Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
   2/* QLogic qed NIC Driver
   3 * Copyright (c) 2015-2017  QLogic Corporation
   4 * Copyright (c) 2019-2020 Marvell International Ltd.
 
 
 
   5 */
   6
   7#include <linux/types.h>
   8#include <asm/byteorder.h>
   9#include <linux/io.h>
  10#include <linux/bitops.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/errno.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/pci.h>
  17#include <linux/slab.h>
  18#include <linux/string.h>
  19#include "qed.h"
  20#include "qed_hsi.h"
  21#include "qed_hw.h"
  22#include "qed_init_ops.h"
  23#include "qed_int.h"
  24#include "qed_mcp.h"
  25#include "qed_reg_addr.h"
  26#include "qed_sp.h"
  27#include "qed_sriov.h"
  28#include "qed_vf.h"
  29
  30struct qed_pi_info {
  31	qed_int_comp_cb_t	comp_cb;
  32	void			*cookie;
  33};
  34
  35struct qed_sb_sp_info {
  36	struct qed_sb_info sb_info;
  37
  38	/* per protocol index data */
  39	struct qed_pi_info pi_info_arr[PIS_PER_SB];
  40};
  41
  42enum qed_attention_type {
  43	QED_ATTN_TYPE_ATTN,
  44	QED_ATTN_TYPE_PARITY,
  45};
  46
  47#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
  48	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
  49
  50struct aeu_invert_reg_bit {
  51	char bit_name[30];
  52
  53#define ATTENTION_PARITY                (1 << 0)
  54
  55#define ATTENTION_LENGTH_MASK           (0x00000ff0)
  56#define ATTENTION_LENGTH_SHIFT          (4)
  57#define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
  58					 ATTENTION_LENGTH_SHIFT)
  59#define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
  60#define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
  61#define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
  62					 ATTENTION_PARITY)
  63
  64/* Multiple bits start with this offset */
  65#define ATTENTION_OFFSET_MASK           (0x000ff000)
  66#define ATTENTION_OFFSET_SHIFT          (12)
  67
  68#define ATTENTION_BB_MASK               (0x00700000)
  69#define ATTENTION_BB_SHIFT              (20)
  70#define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
  71#define ATTENTION_BB_DIFFERENT          BIT(23)
  72
  73#define ATTENTION_CLEAR_ENABLE          BIT(28)
  74	unsigned int flags;
  75
  76	/* Callback to call if attention will be triggered */
  77	int (*cb)(struct qed_hwfn *p_hwfn);
  78
  79	enum block_id block_index;
  80};
  81
  82struct aeu_invert_reg {
  83	struct aeu_invert_reg_bit bits[32];
  84};
  85
  86#define MAX_ATTN_GRPS           (8)
  87#define NUM_ATTN_REGS           (9)
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89/* Specific HW attention callbacks */
  90static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
  91{
  92	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
  93
  94	/* This might occur on certain instances; Log it once then mask it */
  95	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
  96		tmp);
  97	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
  98	       0xffffffff);
  99
 100	return 0;
 101}
 102
 103#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
 104#define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
 105#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
 106#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
 107#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
 108#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
 109#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
 110#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
 111#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
 112#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
 113#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
 114#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
 115#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
 116static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
 117{
 118	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 119			 PSWHST_REG_INCORRECT_ACCESS_VALID);
 120
 121	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
 122		u32 addr, data, length;
 123
 124		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 125			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
 126		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 127			      PSWHST_REG_INCORRECT_ACCESS_DATA);
 128		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 129				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
 130
 131		DP_INFO(p_hwfn->cdev,
 132			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
 133			addr, length,
 134			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
 135			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
 136			(u8) GET_FIELD(data,
 137				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
 138			(u8) GET_FIELD(data,
 139				       ATTENTION_INCORRECT_ACCESS_CLIENT),
 140			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
 141			(u8) GET_FIELD(data,
 142				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
 143			data);
 144	}
 145
 146	return 0;
 147}
 148
 149#define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
 150#define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
 151#define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
 152#define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
 153#define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
 154#define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
 155#define QED_GRC_ATTENTION_PF_MASK	(0xf)
 156#define QED_GRC_ATTENTION_PF_SHIFT	(0)
 157#define QED_GRC_ATTENTION_VF_MASK	(0xff)
 158#define QED_GRC_ATTENTION_VF_SHIFT	(4)
 159#define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
 160#define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
 161#define QED_GRC_ATTENTION_PRIV_VF	(0)
 162static const char *attn_master_to_str(u8 master)
 163{
 164	switch (master) {
 165	case 1: return "PXP";
 166	case 2: return "MCP";
 167	case 3: return "MSDM";
 168	case 4: return "PSDM";
 169	case 5: return "YSDM";
 170	case 6: return "USDM";
 171	case 7: return "TSDM";
 172	case 8: return "XSDM";
 173	case 9: return "DBU";
 174	case 10: return "DMAE";
 175	default:
 176		return "Unknown";
 177	}
 178}
 179
 180static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
 181{
 182	u32 tmp, tmp2;
 183
 184	/* We've already cleared the timeout interrupt register, so we learn
 185	 * of interrupts via the validity register
 186	 */
 187	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 188		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
 189	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
 190		goto out;
 191
 192	/* Read the GRC timeout information */
 193	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 194		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
 195	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 196		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
 197
 198	DP_INFO(p_hwfn->cdev,
 199		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
 200		tmp2, tmp,
 201		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
 202		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
 203		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
 204		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
 205		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
 206		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
 207		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
 208
 209out:
 210	/* Regardles of anything else, clean the validity bit */
 211	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
 212	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
 213	return 0;
 214}
 215
 216#define PGLUE_ATTENTION_VALID			(1 << 29)
 217#define PGLUE_ATTENTION_RD_VALID		(1 << 26)
 218#define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
 219#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
 220#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
 221#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
 222#define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
 223#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
 224#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
 225#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
 226#define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
 227#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
 228#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
 229#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
 230#define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
 231#define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
 232#define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
 233
 234int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
 235				bool hw_init)
 236{
 237	char msg[256];
 238	u32 tmp;
 239
 240	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
 
 241	if (tmp & PGLUE_ATTENTION_VALID) {
 242		u32 addr_lo, addr_hi, details;
 243
 244		addr_lo = qed_rd(p_hwfn, p_ptt,
 245				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
 246		addr_hi = qed_rd(p_hwfn, p_ptt,
 247				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
 248		details = qed_rd(p_hwfn, p_ptt,
 249				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
 250
 251		snprintf(msg, sizeof(msg),
 252			 "Illegal write by chip to [%08x:%08x] blocked.\n"
 253			 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
 254			 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
 255			 addr_hi, addr_lo, details,
 256			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
 257			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
 258			 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
 259			 tmp,
 260			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
 261			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
 262			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
 263
 264		if (hw_init)
 265			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
 266		else
 267			DP_NOTICE(p_hwfn, "%s\n", msg);
 268	}
 269
 270	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
 
 271	if (tmp & PGLUE_ATTENTION_RD_VALID) {
 272		u32 addr_lo, addr_hi, details;
 273
 274		addr_lo = qed_rd(p_hwfn, p_ptt,
 275				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
 276		addr_hi = qed_rd(p_hwfn, p_ptt,
 277				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
 278		details = qed_rd(p_hwfn, p_ptt,
 279				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
 280
 281		DP_NOTICE(p_hwfn,
 282			  "Illegal read by chip from [%08x:%08x] blocked.\n"
 283			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
 284			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
 285			  addr_hi, addr_lo, details,
 286			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
 287			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
 288			  GET_FIELD(details,
 289				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
 290			  tmp,
 291			  GET_FIELD(tmp,
 292				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
 293			  GET_FIELD(tmp,
 294				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
 295			  GET_FIELD(tmp,
 296				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
 297	}
 298
 299	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
 300	if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
 301		snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
 302
 303		if (hw_init)
 304			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
 305		else
 306			DP_NOTICE(p_hwfn, "%s\n", msg);
 307	}
 308
 309	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
 
 
 
 
 
 
 310	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
 311		u32 addr_hi, addr_lo;
 312
 313		addr_lo = qed_rd(p_hwfn, p_ptt,
 314				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
 315		addr_hi = qed_rd(p_hwfn, p_ptt,
 316				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
 317
 318		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
 319			  tmp, addr_hi, addr_lo);
 320	}
 321
 322	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
 
 323	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
 324		u32 addr_hi, addr_lo, details;
 325
 326		addr_lo = qed_rd(p_hwfn, p_ptt,
 327				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
 328		addr_hi = qed_rd(p_hwfn, p_ptt,
 329				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
 330		details = qed_rd(p_hwfn, p_ptt,
 331				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
 332
 333		DP_NOTICE(p_hwfn,
 334			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
 335			  details, tmp, addr_hi, addr_lo);
 336	}
 337
 338	/* Clear the indications */
 339	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
 340
 341	return 0;
 342}
 343
 344static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
 345{
 346	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
 347}
 348
 349static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
 350{
 351	qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
 352			  "FW assertion!\n");
 353
 354	/* Clear assert indications */
 355	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0);
 356
 357	return -EINVAL;
 358}
 359
 360static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
 361{
 362	DP_INFO(p_hwfn, "General attention 35!\n");
 363
 364	return 0;
 365}
 366
 367#define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
 368#define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
 369#define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
 370#define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
 371#define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
 372
 373#define QED_DB_REC_COUNT                        1000
 374#define QED_DB_REC_INTERVAL                     100
 375
 376static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
 377				  struct qed_ptt *p_ptt)
 378{
 379	u32 count = QED_DB_REC_COUNT;
 380	u32 usage = 1;
 381
 382	/* Flush any pending (e)dpms as they may never arrive */
 383	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
 384
 385	/* wait for usage to zero or count to run out. This is necessary since
 386	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
 387	 * can "split" over the pci. Possibly, the doorbell drop can happen with
 388	 * half an EDPM in the queue and other half dropped. Another EDPM
 389	 * doorbell to the same address (from doorbell recovery mechanism or
 390	 * from the doorbelling entity) could have first half dropped and second
 391	 * half interpreted as continuation of the first. To prevent such
 392	 * malformed doorbells from reaching the device, flush the queue before
 393	 * releasing the overflow sticky indication.
 394	 */
 395	while (count-- && usage) {
 396		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
 397		udelay(QED_DB_REC_INTERVAL);
 398	}
 399
 400	/* should have been depleted by now */
 401	if (usage) {
 402		DP_NOTICE(p_hwfn->cdev,
 403			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
 404			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
 405		return -EBUSY;
 406	}
 407
 408	return 0;
 409}
 410
 411int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 412{
 413	u32 attn_ovfl, cur_ovfl;
 414	int rc;
 415
 416	attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
 417				       &p_hwfn->db_recovery_info.overflow);
 418	cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
 419	if (!cur_ovfl && !attn_ovfl)
 420		return 0;
 421
 422	DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
 423		  attn_ovfl, cur_ovfl);
 424
 425	if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
 426		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
 427		if (rc)
 428			return rc;
 429	}
 430
 431	/* Release overflow sticky indication (stop silently dropping everything) */
 432	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
 433
 434	/* Repeat all last doorbells (doorbell drop recovery) */
 435	qed_db_recovery_execute(p_hwfn);
 436
 437	return 0;
 438}
 439
 440static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
 441{
 442	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
 443	u32 overflow;
 444	int rc;
 445
 446	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
 447	if (!overflow)
 448		goto out;
 449
 450	/* Run PF doorbell recovery in next periodic handler */
 451	set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
 452
 453	if (!p_hwfn->db_bar_no_edpm) {
 454		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
 455		if (rc)
 456			goto out;
 457	}
 458
 459	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
 460out:
 461	/* Schedule the handler even if overflow was not detected */
 462	qed_periodic_db_rec_start(p_hwfn);
 463}
 464
 465static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
 466{
 467	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
 468	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
 469
 470	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
 471	if (int_sts == 0xdeadbeaf) {
 472		DP_NOTICE(p_hwfn->cdev,
 473			  "DORQ is being reset, skipping int_sts handler\n");
 474
 475		return 0;
 476	}
 477
 478	/* int_sts may be zero since all PFs were interrupted for doorbell
 479	 * overflow but another one already handled it. Can abort here. If
 480	 * This PF also requires overflow recovery we will be interrupted again.
 481	 * The masked almost full indication may also be set. Ignoring.
 482	 */
 483	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
 484		return 0;
 485
 486	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
 
 
 
 
 487
 488	/* check if db_drop or overflow happened */
 489	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
 490		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
 491		/* Obtain data about db drop/overflow */
 492		first_drop_reason = qed_rd(p_hwfn, p_ptt,
 493					   DORQ_REG_DB_DROP_REASON) &
 494		    QED_DORQ_ATTENTION_REASON_MASK;
 495		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
 496		address = qed_rd(p_hwfn, p_ptt,
 497				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
 498		all_drops_reason = qed_rd(p_hwfn, p_ptt,
 499					  DORQ_REG_DB_DROP_DETAILS_REASON);
 500
 501		/* Log info */
 502		DP_NOTICE(p_hwfn->cdev,
 503			  "Doorbell drop occurred\n"
 504			  "Address\t\t0x%08x\t(second BAR address)\n"
 505			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
 506			  "Size\t\t0x%04x\t\t(in bytes)\n"
 507			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
 508			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
 509			  address,
 510			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
 511			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
 512			  first_drop_reason, all_drops_reason);
 513
 514		/* Clear the doorbell drop details and prepare for next drop */
 515		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
 516
 517		/* Mark interrupt as handled (note: even if drop was due to a different
 518		 * reason than overflow we mark as handled)
 519		 */
 520		qed_wr(p_hwfn,
 521		       p_ptt,
 522		       DORQ_REG_INT_STS_WR,
 523		       DORQ_REG_INT_STS_DB_DROP |
 524		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
 525
 526		/* If there are no indications other than drop indications, success */
 527		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
 528				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
 529				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
 530			return 0;
 531	}
 532
 533	/* Some other indication was present - non recoverable */
 534	DP_INFO(p_hwfn, "DORQ fatal attention\n");
 535
 536	return -EINVAL;
 537}
 538
 539static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
 540{
 541	if (p_hwfn->cdev->recov_in_prog)
 542		return 0;
 543
 544	p_hwfn->db_recovery_info.dorq_attn = true;
 545	qed_dorq_attn_overflow(p_hwfn);
 546
 547	return qed_dorq_attn_int_sts(p_hwfn);
 548}
 549
 550static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
 551{
 552	if (p_hwfn->db_recovery_info.dorq_attn)
 553		goto out;
 554
 555	/* Call DORQ callback if the attention was missed */
 556	qed_dorq_attn_cb(p_hwfn);
 557out:
 558	p_hwfn->db_recovery_info.dorq_attn = false;
 559}
 560
 561/* Instead of major changes to the data-structure, we have a some 'special'
 562 * identifiers for sources that changed meaning between adapters.
 563 */
 564enum aeu_invert_reg_special_type {
 565	AEU_INVERT_REG_SPECIAL_CNIG_0,
 566	AEU_INVERT_REG_SPECIAL_CNIG_1,
 567	AEU_INVERT_REG_SPECIAL_CNIG_2,
 568	AEU_INVERT_REG_SPECIAL_CNIG_3,
 569	AEU_INVERT_REG_SPECIAL_MAX,
 570};
 571
 572static struct aeu_invert_reg_bit
 573aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
 574	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 575	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 576	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 577	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
 578};
 579
 580/* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
 581static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
 582	{
 583		{       /* After Invert 1 */
 584			{"GPIO0 function%d",
 585			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
 586		}
 587	},
 588
 589	{
 590		{       /* After Invert 2 */
 591			{"PGLUE config_space", ATTENTION_SINGLE,
 592			 NULL, MAX_BLOCK_ID},
 593			{"PGLUE misc_flr", ATTENTION_SINGLE,
 594			 NULL, MAX_BLOCK_ID},
 595			{"PGLUE B RBC", ATTENTION_PAR_INT,
 596			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
 597			{"PGLUE misc_mctp", ATTENTION_SINGLE,
 598			 NULL, MAX_BLOCK_ID},
 599			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 600			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
 601			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 602			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
 603					  (1 << ATTENTION_OFFSET_SHIFT),
 604			 NULL, MAX_BLOCK_ID},
 605			{"PCIE glue/PXP VPD %d",
 606			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
 607		}
 608	},
 609
 610	{
 611		{       /* After Invert 3 */
 612			{"General Attention %d",
 613			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
 614		}
 615	},
 616
 617	{
 618		{       /* After Invert 4 */
 619			{"General Attention 32", ATTENTION_SINGLE |
 620			 ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
 621			 MAX_BLOCK_ID},
 622			{"General Attention %d",
 623			 (2 << ATTENTION_LENGTH_SHIFT) |
 624			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
 625			{"General Attention 35", ATTENTION_SINGLE |
 626			 ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
 627			 MAX_BLOCK_ID},
 628			{"NWS Parity",
 629			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
 630			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
 631			 NULL, BLOCK_NWS},
 632			{"NWS Interrupt",
 633			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
 634			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
 635			 NULL, BLOCK_NWS},
 636			{"NWM Parity",
 637			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
 638			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
 639			 NULL, BLOCK_NWM},
 640			{"NWM Interrupt",
 641			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
 642			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
 643			 NULL, BLOCK_NWM},
 644			{"MCP CPU", ATTENTION_SINGLE,
 645			 qed_mcp_attn_cb, MAX_BLOCK_ID},
 646			{"MCP Watchdog timer", ATTENTION_SINGLE,
 647			 NULL, MAX_BLOCK_ID},
 648			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
 649			{"AVS stop status ready", ATTENTION_SINGLE,
 650			 NULL, MAX_BLOCK_ID},
 651			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
 652			{"MSTAT per-path", ATTENTION_PAR_INT,
 653			 NULL, MAX_BLOCK_ID},
 654			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
 655			 NULL, MAX_BLOCK_ID},
 656			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
 657			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
 658			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
 659			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
 660			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
 661		}
 662	},
 663
 664	{
 665		{       /* After Invert 5 */
 666			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
 667			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
 668			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
 669			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
 670			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
 671			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
 672			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
 673			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
 674			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
 675			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
 676			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
 677			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
 678			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
 679			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
 680			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
 681			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
 682		}
 683	},
 684
 685	{
 686		{       /* After Invert 6 */
 687			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
 688			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
 689			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
 690			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
 691			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
 692			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
 693			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
 694			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
 695			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
 696			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
 697			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
 698			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
 699			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
 700			{"DORQ", ATTENTION_PAR_INT,
 701			 qed_dorq_attn_cb, BLOCK_DORQ},
 702			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
 703			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
 704		}
 705	},
 706
 707	{
 708		{       /* After Invert 7 */
 709			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
 710			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
 711			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
 712			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
 713			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
 714			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
 715			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
 716			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
 717			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
 718			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
 719			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
 720			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
 721			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
 722			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
 723			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
 724			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
 725			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
 726		}
 727	},
 728
 729	{
 730		{       /* After Invert 8 */
 731			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
 732			 NULL, BLOCK_PSWRQ2},
 733			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
 734			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
 735			 NULL, BLOCK_PSWWR2},
 736			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
 737			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
 738			 NULL, BLOCK_PSWRD2},
 739			{"PSWHST", ATTENTION_PAR_INT,
 740			 qed_pswhst_attn_cb, BLOCK_PSWHST},
 741			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
 742			 NULL, BLOCK_PSWHST2},
 743			{"GRC",	ATTENTION_PAR_INT,
 744			 qed_grc_attn_cb, BLOCK_GRC},
 745			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
 746			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
 747			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 748			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 749			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 750			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 751			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 752			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
 753			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
 754			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
 755			 NULL, BLOCK_PGLCS},
 756			{"PERST_B assertion", ATTENTION_SINGLE,
 757			 NULL, MAX_BLOCK_ID},
 758			{"PERST_B deassertion", ATTENTION_SINGLE,
 759			 NULL, MAX_BLOCK_ID},
 760			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
 761			 NULL, MAX_BLOCK_ID},
 762		}
 763	},
 764
 765	{
 766		{       /* After Invert 9 */
 767			{"MCP Latched memory", ATTENTION_PAR,
 768			 NULL, MAX_BLOCK_ID},
 769			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
 770			 NULL, MAX_BLOCK_ID},
 771			{"MCP Latched ump_tx", ATTENTION_PAR,
 772			 NULL, MAX_BLOCK_ID},
 773			{"MCP Latched scratchpad", ATTENTION_PAR,
 774			 NULL, MAX_BLOCK_ID},
 775			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
 776			 NULL, MAX_BLOCK_ID},
 777		}
 778	},
 779};
 780
 781static struct aeu_invert_reg_bit *
 782qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
 783		      struct aeu_invert_reg_bit *p_bit)
 784{
 785	if (!QED_IS_BB(p_hwfn->cdev))
 786		return p_bit;
 787
 788	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
 789		return p_bit;
 790
 791	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
 792				  ATTENTION_BB_SHIFT];
 793}
 794
 795static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
 796				   struct aeu_invert_reg_bit *p_bit)
 797{
 798	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
 799		   ATTENTION_PARITY);
 800}
 801
 802#define ATTN_STATE_BITS         (0xfff)
 803#define ATTN_BITS_MASKABLE      (0x3ff)
 804struct qed_sb_attn_info {
 805	/* Virtual & Physical address of the SB */
 806	struct atten_status_block       *sb_attn;
 807	dma_addr_t			sb_phys;
 808
 809	/* Last seen running index */
 810	u16				index;
 811
 812	/* A mask of the AEU bits resulting in a parity error */
 813	u32				parity_mask[NUM_ATTN_REGS];
 814
 815	/* A pointer to the attention description structure */
 816	struct aeu_invert_reg		*p_aeu_desc;
 817
 818	/* Previously asserted attentions, which are still unasserted */
 819	u16				known_attn;
 820
 821	/* Cleanup address for the link's general hw attention */
 822	u32				mfw_attn_addr;
 823};
 824
 825static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
 826				      struct qed_sb_attn_info *p_sb_desc)
 827{
 828	u16 rc = 0, index;
 
 
 
 
 829
 830	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
 831	if (p_sb_desc->index != index) {
 832		p_sb_desc->index	= index;
 833		rc		      = QED_SB_ATT_IDX;
 834	}
 835
 
 
 
 836	return rc;
 837}
 838
 839/**
 840 * qed_int_assertion() - Handle asserted attention bits.
 841 *
 842 * @p_hwfn: HW device data.
 843 * @asserted_bits: Newly asserted bits.
 844 *
 845 * Return: Zero value.
 
