Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2018 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include "net_driver.h"
  12#include <linux/module.h>
  13#include <linux/iommu.h>
  14#include "efx.h"
  15#include "nic.h"
  16#include "rx_common.h"
  17
  18/* This is the percentage fill level below which new RX descriptors
  19 * will be added to the RX descriptor ring.
  20 */
  21static unsigned int rx_refill_threshold;
  22module_param(rx_refill_threshold, uint, 0444);
  23MODULE_PARM_DESC(rx_refill_threshold,
  24		 "RX descriptor ring refill threshold (%)");
  25
  26/* RX maximum head room required.
  27 *
  28 * This must be at least 1 to prevent overflow, plus one packet-worth
  29 * to allow pipelined receives.
  30 */
  31#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
  32
  33/* Check the RX page recycle ring for a page that can be reused. */
  34static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
  35{
  36	struct efx_nic *efx = rx_queue->efx;
  37	struct efx_rx_page_state *state;
  38	unsigned int index;
  39	struct page *page;
  40
  41	if (unlikely(!rx_queue->page_ring))
  42		return NULL;
  43	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
  44	page = rx_queue->page_ring[index];
  45	if (page == NULL)
  46		return NULL;
  47
  48	rx_queue->page_ring[index] = NULL;
  49	/* page_remove cannot exceed page_add. */
  50	if (rx_queue->page_remove != rx_queue->page_add)
  51		++rx_queue->page_remove;
  52
  53	/* If page_count is 1 then we hold the only reference to this page. */
  54	if (page_count(page) == 1) {
  55		++rx_queue->page_recycle_count;
  56		return page;
  57	} else {
  58		state = page_address(page);
  59		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
  60			       PAGE_SIZE << efx->rx_buffer_order,
  61			       DMA_FROM_DEVICE);
  62		put_page(page);
  63		++rx_queue->page_recycle_failed;
  64	}
  65
  66	return NULL;
  67}
  68
  69/* Attempt to recycle the page if there is an RX recycle ring; the page can
  70 * only be added if this is the final RX buffer, to prevent pages being used in
  71 * the descriptor ring and appearing in the recycle ring simultaneously.
  72 */
  73static void efx_recycle_rx_page(struct efx_channel *channel,
  74				struct efx_rx_buffer *rx_buf)
  75{
  76	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
  77	struct efx_nic *efx = rx_queue->efx;
  78	struct page *page = rx_buf->page;
  79	unsigned int index;
  80
  81	/* Only recycle the page after processing the final buffer. */
  82	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
  83		return;
  84
  85	index = rx_queue->page_add & rx_queue->page_ptr_mask;
  86	if (rx_queue->page_ring[index] == NULL) {
  87		unsigned int read_index = rx_queue->page_remove &
  88			rx_queue->page_ptr_mask;
  89
  90		/* The next slot in the recycle ring is available, but
  91		 * increment page_remove if the read pointer currently
  92		 * points here.
  93		 */
  94		if (read_index == index)
  95			++rx_queue->page_remove;
  96		rx_queue->page_ring[index] = page;
  97		++rx_queue->page_add;
  98		return;
  99	}
 100	++rx_queue->page_recycle_full;
 101	efx_unmap_rx_buffer(efx, rx_buf);
 102	put_page(rx_buf->page);
 103}
 104
 105/* Recycle the pages that are used by buffers that have just been received. */
 106void efx_recycle_rx_pages(struct efx_channel *channel,
 107			  struct efx_rx_buffer *rx_buf,
 108			  unsigned int n_frags)
 109{
 110	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 111
 112	if (unlikely(!rx_queue->page_ring))
 113		return;
 114
 115	do {
 116		efx_recycle_rx_page(channel, rx_buf);
 117		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 118	} while (--n_frags);
 119}
 120
 121void efx_discard_rx_packet(struct efx_channel *channel,
 122			   struct efx_rx_buffer *rx_buf,
 123			   unsigned int n_frags)
 124{
 125	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 126
 127	efx_recycle_rx_pages(channel, rx_buf, n_frags);
 128
 129	efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 130}
 131
 132static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
 133{
 134	unsigned int bufs_in_recycle_ring, page_ring_size;
 135	struct efx_nic *efx = rx_queue->efx;
 136
 137	bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
 138	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
 139					    efx->rx_bufs_per_page);
 140	rx_queue->page_ring = kcalloc(page_ring_size,
 141				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
 142	if (!rx_queue->page_ring)
 143		rx_queue->page_ptr_mask = 0;
 144	else
 145		rx_queue->page_ptr_mask = page_ring_size - 1;
 146}
 147
 148static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
 149{
 150	struct efx_nic *efx = rx_queue->efx;
 151	int i;
 152
 153	if (unlikely(!rx_queue->page_ring))
 154		return;
 155
 156	/* Unmap and release the pages in the recycle ring. Remove the ring. */
