA_CAL:
 319	case IAR_ATT_RSSI1:
 320	case IAR_ATT_RSSI2:
 321	case IAR_RSSI_OFFSET:
 322	case IAR_XTAL_CTRL:
 323	case IAR_CHF_PMA_GAIN:
 324	case IAR_CHF_IBUF:
 325	case IAR_CHF_QBUF:
 326	case IAR_CHF_IRIN:
 327	case IAR_CHF_QRIN:
 328	case IAR_CHF_IL:
 329	case IAR_CHF_QL:
 330	case IAR_CHF_CC1:
 331	case IAR_CHF_CCL:
 332	case IAR_CHF_CC2:
 333	case IAR_CHF_IROUT:
 334	case IAR_CHF_QROUT:
 335	case IAR_PA_TUNING:
 336	case IAR_VCO_CTRL1:
 337	case IAR_VCO_CTRL2:
 338		return true;
 339	default:
 340		return false;
 341	}
 342}
 343
 344static bool
 345mcr20a_iar_readable(struct device *dev, unsigned int reg)
 346{
 347	bool rc;
 348
 349	/* all writeable are also readable */
 350	rc = mcr20a_iar_writeable(dev, reg);
 351	if (rc)
 352		return rc;
 353
 354	/* readonly regs */
 355	switch (reg) {
 356	case IAR_PART_ID:
 357	case IAR_DUAL_PAN_STS:
 358	case IAR_RX_BYTE_COUNT:
 359	case IAR_FILTERFAIL_CODE1:
 360	case IAR_FILTERFAIL_CODE2:
 361	case IAR_RSSI:
 362		return true;
 363	default:
 364		return false;
 365	}
 366}
 367
 368static bool
 369mcr20a_iar_volatile(struct device *dev, unsigned int reg)
 370{
 371/* can be changed during runtime */
 372	switch (reg) {
 373	case IAR_DUAL_PAN_STS:
 374	case IAR_RX_BYTE_COUNT:
 375	case IAR_FILTERFAIL_CODE1:
 376	case IAR_FILTERFAIL_CODE2:
 377	case IAR_RSSI:
 378		return true;
 379	default:
 380		return false;
 381	}
 382}
 383
 384static const struct regmap_config mcr20a_iar_regmap = {
 385	.name			= "mcr20a_iar",
 386	.reg_bits		= 16,
 387	.val_bits		= 8,
 388	.write_flag_mask	= REGISTER_ACCESS | REGISTER_WRITE | IAR_INDEX,
 389	.read_flag_mask		= REGISTER_ACCESS | REGISTER_READ  | IAR_INDEX,
 390	.cache_type		= REGCACHE_RBTREE,
 391	.writeable_reg		= mcr20a_iar_writeable,
 392	.readable_reg		= mcr20a_iar_readable,
 393	.volatile_reg		= mcr20a_iar_volatile,
 394	.fast_io		= true,
 395};
 396
 397struct mcr20a_local {
 398	struct spi_device *spi;
 399
 400	struct ieee802154_hw *hw;
 401	struct regmap *regmap_dar;
 402	struct regmap *regmap_iar;
 403
 404	u8 *buf;
 405
 406	bool is_tx;
 407
 408	/* for writing tx buffer */
 409	struct spi_message tx_buf_msg;
 410	u8 tx_header[1];
 411	/* burst buffer write command */
 412	struct spi_transfer tx_xfer_header;
 413	u8 tx_len[1];
 414	/* len of tx packet */
 415	struct spi_transfer tx_xfer_len;
 416	/* data of tx packet */
 417	struct spi_transfer tx_xfer_buf;
 418	struct sk_buff *tx_skb;
 419
 420	/* for read length rxfifo */
 421	struct spi_message reg_msg;
 422	u8 reg_cmd[1];
 423	u8 reg_data[MCR20A_IRQSTS_NUM];
 424	struct spi_transfer reg_xfer_cmd;
 425	struct spi_transfer reg_xfer_data;
 426
 427	/* receive handling */
 428	struct spi_message rx_buf_msg;
 429	u8 rx_header[1];
 430	struct spi_transfer rx_xfer_header;
 431	u8 rx_lqi[1];
 432	struct spi_transfer rx_xfer_lqi;
 433	u8 rx_buf[MCR20A_MAX_BUF];
 434	struct spi_transfer rx_xfer_buf;
 435
 436	/* isr handling for reading intstat */
 437	struct spi_message irq_msg;
 438	u8 irq_header[1];
 439	u8 irq_data[MCR20A_IRQSTS_NUM];
 440	struct spi_transfer irq_xfer_data;
 441	struct spi_transfer irq_xfer_header;
 442};
 443
 444static void
 445mcr20a_write_tx_buf_complete(void *context)
 446{
 447	struct mcr20a_local *lp = context;
 448	int ret;
 449
 450	dev_dbg(printdev(lp), "%s\n", __func__);
 451
 452	lp->reg_msg.complete = NULL;
 453	lp->reg_cmd[0]	= MCR20A_WRITE_REG(DAR_PHY_CTRL1);
 454	lp->reg_data[0] = MCR20A_XCVSEQ_TX;
 455	lp->reg_xfer_data.len = 1;
 456
 457	ret = spi_async(lp->spi, &lp->reg_msg);
 458	if (ret)
 459		dev_err(printdev(lp), "failed to set SEQ TX\n");
 460}
 461
 462static int
 463mcr20a_xmit(struct ieee802154_hw *hw, struct sk_buff *skb)
 464{
 465	struct mcr20a_local *lp = hw->priv;