 
 846 */
 847static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
 
 848{
 849	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
 850	u32 igu_mask;
 851
 852	/* Mask the source of the attention in the IGU */
 853	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
 
 854	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
 855		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
 856	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
 857	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
 858
 859	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
 860		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
 861		   sb_attn_sw->known_attn,
 862		   sb_attn_sw->known_attn | asserted_bits);
 863	sb_attn_sw->known_attn |= asserted_bits;
 864
 865	/* Handle MCP events */
 866	if (asserted_bits & 0x100) {
 867		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
 868		/* Clean the MCP attention */
 869		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
 870		       sb_attn_sw->mfw_attn_addr, 0);
 871	}
 872
 873	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
 874		      GTT_BAR0_MAP_REG_IGU_CMD +
 875		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
 876			IGU_CMD_INT_ACK_BASE) << 3),
 877		      (u32)asserted_bits);
 878
 879	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
 880		   asserted_bits);
 881
 882	return 0;
 883}
 884
 885static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
 886			       enum block_id id,
 887			       enum dbg_attn_type type, bool b_clear)
 888{
 889	struct dbg_attn_block_result attn_results;
 890	enum dbg_status status;
 891
 892	memset(&attn_results, 0, sizeof(attn_results));
 893
 894	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
 895				   b_clear, &attn_results);
 896	if (status != DBG_STATUS_OK)
 897		DP_NOTICE(p_hwfn,
 898			  "Failed to parse attention information [status: %s]\n",
 899			  qed_dbg_get_status_str(status));
 900	else
 901		qed_dbg_parse_attn(p_hwfn, &attn_results);
 
 
 
 902}
 903
 904/**
 905 * qed_int_deassertion_aeu_bit() - Handles the effects of a single
 906 * cause of the attention.
 907 *
 908 * @p_hwfn: HW device data.
 909 * @p_aeu: Descriptor of an AEU bit which caused the attention.
 910 * @aeu_en_reg: Register offset of the AEU enable reg. which configured
 911 *              this bit to this group.
 912 * @p_bit_name: AEU bit description for logging purposes.
 913 * @bitmask: Index of this bit in the aeu_en_reg.
 914 *
 915 * Return: Zero on success, negative errno otherwise.
 916 */
 917static int
 918qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
 919			    struct aeu_invert_reg_bit *p_aeu,
 920			    u32 aeu_en_reg,
 921			    const char *p_bit_name, u32 bitmask)
 922{
 923	bool b_fatal = false;
 924	int rc = -EINVAL;
 925	u32 val;
 926
 927	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
 928		p_bit_name, bitmask);
 929
 930	/* Call callback before clearing the interrupt status */
 931	if (p_aeu->cb) {
 932		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
 933			p_bit_name);
 934		rc = p_aeu->cb(p_hwfn);
 935	}
 936
 937	if (rc)
 938		b_fatal = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	/* Print HW block interrupt registers */
 941	if (p_aeu->block_index != MAX_BLOCK_ID)
 942		qed_int_attn_print(p_hwfn, p_aeu->block_index,
 943				   ATTN_TYPE_INTERRUPT, !b_fatal);
 944
 945	/* Reach assertion if attention is fatal */
 946	if (b_fatal)
 947		qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
 948				  "`%s': Fatal attention\n",
 949				  p_bit_name);
 950	else /* If the attention is benign, no need to prevent it */
 951		goto out;
 952
 953	/* Prevent this Attention from being asserted in the future */
 954	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
 955	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
 956	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
 957		p_bit_name);
 958
 959	/* Re-enable FW aassertion (Gen 32) interrupts */
 960	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
 961		     MISC_REG_AEU_ENABLE4_IGU_OUT_0);
 962	val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32;
 963	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
 964	       MISC_REG_AEU_ENABLE4_IGU_OUT_0, val);
 965
 966out:
 967	return rc;
 968}
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970/**
 971 * qed_int_deassertion_parity() - Handle a single parity AEU source.
 972 *
 973 * @p_hwfn: HW device data.
 974 * @p_aeu: Descriptor of an AEU bit which caused the parity.
 975 * @aeu_en_reg: Address of the AEU enable register.
 976 * @bit_index: Index (0-31) of an AEU bit.
 977 */
 978static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
 979				       struct aeu_invert_reg_bit *p_aeu,
 980				       u32 aeu_en_reg, u8 bit_index)
 981{
 982	u32 block_id = p_aeu->block_index, mask, val;
 983
 984	DP_NOTICE(p_hwfn->cdev,
 985		  "%s parity attention is set [address 0x%08x, bit %d]\n",
 986		  p_aeu->bit_name, aeu_en_reg, bit_index);
 987
 988	if (block_id != MAX_BLOCK_ID) {
 989		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
 
 990
 991		/* In BB, there's a single parity bit for several blocks */
 992		if (block_id == BLOCK_BTB) {
 993			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
 994					   ATTN_TYPE_PARITY, false);
 995			qed_int_attn_print(p_hwfn, BLOCK_MCP,
 996					   ATTN_TYPE_PARITY, false);
 
 
 997		}
 998	}
 999
1000	/* Prevent this parity error from being re-asserted */
1001	mask = ~BIT(bit_index);
1002	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1003	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
1004	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
1005		p_aeu->bit_name);
1006}
1007
1008/**
1009 * qed_int_deassertion() - Handle deassertion of previously asserted
1010 * attentions.
1011 *
1012 * @p_hwfn: HW device data.
1013 * @deasserted_bits: newly deasserted bits.
 
1014 *
1015 * Return: Zero value.
1016 */
1017static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
1018			       u16 deasserted_bits)
1019{
1020	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1021	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
1022	u8 i, j, k, bit_idx;
1023	int rc = 0;
1024
1025	/* Read the attention registers in the AEU */
1026	for (i = 0; i < NUM_ATTN_REGS; i++) {
1027		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1028					MISC_REG_AEU_AFTER_INVERT_1_IGU +
1029					i * 0x4);
1030		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1031			   "Deasserted bits [%d]: %08x\n",
1032			   i, aeu_inv_arr[i]);
1033	}
1034
1035	/* Find parity attentions first */
1036	for (i = 0; i < NUM_ATTN_REGS; i++) {
1037		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
 
 
 
1038		u32 parities;
1039
1040		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1041		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1042
1043		/* Skip register in which no parity bit is currently set */
1044		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1045		if (!parities)
1046			continue;
1047
1048		for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
1049			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1050
1051			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1052			    !!(parities & BIT(bit_idx)))
1053				qed_int_deassertion_parity(p_hwfn, p_bit,
1054							   aeu_en, bit_idx);
1055
1056			bit_idx += ATTENTION_LENGTH(p_bit->flags);
1057		}
1058	}
1059
1060	/* Find non-parity cause for attention and act */
1061	for (k = 0; k < MAX_ATTN_GRPS; k++) {
1062		struct aeu_invert_reg_bit *p_aeu;
1063
1064		/* Handle only groups whose attention is currently deasserted */
1065		if (!(deasserted_bits & (1 << k)))
1066			continue;
1067
1068		for (i = 0; i < NUM_ATTN_REGS; i++) {
1069			u32 bits;
1070
1071			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1072				 i * sizeof(u32) +
1073				 k * sizeof(u32) * NUM_ATTN_REGS;
1074
1075			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1076			bits = aeu_inv_arr[i] & en;
1077
1078			/* Skip if no bit from this group is currently set */
1079			if (!bits)
1080				continue;
1081
1082			/* Find all set bits from current register which belong
1083			 * to current group, making them responsible for the
1084			 * previous assertion.
1085			 */
1086			for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
1087				long unsigned int bitmask;
1088				u8 bit, bit_len;
 
1089
1090				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1091				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
 
 
 
1092
1093				bit = bit_idx;
1094				bit_len = ATTENTION_LENGTH(p_aeu->flags);
1095				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1096					/* Skip Parity */
1097					bit++;
1098					bit_len--;
1099				}
1100
1101				bitmask = bits & (((1 << bit_len) - 1) << bit);
1102				bitmask >>= bit;
1103
1104				if (bitmask) {
1105					u32 flags = p_aeu->flags;
1106					char bit_name[30];
1107					u8 num;
1108
1109					num = (u8)find_first_bit(&bitmask,
1110								 bit_len);
1111
1112					/* Some bits represent more than a
1113					 * single interrupt. Correctly print
1114					 * their name.
1115					 */
1116					if (ATTENTION_LENGTH(flags) > 2 ||
1117					    ((flags & ATTENTION_PAR_INT) &&
1118					     ATTENTION_LENGTH(flags) > 1))
1119						snprintf(bit_name, 30,
1120							 p_aeu->bit_name, num);
1121					else
1122						strscpy(bit_name,
1123							p_aeu->bit_name, 30);
1124
1125					/* We now need to pass bitmask in its
1126					 * correct position.
1127					 */
1128					bitmask <<= bit;
1129
1130					/* Handle source of the attention */
1131					qed_int_deassertion_aeu_bit(p_hwfn,
1132								    p_aeu,
1133								    aeu_en,
1134								    bit_name,
1135								    bitmask);
1136				}
1137
1138				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1139			}
1140		}
1141	}
1142
1143	/* Handle missed DORQ attention */
1144	qed_dorq_attn_handler(p_hwfn);
1145
1146	/* Clear IGU indication for the deasserted bits */
1147	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1148				    GTT_BAR0_MAP_REG_IGU_CMD +
1149				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1150				      IGU_CMD_INT_ACK_BASE) << 3),
1151				    ~((u32)deasserted_bits));
1152
1153	/* Unmask deasserted attentions in IGU */
1154	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
 
1155	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1156	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1157
1158	/* Clear deassertion from inner state */
1159	sb_attn_sw->known_attn &= ~deasserted_bits;
1160
1161	return rc;
1162}
1163
1164static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1165{
1166	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1167	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1168	u32 attn_bits = 0, attn_acks = 0;
1169	u16 asserted_bits, deasserted_bits;
1170	__le16 index;
1171	int rc = 0;
1172
1173	/* Read current attention bits/acks - safeguard against attentions
1174	 * by guaranting work on a synchronized timeframe
1175	 */
1176	do {
1177		index = p_sb_attn->sb_index;
1178		/* finish reading index before the loop condition */
1179		dma_rmb();
1180		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1181		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1182	} while (index != p_sb_attn->sb_index);
1183	p_sb_attn->sb_index = index;
1184
1185	/* Attention / Deassertion are meaningful (and in correct state)
1186	 * only when they differ and consistent with known state - deassertion
1187	 * when previous attention & current ack, and assertion when current
1188	 * attention with no previous attention
1189	 */
1190	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1191		~p_sb_attn_sw->known_attn;
1192	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1193		p_sb_attn_sw->known_attn;
1194
1195	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1196		DP_INFO(p_hwfn,
1197			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1198			index, attn_bits, attn_acks, asserted_bits,
1199			deasserted_bits, p_sb_attn_sw->known_attn);
1200	} else if (asserted_bits == 0x100) {
1201		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1202			   "MFW indication via attention\n");
1203	} else {
1204		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1205			   "MFW indication [deassertion]\n");
1206	}
1207
1208	if (asserted_bits) {
1209		rc = qed_int_assertion(p_hwfn, asserted_bits);
1210		if (rc)
1211			return rc;
1212	}
1213
1214	if (deasserted_bits)
1215		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
 
 
 
1216
1217	return rc;
1218}
1219
1220static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1221			    void __iomem *igu_addr, u32 ack_cons)
 
1222{
1223	u32 igu_ack;
1224
1225	igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1226		   (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1227		   (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1228		   (IGU_SEG_ACCESS_ATTN <<
1229		    IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
 
1230
1231	DIRECT_REG_WR(igu_addr, igu_ack);
1232
1233	/* Both segments (interrupts & acks) are written to same place address;
1234	 * Need to guarantee all commands will be received (in-order) by HW.
1235	 */
 
1236	barrier();
1237}
1238
1239void qed_int_sp_dpc(struct tasklet_struct *t)
1240{
1241	struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
1242	struct qed_pi_info *pi_info = NULL;
1243	struct qed_sb_attn_info *sb_attn;
1244	struct qed_sb_info *sb_info;
1245	int arr_size;
1246	u16 rc = 0;
1247
1248	if (!p_hwfn->p_sp_sb) {
1249		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1250		return;
1251	}
1252
1253	sb_info = &p_hwfn->p_sp_sb->sb_info;
1254	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1255	if (!sb_info) {
1256		DP_ERR(p_hwfn->cdev,
1257		       "Status block is NULL - cannot ack interrupts\n");
1258		return;
1259	}
1260
1261	if (!p_hwfn->p_sb_attn) {
1262		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1263		return;
1264	}
1265	sb_attn = p_hwfn->p_sb_attn;
1266
1267	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1268		   p_hwfn, p_hwfn->my_id);
1269
1270	/* Disable ack for def status block. Required both for msix +
1271	 * inta in non-mask mode, in inta does no harm.
1272	 */
1273	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1274
1275	/* Gather Interrupts/Attentions information */
1276	if (!sb_info->sb_virt) {
1277		DP_ERR(p_hwfn->cdev,
1278		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
 
1279	} else {
1280		u32 tmp_index = sb_info->sb_ack;
1281
1282		rc = qed_sb_update_sb_idx(sb_info);
1283		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1284			   "Interrupt indices: 0x%08x --> 0x%08x\n",
1285			   tmp_index, sb_info->sb_ack);
1286	}
1287
1288	if (!sb_attn || !sb_attn->sb_attn) {
1289		DP_ERR(p_hwfn->cdev,
1290		       "Attentions Status block is NULL - cannot check for new attentions!\n");
 
1291	} else {
1292		u16 tmp_index = sb_attn->index;
1293
1294		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1295		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1296			   "Attention indices: 0x%08x --> 0x%08x\n",
1297			   tmp_index, sb_attn->index);
1298	}
1299
1300	/* Check if we expect interrupts at this time. if not just ack them */
1301	if (!(rc & QED_SB_EVENT_MASK)) {
1302		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1303		return;
1304	}
1305
1306	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
1307	if (!p_hwfn->p_dpc_ptt) {
1308		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1309		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1310		return;
1311	}
1312
1313	if (rc & QED_SB_ATT_IDX)
1314		qed_int_attentions(p_hwfn);
1315
1316	if (rc & QED_SB_IDX) {
1317		int pi;
1318
1319		/* Look for a free index */
1320		for (pi = 0; pi < arr_size; pi++) {
1321			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1322			if (pi_info->comp_cb)
1323				pi_info->comp_cb(p_hwfn, pi_info->cookie);
1324		}
1325	}
1326
1327	if (sb_attn && (rc & QED_SB_ATT_IDX))
1328		/* This should be done before the interrupts are enabled,
1329		 * since otherwise a new attention will be generated.
1330		 */
1331		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1332
1333	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1334}
1335
1336static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1337{
1338	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1339
1340	if (!p_sb)
1341		return;
1342
1343	if (p_sb->sb_attn)
1344		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1345				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
1346				  p_sb->sb_attn, p_sb->sb_phys);
 
1347	kfree(p_sb);
1348	p_hwfn->p_sb_attn = NULL;
1349}
1350
1351static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1352				  struct qed_ptt *p_ptt)
1353{
1354	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1355
1356	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1357
1358	sb_info->index = 0;
1359	sb_info->known_attn = 0;
1360
1361	/* Configure Attention Status Block in IGU */
1362	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1363	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1364	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1365	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1366}
1367
1368static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1369				 struct qed_ptt *p_ptt,
1370				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
 
1371{
1372	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1373	int i, j, k;
1374
1375	sb_info->sb_attn = sb_virt_addr;
1376	sb_info->sb_phys = sb_phy_addr;
1377
1378	/* Set the pointer to the AEU descriptors */
1379	sb_info->p_aeu_desc = aeu_descs;
1380
1381	/* Calculate Parity Masks */
1382	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1383	for (i = 0; i < NUM_ATTN_REGS; i++) {
1384		/* j is array index, k is bit index */
1385		for (j = 0, k = 0; k < 32 && j < 32; j++) {
1386			struct aeu_invert_reg_bit *p_aeu;
1387
1388			p_aeu = &aeu_descs[i].bits[j];
1389			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1390				sb_info->parity_mask[i] |= 1 << k;
1391
1392			k += ATTENTION_LENGTH(p_aeu->flags);
1393		}
1394		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1395			   "Attn Mask [Reg %d]: 0x%08x\n",
1396			   i, sb_info->parity_mask[i]);
1397	}
1398
1399	/* Set the address of cleanup for the mcp attention */
1400	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1401				 MISC_REG_AEU_GENERAL_ATTN_0;
1402
1403	qed_int_sb_attn_setup(p_hwfn, p_ptt);
1404}
1405
1406static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1407				 struct qed_ptt *p_ptt)
1408{
1409	struct qed_dev *cdev = p_hwfn->cdev;
1410	struct qed_sb_attn_info *p_sb;
1411	dma_addr_t p_phys = 0;
1412	void *p_virt;
 
1413
1414	/* SB struct */
1415	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1416	if (!p_sb)
 
1417		return -ENOMEM;
 
1418
1419	/* SB ring  */
1420	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1421				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
1422				    &p_phys, GFP_KERNEL);
1423
1424	if (!p_virt) {
 
1425		kfree(p_sb);
1426		return -ENOMEM;
1427	}
1428
1429	/* Attention setup */
1430	p_hwfn->p_sb_attn = p_sb;
1431	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1432
1433	return 0;
1434}
1435
1436/* coalescing timeout = timeset << (timer_res + 1) */
1437#define QED_CAU_DEF_RX_USECS 24
1438#define QED_CAU_DEF_TX_USECS 48
1439
1440void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1441			   struct cau_sb_entry *p_sb_entry,
1442			   u8 pf_id, u16 vf_number, u8 vf_valid)
 
 
1443{
1444	struct qed_dev *cdev = p_hwfn->cdev;
1445	u32 cau_state, params = 0, data = 0;
1446	u8 timer_res;
1447
1448	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1449
1450	SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1451	SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1452	SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1453	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1454	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
 
 
 
 
 
 
1455
1456	cau_state = CAU_HC_DISABLE_STATE;
1457
1458	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1459		cau_state = CAU_HC_ENABLE_STATE;
1460		if (!cdev->rx_coalesce_usecs)
1461			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1462		if (!cdev->tx_coalesce_usecs)
1463			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1464	}
1465
1466	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1467	if (cdev->rx_coalesce_usecs <= 0x7F)
1468		timer_res = 0;
1469	else if (cdev->rx_coalesce_usecs <= 0xFF)
1470		timer_res = 1;
1471	else
1472		timer_res = 2;
1473
1474	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1475
1476	if (cdev->tx_coalesce_usecs <= 0x7F)
1477		timer_res = 0;
1478	else if (cdev->tx_coalesce_usecs <= 0xFF)
1479		timer_res = 1;
1480	else
1481		timer_res = 2;
1482
1483	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1484	p_sb_entry->params = cpu_to_le32(params);
1485
1486	SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
1487	SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
1488	p_sb_entry->data = cpu_to_le32(data);
1489}
1490
1491static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1492				struct qed_ptt *p_ptt,
1493				u16 igu_sb_id,
1494				u32 pi_index,
1495				enum qed_coalescing_fsm coalescing_fsm,
1496				u8 timeset)
1497{
1498	u32 sb_offset, pi_offset;
1499	u32 prod = 0;
1500
1501	if (IS_VF(p_hwfn->cdev))
1502		return;
1503
1504	SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1505	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1506		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
1507	else
1508		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
1509
1510	sb_offset = igu_sb_id * PIS_PER_SB;
1511	pi_offset = sb_offset + pi_index;
1512
1513	if (p_hwfn->hw_init_done)
1514		qed_wr(p_hwfn, p_ptt,
1515		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
1516	else
1517		STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1518			     prod);
1519}
1520
1521void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1522			 struct qed_ptt *p_ptt,
1523			 dma_addr_t sb_phys,
1524			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
 
 
1525{
1526	struct cau_sb_entry sb_entry;
1527
1528	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1529			      vf_number, vf_valid);
1530
1531	if (p_hwfn->hw_init_done) {
1532		/* Wide-bus, initialize via DMAE */
1533		u64 phys_addr = (u64)sb_phys;
1534
1535		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1536				  CAU_REG_SB_ADDR_MEMORY +
1537				  igu_sb_id * sizeof(u64), 2, NULL);
1538		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1539				  CAU_REG_SB_VAR_MEMORY +
1540				  igu_sb_id * sizeof(u64), 2, NULL);
1541	} else {
1542		/* Initialize Status Block Address */
1543		STORE_RT_REG_AGG(p_hwfn,
1544				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1545				 igu_sb_id * 2,
1546				 sb_phys);
1547
1548		STORE_RT_REG_AGG(p_hwfn,
1549				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1550				 igu_sb_id * 2,
1551				 sb_entry);
1552	}
1553
1554	/* Configure pi coalescing if set */
1555	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1556		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1557		u8 timeset, timer_res;
1558		u8 i;
1559
1560		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1561		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1562			timer_res = 0;
1563		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1564			timer_res = 1;
1565		else
1566			timer_res = 2;
1567		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1568		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1569				    QED_COAL_RX_STATE_MACHINE, timeset);
 
 
 
 
1570
1571		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1572			timer_res = 0;
1573		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1574			timer_res = 1;
1575		else
1576			timer_res = 2;
1577		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1578		for (i = 0; i < num_tc; i++) {
1579			qed_int_cau_conf_pi(p_hwfn, p_ptt,
1580					    igu_sb_id, TX_PI(i),
1581					    QED_COAL_TX_STATE_MACHINE,
1582					    timeset);
1583		}
1584	}
1585}
1586
1587void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1588		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1589{
1590	/* zero status block and ack counter */
1591	sb_info->sb_ack = 0;
1592	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1593
1594	if (IS_PF(p_hwfn->cdev))
1595		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1596				    sb_info->igu_sb_id, 0, 0);
1597}
1598
1599struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1600{
1601	struct qed_igu_block *p_block;
1602	u16 igu_id;
1603
1604	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1605	     igu_id++) {
1606		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1607
1608		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1609		    !(p_block->status & QED_IGU_STATUS_FREE))
1610			continue;
 
 
1611
1612		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1613			return p_block;
 
 
 
 
 
 
 
1614	}
1615
1616	return NULL;
1617}
1618
1619static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
 
 
1620{
1621	struct qed_igu_block *p_block;
1622	u16 igu_id;
1623
1624	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1625	     igu_id++) {
1626		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1627
1628		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1629		    !p_block->is_pf ||
1630		    p_block->vector_number != vector_id)
1631			continue;
1632
1633		return igu_id;
1634	}
1635
1636	return QED_SB_INVALID_IDX;
 
1637}
1638
1639u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
 
 
 
 
 
 
 
 
 
 
1640{
1641	u16 igu_sb_id;
1642
1643	/* Assuming continuous set of IGU SBs dedicated for given PF */
1644	if (sb_id == QED_SP_SB_ID)
1645		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1646	else if (IS_PF(p_hwfn->cdev))
1647		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1648	else
1649		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1650
1651	if (sb_id == QED_SP_SB_ID)
1652		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1653			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1654	else
1655		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1656			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1657
1658	return igu_sb_id;
1659}
1660
1661int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1662		    struct qed_ptt *p_ptt,
1663		    struct qed_sb_info *sb_info,
1664		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
 
 
1665{
1666	sb_info->sb_virt = sb_virt_addr;
1667	sb_info->sb_phys = sb_phy_addr;
1668
1669	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1670
1671	if (sb_id != QED_SP_SB_ID) {
1672		if (IS_PF(p_hwfn->cdev)) {
1673			struct qed_igu_info *p_info;
1674			struct qed_igu_block *p_block;
1675
1676			p_info = p_hwfn->hw_info.p_igu_info;
1677			p_block = &p_info->entry[sb_info->igu_sb_id];
1678
1679			p_block->sb_info = sb_info;
1680			p_block->status &= ~QED_IGU_STATUS_FREE;
1681			p_info->usage.free_cnt--;
1682		} else {
1683			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1684		}
1685	}
1686
1687	sb_info->cdev = p_hwfn->cdev;
1688
1689	/* The igu address will hold the absolute address that needs to be
1690	 * written to for a specific status block
1691	 */
1692	if (IS_PF(p_hwfn->cdev)) {
1693		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1694						  GTT_BAR0_MAP_REG_IGU_CMD +
1695						  (sb_info->igu_sb_id << 3);
1696	} else {
1697		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1698						  PXP_VF_BAR0_START_IGU +
1699						  ((IGU_CMD_INT_ACK_BASE +
1700						    sb_info->igu_sb_id) << 3);
1701	}
1702
1703	sb_info->flags |= QED_SB_INFO_INIT;
1704
1705	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1706
1707	return 0;
1708}
1709
1710int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1711		       struct qed_sb_info *sb_info, u16 sb_id)
 
1712{
1713	struct qed_igu_block *p_block;
1714	struct qed_igu_info *p_info;
1715
1716	if (!sb_info)
1717		return 0;
1718
1719	/* zero status block and ack counter */
1720	sb_info->sb_ack = 0;
1721	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1722
1723	if (IS_VF(p_hwfn->cdev)) {
1724		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1725		return 0;
1726	}
1727
1728	p_info = p_hwfn->hw_info.p_igu_info;
1729	p_block = &p_info->entry[sb_info->igu_sb_id];
1730
1731	/* Vector 0 is reserved to Default SB */
1732	if (!p_block->vector_number) {
1733		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1734		return -EINVAL;
1735	}
1736
1737	/* Lose reference to client's SB info, and fix counters */
1738	p_block->sb_info = NULL;
1739	p_block->status |= QED_IGU_STATUS_FREE;
1740	p_info->usage.free_cnt++;
1741
1742	return 0;
1743}
1744
1745static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1746{
1747	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1748
1749	if (!p_sb)
1750		return;
1751
1752	if (p_sb->sb_info.sb_virt)
1753		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1754				  SB_ALIGNED_SIZE(p_hwfn),
1755				  p_sb->sb_info.sb_virt,
1756				  p_sb->sb_info.sb_phys);
1757	kfree(p_sb);
1758	p_hwfn->p_sp_sb = NULL;
1759}
1760
1761static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 
1762{
1763	struct qed_sb_sp_info *p_sb;
1764	dma_addr_t p_phys = 0;
1765	void *p_virt;
1766
1767	/* SB struct */
1768	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1769	if (!p_sb)
 