 157	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
 158		struct page *page = rx_queue->page_ring[i];
 159		struct efx_rx_page_state *state;
 160
 161		if (page == NULL)
 162			continue;
 163
 164		state = page_address(page);
 165		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
 166			       PAGE_SIZE << efx->rx_buffer_order,
 167			       DMA_FROM_DEVICE);
 168		put_page(page);
 169	}
 170	kfree(rx_queue->page_ring);
 171	rx_queue->page_ring = NULL;
 172}
 173
 174static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
 175			       struct efx_rx_buffer *rx_buf)
 176{
 177	/* Release the page reference we hold for the buffer. */
 178	if (rx_buf->page)
 179		put_page(rx_buf->page);
 180
 181	/* If this is the last buffer in a page, unmap and free it. */
 182	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
 183		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
 184		efx_free_rx_buffers(rx_queue, rx_buf, 1);
 185	}
 186	rx_buf->page = NULL;
 187}
 188
 189int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
 190{
 191	struct efx_nic *efx = rx_queue->efx;
 192	unsigned int entries;
 193	int rc;
 194
 195	/* Create the smallest power-of-two aligned ring */
 196	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
 197	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 198	rx_queue->ptr_mask = entries - 1;
 199
 200	netif_dbg(efx, probe, efx->net_dev,
 201		  "creating RX queue %d size %#x mask %#x\n",
 202		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
 203		  rx_queue->ptr_mask);
 204
 205	/* Allocate RX buffers */
 206	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
 207				   GFP_KERNEL);
 208	if (!rx_queue->buffer)
 209		return -ENOMEM;
 210
 211	rc = efx_nic_probe_rx(rx_queue);
 212	if (rc) {
 213		kfree(rx_queue->buffer);
 214		rx_queue->buffer = NULL;
 215	}
 216
 217	return rc;
 218}
 219
 220void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
 221{
 222	unsigned int max_fill, trigger, max_trigger;
 223	struct efx_nic *efx = rx_queue->efx;
 224	int rc = 0;
 225
 226	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 227		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
 228
 229	/* Initialise ptr fields */
 230	rx_queue->added_count = 0;
 231	rx_queue->notified_count = 0;
 232	rx_queue->granted_count = 0;
 233	rx_queue->removed_count = 0;
 234	rx_queue->min_fill = -1U;
 235	efx_init_rx_recycle_ring(rx_queue);
 236
 237	rx_queue->page_remove = 0;
 238	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
 239	rx_queue->page_recycle_count = 0;
 240	rx_queue->page_recycle_failed = 0;
 241	rx_queue->page_recycle_full = 0;
 242
 243	/* Initialise limit fields */
 244	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
 245	max_trigger =
 246		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 247	if (rx_refill_threshold != 0) {
 248		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
 249		if (trigger > max_trigger)
 250			trigger = max_trigger;
 251	} else {
 252		trigger = max_trigger;
 253	}
 254
 255	rx_queue->max_fill = max_fill;
 256	rx_queue->fast_fill_trigger = trigger;
 257	rx_queue->refill_enabled = true;
 258
 259	/* Initialise XDP queue information */
 260	rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
 261			      rx_queue->core_index, 0);
 262
 263	if (rc) {
 264		netif_err(efx, rx_err, efx->net_dev,
 265			  "Failure to initialise XDP queue information rc=%d\n",
 266			  rc);
 267		efx->xdp_rxq_info_failed = true;
 268	} else {
 269		rx_queue->xdp_rxq_info_valid = true;
 270	}
 271
 272	/* Set up RX descriptor ring */
 273	efx_nic_init_rx(rx_queue);
 274}
 275
 276void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
 277{
 278	struct efx_rx_buffer *rx_buf;
 279	int i;
 280
 281	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 282		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
 283
 284	del_timer_sync(&rx_queue->slow_fill);
 285	if (rx_queue->grant_credits)
 286		flush_work(&rx_queue->grant_work);
 287
 288	/* Release RX buffers from the current read ptr to the write ptr */
 289	if (rx_queue->buffer) {
 290		for (i = rx_queue->removed_count; i < rx_queue->added_count;
 291		     i++) {
 292			unsigned int index = i & rx_queue->ptr_mask;
 293
 294			rx_buf = efx_rx_buffer(rx_queue, index);
 295			efx_fini_rx_buffer(rx_queue, rx_buf);
 296		}
 297	}
 298
 299	efx_fini_rx_recycle_ring(rx_queue);
 300
 301	if (rx_queue->xdp_rxq_info_valid)
 302		xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
 303
 304	rx_queue->xdp_rxq_info_valid = false;
 305}
 306
 307void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
 308{
 309	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 310		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
 311
 312	efx_nic_remove_rx(rx_queue);
 313
 314	kfree(rx_queue->buffer);
 315	rx_queue->buffer = NULL;
 316}
 317
 318/* Unmap a DMA-mapped page.  This function is only called for the final RX
 319 * buffer in a page.