 466
 467	dev_dbg(printdev(lp), "%s\n", __func__);
 468
 469	lp->tx_skb = skb;
 470
 471	print_hex_dump_debug("mcr20a tx: ", DUMP_PREFIX_OFFSET, 16, 1,
 472			     skb->data, skb->len, 0);
 473
 474	lp->is_tx = 1;
 475
 476	lp->reg_msg.complete	= NULL;
 477	lp->reg_cmd[0]		= MCR20A_WRITE_REG(DAR_PHY_CTRL1);
 478	lp->reg_data[0]		= MCR20A_XCVSEQ_IDLE;
 479	lp->reg_xfer_data.len	= 1;
 480
 481	return spi_async(lp->spi, &lp->reg_msg);
 482}
 483
 484static int
 485mcr20a_ed(struct ieee802154_hw *hw, u8 *level)
 486{
 487	WARN_ON(!level);
 488	*level = 0xbe;
 489	return 0;
 490}
 491
 492static int
 493mcr20a_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel)
 494{
 495	struct mcr20a_local *lp = hw->priv;
 496	int ret;
 497
 498	dev_dbg(printdev(lp), "%s\n", __func__);
 499
 500	/* freqency = ((PLL_INT+64) + (PLL_FRAC/65536)) * 32 MHz */
 501	ret = regmap_write(lp->regmap_dar, DAR_PLL_INT0, PLL_INT[channel - 11]);
 502	if (ret)
 503		return ret;
 504	ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_LSB, 0x00);
 505	if (ret)
 506		return ret;
 507	ret = regmap_write(lp->regmap_dar, DAR_PLL_FRAC0_MSB,
 508			   PLL_FRAC[channel - 11]);
 509	if (ret)
 510		return ret;
 511
 512	return 0;
 513}
 514
 515static int
 516mcr20a_start(struct ieee802154_hw *hw)
 517{
 518	struct mcr20a_local *lp = hw->priv;
 519	int ret;
 520
 521	dev_dbg(printdev(lp), "%s\n", __func__);
 522
 523	/* No slotted operation */
 524	dev_dbg(printdev(lp), "no slotted operation\n");
 525	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 526				 DAR_PHY_CTRL1_SLOTTED, 0x0);
 527	if (ret < 0)
 528		return ret;
 529
 530	/* enable irq */
 531	enable_irq(lp->spi->irq);
 532
 533	/* Unmask SEQ interrupt */
 534	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL2,
 535				 DAR_PHY_CTRL2_SEQMSK, 0x0);
 536	if (ret < 0)
 537		return ret;
 538
 539	/* Start the RX sequence */
 540	dev_dbg(printdev(lp), "start the RX sequence\n");
 541	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 542				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
 543	if (ret < 0)
 544		return ret;
 545
 546	return 0;
 547}
 548
 549static void
 550mcr20a_stop(struct ieee802154_hw *hw)
 551{
 552	struct mcr20a_local *lp = hw->priv;
 553
 554	dev_dbg(printdev(lp), "%s\n", __func__);
 555
 556	/* stop all running sequence */
 557	regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
 558			   DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
 559
 560	/* disable irq */
 561	disable_irq(lp->spi->irq);
 562}
 563
 564static int
 565mcr20a_set_hw_addr_filt(struct ieee802154_hw *hw,
 566			struct ieee802154_hw_addr_filt *filt,
 567			unsigned long changed)
 568{
 569	struct mcr20a_local *lp = hw->priv;
 570
 571	dev_dbg(printdev(lp), "%s\n", __func__);
 572
 573	if (changed & IEEE802154_AFILT_SADDR_CHANGED) {
 574		u16 addr = le16_to_cpu(filt->short_addr);
 575
 576		regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_LSB, addr);
 577		regmap_write(lp->regmap_iar, IAR_MACSHORTADDRS0_MSB, addr >> 8);
 578	}
 579
 580	if (changed & IEEE802154_AFILT_PANID_CHANGED) {
 581		u16 pan = le16_to_cpu(filt->pan_id);
 582
 583		regmap_write(lp->regmap_iar, IAR_MACPANID0_LSB, pan);
 584		regmap_write(lp->regmap_iar, IAR_MACPANID0_MSB, pan >> 8);
 585	}
 586
 587	if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) {
 588		u8 addr[8], i;
 589
 590		memcpy(addr, &filt->ieee_addr, 8);
 591		for (i = 0; i < 8; i++)
 592			regmap_write(lp->regmap_iar,
 593				     IAR_MACLONGADDRS0_0 + i, addr[i]);
 594	}
 595
 596	if (changed & IEEE802154_AFILT_PANC_CHANGED) {
 597		if (filt->pan_coord) {
 598			regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 599					   DAR_PHY_CTRL4_PANCORDNTR0, 0x10);
