Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include "ixgbe.h"
5#include <linux/ptp_classify.h>
6#include <linux/clocksource.h>
7
8/*
9 * The 82599 and the X540 do not have true 64bit nanosecond scale
10 * counter registers. Instead, SYSTIME is defined by a fixed point
11 * system which allows the user to define the scale counter increment
12 * value at every level change of the oscillator driving the SYSTIME
13 * value. For both devices the TIMINCA:IV field defines this
14 * increment. On the X540 device, 31 bits are provided. However on the
15 * 82599 only provides 24 bits. The time unit is determined by the
16 * clock frequency of the oscillator in combination with the TIMINCA
17 * register. When these devices link at 10Gb the oscillator has a
18 * period of 6.4ns. In order to convert the scale counter into
19 * nanoseconds the cyclecounter and timecounter structures are
20 * used. The SYSTIME registers need to be converted to ns values by use
21 * of only a right shift (division by power of 2). The following math
22 * determines the largest incvalue that will fit into the available
23 * bits in the TIMINCA register.
24 *
25 * PeriodWidth: Number of bits to store the clock period
26 * MaxWidth: The maximum width value of the TIMINCA register
27 * Period: The clock period for the oscillator
28 * round(): discard the fractional portion of the calculation
29 *
30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31 *
32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34 *
35 * The period also changes based on the link speed:
36 * At 10Gb link or no link, the period remains the same.
37 * At 1Gb link, the period is multiplied by 10. (64ns)
38 * At 100Mb link, the period is multiplied by 100. (640ns)
39 *
40 * The calculated value allows us to right shift the SYSTIME register
41 * value in order to quickly convert it into a nanosecond clock,
42 * while allowing for the maximum possible adjustment value.
43 *
44 * These diagrams are only for the 10Gb link period
45 *
46 * SYSTIMEH SYSTIMEL
47 * +--------------+ +--------------+
48 * X540 | 32 | | 1 | 3 | 28 |
49 * *--------------+ +--------------+
50 * \________ 36 bits ______/ fract
51 *
52 * +--------------+ +--------------+
53 * 82599 | 32 | | 8 | 3 | 21 |
54 * *--------------+ +--------------+
55 * \________ 43 bits ______/ fract
56 *
57 * The 36 bit X540 SYSTIME overflows every
58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59 *
60 * The 43 bit 82599 SYSTIME overflows every
61 * 2^43 * 10^-9 / 3600 = 2.4 hours
62 */
63#define IXGBE_INCVAL_10GB 0x66666666
64#define IXGBE_INCVAL_1GB 0x40000000
65#define IXGBE_INCVAL_100 0x50000000
66
67#define IXGBE_INCVAL_SHIFT_10GB 28
68#define IXGBE_INCVAL_SHIFT_1GB 24
69#define IXGBE_INCVAL_SHIFT_100 21
70
71#define IXGBE_INCVAL_SHIFT_82599 7
72#define IXGBE_INCPER_SHIFT_82599 24
73
74#define IXGBE_OVERFLOW_PERIOD (HZ * 30)
75#define IXGBE_PTP_TX_TIMEOUT (HZ)
76
77/* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78 * the value as a ULL to force precision when bit shifting.
79 */
80#define NS_PER_SEC 1000000000ULL
81#define NS_PER_HALF_SEC 500000000ULL
82
83/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84 * which contain measurements of seconds and nanoseconds respectively. This
85 * matches the standard linux representation of time in the kernel. In addition,
86 * the X550 also has a SYSTIMER register which represents residue, or
87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90 * high bit representing whether the adjustent is positive or negative. Every
91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93 * X550's clock for purposes of SYSTIME generation is constant and not dependent
94 * on the link speed.
95 *
96 * SYSTIMEH SYSTIMEL SYSTIMER
97 * +--------------+ +--------------+ +-------------+
98 * X550 | 32 | | 32 | | 32 |
99 * *--------------+ +--------------+ +-------------+
100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
101 *
102 * This results in a full 96 bits to represent the clock, with 32 bits for
103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105 * underflow of adjustments.
106 *
107 * The 32 bits of seconds for the X550 overflows every
108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109 *
110 * In order to adjust the clock frequency for the X550, the TIMINCA register is
111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113 * the sign bit. This register enables software to calculate frequency
114 * adjustments and apply them directly to the clock rate.
115 *
116 * The math for converting scaled_ppm into TIMINCA values is fairly
117 * straightforward.
118 *
119 * TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16
120 *
121 * To avoid overflow, we simply use mul_u64_u64_div_u64.
122 *
123 * This assumes that scaled_ppm is never high enough to create a value bigger
124 * than TIMINCA's 31 bits can store. This is ensured by the stack, and is
125 * measured in parts per billion. Calculating this value is also simple.
126 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
127 *
128 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
129 * 12.5 nanoseconds. This means that the Max ppb is 39999999
130 * Note: We subtract one in order to ensure no overflow, because the TIMINCA
131 * register can only hold slightly under 0.5 nanoseconds.
132 *
133 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
134 * into 2^-32 units, which is
135 *
136 * 12.5 * 2^32 = C80000000
137 *
138 * Some revisions of hardware have a faster base frequency than the registers
139 * were defined for. To fix this, we use a timecounter structure with the
140 * proper mult and shift to convert the cycles into nanoseconds of time.
141 */
142#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
143#define INCVALUE_MASK 0x7FFFFFFF
144#define ISGN 0x80000000
145
146/**
147 * ixgbe_ptp_setup_sdp_X540
148 * @adapter: private adapter structure
149 *
150 * this function enables or disables the clock out feature on SDP0 for
151 * the X540 device. It will create a 1 second periodic output that can
152 * be used as the PPS (via an interrupt).
153 *
154 * It calculates when the system time will be on an exact second, and then
155 * aligns the start of the PPS signal to that value.
156 *
157 * This works by using the cycle counter shift and mult values in reverse, and
158 * assumes that the values we're shifting will not overflow.
159 */
160static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
161{
162 struct cyclecounter *cc = &adapter->hw_cc;
163 struct ixgbe_hw *hw = &adapter->hw;
164 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
165 u64 ns = 0, clock_edge = 0, clock_period;
166 unsigned long flags;
167
168 /* disable the pin first */
169 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
170 IXGBE_WRITE_FLUSH(hw);
171
172 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
173 return;
174
175 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
176
177 /* enable the SDP0 pin as output, and connected to the
178 * native function for Timesync (ClockOut)
179 */
180 esdp |= IXGBE_ESDP_SDP0_DIR |
181 IXGBE_ESDP_SDP0_NATIVE;
182
183 /* enable the Clock Out feature on SDP0, and allow
184 * interrupts to occur when the pin changes
185 */
186 tsauxc = (IXGBE_TSAUXC_EN_CLK |
187 IXGBE_TSAUXC_SYNCLK |
188 IXGBE_TSAUXC_SDP0_INT);
189
190 /* Determine the clock time period to use. This assumes that the
191 * cycle counter shift is small enough to avoid overflow.
192 */
193 clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
194 clktiml = (u32)(clock_period);
195 clktimh = (u32)(clock_period >> 32);
196
197 /* Read the current clock time, and save the cycle counter value */
198 spin_lock_irqsave(&adapter->tmreg_lock, flags);
199 ns = timecounter_read(&adapter->hw_tc);
200 clock_edge = adapter->hw_tc.cycle_last;
201 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
202
203 /* Figure out how many seconds to add in order to round up */
204 div_u64_rem(ns, NS_PER_SEC, &rem);
205
206 /* Figure out how many nanoseconds to add to round the clock edge up
207 * to the next full second
208 */
209 rem = (NS_PER_SEC - rem);
210
211 /* Adjust the clock edge to align with the next full second. */
212 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
213 trgttiml = (u32)clock_edge;
214 trgttimh = (u32)(clock_edge >> 32);
215
216 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
217 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
218 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
219 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
220
221 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
222 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
223
224 IXGBE_WRITE_FLUSH(hw);
225}
226
227/**
228 * ixgbe_ptp_setup_sdp_X550
229 * @adapter: private adapter structure
230 *
231 * Enable or disable a clock output signal on SDP 0 for X550 hardware.
