Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * 6pack.c	This module implements the 6pack protocol for kernel-based
  4 *		devices like TTY. It interfaces between a raw TTY and the
  5 *		kernel's AX.25 protocol layers.
  6 *
  7 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
  8 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
  9 *
 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 11 *
 12 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 13 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/uaccess.h>
 18#include <linux/bitops.h>
 19#include <linux/string.h>
 20#include <linux/mm.h>
 21#include <linux/interrupt.h>
 22#include <linux/in.h>
 23#include <linux/tty.h>
 24#include <linux/errno.h>
 25#include <linux/netdevice.h>
 26#include <linux/timer.h>
 27#include <linux/slab.h>
 28#include <net/ax25.h>
 29#include <linux/etherdevice.h>
 30#include <linux/skbuff.h>
 31#include <linux/rtnetlink.h>
 32#include <linux/spinlock.h>
 33#include <linux/if_arp.h>
 34#include <linux/init.h>
 35#include <linux/ip.h>
 36#include <linux/tcp.h>
 37#include <linux/semaphore.h>
 38#include <linux/refcount.h>
 
 39
 40#define SIXPACK_VERSION    "Revision: 0.3.0"
 41
 42/* sixpack priority commands */
 43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
 44#define SIXP_TX_URUN		0x48	/* transmit overrun */
 45#define SIXP_RX_ORUN		0x50	/* receive overrun */
 46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
 47
 48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
 49
 50/* masks to get certain bits out of the status bytes sent by the TNC */
 51
 52#define SIXP_CMD_MASK		0xC0
 53#define SIXP_CHN_MASK		0x07
 54#define SIXP_PRIO_CMD_MASK	0x80
 55#define SIXP_STD_CMD_MASK	0x40
 56#define SIXP_PRIO_DATA_MASK	0x38
 57#define SIXP_TX_MASK		0x20
 58#define SIXP_RX_MASK		0x10
 59#define SIXP_RX_DCD_MASK	0x18
 60#define SIXP_LEDS_ON		0x78
 61#define SIXP_LEDS_OFF		0x60
 62#define SIXP_CON		0x08
 63#define SIXP_STA		0x10
 64
 65#define SIXP_FOUND_TNC		0xe9
 66#define SIXP_CON_ON		0x68
 67#define SIXP_DCD_MASK		0x08
 68#define SIXP_DAMA_OFF		0
 69
 70/* default level 2 parameters */
 71#define SIXP_TXDELAY			25	/* 250 ms */
 72#define SIXP_PERSIST			50	/* in 256ths */
 73#define SIXP_SLOTTIME			10	/* 100 ms */
 74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
 75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
 76
 77/* 6pack configuration. */
 78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
 79#define SIXP_MTU			256	/* Default MTU */
 80
 81enum sixpack_flags {
 82	SIXPF_ERROR,	/* Parity, etc. error	*/
 83};
 84
 85struct sixpack {
 86	/* Various fields. */
 87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
 88	struct net_device	*dev;		/* easy for intr handling  */
 89
 90	/* These are pointers to the malloc()ed frame buffers. */
 91	unsigned char		*rbuff;		/* receiver buffer	*/
 92	int			rcount;         /* received chars counter  */
 93	unsigned char		*xbuff;		/* transmitter buffer	*/
 94	unsigned char		*xhead;         /* next byte to XMIT */
 95	int			xleft;          /* bytes left in XMIT queue  */
 96
 97	unsigned char		raw_buf[4];
 98	unsigned char		cooked_buf[400];
 99
100	unsigned int		rx_count;
101	unsigned int		rx_count_cooked;
102	spinlock_t		rxlock;
103
104	int			mtu;		/* Our mtu (to spot changes!) */
105	int			buffsize;       /* Max buffers sizes */
106
107	unsigned long		flags;		/* Flag values/ mode etc */
108	unsigned char		mode;		/* 6pack mode */
109
110	/* 6pack stuff */
111	unsigned char		tx_delay;
112	unsigned char		persistence;
113	unsigned char		slottime;
114	unsigned char		duplex;
115	unsigned char		led_state;
116	unsigned char		status;
117	unsigned char		status1;
118	unsigned char		status2;
119	unsigned char		tx_enable;
120	unsigned char		tnc_state;
121
122	struct timer_list	tx_t;
123	struct timer_list	resync_t;
124	refcount_t		refcnt;
125	struct completion	dead;
126	spinlock_t		lock;
127};
128
129#define AX25_6PACK_HEADER_LEN 0
130
131static void sixpack_decode(struct sixpack *, const unsigned char[], int);
132static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
133
134/*
135 * Perform the persistence/slottime algorithm for CSMA access. If the
136 * persistence check was successful, write the data to the serial driver.
137 * Note that in case of DAMA operation, the data is not sent here.
138 */
139
140static void sp_xmit_on_air(struct timer_list *t)
141{
142	struct sixpack *sp = from_timer(sp, t, tx_t);
143	int actual, when = sp->slottime;
144	static unsigned char random;
145
146	random = random * 17 + 41;
147
148	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
149		sp->led_state = 0x70;
150		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151		sp->tx_enable = 1;
152		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
153		sp->xleft -= actual;
154		sp->xhead += actual;
155		sp->led_state = 0x60;
156		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
157		sp->status2 = 0;
158	} else
159		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
160}
161
162/* ----> 6pack timer interrupt handler and friends. <---- */
163
164/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
165static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
166{
167	unsigned char *msg, *p = icp;
168	int actual, count;
169
170	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
171		msg = "oversized transmit packet!";
172		goto out_drop;
173	}
174
 
 
 
 
 