 600		} else {
 601			regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 602					   DAR_PHY_CTRL4_PANCORDNTR0, 0x00);
 603		}
 604	}
 605
 606	return 0;
 607}
 608
 609/* -30 dBm to 10 dBm */
 610#define MCR20A_MAX_TX_POWERS 0x14
 611static const s32 mcr20a_powers[MCR20A_MAX_TX_POWERS + 1] = {
 612	-3000, -2800, -2600, -2400, -2200, -2000, -1800, -1600, -1400,
 613	-1200, -1000, -800, -600, -400, -200, 0, 200, 400, 600, 800, 1000
 614};
 615
 616static int
 617mcr20a_set_txpower(struct ieee802154_hw *hw, s32 mbm)
 618{
 619	struct mcr20a_local *lp = hw->priv;
 620	u32 i;
 621
 622	dev_dbg(printdev(lp), "%s(%d)\n", __func__, mbm);
 623
 624	for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) {
 625		if (lp->hw->phy->supported.tx_powers[i] == mbm)
 626			return regmap_write(lp->regmap_dar, DAR_PA_PWR,
 627					    ((i + 8) & 0x1F));
 628	}
 629
 630	return -EINVAL;
 631}
 632
 633#define MCR20A_MAX_ED_LEVELS MCR20A_MIN_CCA_THRESHOLD
 634static s32 mcr20a_ed_levels[MCR20A_MAX_ED_LEVELS + 1];
 635
 636static int
 637mcr20a_set_cca_mode(struct ieee802154_hw *hw,
 638		    const struct wpan_phy_cca *cca)
 639{
 640	struct mcr20a_local *lp = hw->priv;
 641	unsigned int cca_mode = 0xff;
 642	bool cca_mode_and = false;
 643	int ret;
 644
 645	dev_dbg(printdev(lp), "%s\n", __func__);
 646
 647	/* mapping 802.15.4 to driver spec */
 648	switch (cca->mode) {
 649	case NL802154_CCA_ENERGY:
 650		cca_mode = MCR20A_CCA_MODE1;
 651		break;
 652	case NL802154_CCA_CARRIER:
 653		cca_mode = MCR20A_CCA_MODE2;
 654		break;
 655	case NL802154_CCA_ENERGY_CARRIER:
 656		switch (cca->opt) {
 657		case NL802154_CCA_OPT_ENERGY_CARRIER_AND:
 658			cca_mode = MCR20A_CCA_MODE3;
 659			cca_mode_and = true;
 660			break;
 661		case NL802154_CCA_OPT_ENERGY_CARRIER_OR:
 662			cca_mode = MCR20A_CCA_MODE3;
 663			cca_mode_and = false;
 664			break;
 665		default:
 666			return -EINVAL;
 667		}
 668		break;
 669	default:
 670		return -EINVAL;
 671	}
 672	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 673				 DAR_PHY_CTRL4_CCATYPE_MASK,
 674				 cca_mode << DAR_PHY_CTRL4_CCATYPE_SHIFT);
 675	if (ret < 0)
 676		return ret;
 677
 678	if (cca_mode == MCR20A_CCA_MODE3) {
 679		if (cca_mode_and) {
 680			ret = regmap_update_bits(lp->regmap_iar, IAR_CCA_CTRL,
 681						 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
 682						 0x08);
 683		} else {
 684			ret = regmap_update_bits(lp->regmap_iar,
 685						 IAR_CCA_CTRL,
 686						 IAR_CCA_CTRL_CCA3_AND_NOT_OR,
 687						 0x00);
 688		}
 689		if (ret < 0)
 690			return ret;
 691	}
 692
 693	return ret;
 694}
 695
 696static int
 697mcr20a_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm)
 698{
 699	struct mcr20a_local *lp = hw->priv;
 700	u32 i;
 701
 702	dev_dbg(printdev(lp), "%s\n", __func__);
 703
 704	for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) {
 705		if (hw->phy->supported.cca_ed_levels[i] == mbm)
 706			return regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, i);
 707	}
 708
 709	return 0;
 710}
 711
 712static int
 713mcr20a_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on)
 714{
 715	struct mcr20a_local *lp = hw->priv;
 716	int ret;
 717	u8 rx_frame_filter_reg = 0x0;
 718
 719	dev_dbg(printdev(lp), "%s(%d)\n", __func__, on);
 720
 721	if (on) {
 722		/* All frame types accepted*/
 723		rx_frame_filter_reg &= ~(IAR_RX_FRAME_FLT_FRM_VER);
 724		rx_frame_filter_reg |= (IAR_RX_FRAME_FLT_ACK_FT |
 725				  IAR_RX_FRAME_FLT_NS_FT);
 726
 727		ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 728					 DAR_PHY_CTRL4_PROMISCUOUS,
 729					 DAR_PHY_CTRL4_PROMISCUOUS);
 730		if (ret < 0)
 731			return ret;
 732
 733		ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