1770		return -ENOMEM;
 
1771
1772	/* SB ring  */
1773	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1774				    SB_ALIGNED_SIZE(p_hwfn),
1775				    &p_phys, GFP_KERNEL);
1776	if (!p_virt) {
 
1777		kfree(p_sb);
1778		return -ENOMEM;
1779	}
1780
1781	/* Status Block setup */
1782	p_hwfn->p_sp_sb = p_sb;
1783	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1784			p_phys, QED_SP_SB_ID);
1785
1786	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1787
1788	return 0;
1789}
1790
1791int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1792			qed_int_comp_cb_t comp_cb,
1793			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
 
 
1794{
1795	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1796	int rc = -ENOMEM;
1797	u8 pi;
1798
1799	/* Look for a free index */
1800	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1801		if (p_sp_sb->pi_info_arr[pi].comp_cb)
1802			continue;
1803
1804		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1805		p_sp_sb->pi_info_arr[pi].cookie = cookie;
1806		*sb_idx = pi;
1807		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1808		rc = 0;
1809		break;
1810	}
1811
1812	return rc;
1813}
1814
1815int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1816{
1817	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1818
1819	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1820		return -ENOMEM;
1821
1822	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1823	p_sp_sb->pi_info_arr[pi].cookie = NULL;
1824
1825	return 0;
1826}
1827
1828u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1829{
1830	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1831}
1832
1833void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1834			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
 
1835{
1836	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1837
1838	p_hwfn->cdev->int_mode = int_mode;
1839	switch (p_hwfn->cdev->int_mode) {
1840	case QED_INT_MODE_INTA:
1841		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1842		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1843		break;
1844
1845	case QED_INT_MODE_MSI:
1846		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1847		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1848		break;
1849
1850	case QED_INT_MODE_MSIX:
1851		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1852		break;
1853	case QED_INT_MODE_POLL:
1854		break;
1855	}
1856
1857	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1858}
1859
1860static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1861				    struct qed_ptt *p_ptt)
1862{
 
1863
1864	/* Configure AEU signal change to produce attentions */
1865	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1866	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1867	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1868	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1869
 
 
 
1870	/* Unmask AEU signals toward IGU */
1871	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1872}
1873
1874int
1875qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1876		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1877{
1878	int rc = 0;
1879
1880	qed_int_igu_enable_attn(p_hwfn, p_ptt);
1881
1882	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1883		rc = qed_slowpath_irq_req(p_hwfn);
1884		if (rc) {
1885			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1886			return -EINVAL;
1887		}
1888		p_hwfn->b_int_requested = true;
1889	}
1890	/* Enable interrupt Generation */
1891	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1892	p_hwfn->b_int_enabled = 1;
1893
1894	return rc;
1895}
1896
1897void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 
1898{
1899	p_hwfn->b_int_enabled = 0;
1900
1901	if (IS_VF(p_hwfn->cdev))
1902		return;
1903
1904	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1905}
1906
1907#define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1908static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1909				   struct qed_ptt *p_ptt,
1910				   u16 igu_sb_id,
1911				   bool cleanup_set, u16 opaque_fid)
 
 
1912{
1913	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1914	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1915	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
 
 
 
 
 
1916
1917	/* Set the data field */
1918	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1919	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1920	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1921
1922	/* Set the control register */
1923	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1924	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1925	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1926
1927	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1928
1929	barrier();
1930
1931	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1932
 
 
 
1933	/* calculate where to read the status bit from */
1934	sb_bit = 1 << (igu_sb_id % 32);
1935	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1936
1937	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1938
1939	/* Now wait for the command to complete */
1940	do {
1941		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1942
1943		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1944			break;
1945
1946		usleep_range(5000, 10000);
1947	} while (--sleep_cnt);
1948
1949	if (!sleep_cnt)
1950		DP_NOTICE(p_hwfn,
1951			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1952			  val, igu_sb_id);
1953}
1954
1955void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1956				     struct qed_ptt *p_ptt,
1957				     u16 igu_sb_id, u16 opaque, bool b_set)
 
 
1958{
1959	struct qed_igu_block *p_block;
1960	int pi, i;
1961
1962	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1963	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1964		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1965		   igu_sb_id,
1966		   p_block->function_id,
1967		   p_block->is_pf, p_block->vector_number);
1968
1969	/* Set */
1970	if (b_set)
1971		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1972
1973	/* Clear */
1974	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1975
1976	/* Wait for the IGU SB to cleanup */
1977	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1978		u32 val;
1979
1980		val = qed_rd(p_hwfn, p_ptt,
1981			     IGU_REG_WRITE_DONE_PENDING +
1982			     ((igu_sb_id / 32) * 4));
1983		if (val & BIT((igu_sb_id % 32)))
1984			usleep_range(10, 20);
1985		else
1986			break;
1987	}
1988	if (i == IGU_CLEANUP_SLEEP_LENGTH)
1989		DP_NOTICE(p_hwfn,
1990			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1991			  igu_sb_id);
1992
1993	/* Clear the CAU for the SB */
1994	for (pi = 0; pi < 12; pi++)
1995		qed_wr(p_hwfn, p_ptt,
1996		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1997}
1998
1999void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
2000			      struct qed_ptt *p_ptt,
2001			      bool b_set, bool b_slowpath)
 
2002{
2003	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2004	struct qed_igu_block *p_block;
2005	u16 igu_sb_id = 0;
2006	u32 val = 0;
2007
2008	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2009	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2010	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2011	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2012
2013	for (igu_sb_id = 0;
2014	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2015		p_block = &p_info->entry[igu_sb_id];
2016
2017		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
2018		    !p_block->is_pf ||
2019		    (p_block->status & QED_IGU_STATUS_DSB))
2020			continue;
2021
2022		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
 
2023						p_hwfn->hw_info.opaque_fid,
2024						b_set);
2025	}
2026
2027	if (b_slowpath)
2028		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2029						p_info->igu_dsb_id,
 
 
2030						p_hwfn->hw_info.opaque_fid,
2031						b_set);
2032}
2033
2034int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2035{
2036	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2037	struct qed_igu_block *p_block;
2038	int pf_sbs, vf_sbs;
2039	u16 igu_sb_id;
2040	u32 val, rval;
2041
2042	if (!RESC_NUM(p_hwfn, QED_SB)) {
2043		p_info->b_allow_pf_vf_change = false;
2044	} else {
2045		/* Use the numbers the MFW have provided -
2046		 * don't forget MFW accounts for the default SB as well.
2047		 */
2048		p_info->b_allow_pf_vf_change = true;
2049
2050		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2051			DP_INFO(p_hwfn,
2052				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2053				RESC_NUM(p_hwfn, QED_SB) - 1,
2054				p_info->usage.cnt);
2055			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2056		}
2057
2058		if (IS_PF_SRIOV(p_hwfn)) {
2059			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2060
2061			if (vfs != p_info->usage.iov_cnt)
2062				DP_VERBOSE(p_hwfn,
2063					   NETIF_MSG_INTR,
2064					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2065					   p_info->usage.iov_cnt, vfs);
2066
2067			/* At this point we know how many SBs we have totally
2068			 * in IGU + number of PF SBs. So we can validate that
2069			 * we'd have sufficient for VF.
2070			 */
2071			if (vfs > p_info->usage.free_cnt +
2072			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2073				DP_NOTICE(p_hwfn,
2074					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2075					  p_info->usage.free_cnt +
2076					  p_info->usage.free_cnt_iov,
2077					  p_info->usage.cnt, vfs);
2078				return -EINVAL;
2079			}
2080
2081			/* Currently cap the number of VFs SBs by the
2082			 * number of VFs.
2083			 */
2084			p_info->usage.iov_cnt = vfs;
2085		}
2086	}
2087
2088	/* Mark all SBs as free, now in the right PF/VFs division */
2089	p_info->usage.free_cnt = p_info->usage.cnt;
2090	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2091	p_info->usage.orig = p_info->usage.cnt;
2092	p_info->usage.iov_orig = p_info->usage.iov_cnt;
2093
2094	/* We now proceed to re-configure the IGU cam to reflect the initial
2095	 * configuration. We can start with the Default SB.
2096	 */
2097	pf_sbs = p_info->usage.cnt;
2098	vf_sbs = p_info->usage.iov_cnt;
2099
2100	for (igu_sb_id = p_info->igu_dsb_id;
2101	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2102		p_block = &p_info->entry[igu_sb_id];
2103		val = 0;
2104
2105		if (!(p_block->status & QED_IGU_STATUS_VALID))
2106			continue;
2107
2108		if (p_block->status & QED_IGU_STATUS_DSB) {
2109			p_block->function_id = p_hwfn->rel_pf_id;
2110			p_block->is_pf = 1;
2111			p_block->vector_number = 0;
2112			p_block->status = QED_IGU_STATUS_VALID |
2113					  QED_IGU_STATUS_PF |
2114					  QED_IGU_STATUS_DSB;
2115		} else if (pf_sbs) {
2116			pf_sbs--;
2117			p_block->function_id = p_hwfn->rel_pf_id;
2118			p_block->is_pf = 1;
2119			p_block->vector_number = p_info->usage.cnt - pf_sbs;
2120			p_block->status = QED_IGU_STATUS_VALID |
2121					  QED_IGU_STATUS_PF |
2122					  QED_IGU_STATUS_FREE;
2123		} else if (vf_sbs) {
2124			p_block->function_id =
2125			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2126			    p_info->usage.iov_cnt - vf_sbs;
2127			p_block->is_pf = 0;
2128			p_block->vector_number = 0;
2129			p_block->status = QED_IGU_STATUS_VALID |
2130					  QED_IGU_STATUS_FREE;
2131			vf_sbs--;
2132		} else {
2133			p_block->function_id = 0;
2134			p_block->is_pf = 0;
2135			p_block->vector_number = 0;
2136		}
2137
2138		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2139			  p_block->function_id);
2140		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2141		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2142			  p_block->vector_number);
2143
2144		/* VF entries would be enabled when VF is initializaed */
2145		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2146
2147		rval = qed_rd(p_hwfn, p_ptt,
2148			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2149
2150		if (rval != val) {
2151			qed_wr(p_hwfn, p_ptt,
2152			       IGU_REG_MAPPING_MEMORY +
2153			       sizeof(u32) * igu_sb_id, val);
2154
2155			DP_VERBOSE(p_hwfn,
2156				   NETIF_MSG_INTR,
2157				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2158				   igu_sb_id,
2159				   p_block->function_id,
2160				   p_block->is_pf,
2161				   p_block->vector_number, rval, val);
2162		}
2163	}
2164
2165	return 0;
2166}
2167
2168static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2169				       struct qed_ptt *p_ptt, u16 igu_sb_id)
 
2170{
2171	u32 val = qed_rd(p_hwfn, p_ptt,
2172			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
 
2173	struct qed_igu_block *p_block;
2174
2175	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
 
 
 
 
 
2176
2177	/* Fill the block information */
2178	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2179	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2180	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2181	p_block->igu_sb_id = igu_sb_id;
 
 
 
 
 
 
 
 
 
 
2182}
2183
2184int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 
2185{
2186	struct qed_igu_info *p_igu_info;
2187	struct qed_igu_block *p_block;
2188	u32 min_vf = 0, max_vf = 0;
2189	u16 igu_sb_id;
 
2190
2191	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
 
2192	if (!p_hwfn->hw_info.p_igu_info)
2193		return -ENOMEM;
2194
2195	p_igu_info = p_hwfn->hw_info.p_igu_info;
2196
2197	/* Distinguish between existent and non-existent default SB */
2198	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2199
2200	/* Find the range of VF ids whose SB belong to this PF */
2201	if (p_hwfn->cdev->p_iov_info) {
2202		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2203
2204		min_vf	= p_iov->first_vf_in_pf;
2205		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
2206	}
2207
2208	for (igu_sb_id = 0;
2209	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2210		/* Read current entry; Notice it might not belong to this PF */
2211		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2212		p_block = &p_igu_info->entry[igu_sb_id];
2213
2214		if ((p_block->is_pf) &&
2215		    (p_block->function_id == p_hwfn->rel_pf_id)) {
2216			p_block->status = QED_IGU_STATUS_PF |
2217					  QED_IGU_STATUS_VALID |
2218					  QED_IGU_STATUS_FREE;
2219
2220			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2221				p_igu_info->usage.cnt++;
2222		} else if (!(p_block->is_pf) &&
2223			   (p_block->function_id >= min_vf) &&
2224			   (p_block->function_id < max_vf)) {
2225			/* Available for VFs of this PF */
2226			p_block->status = QED_IGU_STATUS_VALID |
2227					  QED_IGU_STATUS_FREE;
2228
2229			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2230				p_igu_info->usage.iov_cnt++;
2231		}
2232
2233		/* Mark the First entry belonging to the PF or its VFs
2234		 * as the default SB [we'll reset IGU prior to first usage].
2235		 */
2236		if ((p_block->status & QED_IGU_STATUS_VALID) &&
2237		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2238			p_igu_info->igu_dsb_id = igu_sb_id;
2239			p_block->status |= QED_IGU_STATUS_DSB;
2240		}
2241
2242		/* limit number of prints by having each PF print only its
2243		 * entries with the exception of PF0 which would print
2244		 * everything.
2245		 */
2246		if ((p_block->status & QED_IGU_STATUS_VALID) ||
2247		    (p_hwfn->abs_pf_id == 0)) {
2248			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2249				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2250				   igu_sb_id, p_block->function_id,
2251				   p_block->is_pf, p_block->vector_number);
 
 
 
 
 
 
 
 
 
 
 
 
2252		}
2253	}
2254
2255	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
 
 
 
 
 
 
 
 
2256		DP_NOTICE(p_hwfn,
2257			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2258			  p_igu_info->igu_dsb_id);
 
 
2259		return -EINVAL;
2260	}
2261
2262	/* All non default SB are considered free at this point */
2263	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2264	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2265
2266	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2267		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2268		   p_igu_info->igu_dsb_id,
2269		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2270
2271	return 0;
2272}
2273
2274/**
2275 * qed_int_igu_init_rt() - Initialize IGU runtime registers.
2276 *
2277 * @p_hwfn: HW device data.
2278 */
2279void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2280{
2281	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
 
 
2282
2283	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2284}
2285
2286u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2287{
 
 
 
2288	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2289			       IGU_CMD_INT_ACK_BASE;
2290	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2291			       IGU_CMD_INT_ACK_BASE;
2292	u32 intr_status_hi = 0, intr_status_lo = 0;
2293	u64 intr_status = 0;
2294
2295	intr_status_lo = REG_RD(p_hwfn,
2296				GTT_BAR0_MAP_REG_IGU_CMD +
2297				lsb_igu_cmd_addr * 8);
2298	intr_status_hi = REG_RD(p_hwfn,
2299				GTT_BAR0_MAP_REG_IGU_CMD +
2300				msb_igu_cmd_addr * 8);
2301	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2302
2303	return intr_status;
2304}
2305
2306static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2307{
2308	tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
 
2309	p_hwfn->b_sp_dpc_enabled = true;
2310}
2311
2312int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313{
2314	int rc = 0;
2315
 
 
 
 
 
2316	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2317	if (rc)
 
2318		return rc;
2319
2320	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2321
 
 
 
2322	return rc;
2323}
2324
2325void qed_int_free(struct qed_hwfn *p_hwfn)
2326{
2327	qed_int_sp_sb_free(p_hwfn);
2328	qed_int_sb_attn_free(p_hwfn);
 
2329}
2330
2331void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
 
2332{
2333	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2334	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2335	qed_int_sp_dpc_setup(p_hwfn);
2336}
2337
2338void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
2339			 struct qed_sb_cnt_info *p_sb_cnt_info)
2340{
2341	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2342
2343	if (!info || !p_sb_cnt_info)
2344		return;
2345
2346	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
 
 
2347}
2348
2349void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2350{
2351	int i;
2352
2353	for_each_hwfn(cdev, i)
2354		cdev->hwfns[i].b_int_requested = false;
2355}
2356
2357void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
2358{
2359	cdev->attn_clr_en = clr_enable;
2360}
2361
2362int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2363			  u8 timer_res, u16 sb_id, bool tx)
2364{
2365	struct cau_sb_entry sb_entry;
2366	u32 params;
2367	int rc;
2368
2369	if (!p_hwfn->hw_init_done) {
2370		DP_ERR(p_hwfn, "hardware not initialized yet\n");
2371		return -EINVAL;
2372	}
2373
2374	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2375			       sb_id * sizeof(u64),
2376			       (u64)(uintptr_t)&sb_entry, 2, NULL);
2377	if (rc) {
2378		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2379		return rc;
2380	}
2381
2382	params = le32_to_cpu(sb_entry.params);
2383
2384	if (tx)
2385		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2386	else
2387		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2388
2389	sb_entry.params = cpu_to_le32(params);
2390
2391	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2392			       (u64)(uintptr_t)&sb_entry,
2393			       CAU_REG_SB_VAR_MEMORY +
2394			       sb_id * sizeof(u64), 2, NULL);
2395	if (rc) {
2396		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2397		return rc;
2398	}
2399
2400	return rc;
2401}
2402
2403int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2404		       struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info)
2405{
2406	u16 sbid = p_sb->igu_sb_id;
2407	u32 i;
2408
2409	if (IS_VF(p_hwfn->cdev))
2410		return -EINVAL;
2411
2412	if (sbid >= NUM_OF_SBS(p_hwfn->cdev))
2413		return -EINVAL;
2414
2415	p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4);
2416	p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4);
2417
2418	for (i = 0; i < PIS_PER_SB; i++)
2419		p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt,
2420					    CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4);
2421
2422	return 0;
2423}
v4.6
 
   1/* QLogic qed NIC Driver
   2 * Copyright (c) 2015 QLogic Corporation
   3 *
   4 * This software is available under the terms of the GNU General Public License
   5 * (GPL) Version 2, available from the file COPYING in the main directory of
   6 * this source tree.
   7 */
   8
   9#include <linux/types.h>
  10#include <asm/byteorder.h>
  11#include <linux/io.h>
  12#include <linux/bitops.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
  18#include <linux/pci.h>
  19#include <linux/slab.h>
  20#include <linux/string.h>
  21#include "qed.h"
  22#include "qed_hsi.h"
  23#include "qed_hw.h"
  24#include "qed_init_ops.h"
  25#include "qed_int.h"
  26#include "qed_mcp.h"
  27#include "qed_reg_addr.h"
  28#include "qed_sp.h"
 
 
  29
  30struct qed_pi_info {
  31	qed_int_comp_cb_t	comp_cb;
  32	void			*cookie;
  33};
  34
  35struct qed_sb_sp_info {
  36	struct qed_sb_info	sb_info;
  37
  38	/* per protocol index data */
  39	struct qed_pi_info	pi_info_arr[PIS_PER_SB];
  40};
  41
  42enum qed_attention_type {
  43	QED_ATTN_TYPE_ATTN,
  44	QED_ATTN_TYPE_PARITY,
  45};
  46
  47#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
  48	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
  49
  50struct aeu_invert_reg_bit {
  51	char bit_name[30];
  52
  53#define ATTENTION_PARITY                (1 << 0)
  54
  55#define ATTENTION_LENGTH_MASK           (0x00000ff0)
  56#define ATTENTION_LENGTH_SHIFT          (4)
  57#define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
  58					 ATTENTION_LENGTH_SHIFT)
  59#define ATTENTION_SINGLE                (1 << ATTENTION_LENGTH_SHIFT)
  60#define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
  61#define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
  62					 ATTENTION_PARITY)
  63
  64/* Multiple bits start with this offset */
  65#define ATTENTION_OFFSET_MASK           (0x000ff000)
  66#define ATTENTION_OFFSET_SHIFT          (12)
 
 
 
 
 
 
 
