Linux Audio

Check our new training course

Loading...
v6.8
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
 
 
 
 
   6 */
   7
   8/* Common definitions for all Efx net driver code */
   9
  10#ifndef EFX_NET_DRIVER_H
  11#define EFX_NET_DRIVER_H
  12
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/ethtool.h>
  16#include <linux/if_vlan.h>
  17#include <linux/timer.h>
  18#include <linux/mdio.h>
  19#include <linux/list.h>
  20#include <linux/pci.h>
  21#include <linux/device.h>
  22#include <linux/highmem.h>
  23#include <linux/workqueue.h>
  24#include <linux/mutex.h>
  25#include <linux/rwsem.h>
  26#include <linux/vmalloc.h>
 
  27#include <linux/mtd/mtd.h>
  28#include <net/busy_poll.h>
  29#include <net/xdp.h>
  30#include <net/netevent.h>
  31
  32#include "enum.h"
  33#include "bitfield.h"
  34#include "filter.h"
  35
  36/**************************************************************************
  37 *
  38 * Build definitions
  39 *
  40 **************************************************************************/
  41
 
 
  42#ifdef DEBUG
  43#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
  44#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  45#else
  46#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
  47#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  48#endif
  49
  50/**************************************************************************
  51 *
  52 * Efx data structures
  53 *
  54 **************************************************************************/
  55
  56#define EFX_MAX_CHANNELS 32U
  57#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  58#define EFX_EXTRA_CHANNEL_IOV	0
  59#define EFX_EXTRA_CHANNEL_PTP	1
  60#define EFX_EXTRA_CHANNEL_TC	2
  61#define EFX_MAX_EXTRA_CHANNELS	3U
  62
  63/* Checksum generation is a per-queue option in hardware, so each
  64 * queue visible to the networking core is backed by two hardware TX
  65 * queues. */
  66#define EFX_MAX_TX_TC		2
  67#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  68#define EFX_TXQ_TYPE_OUTER_CSUM	1	/* Outer checksum offload */
  69#define EFX_TXQ_TYPE_INNER_CSUM	2	/* Inner checksum offload */
  70#define EFX_TXQ_TYPES		4
  71#define EFX_MAX_TXQ_PER_CHANNEL	4
  72#define EFX_MAX_TX_QUEUES	(EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
  73
  74/* Maximum possible MTU the driver supports */
  75#define EFX_MAX_MTU (9 * 1024)
  76
  77/* Minimum MTU, from RFC791 (IP) */
  78#define EFX_MIN_MTU 68
  79
  80/* Maximum total header length for TSOv2 */
  81#define EFX_TSO2_MAX_HDRLEN	208
  82
  83/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  84 * and should be a multiple of the cache line size.
  85 */
  86#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  87
  88/* If possible, we should ensure cache line alignment at start and end
  89 * of every buffer.  Otherwise, we just need to ensure 4-byte
  90 * alignment of the network header.
  91 */
  92#if NET_IP_ALIGN == 0
  93#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  94#else
  95#define EFX_RX_BUF_ALIGNMENT	4
  96#endif
  97
  98/* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
  99 * still fit two standard MTU size packets into a single 4K page.
 100 */
 101#define EFX_XDP_HEADROOM	128
 102#define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
 103
 104/* Forward declare Precision Time Protocol (PTP) support structure. */
 105struct efx_ptp_data;
 106struct hwtstamp_config;
 107
 108struct efx_self_tests;
 109
 110/**
 111 * struct efx_buffer - A general-purpose DMA buffer
 112 * @addr: host base address of the buffer
 113 * @dma_addr: DMA base address of the buffer
 114 * @len: Buffer length, in bytes
 115 *
 116 * The NIC uses these buffers for its interrupt status registers and
 117 * MAC stats dumps.
 118 */
 119struct efx_buffer {
 120	void *addr;
 121	dma_addr_t dma_addr;
 122	unsigned int len;
 123};
 124
 125/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126 * struct efx_tx_buffer - buffer state for a TX descriptor
 127 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 128 *	freed when descriptor completes
 129 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
 130 *	member is the associated buffer to drop a page reference on.
 131 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
 132 *	descriptor.
 133 * @dma_addr: DMA address of the fragment.
 134 * @flags: Flags for allocation and DMA mapping type
 135 * @len: Length of this fragment.
 136 *	This field is zero when the queue slot is empty.
 137 * @unmap_len: Length of this fragment to unmap
 138 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 139 * Only valid if @unmap_len != 0.
 140 */
 141struct efx_tx_buffer {
 142	union {
 143		const struct sk_buff *skb;
 144		struct xdp_frame *xdpf;
 145	};
 146	union {
 147		efx_qword_t option;    /* EF10 */
 148		dma_addr_t dma_addr;
 149	};
 150	unsigned short flags;
 151	unsigned short len;
 152	unsigned short unmap_len;
 153	unsigned short dma_offset;
 154};
 155#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 156#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 
 157#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 158#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 159#define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
 160#define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
 161#define EFX_TX_BUF_EFV		0x100	/* buffer was sent from representor */
 162
 163/**
 164 * struct efx_tx_queue - An Efx TX queue
 165 *
 166 * This is a ring buffer of TX fragments.
 167 * Since the TX completion path always executes on the same
 168 * CPU and the xmit path can operate on different CPUs,
 169 * performance is increased by ensuring that the completion
 170 * path and the xmit path operate on different cache lines.
 171 * This is particularly important if the xmit path is always
 172 * executing on one CPU which is different from the completion
 173 * path.  There is also a cache line for members which are
 174 * read but not written on the fast path.
 175 *
 176 * @efx: The associated Efx NIC
 177 * @queue: DMA queue number
 178 * @label: Label for TX completion events.
 179 *	Is our index within @channel->tx_queue array.
 180 * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
 181 * @tso_version: Version of TSO in use for this queue.
 182 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
 183 * @channel: The associated channel
 184 * @core_txq: The networking core TX queue structure
 185 * @buffer: The software buffer ring
 186 * @cb_page: Array of pages of copy buffers.  Carved up according to
 187 *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
 188 * @txd: The hardware descriptor ring
 189 * @ptr_mask: The size of the ring minus 1.
 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 191 *	Size of the region is efx_piobuf_size.
 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 193 * @initialised: Has hardware queue been initialised?
 194 * @timestamping: Is timestamping enabled for this channel?
 195 * @xdp_tx: Is this an XDP tx queue?
 196 * @read_count: Current read pointer.
 197 *	This is the number of buffers that have been removed from both rings.
 198 * @old_write_count: The value of @write_count when last checked.
 199 *	This is here for performance reasons.  The xmit path will
 200 *	only get the up-to-date value of @write_count if this
 201 *	variable indicates that the queue is empty.  This is to
 202 *	avoid cache-line ping-pong between the xmit path and the
 203 *	completion path.
 204 * @merge_events: Number of TX merged completion events
 205 * @completed_timestamp_major: Top part of the most recent tx timestamp.
 206 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
 207 * @insert_count: Current insert pointer
 208 *	This is the number of buffers that have been added to the
 209 *	software ring.
 210 * @write_count: Current write pointer
 211 *	This is the number of buffers that have been added to the
 212 *	hardware ring.
 213 * @packet_write_count: Completable write pointer
 214 *	This is the write pointer of the last packet written.
 215 *	Normally this will equal @write_count, but as option descriptors
 216 *	don't produce completion events, they won't update this.
 217 *	Filled in iff @efx->type->option_descriptors; only used for PIO.
 218 *	Thus, this is only written and used on EF10.
 219 * @old_read_count: The value of read_count when last checked.
 220 *	This is here for performance reasons.  The xmit path will
 221 *	only get the up-to-date value of read_count if this
 222 *	variable indicates that the queue is full.  This is to
 223 *	avoid cache-line ping-pong between the xmit path and the
 224 *	completion path.
 225 * @tso_bursts: Number of times TSO xmit invoked by kernel
 226 * @tso_long_headers: Number of packets with headers too long for standard
 227 *	blocks
 228 * @tso_packets: Number of packets via the TSO xmit path
 229 * @tso_fallbacks: Number of times TSO fallback used
 230 * @pushes: Number of times the TX push feature has been used
 231 * @pio_packets: Number of times the TX PIO feature has been used
 232 * @xmit_pending: Are any packets waiting to be pushed to the NIC
 233 * @cb_packets: Number of times the TX copybreak feature has been used
 234 * @notify_count: Count of notified descriptors to the NIC
 235 * @empty_read_count: If the completion path has seen the queue as empty
 236 *	and the transmission path has not yet checked this, the value of
 237 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 238 */
 239struct efx_tx_queue {
 240	/* Members which don't change on the fast path */
 241	struct efx_nic *efx ____cacheline_aligned_in_smp;
 242	unsigned int queue;
 243	unsigned int label;
 244	unsigned int type;
 245	unsigned int tso_version;
 246	bool tso_encap;
 247	struct efx_channel *channel;
 248	struct netdev_queue *core_txq;
 249	struct efx_tx_buffer *buffer;
 250	struct efx_buffer *cb_page;
 251	struct efx_buffer txd;
 252	unsigned int ptr_mask;
 253	void __iomem *piobuf;
 254	unsigned int piobuf_offset;
 255	bool initialised;
 256	bool timestamping;
 257	bool xdp_tx;
 258
 259	/* Members used mainly on the completion path */
 260	unsigned int read_count ____cacheline_aligned_in_smp;
 261	unsigned int old_write_count;
 262	unsigned int merge_events;
 263	unsigned int bytes_compl;
 264	unsigned int pkts_compl;
 265	u32 completed_timestamp_major;
 266	u32 completed_timestamp_minor;
 267
 268	/* Members used only on the xmit path */
 269	unsigned int insert_count ____cacheline_aligned_in_smp;
 270	unsigned int write_count;
 271	unsigned int packet_write_count;
 272	unsigned int old_read_count;
 273	unsigned int tso_bursts;
 274	unsigned int tso_long_headers;
 275	unsigned int tso_packets;
 276	unsigned int tso_fallbacks;
 277	unsigned int pushes;
 278	unsigned int pio_packets;
 279	bool xmit_pending;
 280	unsigned int cb_packets;
 281	unsigned int notify_count;
 282	/* Statistics to supplement MAC stats */
 283	unsigned long tx_packets;
 284
 285	/* Members shared between paths and sometimes updated */
 286	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 287#define EFX_EMPTY_COUNT_VALID 0x80000000
 288	atomic_t flush_outstanding;
 289};
 290
 291#define EFX_TX_CB_ORDER	7
 292#define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
 293
 294/**
 295 * struct efx_rx_buffer - An Efx RX data buffer
 296 * @dma_addr: DMA base address of the buffer
 297 * @page: The associated page buffer.
 298 *	Will be %NULL if the buffer slot is currently free.
 299 * @page_offset: If pending: offset in @page of DMA base address.
 300 *	If completed: offset in @page of Ethernet header.
 301 * @len: If pending: length for DMA descriptor.
 302 *	If completed: received length, excluding hash prefix.
 303 * @flags: Flags for buffer and packet state.  These are only set on the
 304 *	first buffer of a scattered packet.
 305 */
 306struct efx_rx_buffer {
 307	dma_addr_t dma_addr;
 308	struct page *page;
 309	u16 page_offset;
 310	u16 len;
 311	u16 flags;
 312};
 313#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 314#define EFX_RX_PKT_CSUMMED	0x0002
 315#define EFX_RX_PKT_DISCARD	0x0004
 316#define EFX_RX_PKT_TCP		0x0040
 317#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 318#define EFX_RX_PKT_CSUM_LEVEL	0x0200
 319
 320/**
 321 * struct efx_rx_page_state - Page-based rx buffer state
 322 *
 323 * Inserted at the start of every page allocated for receive buffers.
 324 * Used to facilitate sharing dma mappings between recycled rx buffers
 325 * and those passed up to the kernel.
 326 *
 327 * @dma_addr: The dma address of this page.
 328 */
 329struct efx_rx_page_state {
 330	dma_addr_t dma_addr;
 331
 332	unsigned int __pad[] ____cacheline_aligned;
 333};
 334
 335/**
 336 * struct efx_rx_queue - An Efx RX queue
 337 * @efx: The associated Efx NIC
 338 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 339 *	is associated with a real RX queue.
 340 * @buffer: The software buffer ring
 341 * @rxd: The hardware descriptor ring
 342 * @ptr_mask: The size of the ring minus 1.
 343 * @refill_enabled: Enable refill whenever fill level is low
 344 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 345 *	@rxq_flush_pending.
 346 * @grant_credits: Posted RX descriptors need to be granted to the MAE with
 347 *	%MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS.  For %EFX_EXTRA_CHANNEL_TC,
 348 *	and only supported on EF100.
 349 * @added_count: Number of buffers added to the receive queue.
 350 * @notified_count: Number of buffers given to NIC (<= @added_count).
 351 * @granted_count: Number of buffers granted to the MAE (<= @notified_count).
 352 * @removed_count: Number of buffers removed from the receive queue.
 353 * @scatter_n: Used by NIC specific receive code.
 354 * @scatter_len: Used by NIC specific receive code.
 355 * @page_ring: The ring to store DMA mapped pages for reuse.
 356 * @page_add: Counter to calculate the write pointer for the recycle ring.
 357 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 358 * @page_recycle_count: The number of pages that have been recycled.
 359 * @page_recycle_failed: The number of pages that couldn't be recycled because
 360 *      the kernel still held a reference to them.
 361 * @page_recycle_full: The number of pages that were released because the
 362 *      recycle ring was full.
 363 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 364 * @max_fill: RX descriptor maximum fill level (<= ring size)
 365 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 366 *	(<= @max_fill)
 367 * @min_fill: RX descriptor minimum non-zero fill level.
 368 *	This records the minimum fill level observed when a ring
 369 *	refill was triggered.
 370 * @recycle_count: RX buffer recycle counter.
 371 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 372 * @grant_work: workitem used to grant credits to the MAE if @grant_credits
 373 * @xdp_rxq_info: XDP specific RX queue information.
 374 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
 375 */
 376struct efx_rx_queue {
 377	struct efx_nic *efx;
 378	int core_index;
 379	struct efx_rx_buffer *buffer;
 380	struct efx_buffer rxd;
 381	unsigned int ptr_mask;
 382	bool refill_enabled;
 383	bool flush_pending;
 384	bool grant_credits;
 385
 386	unsigned int added_count;
 387	unsigned int notified_count;
 388	unsigned int granted_count;
 389	unsigned int removed_count;
 390	unsigned int scatter_n;
 391	unsigned int scatter_len;
 392	struct page **page_ring;
 393	unsigned int page_add;
 394	unsigned int page_remove;
 395	unsigned int page_recycle_count;
 396	unsigned int page_recycle_failed;
 397	unsigned int page_recycle_full;
 398	unsigned int page_ptr_mask;
 399	unsigned int max_fill;
 400	unsigned int fast_fill_trigger;
 401	unsigned int min_fill;
 402	unsigned int min_overfill;
 403	unsigned int recycle_count;
 404	struct timer_list slow_fill;
 405	unsigned int slow_fill_count;
 406	struct work_struct grant_work;
 407	/* Statistics to supplement MAC stats */
 408	unsigned long rx_packets;
 409	struct xdp_rxq_info xdp_rxq_info;
 410	bool xdp_rxq_info_valid;
 411};
 412
 413enum efx_sync_events_state {
 414	SYNC_EVENTS_DISABLED = 0,
 415	SYNC_EVENTS_QUIESCENT,
 416	SYNC_EVENTS_REQUESTED,
 417	SYNC_EVENTS_VALID,
 418};
 419
 420/**
 421 * struct efx_channel - An Efx channel
 422 *
 423 * A channel comprises an event queue, at least one TX queue, at least
 424 * one RX queue, and an associated tasklet for processing the event
 425 * queue.
 426 *
 427 * @efx: Associated Efx NIC
 428 * @channel: Channel instance number
 429 * @type: Channel type definition
 430 * @eventq_init: Event queue initialised flag
 431 * @enabled: Channel enabled indicator
 432 * @irq: IRQ number (MSI and MSI-X only)
 433 * @irq_moderation_us: IRQ moderation value (in microseconds)
 434 * @napi_dev: Net device used with NAPI
 435 * @napi_str: NAPI control structure
 436 * @state: state for NAPI vs busy polling
 437 * @state_lock: lock protecting @state
 438 * @eventq: Event queue buffer
 439 * @eventq_mask: Event queue pointer mask
 440 * @eventq_read_ptr: Event queue read pointer
 441 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 442 * @irq_count: Number of IRQs since last adaptive moderation decision
 443 * @irq_mod_score: IRQ moderation score
 444 * @rfs_filter_count: number of accelerated RFS filters currently in place;
 445 *	equals the count of @rps_flow_id slots filled
 446 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
 447 *	were checked for expiry
 448 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
 449 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
 450 * @n_rfs_failed: number of failed accelerated RFS filter insertions
 451 * @filter_work: Work item for efx_filter_rfs_expire()
 452 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 453 *      indexed by filter ID
 454 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 455 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 456 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 457 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 458 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 459 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 460 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 461 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 462 *	lack of descriptors
 463 * @n_rx_merge_events: Number of RX merged completion events
 464 * @n_rx_merge_packets: Number of RX packets completed by merged events
 465 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
 466 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
 467 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
 468 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
 469 * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was
 470 *	not recognised
 471 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 472 *	__efx_rx_packet(), or zero if there is none
 473 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 474 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 475 * @rx_list: list of SKBs from current RX, awaiting processing
 476 * @rx_queue: RX queue for this channel
 477 * @tx_queue: TX queues for this channel
 478 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
 479 * @sync_events_state: Current state of sync events on this channel
 480 * @sync_timestamp_major: Major part of the last ptp sync event
 481 * @sync_timestamp_minor: Minor part of the last ptp sync event
 482 */
 483struct efx_channel {
 484	struct efx_nic *efx;
 485	int channel;
 486	const struct efx_channel_type *type;
 487	bool eventq_init;
 488	bool enabled;
 489	int irq;
 490	unsigned int irq_moderation_us;
 491	struct net_device *napi_dev;
 492	struct napi_struct napi_str;
 493#ifdef CONFIG_NET_RX_BUSY_POLL
 494	unsigned long busy_poll_state;
 495#endif
 496	struct efx_buffer eventq;
 497	unsigned int eventq_mask;
 498	unsigned int eventq_read_ptr;
 499	int event_test_cpu;
 500
 501	unsigned int irq_count;
 502	unsigned int irq_mod_score;
 503#ifdef CONFIG_RFS_ACCEL
 504	unsigned int rfs_filter_count;
 505	unsigned int rfs_last_expiry;
 506	unsigned int rfs_expire_index;
 507	unsigned int n_rfs_succeeded;
 508	unsigned int n_rfs_failed;
 509	struct delayed_work filter_work;
 510#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 511	u32 *rps_flow_id;
 512#endif
 513
 514	unsigned int n_rx_tobe_disc;
 515	unsigned int n_rx_ip_hdr_chksum_err;
 516	unsigned int n_rx_tcp_udp_chksum_err;
 517	unsigned int n_rx_outer_ip_hdr_chksum_err;
 518	unsigned int n_rx_outer_tcp_udp_chksum_err;
 519	unsigned int n_rx_inner_ip_hdr_chksum_err;
 520	unsigned int n_rx_inner_tcp_udp_chksum_err;
 521	unsigned int n_rx_eth_crc_err;
 522	unsigned int n_rx_mcast_mismatch;
 523	unsigned int n_rx_frm_trunc;
 524	unsigned int n_rx_overlength;
 525	unsigned int n_skbuff_leaks;
 526	unsigned int n_rx_nodesc_trunc;
 527	unsigned int n_rx_merge_events;
 528	unsigned int n_rx_merge_packets;
 529	unsigned int n_rx_xdp_drops;
 530	unsigned int n_rx_xdp_bad_drops;
 531	unsigned int n_rx_xdp_tx;
 532	unsigned int n_rx_xdp_redirect;
 533	unsigned int n_rx_mport_bad;
 534
 535	unsigned int rx_pkt_n_frags;
 536	unsigned int rx_pkt_index;
 537
 538	struct list_head *rx_list;
 539
 540	struct efx_rx_queue rx_queue;
 541	struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
 542	struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
 543
 544	enum efx_sync_events_state sync_events_state;
 545	u32 sync_timestamp_major;
 546	u32 sync_timestamp_minor;
 547};
 548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549/**
 550 * struct efx_msi_context - Context for each MSI
 551 * @efx: The associated NIC
 552 * @index: Index of the channel/IRQ
 553 * @name: Name of the channel/IRQ
 554 *
 555 * Unlike &struct efx_channel, this is never reallocated and is always
 556 * safe for the IRQ handler to access.
 557 */
 558struct efx_msi_context {
 559	struct efx_nic *efx;
 560	unsigned int index;
 561	char name[IFNAMSIZ + 6];
 562};
 563
 564/**
 565 * struct efx_channel_type - distinguishes traffic and extra channels
 566 * @handle_no_channel: Handle failure to allocate an extra channel
 567 * @pre_probe: Set up extra state prior to initialisation
 568 * @start: called early in efx_start_channels()
 569 * @stop: called early in efx_stop_channels()
 570 * @post_remove: Tear down extra state after finalisation, if allocated.
 571 *	May be called on channels that have not been probed.
 572 * @get_name: Generate the channel's name (used for its IRQ handler)
 573 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 574 *	reallocation is not supported.
 575 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 576 * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet()
 577 * @want_txqs: Determine whether this channel should have TX queues
 578 *	created.  If %NULL, TX queues are not created.
 579 * @keep_eventq: Flag for whether event queue should be kept initialised
 580 *	while the device is stopped
 581 * @want_pio: Flag for whether PIO buffers should be linked to this
 582 *	channel's TX queues.
 583 */
 584struct efx_channel_type {
 585	void (*handle_no_channel)(struct efx_nic *);
 586	int (*pre_probe)(struct efx_channel *);
 587	int (*start)(struct efx_channel *);
 588	void (*stop)(struct efx_channel *);
 589	void (*post_remove)(struct efx_channel *);
 590	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 591	struct efx_channel *(*copy)(const struct efx_channel *);
 592	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 593	bool (*receive_raw)(struct efx_rx_queue *, u32);
 594	bool (*want_txqs)(struct efx_channel *);
 595	bool keep_eventq;
 596	bool want_pio;
 597};
 598
 599enum efx_led_mode {
 600	EFX_LED_OFF	= 0,
 601	EFX_LED_ON	= 1,
 602	EFX_LED_DEFAULT	= 2
 603};
 604
 605#define STRING_TABLE_LOOKUP(val, member) \
 606	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 607
 608extern const char *const efx_loopback_mode_names[];
 609extern const unsigned int efx_loopback_mode_max;
 610#define LOOPBACK_MODE(efx) \
 611	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 612
 