 734				   rx_frame_filter_reg);
 735		if (ret < 0)
 736			return ret;
 737	} else {
 738		ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL4,
 739					 DAR_PHY_CTRL4_PROMISCUOUS, 0x0);
 740		if (ret < 0)
 741			return ret;
 742
 743		ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
 744				   IAR_RX_FRAME_FLT_FRM_VER |
 745				   IAR_RX_FRAME_FLT_BEACON_FT |
 746				   IAR_RX_FRAME_FLT_DATA_FT |
 747				   IAR_RX_FRAME_FLT_CMD_FT);
 748		if (ret < 0)
 749			return ret;
 750	}
 751
 752	return 0;
 753}
 754
 755static const struct ieee802154_ops mcr20a_hw_ops = {
 756	.owner			= THIS_MODULE,
 757	.xmit_async		= mcr20a_xmit,
 758	.ed			= mcr20a_ed,
 759	.set_channel		= mcr20a_set_channel,
 760	.start			= mcr20a_start,
 761	.stop			= mcr20a_stop,
 762	.set_hw_addr_filt	= mcr20a_set_hw_addr_filt,
 763	.set_txpower		= mcr20a_set_txpower,
 764	.set_cca_mode		= mcr20a_set_cca_mode,
 765	.set_cca_ed_level	= mcr20a_set_cca_ed_level,
 766	.set_promiscuous_mode	= mcr20a_set_promiscuous_mode,
 767};
 768
 769static int
 770mcr20a_request_rx(struct mcr20a_local *lp)
 771{
 772	dev_dbg(printdev(lp), "%s\n", __func__);
 773
 774	/* Start the RX sequence */
 775	regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
 776				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_RX);
 777
 778	return 0;
 779}
 780
 781static void
 782mcr20a_handle_rx_read_buf_complete(void *context)
 783{
 784	struct mcr20a_local *lp = context;
 785	u8 len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
 786	struct sk_buff *skb;
 787
 788	dev_dbg(printdev(lp), "%s\n", __func__);
 789
 790	dev_dbg(printdev(lp), "RX is done\n");
 791
 792	if (!ieee802154_is_valid_psdu_len(len)) {
 793		dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
 794		len = IEEE802154_MTU;
 795	}
 796
 797	len = len - 2;  /* get rid of frame check field */
 798
 799	skb = dev_alloc_skb(len);
 800	if (!skb)
 801		return;
 802
 803	__skb_put_data(skb, lp->rx_buf, len);
 804	ieee802154_rx_irqsafe(lp->hw, skb, lp->rx_lqi[0]);
 805
 806	print_hex_dump_debug("mcr20a rx: ", DUMP_PREFIX_OFFSET, 16, 1,
 807			     lp->rx_buf, len, 0);
 808	pr_debug("mcr20a rx: lqi: %02hhx\n", lp->rx_lqi[0]);
 809
 810	/* start RX sequence */
 811	mcr20a_request_rx(lp);
 812}
 813
 814static void
 815mcr20a_handle_rx_read_len_complete(void *context)
 816{
 817	struct mcr20a_local *lp = context;
 818	u8 len;
 819	int ret;
 820
 821	dev_dbg(printdev(lp), "%s\n", __func__);
 822
 823	/* get the length of received frame */
 824	len = lp->reg_data[0] & DAR_RX_FRAME_LENGTH_MASK;
 825	dev_dbg(printdev(lp), "frame len : %d\n", len);
 826
 827	/* prepare to read the rx buf */
 828	lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
 829	lp->rx_header[0] = MCR20A_BURST_READ_PACKET_BUF;
 830	lp->rx_xfer_buf.len = len;
 831
 832	ret = spi_async(lp->spi, &lp->rx_buf_msg);
 833	if (ret)
 834		dev_err(printdev(lp), "failed to read rx buffer length\n");
 835}
 836
 837static int
 838mcr20a_handle_rx(struct mcr20a_local *lp)
 839{
 840	dev_dbg(printdev(lp), "%s\n", __func__);
 841	lp->reg_msg.complete = mcr20a_handle_rx_read_len_complete;
 842	lp->reg_cmd[0] = MCR20A_READ_REG(DAR_RX_FRM_LEN);
 843	lp->reg_xfer_data.len	= 1;
 844
 845	return spi_async(lp->spi, &lp->reg_msg);
 846}
 847
 848static int
 849mcr20a_handle_tx_complete(struct mcr20a_local *lp)
 850{
 851	dev_dbg(printdev(lp), "%s\n", __func__);
 852
 853	ieee802154_xmit_complete(lp->hw, lp->tx_skb, false);
 854
 855	return mcr20a_request_rx(lp);
 856}
 857
 858static int
 859mcr20a_handle_tx(struct mcr20a_local *lp)
 860{
 861	int ret;
 862
 863	dev_dbg(printdev(lp), "%s\n", __func__);
 864
 865	/* write tx buffer */
 866	lp->tx_header[0]	= MCR20A_BURST_WRITE_PACKET_BUF;
 867	/* add 2 bytes of FCS */