 320 */
 321void efx_unmap_rx_buffer(struct efx_nic *efx,
 322			 struct efx_rx_buffer *rx_buf)
 323{
 324	struct page *page = rx_buf->page;
 325
 326	if (page) {
 327		struct efx_rx_page_state *state = page_address(page);
 328
 329		dma_unmap_page(&efx->pci_dev->dev,
 330			       state->dma_addr,
 331			       PAGE_SIZE << efx->rx_buffer_order,
 332			       DMA_FROM_DEVICE);
 333	}
 334}
 335
 336void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
 337			 struct efx_rx_buffer *rx_buf,
 338			 unsigned int num_bufs)
 339{
 340	do {
 341		if (rx_buf->page) {
 342			put_page(rx_buf->page);
 343			rx_buf->page = NULL;
 344		}
 345		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 346	} while (--num_bufs);
 347}
 348
 349void efx_rx_slow_fill(struct timer_list *t)
 350{
 351	struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
 352
 353	/* Post an event to cause NAPI to run and refill the queue */
 354	efx_nic_generate_fill_event(rx_queue);
 355	++rx_queue->slow_fill_count;
 356}
 357
 358void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 359{
 360	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
 361}
 362
 363/* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
 364 *
 365 * @rx_queue:		Efx RX queue
 366 *
 367 * This allocates a batch of pages, maps them for DMA, and populates
 368 * struct efx_rx_buffers for each one. Return a negative error code or
 369 * 0 on success. If a single page can be used for multiple buffers,
 370 * then the page will either be inserted fully, or not at all.
 371 */
 372static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
 373{
 374	unsigned int page_offset, index, count;
 375	struct efx_nic *efx = rx_queue->efx;
 376	struct efx_rx_page_state *state;
 377	struct efx_rx_buffer *rx_buf;
 378	dma_addr_t dma_addr;
 379	struct page *page;
 380
 381	count = 0;
 382	do {
 383		page = efx_reuse_page(rx_queue);
 384		if (page == NULL) {
 385			page = alloc_pages(__GFP_COMP |
 386					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
 387					   efx->rx_buffer_order);
 388			if (unlikely(page == NULL))
 389				return -ENOMEM;
 390			dma_addr =
 391				dma_map_page(&efx->pci_dev->dev, page, 0,
 392					     PAGE_SIZE << efx->rx_buffer_order,
 393					     DMA_FROM_DEVICE);
 394			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
 395						       dma_addr))) {
 396				__free_pages(page, efx->rx_buffer_order);
 397				return -EIO;
 398			}
 399			state = page_address(page);
 400			state->dma_addr = dma_addr;
 401		} else {
 402			state = page_address(page);
 403			dma_addr = state->dma_addr;
 404		}
 405
 406		dma_addr += sizeof(struct efx_rx_page_state);
 407		page_offset = sizeof(struct efx_rx_page_state);
 408
 409		do {
 410			index = rx_queue->added_count & rx_queue->ptr_mask;
 411			rx_buf = efx_rx_buffer(rx_queue, index);
 412			rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
 413					   EFX_XDP_HEADROOM;
 414			rx_buf->page = page;
 415			rx_buf->page_offset = page_offset + efx->rx_ip_align +
 416					      EFX_XDP_HEADROOM;
 417			rx_buf->len = efx->rx_dma_len;
 418			rx_buf->flags = 0;
 419			++rx_queue->added_count;
 420			get_page(page);
 421			dma_addr += efx->rx_page_buf_step;
 422			page_offset += efx->rx_page_buf_step;
 423		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
 424
 425		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
 426	} while (++count < efx->rx_pages_per_batch);
 427
 428	return 0;
 429}
 430
 431void efx_rx_config_page_split(struct efx_nic *efx)
 432{
 433	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
 434				      EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
 435				      EFX_RX_BUF_ALIGNMENT);
 436	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
 437		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
 438		efx->rx_page_buf_step);
 439	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
 440		efx->rx_bufs_per_page;
 441	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
 442					       efx->rx_bufs_per_page);
 443}
 444
 445/* efx_fast_push_rx_descriptors - push new RX descriptors quickly
 446 * @rx_queue:		RX descriptor queue
 447 *
 448 * This will aim to fill the RX descriptor queue up to
 449 * @rx_queue->@max_fill. If there is insufficient atomic
 450 * memory to do so, a slow fill will be scheduled.