 
 
 
 
 613enum efx_int_mode {
 614	/* Be careful if altering to correct macro below */
 615	EFX_INT_MODE_MSIX = 0,
 616	EFX_INT_MODE_MSI = 1,
 617	EFX_INT_MODE_LEGACY = 2,
 618	EFX_INT_MODE_MAX	/* Insert any new items before this */
 619};
 620#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 621
 622enum nic_state {
 623	STATE_UNINIT = 0,	/* device being probed/removed */
 624	STATE_PROBED,		/* hardware probed */
 625	STATE_NET_DOWN,		/* netdev registered */
 626	STATE_NET_UP,		/* ready for traffic */
 627	STATE_DISABLED,		/* device disabled due to hardware errors */
 628
 629	STATE_RECOVERY = 0x100,/* recovering from PCI error */
 630	STATE_FROZEN = 0x200,	/* frozen by power management */
 631};
 632
 633static inline bool efx_net_active(enum nic_state state)
 634{
 635	return state == STATE_NET_DOWN || state == STATE_NET_UP;
 636}
 637
 638static inline bool efx_frozen(enum nic_state state)
 639{
 640	return state & STATE_FROZEN;
 641}
 642
 643static inline bool efx_recovering(enum nic_state state)
 644{
 645	return state & STATE_RECOVERY;
 646}
 647
 648static inline enum nic_state efx_freeze(enum nic_state state)
 649{
 650	WARN_ON(!efx_net_active(state));
 651	return state | STATE_FROZEN;
 652}
 653
 654static inline enum nic_state efx_thaw(enum nic_state state)
 655{
 656	WARN_ON(!efx_frozen(state));
 657	return state & ~STATE_FROZEN;
 658}
 659
 660static inline enum nic_state efx_recover(enum nic_state state)
 661{
 662	WARN_ON(!efx_net_active(state));
 663	return state | STATE_RECOVERY;
 664}
 665
 666static inline enum nic_state efx_recovered(enum nic_state state)
 667{
 668	WARN_ON(!efx_recovering(state));
 669	return state & ~STATE_RECOVERY;
 670}
 671
 672/* Forward declaration */
 673struct efx_nic;
 674
 675/* Pseudo bit-mask flow control field */
 676#define EFX_FC_RX	FLOW_CTRL_RX
 677#define EFX_FC_TX	FLOW_CTRL_TX
 678#define EFX_FC_AUTO	4
 679
 680/**
 681 * struct efx_link_state - Current state of the link
 682 * @up: Link is up
 683 * @fd: Link is full-duplex
 684 * @fc: Actual flow control flags
 685 * @speed: Link speed (Mbps)
 686 */
 687struct efx_link_state {
 688	bool up;
 689	bool fd;
 690	u8 fc;
 691	unsigned int speed;
 692};
 693
 694static inline bool efx_link_state_equal(const struct efx_link_state *left,
 695					const struct efx_link_state *right)
 696{
 697	return left->up == right->up && left->fd == right->fd &&
 698		left->fc == right->fc && left->speed == right->speed;
 699}
 700
 701/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702 * enum efx_phy_mode - PHY operating mode flags
 703 * @PHY_MODE_NORMAL: on and should pass traffic
 704 * @PHY_MODE_TX_DISABLED: on with TX disabled
 705 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 706 * @PHY_MODE_OFF: switched off through external control
 707 * @PHY_MODE_SPECIAL: on but will not pass traffic
 708 */
 709enum efx_phy_mode {
 710	PHY_MODE_NORMAL		= 0,
 711	PHY_MODE_TX_DISABLED	= 1,
 712	PHY_MODE_LOW_POWER	= 2,
 713	PHY_MODE_OFF		= 4,
 714	PHY_MODE_SPECIAL	= 8,
 715};
 716
 717static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 718{
 719	return !!(mode & ~PHY_MODE_TX_DISABLED);
 720}
 721
 722/**
 723 * struct efx_hw_stat_desc - Description of a hardware statistic
 724 * @name: Name of the statistic as visible through ethtool, or %NULL if
 725 *	it should not be exposed
 726 * @dma_width: Width in bits (0 for non-DMA statistics)
 727 * @offset: Offset within stats (ignored for non-DMA statistics)
 728 */
 729struct efx_hw_stat_desc {
 730	const char *name;
 731	u16 dma_width;
 732	u16 offset;
 733};
 734
 735struct vfdi_status;
 736
 737/* The reserved RSS context value */
 738#define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
 739/**
 740 * struct efx_rss_context - A user-defined RSS context for filtering
 741 * @list: node of linked list on which this struct is stored
 742 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
 743 *	%EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
 744 *	For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
 745 * @user_id: the rss_context ID exposed to userspace over ethtool.
 746 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
 747 * @rx_hash_key: Toeplitz hash key for this RSS context
 748 * @indir_table: Indirection table for this RSS context
 749 */
 750struct efx_rss_context {
 751	struct list_head list;
 752	u32 context_id;
 753	u32 user_id;
 754	bool rx_hash_udp_4tuple;
 755	u8 rx_hash_key[40];
 756	u32 rx_indir_table[128];
 757};
 758
 759#ifdef CONFIG_RFS_ACCEL
 760/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
 761 * is used to test if filter does or will exist.
 762 */
 763#define EFX_ARFS_FILTER_ID_PENDING	-1
 764#define EFX_ARFS_FILTER_ID_ERROR	-2
 765#define EFX_ARFS_FILTER_ID_REMOVING	-3
 766/**
 767 * struct efx_arfs_rule - record of an ARFS filter and its IDs
 768 * @node: linkage into hash table
 769 * @spec: details of the filter (used as key for hash table).  Use efx->type to
 770 *	determine which member to use.
 771 * @rxq_index: channel to which the filter will steer traffic.
 772 * @arfs_id: filter ID which was returned to ARFS
 773 * @filter_id: index in software filter table.  May be
 774 *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
 775 *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
 776 *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
 777 */
 778struct efx_arfs_rule {
 779	struct hlist_node node;
 780	struct efx_filter_spec spec;
 781	u16 rxq_index;
 782	u16 arfs_id;
 783	s32 filter_id;
 784};
 785
 786/* Size chosen so that the table is one page (4kB) */
 787#define EFX_ARFS_HASH_TABLE_SIZE	512
 788
 789/**
 790 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
 791 * @net_dev: Reference to the netdevice
 792 * @spec: The filter to insert
 793 * @work: Workitem for this request
 794 * @rxq_index: Identifies the channel for which this request was made
 795 * @flow_id: Identifies the kernel-side flow for which this request was made
 796 */
 797struct efx_async_filter_insertion {
 798	struct net_device *net_dev;
 799	struct efx_filter_spec spec;
 800	struct work_struct work;
 801	u16 rxq_index;
 802	u32 flow_id;
 803};
 804
 805/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
 806#define EFX_RPS_MAX_IN_FLIGHT	8
 807#endif /* CONFIG_RFS_ACCEL */
 808
 809enum efx_xdp_tx_queues_mode {
 810	EFX_XDP_TX_QUEUES_DEDICATED,	/* one queue per core, locking not needed */
 811	EFX_XDP_TX_QUEUES_SHARED,	/* each queue used by more than 1 core */
 812	EFX_XDP_TX_QUEUES_BORROWED	/* queues borrowed from net stack */
 813};
 814
 815struct efx_mae;
 816
 817/**
 818 * struct efx_nic - an Efx NIC
 819 * @name: Device name (net device name or bus id before net device registered)
 820 * @pci_dev: The PCI device
 821 * @node: List node for maintaning primary/secondary function lists
 822 * @primary: &struct efx_nic instance for the primary function of this
 823 *	controller.  May be the same structure, and may be %NULL if no
 824 *	primary function is bound.  Serialised by rtnl_lock.
 825 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 826 *	functions of the controller, if this is for the primary function.
 827 *	Serialised by rtnl_lock.
 828 * @type: Controller type attributes
 829 * @legacy_irq: IRQ number
 830 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 831 *	Work items do not hold and must not acquire RTNL.
 832 * @workqueue_name: Name of workqueue
 833 * @reset_work: Scheduled reset workitem
 834 * @membase_phys: Memory BAR value as physical address
 835 * @membase: Memory BAR value
 836 * @vi_stride: step between per-VI registers / memory regions
 837 * @interrupt_mode: Interrupt mode
 838 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 839 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 840 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 841 * @irqs_hooked: Channel interrupts are hooked
 842 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 843 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 844 * @msg_enable: Log message enable flags
 845 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 846 * @reset_pending: Bitmask for pending resets
 847 * @tx_queue: TX DMA queues
 848 * @rx_queue: RX DMA queues
 849 * @channel: Channels
 850 * @msi_context: Context for each MSI
 851 * @extra_channel_types: Types of extra (non-traffic) channels that
 852 *	should be allocated for this NIC
 853 * @mae: Details of the Match Action Engine
 854 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
 855 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
 856 * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
 857 * @rxq_entries: Size of receive queues requested by user.
 858 * @txq_entries: Size of transmit queues requested by user.
 859 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 860 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 861 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 862 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 863 * @sram_lim_qw: Qword address limit of SRAM
 