232 *
233 * Use the target time feature to align the output signal on the next full
234 * second.
235 *
236 * This works by using the cycle counter shift and mult values in reverse, and
237 * assumes that the values we're shifting will not overflow.
238 */
239static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
240{
241 u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
242 struct cyclecounter *cc = &adapter->hw_cc;
243 struct ixgbe_hw *hw = &adapter->hw;
244 u64 ns = 0, clock_edge = 0;
245 struct timespec64 ts;
246 unsigned long flags;
247
248 /* disable the pin first */
249 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
250 IXGBE_WRITE_FLUSH(hw);
251
252 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
253 return;
254
255 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
256
257 /* enable the SDP0 pin as output, and connected to the
258 * native function for Timesync (ClockOut)
259 */
260 esdp |= IXGBE_ESDP_SDP0_DIR |
261 IXGBE_ESDP_SDP0_NATIVE;
262
263 /* enable the Clock Out feature on SDP0, and use Target Time 0 to
264 * enable generation of interrupts on the clock change.
265 */
266#define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
267 tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
268 IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
269 IXGBE_TSAUXC_DIS_TS_CLEAR);
270
271 tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
272 IXGBE_TSSDP_TS_SDP0_CLK0);
273
274 /* Determine the clock time period to use. This assumes that the
275 * cycle counter shift is small enough to avoid overflowing a 32bit
276 * value.
277 */
278 freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult);
279
280 /* Read the current clock time, and save the cycle counter value */
281 spin_lock_irqsave(&adapter->tmreg_lock, flags);
282 ns = timecounter_read(&adapter->hw_tc);
283 clock_edge = adapter->hw_tc.cycle_last;
284 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
285
286 /* Figure out how far past the next second we are */
287 div_u64_rem(ns, NS_PER_SEC, &rem);
288
289 /* Figure out how many nanoseconds to add to round the clock edge up
290 * to the next full second
291 */
292 rem = (NS_PER_SEC - rem);
293
294 /* Adjust the clock edge to align with the next full second. */
295 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
296
297 /* X550 hardware stores the time in 32bits of 'billions of cycles' and
298 * 32bits of 'cycles'. There's no guarantee that cycles represents
299 * nanoseconds. However, we can use the math from a timespec64 to
300 * convert into the hardware representation.
301 *
302 * See ixgbe_ptp_read_X550() for more details.
303 */
304 ts = ns_to_timespec64(clock_edge);
305 trgttiml = (u32)ts.tv_nsec;
306 trgttimh = (u32)ts.tv_sec;
307
308 IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
309 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
310 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
311
312 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
313 IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
314 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
315
316 IXGBE_WRITE_FLUSH(hw);
317}
318
319/**
320 * ixgbe_ptp_read_X550 - read cycle counter value
321 * @cc: cyclecounter structure
322 *
323 * This function reads SYSTIME registers. It is called by the cyclecounter
324 * structure to convert from internal representation into nanoseconds. We need
325 * this for X550 since some skews do not have expected clock frequency and
326 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
327 * "cycles", rather than seconds and nanoseconds.
328 */
329static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
330{
331 struct ixgbe_adapter *adapter =
332 container_of(cc, struct ixgbe_adapter, hw_cc);
333 struct ixgbe_hw *hw = &adapter->hw;
334 struct timespec64 ts;
335
336 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
337 * Some revisions of hardware run at a higher frequency and so the
338 * cycles are not guaranteed to be nanoseconds. The timespec64 created
339 * here is used for its math/conversions but does not necessarily
340 * represent nominal time.
341 *
342 * It should be noted that this cyclecounter will overflow at a
343 * non-bitmask field since we have to convert our billions of cycles
344 * into an actual cycles count. This results in some possible weird
345 * situations at high cycle counter stamps. However given that 32 bits
346 * of "seconds" is ~138 years this isn't a problem. Even at the
347 * increased frequency of some revisions, this is still ~103 years.
348 * Since the SYSTIME values start at 0 and we never write them, it is
349 * highly unlikely for the cyclecounter to overflow in practice.
350 */
351 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
352 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
353 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
354
355 return (u64)timespec64_to_ns(&ts);
356}
357
358/**
359 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
360 * @cc: the cyclecounter structure
361 *
362 * this function reads the cyclecounter registers and is called by the
363 * cyclecounter structure used to construct a ns counter from the
364 * arbitrary fixed point registers
365 */
366static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
367{
368 struct ixgbe_adapter *adapter =
369 container_of(cc, struct ixgbe_adapter, hw_cc);
370 struct ixgbe_hw *hw = &adapter->hw;
371 u64 stamp = 0;
372
373 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
374 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
375
376 return stamp;
377}
378
379/**
380 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
381 * @adapter: private adapter structure
382 * @hwtstamp: stack timestamp structure
383 * @timestamp: unsigned 64bit system time value
384 *
385 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
386 * which can be used by the stack's ptp functions.
387 *
388 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
389 * registers. However, it does not need to protect against the Rx or Tx
390 * timestamp registers, as there can't be a new timestamp until the old one is
391 * unlatched by reading.
392 *
393 * In addition to the timestamp in hardware, some controllers need a software
394 * overflow cyclecounter, and this function takes this into account as well.
395 **/
396static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
397 struct skb_shared_hwtstamps *hwtstamp,
398 u64 timestamp)
399{
400 unsigned long flags;
401 struct timespec64 systime;
402 u64 ns;
403
404 memset(hwtstamp, 0, sizeof(*hwtstamp));
405
406 switch (adapter->hw.mac.type) {
407 /* X550 and later hardware supposedly represent time using a seconds
408 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
409 * to convert the timestamp into cycles before it can be fed to the
410 * cyclecounter. We need an actual cyclecounter because some revisions
411 * of hardware run at a higher frequency and thus the counter does
412 * not represent seconds/nanoseconds. Instead it can be thought of as
413 * cycles and billions of cycles.
414 */
415 case ixgbe_mac_X550:
416 case ixgbe_mac_X550EM_x:
417 case ixgbe_mac_x550em_a:
418 /* Upper 32 bits represent billions of cycles, lower 32 bits
419 * represent cycles. However, we use timespec64_to_ns for the
420 * correct math even though the units haven't been corrected
421 * yet.
422 */
423 systime.tv_sec = timestamp >> 32;
424 systime.tv_nsec = timestamp & 0xFFFFFFFF;
425
426 timestamp = timespec64_to_ns(&systime);
427 break;
428 default:
429 break;
430 }
431
432 spin_lock_irqsave(&adapter->tmreg_lock, flags);
433 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
434 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
435
436 hwtstamp->hwtstamp = ns_to_ktime(ns);
437}
438
439/**
440 * ixgbe_ptp_adjfine_82599
441 * @ptp: the ptp clock structure
442 * @scaled_ppm: scaled parts per million adjustment from base
443 *
444 * Adjust the frequency of the ptp cycle counter by the
445 * indicated scaled_ppm from the base frequency.
446 *
447 * Scaled parts per million is ppm with a 16-bit binary fractional field.
448 */
449static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm)
450{
451 struct ixgbe_adapter *adapter =
452 container_of(ptp, struct ixgbe_adapter, ptp_caps);
453 struct ixgbe_hw *hw = &adapter->hw;
454 u64 incval;
455
456 smp_mb();
457 incval = READ_ONCE(adapter->base_incval);
458 incval = adjust_by_scaled_ppm(incval, scaled_ppm);
459
460 switch (hw->mac.type) {
461 case ixgbe_mac_X540:
462 if (incval > 0xFFFFFFFFULL)
463 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
464 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
465 break;
466 case ixgbe_mac_82599EB:
467 if (incval > 0x00FFFFFFULL)
468 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
469 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
470 BIT(IXGBE_INCPER_SHIFT_82599) |
471 ((u32)incval & 0x00FFFFFFUL));
472 break;
473 default:
474 break;
475 }
476
477 return 0;
478}
479
480/**
481 * ixgbe_ptp_adjfine_X550
482 * @ptp: the ptp clock structure
483 * @scaled_ppm: scaled parts per million adjustment from base
484 *
485 * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm
486 * from base frequency.