 451 *
 452 * The caller must provide serialisation (none is used here). In practise,
 453 * this means this function must run from the NAPI handler, or be called
 454 * when NAPI is disabled.
 455 */
 456void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
 457{
 458	struct efx_nic *efx = rx_queue->efx;
 459	unsigned int fill_level, batch_size;
 460	int space, rc = 0;
 461
 462	if (!rx_queue->refill_enabled)
 463		return;
 464
 465	/* Calculate current fill level, and exit if we don't need to fill */
 466	fill_level = (rx_queue->added_count - rx_queue->removed_count);
 467	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
 468	if (fill_level >= rx_queue->fast_fill_trigger)
 469		goto out;
 470
 471	/* Record minimum fill level */
 472	if (unlikely(fill_level < rx_queue->min_fill)) {
 473		if (fill_level)
 474			rx_queue->min_fill = fill_level;
 475	}
 476
 477	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 478	space = rx_queue->max_fill - fill_level;
 479	EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
 480
 481	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 482		   "RX queue %d fast-filling descriptor ring from"
 483		   " level %d to level %d\n",
 484		   efx_rx_queue_index(rx_queue), fill_level,
 485		   rx_queue->max_fill);
 486
 487	do {
 488		rc = efx_init_rx_buffers(rx_queue, atomic);
 489		if (unlikely(rc)) {
 490			/* Ensure that we don't leave the rx queue empty */
 491			efx_schedule_slow_fill(rx_queue);
 492			goto out;
 493		}
 494	} while ((space -= batch_size) >= batch_size);
 495
 496	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 497		   "RX queue %d fast-filled descriptor ring "
 498		   "to level %d\n", efx_rx_queue_index(rx_queue),
 499		   rx_queue->added_count - rx_queue->removed_count);
 500
 501 out:
 502	if (rx_queue->notified_count != rx_queue->added_count)
 503		efx_nic_notify_rx_desc(rx_queue);
 504}
 505
 506/* Pass a received packet up through GRO.  GRO can handle pages
 507 * regardless of checksum state and skbs with a good checksum.
 508 */
 509void
 510efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
 511		  unsigned int n_frags, u8 *eh, __wsum csum)
 512{
 513	struct napi_struct *napi = &channel->napi_str;
 514	struct efx_nic *efx = channel->efx;
 515	struct sk_buff *skb;
 516
 517	skb = napi_get_frags(napi);
 518	if (unlikely(!skb)) {
 519		struct efx_rx_queue *rx_queue;
 520
 521		rx_queue = efx_channel_get_rx_queue(channel);
 522		efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 523		return;
 524	}
 525
 526	if (efx->net_dev->features & NETIF_F_RXHASH &&
 527	    efx_rx_buf_hash_valid(efx, eh))
 528		skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
 529			     PKT_HASH_TYPE_L3);
 530	if (csum) {
 531		skb->csum = csum;
 532		skb->ip_summed = CHECKSUM_COMPLETE;
 533	} else {
 534		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
 535				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
 536	}
 537	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
 538
 539	for (;;) {
 540		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 541				   rx_buf->page, rx_buf->page_offset,
 542				   rx_buf->len);
 543		rx_buf->page = NULL;
 544		skb->len += rx_buf->len;
 545		if (skb_shinfo(skb)->nr_frags == n_frags)
 546			break;
 547
 548		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 549	}
 550
 551	skb->data_len = skb->len;
 552	skb->truesize += n_frags * efx->rx_buffer_truesize;
 553
 554	skb_record_rx_queue(skb, channel->rx_queue.core_index);
 555
 556	napi_gro_frags(napi);
 557}
 558
 559/* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
 560 * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
 561 */
 562struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
 563{
 564	struct list_head *head = &efx->rss_context.list;
 565	struct efx_rss_context *ctx, *new;
 566	u32 id = 1; /* Don't use zero, that refers to the master RSS context */
 567
 568	WARN_ON(!mutex_is_locked(&efx->rss_lock));
 569
 570	/* Search for first gap in the numbering */
 571	list_for_each_entry(ctx, head, list) {
 572		if (ctx->user_id != id)
 573			break;
 574		id++;
 575		/* Check for wrap.  If this happens, we have nearly 2^32
 576		 * allocated RSS contexts, which seems unlikely.