 864 * @n_channels: Number of channels in use
 865 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 866 * @n_tx_channels: Number of channels used for TX
 867 * @n_extra_tx_channels: Number of extra channels with TX queues
 868 * @tx_queues_per_channel: number of TX queues probed on each channel
 869 * @n_xdp_channels: Number of channels used for XDP TX
 870 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
 871 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
 872 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 873 *	in accordance with NET_IP_ALIGN
 874 * @rx_dma_len: Current maximum RX DMA length
 875 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 876 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 877 *	for use in sk_buff::truesize
 878 * @rx_prefix_size: Size of RX prefix before packet data
 879 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 880 *	(valid only if @rx_prefix_size != 0; always negative)
 881 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 882 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 883 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 884 *	(valid only if channel->sync_timestamps_enabled; always negative)
 
 
 885 * @rx_scatter: Scatter mode enabled for receives
 886 * @rss_context: Main RSS context.  Its @list member is the head of the list of
 887 *	RSS contexts created by user requests
 888 * @rss_lock: Protects custom RSS context software state in @rss_context.list
 889 * @vport_id: The function's vport ID, only relevant for PFs
 890 * @int_error_count: Number of internal errors seen recently
 891 * @int_error_expire: Time at which error count will be expired
 892 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 893 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 894 *	acknowledge but do nothing else.
 895 * @irq_status: Interrupt status buffer
 896 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 897 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 898 * @selftest_work: Work item for asynchronous self-test
 899 * @mtd_list: List of MTDs attached to the NIC
 900 * @nic_data: Hardware dependent state
 901 * @mcdi: Management-Controller-to-Driver Interface state
 902 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 903 *	efx_monitor() and efx_reconfigure_port()
 904 * @port_enabled: Port enabled indicator.
 905 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 906 *	efx_mac_work() with kernel interfaces. Safe to read under any
 907 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 908 *	be held to modify it.
 909 * @port_initialized: Port initialized?
 910 * @net_dev: Operating system network device. Consider holding the rtnl lock
 911 * @fixed_features: Features which cannot be turned off
 912 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
 913 *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
 914 * @stats_buffer: DMA buffer for statistics
 915 * @phy_type: PHY type
 
 916 * @phy_data: PHY private data (including PHY-specific stats)
 917 * @mdio: PHY MDIO interface
 918 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 919 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 920 * @link_advertising: Autonegotiation advertising flags
 921 * @fec_config: Forward Error Correction configuration flags.  For bit positions
 922 *	see &enum ethtool_fec_config_bits.
 923 * @link_state: Current state of the link
 924 * @n_link_state_changes: Number of times the link has changed state
 
 
 
 
 925 * @wanted_fc: Wanted flow control flags
 926 * @fc_disable: When non-zero flow control is disabled. Typically used to
 927 *	ensure that network back pressure doesn't delay dma queue flushes.
 928 *	Serialised by the rtnl lock.
 929 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 930 * @loopback_mode: Loopback status
 931 * @loopback_modes: Supported loopback mode bitmask
 932 * @loopback_selftest: Offline self-test private state
 933 * @xdp_prog: Current XDP programme for this interface
 934 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
 935 * @filter_state: Architecture-dependent filter table state
 936 * @rps_mutex: Protects RPS state of all channels
 937 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
 938 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
 939 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
 940 *	@rps_next_id).
 941 * @rps_hash_table: Mapping between ARFS filters and their various IDs
 942 * @rps_next_id: next arfs_id for an ARFS filter
 943 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 944 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 945 *	Decremented when the efx_flush_rx_queue() is called.
 946 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 947 *	completed (either success or failure). Not used when MCDI is used to
 948 *	flush receive queues.
 949 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 950 * @vf_count: Number of VFs intended to be enabled.
 951 * @vf_init_count: Number of VFs that have been fully initialised.
 952 * @vi_scale: log2 number of vnics per VF.
 953 * @vf_reps_lock: Protects vf_reps list
 954 * @vf_reps: local VF reps
 955 * @ptp_data: PTP state data
 956 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
 957 * @vpd_sn: Serial number read from VPD
 958 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
 959 *      xdp_rxq_info structures?
 960 * @netdev_notifier: Netdevice notifier.
 961 * @netevent_notifier: Netevent notifier (for neighbour updates).
 962 * @tc: state for TC offload (EF100).
 963 * @devlink: reference to devlink structure owned by this device
 964 * @dl_port: devlink port associated with the PF
 965 * @mem_bar: The BAR that is mapped into membase.
 966 * @reg_base: Offset from the start of the bar to the function control window.
 967 * @monitor_work: Hardware monitor workitem
 968 * @biu_lock: BIU (bus interface unit) lock
 969 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 970 *	field is used by efx_test_interrupts() to verify that an
 971 *	interrupt has occurred.
 972 * @stats_lock: Statistics update lock. Must be held when calling
 973 *	efx_nic_type::{update,start,stop}_stats.
 974 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 
 975 *
 976 * This is stored in the private area of the &struct net_device.
 977 */
 978struct efx_nic {
 979	/* The following fields should be written very rarely */
 980
 981	char name[IFNAMSIZ];
 982	struct list_head node;
 983	struct efx_nic *primary;
 984	struct list_head secondary_list;
 985	struct pci_dev *pci_dev;
 986	unsigned int port_num;
 987	const struct efx_nic_type *type;
 988	int legacy_irq;
 989	bool eeh_disabled_legacy_irq;
 990	struct workqueue_struct *workqueue;
 991	char workqueue_name[16];
 992	struct work_struct reset_work;
 993	resource_size_t membase_phys;
 994	void __iomem *membase;
 995
 996	unsigned int vi_stride;
 997
 998	enum efx_int_mode interrupt_mode;
 999	unsigned int timer_quantum_ns;
1000	unsigned int timer_max_ns;
1001	bool irq_rx_adaptive;
1002	bool irqs_hooked;
1003	unsigned int irq_mod_step_us;
1004	unsigned int irq_rx_moderation_us;
1005	u32 msg_enable;
1006
1007	enum nic_state state;
1008	unsigned long reset_pending;
1009
1010	struct efx_channel *channel[EFX_MAX_CHANNELS];
1011	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1012	const struct efx_channel_type *
1013	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
1014	struct efx_mae *mae;
1015
1016	unsigned int xdp_tx_queue_count;
1017	struct efx_tx_queue **xdp_tx_queues;
1018	enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
1019
1020	unsigned rxq_entries;
1021	unsigned txq_entries;
1022	unsigned int txq_stop_thresh;
1023	unsigned int txq_wake_thresh;
1024
1025	unsigned tx_dc_base;
1026	unsigned rx_dc_base;
1027	unsigned sram_lim_qw;
 
1028
1029	unsigned int max_channels;
1030	unsigned int max_vis;
1031	unsigned int max_tx_channels;
1032	unsigned n_channels;
1033	unsigned n_rx_channels;
1034	unsigned rss_spread;
1035	unsigned tx_channel_offset;
1036	unsigned n_tx_channels;
1037	unsigned n_extra_tx_channels;
1038	unsigned int tx_queues_per_channel;
1039	unsigned int n_xdp_channels;
1040	unsigned int xdp_channel_offset;
1041	unsigned int xdp_tx_per_channel;
1042	unsigned int rx_ip_align;
1043	unsigned int rx_dma_len;
1044	unsigned int rx_buffer_order;
1045	unsigned int rx_buffer_truesize;
1046	unsigned int rx_page_buf_step;
1047	unsigned int rx_bufs_per_page;
1048	unsigned int rx_pages_per_batch;
1049	unsigned int rx_prefix_size;
1050	int rx_packet_hash_offset;
1051	int rx_packet_len_offset;
1052	int rx_packet_ts_offset;
 
 
1053	bool rx_scatter;
1054	struct efx_rss_context rss_context;
1055	struct mutex rss_lock;
1056	u32 vport_id;
1057
1058	unsigned int_error_count;
1059	unsigned long int_error_expire;
1060
1061	bool must_realloc_vis;
1062	bool irq_soft_enabled;
1063	struct efx_buffer irq_status;
1064	unsigned irq_zero_count;
1065	unsigned irq_level;
1066	struct delayed_work selftest_work;
1067
1068#ifdef CONFIG_SFC_MTD
1069	struct list_head mtd_list;
1070#endif
1071
1072	void *nic_data;
1073	struct efx_mcdi_data *mcdi;
1074
1075	struct mutex mac_lock;
1076	struct work_struct mac_work;
1077	bool port_enabled;
1078
1079	bool mc_bist_for_other_fn;
1080	bool port_initialized;
1081	struct net_device *net_dev;
1082
1083	netdev_features_t fixed_features;
1084
1085	u16 num_mac_stats;
1086	struct efx_buffer stats_buffer;
1087	u64 rx_nodesc_drops_total;
1088	u64 rx_nodesc_drops_while_down;
1089	bool rx_nodesc_drops_prev_state;
1090
1091	unsigned int phy_type;
 
1092	void *phy_data;
1093	struct mdio_if_info mdio;
1094	unsigned int mdio_bus;
1095	enum efx_phy_mode phy_mode;
1096
1097	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1098	u32 fec_config;
1099	struct efx_link_state link_state;
1100	unsigned int n_link_state_changes;
1101
 
 
1102	u8 wanted_fc;
1103	unsigned fc_disable;
1104
1105	atomic_t rx_reset;
1106	enum efx_loopback_mode loopback_mode;
1107	u64 loopback_modes;
1108
1109	void *loopback_selftest;
1110	/* We access loopback_selftest immediately before running XDP,
1111	 * so we want them next to each other.
1112	 */
1113	struct bpf_prog __rcu *xdp_prog;
1114
1115	struct rw_semaphore filter_sem;
 
1116	void *filter_state;
1117#ifdef CONFIG_RFS_ACCEL
1118	struct mutex rps_mutex;
1119	unsigned long rps_slot_map;
1120	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1121	spinlock_t rps_hash_lock;
1122	struct hlist_head *rps_hash_table;
1123	u32 rps_next_id;
1124#endif
1125
1126	atomic_t active_queues;
1127	atomic_t rxq_flush_pending;
1128	atomic_t rxq_flush_outstanding;
1129	wait_queue_head_t flush_wq;
1130
1131#ifdef CONFIG_SFC_SRIOV
1132	unsigned vf_count;
1133	unsigned vf_init_count;
1134	unsigned vi_scale;
1135#endif
1136	spinlock_t vf_reps_lock;
1137	struct list_head vf_reps;
1138
1139	struct efx_ptp_data *ptp_data;
1140	bool ptp_warned;
1141
1142	char *vpd_sn;
1143	bool xdp_rxq_info_failed;
1144
1145	struct notifier_block netdev_notifier;
1146	struct notifier_block netevent_notifier;
1147	struct efx_tc_state *tc;
1148
1149	struct devlink *devlink;
1150	struct devlink_port *dl_port;
1151	unsigned int mem_bar;
1152	u32 reg_base;
1153
1154	/* The following fields may be written more often */
1155
1156	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1157	spinlock_t biu_lock;
1158	int last_irq_cpu;
1159	spinlock_t stats_lock;
1160	atomic_t n_rx_noskb_drops;
 
1161};
1162
1163/**
1164 * struct efx_probe_data - State after hardware probe
1165 * @pci_dev: The PCI device
1166 * @efx: Efx NIC details
1167 */
1168struct efx_probe_data {
1169	struct pci_dev *pci_dev;
1170	struct efx_nic efx;
1171};
1172
1173static inline struct efx_nic *efx_netdev_priv(struct net_device *dev)
1174{
1175	struct efx_probe_data **probe_ptr = netdev_priv(dev);
1176	struct efx_probe_data *probe_data = *probe_ptr;
1177
1178	return &probe_data->efx;
1179}
1180
1181static inline int efx_dev_registered(struct efx_nic *efx)
1182{
1183	return efx->net_dev->reg_state == NETREG_REGISTERED;
1184}
1185
1186static inline unsigned int efx_port_num(struct efx_nic *efx)
1187{
1188	return efx->port_num;
1189}
1190
1191struct efx_mtd_partition {
1192	struct list_head node;
1193	struct mtd_info mtd;
1194	const char *dev_type_name;
1195	const char *type_name;
1196	char name[IFNAMSIZ + 20];
1197};
1198
1199struct efx_udp_tunnel {
1200#define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1201	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1202	__be16 port;
1203};
1204
1205/**
1206 * struct efx_nic_type - Efx device type definition
1207 * @mem_bar: Get the memory BAR
1208 * @mem_map_size: Get memory BAR mapped size
1209 * @probe: Probe the controller
1210 * @remove: Free resources allocated by probe()
1211 * @init: Initialise the controller
1212 * @dimension_resources: Dimension controller resources (buffer table,
1213 *	and VIs once the available interrupt resources are clear)
1214 * @fini: Shut down the controller
1215 * @monitor: Periodic function for polling link state and hardware monitor
1216 * @map_reset_reason: Map ethtool reset reason to a reset method
1217 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1218 * @reset: Reset the controller hardware and possibly the PHY.  This will
1219 *	be called while the controller is uninitialised.
1220 * @probe_port: Probe the MAC and PHY
1221 * @remove_port: Free resources allocated by probe_port()
1222 * @handle_global_event: Handle a "global" event (may be %NULL)
1223 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
 
 
 