175	if (p[0] > 5) {
176		msg = "invalid KISS command";
177		goto out_drop;
178	}
179
180	if ((p[0] != 0) && (len > 2)) {
181		msg = "KISS control packet too long";
182		goto out_drop;
183	}
184
185	if ((p[0] == 0) && (len < 15)) {
186		msg = "bad AX.25 packet to transmit";
187		goto out_drop;
188	}
189
190	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
191	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
192
193	switch (p[0]) {
194	case 1:	sp->tx_delay = p[1];
195		return;
196	case 2:	sp->persistence = p[1];
197		return;
198	case 3:	sp->slottime = p[1];
199		return;
200	case 4:	/* ignored */
201		return;
202	case 5:	sp->duplex = p[1];
203		return;
204	}
205
206	if (p[0] != 0)
207		return;
208
209	/*
210	 * In case of fullduplex or DAMA operation, we don't take care about the
211	 * state of the DCD or of any timers, as the determination of the
212	 * correct time to send is the job of the AX.25 layer. We send
213	 * immediately after data has arrived.
214	 */
215	if (sp->duplex == 1) {
216		sp->led_state = 0x70;
217		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
218		sp->tx_enable = 1;
219		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
220		sp->xleft = count - actual;
221		sp->xhead = sp->xbuff + actual;
222		sp->led_state = 0x60;
223		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
224	} else {
225		sp->xleft = count;
226		sp->xhead = sp->xbuff;
227		sp->status2 = count;
228		sp_xmit_on_air(&sp->tx_t);
229	}
230
231	return;
232
233out_drop:
234	sp->dev->stats.tx_dropped++;
235	netif_start_queue(sp->dev);
236	if (net_ratelimit())
237		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
238}
239
240/* Encapsulate an IP datagram and kick it into a TTY queue. */
241
242static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
243{
244	struct sixpack *sp = netdev_priv(dev);
245
246	if (skb->protocol == htons(ETH_P_IP))
247		return ax25_ip_xmit(skb);
248
249	spin_lock_bh(&sp->lock);
250	/* We were not busy, so we are now... :-) */
251	netif_stop_queue(dev);
252	dev->stats.tx_bytes += skb->len;
253	sp_encaps(sp, skb->data, skb->len);
254	spin_unlock_bh(&sp->lock);
255
256	dev_kfree_skb(skb);
257
258	return NETDEV_TX_OK;
259}
260
261static int sp_open_dev(struct net_device *dev)
262{
263	struct sixpack *sp = netdev_priv(dev);
264
265	if (sp->tty == NULL)
266		return -ENODEV;
267	return 0;
268}
269
270/* Close the low-level part of the 6pack channel. */
271static int sp_close(struct net_device *dev)
272{
273	struct sixpack *sp = netdev_priv(dev);
274
275	spin_lock_bh(&sp->lock);
276	if (sp->tty) {
277		/* TTY discipline is running. */
278		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
279	}
280	netif_stop_queue(dev);
281	spin_unlock_bh(&sp->lock);
282
283	return 0;
284}
285
286static int sp_set_mac_address(struct net_device *dev, void *addr)
287{
288	struct sockaddr_ax25 *sa = addr;
289
290	netif_tx_lock_bh(dev);
291	netif_addr_lock(dev);
292	__dev_addr_set(dev, &sa->sax25_call, AX25_ADDR_LEN);
293	netif_addr_unlock(dev);
294	netif_tx_unlock_bh(dev);
295
296	return 0;
297}
298
299static const struct net_device_ops sp_netdev_ops = {
300	.ndo_open		= sp_open_dev,
301	.ndo_stop		= sp_close,
302	.ndo_start_xmit		= sp_xmit,
303	.ndo_set_mac_address    = sp_set_mac_address,
304};
305
306static void sp_setup(struct net_device *dev)
307{
308	/* Finish setting up the DEVICE info. */
309	dev->netdev_ops		= &sp_netdev_ops;
 
310	dev->mtu		= SIXP_MTU;
311	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
312	dev->header_ops 	= &ax25_header_ops;
313
314	dev->addr_len		= AX25_ADDR_LEN;
315	dev->type		= ARPHRD_AX25;
316	dev->tx_queue_len	= 10;
317
318	/* Only activated in AX.25 mode */
319	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
320	dev_addr_set(dev, (u8 *)&ax25_defaddr);
321
322	dev->flags		= 0;
323}
324
325/* Send one completely decapsulated IP datagram to the IP layer. */
326
327/*
328 * This is the routine that sends the received data to the kernel AX.25.
329 * 'cmd' is the KISS command. For AX.25 data, it is zero.
330 */
331
332static void sp_bump(struct sixpack *sp, char cmd)
333{
334	struct sk_buff *skb;
335	int count;
336	unsigned char *ptr;
337
338	count = sp->rcount + 1;
339
340	sp->dev->stats.rx_bytes += count;
341
342	if ((skb = dev_alloc_skb(count + 1)) == NULL)
343		goto out_mem;
344
345	ptr = skb_put(skb, count + 1);
346	*ptr++ = cmd;	/* KISS command */
347
348	memcpy(ptr, sp->cooked_buf + 1, count);
349	skb->protocol = ax25_type_trans(skb, sp->dev);
350	netif_rx(skb);
351	sp->dev->stats.rx_packets++;
352
353	return;
354
355out_mem:
356	sp->dev->stats.rx_dropped++;
357}
358
359
360/* ----------------------------------------------------------------------- */
361
362/*
363 * We have a potential race on dereferencing tty->disc_data, because the tty
364 * layer provides no locking at all - thus one cpu could be running
365 * sixpack_receive_buf while another calls sixpack_close, which zeroes
366 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
367 * best way to fix this is to use a rwlock in the tty struct, but for now we
368 * use a single global rwlock for all ttys in ppp line discipline.
369 */
370static DEFINE_RWLOCK(disc_data_lock);
371                                                                                
372static struct sixpack *sp_get(struct tty_struct *tty)
373{
374	struct sixpack *sp;
375
376	read_lock(&disc_data_lock);
377	sp = tty->disc_data;
378	if (sp)
379		refcount_inc(&sp->refcnt);
380	read_unlock(&disc_data_lock);
381
382	return sp;
383}
384
385static void sp_put(struct sixpack *sp)
386{
387	if (refcount_dec_and_test(&sp->refcnt))
388		complete(&sp->dead);
389}
390
391/*
392 * Called by the TTY driver when there's room for more data.  If we have
393 * more packets to send, we send them here.
394 */
395static void sixpack_write_wakeup(struct tty_struct *tty)
396{
397	struct sixpack *sp = sp_get(tty);
398	int actual;
399
400	if (!sp)
401		return;
402	if (sp->xleft <= 0)  {
403		/* Now serial buffer is almost free & we can start
404		 * transmission of another packet */
405		sp->dev->stats.tx_packets++;
406		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
407		sp->tx_enable = 0;
408		netif_wake_queue(sp->dev);
409		goto out;
410	}
411
412	if (sp->tx_enable) {
413		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
414		sp->xleft -= actual;
415		sp->xhead += actual;
416	}
417
418out:
419	sp_put(sp);
420}
421
422/* ----------------------------------------------------------------------- */
423
424/*
425 * Handle the 'receiver data ready' interrupt.
426 * This function is called by the tty module in the kernel when
427 * a block of 6pack data has been received, which can now be decapsulated
428 * and sent on to some IP layer for further processing.
429 */
430static void sixpack_receive_buf(struct tty_struct *tty, const u8 *cp,
431				const u8 *fp, size_t count)
432{
433	struct sixpack *sp;
 
434	int count1;
435
436	if (!count)
437		return;
438
439	sp = sp_get(tty);
440	if (!sp)
441		return;
442
 
 
443	/* Read the characters out of the buffer */
 
444	count1 = count;
445	while (count) {
446		count--;
447		if (fp && *fp++) {
448			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
449				sp->dev->stats.rx_errors++;
450			continue;
451		}
452	}
453	sixpack_decode(sp, cp, count1);
454
455	sp_put(sp);
456	tty_unthrottle(tty);
457}
458
459/*
460 * Try to resync the TNC. Called by the resync timer defined in
461 * decode_prio_command
462 */
463
464#define TNC_UNINITIALIZED	0
465#define TNC_UNSYNC_STARTUP	1
466#define TNC_UNSYNCED		2
467#define TNC_IN_SYNC		3
468
469static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
470{
471	char *msg;
472
473	switch (new_tnc_state) {
474	default:			/* gcc oh piece-o-crap ... */
475	case TNC_UNSYNC_STARTUP:
476		msg = "Synchronizing with TNC";
477		break;
478	case TNC_UNSYNCED:
479		msg = "Lost synchronization with TNC\n";
480		break;
481	case TNC_IN_SYNC:
482		msg = "Found TNC";
483		break;
484	}
485
486	sp->tnc_state = new_tnc_state;
487	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
488}
489
490static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
491{
492	int old_tnc_state = sp->tnc_state;
493
494	if (old_tnc_state != new_tnc_state)
495		__tnc_set_sync_state(sp, new_tnc_state);
496}
497
498static void resync_tnc(struct timer_list *t)
499{
500	struct sixpack *sp = from_timer(sp, t, resync_t);
501	static char resync_cmd = 0xe8;
502
503	/* clear any data that might have been received */
504
505	sp->rx_count = 0;
506	sp->rx_count_cooked = 0;
507
508	/* reset state machine */
509
510	sp->status = 1;
511	sp->status1 = 1;
512	sp->status2 = 0;
513
514	/* resync the TNC */
515
516	sp->led_state = 0x60;
517	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
518	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
519
520
521	/* Start resync timer again -- the TNC might be still absent */
522	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
 