 868	lp->tx_len[0]		= lp->tx_skb->len + 2;
 869	lp->tx_xfer_buf.tx_buf	= lp->tx_skb->data;
 870	/* add 1 byte psduLength */
 871	lp->tx_xfer_buf.len	= lp->tx_skb->len + 1;
 872
 873	ret = spi_async(lp->spi, &lp->tx_buf_msg);
 874	if (ret) {
 875		dev_err(printdev(lp), "SPI write Failed for TX buf\n");
 876		return ret;
 877	}
 878
 879	return 0;
 880}
 881
 882static void
 883mcr20a_irq_clean_complete(void *context)
 884{
 885	struct mcr20a_local *lp = context;
 886	u8 seq_state = lp->irq_data[DAR_IRQ_STS1] & DAR_PHY_CTRL1_XCVSEQ_MASK;
 887
 888	dev_dbg(printdev(lp), "%s\n", __func__);
 889
 890	enable_irq(lp->spi->irq);
 891
 892	dev_dbg(printdev(lp), "IRQ STA1 (%02x) STA2 (%02x)\n",
 893		lp->irq_data[DAR_IRQ_STS1], lp->irq_data[DAR_IRQ_STS2]);
 894
 895	switch (seq_state) {
 896	/* TX IRQ, RX IRQ and SEQ IRQ */
 897	case (DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
 898		if (lp->is_tx) {
 899			lp->is_tx = 0;
 900			dev_dbg(printdev(lp), "TX is done. No ACK\n");
 901			mcr20a_handle_tx_complete(lp);
 902		}
 903		break;
 904	case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_SEQIRQ):
 905		/* rx is starting */
 906		dev_dbg(printdev(lp), "RX is starting\n");
 907		mcr20a_handle_rx(lp);
 908		break;
 909	case (DAR_IRQSTS1_RXIRQ | DAR_IRQSTS1_TXIRQ | DAR_IRQSTS1_SEQIRQ):
 910		if (lp->is_tx) {
 911			/* tx is done */
 912			lp->is_tx = 0;
 913			dev_dbg(printdev(lp), "TX is done. Get ACK\n");
 914			mcr20a_handle_tx_complete(lp);
 915		} else {
 916			/* rx is starting */
 917			dev_dbg(printdev(lp), "RX is starting\n");
 918			mcr20a_handle_rx(lp);
 919		}
 920		break;
 921	case (DAR_IRQSTS1_SEQIRQ):
 922		if (lp->is_tx) {
 923			dev_dbg(printdev(lp), "TX is starting\n");
 924			mcr20a_handle_tx(lp);
 925		} else {
 926			dev_dbg(printdev(lp), "MCR20A is stop\n");
 927		}
 928		break;
 929	}
 930}
 931
 932static void mcr20a_irq_status_complete(void *context)
 933{
 934	int ret;
 935	struct mcr20a_local *lp = context;
 936
 937	dev_dbg(printdev(lp), "%s\n", __func__);
 938	regmap_update_bits_async(lp->regmap_dar, DAR_PHY_CTRL1,
 939				 DAR_PHY_CTRL1_XCVSEQ_MASK, MCR20A_XCVSEQ_IDLE);
 940
 941	lp->reg_msg.complete = mcr20a_irq_clean_complete;
 942	lp->reg_cmd[0] = MCR20A_WRITE_REG(DAR_IRQ_STS1);
 943	memcpy(lp->reg_data, lp->irq_data, MCR20A_IRQSTS_NUM);
 944	lp->reg_xfer_data.len = MCR20A_IRQSTS_NUM;
 945
 946	ret = spi_async(lp->spi, &lp->reg_msg);
 947
 948	if (ret)
 949		dev_err(printdev(lp), "failed to clean irq status\n");
 950}
 951
 952static irqreturn_t mcr20a_irq_isr(int irq, void *data)
 953{
 954	struct mcr20a_local *lp = data;
 955	int ret;
 956
 957	disable_irq_nosync(irq);
 958
 959	lp->irq_header[0] = MCR20A_READ_REG(DAR_IRQ_STS1);
 960	/* read IRQSTSx */
 961	ret = spi_async(lp->spi, &lp->irq_msg);
 962	if (ret) {
 963		enable_irq(irq);
 964		return IRQ_NONE;
 965	}
 966
 967	return IRQ_HANDLED;
 968}
 969
 970static void mcr20a_hw_setup(struct mcr20a_local *lp)
 971{
 972	u8 i;
 973	struct ieee802154_hw *hw = lp->hw;
 974	struct wpan_phy *phy = lp->hw->phy;
 975
 976	dev_dbg(printdev(lp), "%s\n", __func__);
 977
 978	hw->flags = IEEE802154_HW_TX_OMIT_CKSUM |
 979			IEEE802154_HW_AFILT |
 980			IEEE802154_HW_PROMISCUOUS;
 981
 982	phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL |
 983			WPAN_PHY_FLAG_CCA_MODE;
 984
 985	phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) |
 986		BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER);
 987	phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) |
 988		BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR);
 989
 990	/* initiating cca_ed_levels */
 991	for (i = MCR20A_MAX_CCA_THRESHOLD; i < MCR20A_MIN_CCA_THRESHOLD + 1;
 992	      ++i) {