 
1224 * @prepare_flr: Prepare for an FLR
1225 * @finish_flr: Clean up after an FLR
1226 * @describe_stats: Describe statistics for ethtool
1227 * @update_stats: Update statistics not provided by event handling.
1228 *	Either argument may be %NULL.
1229 * @update_stats_atomic: Update statistics while in atomic context, if that
1230 *	is more limiting than @update_stats.  Otherwise, leave %NULL and
1231 *	driver core will call @update_stats.
1232 * @start_stats: Start the regular fetching of statistics
1233 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1234 * @stop_stats: Stop the regular fetching of statistics
 
1235 * @push_irq_moderation: Apply interrupt moderation value
1236 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1237 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1238 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1239 *	to the hardware.  Serialised by the mac_lock.
1240 * @check_mac_fault: Check MAC fault state. True if fault present.
1241 * @get_wol: Get WoL configuration from driver state
1242 * @set_wol: Push WoL configuration to the NIC
1243 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1244 * @get_fec_stats: Get standard FEC statistics.
1245 * @test_chip: Test registers. This is expected to reset the NIC.
1246 * @test_nvram: Test validity of NVRAM contents
1247 * @mcdi_request: Send an MCDI request with the given header and SDU.
1248 *	The SDU length may be any value from 0 up to the protocol-
1249 *	defined maximum, but its buffer will be padded to a multiple
1250 *	of 4 bytes.
1251 * @mcdi_poll_response: Test whether an MCDI response is available.
1252 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1253 *	be a multiple of 4.  The length may not be, but the buffer
1254 *	will be padded so it is safe to round up.
1255 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1256 *	return an appropriate error code for aborting any current
1257 *	request; otherwise return 0.
1258 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1259 *	be separately enabled after this.
1260 * @irq_test_generate: Generate a test IRQ
1261 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1262 *	queue must be separately disabled before this.
1263 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1264 *	a pointer to the &struct efx_msi_context for the channel.
1265 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1266 *	is a pointer to the &struct efx_nic.
1267 * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1268 * @tx_init: Initialise TX queue on the NIC
1269 * @tx_remove: Free resources for TX queue
1270 * @tx_write: Write TX descriptors and doorbell
1271 * @tx_enqueue: Add an SKB to TX queue
1272 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1273 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1274 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1275 *	user RSS context to the NIC
1276 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1277 *	RSS context back from the NIC
1278 * @rx_probe: Allocate resources for RX queue
1279 * @rx_init: Initialise RX queue on the NIC
1280 * @rx_remove: Free resources for RX queue
1281 * @rx_write: Write RX descriptors and doorbell
1282 * @rx_defer_refill: Generate a refill reminder event
1283 * @rx_packet: Receive the queued RX buffer on a channel
1284 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1285 * @ev_probe: Allocate resources for event queue
1286 * @ev_init: Initialise event queue on the NIC
1287 * @ev_fini: Deinitialise event queue on the NIC
1288 * @ev_remove: Free resources for event queue
1289 * @ev_process: Process events for a queue, up to the given NAPI quota
1290 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1291 * @ev_test_generate: Generate a test event
1292 * @filter_table_probe: Probe filter capabilities and set up filter software state
1293 * @filter_table_restore: Restore filters removed from hardware
1294 * @filter_table_remove: Remove filters from hardware and tear down software state
1295 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1296 * @filter_insert: add or replace a filter
1297 * @filter_remove_safe: remove a filter by ID, carefully
1298 * @filter_get_safe: retrieve a filter by ID, carefully
1299 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1300 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1301 * @filter_count_rx_used: Get the number of filters in use at a given priority
1302 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1303 * @filter_get_rx_ids: Get list of RX filters at a given priority
 
 
 
 
1304 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1305 *	This must check whether the specified table entry is used by RFS
1306 *	and that rps_may_expire_flow() returns true for it.
1307 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1308 *	 using efx_mtd_add()
1309 * @mtd_rename: Set an MTD partition name using the net device name
1310 * @mtd_read: Read from an MTD partition
1311 * @mtd_erase: Erase part of an MTD partition
1312 * @mtd_write: Write to an MTD partition
1313 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1314 *	also notifies the driver that a writer has finished using this
1315 *	partition.
1316 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1317 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1318 *	timestamping, possibly only temporarily for the purposes of a reset.
1319 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1320 *	and tx_type will already have been validated but this operation
1321 *	must validate and update rx_filter.
1322 * @get_phys_port_id: Get the underlying physical port id.
1323 * @set_mac_address: Set the MAC address of the device
1324 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1325 *	If %NULL, then device does not support any TSO version.
1326 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1327 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1328 * @print_additional_fwver: Dump NIC-specific additional FW version info
1329 * @sensor_event: Handle a sensor event from MCDI
1330 * @rx_recycle_ring_size: Size of the RX recycle ring
1331 * @revision: Hardware architecture revision
1332 * @txd_ptr_tbl_base: TX descriptor ring base address
1333 * @rxd_ptr_tbl_base: RX descriptor ring base address
1334 * @buf_tbl_base: Buffer table base address
1335 * @evq_ptr_tbl_base: Event queue pointer table base address
1336 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1337 * @max_dma_mask: Maximum possible DMA mask
1338 * @rx_prefix_size: Size of RX prefix before packet data
1339 * @rx_hash_offset: Offset of RX flow hash within prefix
1340 * @rx_ts_offset: Offset of timestamp within prefix
1341 * @rx_buffer_padding: Size of padding at end of RX packet
1342 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1343 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1344 * @option_descriptors: NIC supports TX option descriptors
1345 * @min_interrupt_mode: Lowest capability interrupt mode supported
1346 *	from &enum efx_int_mode.
1347 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1348 * @offload_features: net_device feature flags for protocol offload
1349 *	features implemented in hardware
1350 * @mcdi_max_ver: Maximum MCDI version supported
1351 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1352 */
1353struct efx_nic_type {
1354	bool is_vf;
1355	unsigned int (*mem_bar)(struct efx_nic *efx);
1356	unsigned int (*mem_map_size)(struct efx_nic *efx);
1357	int (*probe)(struct efx_nic *efx);
1358	void (*remove)(struct efx_nic *efx);
1359	int (*init)(struct efx_nic *efx);
1360	int (*dimension_resources)(struct efx_nic *efx);
1361	void (*fini)(struct efx_nic *efx);
1362	void (*monitor)(struct efx_nic *efx);
1363	enum reset_type (*map_reset_reason)(enum reset_type reason);
1364	int (*map_reset_flags)(u32 *flags);
1365	int (*reset)(struct efx_nic *efx, enum reset_type method);
1366	int (*probe_port)(struct efx_nic *efx);
1367	void (*remove_port)(struct efx_nic *efx);
1368	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1369	int (*fini_dmaq)(struct efx_nic *efx);
 
 
1370	void (*prepare_flr)(struct efx_nic *efx);
1371	void (*finish_flr)(struct efx_nic *efx);
1372	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1373	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1374			       struct rtnl_link_stats64 *core_stats);
1375	size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1376				      struct rtnl_link_stats64 *core_stats);
1377	void (*start_stats)(struct efx_nic *efx);
1378	void (*pull_stats)(struct efx_nic *efx);
1379	void (*stop_stats)(struct efx_nic *efx);
 
1380	void (*push_irq_moderation)(struct efx_channel *channel);
1381	int (*reconfigure_port)(struct efx_nic *efx);
1382	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1383	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1384	bool (*check_mac_fault)(struct efx_nic *efx);
1385	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1386	int (*set_wol)(struct efx_nic *efx, u32 type);
1387	void (*resume_wol)(struct efx_nic *efx);
1388	void (*get_fec_stats)(struct efx_nic *efx,
1389			      struct ethtool_fec_stats *fec_stats);
1390	unsigned int (*check_caps)(const struct efx_nic *efx,
1391				   u8 flag,
1392				   u32 offset);
1393	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1394	int (*test_nvram)(struct efx_nic *efx);
1395	void (*mcdi_request)(struct efx_nic *efx,
1396			     const efx_dword_t *hdr, size_t hdr_len,
1397			     const efx_dword_t *sdu, size_t sdu_len);
1398	bool (*mcdi_poll_response)(struct efx_nic *efx);
1399	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1400				   size_t pdu_offset, size_t pdu_len);
1401	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1402	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1403	void (*irq_enable_master)(struct efx_nic *efx);
1404	int (*irq_test_generate)(struct efx_nic *efx);
1405	void (*irq_disable_non_ev)(struct efx_nic *efx);
1406	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1407	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1408	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1409	void (*tx_init)(struct efx_tx_queue *tx_queue);
1410	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1411	void (*tx_write)(struct efx_tx_queue *tx_queue);
1412	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1413	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1414				     dma_addr_t dma_addr, unsigned int len);
1415	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1416				  const u32 *rx_indir_table, const u8 *key);
1417	int (*rx_pull_rss_config)(struct efx_nic *efx);
1418	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1419					  struct efx_rss_context *ctx,
1420					  const u32 *rx_indir_table,
1421					  const u8 *key);
1422	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1423					  struct efx_rss_context *ctx);
1424	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1425	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1426	void (*rx_init)(struct efx_rx_queue *rx_queue);
1427	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1428	void (*rx_write)(struct efx_rx_queue *rx_queue);
1429	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1430	void (*rx_packet)(struct efx_channel *channel);
1431	bool (*rx_buf_hash_valid)(const u8 *prefix);
1432	int (*ev_probe)(struct efx_channel *channel);
1433	int (*ev_init)(struct efx_channel *channel);
1434	void (*ev_fini)(struct efx_channel *channel);
1435	void (*ev_remove)(struct efx_channel *channel);
1436	int (*ev_process)(struct efx_channel *channel, int quota);
1437	void (*ev_read_ack)(struct efx_channel *channel);
1438	void (*ev_test_generate)(struct efx_channel *channel);
1439	int (*filter_table_probe)(struct efx_nic *efx);
1440	void (*filter_table_restore)(struct efx_nic *efx);
1441	void (*filter_table_remove)(struct efx_nic *efx);
1442	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1443	s32 (*filter_insert)(struct efx_nic *efx,
1444			     struct efx_filter_spec *spec, bool replace);
1445	int (*filter_remove_safe)(struct efx_nic *efx,
1446				  enum efx_filter_priority priority,
1447				  u32 filter_id);
1448	int (*filter_get_safe)(struct efx_nic *efx,
1449			       enum efx_filter_priority priority,
1450			       u32 filter_id, struct efx_filter_spec *);
1451	int (*filter_clear_rx)(struct efx_nic *efx,
1452			       enum efx_filter_priority priority);
1453	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1454				    enum efx_filter_priority priority);
1455	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1456	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1457				 enum efx_filter_priority priority,
1458				 u32 *buf, u32 size);
1459#ifdef CONFIG_RFS_ACCEL
 
 
1460	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1461				      unsigned int index);
1462#endif
1463#ifdef CONFIG_SFC_MTD
1464	int (*mtd_probe)(struct efx_nic *efx);
1465	void (*mtd_rename)(struct efx_mtd_partition *part);
1466	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1467			size_t *retlen, u8 *buffer);
1468	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1469	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1470			 size_t *retlen, const u8 *buffer);
1471	int (*mtd_sync)(struct mtd_info *mtd);
1472#endif
1473	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1474	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1475	int (*ptp_set_ts_config)(struct efx_nic *efx,
1476				 struct kernel_hwtstamp_config *init);
1477	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1478	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1479	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1480	int (*get_phys_port_id)(struct efx_nic *efx,
1481				struct netdev_phys_item_id *ppid);
1482	int (*sriov_init)(struct efx_nic *efx);
1483	void (*sriov_fini)(struct efx_nic *efx);
1484	bool (*sriov_wanted)(struct efx_nic *efx);
1485	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
 
 
1486	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1487				 u8 qos);
1488	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1489				     bool spoofchk);
1490	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1491				   struct ifla_vf_info *ivi);
1492	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1493				       int link_state);
 
 
1494	int (*vswitching_probe)(struct efx_nic *efx);
1495	int (*vswitching_restore)(struct efx_nic *efx);
1496	void (*vswitching_remove)(struct efx_nic *efx);
1497	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1498	int (*set_mac_address)(struct efx_nic *efx);
1499	u32 (*tso_versions)(struct efx_nic *efx);
1500	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1501	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1502	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1503					 size_t len);
1504	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1505	unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1506
1507	int revision;
1508	unsigned int txd_ptr_tbl_base;
1509	unsigned int rxd_ptr_tbl_base;
1510	unsigned int buf_tbl_base;
1511	unsigned int evq_ptr_tbl_base;
1512	unsigned int evq_rptr_tbl_base;
1513	u64 max_dma_mask;
1514	unsigned int rx_prefix_size;
1515	unsigned int rx_hash_offset;
1516	unsigned int rx_ts_offset;
1517	unsigned int rx_buffer_padding;
1518	bool can_rx_scatter;
1519	bool always_rx_scatter;
1520	bool option_descriptors;
1521	unsigned int min_interrupt_mode;
1522	unsigned int timer_period_max;
1523	netdev_features_t offload_features;
1524	int mcdi_max_ver;
1525	unsigned int max_rx_ip_filters;
1526	u32 hwtstamp_filters;
1527	unsigned int rx_hash_key_size;
1528};
1529
1530/**************************************************************************
1531 *
1532 * Prototypes and inline functions
1533 *
1534 *************************************************************************/
1535
1536static inline struct efx_channel *
1537efx_get_channel(struct efx_nic *efx, unsigned index)
1538{
1539	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1540	return efx->channel[index];
1541}
1542
1543/* Iterate over all used channels */
1544#define efx_for_each_channel(_channel, _efx)				\
1545	for (_channel = (_efx)->channel[0];				\
1546	     _channel;							\
1547	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1548		     (_efx)->channel[_channel->channel + 1] : NULL)
1549
1550/* Iterate over all used channels in reverse */
1551#define efx_for_each_channel_rev(_channel, _efx)			\
1552	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1553	     _channel;							\
1554	     _channel = _channel->channel ?				\
1555		     (_efx)->channel[_channel->channel - 1] : NULL)
1556
1557static inline struct efx_channel *
1558efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1559{
1560	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1561	return efx->channel[efx->tx_channel_offset + index];
1562}
1563
1564static inline struct efx_channel *
1565efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1566{
1567	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1568	return efx->channel[efx->xdp_channel_offset + index];
1569}
1570
1571static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1572{
1573	return channel->channel - channel->efx->xdp_channel_offset <
1574	       channel->efx->n_xdp_channels;
 
1575}
1576
1577static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1578{
1579	return channel && channel->channel >= channel->efx->tx_channel_offset;
1580}
1581
1582static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1583{
1584	if (efx_channel_is_xdp_tx(channel))
1585		return channel->efx->xdp_tx_per_channel;
1586	return channel->efx->tx_queues_per_channel;
1587}
1588
1589static inline struct efx_tx_queue *
1590efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1591{
1592	EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1593	return channel->tx_queue_by_type[type];
 