523}
524
525static inline int tnc_init(struct sixpack *sp)
526{
527	unsigned char inbyte = 0xe8;
528
529	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
530
531	sp->tty->ops->write(sp->tty, &inbyte, 1);
532
533	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
534
535	return 0;
536}
537
538/*
539 * Open the high-level part of the 6pack channel.
540 * This function is called by the TTY module when the
541 * 6pack line discipline is called for.  Because we are
542 * sure the tty line exists, we only have to link it to
543 * a free 6pcack channel...
544 */
545static int sixpack_open(struct tty_struct *tty)
546{
547	char *rbuff = NULL, *xbuff = NULL;
548	struct net_device *dev;
549	struct sixpack *sp;
550	unsigned long len;
551	int err = 0;
552
553	if (!capable(CAP_NET_ADMIN))
554		return -EPERM;
555	if (tty->ops->write == NULL)
556		return -EOPNOTSUPP;
557
558	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
559			   sp_setup);
560	if (!dev) {
561		err = -ENOMEM;
562		goto out;
563	}
564
565	sp = netdev_priv(dev);
566	sp->dev = dev;
567
568	spin_lock_init(&sp->lock);
569	spin_lock_init(&sp->rxlock);
570	refcount_set(&sp->refcnt, 1);
571	init_completion(&sp->dead);
572
573	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
574
575	len = dev->mtu * 2;
576
577	rbuff = kmalloc(len + 4, GFP_KERNEL);
578	xbuff = kmalloc(len + 4, GFP_KERNEL);
579
580	if (rbuff == NULL || xbuff == NULL) {
581		err = -ENOBUFS;
582		goto out_free;
583	}
584
585	spin_lock_bh(&sp->lock);
586
587	sp->tty = tty;
588
589	sp->rbuff	= rbuff;
590	sp->xbuff	= xbuff;
591
592	sp->mtu		= AX25_MTU + 73;
593	sp->buffsize	= len;
594	sp->rcount	= 0;
595	sp->rx_count	= 0;
596	sp->rx_count_cooked = 0;
597	sp->xleft	= 0;
598
599	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
600
601	sp->duplex	= 0;
602	sp->tx_delay    = SIXP_TXDELAY;
603	sp->persistence = SIXP_PERSIST;
604	sp->slottime    = SIXP_SLOTTIME;
605	sp->led_state   = 0x60;
606	sp->status      = 1;
607	sp->status1     = 1;
608	sp->status2     = 0;
609	sp->tx_enable   = 0;
610
611	netif_start_queue(dev);
612
613	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
 
 
614
615	timer_setup(&sp->resync_t, resync_tnc, 0);
616
617	spin_unlock_bh(&sp->lock);
618
619	/* Done.  We have linked the TTY line to a channel. */
620	tty->disc_data = sp;
621	tty->receive_room = 65536;
622
623	/* Now we're ready to register. */
624	err = register_netdev(dev);
625	if (err)
626		goto out_free;
627
628	tnc_init(sp);
629
630	return 0;
631
632out_free:
633	kfree(xbuff);
634	kfree(rbuff);
635
636	free_netdev(dev);
637
638out:
639	return err;
640}
641
642
643/*
644 * Close down a 6pack channel.
645 * This means flushing out any pending queues, and then restoring the
646 * TTY line discipline to what it was before it got hooked to 6pack
647 * (which usually is TTY again).
648 */
649static void sixpack_close(struct tty_struct *tty)
650{
651	struct sixpack *sp;
652
653	write_lock_irq(&disc_data_lock);
654	sp = tty->disc_data;
655	tty->disc_data = NULL;
656	write_unlock_irq(&disc_data_lock);
657	if (!sp)
658		return;
659
660	/*
661	 * We have now ensured that nobody can start using ap from now on, but
662	 * we have to wait for all existing users to finish.
663	 */
664	if (!refcount_dec_and_test(&sp->refcnt))
665		wait_for_completion(&sp->dead);
666
667	/* We must stop the queue to avoid potentially scribbling
668	 * on the free buffers. The sp->dead completion is not sufficient
669	 * to protect us from sp->xbuff access.
670	 */
671	netif_stop_queue(sp->dev);
672
673	unregister_netdev(sp->dev);
674
675	del_timer_sync(&sp->tx_t);
676	del_timer_sync(&sp->resync_t);
677
678	/* Free all 6pack frame buffers after unreg. */
679	kfree(sp->rbuff);
680	kfree(sp->xbuff);
681
682	free_netdev(sp->dev);
683}
684
685/* Perform I/O control on an active 6pack channel. */
686static int sixpack_ioctl(struct tty_struct *tty, unsigned int cmd,
687		unsigned long arg)
688{
689	struct sixpack *sp = sp_get(tty);
690	struct net_device *dev;
691	unsigned int tmp, err;
692
693	if (!sp)
694		return -ENXIO;
695	dev = sp->dev;
696
697	switch(cmd) {
698	case SIOCGIFNAME:
699		err = copy_to_user((void __user *) arg, dev->name,
700		                   strlen(dev->name) + 1) ? -EFAULT : 0;
701		break;
702
703	case SIOCGIFENCAP:
704		err = put_user(0, (int __user *) arg);
705		break;
706
707	case SIOCSIFENCAP:
708		if (get_user(tmp, (int __user *) arg)) {
709			err = -EFAULT;
710			break;
711		}
712
713		sp->mode = tmp;
714		dev->addr_len        = AX25_ADDR_LEN;
715		dev->hard_header_len = AX25_KISS_HEADER_LEN +
716		                       AX25_MAX_HEADER_LEN + 3;
717		dev->type            = ARPHRD_AX25;
718
719		err = 0;
720		break;
721
722	case SIOCSIFHWADDR: {
723			char addr[AX25_ADDR_LEN];
724
725			if (copy_from_user(&addr,
726					   (void __user *)arg, AX25_ADDR_LEN)) {
727				err = -EFAULT;
728				break;
729			}
730
731			netif_tx_lock_bh(dev);
732			__dev_addr_set(dev, &addr, AX25_ADDR_LEN);
733			netif_tx_unlock_bh(dev);
 
734			err = 0;
735			break;
736		}
 
737	default:
738		err = tty_mode_ioctl(tty, cmd, arg);
739	}
740
741	sp_put(sp);
742
743	return err;
744}
745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746static struct tty_ldisc_ops sp_ldisc = {
747	.owner		= THIS_MODULE,
748	.num		= N_6PACK,
749	.name		= "6pack",
750	.open		= sixpack_open,
751	.close		= sixpack_close,
752	.ioctl		= sixpack_ioctl,
 
 
 