 577		 */
 578		if (WARN_ON_ONCE(!id))
 579			return NULL;
 580	}
 581
 582	/* Create the new entry */
 583	new = kmalloc(sizeof(*new), GFP_KERNEL);
 584	if (!new)
 585		return NULL;
 586	new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
 587	new->rx_hash_udp_4tuple = false;
 588
 589	/* Insert the new entry into the gap */
 590	new->user_id = id;
 591	list_add_tail(&new->list, &ctx->list);
 592	return new;
 593}
 594
 595struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
 596{
 597	struct list_head *head = &efx->rss_context.list;
 598	struct efx_rss_context *ctx;
 599
 600	WARN_ON(!mutex_is_locked(&efx->rss_lock));
 601
 602	list_for_each_entry(ctx, head, list)
 603		if (ctx->user_id == id)
 604			return ctx;
 605	return NULL;
 606}
 607
 608void efx_free_rss_context_entry(struct efx_rss_context *ctx)
 609{
 610	list_del(&ctx->list);
 611	kfree(ctx);
 612}
 613
 614void efx_set_default_rx_indir_table(struct efx_nic *efx,
 615				    struct efx_rss_context *ctx)
 616{
 617	size_t i;
 618
 619	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
 620		ctx->rx_indir_table[i] =
 621			ethtool_rxfh_indir_default(i, efx->rss_spread);
 622}
 623
 624/**
 625 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
 626 * @spec: Specification to test
 627 *
 628 * Return: %true if the specification is a non-drop RX filter that
 629 * matches a local MAC address I/G bit value of 1 or matches a local
 630 * IPv4 or IPv6 address value in the respective multicast address
 631 * range.  Otherwise %false.
 632 */
 633bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
 634{
 635	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
 636	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
 637		return false;
 638
 639	if (spec->match_flags &
 640	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
 641	    is_multicast_ether_addr(spec->loc_mac))
 642		return true;
 643
 644	if ((spec->match_flags &
 645	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
 646	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
 647		if (spec->ether_type == htons(ETH_P_IP) &&
 648		    ipv4_is_multicast(spec->loc_host[0]))
 649			return true;
 650		if (spec->ether_type == htons(ETH_P_IPV6) &&
 651		    ((const u8 *)spec->loc_host)[0] == 0xff)
 652			return true;
 653	}
 654
 655	return false;
 656}
 657
 658bool efx_filter_spec_equal(const struct efx_filter_spec *left,
 659			   const struct efx_filter_spec *right)
 660{
 661	if ((left->match_flags ^ right->match_flags) |
 662	    ((left->flags ^ right->flags) &
 663	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
 664		return false;
 665
 666	return memcmp(&left->vport_id, &right->vport_id,
 667		      sizeof(struct efx_filter_spec) -
 668		      offsetof(struct efx_filter_spec, vport_id)) == 0;
 669}
 670
 671u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
 672{
 673	BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3);
 674	return jhash2((const u32 *)&spec->vport_id,
 675		      (sizeof(struct efx_filter_spec) -
 676		       offsetof(struct efx_filter_spec, vport_id)) / 4,
 677		      0);
 678}
 679
 680#ifdef CONFIG_RFS_ACCEL
 681bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
 682			bool *force)
 683{
 684	if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
 685		/* ARFS is currently updating this entry, leave it */
 686		return false;
 687	}
 688	if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
 689		/* ARFS tried and failed to update this, so it's probably out
 690		 * of date.  Remove the filter and the ARFS rule entry.
 691		 */
 692		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
 693		*force = true;
 694		return true;
 695	} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
 696		/* ARFS has moved on, so old filter is not needed.  Since we did
 697		 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
 698		 * not be removed by efx_rps_hash_del() subsequently.