  67	unsigned int flags;
  68
  69	/* Callback to call if attention will be triggered */
  70	int (*cb)(struct qed_hwfn *p_hwfn);
  71
  72	enum block_id block_index;
  73};
  74
  75struct aeu_invert_reg {
  76	struct aeu_invert_reg_bit bits[32];
  77};
  78
  79#define MAX_ATTN_GRPS           (8)
  80#define NUM_ATTN_REGS           (9)
  81
  82/* HW Attention register */
  83struct attn_hw_reg {
  84	u16 reg_idx;             /* Index of this register in its block */
  85	u16 num_of_bits;         /* number of valid attention bits */
  86	u32 sts_addr;            /* Address of the STS register */
  87	u32 sts_clr_addr;        /* Address of the STS_CLR register */
  88	u32 sts_wr_addr;         /* Address of the STS_WR register */
  89	u32 mask_addr;           /* Address of the MASK register */
  90};
  91
  92/* HW block attention registers */
  93struct attn_hw_regs {
  94	u16 num_of_int_regs;            /* Number of interrupt regs */
  95	u16 num_of_prty_regs;           /* Number of parity regs */
  96	struct attn_hw_reg **int_regs;  /* interrupt regs */
  97	struct attn_hw_reg **prty_regs; /* parity regs */
  98};
  99
 100/* HW block attention registers */
 101struct attn_hw_block {
 102	const char *name;                 /* Block name */
 103	struct attn_hw_regs chip_regs[1];
 104};
 105
 106static struct attn_hw_reg grc_int0_bb_b0 = {
 107	0, 4, 0x50180, 0x5018c, 0x50188, 0x50184};
 108
 109static struct attn_hw_reg *grc_int_bb_b0_regs[1] = {
 110	&grc_int0_bb_b0};
 111
 112static struct attn_hw_reg grc_prty1_bb_b0 = {
 113	0, 2, 0x50200, 0x5020c, 0x50208, 0x50204};
 114
 115static struct attn_hw_reg *grc_prty_bb_b0_regs[1] = {
 116	&grc_prty1_bb_b0};
 117
 118static struct attn_hw_reg miscs_int0_bb_b0 = {
 119	0, 3, 0x9180, 0x918c, 0x9188, 0x9184};
 120
 121static struct attn_hw_reg miscs_int1_bb_b0 = {
 122	1, 11, 0x9190, 0x919c, 0x9198, 0x9194};
 123
 124static struct attn_hw_reg *miscs_int_bb_b0_regs[2] = {
 125	&miscs_int0_bb_b0, &miscs_int1_bb_b0};
 126
 127static struct attn_hw_reg miscs_prty0_bb_b0 = {
 128	0, 1, 0x91a0, 0x91ac, 0x91a8, 0x91a4};
 129
 130static struct attn_hw_reg *miscs_prty_bb_b0_regs[1] = {
 131	&miscs_prty0_bb_b0};
 132
 133static struct attn_hw_reg misc_int0_bb_b0 = {
 134	0, 1, 0x8180, 0x818c, 0x8188, 0x8184};
 135
 136static struct attn_hw_reg *misc_int_bb_b0_regs[1] = {
 137	&misc_int0_bb_b0};
 138
 139static struct attn_hw_reg pglue_b_int0_bb_b0 = {
 140	0, 23, 0x2a8180, 0x2a818c, 0x2a8188, 0x2a8184};
 141
 142static struct attn_hw_reg *pglue_b_int_bb_b0_regs[1] = {
 143	&pglue_b_int0_bb_b0};
 144
 145static struct attn_hw_reg pglue_b_prty0_bb_b0 = {
 146	0, 1, 0x2a8190, 0x2a819c, 0x2a8198, 0x2a8194};
 147
 148static struct attn_hw_reg pglue_b_prty1_bb_b0 = {
 149	1, 22, 0x2a8200, 0x2a820c, 0x2a8208, 0x2a8204};
 150
 151static struct attn_hw_reg *pglue_b_prty_bb_b0_regs[2] = {
 152	&pglue_b_prty0_bb_b0, &pglue_b_prty1_bb_b0};
 153
 154static struct attn_hw_reg cnig_int0_bb_b0 = {
 155	0, 6, 0x2182e8, 0x2182f4, 0x2182f0, 0x2182ec};
 156
 157static struct attn_hw_reg *cnig_int_bb_b0_regs[1] = {
 158	&cnig_int0_bb_b0};
 159
 160static struct attn_hw_reg cnig_prty0_bb_b0 = {
 161	0, 2, 0x218348, 0x218354, 0x218350, 0x21834c};
 162
 163static struct attn_hw_reg *cnig_prty_bb_b0_regs[1] = {
 164	&cnig_prty0_bb_b0};
 165
 166static struct attn_hw_reg cpmu_int0_bb_b0 = {
 167	0, 1, 0x303e0, 0x303ec, 0x303e8, 0x303e4};
 168
 169static struct attn_hw_reg *cpmu_int_bb_b0_regs[1] = {
 170	&cpmu_int0_bb_b0};
 171
 172static struct attn_hw_reg ncsi_int0_bb_b0 = {
 173	0, 1, 0x404cc, 0x404d8, 0x404d4, 0x404d0};
 174
 175static struct attn_hw_reg *ncsi_int_bb_b0_regs[1] = {
 176	&ncsi_int0_bb_b0};
 177
 178static struct attn_hw_reg ncsi_prty1_bb_b0 = {
 179	0, 1, 0x40000, 0x4000c, 0x40008, 0x40004};
 180
 181static struct attn_hw_reg *ncsi_prty_bb_b0_regs[1] = {
 182	&ncsi_prty1_bb_b0};
 183
 184static struct attn_hw_reg opte_prty1_bb_b0 = {
 185	0, 11, 0x53000, 0x5300c, 0x53008, 0x53004};
 186
 187static struct attn_hw_reg opte_prty0_bb_b0 = {
 188	1, 1, 0x53208, 0x53214, 0x53210, 0x5320c};
 189
 190static struct attn_hw_reg *opte_prty_bb_b0_regs[2] = {
 191	&opte_prty1_bb_b0, &opte_prty0_bb_b0};
 192
 193static struct attn_hw_reg bmb_int0_bb_b0 = {
 194	0, 16, 0x5400c0, 0x5400cc, 0x5400c8, 0x5400c4};
 195
 196static struct attn_hw_reg bmb_int1_bb_b0 = {
 197	1, 28, 0x5400d8, 0x5400e4, 0x5400e0, 0x5400dc};
 198
 199static struct attn_hw_reg bmb_int2_bb_b0 = {
 200	2, 26, 0x5400f0, 0x5400fc, 0x5400f8, 0x5400f4};
 201
 202static struct attn_hw_reg bmb_int3_bb_b0 = {
 203	3, 31, 0x540108, 0x540114, 0x540110, 0x54010c};
 204
 205static struct attn_hw_reg bmb_int4_bb_b0 = {
 206	4, 27, 0x540120, 0x54012c, 0x540128, 0x540124};
 207
 208static struct attn_hw_reg bmb_int5_bb_b0 = {
 209	5, 29, 0x540138, 0x540144, 0x540140, 0x54013c};
 210
 211static struct attn_hw_reg bmb_int6_bb_b0 = {
 212	6, 30, 0x540150, 0x54015c, 0x540158, 0x540154};
 213
 214static struct attn_hw_reg bmb_int7_bb_b0 = {
 215	7, 32, 0x540168, 0x540174, 0x540170, 0x54016c};
 216
 217static struct attn_hw_reg bmb_int8_bb_b0 = {
 218	8, 32, 0x540184, 0x540190, 0x54018c, 0x540188};
 219
 220static struct attn_hw_reg bmb_int9_bb_b0 = {
 221	9, 32, 0x54019c, 0x5401a8, 0x5401a4, 0x5401a0};
 222
 223static struct attn_hw_reg bmb_int10_bb_b0 = {
 224	10, 3, 0x5401b4, 0x5401c0, 0x5401bc, 0x5401b8};
 225
 226static struct attn_hw_reg bmb_int11_bb_b0 = {
 227	11, 4, 0x5401cc, 0x5401d8, 0x5401d4, 0x5401d0};
 228
 229static struct attn_hw_reg *bmb_int_bb_b0_regs[12] = {
 230	&bmb_int0_bb_b0, &bmb_int1_bb_b0, &bmb_int2_bb_b0, &bmb_int3_bb_b0,
 231	&bmb_int4_bb_b0, &bmb_int5_bb_b0, &bmb_int6_bb_b0, &bmb_int7_bb_b0,
 232	&bmb_int8_bb_b0, &bmb_int9_bb_b0, &bmb_int10_bb_b0, &bmb_int11_bb_b0};
 233
 234static struct attn_hw_reg bmb_prty0_bb_b0 = {
 235	0, 5, 0x5401dc, 0x5401e8, 0x5401e4, 0x5401e0};
 236
 237static struct attn_hw_reg bmb_prty1_bb_b0 = {
 238	1, 31, 0x540400, 0x54040c, 0x540408, 0x540404};
 239
 240static struct attn_hw_reg bmb_prty2_bb_b0 = {
 241	2, 15, 0x540410, 0x54041c, 0x540418, 0x540414};
 242
 243static struct attn_hw_reg *bmb_prty_bb_b0_regs[3] = {
 244	&bmb_prty0_bb_b0, &bmb_prty1_bb_b0, &bmb_prty2_bb_b0};
 245
 246static struct attn_hw_reg pcie_prty1_bb_b0 = {
 247	0, 17, 0x54000, 0x5400c, 0x54008, 0x54004};
 248
 249static struct attn_hw_reg *pcie_prty_bb_b0_regs[1] = {
 250	&pcie_prty1_bb_b0};
 251
 252static struct attn_hw_reg mcp2_prty0_bb_b0 = {
 253	0, 1, 0x52040, 0x5204c, 0x52048, 0x52044};
 254
 255static struct attn_hw_reg mcp2_prty1_bb_b0 = {
 256	1, 12, 0x52204, 0x52210, 0x5220c, 0x52208};
 257
 258static struct attn_hw_reg *mcp2_prty_bb_b0_regs[2] = {
 259	&mcp2_prty0_bb_b0, &mcp2_prty1_bb_b0};
 260
 261static struct attn_hw_reg pswhst_int0_bb_b0 = {
 262	0, 18, 0x2a0180, 0x2a018c, 0x2a0188, 0x2a0184};
 263
 264static struct attn_hw_reg *pswhst_int_bb_b0_regs[1] = {
 265	&pswhst_int0_bb_b0};
 266
 267static struct attn_hw_reg pswhst_prty0_bb_b0 = {
 268	0, 1, 0x2a0190, 0x2a019c, 0x2a0198, 0x2a0194};
 269
 270static struct attn_hw_reg pswhst_prty1_bb_b0 = {
 271	1, 17, 0x2a0200, 0x2a020c, 0x2a0208, 0x2a0204};
 272
 273static struct attn_hw_reg *pswhst_prty_bb_b0_regs[2] = {
 274	&pswhst_prty0_bb_b0, &pswhst_prty1_bb_b0};
 275
 276static struct attn_hw_reg pswhst2_int0_bb_b0 = {
 277	0, 5, 0x29e180, 0x29e18c, 0x29e188, 0x29e184};
 278
 279static struct attn_hw_reg *pswhst2_int_bb_b0_regs[1] = {
 280	&pswhst2_int0_bb_b0};
 281
 282static struct attn_hw_reg pswhst2_prty0_bb_b0 = {
 283	0, 1, 0x29e190, 0x29e19c, 0x29e198, 0x29e194};
 284
 285static struct attn_hw_reg *pswhst2_prty_bb_b0_regs[1] = {
 286	&pswhst2_prty0_bb_b0};
 287
 288static struct attn_hw_reg pswrd_int0_bb_b0 = {
 289	0, 3, 0x29c180, 0x29c18c, 0x29c188, 0x29c184};
 290
 291static struct attn_hw_reg *pswrd_int_bb_b0_regs[1] = {
 292	&pswrd_int0_bb_b0};
 293
 294static struct attn_hw_reg pswrd_prty0_bb_b0 = {
 295	0, 1, 0x29c190, 0x29c19c, 0x29c198, 0x29c194};
 296
 297static struct attn_hw_reg *pswrd_prty_bb_b0_regs[1] = {
 298	&pswrd_prty0_bb_b0};
 299
 300static struct attn_hw_reg pswrd2_int0_bb_b0 = {
 301	0, 5, 0x29d180, 0x29d18c, 0x29d188, 0x29d184};
 302
 303static struct attn_hw_reg *pswrd2_int_bb_b0_regs[1] = {
 304	&pswrd2_int0_bb_b0};
 305
 306static struct attn_hw_reg pswrd2_prty0_bb_b0 = {
 307	0, 1, 0x29d190, 0x29d19c, 0x29d198, 0x29d194};
 308
 309static struct attn_hw_reg pswrd2_prty1_bb_b0 = {
 310	1, 31, 0x29d200, 0x29d20c, 0x29d208, 0x29d204};
 311
 312static struct attn_hw_reg pswrd2_prty2_bb_b0 = {
 313	2, 3, 0x29d210, 0x29d21c, 0x29d218, 0x29d214};
 314
 315static struct attn_hw_reg *pswrd2_prty_bb_b0_regs[3] = {
 316	&pswrd2_prty0_bb_b0, &pswrd2_prty1_bb_b0, &pswrd2_prty2_bb_b0};
 317
 318static struct attn_hw_reg pswwr_int0_bb_b0 = {
 319	0, 16, 0x29a180, 0x29a18c, 0x29a188, 0x29a184};
 320
 321static struct attn_hw_reg *pswwr_int_bb_b0_regs[1] = {
 322	&pswwr_int0_bb_b0};
 323
 324static struct attn_hw_reg pswwr_prty0_bb_b0 = {
 325	0, 1, 0x29a190, 0x29a19c, 0x29a198, 0x29a194};
 326
 327static struct attn_hw_reg *pswwr_prty_bb_b0_regs[1] = {
 328	&pswwr_prty0_bb_b0};
 329
 330static struct attn_hw_reg pswwr2_int0_bb_b0 = {
 331	0, 19, 0x29b180, 0x29b18c, 0x29b188, 0x29b184};
 332
 333static struct attn_hw_reg *pswwr2_int_bb_b0_regs[1] = {
 334	&pswwr2_int0_bb_b0};
 335
 336static struct attn_hw_reg pswwr2_prty0_bb_b0 = {
 337	0, 1, 0x29b190, 0x29b19c, 0x29b198, 0x29b194};
 338
 339static struct attn_hw_reg pswwr2_prty1_bb_b0 = {
 340	1, 31, 0x29b200, 0x29b20c, 0x29b208, 0x29b204};
 341
 342static struct attn_hw_reg pswwr2_prty2_bb_b0 = {
 343	2, 31, 0x29b210, 0x29b21c, 0x29b218, 0x29b214};
 344
 345static struct attn_hw_reg pswwr2_prty3_bb_b0 = {
 346	3, 31, 0x29b220, 0x29b22c, 0x29b228, 0x29b224};
 347
 348static struct attn_hw_reg pswwr2_prty4_bb_b0 = {
 349	4, 20, 0x29b230, 0x29b23c, 0x29b238, 0x29b234};
 350
 351static struct attn_hw_reg *pswwr2_prty_bb_b0_regs[5] = {
 352	&pswwr2_prty0_bb_b0, &pswwr2_prty1_bb_b0, &pswwr2_prty2_bb_b0,
 353	&pswwr2_prty3_bb_b0, &pswwr2_prty4_bb_b0};
 354
 355static struct attn_hw_reg pswrq_int0_bb_b0 = {
 356	0, 21, 0x280180, 0x28018c, 0x280188, 0x280184};
 357
 358static struct attn_hw_reg *pswrq_int_bb_b0_regs[1] = {
 359	&pswrq_int0_bb_b0};
 360
 361static struct attn_hw_reg pswrq_prty0_bb_b0 = {
 362	0, 1, 0x280190, 0x28019c, 0x280198, 0x280194};
 363
 364static struct attn_hw_reg *pswrq_prty_bb_b0_regs[1] = {
 365	&pswrq_prty0_bb_b0};
 366
 367static struct attn_hw_reg pswrq2_int0_bb_b0 = {
 368	0, 15, 0x240180, 0x24018c, 0x240188, 0x240184};
 369
 370static struct attn_hw_reg *pswrq2_int_bb_b0_regs[1] = {
 371	&pswrq2_int0_bb_b0};
 372
 373static struct attn_hw_reg pswrq2_prty1_bb_b0 = {
 374	0, 9, 0x240200, 0x24020c, 0x240208, 0x240204};
 375
 376static struct attn_hw_reg *pswrq2_prty_bb_b0_regs[1] = {
 377	&pswrq2_prty1_bb_b0};
 378
 379static struct attn_hw_reg pglcs_int0_bb_b0 = {
 380	0, 1, 0x1d00, 0x1d0c, 0x1d08, 0x1d04};
 381
 382static struct attn_hw_reg *pglcs_int_bb_b0_regs[1] = {
 383	&pglcs_int0_bb_b0};
 384
 385static struct attn_hw_reg dmae_int0_bb_b0 = {
 386	0, 2, 0xc180, 0xc18c, 0xc188, 0xc184};
 387
 388static struct attn_hw_reg *dmae_int_bb_b0_regs[1] = {
 389	&dmae_int0_bb_b0};
 390
 391static struct attn_hw_reg dmae_prty1_bb_b0 = {
 392	0, 3, 0xc200, 0xc20c, 0xc208, 0xc204};
 393
 394static struct attn_hw_reg *dmae_prty_bb_b0_regs[1] = {
 395	&dmae_prty1_bb_b0};
 396
 397static struct attn_hw_reg ptu_int0_bb_b0 = {
 398	0, 8, 0x560180, 0x56018c, 0x560188, 0x560184};
 399
 400static struct attn_hw_reg *ptu_int_bb_b0_regs[1] = {
 401	&ptu_int0_bb_b0};
 402
 403static struct attn_hw_reg ptu_prty1_bb_b0 = {
 404	0, 18, 0x560200, 0x56020c, 0x560208, 0x560204};
 405
 406static struct attn_hw_reg *ptu_prty_bb_b0_regs[1] = {
 407	&ptu_prty1_bb_b0};
 408
 409static struct attn_hw_reg tcm_int0_bb_b0 = {
 410	0, 8, 0x1180180, 0x118018c, 0x1180188, 0x1180184};
 411
 412static struct attn_hw_reg tcm_int1_bb_b0 = {
 413	1, 32, 0x1180190, 0x118019c, 0x1180198, 0x1180194};
 414
 415static struct attn_hw_reg tcm_int2_bb_b0 = {
 416	2, 1, 0x11801a0, 0x11801ac, 0x11801a8, 0x11801a4};
 417
 418static struct attn_hw_reg *tcm_int_bb_b0_regs[3] = {
 419	&tcm_int0_bb_b0, &tcm_int1_bb_b0, &tcm_int2_bb_b0};
 420
 421static struct attn_hw_reg tcm_prty1_bb_b0 = {
 422	0, 31, 0x1180200, 0x118020c, 0x1180208, 0x1180204};
 423
 424static struct attn_hw_reg tcm_prty2_bb_b0 = {
 425	1, 2, 0x1180210, 0x118021c, 0x1180218, 0x1180214};
 426
 427static struct attn_hw_reg *tcm_prty_bb_b0_regs[2] = {
 428	&tcm_prty1_bb_b0, &tcm_prty2_bb_b0};
 429
 430static struct attn_hw_reg mcm_int0_bb_b0 = {
 431	0, 14, 0x1200180, 0x120018c, 0x1200188, 0x1200184};
 432
 433static struct attn_hw_reg mcm_int1_bb_b0 = {
 434	1, 26, 0x1200190, 0x120019c, 0x1200198, 0x1200194};
 435
 436static struct attn_hw_reg mcm_int2_bb_b0 = {
 437	2, 1, 0x12001a0, 0x12001ac, 0x12001a8, 0x12001a4};
 438
 439static struct attn_hw_reg *mcm_int_bb_b0_regs[3] = {
 440	&mcm_int0_bb_b0, &mcm_int1_bb_b0, &mcm_int2_bb_b0};
 441
 442static struct attn_hw_reg mcm_prty1_bb_b0 = {
 443	0, 31, 0x1200200, 0x120020c, 0x1200208, 0x1200204};
 444
 445static struct attn_hw_reg mcm_prty2_bb_b0 = {
 446	1, 4, 0x1200210, 0x120021c, 0x1200218, 0x1200214};
 447
 448static struct attn_hw_reg *mcm_prty_bb_b0_regs[2] = {
 449	&mcm_prty1_bb_b0, &mcm_prty2_bb_b0};
 450
 451static struct attn_hw_reg ucm_int0_bb_b0 = {
 452	0, 17, 0x1280180, 0x128018c, 0x1280188, 0x1280184};
 453
 454static struct attn_hw_reg ucm_int1_bb_b0 = {
 455	1, 29, 0x1280190, 0x128019c, 0x1280198, 0x1280194};
 456
 457static struct attn_hw_reg ucm_int2_bb_b0 = {
 458	2, 1, 0x12801a0, 0x12801ac, 0x12801a8, 0x12801a4};
 459
 460static struct attn_hw_reg *ucm_int_bb_b0_regs[3] = {
 461	&ucm_int0_bb_b0, &ucm_int1_bb_b0, &ucm_int2_bb_b0};
 462
 463static struct attn_hw_reg ucm_prty1_bb_b0 = {
 464	0, 31, 0x1280200, 0x128020c, 0x1280208, 0x1280204};
 465
 466static struct attn_hw_reg ucm_prty2_bb_b0 = {
 467	1, 7, 0x1280210, 0x128021c, 0x1280218, 0x1280214};
 468
 469static struct attn_hw_reg *ucm_prty_bb_b0_regs[2] = {
 470	&ucm_prty1_bb_b0, &ucm_prty2_bb_b0};
 471
 472static struct attn_hw_reg xcm_int0_bb_b0 = {
 473	0, 16, 0x1000180, 0x100018c, 0x1000188, 0x1000184};
 474
 475static struct attn_hw_reg xcm_int1_bb_b0 = {
 476	1, 25, 0x1000190, 0x100019c, 0x1000198, 0x1000194};
 477
 478static struct attn_hw_reg xcm_int2_bb_b0 = {
 479	2, 8, 0x10001a0, 0x10001ac, 0x10001a8, 0x10001a4};
 480
 481static struct attn_hw_reg *xcm_int_bb_b0_regs[3] = {
 482	&xcm_int0_bb_b0, &xcm_int1_bb_b0, &xcm_int2_bb_b0};
 483
 484static struct attn_hw_reg xcm_prty1_bb_b0 = {
 485	0, 31, 0x1000200, 0x100020c, 0x1000208, 0x1000204};
 486
 487static struct attn_hw_reg xcm_prty2_bb_b0 = {
 488	1, 11, 0x1000210, 0x100021c, 0x1000218, 0x1000214};
 489
 490static struct attn_hw_reg *xcm_prty_bb_b0_regs[2] = {
 491	&xcm_prty1_bb_b0, &xcm_prty2_bb_b0};
 492
 493static struct attn_hw_reg ycm_int0_bb_b0 = {
 494	0, 13, 0x1080180, 0x108018c, 0x1080188, 0x1080184};
 495
 496static struct attn_hw_reg ycm_int1_bb_b0 = {
 497	1, 23, 0x1080190, 0x108019c, 0x1080198, 0x1080194};
 498
 499static struct attn_hw_reg ycm_int2_bb_b0 = {
 500	2, 1, 0x10801a0, 0x10801ac, 0x10801a8, 0x10801a4};
 501
 502static struct attn_hw_reg *ycm_int_bb_b0_regs[3] = {
 503	&ycm_int0_bb_b0, &ycm_int1_bb_b0, &ycm_int2_bb_b0};
 504
 505static struct attn_hw_reg ycm_prty1_bb_b0 = {
 506	0, 31, 0x1080200, 0x108020c, 0x1080208, 0x1080204};
 507
 508static struct attn_hw_reg ycm_prty2_bb_b0 = {
 509	1, 3, 0x1080210, 0x108021c, 0x1080218, 0x1080214};
 510
 511static struct attn_hw_reg *ycm_prty_bb_b0_regs[2] = {
 512	&ycm_prty1_bb_b0, &ycm_prty2_bb_b0};
 513
 514static struct attn_hw_reg pcm_int0_bb_b0 = {
 515	0, 5, 0x1100180, 0x110018c, 0x1100188, 0x1100184};
 516
 517static struct attn_hw_reg pcm_int1_bb_b0 = {
 518	1, 14, 0x1100190, 0x110019c, 0x1100198, 0x1100194};
 519
 520static struct attn_hw_reg pcm_int2_bb_b0 = {
 521	2, 1, 0x11001a0, 0x11001ac, 0x11001a8, 0x11001a4};
 522
 523static struct attn_hw_reg *pcm_int_bb_b0_regs[3] = {
 524	&pcm_int0_bb_b0, &pcm_int1_bb_b0, &pcm_int2_bb_b0};
 525
 526static struct attn_hw_reg pcm_prty1_bb_b0 = {
 527	0, 11, 0x1100200, 0x110020c, 0x1100208, 0x1100204};
 528
 529static struct attn_hw_reg *pcm_prty_bb_b0_regs[1] = {
 530	&pcm_prty1_bb_b0};
 531
 532static struct attn_hw_reg qm_int0_bb_b0 = {
 533	0, 22, 0x2f0180, 0x2f018c, 0x2f0188, 0x2f0184};
 534
 535static struct attn_hw_reg *qm_int_bb_b0_regs[1] = {
 536	&qm_int0_bb_b0};
 537
 538static struct attn_hw_reg qm_prty0_bb_b0 = {
 539	0, 11, 0x2f0190, 0x2f019c, 0x2f0198, 0x2f0194};
 540
 541static struct attn_hw_reg qm_prty1_bb_b0 = {
 542	1, 31, 0x2f0200, 0x2f020c, 0x2f0208, 0x2f0204};
 543
 544static struct attn_hw_reg qm_prty2_bb_b0 = {
 545	2, 31, 0x2f0210, 0x2f021c, 0x2f0218, 0x2f0214};
 546
 547static struct attn_hw_reg qm_prty3_bb_b0 = {
 548	3, 11, 0x2f0220, 0x2f022c, 0x2f0228, 0x2f0224};
 549
 550static struct attn_hw_reg *qm_prty_bb_b0_regs[4] = {
 551	&qm_prty0_bb_b0, &qm_prty1_bb_b0, &qm_prty2_bb_b0, &qm_prty3_bb_b0};
 552
 553static struct attn_hw_reg tm_int0_bb_b0 = {
 554	0, 32, 0x2c0180, 0x2c018c, 0x2c0188, 0x2c0184};
 555
 556static struct attn_hw_reg tm_int1_bb_b0 = {
 557	1, 11, 0x2c0190, 0x2c019c, 0x2c0198, 0x2c0194};
 558
 559static struct attn_hw_reg *tm_int_bb_b0_regs[2] = {
 560	&tm_int0_bb_b0, &tm_int1_bb_b0};
 561
 562static struct attn_hw_reg tm_prty1_bb_b0 = {
 563	0, 17, 0x2c0200, 0x2c020c, 0x2c0208, 0x2c0204};
 564
 565static struct attn_hw_reg *tm_prty_bb_b0_regs[1] = {
 566	&tm_prty1_bb_b0};
 567
 568static struct attn_hw_reg dorq_int0_bb_b0 = {
 569	0, 9, 0x100180, 0x10018c, 0x100188, 0x100184};
 570
 571static struct attn_hw_reg *dorq_int_bb_b0_regs[1] = {
 572	&dorq_int0_bb_b0};
 573
 574static struct attn_hw_reg dorq_prty0_bb_b0 = {
 575	0, 1, 0x100190, 0x10019c, 0x100198, 0x100194};
 576
 577static struct attn_hw_reg dorq_prty1_bb_b0 = {
 578	1, 6, 0x100200, 0x10020c, 0x100208, 0x100204};
 579
 580static struct attn_hw_reg *dorq_prty_bb_b0_regs[2] = {
 581	&dorq_prty0_bb_b0, &dorq_prty1_bb_b0};
 582
 583static struct attn_hw_reg brb_int0_bb_b0 = {
 584	0, 32, 0x3400c0, 0x3400cc, 0x3400c8, 0x3400c4};
 585
 586static struct attn_hw_reg brb_int1_bb_b0 = {
 587	1, 30, 0x3400d8, 0x3400e4, 0x3400e0, 0x3400dc};
 588
 589static struct attn_hw_reg brb_int2_bb_b0 = {
 590	2, 28, 0x3400f0, 0x3400fc, 0x3400f8, 0x3400f4};
 591
 592static struct attn_hw_reg brb_int3_bb_b0 = {
 593	3, 31, 0x340108, 0x340114, 0x340110, 0x34010c};
 594
 595static struct attn_hw_reg brb_int4_bb_b0 = {
 596	4, 27, 0x340120, 0x34012c, 0x340128, 0x340124};
 597
 598static struct attn_hw_reg brb_int5_bb_b0 = {
 599	5, 1, 0x340138, 0x340144, 0x340140, 0x34013c};
 600
 601static struct attn_hw_reg brb_int6_bb_b0 = {
 602	6, 8, 0x340150, 0x34015c, 0x340158, 0x340154};
 603
 604static struct attn_hw_reg brb_int7_bb_b0 = {
 605	7, 32, 0x340168, 0x340174, 0x340170, 0x34016c};
 606
 607static struct attn_hw_reg brb_int8_bb_b0 = {
 608	8, 17, 0x340184, 0x340190, 0x34018c, 0x340188};
 609
 610static struct attn_hw_reg brb_int9_bb_b0 = {
 611	9, 1, 0x34019c, 0x3401a8, 0x3401a4, 0x3401a0};
 612
 613static struct attn_hw_reg brb_int10_bb_b0 = {
 614	10, 14, 0x3401b4, 0x3401c0, 0x3401bc, 0x3401b8};
 615
 616static struct attn_hw_reg brb_int11_bb_b0 = {
 617	11, 8, 0x3401cc, 0x3401d8, 0x3401d4, 0x3401d0};
 618
 619static struct attn_hw_reg *brb_int_bb_b0_regs[12] = {
 620	&brb_int0_bb_b0, &brb_int1_bb_b0, &brb_int2_bb_b0, &brb_int3_bb_b0,
 621	&brb_int4_bb_b0, &brb_int5_bb_b0, &brb_int6_bb_b0, &brb_int7_bb_b0,
 622	&brb_int8_bb_b0, &brb_int9_bb_b0, &brb_int10_bb_b0, &brb_int11_bb_b0};
 623
 624static struct attn_hw_reg brb_prty0_bb_b0 = {
 625	0, 5, 0x3401dc, 0x3401e8, 0x3401e4, 0x3401e0};
 626
 627static struct attn_hw_reg brb_prty1_bb_b0 = {
 628	1, 31, 0x340400, 0x34040c, 0x340408, 0x340404};
 629
 630static struct attn_hw_reg brb_prty2_bb_b0 = {
 631	2, 14, 0x340410, 0x34041c, 0x340418, 0x340414};
 632
 633static struct attn_hw_reg *brb_prty_bb_b0_regs[3] = {
 634	&brb_prty0_bb_b0, &brb_prty1_bb_b0, &brb_prty2_bb_b0};
 635
 636static struct attn_hw_reg src_int0_bb_b0 = {
 637	0, 1, 0x2381d8, 0x2381dc, 0x2381e0, 0x2381e4};
 638
 639static struct attn_hw_reg *src_int_bb_b0_regs[1] = {
 640	&src_int0_bb_b0};
 641
 642static struct attn_hw_reg prs_int0_bb_b0 = {
 643	0, 2, 0x1f0040, 0x1f004c, 0x1f0048, 0x1f0044};
 644
 645static struct attn_hw_reg *prs_int_bb_b0_regs[1] = {
 646	&prs_int0_bb_b0};
 647
 648static struct attn_hw_reg prs_prty0_bb_b0 = {
 649	0, 2, 0x1f0050, 0x1f005c, 0x1f0058, 0x1f0054};
 650
 651static struct attn_hw_reg prs_prty1_bb_b0 = {
 652	1, 31, 0x1f0204, 0x1f0210, 0x1f020c, 0x1f0208};
 653
 654static struct attn_hw_reg prs_prty2_bb_b0 = {
 655	2, 5, 0x1f0214, 0x1f0220, 0x1f021c, 0x1f0218};
 656
 657static struct attn_hw_reg *prs_prty_bb_b0_regs[3] = {
 658	&prs_prty0_bb_b0, &prs_prty1_bb_b0, &prs_prty2_bb_b0};
 659
 660static struct attn_hw_reg tsdm_int0_bb_b0 = {
 661	0, 26, 0xfb0040, 0xfb004c, 0xfb0048, 0xfb0044};
 662
 663static struct attn_hw_reg *tsdm_int_bb_b0_regs[1] = {
 664	&tsdm_int0_bb_b0};
 665
 666static struct attn_hw_reg tsdm_prty1_bb_b0 = {
 667	0, 10, 0xfb0200, 0xfb020c, 0xfb0208, 0xfb0204};
 668
 669static struct attn_hw_reg *tsdm_prty_bb_b0_regs[1] = {
 670	&tsdm_prty1_bb_b0};
 671
 672static struct attn_hw_reg msdm_int0_bb_b0 = {
 673	0, 26, 0xfc0040, 0xfc004c, 0xfc0048, 0xfc0044};
 674
 675static struct attn_hw_reg *msdm_int_bb_b0_regs[1] = {
 676	&msdm_int0_bb_b0};
 677
 678static struct attn_hw_reg msdm_prty1_bb_b0 = {
 679	0, 11, 0xfc0200, 0xfc020c, 0xfc0208, 0xfc0204};
 680
 681static struct attn_hw_reg *msdm_prty_bb_b0_regs[1] = {
 682	&msdm_prty1_bb_b0};
 683
 684static struct attn_hw_reg usdm_int0_bb_b0 = {
 685	0, 26, 0xfd0040, 0xfd004c, 0xfd0048, 0xfd0044};
 686
 687static struct attn_hw_reg *usdm_int_bb_b0_regs[1] = {
 688	&usdm_int0_bb_b0};
 689
 690static struct attn_hw_reg usdm_prty1_bb_b0 = {
 691	0, 10, 0xfd0200, 0xfd020c, 0xfd0208, 0xfd0204};
 692
 693static struct attn_hw_reg *usdm_prty_bb_b0_regs[1] = {
 694	&usdm_prty1_bb_b0};
 695
 696static struct attn_hw_reg xsdm_int0_bb_b0 = {
 697	0, 26, 0xf80040, 0xf8004c, 0xf80048, 0xf80044};
 698
 699static struct attn_hw_reg *xsdm_int_bb_b0_regs[1] = {
 700	&xsdm_int0_bb_b0};
 701
 702static struct attn_hw_reg xsdm_prty1_bb_b0 = {
 703	0, 10, 0xf80200, 0xf8020c, 0xf80208, 0xf80204};
 704
 705static struct attn_hw_reg *xsdm_prty_bb_b0_regs[1] = {
 706	&xsdm_prty1_bb_b0};
 707
 708static struct attn_hw_reg ysdm_int0_bb_b0 = {
 709	0, 26, 0xf90040, 0xf9004c, 0xf90048, 0xf90044};
 710
 711static struct attn_hw_reg *ysdm_int_bb_b0_regs[1] = {
 712	&ysdm_int0_bb_b0};
 713
 714static struct attn_hw_reg ysdm_prty1_bb_b0 = {
 715	0, 9, 0xf90200, 0xf9020c, 0xf90208, 0xf90204};
 716
 717static struct attn_hw_reg *ysdm_prty_bb_b0_regs[1] = {
 718	&ysdm_prty1_bb_b0};
 719
 720static struct attn_hw_reg psdm_int0_bb_b0 = {
 721	0, 26, 0xfa0040, 0xfa004c, 0xfa0048, 0xfa0044};
 722
 723static struct attn_hw_reg *psdm_int_bb_b0_regs[1] = {
 724	&psdm_int0_bb_b0};
 725
 726static struct attn_hw_reg psdm_prty1_bb_b0 = {
 727	0, 9, 0xfa0200, 0xfa020c, 0xfa0208, 0xfa0204};
 728
 729static struct attn_hw_reg *psdm_prty_bb_b0_regs[1] = {
 730	&psdm_prty1_bb_b0};
 731
 732static struct attn_hw_reg tsem_int0_bb_b0 = {
 733	0, 32, 0x1700040, 0x170004c, 0x1700048, 0x1700044};
 734
 735static struct attn_hw_reg tsem_int1_bb_b0 = {
 736	1, 13, 0x1700050, 0x170005c, 0x1700058, 0x1700054};
 737
 738static struct attn_hw_reg tsem_fast_memory_int0_bb_b0 = {
 739	2, 1, 0x1740040, 0x174004c, 0x1740048, 0x1740044};
 740
 741static struct attn_hw_reg *tsem_int_bb_b0_regs[3] = {
 742	&tsem_int0_bb_b0, &tsem_int1_bb_b0, &tsem_fast_memory_int0_bb_b0};
 743
 744static struct attn_hw_reg tsem_prty0_bb_b0 = {
 745	0, 3, 0x17000c8, 0x17000d4, 0x17000d0, 0x17000cc};
 746
 747static struct attn_hw_reg tsem_prty1_bb_b0 = {
 748	1, 6, 0x1700200, 0x170020c, 0x1700208, 0x1700204};
 749
 750static struct attn_hw_reg tsem_fast_memory_vfc_config_prty1_bb_b0 = {
 751	2, 6, 0x174a200, 0x174a20c, 0x174a208, 0x174a204};
 752
 753static struct attn_hw_reg *tsem_prty_bb_b0_regs[3] = {
 754	&tsem_prty0_bb_b0, &tsem_prty1_bb_b0,
 755	&tsem_fast_memory_vfc_config_prty1_bb_b0};
 756
 757static struct attn_hw_reg msem_int0_bb_b0 = {
 758	0, 32, 0x1800040, 0x180004c, 0x1800048, 0x1800044};
 759
 760static struct attn_hw_reg msem_int1_bb_b0 = {
 761	1, 13, 0x1800050, 0x180005c, 0x1800058, 0x1800054};
 762
 763static struct attn_hw_reg msem_fast_memory_int0_bb_b0 = {
 764	2, 1, 0x1840040, 0x184004c, 0x1840048, 0x1840044};
 765
 766static struct attn_hw_reg *msem_int_bb_b0_regs[3] = {
 767	&msem_int0_bb_b0, &msem_int1_bb_b0, &msem_fast_memory_int0_bb_b0};
 768
 769static struct attn_hw_reg msem_prty0_bb_b0 = {
 770	0, 3, 0x18000c8, 0x18000d4, 0x18000d0, 0x18000cc};
 771
 772static struct attn_hw_reg msem_prty1_bb_b0 = {
 773	1, 6, 0x1800200, 0x180020c, 0x1800208, 0x1800204};
 774
 775static struct attn_hw_reg *msem_prty_bb_b0_regs[2] = {
 776	&msem_prty0_bb_b0, &msem_prty1_bb_b0};
 777
 778static struct attn_hw_reg usem_int0_bb_b0 = {
 779	0, 32, 0x1900040, 0x190004c, 0x1900048, 0x1900044};
 780
 781static struct attn_hw_reg usem_int1_bb_b0 = {
 782	1, 13, 0x1900050, 0x190005c, 0x1900058, 0x1900054};
 783
 784static struct attn_hw_reg usem_fast_memory_int0_bb_b0 = {
 785	2, 1, 0x1940040, 0x194004c, 0x1940048, 0x1940044};
 786
 787static struct attn_hw_reg *usem_int_bb_b0_regs[3] = {
 788	&usem_int0_bb_b0, &usem_int1_bb_b0, &usem_fast_memory_int0_bb_b0};
 789
 790static struct attn_hw_reg usem_prty0_bb_b0 = {
 791	0, 3, 0x19000c8, 0x19000d4, 0x19000d0, 0x19000cc};
 792
 793static struct attn_hw_reg usem_prty1_bb_b0 = {