487 *
488 * Scaled parts per million is ppm with a 16-bit binary fractional field.
489 */
490static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm)
491{
492 struct ixgbe_adapter *adapter =
493 container_of(ptp, struct ixgbe_adapter, ptp_caps);
494 struct ixgbe_hw *hw = &adapter->hw;
495 bool neg_adj;
496 u64 rate;
497 u32 inca;
498
499 neg_adj = diff_by_scaled_ppm(IXGBE_X550_BASE_PERIOD, scaled_ppm, &rate);
500
501 /* warn if rate is too large */
502 if (rate >= INCVALUE_MASK)
503 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
504
505 inca = rate & INCVALUE_MASK;
506 if (neg_adj)
507 inca |= ISGN;
508
509 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
510
511 return 0;
512}
513
514/**
515 * ixgbe_ptp_adjtime
516 * @ptp: the ptp clock structure
517 * @delta: offset to adjust the cycle counter by
518 *
519 * adjust the timer by resetting the timecounter structure.
520 */
521static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
522{
523 struct ixgbe_adapter *adapter =
524 container_of(ptp, struct ixgbe_adapter, ptp_caps);
525 unsigned long flags;
526
527 spin_lock_irqsave(&adapter->tmreg_lock, flags);
528 timecounter_adjtime(&adapter->hw_tc, delta);
529 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
530
531 if (adapter->ptp_setup_sdp)
532 adapter->ptp_setup_sdp(adapter);
533
534 return 0;
535}
536
537/**
538 * ixgbe_ptp_gettimex
539 * @ptp: the ptp clock structure
540 * @ts: timespec to hold the PHC timestamp
541 * @sts: structure to hold the system time before and after reading the PHC
542 *
543 * read the timecounter and return the correct value on ns,
544 * after converting it into a struct timespec.
545 */
546static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
547 struct timespec64 *ts,
548 struct ptp_system_timestamp *sts)
549{
550 struct ixgbe_adapter *adapter =
551 container_of(ptp, struct ixgbe_adapter, ptp_caps);
552 struct ixgbe_hw *hw = &adapter->hw;
553 unsigned long flags;
554 u64 ns, stamp;
555
556 spin_lock_irqsave(&adapter->tmreg_lock, flags);
557
558 switch (adapter->hw.mac.type) {
559 case ixgbe_mac_X550:
560 case ixgbe_mac_X550EM_x:
561 case ixgbe_mac_x550em_a:
562 /* Upper 32 bits represent billions of cycles, lower 32 bits
563 * represent cycles. However, we use timespec64_to_ns for the
564 * correct math even though the units haven't been corrected
565 * yet.
566 */
567 ptp_read_system_prets(sts);
568 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
569 ptp_read_system_postts(sts);
570 ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
571 ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
572 stamp = timespec64_to_ns(ts);
573 break;
574 default:
575 ptp_read_system_prets(sts);
576 stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
577 ptp_read_system_postts(sts);
578 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
579 break;
580 }
581
582 ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
583
584 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
585
586 *ts = ns_to_timespec64(ns);
587
588 return 0;
589}
590
591/**
592 * ixgbe_ptp_settime
593 * @ptp: the ptp clock structure
594 * @ts: the timespec containing the new time for the cycle counter
595 *
596 * reset the timecounter to use a new base value instead of the kernel
597 * wall timer value.
598 */
599static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
600 const struct timespec64 *ts)
601{
602 struct ixgbe_adapter *adapter =
603 container_of(ptp, struct ixgbe_adapter, ptp_caps);
604 unsigned long flags;
605 u64 ns = timespec64_to_ns(ts);
606
607 /* reset the timecounter */
608 spin_lock_irqsave(&adapter->tmreg_lock, flags);
609 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
610 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
611
612 if (adapter->ptp_setup_sdp)
613 adapter->ptp_setup_sdp(adapter);
614 return 0;
615}
616
617/**
618 * ixgbe_ptp_feature_enable
619 * @ptp: the ptp clock structure
620 * @rq: the requested feature to change
621 * @on: whether to enable or disable the feature
622 *
623 * enable (or disable) ancillary features of the phc subsystem.
624 * our driver only supports the PPS feature on the X540
625 */
626static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
627 struct ptp_clock_request *rq, int on)
628{
629 struct ixgbe_adapter *adapter =
630 container_of(ptp, struct ixgbe_adapter, ptp_caps);
631
632 /**
633 * When PPS is enabled, unmask the interrupt for the ClockOut
634 * feature, so that the interrupt handler can send the PPS
635 * event when the clock SDP triggers. Clear mask when PPS is
636 * disabled
637 */
638 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
639 return -ENOTSUPP;
640
641 if (on)
642 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
643 else
644 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
645
646 adapter->ptp_setup_sdp(adapter);
647 return 0;
648}
649
650/**
651 * ixgbe_ptp_check_pps_event
652 * @adapter: the private adapter structure
653 *
654 * This function is called by the interrupt routine when checking for
655 * interrupts. It will check and handle a pps event.
656 */
657void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
658{
659 struct ixgbe_hw *hw = &adapter->hw;
660 struct ptp_clock_event event;
661
662 event.type = PTP_CLOCK_PPS;
663
664 /* this check is necessary in case the interrupt was enabled via some
665 * alternative means (ex. debug_fs). Better to check here than
666 * everywhere that calls this function.
667 */
668 if (!adapter->ptp_clock)
669 return;
670
671 switch (hw->mac.type) {
672 case ixgbe_mac_X540:
673 ptp_clock_event(adapter->ptp_clock, &event);
674 break;
675 default:
676 break;
677 }
678}
679
680/**
681 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
682 * @adapter: private adapter struct
683 *
684 * this watchdog task periodically reads the timecounter
685 * in order to prevent missing when the system time registers wrap
686 * around. This needs to be run approximately twice a minute.
687 */
688void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
689{
690 bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
691 IXGBE_OVERFLOW_PERIOD);
692 unsigned long flags;
693
694 if (timeout) {
695 /* Update the timecounter */
696 spin_lock_irqsave(&adapter->tmreg_lock, flags);
697 timecounter_read(&adapter->hw_tc);
698 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
699
700 adapter->last_overflow_check = jiffies;
701 }
702}
703
704/**
705 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
706 * @adapter: private network adapter structure
707 *
708 * this watchdog task is scheduled to detect error case where hardware has
709 * dropped an Rx packet that was timestamped when the ring is full. The
710 * particular error is rare but leaves the device in a state unable to timestamp
711 * any future packets.
712 */
713void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
714{
715 struct ixgbe_hw *hw = &adapter->hw;
716 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
717 struct ixgbe_ring *rx_ring;
718 unsigned long rx_event;
719 int n;
720
721 /* if we don't have a valid timestamp in the registers, just update the
722 * timeout counter and exit
723 */
724 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
725 adapter->last_rx_ptp_check = jiffies;
726 return;
727 }
728
729 /* determine the most recent watchdog or rx_timestamp event */
730 rx_event = adapter->last_rx_ptp_check;
731 for (n = 0; n < adapter->num_rx_queues; n++) {
732 rx_ring = adapter->rx_ring[n];
733 if (time_after(rx_ring->last_rx_timestamp, rx_event))
734 rx_event = rx_ring->last_rx_timestamp;
735 }
736
737 /* only need to read the high RXSTMP register to clear the lock */
738 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
739 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
740 adapter->last_rx_ptp_check = jiffies;
741
742 adapter->rx_hwtstamp_cleared++;
743 e_warn(drv, "clearing RX Timestamp hang\n");
744 }
745}
746
747/**
748 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
749 * @adapter: the private adapter structure
750 *
751 * This function should be called whenever the state related to a Tx timestamp
752 * needs to be cleared. This helps ensure that all related bits are reset for
753 * the next Tx timestamp event.