1594}
1595
1596static inline struct efx_tx_queue *
1597efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1598{
1599	struct efx_channel *channel = efx_get_tx_channel(efx, index);
1600
1601	return efx_channel_get_tx_queue(channel, type);
1602}
1603
1604/* Iterate over all TX queues belonging to a channel */
1605#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1606	if (!efx_channel_has_tx_queues(_channel))			\
1607		;							\
1608	else								\
1609		for (_tx_queue = (_channel)->tx_queue;			\
1610		     _tx_queue < (_channel)->tx_queue +			\
1611				 efx_channel_num_tx_queues(_channel);		\
 
 
 
 
 
 
 
 
 
1612		     _tx_queue++)
1613
1614static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1615{
1616	return channel->rx_queue.core_index >= 0;
1617}
1618
1619static inline struct efx_rx_queue *
1620efx_channel_get_rx_queue(struct efx_channel *channel)
1621{
1622	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1623	return &channel->rx_queue;
1624}
1625
1626/* Iterate over all RX queues belonging to a channel */
1627#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1628	if (!efx_channel_has_rx_queue(_channel))			\
1629		;							\
1630	else								\
1631		for (_rx_queue = &(_channel)->rx_queue;			\
1632		     _rx_queue;						\
1633		     _rx_queue = NULL)
1634
1635static inline struct efx_channel *
1636efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1637{
1638	return container_of(rx_queue, struct efx_channel, rx_queue);
1639}
1640
1641static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1642{
1643	return efx_rx_queue_channel(rx_queue)->channel;
1644}
1645
1646/* Returns a pointer to the specified receive buffer in the RX
1647 * descriptor queue.
1648 */
1649static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1650						  unsigned int index)
1651{
1652	return &rx_queue->buffer[index];
1653}
1654
1655static inline struct efx_rx_buffer *
1656efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1657{
1658	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1659		return efx_rx_buffer(rx_queue, 0);
1660	else
1661		return rx_buf + 1;
1662}
1663
1664/**
1665 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1666 *
1667 * This calculates the maximum frame length that will be used for a
1668 * given MTU.  The frame length will be equal to the MTU plus a
1669 * constant amount of header space and padding.  This is the quantity
1670 * that the net driver will program into the MAC as the maximum frame
1671 * length.
1672 *
1673 * The 10G MAC requires 8-byte alignment on the frame
1674 * length, so we round up to the nearest 8.
1675 *
1676 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1677 * XGMII cycle).  If the frame length reaches the maximum value in the
1678 * same cycle, the XMAC can miss the IPG altogether.  We work around
1679 * this by adding a further 16 bytes.
1680 */
1681#define EFX_FRAME_PAD	16
1682#define EFX_MAX_FRAME_LEN(mtu) \
1683	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1684
1685static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1686{
1687	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1688}
1689static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1690{
1691	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1692}
1693
1694/* Get the max fill level of the TX queues on this channel */
1695static inline unsigned int
1696efx_channel_tx_fill_level(struct efx_channel *channel)
1697{
1698	struct efx_tx_queue *tx_queue;
1699	unsigned int fill_level = 0;
1700
1701	efx_for_each_channel_tx_queue(tx_queue, channel)
1702		fill_level = max(fill_level,
1703				 tx_queue->insert_count - tx_queue->read_count);
1704
1705	return fill_level;
1706}
1707
1708/* Conservative approximation of efx_channel_tx_fill_level using cached value */
1709static inline unsigned int
1710efx_channel_tx_old_fill_level(struct efx_channel *channel)
1711{
1712	struct efx_tx_queue *tx_queue;
1713	unsigned int fill_level = 0;
1714
1715	efx_for_each_channel_tx_queue(tx_queue, channel)
1716		fill_level = max(fill_level,
1717				 tx_queue->insert_count - tx_queue->old_read_count);
1718
1719	return fill_level;
1720}
1721
1722/* Get all supported features.
1723 * If a feature is not fixed, it is present in hw_features.
1724 * If a feature is fixed, it does not present in hw_features, but
1725 * always in features.
1726 */
1727static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1728{
1729	const struct net_device *net_dev = efx->net_dev;
1730
1731	return net_dev->features | net_dev->hw_features;
1732}
1733
1734/* Get the current TX queue insert index. */
1735static inline unsigned int
1736efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1737{
1738	return tx_queue->insert_count & tx_queue->ptr_mask;
1739}
1740
1741/* Get a TX buffer. */
1742static inline struct efx_tx_buffer *
1743__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1744{
1745	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1746}
1747
1748/* Get a TX buffer, checking it's not currently in use. */
1749static inline struct efx_tx_buffer *
1750efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1751{
1752	struct efx_tx_buffer *buffer =
1753		__efx_tx_queue_get_insert_buffer(tx_queue);
1754
1755	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1756	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1757	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1758
1759	return buffer;
1760}
1761
1762#endif /* EFX_NET_DRIVER_H */
v4.6
 
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11/* Common definitions for all Efx net driver code */
  12
  13#ifndef EFX_NET_DRIVER_H
  14#define EFX_NET_DRIVER_H
  15
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/if_vlan.h>
  20#include <linux/timer.h>
  21#include <linux/mdio.h>
  22#include <linux/list.h>
  23#include <linux/pci.h>
  24#include <linux/device.h>
  25#include <linux/highmem.h>
  26#include <linux/workqueue.h>
  27#include <linux/mutex.h>
  28#include <linux/rwsem.h>
  29#include <linux/vmalloc.h>
  30#include <linux/i2c.h>
  31#include <linux/mtd/mtd.h>
  32#include <net/busy_poll.h>
 
 
  33
  34#include "enum.h"
  35#include "bitfield.h"
  36#include "filter.h"
  37
  38/**************************************************************************
  39 *
  40 * Build definitions
  41 *
  42 **************************************************************************/
  43
  44#define EFX_DRIVER_VERSION	"4.0"
  45
  46#ifdef DEBUG
  47#define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
  48#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  49#else
  50#define EFX_BUG_ON_PARANOID(x) do {} while (0)
  51#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  52#endif
  53
  54/**************************************************************************
  55 *
  56 * Efx data structures
  57 *
  58 **************************************************************************/
  59
  60#define EFX_MAX_CHANNELS 32U
  61#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  62#define EFX_EXTRA_CHANNEL_IOV	0
  63#define EFX_EXTRA_CHANNEL_PTP	1
  64#define EFX_MAX_EXTRA_CHANNELS	2U
 
  65
  66/* Checksum generation is a per-queue option in hardware, so each
  67 * queue visible to the networking core is backed by two hardware TX
  68 * queues. */
  69#define EFX_MAX_TX_TC		2
  70#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  71#define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
  72#define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
  73#define EFX_TXQ_TYPES		4
  74#define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
 
  75
  76/* Maximum possible MTU the driver supports */
  77#define EFX_MAX_MTU (9 * 1024)
  78
 
 
 
 
 
 
  79/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  80 * and should be a multiple of the cache line size.
  81 */
  82#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  83
  84/* If possible, we should ensure cache line alignment at start and end
  85 * of every buffer.  Otherwise, we just need to ensure 4-byte
  86 * alignment of the network header.
  87 */
  88#if NET_IP_ALIGN == 0
  89#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  90#else
  91#define EFX_RX_BUF_ALIGNMENT	4
  92#endif
  93
 
 
 
 
 
 
  94/* Forward declare Precision Time Protocol (PTP) support structure. */
  95struct efx_ptp_data;
  96struct hwtstamp_config;
  97
  98struct efx_self_tests;
  99
 100/**
 101 * struct efx_buffer - A general-purpose DMA buffer
 102 * @addr: host base address of the buffer
 103 * @dma_addr: DMA base address of the buffer
 104 * @len: Buffer length, in bytes
 105 *
 106 * The NIC uses these buffers for its interrupt status registers and
 107 * MAC stats dumps.
 108 */
 109struct efx_buffer {
 110	void *addr;
 111	dma_addr_t dma_addr;
 112	unsigned int len;
 113};
 114
 115/**
 116 * struct efx_special_buffer - DMA buffer entered into buffer table
 117 * @buf: Standard &struct efx_buffer
 118 * @index: Buffer index within controller;s buffer table
 119 * @entries: Number of buffer table entries
 120 *
 121 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 122 * Event and descriptor rings are addressed via one or more buffer
 123 * table entries (and so can be physically non-contiguous, although we
 124 * currently do not take advantage of that).  On Falcon and Siena we
 125 * have to take care of allocating and initialising the entries
 126 * ourselves.  On later hardware this is managed by the firmware and
 127 * @index and @entries are left as 0.
 128 */
 129struct efx_special_buffer {
 130	struct efx_buffer buf;
 131	unsigned int index;
 132	unsigned int entries;
 133};
 134
 135/**
 136 * struct efx_tx_buffer - buffer state for a TX descriptor
 137 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 138 *	freed when descriptor completes
 139 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
 140 *	freed when descriptor completes.
 141 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
 
 142 * @dma_addr: DMA address of the fragment.
 143 * @flags: Flags for allocation and DMA mapping type
 144 * @len: Length of this fragment.
 145 *	This field is zero when the queue slot is empty.
 146 * @unmap_len: Length of this fragment to unmap
 147 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 148 * Only valid if @unmap_len != 0.
 149 */
 150struct efx_tx_buffer {
 151	union {
 152		const struct sk_buff *skb;
 153		void *heap_buf;
 154	};
 155	union {
 156		efx_qword_t option;
 157		dma_addr_t dma_addr;
 158	};
 159	unsigned short flags;
 160	unsigned short len;
 161	unsigned short unmap_len;
 162	unsigned short dma_offset;
 163};
 164#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 165#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 166#define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
 167#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 168#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 
 
 
 169
 170/**
 171 * struct efx_tx_queue - An Efx TX queue
 172 *
 173 * This is a ring buffer of TX fragments.
 174 * Since the TX completion path always executes on the same
 175 * CPU and the xmit path can operate on different CPUs,
 176 * performance is increased by ensuring that the completion
 177 * path and the xmit path operate on different cache lines.
 178 * This is particularly important if the xmit path is always
 179 * executing on one CPU which is different from the completion
 180 * path.  There is also a cache line for members which are
 181 * read but not written on the fast path.
 182 *
 183 * @efx: The associated Efx NIC
 184 * @queue: DMA queue number
 
 
 
 185 * @tso_version: Version of TSO in use for this queue.
 
 186 * @channel: The associated channel
 187 * @core_txq: The networking core TX queue structure
 188 * @buffer: The software buffer ring
 189 * @tsoh_page: Array of pages of TSO header buffers
 
 190 * @txd: The hardware descriptor ring
 191 * @ptr_mask: The size of the ring minus 1.
 192 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 193 *	Size of the region is efx_piobuf_size.
 194 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 195 * @initialised: Has hardware queue been initialised?
 
 
 196 * @read_count: Current read pointer.
 197 *	This is the number of buffers that have been removed from both rings.
 198 * @old_write_count: The value of @write_count when last checked.
 199 *	This is here for performance reasons.  The xmit path will
 200 *	only get the up-to-date value of @write_count if this
 201 *	variable indicates that the queue is empty.  This is to
 202 *	avoid cache-line ping-pong between the xmit path and the
 203 *	completion path.
 204 * @merge_events: Number of TX merged completion events
 
 
 205 * @insert_count: Current insert pointer
 206 *	This is the number of buffers that have been added to the
 207 *	software ring.
 208 * @write_count: Current write pointer
 209 *	This is the number of buffers that have been added to the
 210 *	hardware ring.
 
 
 
 
 
 
 211 * @old_read_count: The value of read_count when last checked.
 212 *	This is here for performance reasons.  The xmit path will
 213 *	only get the up-to-date value of read_count if this
 214 *	variable indicates that the queue is full.  This is to
 215 *	avoid cache-line ping-pong between the xmit path and the
 216 *	completion path.
 217 * @tso_bursts: Number of times TSO xmit invoked by kernel
 218 * @tso_long_headers: Number of packets with headers too long for standard
 219 *	blocks
 220 * @tso_packets: Number of packets via the TSO xmit path
 
 221 * @pushes: Number of times the TX push feature has been used
 222 * @pio_packets: Number of times the TX PIO feature has been used
 223 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
 
 
 224 * @empty_read_count: If the completion path has seen the queue as empty
 225 *	and the transmission path has not yet checked this, the value of
 226 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 227 */
 228struct efx_tx_queue {
 229	/* Members which don't change on the fast path */
 230	struct efx_nic *efx ____cacheline_aligned_in_smp;
 231	unsigned queue;
 
 
 232	unsigned int tso_version;
 
 233	struct efx_channel *channel;
 234	struct netdev_queue *core_txq;
 235	struct efx_tx_buffer *buffer;
 236	struct efx_buffer *tsoh_page;
 237	struct efx_special_buffer txd;
 238	unsigned int ptr_mask;
 239	void __iomem *piobuf;
 240	unsigned int piobuf_offset;
 241	bool initialised;
 
 
 242
 243	/* Members used mainly on the completion path */
 244	unsigned int read_count ____cacheline_aligned_in_smp;
 245	unsigned int old_write_count;
 246	unsigned int merge_events;
 247	unsigned int bytes_compl;
 248	unsigned int pkts_compl;
 
 
 249
 250	/* Members used only on the xmit path */
 251	unsigned int insert_count ____cacheline_aligned_in_smp;
 252	unsigned int write_count;
 
 253	unsigned int old_read_count;
 254	unsigned int tso_bursts;
 255	unsigned int tso_long_headers;
 256	unsigned int tso_packets;
 
 257	unsigned int pushes;
 258	unsigned int pio_packets;
 259	bool xmit_more_available;
 
 
 260	/* Statistics to supplement MAC stats */
 261	unsigned long tx_packets;
 262
 263	/* Members shared between paths and sometimes updated */
 264	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 265#define EFX_EMPTY_COUNT_VALID 0x80000000
 266	atomic_t flush_outstanding;
 267};
 268
 
 
 
 269/**
 270 * struct efx_rx_buffer - An Efx RX data buffer
 271 * @dma_addr: DMA base address of the buffer
 272 * @page: The associated page buffer.
 273 *	Will be %NULL if the buffer slot is currently free.
 274 * @page_offset: If pending: offset in @page of DMA base address.
 275 *	If completed: offset in @page of Ethernet header.
 276 * @len: If pending: length for DMA descriptor.
 277 *	If completed: received length, excluding hash prefix.
 278 * @flags: Flags for buffer and packet state.  These are only set on the
 279 *	first buffer of a scattered packet.
 280 */
 281struct efx_rx_buffer {
 282	dma_addr_t dma_addr;
 283	struct page *page;
 284	u16 page_offset;
 285	u16 len;
 286	u16 flags;
 287};
 288#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 289#define EFX_RX_PKT_CSUMMED	0x0002
 290#define EFX_RX_PKT_DISCARD	0x0004
 291#define EFX_RX_PKT_TCP		0x0040
 292#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 
 293
 294/**
 295 * struct efx_rx_page_state - Page-based rx buffer state
 296 *
 297 * Inserted at the start of every page allocated for receive buffers.
 298 * Used to facilitate sharing dma mappings between recycled rx buffers
 299 * and those passed up to the kernel.
 300 *
 301 * @dma_addr: The dma address of this page.
 302 */
 303struct efx_rx_page_state {
 304	dma_addr_t dma_addr;
 305
 306	unsigned int __pad[0] ____cacheline_aligned;
 307};
 308
 309/**
 310 * struct efx_rx_queue - An Efx RX queue
 311 * @efx: The associated Efx NIC
 312 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 313 *	is associated with a real RX queue.
 314 * @buffer: The software buffer ring
 315 * @rxd: The hardware descriptor ring
 316 * @ptr_mask: The size of the ring minus 1.
 317 * @refill_enabled: Enable refill whenever fill level is low
 318 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 319 *	@rxq_flush_pending.
 