 794	1, 6, 0x1900200, 0x190020c, 0x1900208, 0x1900204};
 795
 796static struct attn_hw_reg *usem_prty_bb_b0_regs[2] = {
 797	&usem_prty0_bb_b0, &usem_prty1_bb_b0};
 798
 799static struct attn_hw_reg xsem_int0_bb_b0 = {
 800	0, 32, 0x1400040, 0x140004c, 0x1400048, 0x1400044};
 801
 802static struct attn_hw_reg xsem_int1_bb_b0 = {
 803	1, 13, 0x1400050, 0x140005c, 0x1400058, 0x1400054};
 804
 805static struct attn_hw_reg xsem_fast_memory_int0_bb_b0 = {
 806	2, 1, 0x1440040, 0x144004c, 0x1440048, 0x1440044};
 807
 808static struct attn_hw_reg *xsem_int_bb_b0_regs[3] = {
 809	&xsem_int0_bb_b0, &xsem_int1_bb_b0, &xsem_fast_memory_int0_bb_b0};
 810
 811static struct attn_hw_reg xsem_prty0_bb_b0 = {
 812	0, 3, 0x14000c8, 0x14000d4, 0x14000d0, 0x14000cc};
 813
 814static struct attn_hw_reg xsem_prty1_bb_b0 = {
 815	1, 7, 0x1400200, 0x140020c, 0x1400208, 0x1400204};
 816
 817static struct attn_hw_reg *xsem_prty_bb_b0_regs[2] = {
 818	&xsem_prty0_bb_b0, &xsem_prty1_bb_b0};
 819
 820static struct attn_hw_reg ysem_int0_bb_b0 = {
 821	0, 32, 0x1500040, 0x150004c, 0x1500048, 0x1500044};
 822
 823static struct attn_hw_reg ysem_int1_bb_b0 = {
 824	1, 13, 0x1500050, 0x150005c, 0x1500058, 0x1500054};
 825
 826static struct attn_hw_reg ysem_fast_memory_int0_bb_b0 = {
 827	2, 1, 0x1540040, 0x154004c, 0x1540048, 0x1540044};
 828
 829static struct attn_hw_reg *ysem_int_bb_b0_regs[3] = {
 830	&ysem_int0_bb_b0, &ysem_int1_bb_b0, &ysem_fast_memory_int0_bb_b0};
 831
 832static struct attn_hw_reg ysem_prty0_bb_b0 = {
 833	0, 3, 0x15000c8, 0x15000d4, 0x15000d0, 0x15000cc};
 834
 835static struct attn_hw_reg ysem_prty1_bb_b0 = {
 836	1, 7, 0x1500200, 0x150020c, 0x1500208, 0x1500204};
 837
 838static struct attn_hw_reg *ysem_prty_bb_b0_regs[2] = {
 839	&ysem_prty0_bb_b0, &ysem_prty1_bb_b0};
 840
 841static struct attn_hw_reg psem_int0_bb_b0 = {
 842	0, 32, 0x1600040, 0x160004c, 0x1600048, 0x1600044};
 843
 844static struct attn_hw_reg psem_int1_bb_b0 = {
 845	1, 13, 0x1600050, 0x160005c, 0x1600058, 0x1600054};
 846
 847static struct attn_hw_reg psem_fast_memory_int0_bb_b0 = {
 848	2, 1, 0x1640040, 0x164004c, 0x1640048, 0x1640044};
 849
 850static struct attn_hw_reg *psem_int_bb_b0_regs[3] = {
 851	&psem_int0_bb_b0, &psem_int1_bb_b0, &psem_fast_memory_int0_bb_b0};
 852
 853static struct attn_hw_reg psem_prty0_bb_b0 = {
 854	0, 3, 0x16000c8, 0x16000d4, 0x16000d0, 0x16000cc};
 855
 856static struct attn_hw_reg psem_prty1_bb_b0 = {
 857	1, 6, 0x1600200, 0x160020c, 0x1600208, 0x1600204};
 858
 859static struct attn_hw_reg psem_fast_memory_vfc_config_prty1_bb_b0 = {
 860	2, 6, 0x164a200, 0x164a20c, 0x164a208, 0x164a204};
 861
 862static struct attn_hw_reg *psem_prty_bb_b0_regs[3] = {
 863	&psem_prty0_bb_b0, &psem_prty1_bb_b0,
 864	&psem_fast_memory_vfc_config_prty1_bb_b0};
 865
 866static struct attn_hw_reg rss_int0_bb_b0 = {
 867	0, 12, 0x238980, 0x23898c, 0x238988, 0x238984};
 868
 869static struct attn_hw_reg *rss_int_bb_b0_regs[1] = {
 870	&rss_int0_bb_b0};
 871
 872static struct attn_hw_reg rss_prty1_bb_b0 = {
 873	0, 4, 0x238a00, 0x238a0c, 0x238a08, 0x238a04};
 874
 875static struct attn_hw_reg *rss_prty_bb_b0_regs[1] = {
 876	&rss_prty1_bb_b0};
 877
 878static struct attn_hw_reg tmld_int0_bb_b0 = {
 879	0, 6, 0x4d0180, 0x4d018c, 0x4d0188, 0x4d0184};
 880
 881static struct attn_hw_reg *tmld_int_bb_b0_regs[1] = {
 882	&tmld_int0_bb_b0};
 883
 884static struct attn_hw_reg tmld_prty1_bb_b0 = {
 885	0, 8, 0x4d0200, 0x4d020c, 0x4d0208, 0x4d0204};
 886
 887static struct attn_hw_reg *tmld_prty_bb_b0_regs[1] = {
 888	&tmld_prty1_bb_b0};
 889
 890static struct attn_hw_reg muld_int0_bb_b0 = {
 891	0, 6, 0x4e0180, 0x4e018c, 0x4e0188, 0x4e0184};
 892
 893static struct attn_hw_reg *muld_int_bb_b0_regs[1] = {
 894	&muld_int0_bb_b0};
 895
 896static struct attn_hw_reg muld_prty1_bb_b0 = {
 897	0, 10, 0x4e0200, 0x4e020c, 0x4e0208, 0x4e0204};
 898
 899static struct attn_hw_reg *muld_prty_bb_b0_regs[1] = {
 900	&muld_prty1_bb_b0};
 901
 902static struct attn_hw_reg yuld_int0_bb_b0 = {
 903	0, 6, 0x4c8180, 0x4c818c, 0x4c8188, 0x4c8184};
 904
 905static struct attn_hw_reg *yuld_int_bb_b0_regs[1] = {
 906	&yuld_int0_bb_b0};
 907
 908static struct attn_hw_reg yuld_prty1_bb_b0 = {
 909	0, 6, 0x4c8200, 0x4c820c, 0x4c8208, 0x4c8204};
 910
 911static struct attn_hw_reg *yuld_prty_bb_b0_regs[1] = {
 912	&yuld_prty1_bb_b0};
 913
 914static struct attn_hw_reg xyld_int0_bb_b0 = {
 915	0, 6, 0x4c0180, 0x4c018c, 0x4c0188, 0x4c0184};
 916
 917static struct attn_hw_reg *xyld_int_bb_b0_regs[1] = {
 918	&xyld_int0_bb_b0};
 919
 920static struct attn_hw_reg xyld_prty1_bb_b0 = {
 921	0, 9, 0x4c0200, 0x4c020c, 0x4c0208, 0x4c0204};
 922
 923static struct attn_hw_reg *xyld_prty_bb_b0_regs[1] = {
 924	&xyld_prty1_bb_b0};
 925
 926static struct attn_hw_reg prm_int0_bb_b0 = {
 927	0, 11, 0x230040, 0x23004c, 0x230048, 0x230044};
 928
 929static struct attn_hw_reg *prm_int_bb_b0_regs[1] = {
 930	&prm_int0_bb_b0};
 931
 932static struct attn_hw_reg prm_prty0_bb_b0 = {
 933	0, 1, 0x230050, 0x23005c, 0x230058, 0x230054};
 934
 935static struct attn_hw_reg prm_prty1_bb_b0 = {
 936	1, 24, 0x230200, 0x23020c, 0x230208, 0x230204};
 937
 938static struct attn_hw_reg *prm_prty_bb_b0_regs[2] = {
 939	&prm_prty0_bb_b0, &prm_prty1_bb_b0};
 940
 941static struct attn_hw_reg pbf_pb1_int0_bb_b0 = {
 942	0, 9, 0xda0040, 0xda004c, 0xda0048, 0xda0044};
 943
 944static struct attn_hw_reg *pbf_pb1_int_bb_b0_regs[1] = {
 945	&pbf_pb1_int0_bb_b0};
 946
 947static struct attn_hw_reg pbf_pb1_prty0_bb_b0 = {
 948	0, 1, 0xda0050, 0xda005c, 0xda0058, 0xda0054};
 949
 950static struct attn_hw_reg *pbf_pb1_prty_bb_b0_regs[1] = {
 951	&pbf_pb1_prty0_bb_b0};
 952
 953static struct attn_hw_reg pbf_pb2_int0_bb_b0 = {
 954	0, 9, 0xda4040, 0xda404c, 0xda4048, 0xda4044};
 955
 956static struct attn_hw_reg *pbf_pb2_int_bb_b0_regs[1] = {
 957	&pbf_pb2_int0_bb_b0};
 958
 959static struct attn_hw_reg pbf_pb2_prty0_bb_b0 = {
 960	0, 1, 0xda4050, 0xda405c, 0xda4058, 0xda4054};
 961
 962static struct attn_hw_reg *pbf_pb2_prty_bb_b0_regs[1] = {
 963	&pbf_pb2_prty0_bb_b0};
 964
 965static struct attn_hw_reg rpb_int0_bb_b0 = {
 966	0, 9, 0x23c040, 0x23c04c, 0x23c048, 0x23c044};
 967
 968static struct attn_hw_reg *rpb_int_bb_b0_regs[1] = {
 969	&rpb_int0_bb_b0};
 970
 971static struct attn_hw_reg rpb_prty0_bb_b0 = {
 972	0, 1, 0x23c050, 0x23c05c, 0x23c058, 0x23c054};
 973
 974static struct attn_hw_reg *rpb_prty_bb_b0_regs[1] = {
 975	&rpb_prty0_bb_b0};
 976
 977static struct attn_hw_reg btb_int0_bb_b0 = {
 978	0, 16, 0xdb00c0, 0xdb00cc, 0xdb00c8, 0xdb00c4};
 979
 980static struct attn_hw_reg btb_int1_bb_b0 = {
 981	1, 16, 0xdb00d8, 0xdb00e4, 0xdb00e0, 0xdb00dc};
 982
 983static struct attn_hw_reg btb_int2_bb_b0 = {
 984	2, 4, 0xdb00f0, 0xdb00fc, 0xdb00f8, 0xdb00f4};
 985
 986static struct attn_hw_reg btb_int3_bb_b0 = {
 987	3, 32, 0xdb0108, 0xdb0114, 0xdb0110, 0xdb010c};
 988
 989static struct attn_hw_reg btb_int4_bb_b0 = {
 990	4, 23, 0xdb0120, 0xdb012c, 0xdb0128, 0xdb0124};
 991
 992static struct attn_hw_reg btb_int5_bb_b0 = {
 993	5, 32, 0xdb0138, 0xdb0144, 0xdb0140, 0xdb013c};
 994
 995static struct attn_hw_reg btb_int6_bb_b0 = {
 996	6, 1, 0xdb0150, 0xdb015c, 0xdb0158, 0xdb0154};
 997
 998static struct attn_hw_reg btb_int8_bb_b0 = {
 999	7, 1, 0xdb0184, 0xdb0190, 0xdb018c, 0xdb0188};
1000
1001static struct attn_hw_reg btb_int9_bb_b0 = {
1002	8, 1, 0xdb019c, 0xdb01a8, 0xdb01a4, 0xdb01a0};
1003
1004static struct attn_hw_reg btb_int10_bb_b0 = {
1005	9, 1, 0xdb01b4, 0xdb01c0, 0xdb01bc, 0xdb01b8};
1006
1007static struct attn_hw_reg btb_int11_bb_b0 = {
1008	10, 2, 0xdb01cc, 0xdb01d8, 0xdb01d4, 0xdb01d0};
1009
1010static struct attn_hw_reg *btb_int_bb_b0_regs[11] = {
1011	&btb_int0_bb_b0, &btb_int1_bb_b0, &btb_int2_bb_b0, &btb_int3_bb_b0,
1012	&btb_int4_bb_b0, &btb_int5_bb_b0, &btb_int6_bb_b0, &btb_int8_bb_b0,
1013	&btb_int9_bb_b0, &btb_int10_bb_b0, &btb_int11_bb_b0};
1014
1015static struct attn_hw_reg btb_prty0_bb_b0 = {
1016	0, 5, 0xdb01dc, 0xdb01e8, 0xdb01e4, 0xdb01e0};
1017
1018static struct attn_hw_reg btb_prty1_bb_b0 = {
1019	1, 23, 0xdb0400, 0xdb040c, 0xdb0408, 0xdb0404};
1020
1021static struct attn_hw_reg *btb_prty_bb_b0_regs[2] = {
1022	&btb_prty0_bb_b0, &btb_prty1_bb_b0};
1023
1024static struct attn_hw_reg pbf_int0_bb_b0 = {
1025	0, 1, 0xd80180, 0xd8018c, 0xd80188, 0xd80184};
1026
1027static struct attn_hw_reg *pbf_int_bb_b0_regs[1] = {
1028	&pbf_int0_bb_b0};
1029
1030static struct attn_hw_reg pbf_prty0_bb_b0 = {
1031	0, 1, 0xd80190, 0xd8019c, 0xd80198, 0xd80194};
1032
1033static struct attn_hw_reg pbf_prty1_bb_b0 = {
1034	1, 31, 0xd80200, 0xd8020c, 0xd80208, 0xd80204};
1035
1036static struct attn_hw_reg pbf_prty2_bb_b0 = {
1037	2, 27, 0xd80210, 0xd8021c, 0xd80218, 0xd80214};
1038
1039static struct attn_hw_reg *pbf_prty_bb_b0_regs[3] = {
1040	&pbf_prty0_bb_b0, &pbf_prty1_bb_b0, &pbf_prty2_bb_b0};
1041
1042static struct attn_hw_reg rdif_int0_bb_b0 = {
1043	0, 8, 0x300180, 0x30018c, 0x300188, 0x300184};
1044
1045static struct attn_hw_reg *rdif_int_bb_b0_regs[1] = {
1046	&rdif_int0_bb_b0};
1047
1048static struct attn_hw_reg rdif_prty0_bb_b0 = {
1049	0, 1, 0x300190, 0x30019c, 0x300198, 0x300194};
1050
1051static struct attn_hw_reg *rdif_prty_bb_b0_regs[1] = {
1052	&rdif_prty0_bb_b0};
1053
1054static struct attn_hw_reg tdif_int0_bb_b0 = {
1055	0, 8, 0x310180, 0x31018c, 0x310188, 0x310184};
1056
1057static struct attn_hw_reg *tdif_int_bb_b0_regs[1] = {
1058	&tdif_int0_bb_b0};
1059
1060static struct attn_hw_reg tdif_prty0_bb_b0 = {
1061	0, 1, 0x310190, 0x31019c, 0x310198, 0x310194};
1062
1063static struct attn_hw_reg tdif_prty1_bb_b0 = {
1064	1, 11, 0x310200, 0x31020c, 0x310208, 0x310204};
1065
1066static struct attn_hw_reg *tdif_prty_bb_b0_regs[2] = {
1067	&tdif_prty0_bb_b0, &tdif_prty1_bb_b0};
1068
1069static struct attn_hw_reg cdu_int0_bb_b0 = {
1070	0, 8, 0x5801c0, 0x5801c4, 0x5801c8, 0x5801cc};
1071
1072static struct attn_hw_reg *cdu_int_bb_b0_regs[1] = {
1073	&cdu_int0_bb_b0};
1074
1075static struct attn_hw_reg cdu_prty1_bb_b0 = {
1076	0, 5, 0x580200, 0x58020c, 0x580208, 0x580204};
1077
1078static struct attn_hw_reg *cdu_prty_bb_b0_regs[1] = {
1079	&cdu_prty1_bb_b0};
1080
1081static struct attn_hw_reg ccfc_int0_bb_b0 = {
1082	0, 2, 0x2e0180, 0x2e018c, 0x2e0188, 0x2e0184};
1083
1084static struct attn_hw_reg *ccfc_int_bb_b0_regs[1] = {
1085	&ccfc_int0_bb_b0};
1086
1087static struct attn_hw_reg ccfc_prty1_bb_b0 = {
1088	0, 2, 0x2e0200, 0x2e020c, 0x2e0208, 0x2e0204};
1089
1090static struct attn_hw_reg ccfc_prty0_bb_b0 = {
1091	1, 6, 0x2e05e4, 0x2e05f0, 0x2e05ec, 0x2e05e8};
1092
1093static struct attn_hw_reg *ccfc_prty_bb_b0_regs[2] = {
1094	&ccfc_prty1_bb_b0, &ccfc_prty0_bb_b0};
1095
1096static struct attn_hw_reg tcfc_int0_bb_b0 = {
1097	0, 2, 0x2d0180, 0x2d018c, 0x2d0188, 0x2d0184};
1098
1099static struct attn_hw_reg *tcfc_int_bb_b0_regs[1] = {
1100	&tcfc_int0_bb_b0};
1101
1102static struct attn_hw_reg tcfc_prty1_bb_b0 = {
1103	0, 2, 0x2d0200, 0x2d020c, 0x2d0208, 0x2d0204};
1104
1105static struct attn_hw_reg tcfc_prty0_bb_b0 = {
1106	1, 6, 0x2d05e4, 0x2d05f0, 0x2d05ec, 0x2d05e8};
1107
1108static struct attn_hw_reg *tcfc_prty_bb_b0_regs[2] = {
1109	&tcfc_prty1_bb_b0, &tcfc_prty0_bb_b0};
1110
1111static struct attn_hw_reg igu_int0_bb_b0 = {
1112	0, 11, 0x180180, 0x18018c, 0x180188, 0x180184};
1113
1114static struct attn_hw_reg *igu_int_bb_b0_regs[1] = {
1115	&igu_int0_bb_b0};
1116
1117static struct attn_hw_reg igu_prty0_bb_b0 = {
1118	0, 1, 0x180190, 0x18019c, 0x180198, 0x180194};
1119
1120static struct attn_hw_reg igu_prty1_bb_b0 = {
1121	1, 31, 0x180200, 0x18020c, 0x180208, 0x180204};
1122
1123static struct attn_hw_reg igu_prty2_bb_b0 = {
1124	2, 1, 0x180210, 0x18021c, 0x180218, 0x180214};
1125
1126static struct attn_hw_reg *igu_prty_bb_b0_regs[3] = {
1127	&igu_prty0_bb_b0, &igu_prty1_bb_b0, &igu_prty2_bb_b0};
1128
1129static struct attn_hw_reg cau_int0_bb_b0 = {
1130	0, 11, 0x1c00d4, 0x1c00d8, 0x1c00dc, 0x1c00e0};
1131
1132static struct attn_hw_reg *cau_int_bb_b0_regs[1] = {
1133	&cau_int0_bb_b0};
1134
1135static struct attn_hw_reg cau_prty1_bb_b0 = {
1136	0, 13, 0x1c0200, 0x1c020c, 0x1c0208, 0x1c0204};
1137
1138static struct attn_hw_reg *cau_prty_bb_b0_regs[1] = {
1139	&cau_prty1_bb_b0};
1140
1141static struct attn_hw_reg dbg_int0_bb_b0 = {
1142	0, 1, 0x10180, 0x1018c, 0x10188, 0x10184};
1143
1144static struct attn_hw_reg *dbg_int_bb_b0_regs[1] = {
1145	&dbg_int0_bb_b0};
1146
1147static struct attn_hw_reg dbg_prty1_bb_b0 = {
1148	0, 1, 0x10200, 0x1020c, 0x10208, 0x10204};
1149
1150static struct attn_hw_reg *dbg_prty_bb_b0_regs[1] = {
1151	&dbg_prty1_bb_b0};
1152
1153static struct attn_hw_reg nig_int0_bb_b0 = {
1154	0, 12, 0x500040, 0x50004c, 0x500048, 0x500044};
1155
1156static struct attn_hw_reg nig_int1_bb_b0 = {
1157	1, 32, 0x500050, 0x50005c, 0x500058, 0x500054};
1158
1159static struct attn_hw_reg nig_int2_bb_b0 = {
1160	2, 20, 0x500060, 0x50006c, 0x500068, 0x500064};
1161
1162static struct attn_hw_reg nig_int3_bb_b0 = {
1163	3, 18, 0x500070, 0x50007c, 0x500078, 0x500074};
1164
1165static struct attn_hw_reg nig_int4_bb_b0 = {
1166	4, 20, 0x500080, 0x50008c, 0x500088, 0x500084};
1167
1168static struct attn_hw_reg nig_int5_bb_b0 = {
1169	5, 18, 0x500090, 0x50009c, 0x500098, 0x500094};
1170
1171static struct attn_hw_reg *nig_int_bb_b0_regs[6] = {
1172	&nig_int0_bb_b0, &nig_int1_bb_b0, &nig_int2_bb_b0, &nig_int3_bb_b0,
1173	&nig_int4_bb_b0, &nig_int5_bb_b0};
1174
1175static struct attn_hw_reg nig_prty0_bb_b0 = {
1176	0, 1, 0x5000a0, 0x5000ac, 0x5000a8, 0x5000a4};
1177
1178static struct attn_hw_reg nig_prty1_bb_b0 = {
1179	1, 31, 0x500200, 0x50020c, 0x500208, 0x500204};
1180
1181static struct attn_hw_reg nig_prty2_bb_b0 = {
1182	2, 31, 0x500210, 0x50021c, 0x500218, 0x500214};
1183
1184static struct attn_hw_reg nig_prty3_bb_b0 = {
1185	3, 31, 0x500220, 0x50022c, 0x500228, 0x500224};
1186
1187static struct attn_hw_reg nig_prty4_bb_b0 = {
1188	4, 17, 0x500230, 0x50023c, 0x500238, 0x500234};
1189
1190static struct attn_hw_reg *nig_prty_bb_b0_regs[5] = {
1191	&nig_prty0_bb_b0, &nig_prty1_bb_b0, &nig_prty2_bb_b0,
1192	&nig_prty3_bb_b0, &nig_prty4_bb_b0};
1193
1194static struct attn_hw_reg ipc_int0_bb_b0 = {
1195	0, 13, 0x2050c, 0x20518, 0x20514, 0x20510};
1196
1197static struct attn_hw_reg *ipc_int_bb_b0_regs[1] = {
1198	&ipc_int0_bb_b0};
1199
1200static struct attn_hw_reg ipc_prty0_bb_b0 = {
1201	0, 1, 0x2051c, 0x20528, 0x20524, 0x20520};
1202
1203static struct attn_hw_reg *ipc_prty_bb_b0_regs[1] = {
1204	&ipc_prty0_bb_b0};
1205
1206static struct attn_hw_block attn_blocks[] = {
1207	{"grc", {{1, 1, grc_int_bb_b0_regs, grc_prty_bb_b0_regs} } },
1208	{"miscs", {{2, 1, miscs_int_bb_b0_regs, miscs_prty_bb_b0_regs} } },
1209	{"misc", {{1, 0, misc_int_bb_b0_regs, NULL} } },
1210	{"dbu", {{0, 0, NULL, NULL} } },
1211	{"pglue_b", {{1, 2, pglue_b_int_bb_b0_regs,
1212		      pglue_b_prty_bb_b0_regs} } },
1213	{"cnig", {{1, 1, cnig_int_bb_b0_regs, cnig_prty_bb_b0_regs} } },
1214	{"cpmu", {{1, 0, cpmu_int_bb_b0_regs, NULL} } },
1215	{"ncsi", {{1, 1, ncsi_int_bb_b0_regs, ncsi_prty_bb_b0_regs} } },
1216	{"opte", {{0, 2, NULL, opte_prty_bb_b0_regs} } },
1217	{"bmb", {{12, 3, bmb_int_bb_b0_regs, bmb_prty_bb_b0_regs} } },
1218	{"pcie", {{0, 1, NULL, pcie_prty_bb_b0_regs} } },
1219	{"mcp", {{0, 0, NULL, NULL} } },
1220	{"mcp2", {{0, 2, NULL, mcp2_prty_bb_b0_regs} } },
1221	{"pswhst", {{1, 2, pswhst_int_bb_b0_regs, pswhst_prty_bb_b0_regs} } },
1222	{"pswhst2", {{1, 1, pswhst2_int_bb_b0_regs,
1223		      pswhst2_prty_bb_b0_regs} } },
1224	{"pswrd", {{1, 1, pswrd_int_bb_b0_regs, pswrd_prty_bb_b0_regs} } },
1225	{"pswrd2", {{1, 3, pswrd2_int_bb_b0_regs, pswrd2_prty_bb_b0_regs} } },
1226	{"pswwr", {{1, 1, pswwr_int_bb_b0_regs, pswwr_prty_bb_b0_regs} } },
1227	{"pswwr2", {{1, 5, pswwr2_int_bb_b0_regs, pswwr2_prty_bb_b0_regs} } },
1228	{"pswrq", {{1, 1, pswrq_int_bb_b0_regs, pswrq_prty_bb_b0_regs} } },
1229	{"pswrq2", {{1, 1, pswrq2_int_bb_b0_regs, pswrq2_prty_bb_b0_regs} } },
1230	{"pglcs", {{1, 0, pglcs_int_bb_b0_regs, NULL} } },
1231	{"dmae", {{1, 1, dmae_int_bb_b0_regs, dmae_prty_bb_b0_regs} } },
1232	{"ptu", {{1, 1, ptu_int_bb_b0_regs, ptu_prty_bb_b0_regs} } },
1233	{"tcm", {{3, 2, tcm_int_bb_b0_regs, tcm_prty_bb_b0_regs} } },
1234	{"mcm", {{3, 2, mcm_int_bb_b0_regs, mcm_prty_bb_b0_regs} } },
1235	{"ucm", {{3, 2, ucm_int_bb_b0_regs, ucm_prty_bb_b0_regs} } },
1236	{"xcm", {{3, 2, xcm_int_bb_b0_regs, xcm_prty_bb_b0_regs} } },
1237	{"ycm", {{3, 2, ycm_int_bb_b0_regs, ycm_prty_bb_b0_regs} } },
1238	{"pcm", {{3, 1, pcm_int_bb_b0_regs, pcm_prty_bb_b0_regs} } },
1239	{"qm", {{1, 4, qm_int_bb_b0_regs, qm_prty_bb_b0_regs} } },
1240	{"tm", {{2, 1, tm_int_bb_b0_regs, tm_prty_bb_b0_regs} } },
1241	{"dorq", {{1, 2, dorq_int_bb_b0_regs, dorq_prty_bb_b0_regs} } },
1242	{"brb", {{12, 3, brb_int_bb_b0_regs, brb_prty_bb_b0_regs} } },
1243	{"src", {{1, 0, src_int_bb_b0_regs, NULL} } },
1244	{"prs", {{1, 3, prs_int_bb_b0_regs, prs_prty_bb_b0_regs} } },
1245	{"tsdm", {{1, 1, tsdm_int_bb_b0_regs, tsdm_prty_bb_b0_regs} } },
1246	{"msdm", {{1, 1, msdm_int_bb_b0_regs, msdm_prty_bb_b0_regs} } },
1247	{"usdm", {{1, 1, usdm_int_bb_b0_regs, usdm_prty_bb_b0_regs} } },
1248	{"xsdm", {{1, 1, xsdm_int_bb_b0_regs, xsdm_prty_bb_b0_regs} } },
1249	{"ysdm", {{1, 1, ysdm_int_bb_b0_regs, ysdm_prty_bb_b0_regs} } },
1250	{"psdm", {{1, 1, psdm_int_bb_b0_regs, psdm_prty_bb_b0_regs} } },
1251	{"tsem", {{3, 3, tsem_int_bb_b0_regs, tsem_prty_bb_b0_regs} } },
1252	{"msem", {{3, 2, msem_int_bb_b0_regs, msem_prty_bb_b0_regs} } },
1253	{"usem", {{3, 2, usem_int_bb_b0_regs, usem_prty_bb_b0_regs} } },
1254	{"xsem", {{3, 2, xsem_int_bb_b0_regs, xsem_prty_bb_b0_regs} } },
1255	{"ysem", {{3, 2, ysem_int_bb_b0_regs, ysem_prty_bb_b0_regs} } },
1256	{"psem", {{3, 3, psem_int_bb_b0_regs, psem_prty_bb_b0_regs} } },
1257	{"rss", {{1, 1, rss_int_bb_b0_regs, rss_prty_bb_b0_regs} } },
1258	{"tmld", {{1, 1, tmld_int_bb_b0_regs, tmld_prty_bb_b0_regs} } },
1259	{"muld", {{1, 1, muld_int_bb_b0_regs, muld_prty_bb_b0_regs} } },
1260	{"yuld", {{1, 1, yuld_int_bb_b0_regs, yuld_prty_bb_b0_regs} } },
1261	{"xyld", {{1, 1, xyld_int_bb_b0_regs, xyld_prty_bb_b0_regs} } },
1262	{"prm", {{1, 2, prm_int_bb_b0_regs, prm_prty_bb_b0_regs} } },
1263	{"pbf_pb1", {{1, 1, pbf_pb1_int_bb_b0_regs,
1264		      pbf_pb1_prty_bb_b0_regs} } },
1265	{"pbf_pb2", {{1, 1, pbf_pb2_int_bb_b0_regs,
1266		      pbf_pb2_prty_bb_b0_regs} } },
1267	{"rpb", { {1, 1, rpb_int_bb_b0_regs, rpb_prty_bb_b0_regs} } },
1268	{"btb", { {11, 2, btb_int_bb_b0_regs, btb_prty_bb_b0_regs} } },
1269	{"pbf", { {1, 3, pbf_int_bb_b0_regs, pbf_prty_bb_b0_regs} } },
1270	{"rdif", { {1, 1, rdif_int_bb_b0_regs, rdif_prty_bb_b0_regs} } },
1271	{"tdif", { {1, 2, tdif_int_bb_b0_regs, tdif_prty_bb_b0_regs} } },
1272	{"cdu", { {1, 1, cdu_int_bb_b0_regs, cdu_prty_bb_b0_regs} } },
1273	{"ccfc", { {1, 2, ccfc_int_bb_b0_regs, ccfc_prty_bb_b0_regs} } },
1274	{"tcfc", { {1, 2, tcfc_int_bb_b0_regs, tcfc_prty_bb_b0_regs} } },
1275	{"igu", { {1, 3, igu_int_bb_b0_regs, igu_prty_bb_b0_regs} } },
1276	{"cau", { {1, 1, cau_int_bb_b0_regs, cau_prty_bb_b0_regs} } },
1277	{"umac", { {0, 0, NULL, NULL} } },
1278	{"xmac", { {0, 0, NULL, NULL} } },
1279	{"dbg", { {1, 1, dbg_int_bb_b0_regs, dbg_prty_bb_b0_regs} } },
1280	{"nig", { {6, 5, nig_int_bb_b0_regs, nig_prty_bb_b0_regs} } },
1281	{"wol", { {0, 0, NULL, NULL} } },
1282	{"bmbn", { {0, 0, NULL, NULL} } },
1283	{"ipc", { {1, 1, ipc_int_bb_b0_regs, ipc_prty_bb_b0_regs} } },
1284	{"nwm", { {0, 0, NULL, NULL} } },
1285	{"nws", { {0, 0, NULL, NULL} } },
1286	{"ms", { {0, 0, NULL, NULL} } },
1287	{"phy_pcie", { {0, 0, NULL, NULL} } },
1288	{"misc_aeu", { {0, 0, NULL, NULL} } },
1289	{"bar0_map", { {0, 0, NULL, NULL} } },};
1290
1291/* Specific HW attention callbacks */
1292static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
1293{
1294	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
1295
1296	/* This might occur on certain instances; Log it once then mask it */
1297	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
1298		tmp);
1299	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
1300	       0xffffffff);
1301
1302	return 0;
1303}
1304
1305#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
1306#define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
1307#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
1308#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
1309#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
1310#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
1311#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
1312#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
1313#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
1314#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
1315#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
1316#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
1317#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
1318static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
1319{
1320	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1321			 PSWHST_REG_INCORRECT_ACCESS_VALID);
1322
1323	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
1324		u32 addr, data, length;
1325
1326		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1327			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
1328		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1329			      PSWHST_REG_INCORRECT_ACCESS_DATA);
1330		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1331				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
1332
1333		DP_INFO(p_hwfn->cdev,
1334			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
1335			addr, length,
1336			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
1337			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
1338			(u8) GET_FIELD(data,
1339				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
1340			(u8) GET_FIELD(data,
1341				       ATTENTION_INCORRECT_ACCESS_CLIENT),
1342			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
1343			(u8) GET_FIELD(data,
1344				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
1345			data);
1346	}
1347
1348	return 0;
1349}
1350
1351#define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
1352#define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
1353#define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
1354#define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
1355#define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
1356#define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
1357#define QED_GRC_ATTENTION_PF_MASK	(0xf)
1358#define QED_GRC_ATTENTION_PF_SHIFT	(0)
1359#define QED_GRC_ATTENTION_VF_MASK	(0xff)
1360#define QED_GRC_ATTENTION_VF_SHIFT	(4)
1361#define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
1362#define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
1363#define QED_GRC_ATTENTION_PRIV_VF	(0)
1364static const char *attn_master_to_str(u8 master)
1365{
1366	switch (master) {
1367	case 1: return "PXP";
1368	case 2: return "MCP";
1369	case 3: return "MSDM";
1370	case 4: return "PSDM";
1371	case 5: return "YSDM";
1372	case 6: return "USDM";
1373	case 7: return "TSDM";
1374	case 8: return "XSDM";
1375	case 9: return "DBU";
1376	case 10: return "DMAE";
1377	default:
1378		return "Unkown";
1379	}
1380}
1381
1382static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
1383{
1384	u32 tmp, tmp2;
1385
1386	/* We've already cleared the timeout interrupt register, so we learn
1387	 * of interrupts via the validity register
1388	 */
1389	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1390		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
1391	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
1392		goto out;
1393
1394	/* Read the GRC timeout information */
1395	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1396		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
1397	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1398		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
1399
1400	DP_INFO(p_hwfn->cdev,
1401		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
1402		tmp2, tmp,
1403		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
1404		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
1405		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
1406		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
1407		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
1408		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Ireelevant)",
1409		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
1410
1411out:
1412	/* Regardles of anything else, clean the validity bit */
1413	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
1414	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
1415	return 0;
1416}
1417
1418#define PGLUE_ATTENTION_VALID			(1 << 29)
1419#define PGLUE_ATTENTION_RD_VALID		(1 << 26)
1420#define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
1421#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
1422#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
1423#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
1424#define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
1425#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
1426#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
1427#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
1428#define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
1429#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
1430#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
1431#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
1432#define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
1433#define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
1434#define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
1435static int qed_pglub_rbc_attn_cb(struct qed_hwfn *p_hwfn)
 