753	.receive_buf	= sixpack_receive_buf,
754	.write_wakeup	= sixpack_write_wakeup,
755};
756
757/* Initialize 6pack control device -- register 6pack line discipline */
758
759static const char msg_banner[]  __initconst = KERN_INFO \
760	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
761static const char msg_regfail[] __initconst = KERN_ERR  \
762	"6pack: can't register line discipline (err = %d)\n";
763
764static int __init sixpack_init_driver(void)
765{
766	int status;
767
768	printk(msg_banner);
769
770	/* Register the provided line protocol discipline */
771	status = tty_register_ldisc(&sp_ldisc);
772	if (status)
773		printk(msg_regfail, status);
774
775	return status;
776}
777
 
 
 
778static void __exit sixpack_exit_driver(void)
779{
780	tty_unregister_ldisc(&sp_ldisc);
 
 
 
781}
782
783/* encode an AX.25 packet into 6pack */
784
785static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
786	int length, unsigned char tx_delay)
787{
788	int count = 0;
789	unsigned char checksum = 0, buf[400];
790	int raw_count = 0;
791
792	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
793	tx_buf_raw[raw_count++] = SIXP_SEOF;
794
795	buf[0] = tx_delay;
796	for (count = 1; count < length; count++)
797		buf[count] = tx_buf[count];
798
799	for (count = 0; count < length; count++)
800		checksum += buf[count];
801	buf[length] = (unsigned char) 0xff - checksum;
802
803	for (count = 0; count <= length; count++) {
804		if ((count % 3) == 0) {
805			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
806			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
807		} else if ((count % 3) == 1) {
808			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
809			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
810		} else {
811			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
812			tx_buf_raw[raw_count++] = (buf[count] >> 2);
813		}
814	}
815	if ((length % 3) != 2)
816		raw_count++;
817	tx_buf_raw[raw_count++] = SIXP_SEOF;
818	return raw_count;
819}
820
821/* decode 4 sixpack-encoded bytes into 3 data bytes */
822
823static void decode_data(struct sixpack *sp, unsigned char inbyte)
824{
825	unsigned char *buf;
826
827	if (sp->rx_count != 3) {
828		sp->raw_buf[sp->rx_count++] = inbyte;
829
830		return;
831	}
832
833	if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
834		pr_err("6pack: cooked buffer overrun, data loss\n");
835		sp->rx_count = 0;
836		return;
837	}
838
839	buf = sp->raw_buf;
840	sp->cooked_buf[sp->rx_count_cooked++] =
841		buf[0] | ((buf[1] << 2) & 0xc0);
842	sp->cooked_buf[sp->rx_count_cooked++] =
843		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
844	sp->cooked_buf[sp->rx_count_cooked++] =
845		(buf[2] & 0x03) | (inbyte << 2);
846	sp->rx_count = 0;
847}
848
849/* identify and execute a 6pack priority command byte */
850
851static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
852{
 
853	int actual;
854
 
855	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
856
857	/* RX and DCD flags can only be set in the same prio command,
858	   if the DCD flag has been set without the RX flag in the previous
859	   prio command. If DCD has not been set before, something in the
860	   transmission has gone wrong. In this case, RX and DCD are
861	   cleared in order to prevent the decode_data routine from
862	   reading further data that might be corrupt. */
863
864		if (((sp->status & SIXP_DCD_MASK) == 0) &&
865			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
866				if (sp->status != 1)
867					printk(KERN_DEBUG "6pack: protocol violation\n");
868				else
869					sp->status = 0;
870				cmd &= ~SIXP_RX_DCD_MASK;
871		}
872		sp->status = cmd & SIXP_PRIO_DATA_MASK;
873	} else { /* output watchdog char if idle */
874		if ((sp->status2 != 0) && (sp->duplex == 1)) {
875			sp->led_state = 0x70;
876			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
877			sp->tx_enable = 1;
878			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
879			sp->xleft -= actual;
880			sp->xhead += actual;
881			sp->led_state = 0x60;
882			sp->status2 = 0;
883
884		}
885	}
886
887	/* needed to trigger the TNC watchdog */
888	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
889
890        /* if the state byte has been received, the TNC is present,
891           so the resync timer can be reset. */
892
893	if (sp->tnc_state == TNC_IN_SYNC)
894		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
 
 
 
 
 
895
896	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
897}
898
899/* identify and execute a standard 6pack command byte */
900
901static void decode_std_command(struct sixpack *sp, unsigned char cmd)
902{
903	unsigned char checksum = 0, rest = 0;
904	short i;
905
 
906	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
907	case SIXP_SEOF:
908		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
909			if ((sp->status & SIXP_RX_DCD_MASK) ==
910				SIXP_RX_DCD_MASK) {
911				sp->led_state = 0x68;
912				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
913			}
914		} else {
915			sp->led_state = 0x60;
916			/* fill trailing bytes with zeroes */
917			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
918			spin_lock_bh(&sp->rxlock);
919			rest = sp->rx_count;
920			if (rest != 0)
921				 for (i = rest; i <= 3; i++)
922					decode_data(sp, 0);
923			if (rest == 2)
924				sp->rx_count_cooked -= 2;
925			else if (rest == 3)
926				sp->rx_count_cooked -= 1;
927			for (i = 0; i < sp->rx_count_cooked; i++)
928				checksum += sp->cooked_buf[i];
929			if (checksum != SIXP_CHKSUM) {
930				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
931			} else {
932				sp->rcount = sp->rx_count_cooked-2;
933				sp_bump(sp, 0);
934			}
935			sp->rx_count_cooked = 0;
936			spin_unlock_bh(&sp->rxlock);
937		}
938		break;
939	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
940		break;
941	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
942		break;
943	case SIXP_RX_BUF_OVL:
944		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
945	}
946}
947
948/* decode a 6pack packet */
949
950static void
951sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
952{
953	unsigned char inbyte;
954	int count1;
955
956	for (count1 = 0; count1 < count; count1++) {
957		inbyte = pre_rbuff[count1];
958		if (inbyte == SIXP_FOUND_TNC) {
959			tnc_set_sync_state(sp, TNC_IN_SYNC);
960			del_timer(&sp->resync_t);
961		}
962		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
963			decode_prio_command(sp, inbyte);
964		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
965			decode_std_command(sp, inbyte);
966		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) {
967			spin_lock_bh(&sp->rxlock);
968			decode_data(sp, inbyte);
969			spin_unlock_bh(&sp->rxlock);
970		}
971	}
972}
973
974MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
975MODULE_DESCRIPTION("6pack driver for AX.25");
976MODULE_LICENSE("GPL");
977MODULE_ALIAS_LDISC(N_6PACK);
978
979module_init(sixpack_init_driver);
980module_exit(sixpack_exit_driver);
v4.6
 