754 */
755static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
756{
757 struct ixgbe_hw *hw = &adapter->hw;
758
759 IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
760 if (adapter->ptp_tx_skb) {
761 dev_kfree_skb_any(adapter->ptp_tx_skb);
762 adapter->ptp_tx_skb = NULL;
763 }
764 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
765}
766
767/**
768 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
769 * @adapter: private network adapter structure
770 */
771void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
772{
773 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
774 IXGBE_PTP_TX_TIMEOUT);
775
776 if (!adapter->ptp_tx_skb)
777 return;
778
779 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
780 return;
781
782 /* If we haven't received a timestamp within the timeout, it is
783 * reasonable to assume that it will never occur, so we can unlock the
784 * timestamp bit when this occurs.
785 */
786 if (timeout) {
787 cancel_work_sync(&adapter->ptp_tx_work);
788 ixgbe_ptp_clear_tx_timestamp(adapter);
789 adapter->tx_hwtstamp_timeouts++;
790 e_warn(drv, "clearing Tx timestamp hang\n");
791 }
792}
793
794/**
795 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
796 * @adapter: the private adapter struct
797 *
798 * if the timestamp is valid, we convert it into the timecounter ns
799 * value, then store that result into the shhwtstamps structure which
800 * is passed up the network stack
801 */
802static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
803{
804 struct sk_buff *skb = adapter->ptp_tx_skb;
805 struct ixgbe_hw *hw = &adapter->hw;
806 struct skb_shared_hwtstamps shhwtstamps;
807 u64 regval = 0;
808
809 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
810 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
811 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
812
813 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
814 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
815 * well behaved applications from attempting to timestamp again prior
816 * to the lock bit being clear.
817 */
818 adapter->ptp_tx_skb = NULL;
819 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
820
821 /* Notify the stack and then free the skb after we've unlocked */
822 skb_tstamp_tx(skb, &shhwtstamps);
823 dev_kfree_skb_any(skb);
824}
825
826/**
827 * ixgbe_ptp_tx_hwtstamp_work
828 * @work: pointer to the work struct
829 *
830 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
831 * timestamp has been taken for the current skb. It is necessary, because the
832 * descriptor's "done" bit does not correlate with the timestamp event.
833 */
834static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
835{
836 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
837 ptp_tx_work);
838 struct ixgbe_hw *hw = &adapter->hw;
839 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
840 IXGBE_PTP_TX_TIMEOUT);
841 u32 tsynctxctl;
842
843 /* we have to have a valid skb to poll for a timestamp */
844 if (!adapter->ptp_tx_skb) {
845 ixgbe_ptp_clear_tx_timestamp(adapter);
846 return;
847 }
848
849 /* stop polling once we have a valid timestamp */
850 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
851 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
852 ixgbe_ptp_tx_hwtstamp(adapter);
853 return;
854 }
855
856 if (timeout) {
857 ixgbe_ptp_clear_tx_timestamp(adapter);
858 adapter->tx_hwtstamp_timeouts++;
859 e_warn(drv, "clearing Tx Timestamp hang\n");
860 } else {
861 /* reschedule to keep checking if it's not available yet */
862 schedule_work(&adapter->ptp_tx_work);
863 }
864}
865
866/**
867 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
868 * @q_vector: structure containing interrupt and ring information
869 * @skb: the packet
870 *
871 * This function will be called by the Rx routine of the timestamp for this
872 * packet is stored in the buffer. The value is stored in little endian format
873 * starting at the end of the packet data.
874 */
875void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
876 struct sk_buff *skb)
877{
878 __le64 regval;
879
880 /* copy the bits out of the skb, and then trim the skb length */
881 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val,
882 IXGBE_TS_HDR_LEN);
883 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
884
885 /* The timestamp is recorded in little endian format, and is stored at
886 * the end of the packet.
887 *
888 * DWORD: N N + 1 N + 2
889 * Field: End of Packet SYSTIMH SYSTIML
890 */
891 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
892 le64_to_cpu(regval));
893}
894
895/**
896 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
897 * @q_vector: structure containing interrupt and ring information
898 * @skb: particular skb to send timestamp with
899 *
900 * if the timestamp is valid, we convert it into the timecounter ns
901 * value, then store that result into the shhwtstamps structure which
902 * is passed up the network stack
903 */
904void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
905 struct sk_buff *skb)
906{
907 struct ixgbe_adapter *adapter;
908 struct ixgbe_hw *hw;
909 u64 regval = 0;
910 u32 tsyncrxctl;
911
912 /* we cannot process timestamps on a ring without a q_vector */
913 if (!q_vector || !q_vector->adapter)
914 return;
915
916 adapter = q_vector->adapter;
917 hw = &adapter->hw;
918
919 /* Read the tsyncrxctl register afterwards in order to prevent taking an
920 * I/O hit on every packet.
921 */
922
923 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
924 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
925 return;
926
927 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
928 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
929
930 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
931}
932
933/**
934 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
935 * @adapter: pointer to adapter structure
936 * @ifr: ioctl data
937 *
938 * This function returns the current timestamping settings. Rather than
939 * attempt to deconstruct registers to fill in the values, simply keep a copy
940 * of the old settings around, and return a copy when requested.
941 */
942int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
943{
944 struct hwtstamp_config *config = &adapter->tstamp_config;
945
946 return copy_to_user(ifr->ifr_data, config,
947 sizeof(*config)) ? -EFAULT : 0;
948}
949
950/**
951 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
952 * @adapter: the private ixgbe adapter structure
953 * @config: the hwtstamp configuration requested
954 *
955 * Outgoing time stamping can be enabled and disabled. Play nice and
956 * disable it when requested, although it shouldn't cause any overhead
957 * when no packet needs it. At most one packet in the queue may be
958 * marked for time stamping, otherwise it would be impossible to tell
959 * for sure to which packet the hardware time stamp belongs.
960 *
961 * Incoming time stamping has to be configured via the hardware
962 * filters. Not all combinations are supported, in particular event
963 * type has to be specified. Matching the kind of event packet is
964 * not supported, with the exception of "all V2 events regardless of
965 * level 2 or 4".
966 *
967 * Since hardware always timestamps Path delay packets when timestamping V2
968 * packets, regardless of the type specified in the register, only use V2
969 * Event mode. This more accurately tells the user what the hardware is going
970 * to do anyways.
971 *
972 * Note: this may modify the hwtstamp configuration towards a more general
973 * mode, if required to support the specifically requested mode.
974 */
975static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
976 struct hwtstamp_config *config)
977{
978 struct ixgbe_hw *hw = &adapter->hw;
979 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
980 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
981 u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
982 u32 aflags = adapter->flags;
983 bool is_l2 = false;
984 u32 regval;
985
986 switch (config->tx_type) {
987 case HWTSTAMP_TX_OFF:
988 tsync_tx_ctl = 0;
989 break;
990 case HWTSTAMP_TX_ON:
991 break;
992 default:
993 return -ERANGE;
994 }
995
996 switch (config->rx_filter) {
997 case HWTSTAMP_FILTER_NONE:
998 tsync_rx_ctl = 0;
999 tsync_rx_mtrl = 0;
1000 aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1001 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1002 break;
1003 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1004 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1005 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1006 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1007 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1008 break;
1009 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1010 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1011 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1012 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1013 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1014 break;
1015 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1016 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1017 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1018 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1019 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1020 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1021 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1022 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1023 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1024 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1025 is_l2 = true;
1026 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1027 aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1028 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1029 break;
1030 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1031 case HWTSTAMP_FILTER_NTP_ALL:
1032 case HWTSTAMP_FILTER_ALL:
1033 /* The X550 controller is capable of timestamping all packets,
1034 * which allows it to accept any filter.