 
1436{
 
1437	u32 tmp;
1438
1439	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1440		     PGLUE_B_REG_TX_ERR_WR_DETAILS2);
1441	if (tmp & PGLUE_ATTENTION_VALID) {
1442		u32 addr_lo, addr_hi, details;
1443
1444		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1445				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
1446		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1447				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
1448		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1449				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
1450
1451		DP_INFO(p_hwfn,
1452			"Illegal write by chip to [%08x:%08x] blocked.\n"
1453			"Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
1454			"Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
1455			addr_hi, addr_lo, details,
1456			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
1457			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
1458			GET_FIELD(details,
1459				  PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
1460			tmp,
1461			GET_FIELD(tmp,
1462				  PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
1463			GET_FIELD(tmp,
1464				  PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
1465			GET_FIELD(tmp,
1466				  PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
 
1467	}
1468
1469	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1470		     PGLUE_B_REG_TX_ERR_RD_DETAILS2);
1471	if (tmp & PGLUE_ATTENTION_RD_VALID) {
1472		u32 addr_lo, addr_hi, details;
1473
1474		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1475				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
1476		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1477				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
1478		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1479				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
1480
1481		DP_INFO(p_hwfn,
1482			"Illegal read by chip from [%08x:%08x] blocked.\n"
1483			" Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
1484			" Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
1485			addr_hi, addr_lo, details,
1486			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
1487			(u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
1488			GET_FIELD(details,
1489				  PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
1490			tmp,
1491			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1
1492									 : 0,
1493			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
1494			GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1
1495									: 0);
 
 
 
 
 
 
 
 
 
 
 