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
  16#include <asm/uaccess.h>
  17#include <linux/bitops.h>
  18#include <linux/string.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/in.h>
  22#include <linux/tty.h>
  23#include <linux/errno.h>
  24#include <linux/netdevice.h>
  25#include <linux/timer.h>
  26#include <linux/slab.h>
  27#include <net/ax25.h>
  28#include <linux/etherdevice.h>
  29#include <linux/skbuff.h>
  30#include <linux/rtnetlink.h>
  31#include <linux/spinlock.h>
  32#include <linux/if_arp.h>
  33#include <linux/init.h>
  34#include <linux/ip.h>
  35#include <linux/tcp.h>
  36#include <linux/semaphore.h>
  37#include <linux/compat.h>
  38#include <linux/atomic.h>
  39
  40#define SIXPACK_VERSION    "Revision: 0.3.0"
  41
  42/* sixpack priority commands */
  43#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  44#define SIXP_TX_URUN		0x48	/* transmit overrun */
  45#define SIXP_RX_ORUN		0x50	/* receive overrun */
  46#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  47
  48#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  49
  50/* masks to get certain bits out of the status bytes sent by the TNC */
  51
  52#define SIXP_CMD_MASK		0xC0
  53#define SIXP_CHN_MASK		0x07
  54#define SIXP_PRIO_CMD_MASK	0x80
  55#define SIXP_STD_CMD_MASK	0x40
  56#define SIXP_PRIO_DATA_MASK	0x38
  57#define SIXP_TX_MASK		0x20
  58#define SIXP_RX_MASK		0x10
  59#define SIXP_RX_DCD_MASK	0x18
  60#define SIXP_LEDS_ON		0x78
  61#define SIXP_LEDS_OFF		0x60
  62#define SIXP_CON		0x08
  63#define SIXP_STA		0x10
  64
  65#define SIXP_FOUND_TNC		0xe9
  66#define SIXP_CON_ON		0x68
  67#define SIXP_DCD_MASK		0x08
  68#define SIXP_DAMA_OFF		0
  69
  70/* default level 2 parameters */
  71#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  72#define SIXP_PERSIST			50	/* in 256ths */
  73#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  74#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  75#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  76
  77/* 6pack configuration. */
  78#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  79#define SIXP_MTU			256	/* Default MTU */
  80
  81enum sixpack_flags {
  82	SIXPF_ERROR,	/* Parity, etc. error	*/
  83};
  84
  85struct sixpack {
  86	/* Various fields. */
  87	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  88	struct net_device	*dev;		/* easy for intr handling  */
  89
  90	/* These are pointers to the malloc()ed frame buffers. */
  91	unsigned char		*rbuff;		/* receiver buffer	*/
  92	int			rcount;         /* received chars counter  */
  93	unsigned char		*xbuff;		/* transmitter buffer	*/
  94	unsigned char		*xhead;         /* next byte to XMIT */
  95	int			xleft;          /* bytes left in XMIT queue  */
  96
  97	unsigned char		raw_buf[4];
  98	unsigned char		cooked_buf[400];
  99
 100	unsigned int		rx_count;
 101	unsigned int		rx_count_cooked;
 