 699		 */
 700		*force = true;
 701		return true;
 702	}
 703	/* Remove it iff ARFS wants to. */
 704	return true;
 705}
 706
 707static
 708struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
 709				       const struct efx_filter_spec *spec)
 710{
 711	u32 hash = efx_filter_spec_hash(spec);
 712
 713	lockdep_assert_held(&efx->rps_hash_lock);
 714	if (!efx->rps_hash_table)
 715		return NULL;
 716	return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
 717}
 718
 719struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
 720					const struct efx_filter_spec *spec)
 721{
 722	struct efx_arfs_rule *rule;
 723	struct hlist_head *head;
 724	struct hlist_node *node;
 725
 726	head = efx_rps_hash_bucket(efx, spec);
 727	if (!head)
 728		return NULL;
 729	hlist_for_each(node, head) {
 730		rule = container_of(node, struct efx_arfs_rule, node);
 731		if (efx_filter_spec_equal(spec, &rule->spec))
 732			return rule;
 733	}
 734	return NULL;
 735}
 736
 737struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
 738				       const struct efx_filter_spec *spec,
 739				       bool *new)
 740{
 741	struct efx_arfs_rule *rule;
 742	struct hlist_head *head;
 743	struct hlist_node *node;
 744
 745	head = efx_rps_hash_bucket(efx, spec);
 746	if (!head)
 747		return NULL;
 748	hlist_for_each(node, head) {
 749		rule = container_of(node, struct efx_arfs_rule, node);
 750		if (efx_filter_spec_equal(spec, &rule->spec)) {
 751			*new = false;
 752			return rule;
 753		}
 754	}
 755	rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
 756	*new = true;
 757	if (rule) {
 758		memcpy(&rule->spec, spec, sizeof(rule->spec));
 759		hlist_add_head(&rule->node, head);
 760	}
 761	return rule;
 762}
 763
 764void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
 765{
 766	struct efx_arfs_rule *rule;
 767	struct hlist_head *head;
 768	struct hlist_node *node;
 769
 770	head = efx_rps_hash_bucket(efx, spec);
 771	if (WARN_ON(!head))
 772		return;
 773	hlist_for_each(node, head) {
 774		rule = container_of(node, struct efx_arfs_rule, node);
 775		if (efx_filter_spec_equal(spec, &rule->spec)) {
 776			/* Someone already reused the entry.  We know that if
 777			 * this check doesn't fire (i.e. filter_id == REMOVING)
 778			 * then the REMOVING mark was put there by our caller,
 779			 * because caller is holding a lock on filter table and
 780			 * only holders of that lock set REMOVING.
 781			 */
 782			if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
 783				return;
 784			hlist_del(node);
 785			kfree(rule);
 786			return;
 787		}
 788	}
 789	/* We didn't find it. */
 790	WARN_ON(1);
 791}
 792#endif
 793
 794int efx_probe_filters(struct efx_nic *efx)
 795{
 796	int rc;
 797
 798	mutex_lock(&efx->mac_lock);
 799	rc = efx->type->filter_table_probe(efx);
 800	if (rc)
 801		goto out_unlock;
 802
 803#ifdef CONFIG_RFS_ACCEL
 804	if (efx->type->offload_features & NETIF_F_NTUPLE) {
 805		struct efx_channel *channel;
 806		int i, success = 1;
 807
 808		efx_for_each_channel(channel, efx) {
 809			channel->rps_flow_id =
 810				kcalloc(efx->type->max_rx_ip_filters,
 811					sizeof(*channel->rps_flow_id),
 812					GFP_KERNEL);
 813			if (!channel->rps_flow_id)
 814				success = 0;
 815			else
 816				for (i = 0;
 817				     i < efx->type->max_rx_ip_filters;
 818				     ++i)
 819					channel->rps_flow_id[i] =
 820						RPS_FLOW_ID_INVALID;
 821			channel->rfs_expire_index = 0;
 822			channel->rfs_filter_count = 0;
 823		}
 824
 825		if (!success) {
 826			efx_for_each_channel(channel, efx) {
 827				kfree(channel->rps_flow_id);
 828				channel->rps_flow_id = NULL;
 829			}
 830			efx->type->filter_table_remove(efx);
 831			rc = -ENOMEM;
 832			goto out_unlock;
 833		}
 834	}