1496	}
1497
1498	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1499		     PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
1500	if (tmp & PGLUE_ATTENTION_ICPL_VALID)
1501		DP_INFO(p_hwfn, "ICPL eror - %08x\n", tmp);
1502
1503	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1504		     PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
1505	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
1506		u32 addr_hi, addr_lo;
1507
1508		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1509				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
1510		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1511				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
1512
1513		DP_INFO(p_hwfn, "ZLR eror - %08x [Address %08x:%08x]\n",
1514			tmp, addr_hi, addr_lo);
1515	}
1516
1517	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1518		     PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
1519	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
1520		u32 addr_hi, addr_lo, details;
1521
1522		addr_lo = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1523				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
1524		addr_hi = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1525				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
1526		details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1527				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
1528
1529		DP_INFO(p_hwfn,
1530			"ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
1531			details, tmp, addr_hi, addr_lo);
1532	}
1533
1534	/* Clear the indications */
1535	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
1536	       PGLUE_B_REG_LATCHED_ERRORS_CLR, (1 << 2));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537
1538	return 0;
1539}
1540
1541#define QED_DORQ_ATTENTION_REASON_MASK	(0xfffff)
1542#define QED_DORQ_ATTENTION_OPAQUE_MASK (0xffff)
1543#define QED_DORQ_ATTENTION_SIZE_MASK	(0x7f)
1544#define QED_DORQ_ATTENTION_SIZE_SHIFT	(16)
1545static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546{
1547	u32 reason;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548
1549	reason = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, DORQ_REG_DB_DROP_REASON) &
1550			QED_DORQ_ATTENTION_REASON_MASK;
1551	if (reason) {
1552		u32 details = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1553				     DORQ_REG_DB_DROP_DETAILS);
1554
1555		DP_INFO(p_hwfn->cdev,
1556			"DORQ db_drop: adress 0x%08x Opaque FID 0x%04x Size [bytes] 0x%08x Reason: 0x%08x\n",
1557			qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1558			       DORQ_REG_DB_DROP_DETAILS_ADDRESS),
1559			(u16)(details & QED_DORQ_ATTENTION_OPAQUE_MASK),
1560			GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
1561			reason);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562	}
1563
 
 
 
1564	return -EINVAL;
1565}
1566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1567/* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
1568static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
1569	{
1570		{       /* After Invert 1 */
1571			{"GPIO0 function%d",
1572			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
1573		}
1574	},
1575
1576	{
1577		{       /* After Invert 2 */
1578			{"PGLUE config_space", ATTENTION_SINGLE,
1579			 NULL, MAX_BLOCK_ID},
1580			{"PGLUE misc_flr", ATTENTION_SINGLE,
1581			 NULL, MAX_BLOCK_ID},
1582			{"PGLUE B RBC", ATTENTION_PAR_INT,
1583			 qed_pglub_rbc_attn_cb, BLOCK_PGLUE_B},
1584			{"PGLUE misc_mctp", ATTENTION_SINGLE,
1585			 NULL, MAX_BLOCK_ID},
1586			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
1587			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
1588			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
1589			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
1590					  (1 << ATTENTION_OFFSET_SHIFT),
1591			 NULL, MAX_BLOCK_ID},
1592			{"PCIE glue/PXP VPD %d",
1593			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
1594		}
1595	},
1596
1597	{
1598		{       /* After Invert 3 */
1599			{"General Attention %d",
1600			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
1601		}
1602	},
1603
1604	{
1605		{       /* After Invert 4 */
1606			{"General Attention 32", ATTENTION_SINGLE,
1607			 NULL, MAX_BLOCK_ID},
 
1608			{"General Attention %d",
1609			 (2 << ATTENTION_LENGTH_SHIFT) |
1610			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
1611			{"General Attention 35", ATTENTION_SINGLE,
1612			 NULL, MAX_BLOCK_ID},
1613			{"CNIG port %d", (4 << ATTENTION_LENGTH_SHIFT),
1614			 NULL, BLOCK_CNIG},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615			{"MCP CPU", ATTENTION_SINGLE,
1616			 qed_mcp_attn_cb, MAX_BLOCK_ID},
1617			{"MCP Watchdog timer", ATTENTION_SINGLE,
1618			 NULL, MAX_BLOCK_ID},
1619			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
1620			{"AVS stop status ready", ATTENTION_SINGLE,
1621			 NULL, MAX_BLOCK_ID},
1622			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
1623			{"MSTAT per-path", ATTENTION_PAR_INT,
1624			 NULL, MAX_BLOCK_ID},
1625			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
1626			 NULL, MAX_BLOCK_ID},
1627			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
1628			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
1629			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
1630			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
1631			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
1632		}
1633	},
1634
1635	{
1636		{       /* After Invert 5 */
1637			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
1638			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
1639			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
1640			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
1641			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
1642			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
1643			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
1644			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
1645			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
1646			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
1647			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
1648			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
1649			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
1650			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
1651			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
1652			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
1653		}
1654	},
1655
1656	{
1657		{       /* After Invert 6 */
1658			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
1659			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
1660			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
1661			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
1662			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
1663			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
1664			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
1665			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
1666			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
1667			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
1668			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
1669			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
1670			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
1671			{"DORQ", ATTENTION_PAR_INT,
1672			 qed_dorq_attn_cb, BLOCK_DORQ},
1673			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
1674			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
1675		}
1676	},
1677
1678	{
1679		{       /* After Invert 7 */
1680			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
1681			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
1682			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
1683			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
1684			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
1685			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
1686			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
1687			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
1688			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
1689			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
1690			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
1691			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
1692			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
1693			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
1694			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
1695			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
1696			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
1697		}
1698	},
1699
1700	{
1701		{       /* After Invert 8 */
1702			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
1703			 NULL, BLOCK_PSWRQ2},
1704			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
1705			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
1706			 NULL, BLOCK_PSWWR2},
1707			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
1708			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
1709			 NULL, BLOCK_PSWRD2},
1710			{"PSWHST", ATTENTION_PAR_INT,
1711			 qed_pswhst_attn_cb, BLOCK_PSWHST},
1712			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
1713			 NULL, BLOCK_PSWHST2},
1714			{"GRC",	ATTENTION_PAR_INT,
1715			 qed_grc_attn_cb, BLOCK_GRC},
1716			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
1717			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
1718			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
1719			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
1720			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
1721			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
1722			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
1723			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
1724			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
1725			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
1726			 NULL, BLOCK_PGLCS},
1727			{"PERST_B assertion", ATTENTION_SINGLE,
1728			 NULL, MAX_BLOCK_ID},
1729			{"PERST_B deassertion", ATTENTION_SINGLE,
1730			 NULL, MAX_BLOCK_ID},
1731			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
1732			 NULL, MAX_BLOCK_ID},
1733		}
1734	},
1735
1736	{
1737		{       /* After Invert 9 */
1738			{"MCP Latched memory", ATTENTION_PAR,
1739			 NULL, MAX_BLOCK_ID},
1740			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
1741			 NULL, MAX_BLOCK_ID},
1742			{"MCP Latched ump_tx", ATTENTION_PAR,
1743			 NULL, MAX_BLOCK_ID},
1744			{"MCP Latched scratchpad", ATTENTION_PAR,
1745			 NULL, MAX_BLOCK_ID},
1746			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
1747			 NULL, MAX_BLOCK_ID},
1748		}
1749	},
1750};
1751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752#define ATTN_STATE_BITS         (0xfff)
1753#define ATTN_BITS_MASKABLE      (0x3ff)
1754struct qed_sb_attn_info {
1755	/* Virtual & Physical address of the SB */
1756	struct atten_status_block       *sb_attn;
1757	dma_addr_t			sb_phys;
1758
1759	/* Last seen running index */
1760	u16				index;
1761
1762	/* A mask of the AEU bits resulting in a parity error */
1763	u32				parity_mask[NUM_ATTN_REGS];
1764
1765	/* A pointer to the attention description structure */
1766	struct aeu_invert_reg		*p_aeu_desc;
1767
1768	/* Previously asserted attentions, which are still unasserted */
1769	u16				known_attn;
1770
1771	/* Cleanup address for the link's general hw attention */
1772	u32				mfw_attn_addr;
1773};
1774
1775static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
1776				      struct qed_sb_attn_info   *p_sb_desc)
1777{
1778	u16     rc = 0;
1779	u16     index;
1780
1781	/* Make certain HW write took affect */
1782	mmiowb();
1783
1784	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
1785	if (p_sb_desc->index != index) {
1786		p_sb_desc->index	= index;
1787		rc		      = QED_SB_ATT_IDX;
1788	}
1789
1790	/* Make certain we got a consistent view with HW */
1791	mmiowb();
1792
1793	return rc;
1794}
1795
1796/**
1797 *  @brief qed_int_assertion - handles asserted attention bits
 
 
 
1798 *
1799 *  @param p_hwfn
1800 *  @param asserted_bits newly asserted bits
1801 *  @return int
1802 */
1803static int qed_int_assertion(struct qed_hwfn *p_hwfn,
1804			     u16 asserted_bits)
1805{
1806	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
1807	u32 igu_mask;
1808
1809	/* Mask the source of the attention in the IGU */
1810	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1811			  IGU_REG_ATTENTION_ENABLE);
1812	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
1813		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
1814	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
1815	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
1816
1817	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1818		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
1819		   sb_attn_sw->known_attn,
1820		   sb_attn_sw->known_attn | asserted_bits);
1821	sb_attn_sw->known_attn |= asserted_bits;
1822
1823	/* Handle MCP events */
1824	if (asserted_bits & 0x100) {
1825		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
1826		/* Clean the MCP attention */
1827		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
1828		       sb_attn_sw->mfw_attn_addr, 0);
1829	}
1830
1831	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1832		      GTT_BAR0_MAP_REG_IGU_CMD +
1833		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
1834			IGU_CMD_INT_ACK_BASE) << 3),
1835		      (u32)asserted_bits);
1836
1837	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
1838		   asserted_bits);
1839
1840	return 0;
1841}
1842
1843static void qed_int_deassertion_print_bit(struct qed_hwfn *p_hwfn,
1844					  struct attn_hw_reg *p_reg_desc,
1845					  struct attn_hw_block *p_block,
1846					  enum qed_attention_type type,
1847					  u32 val, u32 mask)
1848{
1849	int j;
1850
1851	for (j = 0; j < p_reg_desc->num_of_bits; j++) {
1852		if (!(val & (1 << j)))
1853			continue;
1854
1855		DP_NOTICE(p_hwfn,
1856			  "%s (%s): reg %d [0x%08x], bit %d [%s]\n",
1857			  p_block->name,
1858			  type == QED_ATTN_TYPE_ATTN ? "Interrupt" :
1859						       "Parity",
1860			  p_reg_desc->reg_idx, p_reg_desc->sts_addr,
1861			  j, (mask & (1 << j)) ? " [MASKED]" : "");
1862	}
1863}
1864
1865/**
1866 * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
1867 * cause of the attention
1868 *
1869 * @param p_hwfn
1870 * @param p_aeu - descriptor of an AEU bit which caused the attention
1871 * @param aeu_en_reg - register offset of the AEU enable reg. which configured
1872 *  this bit to this group.
1873 * @param bit_index - index of this bit in the aeu_en_reg
 
1874 *
1875 * @return int
1876 */
1877static int
1878qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
1879			    struct aeu_invert_reg_bit *p_aeu,
1880			    u32 aeu_en_reg,
1881			    u32 bitmask)
1882{
 
1883	int rc = -EINVAL;
1884	u32 val;
1885
1886	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
1887		p_aeu->bit_name, bitmask);
1888
1889	/* Call callback before clearing the interrupt status */
1890	if (p_aeu->cb) {
1891		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
1892			p_aeu->bit_name);
1893		rc = p_aeu->cb(p_hwfn);
1894	}
1895
1896	/* Handle HW block interrupt registers */
1897	if (p_aeu->block_index != MAX_BLOCK_ID) {
1898		struct attn_hw_block *p_block;
1899		u32 mask;
1900		int i;
1901
1902		p_block = &attn_blocks[p_aeu->block_index];
1903
1904		/* Handle each interrupt register */
1905		for (i = 0; i < p_block->chip_regs[0].num_of_int_regs; i++) {
1906			struct attn_hw_reg *p_reg_desc;
1907			u32 sts_addr;
1908
1909			p_reg_desc = p_block->chip_regs[0].int_regs[i];
1910
1911			/* In case of fatal attention, don't clear the status
1912			 * so it would appear in following idle check.
1913			 */
1914			if (rc == 0)
1915				sts_addr = p_reg_desc->sts_clr_addr;
1916			else
1917				sts_addr = p_reg_desc->sts_addr;
1918
1919			val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, sts_addr);
1920			mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1921				      p_reg_desc->mask_addr);
1922			qed_int_deassertion_print_bit(p_hwfn, p_reg_desc,
1923						      p_block,
1924						      QED_ATTN_TYPE_ATTN,
1925						      val, mask);
1926		}
1927	}
1928
1929	/* If the attention is benign, no need to prevent it */
1930	if (!rc)
 
 
 
 
 
 
 
 
 
1931		goto out;
1932
1933	/* Prevent this Attention from being asserted in the future */
1934	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
1935	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
1936	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
1937		p_aeu->bit_name);
 
 
 
 
 
 
 
1938
1939out:
1940	return rc;
1941}
1942
1943static void qed_int_parity_print(struct qed_hwfn *p_hwfn,
1944				 struct aeu_invert_reg_bit *p_aeu,
1945				 struct attn_hw_block *p_block,
1946				 u8 bit_index)
1947{
1948	int i;
1949
1950	for (i = 0; i < p_block->chip_regs[0].num_of_prty_regs; i++) {
1951		struct attn_hw_reg *p_reg_desc;
1952		u32 val, mask;
1953
1954		p_reg_desc = p_block->chip_regs[0].prty_regs[i];
1955
1956		val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1957			     p_reg_desc->sts_clr_addr);
1958		mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1959			      p_reg_desc->mask_addr);
1960		qed_int_deassertion_print_bit(p_hwfn, p_reg_desc,
1961					      p_block,
1962					      QED_ATTN_TYPE_PARITY,
1963					      val, mask);
1964	}
1965}
1966
1967/**
1968 * @brief qed_int_deassertion_parity - handle a single parity AEU source
1969 *
1970 * @param p_hwfn
1971 * @param p_aeu - descriptor of an AEU bit which caused the parity
1972 * @param bit_index
 
1973 */
1974static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
1975				       struct aeu_invert_reg_bit *p_aeu,
1976				       u8 bit_index)
1977{
1978	u32 block_id = p_aeu->block_index;
1979
1980	DP_INFO(p_hwfn->cdev, "%s[%d] parity attention is set\n",
1981		p_aeu->bit_name, bit_index);
 
1982
1983	if (block_id != MAX_BLOCK_ID) {
1984		qed_int_parity_print(p_hwfn, p_aeu, &attn_blocks[block_id],
1985				     bit_index);
1986
1987		/* In BB, there's a single parity bit for several blocks */
1988		if (block_id == BLOCK_BTB) {
1989			qed_int_parity_print(p_hwfn, p_aeu,
1990					     &attn_blocks[BLOCK_OPTE],
1991					     bit_index);
1992			qed_int_parity_print(p_hwfn, p_aeu,
1993					     &attn_blocks[BLOCK_MCP],
1994					     bit_index);
1995		}
1996	}
 
 
 
 
 
 
 
1997}
1998
1999/**
2000 * @brief - handles deassertion of previously asserted attentions.
 
2001 *
2002 * @param p_hwfn
2003 * @param deasserted_bits - newly deasserted bits
2004 * @return int
2005 *
 
2006 */
2007static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
2008			       u16 deasserted_bits)
2009{
2010	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
2011	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask;
2012	u8 i, j, k, bit_idx;
2013	int rc = 0;
2014
2015	/* Read the attention registers in the AEU */
2016	for (i = 0; i < NUM_ATTN_REGS; i++) {
2017		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
2018					MISC_REG_AEU_AFTER_INVERT_1_IGU +
2019					i * 0x4);
2020		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2021			   "Deasserted bits [%d]: %08x\n",
2022			   i, aeu_inv_arr[i]);
2023	}
2024
2025	/* Find parity attentions first */
2026	for (i = 0; i < NUM_ATTN_REGS; i++) {
2027		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
2028		u32 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
2029				MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
2030				i * sizeof(u32));
2031		u32 parities;
2032
 
 
 
2033		/* Skip register in which no parity bit is currently set */
2034		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
2035		if (!parities)
2036			continue;
2037
2038		for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
2039			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
2040
2041			if ((p_bit->flags & ATTENTION_PARITY) &&
2042			    !!(parities & (1 << bit_idx)))
2043				qed_int_deassertion_parity(p_hwfn, p_bit,
2044							   bit_idx);
2045
2046			bit_idx += ATTENTION_LENGTH(p_bit->flags);
2047		}
2048	}
2049
2050	/* Find non-parity cause for attention and act */
2051	for (k = 0; k < MAX_ATTN_GRPS; k++) {
2052		struct aeu_invert_reg_bit *p_aeu;
2053
2054		/* Handle only groups whose attention is currently deasserted */
2055		if (!(deasserted_bits & (1 << k)))
2056			continue;
2057
2058		for (i = 0; i < NUM_ATTN_REGS; i++) {
2059			u32 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
2060				     i * sizeof(u32) +
2061				     k * sizeof(u32) * NUM_ATTN_REGS;
2062			u32 en, bits;
 
2063
2064			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
2065			bits = aeu_inv_arr[i] & en;
2066
2067			/* Skip if no bit from this group is currently set */
2068			if (!bits)
2069				continue;
2070
2071			/* Find all set bits from current register which belong
2072			 * to current group, making them responsible for the
2073			 * previous assertion.
2074			 */
2075			for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
 
2076				u8 bit, bit_len;
2077				u32 bitmask;
2078
2079				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
2080
2081				/* No need to handle parity-only bits */
2082				if (p_aeu->flags == ATTENTION_PAR)
2083					continue;
2084
2085				bit = bit_idx;
2086				bit_len = ATTENTION_LENGTH(p_aeu->flags);
2087				if (p_aeu->flags & ATTENTION_PAR_INT) {
2088					/* Skip Parity */
2089					bit++;
2090					bit_len--;
2091				}
2092
2093				bitmask = bits & (((1 << bit_len) - 1) << bit);
 
 
2094				if (bitmask) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095					/* Handle source of the attention */
2096					qed_int_deassertion_aeu_bit(p_hwfn,
2097								    p_aeu,
2098								    aeu_en,
 
2099								    bitmask);
2100				}
2101
2102				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
2103			}
2104		}
2105	}
2106
 
 
 
2107	/* Clear IGU indication for the deasserted bits */
2108	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
2109				    GTT_BAR0_MAP_REG_IGU_CMD +
2110				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
2111				      IGU_CMD_INT_ACK_BASE) << 3),
2112				    ~((u32)deasserted_bits));
2113
2114	/* Unmask deasserted attentions in IGU */
2115	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
2116			  IGU_REG_ATTENTION_ENABLE);
2117	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
2118	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
2119
2120	/* Clear deassertion from inner state */
2121	sb_attn_sw->known_attn &= ~deasserted_bits;
2122
2123	return rc;
2124}
2125
2126static int qed_int_attentions(struct qed_hwfn *p_hwfn)
2127{
2128	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
2129	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
2130	u32 attn_bits = 0, attn_acks = 0;
2131	u16 asserted_bits, deasserted_bits;
2132	__le16 index;
2133	int rc = 0;
2134
2135	/* Read current attention bits/acks - safeguard against attentions
2136	 * by guaranting work on a synchronized timeframe
2137	 */
2138	do {
2139		index = p_sb_attn->sb_index;
 
 
2140		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
2141		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
2142	} while (index != p_sb_attn->sb_index);
2143	p_sb_attn->sb_index = index;
2144
2145	/* Attention / Deassertion are meaningful (and in correct state)
2146	 * only when they differ and consistent with known state - deassertion
2147	 * when previous attention & current ack, and assertion when current
2148	 * attention with no previous attention
2149	 */
2150	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
2151		~p_sb_attn_sw->known_attn;
2152	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
2153		p_sb_attn_sw->known_attn;
2154
2155	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
2156		DP_INFO(p_hwfn,
2157			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
2158			index, attn_bits, attn_acks, asserted_bits,
2159			deasserted_bits, p_sb_attn_sw->known_attn);
2160	} else if (asserted_bits == 0x100) {
2161		DP_INFO(p_hwfn,
2162			"MFW indication via attention\n");
2163	} else {
2164		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2165			   "MFW indication [deassertion]\n");
2166	}
2167
2168	if (asserted_bits) {
2169		rc = qed_int_assertion(p_hwfn, asserted_bits);
2170		if (rc)
2171			return rc;
2172	}
2173
2174	if (deasserted_bits) {
2175		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
2176		if (rc)
2177			return rc;
2178	}
2179
2180	return rc;
2181}
2182
2183static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
2184			    void __iomem *igu_addr,
2185			    u32 ack_cons)
2186{
2187	struct igu_prod_cons_update igu_ack = { 0 };
2188
2189	igu_ack.sb_id_and_flags =
2190		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
2191		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
2192		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
2193		 (IGU_SEG_ACCESS_ATTN <<
2194		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
2195
2196	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
2197
2198	/* Both segments (interrupts & acks) are written to same place address;
2199	 * Need to guarantee all commands will be received (in-order) by HW.
2200	 */
2201	mmiowb();
2202	barrier();
2203}
2204
2205void qed_int_sp_dpc(unsigned long hwfn_cookie)
2206{
2207	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
2208	struct qed_pi_info *pi_info = NULL;
2209	struct qed_sb_attn_info *sb_attn;
2210	struct qed_sb_info *sb_info;
2211	int arr_size;
2212	u16 rc = 0;
2213
2214	if (!p_hwfn->p_sp_sb) {
2215		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
2216		return;
2217	}
2218
2219	sb_info = &p_hwfn->p_sp_sb->sb_info;
2220	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
2221	if (!sb_info) {
2222		DP_ERR(p_hwfn->cdev,
2223		       "Status block is NULL - cannot ack interrupts\n");
2224		return;
2225	}
2226
2227	if (!p_hwfn->p_sb_attn) {
2228		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
2229		return;
2230	}
2231	sb_attn = p_hwfn->p_sb_attn;
2232
2233	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
2234		   p_hwfn, p_hwfn->my_id);
2235
2236	/* Disable ack for def status block. Required both for msix +
2237	 * inta in non-mask mode, in inta does no harm.
2238	 */
2239	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
2240
2241	/* Gather Interrupts/Attentions information */
2242	if (!sb_info->sb_virt) {
2243		DP_ERR(
2244			p_hwfn->cdev,
2245			"Interrupt Status block is NULL - cannot check for new interrupts!\n");
2246	} else {
2247		u32 tmp_index = sb_info->sb_ack;
2248
2249		rc = qed_sb_update_sb_idx(sb_info);
2250		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
2251			   "Interrupt indices: 0x%08x --> 0x%08x\n",
2252			   tmp_index, sb_info->sb_ack);
2253	}
2254
2255	if (!sb_attn || !sb_attn->sb_attn) {
2256		DP_ERR(
2257			p_hwfn->cdev,
2258			"Attentions Status block is NULL - cannot check for new attentions!\n");
2259	} else {
2260		u16 tmp_index = sb_attn->index;
2261
2262		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
2263		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
2264			   "Attention indices: 0x%08x --> 0x%08x\n",
2265			   tmp_index, sb_attn->index);
2266	}
2267
2268	/* Check if we expect interrupts at this time. if not just ack them */
2269	if (!(rc & QED_SB_EVENT_MASK)) {
2270		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
2271		return;
2272	}
2273
2274	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
2275	if (!p_hwfn->p_dpc_ptt) {
2276		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
2277		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
2278		return;
2279	}
2280
2281	if (rc & QED_SB_ATT_IDX)
2282		qed_int_attentions(p_hwfn);
2283
2284	if (rc & QED_SB_IDX) {
2285		int pi;
2286
2287		/* Look for a free index */
2288		for (pi = 0; pi < arr_size; pi++) {
2289			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
2290			if (pi_info->comp_cb)
2291				pi_info->comp_cb(p_hwfn, pi_info->cookie);
2292		}
2293	}
2294
2295	if (sb_attn && (rc & QED_SB_ATT_IDX))
2296		/* This should be done before the interrupts are enabled,
2297		 * since otherwise a new attention will be generated.
2298		 */
2299		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
2300
2301	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
2302}
2303
2304static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
2305{
2306	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
2307
2308	if (!p_sb)
2309		return;
2310
2311	if (p_sb->sb_attn)
2312		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
2313				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
2314				  p_sb->sb_attn,
2315				  p_sb->sb_phys);
2316	kfree(p_sb);
 