1035 */
1036 if (hw->mac.type >= ixgbe_mac_X550) {
1037 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1038 config->rx_filter = HWTSTAMP_FILTER_ALL;
1039 aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1040 break;
1041 }
1042 fallthrough;
1043 default:
1044 /*
1045 * register RXMTRL must be set in order to do V1 packets,
1046 * therefore it is not possible to time stamp both V1 Sync and
1047 * Delay_Req messages and hardware does not support
1048 * timestamping all packets => return error
1049 */
1050 config->rx_filter = HWTSTAMP_FILTER_NONE;
1051 return -ERANGE;
1052 }
1053
1054 if (hw->mac.type == ixgbe_mac_82598EB) {
1055 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1056 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1057 if (tsync_rx_ctl | tsync_tx_ctl)
1058 return -ERANGE;
1059 return 0;
1060 }
1061
1062 /* Per-packet timestamping only works if the filter is set to all
1063 * packets. Since this is desired, always timestamp all packets as long
1064 * as any Rx filter was configured.
1065 */
1066 switch (hw->mac.type) {
1067 case ixgbe_mac_X550:
1068 case ixgbe_mac_X550EM_x:
1069 case ixgbe_mac_x550em_a:
1070 /* enable timestamping all packets only if at least some
1071 * packets were requested. Otherwise, play nice and disable
1072 * timestamping
1073 */
1074 if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1075 break;
1076
1077 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1078 IXGBE_TSYNCRXCTL_TYPE_ALL |
1079 IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1080 config->rx_filter = HWTSTAMP_FILTER_ALL;
1081 aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1082 aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1083 is_l2 = true;
1084 break;
1085 default:
1086 break;
1087 }
1088
1089 /* define ethertype filter for timestamping L2 packets */
1090 if (is_l2)
1091 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1092 (IXGBE_ETQF_FILTER_EN | /* enable filter */
1093 IXGBE_ETQF_1588 | /* enable timestamping */
1094 ETH_P_1588)); /* 1588 eth protocol type */
1095 else
1096 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1097
1098 /* enable/disable TX */
1099 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1100 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1101 regval |= tsync_tx_ctl;
1102 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1103
1104 /* enable/disable RX */
1105 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1106 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1107 regval |= tsync_rx_ctl;
1108 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1109
1110 /* define which PTP packets are time stamped */
1111 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1112
1113 IXGBE_WRITE_FLUSH(hw);
1114
1115 /* configure adapter flags only when HW is actually configured */
1116 adapter->flags = aflags;
1117
1118 /* clear TX/RX time stamp registers, just to be sure */
1119 ixgbe_ptp_clear_tx_timestamp(adapter);
1120 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1121
1122 return 0;
1123}
1124
1125/**
1126 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1127 * @adapter: pointer to adapter struct
1128 * @ifr: ioctl data
1129 *
1130 * Set hardware to requested mode. If unsupported, return an error with no
1131 * changes. Otherwise, store the mode for future reference.
1132 */
1133int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1134{
1135 struct hwtstamp_config config;
1136 int err;
1137
1138 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1139 return -EFAULT;
1140
1141 err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1142 if (err)
1143 return err;
1144
1145 /* save these settings for future reference */
1146 memcpy(&adapter->tstamp_config, &config,
1147 sizeof(adapter->tstamp_config));
1148
1149 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1150 -EFAULT : 0;
1151}
1152
1153static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1154 u32 *shift, u32 *incval)
1155{
1156 /**
1157 * Scale the NIC cycle counter by a large factor so that
1158 * relatively small corrections to the frequency can be added
1159 * or subtracted. The drawbacks of a large factor include
1160 * (a) the clock register overflows more quickly, (b) the cycle
1161 * counter structure must be able to convert the systime value
1162 * to nanoseconds using only a multiplier and a right-shift,
1163 * and (c) the value must fit within the timinca register space
1164 * => math based on internal DMA clock rate and available bits
1165 *
1166 * Note that when there is no link, internal DMA clock is same as when
1167 * link speed is 10Gb. Set the registers correctly even when link is
1168 * down to preserve the clock setting
1169 */
1170 switch (adapter->link_speed) {
1171 case IXGBE_LINK_SPEED_100_FULL:
1172 *shift = IXGBE_INCVAL_SHIFT_100;
1173 *incval = IXGBE_INCVAL_100;
1174 break;
1175 case IXGBE_LINK_SPEED_1GB_FULL:
1176 *shift = IXGBE_INCVAL_SHIFT_1GB;
1177 *incval = IXGBE_INCVAL_1GB;
1178 break;
1179 case IXGBE_LINK_SPEED_10GB_FULL:
1180 default:
1181 *shift = IXGBE_INCVAL_SHIFT_10GB;
1182 *incval = IXGBE_INCVAL_10GB;
1183 break;
1184 }
1185}
1186
1187/**
1188 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1189 * @adapter: pointer to the adapter structure
1190 *
1191 * This function should be called to set the proper values for the TIMINCA
1192 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1193 * is. It does not directly modify SYSTIME registers or the timecounter
1194 * structure. It should be called whenever a new TIMINCA value is necessary,
1195 * such as during initialization or when the link speed changes.
1196 */
1197void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1198{
1199 struct ixgbe_hw *hw = &adapter->hw;
1200 struct cyclecounter cc;
1201 unsigned long flags;
1202 u32 incval = 0;
1203 u32 fuse0 = 0;
1204
1205 /* For some of the boards below this mask is technically incorrect.
1206 * The timestamp mask overflows at approximately 61bits. However the
1207 * particular hardware does not overflow on an even bitmask value.
1208 * Instead, it overflows due to conversion of upper 32bits billions of
1209 * cycles. Timecounters are not really intended for this purpose so
1210 * they do not properly function if the overflow point isn't 2^N-1.
1211 * However, the actual SYSTIME values in question take ~138 years to
1212 * overflow. In practice this means they won't actually overflow. A
1213 * proper fix to this problem would require modification of the
1214 * timecounter delta calculations.
1215 */
1216 cc.mask = CLOCKSOURCE_MASK(64);
1217 cc.mult = 1;
1218 cc.shift = 0;
1219
1220 switch (hw->mac.type) {
1221 case ixgbe_mac_X550EM_x:
1222 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1223 * designed to represent seconds and nanoseconds when this is
1224 * the case. However, some revisions of hardware have a 400Mhz
1225 * clock and we have to compensate for this frequency
1226 * variation using corrected mult and shift values.
1227 */
1228 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1229 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1230 cc.mult = 3;
1231 cc.shift = 2;
1232 }
1233 fallthrough;
1234 case ixgbe_mac_x550em_a:
1235 case ixgbe_mac_X550:
1236 cc.read = ixgbe_ptp_read_X550;
1237 break;
1238 case ixgbe_mac_X540:
1239 cc.read = ixgbe_ptp_read_82599;
1240
1241 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1242 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1243 break;
1244 case ixgbe_mac_82599EB:
1245 cc.read = ixgbe_ptp_read_82599;
1246
1247 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1248 incval >>= IXGBE_INCVAL_SHIFT_82599;
1249 cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1250 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1251 BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1252 break;
1253 default:
1254 /* other devices aren't supported */
1255 return;
1256 }
1257
1258 /* update the base incval used to calculate frequency adjustment */
1259 WRITE_ONCE(adapter->base_incval, incval);
1260 smp_mb();
1261
1262 /* need lock to prevent incorrect read while modifying cyclecounter */
1263 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1264 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1265 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1266}
1267
1268/**
1269 * ixgbe_ptp_init_systime - Initialize SYSTIME registers
1270 * @adapter: the ixgbe private board structure
1271 *
1272 * Initialize and start the SYSTIME registers.