 835#endif
 836out_unlock:
 837	mutex_unlock(&efx->mac_lock);
 838	return rc;
 839}
 840
 841void efx_remove_filters(struct efx_nic *efx)
 842{
 843#ifdef CONFIG_RFS_ACCEL
 844	struct efx_channel *channel;
 845
 846	efx_for_each_channel(channel, efx) {
 847		cancel_delayed_work_sync(&channel->filter_work);
 848		kfree(channel->rps_flow_id);
 849		channel->rps_flow_id = NULL;
 850	}
 851#endif
 852	efx->type->filter_table_remove(efx);
 853}
 854
 855#ifdef CONFIG_RFS_ACCEL
 856
 857static void efx_filter_rfs_work(struct work_struct *data)
 858{
 859	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
 860							      work);
 861	struct efx_nic *efx = efx_netdev_priv(req->net_dev);
 862	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
 863	int slot_idx = req - efx->rps_slot;
 864	struct efx_arfs_rule *rule;
 865	u16 arfs_id = 0;
 866	int rc;
 867
 868	rc = efx->type->filter_insert(efx, &req->spec, true);
 869	if (rc >= 0)
 870		/* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
 871		rc %= efx->type->max_rx_ip_filters;
 872	if (efx->rps_hash_table) {
 873		spin_lock_bh(&efx->rps_hash_lock);
 874		rule = efx_rps_hash_find(efx, &req->spec);
 875		/* The rule might have already gone, if someone else's request
 876		 * for the same spec was already worked and then expired before
 877		 * we got around to our work.  In that case we have nothing
 878		 * tying us to an arfs_id, meaning that as soon as the filter
 879		 * is considered for expiry it will be removed.
 880		 */
 881		if (rule) {
 882			if (rc < 0)
 883				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
 884			else
 885				rule->filter_id = rc;
 886			arfs_id = rule->arfs_id;
 887		}
 888		spin_unlock_bh(&efx->rps_hash_lock);
 889	}
 890	if (rc >= 0) {
 891		/* Remember this so we can check whether to expire the filter
 892		 * later.
 893		 */
 894		mutex_lock(&efx->rps_mutex);
 895		if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
 896			channel->rfs_filter_count++;
 897		channel->rps_flow_id[rc] = req->flow_id;
 898		mutex_unlock(&efx->rps_mutex);
 899
 900		if (req->spec.ether_type == htons(ETH_P_IP))
 901			netif_info(efx, rx_status, efx->net_dev,
 902				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
 903				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 904				   req->spec.rem_host, ntohs(req->spec.rem_port),
 905				   req->spec.loc_host, ntohs(req->spec.loc_port),
 906				   req->rxq_index, req->flow_id, rc, arfs_id);
 907		else
 908			netif_info(efx, rx_status, efx->net_dev,
 909				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
 910				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 911				   req->spec.rem_host, ntohs(req->spec.rem_port),
 912				   req->spec.loc_host, ntohs(req->spec.loc_port),
 913				   req->rxq_index, req->flow_id, rc, arfs_id);
 914		channel->n_rfs_succeeded++;
 915	} else {
 916		if (req->spec.ether_type == htons(ETH_P_IP))
 917			netif_dbg(efx, rx_status, efx->net_dev,
 918				  "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
 919				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 920				  req->spec.rem_host, ntohs(req->spec.rem_port),
 921				  req->spec.loc_host, ntohs(req->spec.loc_port),
 922				  req->rxq_index, req->flow_id, rc, arfs_id);
 923		else
 924			netif_dbg(efx, rx_status, efx->net_dev,
 925				  "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
 926				  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 927				  req->spec.rem_host, ntohs(req->spec.rem_port),
 928				  req->spec.loc_host, ntohs(req->spec.loc_port),
 929				  req->rxq_index, req->flow_id, rc, arfs_id);
 930		channel->n_rfs_failed++;
 931		/* We're overloading the NIC's filter tables, so let's do a
 932		 * chunk of extra expiry work.