 
 
 320 * @added_count: Number of buffers added to the receive queue.
 321 * @notified_count: Number of buffers given to NIC (<= @added_count).
 
 322 * @removed_count: Number of buffers removed from the receive queue.
 323 * @scatter_n: Used by NIC specific receive code.
 324 * @scatter_len: Used by NIC specific receive code.
 325 * @page_ring: The ring to store DMA mapped pages for reuse.
 326 * @page_add: Counter to calculate the write pointer for the recycle ring.
 327 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 328 * @page_recycle_count: The number of pages that have been recycled.
 329 * @page_recycle_failed: The number of pages that couldn't be recycled because
 330 *      the kernel still held a reference to them.
 331 * @page_recycle_full: The number of pages that were released because the
 332 *      recycle ring was full.
 333 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 334 * @max_fill: RX descriptor maximum fill level (<= ring size)
 335 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 336 *	(<= @max_fill)
 337 * @min_fill: RX descriptor minimum non-zero fill level.
 338 *	This records the minimum fill level observed when a ring
 339 *	refill was triggered.
 340 * @recycle_count: RX buffer recycle counter.
 341 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 
 
 
 342 */
 343struct efx_rx_queue {
 344	struct efx_nic *efx;
 345	int core_index;
 346	struct efx_rx_buffer *buffer;
 347	struct efx_special_buffer rxd;
 348	unsigned int ptr_mask;
 349	bool refill_enabled;
 350	bool flush_pending;
 
 351
 352	unsigned int added_count;
 353	unsigned int notified_count;
 
 354	unsigned int removed_count;
 355	unsigned int scatter_n;
 356	unsigned int scatter_len;
 357	struct page **page_ring;
 358	unsigned int page_add;
 359	unsigned int page_remove;
 360	unsigned int page_recycle_count;
 361	unsigned int page_recycle_failed;
 362	unsigned int page_recycle_full;
 363	unsigned int page_ptr_mask;
 364	unsigned int max_fill;
 365	unsigned int fast_fill_trigger;
 366	unsigned int min_fill;
 367	unsigned int min_overfill;
 368	unsigned int recycle_count;
 369	struct timer_list slow_fill;
 370	unsigned int slow_fill_count;
 
 371	/* Statistics to supplement MAC stats */
 372	unsigned long rx_packets;
 
 
 373};
 374
 375enum efx_sync_events_state {
 376	SYNC_EVENTS_DISABLED = 0,
 377	SYNC_EVENTS_QUIESCENT,
 378	SYNC_EVENTS_REQUESTED,
 379	SYNC_EVENTS_VALID,
 380};
 381
 382/**
 383 * struct efx_channel - An Efx channel
 384 *
 385 * A channel comprises an event queue, at least one TX queue, at least
 386 * one RX queue, and an associated tasklet for processing the event
 387 * queue.
 388 *
 389 * @efx: Associated Efx NIC
 390 * @channel: Channel instance number
 391 * @type: Channel type definition
 392 * @eventq_init: Event queue initialised flag
 393 * @enabled: Channel enabled indicator
 394 * @irq: IRQ number (MSI and MSI-X only)
 395 * @irq_moderation: IRQ moderation value (in hardware ticks)
 396 * @napi_dev: Net device used with NAPI
 397 * @napi_str: NAPI control structure
 398 * @state: state for NAPI vs busy polling
 399 * @state_lock: lock protecting @state
 400 * @eventq: Event queue buffer
 401 * @eventq_mask: Event queue pointer mask
 402 * @eventq_read_ptr: Event queue read pointer
 403 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 404 * @irq_count: Number of IRQs since last adaptive moderation decision
 405 * @irq_mod_score: IRQ moderation score
 
 
 
 
 
 
 
 
 
 
 406 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 407 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 408 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 409 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 410 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 411 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 412 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 413 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 414 *	lack of descriptors
 415 * @n_rx_merge_events: Number of RX merged completion events
 416 * @n_rx_merge_packets: Number of RX packets completed by merged events
 
 
 
 
 
 
 417 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 418 *	__efx_rx_packet(), or zero if there is none
 419 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 420 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 
 421 * @rx_queue: RX queue for this channel
 422 * @tx_queue: TX queues for this channel
 
 423 * @sync_events_state: Current state of sync events on this channel
 424 * @sync_timestamp_major: Major part of the last ptp sync event
 425 * @sync_timestamp_minor: Minor part of the last ptp sync event
 426 */
 427struct efx_channel {
 428	struct efx_nic *efx;
 429	int channel;
 430	const struct efx_channel_type *type;
 431	bool eventq_init;
 432	bool enabled;
 433	int irq;
 434	unsigned int irq_moderation;
 435	struct net_device *napi_dev;
 436	struct napi_struct napi_str;
 437#ifdef CONFIG_NET_RX_BUSY_POLL
 438	unsigned long busy_poll_state;
 439#endif
 440	struct efx_special_buffer eventq;
 441	unsigned int eventq_mask;
 442	unsigned int eventq_read_ptr;
 443	int event_test_cpu;
 444
 445	unsigned int irq_count;
 446	unsigned int irq_mod_score;
 447#ifdef CONFIG_RFS_ACCEL
 448	unsigned int rfs_filters_added;
 
 
 
 
 
 
 
 449#endif
 450
 451	unsigned n_rx_tobe_disc;
 452	unsigned n_rx_ip_hdr_chksum_err;
 453	unsigned n_rx_tcp_udp_chksum_err;
 454	unsigned n_rx_mcast_mismatch;
 455	unsigned n_rx_frm_trunc;
 456	unsigned n_rx_overlength;
 457	unsigned n_skbuff_leaks;
 
 
 
 
 
 458	unsigned int n_rx_nodesc_trunc;
 459	unsigned int n_rx_merge_events;
 460	unsigned int n_rx_merge_packets;
 
 
 
 
 
 461
 462	unsigned int rx_pkt_n_frags;
 463	unsigned int rx_pkt_index;
 464
 
 
 465	struct efx_rx_queue rx_queue;
 466	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
 
 467
 468	enum efx_sync_events_state sync_events_state;
 469	u32 sync_timestamp_major;
 470	u32 sync_timestamp_minor;
 471};
 472
 473#ifdef CONFIG_NET_RX_BUSY_POLL
 474enum efx_channel_busy_poll_state {
 475	EFX_CHANNEL_STATE_IDLE = 0,
 476	EFX_CHANNEL_STATE_NAPI = BIT(0),
 477	EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1,
 478	EFX_CHANNEL_STATE_NAPI_REQ = BIT(1),
 479	EFX_CHANNEL_STATE_POLL_BIT = 2,
 480	EFX_CHANNEL_STATE_POLL = BIT(2),
 481	EFX_CHANNEL_STATE_DISABLE_BIT = 3,
 482};
 483
 484static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
 485{
 486	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
 487}
 488
 489/* Called from the device poll routine to get ownership of a channel. */
 490static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 491{
 492	unsigned long prev, old = READ_ONCE(channel->busy_poll_state);
 493
 494	while (1) {
 495		switch (old) {
 496		case EFX_CHANNEL_STATE_POLL:
 497			/* Ensure efx_channel_try_lock_poll() wont starve us */
 498			set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT,
 499				&channel->busy_poll_state);
 500			/* fallthrough */
 501		case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ:
 502			return false;
 503		default:
 504			break;
 505		}
 506		prev = cmpxchg(&channel->busy_poll_state, old,
 507			       EFX_CHANNEL_STATE_NAPI);
 508		if (unlikely(prev != old)) {
 509			/* This is likely to mean we've just entered polling
 510			 * state. Go back round to set the REQ bit.
 511			 */
 512			old = prev;
 513			continue;
 514		}
 515		return true;
 516	}
 517}
 518
 519static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 520{
 521	/* Make sure write has completed from efx_channel_lock_napi() */
 522	smp_wmb();
 523	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
 524}
 525
 526/* Called from efx_busy_poll(). */
 527static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
 528{
 529	return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE,
 530			EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE;
 531}
 532
 533static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 534{
 535	clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
 536}
 537
 538static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 539{
 540	return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
 541}
 542
 543static inline void efx_channel_enable(struct efx_channel *channel)
 544{
 545	clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT,
 546			 &channel->busy_poll_state);
 547}
 548
 549/* Stop further polling or napi access.
 550 * Returns false if the channel is currently busy polling.
 551 */
 552static inline bool efx_channel_disable(struct efx_channel *channel)
 553{
 554	set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state);
 555	/* Implicit barrier in efx_channel_busy_polling() */
 556	return !efx_channel_busy_polling(channel);
 557}
 558
 559#else /* CONFIG_NET_RX_BUSY_POLL */
 560
 561static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
 562{
 563}
 564
 565static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 566{
 567	return true;
 568}
 569
 570static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 571{
 572}
 573
 574static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
 575{
 576	return false;
 577}
 578
 579static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 580{
 581}
 582
 583static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 584{
 585	return false;
 586}
 587
 588static inline void efx_channel_enable(struct efx_channel *channel)
 589{
 590}
 591
 592static inline bool efx_channel_disable(struct efx_channel *channel)
 593{
 594	return true;
 595}
 596#endif /* CONFIG_NET_RX_BUSY_POLL */
 597
 598/**
 599 * struct efx_msi_context - Context for each MSI
 600 * @efx: The associated NIC
 601 * @index: Index of the channel/IRQ
 602 * @name: Name of the channel/IRQ
 603 *
 604 * Unlike &struct efx_channel, this is never reallocated and is always
 605 * safe for the IRQ handler to access.
 606 */
 607struct efx_msi_context {
 608	struct efx_nic *efx;
 609	unsigned int index;
 610	char name[IFNAMSIZ + 6];
 611};
 612
 613/**
 614 * struct efx_channel_type - distinguishes traffic and extra channels
 615 * @handle_no_channel: Handle failure to allocate an extra channel
 616 * @pre_probe: Set up extra state prior to initialisation
 
 
 617 * @post_remove: Tear down extra state after finalisation, if allocated.
 618 *	May be called on channels that have not been probed.
 619 * @get_name: Generate the channel's name (used for its IRQ handler)
 620 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 621 *	reallocation is not supported.
 622 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 
 
 
 623 * @keep_eventq: Flag for whether event queue should be kept initialised
 624 *	while the device is stopped
 
 
 625 */
 626struct efx_channel_type {
 627	void (*handle_no_channel)(struct efx_nic *);
 628	int (*pre_probe)(struct efx_channel *);
 
 
 629	void (*post_remove)(struct efx_channel *);
 630	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 631	struct efx_channel *(*copy)(const struct efx_channel *);
 632	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 
 
 633	bool keep_eventq;
 
 634};
 635
 636enum efx_led_mode {
 637	EFX_LED_OFF	= 0,
 638	EFX_LED_ON	= 1,
 639	EFX_LED_DEFAULT	= 2
 640};
 641
 642#define STRING_TABLE_LOOKUP(val, member) \
 643	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 644
 645extern const char *const efx_loopback_mode_names[];
 646extern const unsigned int efx_loopback_mode_max;
 647#define LOOPBACK_MODE(efx) \
 648	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 649
 650extern const char *const efx_reset_type_names[];
 651extern const unsigned int efx_reset_type_max;
 652#define RESET_TYPE(type) \
 653	STRING_TABLE_LOOKUP(type, efx_reset_type)
 654
 655enum efx_int_mode {
 656	/* Be careful if altering to correct macro below */
 657	EFX_INT_MODE_MSIX = 0,
 658	EFX_INT_MODE_MSI = 1,
 659	EFX_INT_MODE_LEGACY = 2,
 660	EFX_INT_MODE_MAX	/* Insert any new items before this */
 661};
 662#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 663
 664enum nic_state {
 665	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
 666	STATE_READY = 1,	/* hardware ready and netdev registered */
 667	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
 668	STATE_RECOVERY = 3,	/* device recovering from PCI error */
 
 
 