1273 */
1274static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
1275{
1276 struct ixgbe_hw *hw = &adapter->hw;
1277 u32 tsauxc;
1278
1279 switch (hw->mac.type) {
1280 case ixgbe_mac_X550EM_x:
1281 case ixgbe_mac_x550em_a:
1282 case ixgbe_mac_X550:
1283 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1284
1285 /* Reset SYSTIME registers to 0 */
1286 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1287 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1288 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1289
1290 /* Reset interrupt settings */
1291 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1292 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1293
1294 /* Activate the SYSTIME counter */
1295 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1296 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1297 break;
1298 case ixgbe_mac_X540:
1299 case ixgbe_mac_82599EB:
1300 /* Reset SYSTIME registers to 0 */
1301 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1302 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1303 break;
1304 default:
1305 /* Other devices aren't supported */
1306 return;
1307 }
1308
1309 IXGBE_WRITE_FLUSH(hw);
1310}
1311
1312/**
1313 * ixgbe_ptp_reset
1314 * @adapter: the ixgbe private board structure
1315 *
1316 * When the MAC resets, all the hardware bits for timesync are reset. This
1317 * function is used to re-enable the device for PTP based on current settings.
1318 * We do lose the current clock time, so just reset the cyclecounter to the
1319 * system real clock time.
1320 *
1321 * This function will maintain hwtstamp_config settings, and resets the SDP
1322 * output if it was enabled.
1323 */
1324void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1325{
1326 struct ixgbe_hw *hw = &adapter->hw;
1327 unsigned long flags;
1328
1329 /* reset the hardware timestamping mode */
1330 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1331
1332 /* 82598 does not support PTP */
1333 if (hw->mac.type == ixgbe_mac_82598EB)
1334 return;
1335
1336 ixgbe_ptp_start_cyclecounter(adapter);
1337
1338 ixgbe_ptp_init_systime(adapter);
1339
1340 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1341 timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1342 ktime_to_ns(ktime_get_real()));
1343 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1344
1345 adapter->last_overflow_check = jiffies;
1346
1347 /* Now that the shift has been calculated and the systime
1348 * registers reset, (re-)enable the Clock out feature
1349 */
1350 if (adapter->ptp_setup_sdp)
1351 adapter->ptp_setup_sdp(adapter);
1352}
1353
1354/**
1355 * ixgbe_ptp_create_clock
1356 * @adapter: the ixgbe private adapter structure
1357 *
1358 * This function performs setup of the user entry point function table and
1359 * initializes the PTP clock device, which is used to access the clock-like
1360 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1361 * reuse a previously initialized clock (such as during a suspend/resume
1362 * cycle).
1363 */
1364static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1365{
1366 struct net_device *netdev = adapter->netdev;
1367 long err;
1368
1369 /* do nothing if we already have a clock device */
1370 if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1371 return 0;
1372
1373 switch (adapter->hw.mac.type) {
1374 case ixgbe_mac_X540:
1375 snprintf(adapter->ptp_caps.name,
1376 sizeof(adapter->ptp_caps.name),
1377 "%s", netdev->name);
1378 adapter->ptp_caps.owner = THIS_MODULE;
1379 adapter->ptp_caps.max_adj = 250000000;
1380 adapter->ptp_caps.n_alarm = 0;
1381 adapter->ptp_caps.n_ext_ts = 0;
1382 adapter->ptp_caps.n_per_out = 0;
1383 adapter->ptp_caps.pps = 1;
1384 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1385 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1386 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1387 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1388 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1389 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1390 break;
1391 case ixgbe_mac_82599EB:
1392 snprintf(adapter->ptp_caps.name,
1393 sizeof(adapter->ptp_caps.name),
1394 "%s", netdev->name);
1395 adapter->ptp_caps.owner = THIS_MODULE;
1396 adapter->ptp_caps.max_adj = 250000000;
1397 adapter->ptp_caps.n_alarm = 0;
1398 adapter->ptp_caps.n_ext_ts = 0;
1399 adapter->ptp_caps.n_per_out = 0;
1400 adapter->ptp_caps.pps = 0;
1401 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
1402 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1403 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1404 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1405 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1406 break;
1407 case ixgbe_mac_X550:
1408 case ixgbe_mac_X550EM_x:
1409 case ixgbe_mac_x550em_a:
1410 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1411 adapter->ptp_caps.owner = THIS_MODULE;
1412 adapter->ptp_caps.max_adj = 30000000;
1413 adapter->ptp_caps.n_alarm = 0;
1414 adapter->ptp_caps.n_ext_ts = 0;
1415 adapter->ptp_caps.n_per_out = 0;
1416 adapter->ptp_caps.pps = 1;
1417 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550;
1418 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1419 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1420 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1421 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1422 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1423 break;
1424 default:
1425 adapter->ptp_clock = NULL;
1426 adapter->ptp_setup_sdp = NULL;
1427 return -EOPNOTSUPP;
1428 }
1429
1430 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1431 &adapter->pdev->dev);
1432 if (IS_ERR(adapter->ptp_clock)) {
1433 err = PTR_ERR(adapter->ptp_clock);
1434 adapter->ptp_clock = NULL;
1435 e_dev_err("ptp_clock_register failed\n");
1436 return err;
1437 } else if (adapter->ptp_clock)
1438 e_dev_info("registered PHC device on %s\n", netdev->name);
1439
1440 /* set default timestamp mode to disabled here. We do this in
1441 * create_clock instead of init, because we don't want to override the
1442 * previous settings during a resume cycle.
1443 */
1444 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1445 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1446
1447 return 0;
1448}
1449
1450/**
1451 * ixgbe_ptp_init
1452 * @adapter: the ixgbe private adapter structure
1453 *
1454 * This function performs the required steps for enabling PTP
1455 * support. If PTP support has already been loaded it simply calls the
1456 * cyclecounter init routine and exits.
1457 */
1458void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1459{
1460 /* initialize the spin lock first since we can't control when a user
1461 * will call the entry functions once we have initialized the clock
1462 * device
1463 */
1464 spin_lock_init(&adapter->tmreg_lock);
1465
1466 /* obtain a PTP device, or re-use an existing device */
1467 if (ixgbe_ptp_create_clock(adapter))
1468 return;
1469
1470 /* we have a clock so we can initialize work now */
1471 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1472
1473 /* reset the PTP related hardware bits */
1474 ixgbe_ptp_reset(adapter);
1475
1476 /* enter the IXGBE_PTP_RUNNING state */
1477 set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1478
1479 return;
1480}
1481
1482/**
1483 * ixgbe_ptp_suspend - stop PTP work items
1484 * @adapter: pointer to adapter struct
1485 *
1486 * this function suspends PTP activity, and prevents more PTP work from being
1487 * generated, but does not destroy the PTP clock device.
1488 */
1489void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1490{
1491 /* Leave the IXGBE_PTP_RUNNING state. */
1492 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1493 return;
1494
1495 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1496 if (adapter->ptp_setup_sdp)
1497 adapter->ptp_setup_sdp(adapter);
1498
1499 /* ensure that we cancel any pending PTP Tx work item in progress */
1500 cancel_work_sync(&adapter->ptp_tx_work);
1501 ixgbe_ptp_clear_tx_timestamp(adapter);
1502}
1503
1504/**
1505 * ixgbe_ptp_stop - close the PTP device
1506 * @adapter: pointer to adapter struct
1507 *
1508 * completely destroy the PTP device, should only be called when the device is
1509 * being fully closed.
1510 */
1511void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1512{
1513 /* first, suspend PTP activity */
1514 ixgbe_ptp_suspend(adapter);
1515
1516 /* disable the PTP clock device */
1517 if (adapter->ptp_clock) {
1518 ptp_clock_unregister(adapter->ptp_clock);
1519 adapter->ptp_clock = NULL;
1520 e_dev_info("removed PHC on %s\n",
1521 adapter->netdev->name);
1522 }
1523}
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2015 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28#include "ixgbe.h"
29#include <linux/ptp_classify.h>
30#include <linux/clocksource.h>
31
32/*
33 * The 82599 and the X540 do not have true 64bit nanosecond scale
34 * counter registers. Instead, SYSTIME is defined by a fixed point
35 * system which allows the user to define the scale counter increment
36 * value at every level change of the oscillator driving the SYSTIME
37 * value. For both devices the TIMINCA:IV field defines this
38 * increment. On the X540 device, 31 bits are provided. However on the
39 * 82599 only provides 24 bits. The time unit is determined by the
40 * clock frequency of the oscillator in combination with the TIMINCA
41 * register. When these devices link at 10Gb the oscillator has a
42 * period of 6.4ns. In order to convert the scale counter into
43 * nanoseconds the cyclecounter and timecounter structures are
44 * used. The SYSTIME registers need to be converted to ns values by use
45 * of only a right shift (division by power of 2). The following math
46 * determines the largest incvalue that will fit into the available
47 * bits in the TIMINCA register.