 933		 */
 934		__efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
 935						     100u));
 936	}
 937
 938	/* Release references */
 939	clear_bit(slot_idx, &efx->rps_slot_map);
 940	dev_put(req->net_dev);
 941}
 942
 943int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
 944		   u16 rxq_index, u32 flow_id)
 945{
 946	struct efx_nic *efx = efx_netdev_priv(net_dev);
 947	struct efx_async_filter_insertion *req;
 948	struct efx_arfs_rule *rule;
 949	struct flow_keys fk;
 950	int slot_idx;
 951	bool new;
 952	int rc;
 953
 954	/* find a free slot */
 955	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
 956		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
 957			break;
 958	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
 959		return -EBUSY;
 960
 961	if (flow_id == RPS_FLOW_ID_INVALID) {
 962		rc = -EINVAL;
 963		goto out_clear;
 964	}
 965
 966	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
 967		rc = -EPROTONOSUPPORT;
 968		goto out_clear;
 969	}
 970
 971	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
 972		rc = -EPROTONOSUPPORT;
 973		goto out_clear;
 974	}
 975	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
 976		rc = -EPROTONOSUPPORT;
 977		goto out_clear;
 978	}
 979
 980	req = efx->rps_slot + slot_idx;
 981	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
 982			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
 983			   rxq_index);
 984	req->spec.match_flags =
 985		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
 986		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
 987		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
 988	req->spec.ether_type = fk.basic.n_proto;
 989	req->spec.ip_proto = fk.basic.ip_proto;
 990
 991	if (fk.basic.n_proto == htons(ETH_P_IP)) {
 992		req->spec.rem_host[0] = fk.addrs.v4addrs.src;
 993		req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
 994	} else {
 995		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
 996		       sizeof(struct in6_addr));
 997		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
 998		       sizeof(struct in6_addr));
 999	}
1000
1001	req->spec.rem_port = fk.ports.src;
1002	req->spec.loc_port = fk.ports.dst;
1003
1004	if (efx->rps_hash_table) {
1005		/* Add it to ARFS hash table */
1006		spin_lock(&efx->rps_hash_lock);
1007		rule = efx_rps_hash_add(efx, &req->spec, &new);
1008		if (!rule) {
1009			rc = -ENOMEM;
1010			goto out_unlock;
1011		}
1012		if (new)
1013			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1014		rc = rule->arfs_id;
1015		/* Skip if existing or pending filter already does the right thing */
1016		if (!new && rule->rxq_index == rxq_index &&
1017		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1018			goto out_unlock;
1019		rule->rxq_index = rxq_index;
1020		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1021		spin_unlock(&efx->rps_hash_lock);
1022	} else {
1023		/* Without an ARFS hash table, we just use arfs_id 0 for all
1024		 * filters.  This means if multiple flows hash to the same
1025		 * flow_id, all but the most recently touched will be eligible
1026		 * for expiry.
1027		 */
1028		rc = 0;
1029	}
1030
1031	/* Queue the request */
1032	dev_hold(req->net_dev = net_dev);
1033	INIT_WORK(&req->work, efx_filter_rfs_work);
1034	req->rxq_index = rxq_index;
1035	req->flow_id = flow_id;
1036	schedule_work(&req->work);
1037	return rc;
1038out_unlock:
1039	spin_unlock(&efx->rps_hash_lock);
1040out_clear:
1041	clear_bit(slot_idx, &efx->rps_slot_map);
1042	return rc;
1043}
1044
1045bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1046{
1047	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1048	struct efx_nic *efx = channel->efx;
1049	unsigned int index, size, start;
1050	u32 flow_id;
1051
1052	if (!mutex_trylock(&efx->rps_mutex))
1053		return false;
1054	expire_one = efx->type->filter_rfs_expire_one;
1055	index = channel->rfs_expire_index;
1056	start = index;
1057	size = efx->type->max_rx_ip_filters;
1058	while (quota) {
1059		flow_id = channel->rps_flow_id[index];
1060
1061		if (flow_id != RPS_FLOW_ID_INVALID) {
1062			quota--;
1063			if (expire_one(efx, flow_id, index)) {
1064				netif_info(efx, rx_status, efx->net_dev,
1065					   "expired filter %d [channel %u flow %u]\n",
1066					   index, channel->channel, flow_id);
1067				channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1068				channel->rfs_filter_count--;
1069			}
1070		}
1071		if (++index == size)
1072			index = 0;
1073		/* If we were called with a quota that exceeds the total number
1074		 * of filters in the table (which shouldn't happen, but could
1075		 * if two callers race), ensure that we don't loop forever -
1076		 * stop when we've examined every row of the table.
1077		 */
1078		if (index == start)
1079			break;
1080	}
1081
1082	channel->rfs_expire_index = index;
1083	mutex_unlock(&efx->rps_mutex);
1084	return true;
1085}
1086
1087#endif /* CONFIG_RFS_ACCEL */