 
 669};
 670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671/* Forward declaration */
 672struct efx_nic;
 673
 674/* Pseudo bit-mask flow control field */
 675#define EFX_FC_RX	FLOW_CTRL_RX
 676#define EFX_FC_TX	FLOW_CTRL_TX
 677#define EFX_FC_AUTO	4
 678
 679/**
 680 * struct efx_link_state - Current state of the link
 681 * @up: Link is up
 682 * @fd: Link is full-duplex
 683 * @fc: Actual flow control flags
 684 * @speed: Link speed (Mbps)
 685 */
 686struct efx_link_state {
 687	bool up;
 688	bool fd;
 689	u8 fc;
 690	unsigned int speed;
 691};
 692
 693static inline bool efx_link_state_equal(const struct efx_link_state *left,
 694					const struct efx_link_state *right)
 695{
 696	return left->up == right->up && left->fd == right->fd &&
 697		left->fc == right->fc && left->speed == right->speed;
 698}
 699
 700/**
 701 * struct efx_phy_operations - Efx PHY operations table
 702 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 703 *	efx->loopback_modes.
 704 * @init: Initialise PHY
 705 * @fini: Shut down PHY
 706 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 707 * @poll: Update @link_state and report whether it changed.
 708 *	Serialised by the mac_lock.
 709 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
 710 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
 711 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 712 *	(only needed where AN bit is set in mmds)
 713 * @test_alive: Test that PHY is 'alive' (online)
 714 * @test_name: Get the name of a PHY-specific test/result
 715 * @run_tests: Run tests and record results as appropriate (offline).
 716 *	Flags are the ethtool tests flags.
 717 */
 718struct efx_phy_operations {
 719	int (*probe) (struct efx_nic *efx);
 720	int (*init) (struct efx_nic *efx);
 721	void (*fini) (struct efx_nic *efx);
 722	void (*remove) (struct efx_nic *efx);
 723	int (*reconfigure) (struct efx_nic *efx);
 724	bool (*poll) (struct efx_nic *efx);
 725	void (*get_settings) (struct efx_nic *efx,
 726			      struct ethtool_cmd *ecmd);
 727	int (*set_settings) (struct efx_nic *efx,
 728			     struct ethtool_cmd *ecmd);
 729	void (*set_npage_adv) (struct efx_nic *efx, u32);
 730	int (*test_alive) (struct efx_nic *efx);
 731	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
 732	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
 733	int (*get_module_eeprom) (struct efx_nic *efx,
 734			       struct ethtool_eeprom *ee,
 735			       u8 *data);
 736	int (*get_module_info) (struct efx_nic *efx,
 737				struct ethtool_modinfo *modinfo);
 738};
 739
 740/**
 741 * enum efx_phy_mode - PHY operating mode flags
 742 * @PHY_MODE_NORMAL: on and should pass traffic
 743 * @PHY_MODE_TX_DISABLED: on with TX disabled
 744 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 745 * @PHY_MODE_OFF: switched off through external control
 746 * @PHY_MODE_SPECIAL: on but will not pass traffic
 747 */
 748enum efx_phy_mode {
 749	PHY_MODE_NORMAL		= 0,
 750	PHY_MODE_TX_DISABLED	= 1,
 751	PHY_MODE_LOW_POWER	= 2,
 752	PHY_MODE_OFF		= 4,
 753	PHY_MODE_SPECIAL	= 8,
 754};
 755
 756static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 757{
 758	return !!(mode & ~PHY_MODE_TX_DISABLED);
 759}
 760
 761/**
 762 * struct efx_hw_stat_desc - Description of a hardware statistic
 763 * @name: Name of the statistic as visible through ethtool, or %NULL if
 764 *	it should not be exposed
 765 * @dma_width: Width in bits (0 for non-DMA statistics)
 766 * @offset: Offset within stats (ignored for non-DMA statistics)
 767 */
 768struct efx_hw_stat_desc {
 769	const char *name;
 770	u16 dma_width;
 771	u16 offset;
 772};
 773
 774/* Number of bits used in a multicast filter hash address */
 775#define EFX_MCAST_HASH_BITS 8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776
 777/* Number of (single-bit) entries in a multicast filter hash */
 778#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 
 779
 780/* An Efx multicast filter hash */
 781union efx_multicast_hash {
 782	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 783	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 784};
 785
 786struct vfdi_status;
 787
 788/**
 789 * struct efx_nic - an Efx NIC
 790 * @name: Device name (net device name or bus id before net device registered)
 791 * @pci_dev: The PCI device
 792 * @node: List node for maintaning primary/secondary function lists
 793 * @primary: &struct efx_nic instance for the primary function of this
 794 *	controller.  May be the same structure, and may be %NULL if no
 795 *	primary function is bound.  Serialised by rtnl_lock.
 796 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 797 *	functions of the controller, if this is for the primary function.
 798 *	Serialised by rtnl_lock.
 799 * @type: Controller type attributes
 800 * @legacy_irq: IRQ number
 801 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 802 *	Work items do not hold and must not acquire RTNL.
 803 * @workqueue_name: Name of workqueue
 804 * @reset_work: Scheduled reset workitem
 805 * @membase_phys: Memory BAR value as physical address
 806 * @membase: Memory BAR value
 
 807 * @interrupt_mode: Interrupt mode
 808 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 
 809 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 810 * @irq_rx_moderation: IRQ moderation time for RX event queues
 
 
 811 * @msg_enable: Log message enable flags
 812 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 813 * @reset_pending: Bitmask for pending resets
 814 * @tx_queue: TX DMA queues
 815 * @rx_queue: RX DMA queues
 816 * @channel: Channels
 817 * @msi_context: Context for each MSI
 818 * @extra_channel_types: Types of extra (non-traffic) channels that
 819 *	should be allocated for this NIC
 
 
 
 
 820 * @rxq_entries: Size of receive queues requested by user.
 821 * @txq_entries: Size of transmit queues requested by user.
 822 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 823 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 824 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 825 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 826 * @sram_lim_qw: Qword address limit of SRAM
 827 * @next_buffer_table: First available buffer table id
 828 * @n_channels: Number of channels in use
 829 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 830 * @n_tx_channels: Number of channels used for TX
 
 
 
 
 
 831 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 832 *	in accordance with NET_IP_ALIGN
 833 * @rx_dma_len: Current maximum RX DMA length
 834 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 835 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 836 *	for use in sk_buff::truesize
 837 * @rx_prefix_size: Size of RX prefix before packet data
 838 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 839 *	(valid only if @rx_prefix_size != 0; always negative)
 840 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 841 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 842 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 843 *	(valid only if channel->sync_timestamps_enabled; always negative)
 844 * @rx_hash_key: Toeplitz hash key for RSS
 845 * @rx_indir_table: Indirection table for RSS
 846 * @rx_scatter: Scatter mode enabled for receives
 
 
 
 
 847 * @int_error_count: Number of internal errors seen recently
 848 * @int_error_expire: Time at which error count will be expired
 
 849 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 850 *	acknowledge but do nothing else.
 851 * @irq_status: Interrupt status buffer
 852 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 853 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 854 * @selftest_work: Work item for asynchronous self-test
 855 * @mtd_list: List of MTDs attached to the NIC
 856 * @nic_data: Hardware dependent state
 857 * @mcdi: Management-Controller-to-Driver Interface state
 858 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 859 *	efx_monitor() and efx_reconfigure_port()
 860 * @port_enabled: Port enabled indicator.
 861 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 862 *	efx_mac_work() with kernel interfaces. Safe to read under any
 863 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 864 *	be held to modify it.
 865 * @port_initialized: Port initialized?
 866 * @net_dev: Operating system network device. Consider holding the rtnl lock
 
 
 
 867 * @stats_buffer: DMA buffer for statistics
 868 * @phy_type: PHY type
 869 * @phy_op: PHY interface
 870 * @phy_data: PHY private data (including PHY-specific stats)
 871 * @mdio: PHY MDIO interface
 872 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 873 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 874 * @link_advertising: Autonegotiation advertising flags
 
 
 875 * @link_state: Current state of the link
 876 * @n_link_state_changes: Number of times the link has changed state
 877 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 878 *	Protected by @mac_lock.
 879 * @multicast_hash: Multicast hash table for Falcon-arch.
 880 *	Protected by @mac_lock.
 881 * @wanted_fc: Wanted flow control flags
 882 * @fc_disable: When non-zero flow control is disabled. Typically used to
 883 *	ensure that network back pressure doesn't delay dma queue flushes.
 884 *	Serialised by the rtnl lock.
 885 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 886 * @loopback_mode: Loopback status
 887 * @loopback_modes: Supported loopback mode bitmask
 888 * @loopback_selftest: Offline self-test private state
 889 * @filter_sem: Filter table rw_semaphore, for freeing the table
 890 * @filter_lock: Filter table lock, for mere content changes
 891 * @filter_state: Architecture-dependent filter table state
 892 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 893 *	indexed by filter ID
 894 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
 
 
 
 
 895 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 896 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 897 *	Decremented when the efx_flush_rx_queue() is called.
 898 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 899 *	completed (either success or failure). Not used when MCDI is used to
 900 *	flush receive queues.
 901 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 902 * @vf_count: Number of VFs intended to be enabled.
 903 * @vf_init_count: Number of VFs that have been fully initialised.
 904 * @vi_scale: log2 number of vnics per VF.
 
 
 905 * @ptp_data: PTP state data
 
 906 * @vpd_sn: Serial number read from VPD
 
 
 
 
 
 
 
 
 
 907 * @monitor_work: Hardware monitor workitem
 908 * @biu_lock: BIU (bus interface unit) lock
 909 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 910 *	field is used by efx_test_interrupts() to verify that an
 911 *	interrupt has occurred.
 912 * @stats_lock: Statistics update lock. Must be held when calling
 913 *	efx_nic_type::{update,start,stop}_stats.
 914 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 915 * @mc_promisc: Whether in multicast promiscuous mode when last changed
 916 *
 917 * This is stored in the private area of the &struct net_device.
 918 */
 919struct efx_nic {
 920	/* The following fields should be written very rarely */
 921
 922	char name[IFNAMSIZ];
 923	struct list_head node;
 924	struct efx_nic *primary;
 925	struct list_head secondary_list;
 926	struct pci_dev *pci_dev;
 927	unsigned int port_num;
 928	const struct efx_nic_type *type;
 929	int legacy_irq;
 930	bool eeh_disabled_legacy_irq;
 931	struct workqueue_struct *workqueue;
 932	char workqueue_name[16];
 933	struct work_struct reset_work;
 934	resource_size_t membase_phys;
 935	void __iomem *membase;
 936
 
 
 937	enum efx_int_mode interrupt_mode;
 938	unsigned int timer_quantum_ns;
 
 939	bool irq_rx_adaptive;
 940	unsigned int irq_rx_moderation;
 
 
 941	u32 msg_enable;
 942
 943	enum nic_state state;
 944	unsigned long reset_pending;
 945
 946	struct efx_channel *channel[EFX_MAX_CHANNELS];
 947	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
 948	const struct efx_channel_type *
 949	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 
 
 
 
 
 950
 951	unsigned rxq_entries;
 952	unsigned txq_entries;
 953	unsigned int txq_stop_thresh;
 954	unsigned int txq_wake_thresh;
 955
 956	unsigned tx_dc_base;
 957	unsigned rx_dc_base;
 958	unsigned sram_lim_qw;
 959	unsigned next_buffer_table;
 960
 961	unsigned int max_channels;
 
 962	unsigned int max_tx_channels;
 963	unsigned n_channels;
 964	unsigned n_rx_channels;
 965	unsigned rss_spread;
 966	unsigned tx_channel_offset;
 967	unsigned n_tx_channels;
 
 
 
 
 
 968	unsigned int rx_ip_align;
 969	unsigned int rx_dma_len;
 970	unsigned int rx_buffer_order;
 971	unsigned int rx_buffer_truesize;
 972	unsigned int rx_page_buf_step;
 973	unsigned int rx_bufs_per_page;
 974	unsigned int rx_pages_per_batch;
 975	unsigned int rx_prefix_size;
 976	int rx_packet_hash_offset;
 977	int rx_packet_len_offset;
 978	int rx_packet_ts_offset;
 979	u8 rx_hash_key[40];
 980	u32 rx_indir_table[128];
 981	bool rx_scatter;
 
 
 
 982
 983	unsigned int_error_count;
 984	unsigned long int_error_expire;
 985
 
 986	bool irq_soft_enabled;
 987	struct efx_buffer irq_status;
 988	unsigned irq_zero_count;
 989	unsigned irq_level;
 990	struct delayed_work selftest_work;
 991
 992#ifdef CONFIG_SFC_MTD
 993	struct list_head mtd_list;
 994#endif
 995
 996	void *nic_data;
 997	struct efx_mcdi_data *mcdi;
 998
 999	struct mutex mac_lock;
1000	struct work_struct mac_work;
1001	bool port_enabled;
1002
1003	bool mc_bist_for_other_fn;
1004	bool port_initialized;
1005	struct net_device *net_dev;
1006
 
 
 
1007	struct efx_buffer stats_buffer;
1008	u64 rx_nodesc_drops_total;
1009	u64 rx_nodesc_drops_while_down;
1010	bool rx_nodesc_drops_prev_state;
1011
1012	unsigned int phy_type;
1013	const struct efx_phy_operations *phy_op;
1014	void *phy_data;
1015	struct mdio_if_info mdio;
1016	unsigned int mdio_bus;
1017	enum efx_phy_mode phy_mode;
1018
1019	u32 link_advertising;
 
1020	struct efx_link_state link_state;
1021	unsigned int n_link_state_changes;
1022
1023	bool unicast_filter;
1024	union efx_multicast_hash multicast_hash;
1025	u8 wanted_fc;
1026	unsigned fc_disable;
1027
1028	atomic_t rx_reset;
1029	enum efx_loopback_mode loopback_mode;
1030	u64 loopback_modes;
1031
1032	void *loopback_selftest;
 
 
 
 
1033
1034	struct rw_semaphore filter_sem;
1035	spinlock_t filter_lock;
1036	void *filter_state;
1037#ifdef CONFIG_RFS_ACCEL
1038	u32 *rps_flow_id;
1039	unsigned int rps_expire_index;
 
 
 
 
1040#endif
1041
1042	atomic_t active_queues;
1043	atomic_t rxq_flush_pending;
1044	atomic_t rxq_flush_outstanding;
1045	wait_queue_head_t flush_wq;
1046
1047#ifdef CONFIG_SFC_SRIOV
1048	unsigned vf_count;
1049	unsigned vf_init_count;
1050	unsigned vi_scale;
1051#endif
 
 
1052
1053	struct efx_ptp_data *ptp_data;
 
1054
1055	char *vpd_sn;
 
 
 
 
 
 
 
 
 
 
1056
1057	/* The following fields may be written more often */
1058
1059	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1060	spinlock_t biu_lock;
1061	int last_irq_cpu;
1062	spinlock_t stats_lock;
1063	atomic_t n_rx_noskb_drops;
1064	bool mc_promisc;
1065};
1066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067static inline int efx_dev_registered(struct efx_nic *efx)
1068{
1069	return efx->net_dev->reg_state == NETREG_REGISTERED;
1070}
1071
1072static inline unsigned int efx_port_num(struct efx_nic *efx)
1073{
1074	return efx->port_num;
1075}
1076
1077struct efx_mtd_partition {
1078	struct list_head node;
1079	struct mtd_info mtd;
1080	const char *dev_type_name;
1081	const char *type_name;
1082	char name[IFNAMSIZ + 20];
1083};
1084
 
 
 
 
 
 
1085/**
1086 * struct efx_nic_type - Efx device type definition
1087 * @mem_bar: Get the memory BAR
1088 * @mem_map_size: Get memory BAR mapped size
1089 * @probe: Probe the controller
1090 * @remove: Free resources allocated by probe()
1091 * @init: Initialise the controller
1092 * @dimension_resources: Dimension controller resources (buffer table,
1093 *	and VIs once the available interrupt resources are clear)
1094 * @fini: Shut down the controller
1095 * @monitor: Periodic function for polling link state and hardware monitor
1096 * @map_reset_reason: Map ethtool reset reason to a reset method
1097 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1098 * @reset: Reset the controller hardware and possibly the PHY.  This will
1099 *	be called while the controller is uninitialised.
1100 * @probe_port: Probe the MAC and PHY
1101 * @remove_port: Free resources allocated by probe_port()
1102 * @handle_global_event: Handle a "global" event (may be %NULL)
1103 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1104 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1105 *	(for Falcon architecture)
1106 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1107 *	architecture)
1108 * @prepare_flr: Prepare for an FLR
1109 * @finish_flr: Clean up after an FLR
1110 * @describe_stats: Describe statistics for ethtool
1111 * @update_stats: Update statistics not provided by event handling.
1112 *	Either argument may be %NULL.
 