48 *
49 * PeriodWidth: Number of bits to store the clock period
50 * MaxWidth: The maximum width value of the TIMINCA register
51 * Period: The clock period for the oscillator
52 * round(): discard the fractional portion of the calculation
53 *
54 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
55 *
56 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
57 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
58 *
59 * The period also changes based on the link speed:
60 * At 10Gb link or no link, the period remains the same.
61 * At 1Gb link, the period is multiplied by 10. (64ns)
62 * At 100Mb link, the period is multiplied by 100. (640ns)
63 *
64 * The calculated value allows us to right shift the SYSTIME register
65 * value in order to quickly convert it into a nanosecond clock,
66 * while allowing for the maximum possible adjustment value.
67 *
68 * These diagrams are only for the 10Gb link period
69 *
70 * SYSTIMEH SYSTIMEL
71 * +--------------+ +--------------+
72 * X540 | 32 | | 1 | 3 | 28 |
73 * *--------------+ +--------------+
74 * \________ 36 bits ______/ fract
75 *
76 * +--------------+ +--------------+
77 * 82599 | 32 | | 8 | 3 | 21 |
78 * *--------------+ +--------------+
79 * \________ 43 bits ______/ fract
80 *
81 * The 36 bit X540 SYSTIME overflows every
82 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
83 *
84 * The 43 bit 82599 SYSTIME overflows every
85 * 2^43 * 10^-9 / 3600 = 2.4 hours
86 */
87#define IXGBE_INCVAL_10GB 0x66666666
88#define IXGBE_INCVAL_1GB 0x40000000
89#define IXGBE_INCVAL_100 0x50000000
90
91#define IXGBE_INCVAL_SHIFT_10GB 28
92#define IXGBE_INCVAL_SHIFT_1GB 24
93#define IXGBE_INCVAL_SHIFT_100 21
94
95#define IXGBE_INCVAL_SHIFT_82599 7
96#define IXGBE_INCPER_SHIFT_82599 24
97
98#define IXGBE_OVERFLOW_PERIOD (HZ * 30)
99#define IXGBE_PTP_TX_TIMEOUT (HZ * 15)
100
101/* half of a one second clock period, for use with PPS signal. We have to use
102 * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in
103 * order to force at least 64bits of precision for shifting
104 */
105#define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL
106
107/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
108 * which contain measurements of seconds and nanoseconds respectively. This
109 * matches the standard linux representation of time in the kernel. In addition,
110 * the X550 also has a SYSTIMER register which represents residue, or
111 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
112 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
113 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
114 * high bit representing whether the adjustent is positive or negative. Every
115 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
116 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
117 * X550's clock for purposes of SYSTIME generation is constant and not dependent
118 * on the link speed.
119 *
120 * SYSTIMEH SYSTIMEL SYSTIMER
121 * +--------------+ +--------------+ +-------------+
122 * X550 | 32 | | 32 | | 32 |
123 * *--------------+ +--------------+ +-------------+
124 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
125 *
126 * This results in a full 96 bits to represent the clock, with 32 bits for
127 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
128 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
129 * underflow of adjustments.
130 *
131 * The 32 bits of seconds for the X550 overflows every
132 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
133 *
134 * In order to adjust the clock frequency for the X550, the TIMINCA register is
135 * provided. This register represents a + or minus nearly 0.5 ns adjustment to
136 * the base frequency. It is measured in 2^-32 ns units, with the high bit being
137 * the sign bit. This register enables software to calculate frequency
138 * adjustments and apply them directly to the clock rate.
139 *
140 * The math for converting ppb into TIMINCA values is fairly straightforward.
141 * TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
142 *
143 * This assumes that ppb is never high enough to create a value bigger than
144 * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
145 * value is also simple.
146 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
147 *
148 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
149 * 12.5 nanoseconds. This means that the Max ppb is 39999999
150 * Note: We subtract one in order to ensure no overflow, because the TIMINCA
151 * register can only hold slightly under 0.5 nanoseconds.
152 *
153 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
154 * into 2^-32 units, which is
155 *
156 * 12.5 * 2^32 = C80000000
157 *
158 * Some revisions of hardware have a faster base frequency than the registers
159 * were defined for. To fix this, we use a timecounter structure with the
160 * proper mult and shift to convert the cycles into nanoseconds of time.
161 */
162#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
163#define INCVALUE_MASK 0x7FFFFFFF
164#define ISGN 0x80000000
165#define MAX_TIMADJ 0x7FFFFFFF
166
167/**
168 * ixgbe_ptp_setup_sdp_x540
169 * @hw: the hardware private structure
170 *
171 * this function enables or disables the clock out feature on SDP0 for
172 * the X540 device. It will create a 1second periodic output that can
173 * be used as the PPS (via an interrupt).
174 *
175 * It calculates when the systime will be on an exact second, and then
176 * aligns the start of the PPS signal to that value. The shift is
177 * necessary because it can change based on the link speed.
178 */
179static void ixgbe_ptp_setup_sdp_x540(struct ixgbe_adapter *adapter)
180{
181 struct ixgbe_hw *hw = &adapter->hw;
182 int shift = adapter->hw_cc.shift;
183 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
184 u64 ns = 0, clock_edge = 0;
185
186 /* disable the pin first */
187 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
188 IXGBE_WRITE_FLUSH(hw);
189
190 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
191 return;
192
193 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
194
195 /* enable the SDP0 pin as output, and connected to the
196 * native function for Timesync (ClockOut)
197 */
198 esdp |= IXGBE_ESDP_SDP0_DIR |
199 IXGBE_ESDP_SDP0_NATIVE;
200
201 /* enable the Clock Out feature on SDP0, and allow
202 * interrupts to occur when the pin changes
203 */
204 tsauxc = IXGBE_TSAUXC_EN_CLK |
205 IXGBE_TSAUXC_SYNCLK |
206 IXGBE_TSAUXC_SDP0_INT;
207
208 /* clock period (or pulse length) */
209 clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
210 clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
211
212 /* Account for the cyclecounter wrap-around value by
213 * using the converted ns value of the current time to
214 * check for when the next aligned second would occur.
215 */
216 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
217 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
218 ns = timecounter_cyc2time(&adapter->hw_tc, clock_edge);
219
220 div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
221 clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
222
223 /* specify the initial clock start time */
224 trgttiml = (u32)clock_edge;
225 trgttimh = (u32)(clock_edge >> 32);
226
227 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
228 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
229 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
230 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
231
232 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
233 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
234
235 IXGBE_WRITE_FLUSH(hw);
236}
237
238/**
239 * ixgbe_ptp_read_X550 - read cycle counter value
240 * @hw_cc: cyclecounter structure
241 *
242 * This function reads SYSTIME registers. It is called by the cyclecounter
243 * structure to convert from internal representation into nanoseconds. We need
244 * this for X550 since some skews do not have expected clock frequency and
245 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
246 * "cycles", rather than seconds and nanoseconds.
247 */
248static cycle_t ixgbe_ptp_read_X550(const struct cyclecounter *hw_cc)
249{
250 struct ixgbe_adapter *adapter =
251 container_of(hw_cc, struct ixgbe_adapter, hw_cc);
252 struct ixgbe_hw *hw = &adapter->hw;
253 struct timespec64 ts;
254
255 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
256 * Some revisions of hardware run at a higher frequency and so the
257 * cycles are not guaranteed to be nanoseconds. The timespec64 created
258 * here is used for its math/conversions but does not necessarily
259 * represent nominal time.