 102
 103	int			mtu;		/* Our mtu (to spot changes!) */
 104	int			buffsize;       /* Max buffers sizes */
 105
 106	unsigned long		flags;		/* Flag values/ mode etc */
 107	unsigned char		mode;		/* 6pack mode */
 108
 109	/* 6pack stuff */
 110	unsigned char		tx_delay;
 111	unsigned char		persistence;
 112	unsigned char		slottime;
 113	unsigned char		duplex;
 114	unsigned char		led_state;
 115	unsigned char		status;
 116	unsigned char		status1;
 117	unsigned char		status2;
 118	unsigned char		tx_enable;
 119	unsigned char		tnc_state;
 120
 121	struct timer_list	tx_t;
 122	struct timer_list	resync_t;
 123	atomic_t		refcnt;
 124	struct semaphore	dead_sem;
 125	spinlock_t		lock;
 126};
 127
 128#define AX25_6PACK_HEADER_LEN 0
 129
 130static void sixpack_decode(struct sixpack *, unsigned char[], int);
 131static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 132
 133/*
 134 * Perform the persistence/slottime algorithm for CSMA access. If the
 135 * persistence check was successful, write the data to the serial driver.
 136 * Note that in case of DAMA operation, the data is not sent here.
 137 */
 138
 139static void sp_xmit_on_air(unsigned long channel)
 140{
 141	struct sixpack *sp = (struct sixpack *) channel;
 142	int actual, when = sp->slottime;
 143	static unsigned char random;
 144
 145	random = random * 17 + 41;
 146
 147	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 148		sp->led_state = 0x70;
 149		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 150		sp->tx_enable = 1;
 151		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 152		sp->xleft -= actual;
 153		sp->xhead += actual;
 154		sp->led_state = 0x60;
 155		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 156		sp->status2 = 0;
 157	} else
 158		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 159}
 160
 161/* ----> 6pack timer interrupt handler and friends. <---- */
 162
 163/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 164static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 165{
 166	unsigned char *msg, *p = icp;
 167	int actual, count;
 168
 169	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 170		msg = "oversized transmit packet!";
 171		goto out_drop;
 172	}
 173
 174	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 175		msg = "oversized transmit packet!";
 176		goto out_drop;
 177	}
 178
 179	if (p[0] > 5) {
 180		msg = "invalid KISS command";
 181		goto out_drop;
 182	}
 183
 184	if ((p[0] != 0) && (len > 2)) {
 185		msg = "KISS control packet too long";
 186		goto out_drop;
 187	}
 188
 189	if ((p[0] == 0) && (len < 15)) {
 190		msg = "bad AX.25 packet to transmit";
 191		goto out_drop;
 192	}
 193
 194	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 195	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 196
 197	switch (p[0]) {
 198	case 1:	sp->tx_delay = p[1];
 199		return;
 200	case 2:	sp->persistence = p[1];
 201		return;
 202	case 3:	sp->slottime = p[1];
 203		return;
 204	case 4:	/* ignored */
 205		return;
 206	case 5:	sp->duplex = p[1];
 207		return;
 208	}
 209
 210	if (p[0] != 0)
 211		return;
 212
 213	/*
 214	 * In case of fullduplex or DAMA operation, we don't take care about the
 215	 * state of the DCD or of any timers, as the determination of the
 216	 * correct time to send is the job of the AX.25 layer. We send
 217	 * immediately after data has arrived.
 218	 */
 219	if (sp->duplex == 1) {
 220		sp->led_state = 0x70;
 221		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 222		sp->tx_enable = 1;
 223		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 224		sp->xleft = count - actual;
 225		sp->xhead = sp->xbuff + actual;
 226		sp->led_state = 0x60;
 227		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 228	} else {
 229		sp->xleft = count;
 230		sp->xhead = sp->xbuff;
 231		sp->status2 = count;
 232		sp_xmit_on_air((unsigned long)sp);
 233	}
 234
 235	return;
 236
 237out_drop:
 238	sp->dev->stats.tx_dropped++;
 239	netif_start_queue(sp->dev);
 240	if (net_ratelimit())
 241		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 242}
 243
 244/* Encapsulate an IP datagram and kick it into a TTY queue. */
 245
 246static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 247{
 248	struct sixpack *sp = netdev_priv(dev);
 249
 250	if (skb->protocol == htons(ETH_P_IP))
 251		return ax25_ip_xmit(skb);
 252
 253	spin_lock_bh(&sp->lock);
 254	/* We were not busy, so we are now... :-) */
 255	netif_stop_queue(dev);
 256	dev->stats.tx_bytes += skb->len;
 257	sp_encaps(sp, skb->data, skb->len);
 258	spin_unlock_bh(&sp->lock);
 259
 260	dev_kfree_skb(skb);
 261
 262	return NETDEV_TX_OK;
 263}
 264
 265static int sp_open_dev(struct net_device *dev)
 266{
 267	struct sixpack *sp = netdev_priv(dev);
 268
 269	if (sp->tty == NULL)
 270		return -ENODEV;
 271	return 0;
 272}
 273
 274/* Close the low-level part of the 6pack channel. */
 275static int sp_close(struct net_device *dev)
 276{
 277	struct sixpack *sp = netdev_priv(dev);
 278
 279	spin_lock_bh(&sp->lock);
 280	if (sp->tty) {
 281		/* TTY discipline is running. */
 282		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 283	}
 284	netif_stop_queue(dev);
 285	spin_unlock_bh(&sp->lock);
 286
 287	return 0;
 288}
 289
 290static int sp_set_mac_address(struct net_device *dev, void *addr)
 291{
 292	struct sockaddr_ax25 *sa = addr;
 293
 294	netif_tx_lock_bh(dev);
 295	netif_addr_lock(dev);
 296	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 297	netif_addr_unlock(dev);
 298	netif_tx_unlock_bh(dev);
 299
 300	return 0;
 301}
 302
 303static const struct net_device_ops sp_netdev_ops = {
 304	.ndo_open		= sp_open_dev,
 305	.ndo_stop		= sp_close,
 306	.ndo_start_xmit		= sp_xmit,
 307	.ndo_set_mac_address    = sp_set_mac_address,
 308};
 309
 310static void sp_setup(struct net_device *dev)
 311{
 312	/* Finish setting up the DEVICE info. */
 313	dev->netdev_ops		= &sp_netdev_ops;
 314	dev->destructor		= free_netdev;
 315	dev->mtu		= SIXP_MTU;
 316	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 317	dev->header_ops 	= &ax25_header_ops;
 318
 319	dev->addr_len		= AX25_ADDR_LEN;
 320	dev->type		= ARPHRD_AX25;
 321	dev->tx_queue_len	= 10;
 322
 323	/* Only activated in AX.25 mode */
 324	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 325	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 326
 327	dev->flags		= 0;
 328}
 329
 330/* Send one completely decapsulated IP datagram to the IP layer. */
 331
 332/*
 333 * This is the routine that sends the received data to the kernel AX.25.
 334 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 335 */
 336
 337static void sp_bump(struct sixpack *sp, char cmd)
 338{
 339	struct sk_buff *skb;
 340	int count;
 341	unsigned char *ptr;
 342
 343	count = sp->rcount + 1;
 344
 345	sp->dev->stats.rx_bytes += count;
 346
 347	if ((skb = dev_alloc_skb(count)) == NULL)
 348		goto out_mem;
 349
 350	ptr = skb_put(skb, count);
 351	*ptr++ = cmd;	/* KISS command */
 352
 353	memcpy(ptr, sp->cooked_buf + 1, count);
 354	skb->protocol = ax25_type_trans(skb, sp->dev);
 355	netif_rx(skb);
 356	sp->dev->stats.rx_packets++;
 357
 358	return;
 359
 360out_mem:
 361	sp->dev->stats.rx_dropped++;
 362}
 363
 364
 365/* ----------------------------------------------------------------------- */
 366
 367/*
 368 * We have a potential race on dereferencing tty->disc_data, because the tty
 369 * layer provides no locking at all - thus one cpu could be running
 370 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 371 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 372 * best way to fix this is to use a rwlock in the tty struct, but for now we
 373 * use a single global rwlock for all ttys in ppp line discipline.
 374 */
 375static DEFINE_RWLOCK(disc_data_lock);
 376                                                                                
 377static struct sixpack *sp_get(struct tty_struct *tty)
 378{
 379	struct sixpack *sp;
 380
 381	read_lock(&disc_data_lock);
 382	sp = tty->disc_data;
 383	if (sp)
 384		atomic_inc(&sp->refcnt);
 385	read_unlock(&disc_data_lock);
 386
 387	return sp;
 388}
 389
 390static void sp_put(struct sixpack *sp)
 391{
 392	if (atomic_dec_and_test(&sp->refcnt))
 393		up(&sp->dead_sem);
 394}
 395
 396/*
 397 * Called by the TTY driver when there's room for more data.  If we have
 398 * more packets to send, we send them here.
 399 */
 400static void sixpack_write_wakeup(struct tty_struct *tty)
 401{
 402	struct sixpack *sp = sp_get(tty);
 403	int actual;
 404
 405	if (!sp)
 406		return;
 407	if (sp->xleft <= 0)  {
 408		/* Now serial buffer is almost free & we can start
 409		 * transmission of another packet */
 410		sp->dev->stats.tx_packets++;
 411		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 412		sp->tx_enable = 0;
 413		netif_wake_queue(sp->dev);
 414		goto out;
 415	}
 416
 417	if (sp->tx_enable) {
 418		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 419		sp->xleft -= actual;
 420		sp->xhead += actual;
 421	}
 422
 423out:
 424	sp_put(sp);
 425}
 426
 427/* ----------------------------------------------------------------------- */
 428
 429/*
 430 * Handle the 'receiver data ready' interrupt.
 431 * This function is called by the 'tty_io' module in the kernel when
 432 * a block of 6pack data has been received, which can now be decapsulated
 433 * and sent on to some IP layer for further processing.
 434 */
 435static void sixpack_receive_buf(struct tty_struct *tty,
 436	const unsigned char *cp, char *fp, int count)
 437{
 438	struct sixpack *sp;
 439	unsigned char buf[512];
 440	int count1;
 441
 442	if (!count)
 443		return;
 444
 445	sp = sp_get(tty);
 446	if (!sp)
 447		return;
 448
 449	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 450
 451	/* Read the characters out of the buffer */
 452
 453	count1 = count;
 454	while (count) {
 455		count--;
 456		if (fp && *fp++) {
 457			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 458				sp->dev->stats.rx_errors++;
 459			continue;
 460		}
 461	}
 462	sixpack_decode(sp, buf, count1);
 463
 464	sp_put(sp);
 465	tty_unthrottle(tty);
 466}
 467
 468/*
 469 * Try to resync the TNC. Called by the resync timer defined in
 470 * decode_prio_command
 471 */
 472
 473#define TNC_UNINITIALIZED	0
 474#define TNC_UNSYNC_STARTUP	1
 475#define TNC_UNSYNCED		2
 476#define TNC_IN_SYNC		3
 477
 478static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 479{
 480	char *msg;
 481
 482	switch (new_tnc_state) {
 483	default:			/* gcc oh piece-o-crap ... */
 484	case TNC_UNSYNC_STARTUP:
 485		msg = "Synchronizing with TNC";
 486		break;
 487	case TNC_UNSYNCED:
 488		msg = "Lost synchronization with TNC\n";
 489		break;
 490	case TNC_IN_SYNC:
 491		msg = "Found TNC";
 492		break;
 493	}
 494
 495	sp->tnc_state = new_tnc_state;
 496	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 497}
 498
 499static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 500{
 501	int old_tnc_state = sp->tnc_state;
 502
 503	if (old_tnc_state != new_tnc_state)
 504		__tnc_set_sync_state(sp, new_tnc_state);
 505}
 506
 507static void resync_tnc(unsigned long channel)
 508{
 509	struct sixpack *sp = (struct sixpack *) channel;
 510	static char resync_cmd = 0xe8;
 511
 512	/* clear any data that might have been received */
 513
 514	sp->rx_count = 0;
 515	sp->rx_count_cooked = 0;
 516
 517	/* reset state machine */
 518
 519	sp->status = 1;
 520	sp->status1 = 1;
 521	sp->status2 = 0;
 522
 523	/* resync the TNC */
 524
 525	sp->led_state = 0x60;
 526	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 527	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 528
 529
 530	/* Start resync timer again -- the TNC might be still absent */
 531
 532	del_timer(&sp->resync_t);
 533	sp->resync_t.data	= (unsigned long) sp;
 534	sp->resync_t.function	= resync_tnc;
 535	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 536	add_timer(&sp->resync_t);
 537}
 538
 539static inline int tnc_init(struct sixpack *sp)
 540{
 541	unsigned char inbyte = 0xe8;
 542
 543	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 544
 545	sp->tty->ops->write(sp->tty, &inbyte, 1);
 546
 547	del_timer(&sp->resync_t);
 548	sp->resync_t.data = (unsigned long) sp;
 549	sp->resync_t.function = resync_tnc;
 550	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 551	add_timer(&sp->resync_t);
 552
 553	return 0;
 554}
 555
 556/*
 557 * Open the high-level part of the 6pack channel.
 558 * This function is called by the TTY module when the
 559 * 6pack line discipline is called for.  Because we are
 560 * sure the tty line exists, we only have to link it to
 561 * a free 6pcack channel...
 562 */
 563static int sixpack_open(struct tty_struct *tty)
 564{
 565	char *rbuff = NULL, *xbuff = NULL;
 566	struct net_device *dev;
 567	struct sixpack *sp;
 568	unsigned long len;
 569	int err = 0;
 570
 571	if (!capable(CAP_NET_ADMIN))
 572		return -EPERM;
 573	if (tty->ops->write == NULL)
 574		return -EOPNOTSUPP;
 575
 576	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
 577			   sp_setup);
 578	if (!dev) {
 579		err = -ENOMEM;
 580		goto out;
 581	}
 582
 583	sp = netdev_priv(dev);
 584	sp->dev = dev;
 585
 586	spin_lock_init(&sp->lock);
 587	atomic_set(&sp->refcnt, 1);
 588	sema_init(&sp->dead_sem, 0);
 