 993		mcr20a_ed_levels[i] =  -i * 100;
 994	}
 995
 996	phy->supported.cca_ed_levels = mcr20a_ed_levels;
 997	phy->supported.cca_ed_levels_size = ARRAY_SIZE(mcr20a_ed_levels);
 998
 999	phy->cca.mode = NL802154_CCA_ENERGY;
1000
1001	phy->supported.channels[0] = MCR20A_VALID_CHANNELS;
1002	phy->current_page = 0;
1003	/* MCR20A default reset value */
1004	phy->current_channel = 20;
1005	phy->supported.tx_powers = mcr20a_powers;
1006	phy->supported.tx_powers_size = ARRAY_SIZE(mcr20a_powers);
1007	phy->cca_ed_level = phy->supported.cca_ed_levels[75];
1008	phy->transmit_power = phy->supported.tx_powers[0x0F];
1009}
1010
1011static void
1012mcr20a_setup_tx_spi_messages(struct mcr20a_local *lp)
1013{
1014	spi_message_init(&lp->tx_buf_msg);
1015	lp->tx_buf_msg.context = lp;
1016	lp->tx_buf_msg.complete = mcr20a_write_tx_buf_complete;
1017
1018	lp->tx_xfer_header.len = 1;
1019	lp->tx_xfer_header.tx_buf = lp->tx_header;
1020
1021	lp->tx_xfer_len.len = 1;
1022	lp->tx_xfer_len.tx_buf = lp->tx_len;
1023
1024	spi_message_add_tail(&lp->tx_xfer_header, &lp->tx_buf_msg);
1025	spi_message_add_tail(&lp->tx_xfer_len, &lp->tx_buf_msg);
1026	spi_message_add_tail(&lp->tx_xfer_buf, &lp->tx_buf_msg);
1027}
1028
1029static void
1030mcr20a_setup_rx_spi_messages(struct mcr20a_local *lp)
1031{
1032	spi_message_init(&lp->reg_msg);
1033	lp->reg_msg.context = lp;
1034
1035	lp->reg_xfer_cmd.len = 1;
1036	lp->reg_xfer_cmd.tx_buf = lp->reg_cmd;
1037	lp->reg_xfer_cmd.rx_buf = lp->reg_cmd;
1038
1039	lp->reg_xfer_data.rx_buf = lp->reg_data;
1040	lp->reg_xfer_data.tx_buf = lp->reg_data;
1041
1042	spi_message_add_tail(&lp->reg_xfer_cmd, &lp->reg_msg);
1043	spi_message_add_tail(&lp->reg_xfer_data, &lp->reg_msg);
1044
1045	spi_message_init(&lp->rx_buf_msg);
1046	lp->rx_buf_msg.context = lp;
1047	lp->rx_buf_msg.complete = mcr20a_handle_rx_read_buf_complete;
1048	lp->rx_xfer_header.len = 1;
1049	lp->rx_xfer_header.tx_buf = lp->rx_header;
1050	lp->rx_xfer_header.rx_buf = lp->rx_header;
1051
1052	lp->rx_xfer_buf.rx_buf = lp->rx_buf;
1053
1054	lp->rx_xfer_lqi.len = 1;
1055	lp->rx_xfer_lqi.rx_buf = lp->rx_lqi;
1056
1057	spi_message_add_tail(&lp->rx_xfer_header, &lp->rx_buf_msg);
1058	spi_message_add_tail(&lp->rx_xfer_buf, &lp->rx_buf_msg);
1059	spi_message_add_tail(&lp->rx_xfer_lqi, &lp->rx_buf_msg);
1060}
1061
1062static void
1063mcr20a_setup_irq_spi_messages(struct mcr20a_local *lp)
1064{
1065	spi_message_init(&lp->irq_msg);
1066	lp->irq_msg.context		= lp;
1067	lp->irq_msg.complete	= mcr20a_irq_status_complete;
1068	lp->irq_xfer_header.len	= 1;
1069	lp->irq_xfer_header.tx_buf = lp->irq_header;
1070	lp->irq_xfer_header.rx_buf = lp->irq_header;
1071
1072	lp->irq_xfer_data.len	= MCR20A_IRQSTS_NUM;
1073	lp->irq_xfer_data.rx_buf = lp->irq_data;
1074
1075	spi_message_add_tail(&lp->irq_xfer_header, &lp->irq_msg);
1076	spi_message_add_tail(&lp->irq_xfer_data, &lp->irq_msg);
1077}
1078
1079static int
1080mcr20a_phy_init(struct mcr20a_local *lp)
1081{
1082	u8 index;
1083	unsigned int phy_reg = 0;
1084	int ret;
1085
1086	dev_dbg(printdev(lp), "%s\n", __func__);
1087
1088	/* Disable Tristate on COCO MISO for SPI reads */
1089	ret = regmap_write(lp->regmap_iar, IAR_MISC_PAD_CTRL, 0x02);
1090	if (ret)
1091		goto err_ret;
1092
1093	/* Clear all PP IRQ bits in IRQSTS1 to avoid unexpected interrupts
1094	 * immediately after init
1095	 */
1096	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS1, 0xEF);
1097	if (ret)
1098		goto err_ret;
1099
1100	/* Clear all PP IRQ bits in IRQSTS2 */
1101	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS2,
1102			   DAR_IRQSTS2_ASM_IRQ | DAR_IRQSTS2_PB_ERR_IRQ |
1103			   DAR_IRQSTS2_WAKE_IRQ);
1104	if (ret)
1105		goto err_ret;
1106
1107	/* Disable all timer interrupts */