2317}
2318
2319static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
2320				  struct qed_ptt *p_ptt)
2321{
2322	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
2323
2324	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
2325
2326	sb_info->index = 0;
2327	sb_info->known_attn = 0;
2328
2329	/* Configure Attention Status Block in IGU */
2330	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
2331	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
2332	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
2333	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
2334}
2335
2336static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
2337				 struct qed_ptt *p_ptt,
2338				 void *sb_virt_addr,
2339				 dma_addr_t sb_phy_addr)
2340{
2341	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
2342	int i, j, k;
2343
2344	sb_info->sb_attn = sb_virt_addr;
2345	sb_info->sb_phys = sb_phy_addr;
2346
2347	/* Set the pointer to the AEU descriptors */
2348	sb_info->p_aeu_desc = aeu_descs;
2349
2350	/* Calculate Parity Masks */
2351	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
2352	for (i = 0; i < NUM_ATTN_REGS; i++) {
2353		/* j is array index, k is bit index */
2354		for (j = 0, k = 0; k < 32; j++) {
2355			unsigned int flags = aeu_descs[i].bits[j].flags;
2356
2357			if (flags & ATTENTION_PARITY)
 
2358				sb_info->parity_mask[i] |= 1 << k;
2359
2360			k += ATTENTION_LENGTH(flags);
2361		}
2362		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2363			   "Attn Mask [Reg %d]: 0x%08x\n",
2364			   i, sb_info->parity_mask[i]);
2365	}
2366
2367	/* Set the address of cleanup for the mcp attention */
2368	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
2369				 MISC_REG_AEU_GENERAL_ATTN_0;
2370
2371	qed_int_sb_attn_setup(p_hwfn, p_ptt);
2372}
2373
2374static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
2375				 struct qed_ptt *p_ptt)
2376{
2377	struct qed_dev *cdev = p_hwfn->cdev;
2378	struct qed_sb_attn_info *p_sb;
 
2379	void *p_virt;
2380	dma_addr_t p_phys = 0;
2381
2382	/* SB struct */
2383	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
2384	if (!p_sb) {
2385		DP_NOTICE(cdev, "Failed to allocate `struct qed_sb_attn_info'\n");
2386		return -ENOMEM;
2387	}
2388
2389	/* SB ring  */
2390	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
2391				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
2392				    &p_phys, GFP_KERNEL);
2393
2394	if (!p_virt) {
2395		DP_NOTICE(cdev, "Failed to allocate status block (attentions)\n");
2396		kfree(p_sb);
2397		return -ENOMEM;
2398	}
2399
2400	/* Attention setup */
2401	p_hwfn->p_sb_attn = p_sb;
2402	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
2403
2404	return 0;
2405}
2406
2407/* coalescing timeout = timeset << (timer_res + 1) */
2408#define QED_CAU_DEF_RX_USECS 24
2409#define QED_CAU_DEF_TX_USECS 48
2410
2411void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
2412			   struct cau_sb_entry *p_sb_entry,
2413			   u8 pf_id,
2414			   u16 vf_number,
2415			   u8 vf_valid)
2416{
2417	struct qed_dev *cdev = p_hwfn->cdev;
2418	u32 cau_state;
 
2419
2420	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
2421
2422	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
2423	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
2424	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
2425	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
2426	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
2427
2428	/* setting the time resultion to a fixed value ( = 1) */
2429	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0,
2430		  QED_CAU_DEF_RX_TIMER_RES);
2431	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1,
2432		  QED_CAU_DEF_TX_TIMER_RES);
2433
2434	cau_state = CAU_HC_DISABLE_STATE;
2435
2436	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
2437		cau_state = CAU_HC_ENABLE_STATE;
2438		if (!cdev->rx_coalesce_usecs)
2439			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
2440		if (!cdev->tx_coalesce_usecs)
2441			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
2442	}
2443
2444	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
2445	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2446}
2447
2448void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
2449			 struct qed_ptt *p_ptt,
2450			 dma_addr_t sb_phys,
2451			 u16 igu_sb_id,
2452			 u16 vf_number,
2453			 u8 vf_valid)
2454{
2455	struct cau_sb_entry sb_entry;
2456
2457	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
2458			      vf_number, vf_valid);
2459
2460	if (p_hwfn->hw_init_done) {
2461		/* Wide-bus, initialize via DMAE */
2462		u64 phys_addr = (u64)sb_phys;
2463
2464		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
2465				  CAU_REG_SB_ADDR_MEMORY +
2466				  igu_sb_id * sizeof(u64), 2, 0);
2467		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
2468				  CAU_REG_SB_VAR_MEMORY +
2469				  igu_sb_id * sizeof(u64), 2, 0);
2470	} else {
2471		/* Initialize Status Block Address */
2472		STORE_RT_REG_AGG(p_hwfn,
2473				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
2474				 igu_sb_id * 2,
2475				 sb_phys);
2476
2477		STORE_RT_REG_AGG(p_hwfn,
2478				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
2479				 igu_sb_id * 2,
2480				 sb_entry);
2481	}
2482
2483	/* Configure pi coalescing if set */
2484	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
2485		u8 timeset = p_hwfn->cdev->rx_coalesce_usecs >>
2486			     (QED_CAU_DEF_RX_TIMER_RES + 1);
2487		u8 num_tc = 1, i;
2488
 
 
 
 
 
 
 
 
2489		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
2490				    QED_COAL_RX_STATE_MACHINE,
2491				    timeset);
2492
2493		timeset = p_hwfn->cdev->tx_coalesce_usecs >>
2494			  (QED_CAU_DEF_TX_TIMER_RES + 1);
2495
 
 
 
 
 
 
 
2496		for (i = 0; i < num_tc; i++) {
2497			qed_int_cau_conf_pi(p_hwfn, p_ptt,
2498					    igu_sb_id, TX_PI(i),
2499					    QED_COAL_TX_STATE_MACHINE,
2500					    timeset);
2501		}
2502	}
2503}
2504
2505void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
2506			 struct qed_ptt *p_ptt,
2507			 u16 igu_sb_id,
2508			 u32 pi_index,
2509			 enum qed_coalescing_fsm coalescing_fsm,
2510			 u8 timeset)
2511{
2512	struct cau_pi_entry pi_entry;
2513	u32 sb_offset;
2514	u32 pi_offset;
 
 
 
 
 
 
2515
2516	sb_offset = igu_sb_id * PIS_PER_SB;
2517	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
 
2518
2519	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
2520	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
2521		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
2522	else
2523		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
2524
2525	pi_offset = sb_offset + pi_index;
2526	if (p_hwfn->hw_init_done) {
2527		qed_wr(p_hwfn, p_ptt,
2528		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
2529		       *((u32 *)&(pi_entry)));
2530	} else {
2531		STORE_RT_REG(p_hwfn,
2532			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
2533			     *((u32 *)&(pi_entry)));
2534	}
 
 
2535}
2536
2537void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
2538		      struct qed_ptt *p_ptt,
2539		      struct qed_sb_info *sb_info)
2540{
2541	/* zero status block and ack counter */
2542	sb_info->sb_ack = 0;
2543	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
 
 
 
 
 
 
 
 
 
 
 
2544
2545	qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
2546			    sb_info->igu_sb_id, 0, 0);
2547}
2548
2549/**
2550 * @brief qed_get_igu_sb_id - given a sw sb_id return the
2551 *        igu_sb_id
2552 *
2553 * @param p_hwfn
2554 * @param sb_id
2555 *
2556 * @return u16
2557 */
2558static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn,
2559			     u16 sb_id)
2560{
2561	u16 igu_sb_id;
2562
2563	/* Assuming continuous set of IGU SBs dedicated for given PF */
2564	if (sb_id == QED_SP_SB_ID)
2565		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
 
 
2566	else
2567		igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
2568
2569	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "SB [%s] index is 0x%04x\n",
2570		   (sb_id == QED_SP_SB_ID) ? "DSB" : "non-DSB", igu_sb_id);
 
 
 
 
2571
2572	return igu_sb_id;
2573}
2574
2575int qed_int_sb_init(struct qed_hwfn *p_hwfn,
2576		    struct qed_ptt *p_ptt,
2577		    struct qed_sb_info *sb_info,
2578		    void *sb_virt_addr,
2579		    dma_addr_t sb_phy_addr,
2580		    u16 sb_id)
2581{
2582	sb_info->sb_virt = sb_virt_addr;
2583	sb_info->sb_phys = sb_phy_addr;
2584
2585	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
2586
2587	if (sb_id != QED_SP_SB_ID) {
2588		p_hwfn->sbs_info[sb_id] = sb_info;
2589		p_hwfn->num_sbs++;
 
 
 
 
 
 
 
 
 
 
 
2590	}
2591
2592	sb_info->cdev = p_hwfn->cdev;
2593
2594	/* The igu address will hold the absolute address that needs to be
2595	 * written to for a specific status block
2596	 */
2597	sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
2598					  GTT_BAR0_MAP_REG_IGU_CMD +
2599					  (sb_info->igu_sb_id << 3);
 
 
 
 
 
 
 
2600
2601	sb_info->flags |= QED_SB_INFO_INIT;
2602
2603	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
2604
2605	return 0;
2606}
2607
2608int qed_int_sb_release(struct qed_hwfn *p_hwfn,
2609		       struct qed_sb_info *sb_info,
2610		       u16 sb_id)
2611{
2612	if (sb_id == QED_SP_SB_ID) {
2613		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
2614		return -EINVAL;
2615	}
 
2616
2617	/* zero status block and ack counter */
2618	sb_info->sb_ack = 0;
2619	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
2620
2621	if (p_hwfn->sbs_info[sb_id] != NULL) {
2622		p_hwfn->sbs_info[sb_id] = NULL;
2623		p_hwfn->num_sbs--;
2624	}
2625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626	return 0;
2627}
2628
2629static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
2630{
2631	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
2632
2633	if (!p_sb)
2634		return;
2635
2636	if (p_sb->sb_info.sb_virt)
2637		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
2638				  SB_ALIGNED_SIZE(p_hwfn),
2639				  p_sb->sb_info.sb_virt,
2640				  p_sb->sb_info.sb_phys);
2641	kfree(p_sb);
 
2642}
2643
2644static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn,
2645			       struct qed_ptt *p_ptt)
2646{
2647	struct qed_sb_sp_info *p_sb;
2648	dma_addr_t p_phys = 0;
2649	void *p_virt;
2650
2651	/* SB struct */
2652	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
2653	if (!p_sb) {
2654		DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sb_info'\n");
2655		return -ENOMEM;
2656	}
2657
2658	/* SB ring  */
2659	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
2660				    SB_ALIGNED_SIZE(p_hwfn),
2661				    &p_phys, GFP_KERNEL);
2662	if (!p_virt) {
2663		DP_NOTICE(p_hwfn, "Failed to allocate status block\n");
2664		kfree(p_sb);
2665		return -ENOMEM;
2666	}
2667
2668	/* Status Block setup */
2669	p_hwfn->p_sp_sb = p_sb;
2670	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
2671			p_phys, QED_SP_SB_ID);
2672
2673	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
2674
2675	return 0;
2676}
2677
2678int qed_int_register_cb(struct qed_hwfn *p_hwfn,
2679			qed_int_comp_cb_t comp_cb,
2680			void *cookie,
2681			u8 *sb_idx,
2682			__le16 **p_fw_cons)
2683{
2684	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
2685	int rc = -ENOMEM;
2686	u8 pi;
2687
2688	/* Look for a free index */
2689	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
2690		if (p_sp_sb->pi_info_arr[pi].comp_cb)
2691			continue;
2692
2693		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
2694		p_sp_sb->pi_info_arr[pi].cookie = cookie;
2695		*sb_idx = pi;
2696		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
2697		rc = 0;
2698		break;
2699	}
2700
2701	return rc;
2702}
2703
2704int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
2705{
2706	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
2707
2708	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
2709		return -ENOMEM;
2710
2711	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
2712	p_sp_sb->pi_info_arr[pi].cookie = NULL;
2713
2714	return 0;
2715}
2716
2717u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
2718{
2719	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
2720}
2721
2722void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
2723			    struct qed_ptt *p_ptt,
2724			    enum qed_int_mode int_mode)
2725{
2726	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
2727
2728	p_hwfn->cdev->int_mode = int_mode;
2729	switch (p_hwfn->cdev->int_mode) {
2730	case QED_INT_MODE_INTA:
2731		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
2732		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
2733		break;
2734
2735	case QED_INT_MODE_MSI:
2736		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
2737		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
2738		break;
2739
2740	case QED_INT_MODE_MSIX:
2741		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
2742		break;
2743	case QED_INT_MODE_POLL:
2744		break;
2745	}
2746
2747	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
2748}
2749
2750int qed_int_igu_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2751		       enum qed_int_mode int_mode)
2752{
2753	int rc = 0;
2754
2755	/* Configure AEU signal change to produce attentions */
2756	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
2757	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
2758	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
2759	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
2760
2761	/* Flush the writes to IGU */
2762	mmiowb();
2763
2764	/* Unmask AEU signals toward IGU */
2765	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
 
 
 
 
 
 
 
 
 
 
2766	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
2767		rc = qed_slowpath_irq_req(p_hwfn);
2768		if (rc != 0) {
2769			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
2770			return -EINVAL;
2771		}
2772		p_hwfn->b_int_requested = true;
2773	}
2774	/* Enable interrupt Generation */
2775	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
2776	p_hwfn->b_int_enabled = 1;
2777
2778	return rc;
2779}
2780
2781void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn,
2782			     struct qed_ptt *p_ptt)
2783{
2784	p_hwfn->b_int_enabled = 0;
2785
 
 
 
2786	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
2787}
2788
2789#define IGU_CLEANUP_SLEEP_LENGTH                (1000)
2790void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
2791			    struct qed_ptt *p_ptt,
2792			    u32 sb_id,
2793			    bool cleanup_set,
2794			    u16 opaque_fid
2795			    )
2796{
2797	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
 
2798	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
2799	u32 data = 0;
2800	u32 cmd_ctrl = 0;
2801	u32 val = 0;
2802	u32 sb_bit = 0;
2803	u32 sb_bit_addr = 0;
2804
2805	/* Set the data field */
2806	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
2807	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
2808	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
2809
2810	/* Set the control register */
2811	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
2812	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
2813	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
2814
2815	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
2816
2817	barrier();
2818
2819	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
2820
2821	/* Flush the write to IGU */
2822	mmiowb();
2823
2824	/* calculate where to read the status bit from */
2825	sb_bit = 1 << (sb_id % 32);
2826	sb_bit_addr = sb_id / 32 * sizeof(u32);
2827
2828	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
2829
2830	/* Now wait for the command to complete */
2831	do {
2832		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
2833
2834		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
2835			break;
2836
2837		usleep_range(5000, 10000);
2838	} while (--sleep_cnt);
2839
2840	if (!sleep_cnt)
2841		DP_NOTICE(p_hwfn,
2842			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
2843			  val, sb_id);
2844}
2845
2846void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
2847				     struct qed_ptt *p_ptt,
2848				     u32 sb_id,
2849				     u16 opaque,
2850				     bool b_set)
2851{
2852	int pi;
 
 
 
 
 
 
 
 
2853
2854	/* Set */
2855	if (b_set)
2856		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
2857
2858	/* Clear */
2859	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2860
2861	/* Clear the CAU for the SB */
2862	for (pi = 0; pi < 12; pi++)
2863		qed_wr(p_hwfn, p_ptt,
2864		       CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
2865}
2866
2867void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
2868			      struct qed_ptt *p_ptt,
2869			      bool b_set,
2870			      bool b_slowpath)
2871{
2872	u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
2873	u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
2874	u32 sb_id = 0;
2875	u32 val = 0;
2876
2877	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
2878	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
2879	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
2880	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
2881
2882	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2883		   "IGU cleaning SBs [%d,...,%d]\n",
2884		   igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
 
 
 
 
 
2885
2886	for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
2887		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
2888						p_hwfn->hw_info.opaque_fid,
2889						b_set);
 
2890
2891	if (b_slowpath) {
2892		sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
2893		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2894			   "IGU cleaning slowpath SB [%d]\n", sb_id);
2895		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
2896						p_hwfn->hw_info.opaque_fid,
2897						b_set);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2898	}
 
 
2899}
2900
2901static u32 qed_int_igu_read_cam_block(struct qed_hwfn	*p_hwfn,
2902				      struct qed_ptt	*p_ptt,
2903				      u16		sb_id)
2904{
2905	u32 val = qed_rd(p_hwfn, p_ptt,
2906			 IGU_REG_MAPPING_MEMORY +
2907			 sizeof(u32) * sb_id);
2908	struct qed_igu_block *p_block;
2909
2910	p_block = &p_hwfn->hw_info.p_igu_info->igu_map.igu_blocks[sb_id];
2911
2912	/* stop scanning when hit first invalid PF entry */
2913	if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
2914	    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
2915		goto out;
2916
2917	/* Fill the block information */
2918	p_block->status		= QED_IGU_STATUS_VALID;
2919	p_block->function_id	= GET_FIELD(val,
2920					    IGU_MAPPING_LINE_FUNCTION_NUMBER);
2921	p_block->is_pf		= GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2922	p_block->vector_number	= GET_FIELD(val,
2923					    IGU_MAPPING_LINE_VECTOR_NUMBER);
2924
2925	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2926		   "IGU_BLOCK: [SB 0x%04x, Value in CAM 0x%08x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2927		   sb_id, val, p_block->function_id,
2928		   p_block->is_pf, p_block->vector_number);
2929
2930out:
2931	return val;
2932}
2933
2934int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn,
2935			 struct qed_ptt *p_ptt)
2936{
2937	struct qed_igu_info *p_igu_info;
2938	struct qed_igu_block *blk;
2939	u32 val;
2940	u16 sb_id;
2941	u16 prev_sb_id = 0xFF;
2942
2943	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2944
2945	if (!p_hwfn->hw_info.p_igu_info)
2946		return -ENOMEM;
2947
2948	p_igu_info = p_hwfn->hw_info.p_igu_info;
2949
2950	/* Initialize base sb / sb cnt for PFs */
2951	p_igu_info->igu_base_sb		= 0xffff;
2952	p_igu_info->igu_sb_cnt		= 0;
2953	p_igu_info->igu_dsb_id		= 0xffff;
2954	p_igu_info->igu_base_sb_iov	= 0xffff;
2955
2956	for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
2957	     sb_id++) {
2958		blk = &p_igu_info->igu_map.igu_blocks[sb_id];
2959
2960		val	= qed_int_igu_read_cam_block(p_hwfn, p_ptt, sb_id);
2961
2962		/* stop scanning when hit first invalid PF entry */
2963		if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
2964		    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
2965			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2966
2967		if (blk->is_pf) {
2968			if (blk->function_id == p_hwfn->rel_pf_id) {
2969				blk->status |= QED_IGU_STATUS_PF;
2970
2971				if (blk->vector_number == 0) {
2972					if (p_igu_info->igu_dsb_id == 0xffff)
2973						p_igu_info->igu_dsb_id = sb_id;
2974				} else {
2975					if (p_igu_info->igu_base_sb ==
2976					    0xffff) {
2977						p_igu_info->igu_base_sb = sb_id;
2978					} else if (prev_sb_id != sb_id - 1) {
2979						DP_NOTICE(p_hwfn->cdev,
2980							  "consecutive igu vectors for HWFN %x broken",
2981							  p_hwfn->rel_pf_id);
2982						break;
2983					}
2984					prev_sb_id = sb_id;
2985					/* we don't count the default */
2986					(p_igu_info->igu_sb_cnt)++;
2987				}
2988			}
2989		}
2990	}
2991
2992	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2993		   "IGU igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
2994		   p_igu_info->igu_base_sb,
2995		   p_igu_info->igu_sb_cnt,
2996		   p_igu_info->igu_dsb_id);
2997
2998	if (p_igu_info->igu_base_sb == 0xffff ||
2999	    p_igu_info->igu_dsb_id == 0xffff ||
3000	    p_igu_info->igu_sb_cnt == 0) {
3001		DP_NOTICE(p_hwfn,
3002			  "IGU CAM returned invalid values igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
3003			   p_igu_info->igu_base_sb,
3004			   p_igu_info->igu_sb_cnt,
3005			   p_igu_info->igu_dsb_id);
3006		return -EINVAL;
3007	}
3008
 
 
 
 
 
 
 
 
 
3009	return 0;
3010}
3011
3012/**
3013 * @brief Initialize igu runtime registers
3014 *
3015 * @param p_hwfn
3016 */
3017void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
3018{
3019	u32 igu_pf_conf = 0;
3020
3021	igu_pf_conf |= IGU_PF_CONF_FUNC_EN;
3022
3023	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
3024}
3025
3026u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
3027{
3028	u64 intr_status = 0;
3029	u32 intr_status_lo = 0;
3030	u32 intr_status_hi = 0;
3031	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
3032			       IGU_CMD_INT_ACK_BASE;
3033	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
3034			       IGU_CMD_INT_ACK_BASE;
 
 
3035
3036	intr_status_lo = REG_RD(p_hwfn,
3037				GTT_BAR0_MAP_REG_IGU_CMD +
3038				lsb_igu_cmd_addr * 8);
3039	intr_status_hi = REG_RD(p_hwfn,
3040				GTT_BAR0_MAP_REG_IGU_CMD +
3041				msb_igu_cmd_addr * 8);
3042	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
3043
3044	return intr_status;
3045}
3046
3047static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
3048{
3049	tasklet_init(p_hwfn->sp_dpc,
3050		     qed_int_sp_dpc, (unsigned long)p_hwfn);
3051	p_hwfn->b_sp_dpc_enabled = true;
3052}
3053
3054static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
3055{
3056	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
3057	if (!p_hwfn->sp_dpc)
3058		return -ENOMEM;
3059
3060	return 0;
3061}
3062
3063static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
3064{
3065	kfree(p_hwfn->sp_dpc);
3066}
3067
3068int qed_int_alloc(struct qed_hwfn *p_hwfn,
3069		  struct qed_ptt *p_ptt)
3070{
3071	int rc = 0;
3072
3073	rc = qed_int_sp_dpc_alloc(p_hwfn);
3074	if (rc) {
3075		DP_ERR(p_hwfn->cdev, "Failed to allocate sp dpc mem\n");
3076		return rc;
3077	}
3078	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
3079	if (rc) {
3080		DP_ERR(p_hwfn->cdev, "Failed to allocate sp sb mem\n");
3081		return rc;
3082	}
3083	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
3084	if (rc) {
3085		DP_ERR(p_hwfn->cdev, "Failed to allocate sb attn mem\n");
3086		return rc;
3087	}
3088	return rc;
3089}
3090
3091void qed_int_free(struct qed_hwfn *p_hwfn)
3092{
3093	qed_int_sp_sb_free(p_hwfn);
3094	qed_int_sb_attn_free(p_hwfn);
3095	qed_int_sp_dpc_free(p_hwfn);
3096}
3097
3098void qed_int_setup(struct qed_hwfn *p_hwfn,
3099		   struct qed_ptt *p_ptt)
3100{
3101	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
3102	qed_int_sb_attn_setup(p_hwfn, p_ptt);
3103	qed_int_sp_dpc_setup(p_hwfn);
3104}
3105
3106void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
3107			 struct qed_sb_cnt_info *p_sb_cnt_info)
3108{
3109	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
3110
3111	if (!info || !p_sb_cnt_info)
3112		return;
3113
3114	p_sb_cnt_info->sb_cnt		= info->igu_sb_cnt;
3115	p_sb_cnt_info->sb_iov_cnt	= info->igu_sb_cnt_iov;
3116	p_sb_cnt_info->sb_free_blk	= info->free_blks;
3117}
3118
3119void qed_int_disable_post_isr_release(struct qed_dev *cdev)
3120{
3121	int i;
3122
3123	for_each_hwfn(cdev, i)
3124		cdev->hwfns[i].b_int_requested = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3125}