 589
 590	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 591
 592	len = dev->mtu * 2;
 593
 594	rbuff = kmalloc(len + 4, GFP_KERNEL);
 595	xbuff = kmalloc(len + 4, GFP_KERNEL);
 596
 597	if (rbuff == NULL || xbuff == NULL) {
 598		err = -ENOBUFS;
 599		goto out_free;
 600	}
 601
 602	spin_lock_bh(&sp->lock);
 603
 604	sp->tty = tty;
 605
 606	sp->rbuff	= rbuff;
 607	sp->xbuff	= xbuff;
 608
 609	sp->mtu		= AX25_MTU + 73;
 610	sp->buffsize	= len;
 611	sp->rcount	= 0;
 612	sp->rx_count	= 0;
 613	sp->rx_count_cooked = 0;
 614	sp->xleft	= 0;
 615
 616	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 617
 618	sp->duplex	= 0;
 619	sp->tx_delay    = SIXP_TXDELAY;
 620	sp->persistence = SIXP_PERSIST;
 621	sp->slottime    = SIXP_SLOTTIME;
 622	sp->led_state   = 0x60;
 623	sp->status      = 1;
 624	sp->status1     = 1;
 625	sp->status2     = 0;
 626	sp->tx_enable   = 0;
 627
 628	netif_start_queue(dev);
 629
 630	init_timer(&sp->tx_t);
 631	sp->tx_t.function = sp_xmit_on_air;
 632	sp->tx_t.data = (unsigned long) sp;
 633
 634	init_timer(&sp->resync_t);
 635
 636	spin_unlock_bh(&sp->lock);
 637
 638	/* Done.  We have linked the TTY line to a channel. */
 639	tty->disc_data = sp;
 640	tty->receive_room = 65536;
 641
 642	/* Now we're ready to register. */
 643	err = register_netdev(dev);
 644	if (err)
 645		goto out_free;
 646
 647	tnc_init(sp);
 648
 649	return 0;
 650
 651out_free:
 652	kfree(xbuff);
 653	kfree(rbuff);
 654
 655	free_netdev(dev);
 656
 657out:
 658	return err;
 659}
 660
 661
 662/*
 663 * Close down a 6pack channel.
 664 * This means flushing out any pending queues, and then restoring the
 665 * TTY line discipline to what it was before it got hooked to 6pack
 666 * (which usually is TTY again).
 667 */
 668static void sixpack_close(struct tty_struct *tty)
 669{
 670	struct sixpack *sp;
 671
 672	write_lock_bh(&disc_data_lock);
 673	sp = tty->disc_data;
 674	tty->disc_data = NULL;
 675	write_unlock_bh(&disc_data_lock);
 676	if (!sp)
 677		return;
 678
 679	/*
 680	 * We have now ensured that nobody can start using ap from now on, but
 681	 * we have to wait for all existing users to finish.
 682	 */
 683	if (!atomic_dec_and_test(&sp->refcnt))
 684		down(&sp->dead_sem);
 685
 686	/* We must stop the queue to avoid potentially scribbling
 687	 * on the free buffers. The sp->dead_sem is not sufficient
 688	 * to protect us from sp->xbuff access.
 689	 */
 690	netif_stop_queue(sp->dev);
 691
 