1108	ret = regmap_write(lp->regmap_dar, DAR_IRQ_STS3, 0xFF);
1109	if (ret)
1110		goto err_ret;
1111
1112	/*  PHY_CTRL1 : default HW settings + AUTOACK enabled */
1113	ret = regmap_update_bits(lp->regmap_dar, DAR_PHY_CTRL1,
1114				 DAR_PHY_CTRL1_AUTOACK, DAR_PHY_CTRL1_AUTOACK);
1115
1116	/*  PHY_CTRL2 : disable all interrupts */
1117	ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL2, 0xFF);
1118	if (ret)
1119		goto err_ret;
1120
1121	/* PHY_CTRL3 : disable all timers and remaining interrupts */
1122	ret = regmap_write(lp->regmap_dar, DAR_PHY_CTRL3,
1123			   DAR_PHY_CTRL3_ASM_MSK | DAR_PHY_CTRL3_PB_ERR_MSK |
1124			   DAR_PHY_CTRL3_WAKE_MSK);
1125	if (ret)
1126		goto err_ret;
1127
1128	/* SRC_CTRL : enable Acknowledge Frame Pending and
1129	 * Source Address Matching Enable
1130	 */
1131	ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL,
1132			   DAR_SRC_CTRL_ACK_FRM_PND |
1133			   (DAR_SRC_CTRL_INDEX << DAR_SRC_CTRL_INDEX_SHIFT));
1134	if (ret)
1135		goto err_ret;
1136
1137	/*  RX_FRAME_FILTER */
1138	/*  FRM_VER[1:0] = b11. Accept FrameVersion 0 and 1 packets */
1139	ret = regmap_write(lp->regmap_iar, IAR_RX_FRAME_FILTER,
1140			   IAR_RX_FRAME_FLT_FRM_VER |
1141			   IAR_RX_FRAME_FLT_BEACON_FT |
1142			   IAR_RX_FRAME_FLT_DATA_FT |
1143			   IAR_RX_FRAME_FLT_CMD_FT);
1144	if (ret)
1145		goto err_ret;
1146
1147	dev_info(printdev(lp), "MCR20A DAR overwrites version: 0x%02x\n",
1148		 MCR20A_OVERWRITE_VERSION);
1149
1150	/* Overwrites direct registers  */
1151	ret = regmap_write(lp->regmap_dar, DAR_OVERWRITE_VER,
1152			   MCR20A_OVERWRITE_VERSION);
1153	if (ret)
1154		goto err_ret;
1155
1156	/* Overwrites indirect registers  */
1157	ret = regmap_multi_reg_write(lp->regmap_iar, mar20a_iar_overwrites,
1158				     ARRAY_SIZE(mar20a_iar_overwrites));
1159	if (ret)
1160		goto err_ret;
1161
1162	/* Clear HW indirect queue */
1163	dev_dbg(printdev(lp), "clear HW indirect queue\n");
1164	for (index = 0; index < MCR20A_PHY_INDIRECT_QUEUE_SIZE; index++) {
1165		phy_reg = (u8)(((index & DAR_SRC_CTRL_INDEX) <<
1166			       DAR_SRC_CTRL_INDEX_SHIFT)
1167			      | (DAR_SRC_CTRL_SRCADDR_EN)
1168			      | (DAR_SRC_CTRL_INDEX_DISABLE));
1169		ret = regmap_write(lp->regmap_dar, DAR_SRC_CTRL, phy_reg);
1170		if (ret)
1171			goto err_ret;
1172		phy_reg = 0;
1173	}
1174
1175	/* Assign HW Indirect hash table to PAN0 */
1176	ret = regmap_read(lp->regmap_iar, IAR_DUAL_PAN_CTRL, &phy_reg);
1177	if (ret)
1178		goto err_ret;
1179
1180	/* Clear current lvl */
1181	phy_reg &= ~IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_MSK;
1182
1183	/* Set new lvl */
1184	phy_reg |= MCR20A_PHY_INDIRECT_QUEUE_SIZE <<
1185		IAR_DUAL_PAN_CTRL_DUAL_PAN_SAM_LVL_SHIFT;
1186	ret = regmap_write(lp->regmap_iar, IAR_DUAL_PAN_CTRL, phy_reg);
1187	if (ret)
1188		goto err_ret;
1189
1190	/* Set CCA threshold to -75 dBm */
1191	ret = regmap_write(lp->regmap_iar, IAR_CCA1_THRESH, 0x4B);
1192	if (ret)
1193		goto err_ret;
1194
1195	/* Set prescaller to obtain 1 symbol (16us) timebase */
1196	ret = regmap_write(lp->regmap_iar, IAR_TMR_PRESCALE, 0x05);
1197	if (ret)
1198		goto err_ret;
1199
1200	/* Enable autodoze mode. */
1201	ret = regmap_update_bits(lp->regmap_dar, DAR_PWR_MODES,
1202				 DAR_PWR_MODES_AUTODOZE,
1203				 DAR_PWR_MODES_AUTODOZE);
1204	if (ret)
1205		goto err_ret;
1206
1207	/* Disable clk_out */
1208	ret = regmap_update_bits(lp->regmap_dar, DAR_CLK_OUT_CTRL,
1209				 DAR_CLK_OUT_CTRL_EN, 0x0);
1210	if (ret)
1211		goto err_ret;
1212
1213	return 0;
1214
1215err_ret:
1216	return ret;
1217}
1218
1219static int
1220mcr20a_probe(struct spi_device *spi)
1221{
1222	struct ieee802154_hw *hw;
1223	struct mcr20a_local *lp;
1224	struct gpio_desc *rst_b;
1225	int irq_type;