 
 
1113 * @start_stats: Start the regular fetching of statistics
1114 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1115 * @stop_stats: Stop the regular fetching of statistics
1116 * @set_id_led: Set state of identifying LED or revert to automatic function
1117 * @push_irq_moderation: Apply interrupt moderation value
1118 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1119 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1120 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1121 *	to the hardware.  Serialised by the mac_lock.
1122 * @check_mac_fault: Check MAC fault state. True if fault present.
1123 * @get_wol: Get WoL configuration from driver state
1124 * @set_wol: Push WoL configuration to the NIC
1125 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1126 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1127 *	expected to reset the NIC.
1128 * @test_nvram: Test validity of NVRAM contents
1129 * @mcdi_request: Send an MCDI request with the given header and SDU.
1130 *	The SDU length may be any value from 0 up to the protocol-
1131 *	defined maximum, but its buffer will be padded to a multiple
1132 *	of 4 bytes.
1133 * @mcdi_poll_response: Test whether an MCDI response is available.
1134 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1135 *	be a multiple of 4.  The length may not be, but the buffer
1136 *	will be padded so it is safe to round up.
1137 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1138 *	return an appropriate error code for aborting any current
1139 *	request; otherwise return 0.
1140 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1141 *	be separately enabled after this.
1142 * @irq_test_generate: Generate a test IRQ
1143 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1144 *	queue must be separately disabled before this.
1145 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1146 *	a pointer to the &struct efx_msi_context for the channel.
1147 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1148 *	is a pointer to the &struct efx_nic.
1149 * @tx_probe: Allocate resources for TX queue
1150 * @tx_init: Initialise TX queue on the NIC
1151 * @tx_remove: Free resources for TX queue
1152 * @tx_write: Write TX descriptors and doorbell
 
1153 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
 
 
 
 
 
1154 * @rx_probe: Allocate resources for RX queue
1155 * @rx_init: Initialise RX queue on the NIC
1156 * @rx_remove: Free resources for RX queue
1157 * @rx_write: Write RX descriptors and doorbell
1158 * @rx_defer_refill: Generate a refill reminder event
 
 
1159 * @ev_probe: Allocate resources for event queue
1160 * @ev_init: Initialise event queue on the NIC
1161 * @ev_fini: Deinitialise event queue on the NIC
1162 * @ev_remove: Free resources for event queue
1163 * @ev_process: Process events for a queue, up to the given NAPI quota
1164 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1165 * @ev_test_generate: Generate a test event
1166 * @filter_table_probe: Probe filter capabilities and set up filter software state
1167 * @filter_table_restore: Restore filters removed from hardware
1168 * @filter_table_remove: Remove filters from hardware and tear down software state
1169 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1170 * @filter_insert: add or replace a filter
1171 * @filter_remove_safe: remove a filter by ID, carefully
1172 * @filter_get_safe: retrieve a filter by ID, carefully
1173 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1174 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1175 * @filter_count_rx_used: Get the number of filters in use at a given priority
1176 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1177 * @filter_get_rx_ids: Get list of RX filters at a given priority
1178 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1179 *	atomic.  The hardware change may be asynchronous but should
1180 *	not be delayed for long.  It may fail if this can't be done
1181 *	atomically.
1182 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1183 *	This must check whether the specified table entry is used by RFS
1184 *	and that rps_may_expire_flow() returns true for it.
1185 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1186 *	 using efx_mtd_add()
1187 * @mtd_rename: Set an MTD partition name using the net device name
1188 * @mtd_read: Read from an MTD partition
1189 * @mtd_erase: Erase part of an MTD partition
1190 * @mtd_write: Write to an MTD partition
1191 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1192 *	also notifies the driver that a writer has finished using this
1193 *	partition.
1194 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1195 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1196 *	timestamping, possibly only temporarily for the purposes of a reset.
1197 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1198 *	and tx_type will already have been validated but this operation
1199 *	must validate and update rx_filter.
 
1200 * @set_mac_address: Set the MAC address of the device
 
 
 
 
 
 
 
1201 * @revision: Hardware architecture revision
1202 * @txd_ptr_tbl_base: TX descriptor ring base address
1203 * @rxd_ptr_tbl_base: RX descriptor ring base address
1204 * @buf_tbl_base: Buffer table base address
1205 * @evq_ptr_tbl_base: Event queue pointer table base address
1206 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1207 * @max_dma_mask: Maximum possible DMA mask
1208 * @rx_prefix_size: Size of RX prefix before packet data
1209 * @rx_hash_offset: Offset of RX flow hash within prefix
1210 * @rx_ts_offset: Offset of timestamp within prefix
1211 * @rx_buffer_padding: Size of padding at end of RX packet
1212 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1213 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1214 * @max_interrupt_mode: Highest capability interrupt mode supported
1215 *	from &enum efx_init_mode.
 
1216 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1217 * @offload_features: net_device feature flags for protocol offload
1218 *	features implemented in hardware
1219 * @mcdi_max_ver: Maximum MCDI version supported
1220 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1221 */
1222struct efx_nic_type {
1223	bool is_vf;
1224	unsigned int mem_bar;
1225	unsigned int (*mem_map_size)(struct efx_nic *efx);
1226	int (*probe)(struct efx_nic *efx);
1227	void (*remove)(struct efx_nic *efx);
1228	int (*init)(struct efx_nic *efx);
1229	int (*dimension_resources)(struct efx_nic *efx);
1230	void (*fini)(struct efx_nic *efx);
1231	void (*monitor)(struct efx_nic *efx);
1232	enum reset_type (*map_reset_reason)(enum reset_type reason);
1233	int (*map_reset_flags)(u32 *flags);
1234	int (*reset)(struct efx_nic *efx, enum reset_type method);
1235	int (*probe_port)(struct efx_nic *efx);
1236	void (*remove_port)(struct efx_nic *efx);
1237	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1238	int (*fini_dmaq)(struct efx_nic *efx);
1239	void (*prepare_flush)(struct efx_nic *efx);
1240	void (*finish_flush)(struct efx_nic *efx);
1241	void (*prepare_flr)(struct efx_nic *efx);
1242	void (*finish_flr)(struct efx_nic *efx);
1243	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1244	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1245			       struct rtnl_link_stats64 *core_stats);
 
 
1246	void (*start_stats)(struct efx_nic *efx);
1247	void (*pull_stats)(struct efx_nic *efx);
1248	void (*stop_stats)(struct efx_nic *efx);
1249	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1250	void (*push_irq_moderation)(struct efx_channel *channel);
1251	int (*reconfigure_port)(struct efx_nic *efx);
1252	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1253	int (*reconfigure_mac)(struct efx_nic *efx);
1254	bool (*check_mac_fault)(struct efx_nic *efx);
1255	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1256	int (*set_wol)(struct efx_nic *efx, u32 type);
1257	void (*resume_wol)(struct efx_nic *efx);
 
 
 
 
 
1258	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1259	int (*test_nvram)(struct efx_nic *efx);
1260	void (*mcdi_request)(struct efx_nic *efx,
1261			     const efx_dword_t *hdr, size_t hdr_len,
1262			     const efx_dword_t *sdu, size_t sdu_len);
1263	bool (*mcdi_poll_response)(struct efx_nic *efx);
1264	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1265				   size_t pdu_offset, size_t pdu_len);
1266	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1267	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1268	void (*irq_enable_master)(struct efx_nic *efx);
1269	void (*irq_test_generate)(struct efx_nic *efx);
1270	void (*irq_disable_non_ev)(struct efx_nic *efx);
1271	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1272	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1273	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1274	void (*tx_init)(struct efx_tx_queue *tx_queue);
1275	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1276	void (*tx_write)(struct efx_tx_queue *tx_queue);
 
 
 
1277	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1278				  const u32 *rx_indir_table);
 
 
 
 
 
 
 
 
1279	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1280	void (*rx_init)(struct efx_rx_queue *rx_queue);
1281	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1282	void (*rx_write)(struct efx_rx_queue *rx_queue);
1283	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
 
 
1284	int (*ev_probe)(struct efx_channel *channel);
1285	int (*ev_init)(struct efx_channel *channel);
1286	void (*ev_fini)(struct efx_channel *channel);
1287	void (*ev_remove)(struct efx_channel *channel);
1288	int (*ev_process)(struct efx_channel *channel, int quota);
1289	void (*ev_read_ack)(struct efx_channel *channel);
1290	void (*ev_test_generate)(struct efx_channel *channel);
1291	int (*filter_table_probe)(struct efx_nic *efx);
1292	void (*filter_table_restore)(struct efx_nic *efx);
1293	void (*filter_table_remove)(struct efx_nic *efx);
1294	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1295	s32 (*filter_insert)(struct efx_nic *efx,
1296			     struct efx_filter_spec *spec, bool replace);
1297	int (*filter_remove_safe)(struct efx_nic *efx,
1298				  enum efx_filter_priority priority,
1299				  u32 filter_id);
1300	int (*filter_get_safe)(struct efx_nic *efx,
1301			       enum efx_filter_priority priority,
1302			       u32 filter_id, struct efx_filter_spec *);
1303	int (*filter_clear_rx)(struct efx_nic *efx,
1304			       enum efx_filter_priority priority);
1305	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1306				    enum efx_filter_priority priority);
1307	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1308	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1309				 enum efx_filter_priority priority,
1310				 u32 *buf, u32 size);
1311#ifdef CONFIG_RFS_ACCEL
1312	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1313				 struct efx_filter_spec *spec);
1314	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1315				      unsigned int index);
1316#endif
1317#ifdef CONFIG_SFC_MTD
1318	int (*mtd_probe)(struct efx_nic *efx);
1319	void (*mtd_rename)(struct efx_mtd_partition *part);
1320	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1321			size_t *retlen, u8 *buffer);
1322	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1323	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1324			 size_t *retlen, const u8 *buffer);
1325	int (*mtd_sync)(struct mtd_info *mtd);
1326#endif
1327	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1328	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1329	int (*ptp_set_ts_config)(struct efx_nic *efx,
1330				 struct hwtstamp_config *init);
1331	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
 
 
 
 
1332	int (*sriov_init)(struct efx_nic *efx);
1333	void (*sriov_fini)(struct efx_nic *efx);
1334	bool (*sriov_wanted)(struct efx_nic *efx);
1335	void (*sriov_reset)(struct efx_nic *efx);
1336	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1337	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1338	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1339				 u8 qos);
1340	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1341				     bool spoofchk);
1342	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1343				   struct ifla_vf_info *ivi);
1344	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1345				       int link_state);
1346	int (*sriov_get_phys_port_id)(struct efx_nic *efx,
1347				      struct netdev_phys_item_id *ppid);
1348	int (*vswitching_probe)(struct efx_nic *efx);
1349	int (*vswitching_restore)(struct efx_nic *efx);
1350	void (*vswitching_remove)(struct efx_nic *efx);
1351	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1352	int (*set_mac_address)(struct efx_nic *efx);
 
 
 
 
 
 
 
1353
1354	int revision;
1355	unsigned int txd_ptr_tbl_base;
1356	unsigned int rxd_ptr_tbl_base;
1357	unsigned int buf_tbl_base;
1358	unsigned int evq_ptr_tbl_base;
1359	unsigned int evq_rptr_tbl_base;
1360	u64 max_dma_mask;
1361	unsigned int rx_prefix_size;
1362	unsigned int rx_hash_offset;
1363	unsigned int rx_ts_offset;
1364	unsigned int rx_buffer_padding;
1365	bool can_rx_scatter;
1366	bool always_rx_scatter;
1367	unsigned int max_interrupt_mode;
 
1368	unsigned int timer_period_max;
1369	netdev_features_t offload_features;
1370	int mcdi_max_ver;
1371	unsigned int max_rx_ip_filters;
1372	u32 hwtstamp_filters;
 
1373};
1374
1375/**************************************************************************
1376 *
1377 * Prototypes and inline functions
1378 *
1379 *************************************************************************/
1380
1381static inline struct efx_channel *
1382efx_get_channel(struct efx_nic *efx, unsigned index)
1383{
1384	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1385	return efx->channel[index];
1386}
1387
1388/* Iterate over all used channels */
1389#define efx_for_each_channel(_channel, _efx)				\
1390	for (_channel = (_efx)->channel[0];				\
1391	     _channel;							\
1392	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1393		     (_efx)->channel[_channel->channel + 1] : NULL)
1394
1395/* Iterate over all used channels in reverse */
1396#define efx_for_each_channel_rev(_channel, _efx)			\
1397	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1398	     _channel;							\
1399	     _channel = _channel->channel ?				\
1400		     (_efx)->channel[_channel->channel - 1] : NULL)
1401
1402static inline struct efx_tx_queue *
1403efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
 
 
 
 
 
 
 
 
 
 
 
 
 
1404{
1405	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1406			    type >= EFX_TXQ_TYPES);
1407	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1408}
1409
1410static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1411{
1412	return channel->channel - channel->efx->tx_channel_offset <
1413		channel->efx->n_tx_channels;
 
 
 
 
 
 
1414}
1415
1416static inline struct efx_tx_queue *
1417efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1418{
1419	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1420			    type >= EFX_TXQ_TYPES);
1421	return &channel->tx_queue[type];
1422}
1423
1424static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
 
1425{
1426	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1427		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
 
1428}
1429
1430/* Iterate over all TX queues belonging to a channel */
1431#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1432	if (!efx_channel_has_tx_queues(_channel))			\
1433		;							\
1434	else								\
1435		for (_tx_queue = (_channel)->tx_queue;			\
1436		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1437			     efx_tx_queue_used(_tx_queue);		\
1438		     _tx_queue++)
1439
1440/* Iterate over all possible TX queues belonging to a channel */
1441#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1442	if (!efx_channel_has_tx_queues(_channel))			\
1443		;							\
1444	else								\
1445		for (_tx_queue = (_channel)->tx_queue;			\
1446		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1447		     _tx_queue++)
1448
1449static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1450{
1451	return channel->rx_queue.core_index >= 0;
1452}
1453
1454static inline struct efx_rx_queue *
1455efx_channel_get_rx_queue(struct efx_channel *channel)
1456{
1457	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1458	return &channel->rx_queue;
1459}
1460
1461/* Iterate over all RX queues belonging to a channel */
1462#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1463	if (!efx_channel_has_rx_queue(_channel))			\
1464		;							\
1465	else								\
1466		for (_rx_queue = &(_channel)->rx_queue;			\
1467		     _rx_queue;						\
1468		     _rx_queue = NULL)
1469
1470static inline struct efx_channel *
1471efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1472{
1473	return container_of(rx_queue, struct efx_channel, rx_queue);
1474}
1475
1476static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1477{
1478	return efx_rx_queue_channel(rx_queue)->channel;
1479}
1480
1481/* Returns a pointer to the specified receive buffer in the RX
1482 * descriptor queue.
1483 */
1484static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1485						  unsigned int index)
1486{
1487	return &rx_queue->buffer[index];
1488}
1489
 
 
 
 
 
 
 
 
 
1490/**
1491 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1492 *
1493 * This calculates the maximum frame length that will be used for a
1494 * given MTU.  The frame length will be equal to the MTU plus a
1495 * constant amount of header space and padding.  This is the quantity
1496 * that the net driver will program into the MAC as the maximum frame
1497 * length.
1498 *
1499 * The 10G MAC requires 8-byte alignment on the frame
1500 * length, so we round up to the nearest 8.
1501 *
1502 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1503 * XGMII cycle).  If the frame length reaches the maximum value in the
1504 * same cycle, the XMAC can miss the IPG altogether.  We work around
1505 * this by adding a further 16 bytes.
1506 */
1507#define EFX_FRAME_PAD	16
1508#define EFX_MAX_FRAME_LEN(mtu) \
1509	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1510
1511static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1512{
1513	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1514}
1515static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1516{
1517	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518}
1519
1520#endif /* EFX_NET_DRIVER_H */