 
 692	del_timer_sync(&sp->tx_t);
 693	del_timer_sync(&sp->resync_t);
 694
 695	/* Free all 6pack frame buffers. */
 696	kfree(sp->rbuff);
 697	kfree(sp->xbuff);
 698
 699	unregister_netdev(sp->dev);
 700}
 701
 702/* Perform I/O control on an active 6pack channel. */
 703static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 704	unsigned int cmd, unsigned long arg)
 705{
 706	struct sixpack *sp = sp_get(tty);
 707	struct net_device *dev;
 708	unsigned int tmp, err;
 709
 710	if (!sp)
 711		return -ENXIO;
 712	dev = sp->dev;
 713
 714	switch(cmd) {
 715	case SIOCGIFNAME:
 716		err = copy_to_user((void __user *) arg, dev->name,
 717		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 718		break;
 719
 720	case SIOCGIFENCAP:
 721		err = put_user(0, (int __user *) arg);
 722		break;
 723
 724	case SIOCSIFENCAP:
 725		if (get_user(tmp, (int __user *) arg)) {
 726			err = -EFAULT;
 727			break;
 728		}
 729
 730		sp->mode = tmp;
 731		dev->addr_len        = AX25_ADDR_LEN;
 732		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 733		                       AX25_MAX_HEADER_LEN + 3;
 734		dev->type            = ARPHRD_AX25;
 735
 736		err = 0;
 737		break;
 738
 739	 case SIOCSIFHWADDR: {
 740		char addr[AX25_ADDR_LEN];
 741
 742		if (copy_from_user(&addr,
 743		                   (void __user *) arg, AX25_ADDR_LEN)) {
 744				err = -EFAULT;
 745				break;
 746			}
 747
 748			netif_tx_lock_bh(dev);
 749			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 750			netif_tx_unlock_bh(dev);
 751
 752			err = 0;
 753			break;
 754		}
 755
 756	default:
 757		err = tty_mode_ioctl(tty, file, cmd, arg);
 758	}
 759
 760	sp_put(sp);
 761
 762	return err;
 763}
 764
 765#ifdef CONFIG_COMPAT
 766static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 767				unsigned int cmd, unsigned long arg)
 768{
 769	switch (cmd) {
 770	case SIOCGIFNAME:
 771	case SIOCGIFENCAP:
 772	case SIOCSIFENCAP:
 773	case SIOCSIFHWADDR:
 774		return sixpack_ioctl(tty, file, cmd,
 775				(unsigned long)compat_ptr(arg));
 776	}
 777
 778	return -ENOIOCTLCMD;
 779}
 780#endif
 781
 782static struct tty_ldisc_ops sp_ldisc = {
 783	.owner		= THIS_MODULE,
 784	.magic		= TTY_LDISC_MAGIC,
 785	.name		= "6pack",
 786	.open		= sixpack_open,
 787	.close		= sixpack_close,
 788	.ioctl		= sixpack_ioctl,
 789#ifdef CONFIG_COMPAT
 790	.compat_ioctl	= sixpack_compat_ioctl,
 791#endif
 792	.receive_buf	= sixpack_receive_buf,
 793	.write_wakeup	= sixpack_write_wakeup,
 794};
 795
 796/* Initialize 6pack control device -- register 6pack line discipline */
 797
 798static const char msg_banner[]  __initconst = KERN_INFO \
 799	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 800static const char msg_regfail[] __initconst = KERN_ERR  \
 801	"6pack: can't register line discipline (err = %d)\n";
 802
 803static int __init sixpack_init_driver(void)
 804{
 805	int status;
 806
 807	printk(msg_banner);
 808
 809	/* Register the provided line protocol discipline */
 810	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 
 811		printk(msg_regfail, status);
 812
 813	return status;
 814}
 815
 816static const char msg_unregfail[] = KERN_ERR \
 817	"6pack: can't unregister line discipline (err = %d)\n";
 818
 819static void __exit sixpack_exit_driver(void)
 820{
 821	int ret;
 822
 823	if ((ret = tty_unregister_ldisc(N_6PACK)))
 824		printk(msg_unregfail, ret);
 825}
 826
 827/* encode an AX.25 packet into 6pack */
 828
 829static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 830	int length, unsigned char tx_delay)
 831{
 832	int count = 0;
 833	unsigned char checksum = 0, buf[400];
 834	int raw_count = 0;
 835
 836	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 837	tx_buf_raw[raw_count++] = SIXP_SEOF;
 838
 839	buf[0] = tx_delay;
 840	for (count = 1; count < length; count++)
 841		buf[count] = tx_buf[count];
 842
 843	for (count = 0; count < length; count++)
 844		checksum += buf[count];
 845	buf[length] = (unsigned char) 0xff - checksum;
 846
 847	for (count = 0; count <= length; count++) {
 848		if ((count % 3) == 0) {
 849			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 850			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 851		} else if ((count % 3) == 1) {
 852			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 853			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 854		} else {
 855			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 856			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 857		}
 858	}
 859	if ((length % 3) != 2)
 860		raw_count++;
 861	tx_buf_raw[raw_count++] = SIXP_SEOF;
 862	return raw_count;
 863}
 864
 865/* decode 4 sixpack-encoded bytes into 3 data bytes */
 866
 867static void decode_data(struct sixpack *sp, unsigned char inbyte)
 868{
 869	unsigned char *buf;
 870
 871	if (sp->rx_count != 3) {
 872		sp->raw_buf[sp->rx_count++] = inbyte;
 873
 874		return;
 875	}
 876
 
 
 
 
 
 
 877	buf = sp->raw_buf;
 878	sp->cooked_buf[sp->rx_count_cooked++] =
 879		buf[0] | ((buf[1] << 2) & 0xc0);
 880	sp->cooked_buf[sp->rx_count_cooked++] =
 881		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 882	sp->cooked_buf[sp->rx_count_cooked++] =
 883		(buf[2] & 0x03) | (inbyte << 2);
 884	sp->rx_count = 0;
 885}
 886
 887/* identify and execute a 6pack priority command byte */
 888
 889static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 890{
 891	unsigned char channel;
 892	int actual;
 893
 894	channel = cmd & SIXP_CHN_MASK;
 895	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 896
 897	/* RX and DCD flags can only be set in the same prio command,
 898	   if the DCD flag has been set without the RX flag in the previous
 899	   prio command. If DCD has not been set before, something in the
 900	   transmission has gone wrong. In this case, RX and DCD are
 901	   cleared in order to prevent the decode_data routine from
 902	   reading further data that might be corrupt. */
 903
 904		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 905			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 906				if (sp->status != 1)
 907					printk(KERN_DEBUG "6pack: protocol violation\n");
 908				else
 909					sp->status = 0;
 910				cmd &= ~SIXP_RX_DCD_MASK;
 911		}
 912		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 913	} else { /* output watchdog char if idle */
 914		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 915			sp->led_state = 0x70;
 916			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 917			sp->tx_enable = 1;
 918			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 919			sp->xleft -= actual;
 920			sp->xhead += actual;
 921			sp->led_state = 0x60;
 922			sp->status2 = 0;
 923
 924		}
 925	}
 926
 927	/* needed to trigger the TNC watchdog */
 928	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 929
 930        /* if the state byte has been received, the TNC is present,
 931           so the resync timer can be reset. */
 932
 933	if (sp->tnc_state == TNC_IN_SYNC) {
 934		del_timer(&sp->resync_t);
 935		sp->resync_t.data	= (unsigned long) sp;
 936		sp->resync_t.function	= resync_tnc;
 937		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 938		add_timer(&sp->resync_t);
 939	}
 940
 941	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 942}
 943
 944/* identify and execute a standard 6pack command byte */
 945
 946static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 947{
 948	unsigned char checksum = 0, rest = 0, channel;
 949	short i;
 950
 951	channel = cmd & SIXP_CHN_MASK;
 952	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 953	case SIXP_SEOF:
 954		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 955			if ((sp->status & SIXP_RX_DCD_MASK) ==
 956				SIXP_RX_DCD_MASK) {
 957				sp->led_state = 0x68;
 958				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 959			}
 960		} else {
 961			sp->led_state = 0x60;
 962			/* fill trailing bytes with zeroes */
 963			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 
 964			rest = sp->rx_count;
 965			if (rest != 0)
 966				 for (i = rest; i <= 3; i++)
 967					decode_data(sp, 0);
 968			if (rest == 2)
 969				sp->rx_count_cooked -= 2;
 970			else if (rest == 3)
 971				sp->rx_count_cooked -= 1;
 972			for (i = 0; i < sp->rx_count_cooked; i++)
 973				checksum += sp->cooked_buf[i];
 974			if (checksum != SIXP_CHKSUM) {
 975				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 976			} else {
 977				sp->rcount = sp->rx_count_cooked-2;
 978				sp_bump(sp, 0);
 979			}
 980			sp->rx_count_cooked = 0;
 
 981		}
 982		break;
 983	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
 984		break;
 985	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
 986		break;
 987	case SIXP_RX_BUF_OVL:
 988		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
 989	}
 990}
 991
 992/* decode a 6pack packet */
 993
 994static void
 995sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
 996{
 997	unsigned char inbyte;
 998	int count1;
 999
1000	for (count1 = 0; count1 < count; count1++) {
1001		inbyte = pre_rbuff[count1];
1002		if (inbyte == SIXP_FOUND_TNC) {
1003			tnc_set_sync_state(sp, TNC_IN_SYNC);
1004			del_timer(&sp->resync_t);
1005		}
1006		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1007			decode_prio_command(sp, inbyte);
1008		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1009			decode_std_command(sp, inbyte);
1010		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
 
1011			decode_data(sp, inbyte);
 
 
1012	}
1013}
1014
1015MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1016MODULE_DESCRIPTION("6pack driver for AX.25");
1017MODULE_LICENSE("GPL");
1018MODULE_ALIAS_LDISC(N_6PACK);
1019
1020module_init(sixpack_init_driver);
1021module_exit(sixpack_exit_driver);