1226	int ret = -ENOMEM;
1227
1228	dev_dbg(&spi->dev, "%s\n", __func__);
1229
1230	if (!spi->irq) {
1231		dev_err(&spi->dev, "no IRQ specified\n");
1232		return -EINVAL;
1233	}
1234
1235	rst_b = devm_gpiod_get(&spi->dev, "rst_b", GPIOD_OUT_HIGH);
1236	if (IS_ERR(rst_b))
1237		return dev_err_probe(&spi->dev, PTR_ERR(rst_b),
1238				     "Failed to get 'rst_b' gpio");
1239
1240	/* reset mcr20a */
1241	usleep_range(10, 20);
1242	gpiod_set_value_cansleep(rst_b, 1);
1243	usleep_range(10, 20);
1244	gpiod_set_value_cansleep(rst_b, 0);
1245	usleep_range(120, 240);
1246
1247	/* allocate ieee802154_hw and private data */
1248	hw = ieee802154_alloc_hw(sizeof(*lp), &mcr20a_hw_ops);
1249	if (!hw) {
1250		dev_crit(&spi->dev, "ieee802154_alloc_hw failed\n");
1251		return ret;
1252	}
1253
1254	/* init mcr20a local data */
1255	lp = hw->priv;
1256	lp->hw = hw;
1257	lp->spi = spi;
1258
1259	/* init ieee802154_hw */
1260	hw->parent = &spi->dev;
1261	ieee802154_random_extended_addr(&hw->phy->perm_extended_addr);
1262
1263	/* init buf */
1264	lp->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL);
1265
1266	if (!lp->buf) {
1267		ret = -ENOMEM;
1268		goto free_dev;
1269	}
1270
1271	mcr20a_setup_tx_spi_messages(lp);
1272	mcr20a_setup_rx_spi_messages(lp);
1273	mcr20a_setup_irq_spi_messages(lp);
1274
1275	/* setup regmap */
1276	lp->regmap_dar = devm_regmap_init_spi(spi, &mcr20a_dar_regmap);
1277	if (IS_ERR(lp->regmap_dar)) {
1278		ret = PTR_ERR(lp->regmap_dar);
1279		dev_err(&spi->dev, "Failed to allocate dar map: %d\n",
1280			ret);
1281		goto free_dev;
1282	}
1283
1284	lp->regmap_iar = devm_regmap_init_spi(spi, &mcr20a_iar_regmap);
1285	if (IS_ERR(lp->regmap_iar)) {
1286		ret = PTR_ERR(lp->regmap_iar);
1287		dev_err(&spi->dev, "Failed to allocate iar map: %d\n", ret);
1288		goto free_dev;
1289	}
1290
1291	mcr20a_hw_setup(lp);
1292
1293	spi_set_drvdata(spi, lp);
1294
1295	ret = mcr20a_phy_init(lp);
1296	if (ret < 0) {
1297		dev_crit(&spi->dev, "mcr20a_phy_init failed\n");
1298		goto free_dev;
1299	}
1300
1301	irq_type = irq_get_trigger_type(spi->irq);
1302	if (!irq_type)
1303		irq_type = IRQF_TRIGGER_FALLING;
1304
1305	ret = devm_request_irq(&spi->dev, spi->irq, mcr20a_irq_isr,
1306			       irq_type, dev_name(&spi->dev), lp);
1307	if (ret) {
1308		dev_err(&spi->dev, "could not request_irq for mcr20a\n");
1309		ret = -ENODEV;
1310		goto free_dev;
1311	}
1312
1313	/* disable_irq by default and wait for starting hardware */
1314	disable_irq(spi->irq);
1315
1316	ret = ieee802154_register_hw(hw);
1317	if (ret) {
1318		dev_crit(&spi->dev, "ieee802154_register_hw failed\n");
1319		goto free_dev;
1320	}
1321
1322	return ret;
1323
1324free_dev:
1325	ieee802154_free_hw(lp->hw);
1326
1327	return ret;
1328}
1329
1330static void mcr20a_remove(struct spi_device *spi)
1331{
1332	struct mcr20a_local *lp = spi_get_drvdata(spi);
1333
1334	dev_dbg(&spi->dev, "%s\n", __func__);
1335
1336	ieee802154_unregister_hw(lp->hw);
1337	ieee802154_free_hw(lp->hw);
1338}
1339
1340static const struct of_device_id mcr20a_of_match[] = {
1341	{ .compatible = "nxp,mcr20a", },
1342	{ },
1343};
1344MODULE_DEVICE_TABLE(of, mcr20a_of_match);
1345
1346static const struct spi_device_id mcr20a_device_id[] = {
1347	{ .name = "mcr20a", },
1348	{ },
1349};
1350MODULE_DEVICE_TABLE(spi, mcr20a_device_id);
1351
1352static struct spi_driver mcr20a_driver = {
1353	.id_table = mcr20a_device_id,
1354	.driver = {
1355		.of_match_table = mcr20a_of_match,
1356		.name	= "mcr20a",
1357	},
1358	.probe      = mcr20a_probe,
1359	.remove     = mcr20a_remove,
1360};
1361
1362module_spi_driver(mcr20a_driver);
1363
1364MODULE_DESCRIPTION("MCR20A Transceiver Driver");
1365MODULE_LICENSE("GPL v2");
1366MODULE_AUTHOR("Xue Liu <liuxuenetmail@gmail>");