260 *
261 * It should be noted that this cyclecounter will overflow at a
262 * non-bitmask field since we have to convert our billions of cycles
263 * into an actual cycles count. This results in some possible weird
264 * situations at high cycle counter stamps. However given that 32 bits
265 * of "seconds" is ~138 years this isn't a problem. Even at the
266 * increased frequency of some revisions, this is still ~103 years.
267 * Since the SYSTIME values start at 0 and we never write them, it is
268 * highly unlikely for the cyclecounter to overflow in practice.
269 */
270 IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
271 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
272 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
273
274 return (u64)timespec64_to_ns(&ts);
275}
276
277/**
278 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
279 * @cc: the cyclecounter structure
280 *
281 * this function reads the cyclecounter registers and is called by the
282 * cyclecounter structure used to construct a ns counter from the
283 * arbitrary fixed point registers
284 */
285static cycle_t ixgbe_ptp_read_82599(const struct cyclecounter *cc)
286{
287 struct ixgbe_adapter *adapter =
288 container_of(cc, struct ixgbe_adapter, hw_cc);
289 struct ixgbe_hw *hw = &adapter->hw;
290 u64 stamp = 0;
291
292 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
293 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
294
295 return stamp;
296}
297
298/**
299 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
300 * @adapter: private adapter structure
301 * @hwtstamp: stack timestamp structure
302 * @systim: unsigned 64bit system time value
303 *
304 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
305 * which can be used by the stack's ptp functions.
306 *
307 * The lock is used to protect consistency of the cyclecounter and the SYSTIME
308 * registers. However, it does not need to protect against the Rx or Tx
309 * timestamp registers, as there can't be a new timestamp until the old one is
310 * unlatched by reading.
311 *
312 * In addition to the timestamp in hardware, some controllers need a software
313 * overflow cyclecounter, and this function takes this into account as well.
314 **/
315static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
316 struct skb_shared_hwtstamps *hwtstamp,
317 u64 timestamp)
318{
319 unsigned long flags;
320 struct timespec64 systime;
321 u64 ns;
322
323 memset(hwtstamp, 0, sizeof(*hwtstamp));
324
325 switch (adapter->hw.mac.type) {
326 /* X550 and later hardware supposedly represent time using a seconds
327 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
328 * to convert the timestamp into cycles before it can be fed to the
329 * cyclecounter. We need an actual cyclecounter because some revisions
330 * of hardware run at a higher frequency and thus the counter does
331 * not represent seconds/nanoseconds. Instead it can be thought of as
332 * cycles and billions of cycles.
333 */
334 case ixgbe_mac_X550:
335 case ixgbe_mac_X550EM_x:
336 /* Upper 32 bits represent billions of cycles, lower 32 bits
337 * represent cycles. However, we use timespec64_to_ns for the
338 * correct math even though the units haven't been corrected
339 * yet.
340 */
341 systime.tv_sec = timestamp >> 32;
342 systime.tv_nsec = timestamp & 0xFFFFFFFF;
343
344 timestamp = timespec64_to_ns(&systime);
345 break;
346 default:
347 break;
348 }
349
350 spin_lock_irqsave(&adapter->tmreg_lock, flags);
351 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
352 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
353
354 hwtstamp->hwtstamp = ns_to_ktime(ns);
355}
356
357/**
358 * ixgbe_ptp_adjfreq_82599
359 * @ptp: the ptp clock structure
360 * @ppb: parts per billion adjustment from base
361 *
362 * adjust the frequency of the ptp cycle counter by the
363 * indicated ppb from the base frequency.
364 */
365static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
366{
367 struct ixgbe_adapter *adapter =
368 container_of(ptp, struct ixgbe_adapter, ptp_caps);
369 struct ixgbe_hw *hw = &adapter->hw;
370 u64 freq, incval;
371 u32 diff;
372 int neg_adj = 0;
373
374 if (ppb < 0) {
375 neg_adj = 1;
376 ppb = -ppb;
377 }
378
379 smp_mb();
380 incval = ACCESS_ONCE(adapter->base_incval);
381
382 freq = incval;
383 freq *= ppb;
384 diff = div_u64(freq, 1000000000ULL);
385
386 incval = neg_adj ? (incval - diff) : (incval + diff);
387
388 switch (hw->mac.type) {
389 case ixgbe_mac_X540:
390 if (incval > 0xFFFFFFFFULL)
391 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
392 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
393 break;
394 case ixgbe_mac_82599EB:
395 if (incval > 0x00FFFFFFULL)
396 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
397 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
398 (1 << IXGBE_INCPER_SHIFT_82599) |
399 ((u32)incval & 0x00FFFFFFUL));
400 break;
401 default:
402 break;
403 }
404
405 return 0;
406}
407
408/**
409 * ixgbe_ptp_adjfreq_X550
410 * @ptp: the ptp clock structure
411 * @ppb: parts per billion adjustment from base
412 *
413 * adjust the frequency of the SYSTIME registers by the indicated ppb from base
414 * frequency
415 */
416static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
417{
418 struct ixgbe_adapter *adapter =
419 container_of(ptp, struct ixgbe_adapter, ptp_caps);
420 struct ixgbe_hw *hw = &adapter->hw;
421 int neg_adj = 0;
422 u64 rate = IXGBE_X550_BASE_PERIOD;
423 u32 inca;
424
425 if (ppb < 0) {
426 neg_adj = 1;
427 ppb = -ppb;
428 }
429 rate *= ppb;
430 rate = div_u64(rate, 1000000000ULL);
431
432 /* warn if rate is too large */
433 if (rate >= INCVALUE_MASK)
434 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
435
436 inca = rate & INCVALUE_MASK;
437 if (neg_adj)
438 inca |= ISGN;
439
440 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
441
442 return 0;
443}
444
445/**
446 * ixgbe_ptp_adjtime
447 * @ptp: the ptp clock structure
448 * @delta: offset to adjust the cycle counter by
449 *
450 * adjust the timer by resetting the timecounter structure.
451 */
452static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
453{
454 struct ixgbe_adapter *adapter =
455 container_of(ptp, struct ixgbe_adapter, ptp_caps);
456 unsigned long flags;
457
458 spin_lock_irqsave(&adapter->tmreg_lock, flags);
459 timecounter_adjtime(&adapter->hw_tc, delta);
460 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
461
462 if (adapter->ptp_setup_sdp)
463 adapter->ptp_setup_sdp(adapter);
464
465 return 0;
466}
467
468/**
469 * ixgbe_ptp_gettime
470 * @ptp: the ptp clock structure
471 * @ts: timespec structure to hold the current time value
472 *
473 * read the timecounter and return the correct value on ns,
474 * after converting it into a struct timespec.
475 */
476static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
477{
478 struct ixgbe_adapter *adapter =
479 container_of(ptp, struct ixgbe_adapter, ptp_caps);
480 unsigned long flags;
481 u64 ns;
482
483 spin_lock_irqsave(&adapter->tmreg_lock, flags);
484 ns = timecounter_read(&adapter->hw_tc);
485 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
486
487 *ts = ns_to_timespec64(ns);
488
489 return 0;
490}
491
492/**
493 * ixgbe_ptp_settime
494 * @ptp: the ptp clock structure
495 * @ts: the timespec containing the new time for the cycle counter
496 *
497 * reset the timecounter to use a new base value instead of the kernel
498 * wall timer value.
499 */
500static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
501 const struct timespec64 *ts)
502{
503 struct ixgbe_adapter *adapter =
504 container_of(ptp, struct ixgbe_adapter, ptp_caps);
505 unsigned long flags;
506 u64 ns = timespec64_to_ns(ts);
507
508 /* reset the timecounter */
509 spin_lock_irqsave(&adapter->tmreg_lock, flags);
510 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
511 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
512
513 if (adapter->ptp_setup_sdp)
514 adapter->ptp_setup_sdp(adapter);
515 return 0;
516}
517
518/**
519 * ixgbe_ptp_feature_enable
520 * @ptp: the ptp clock structure
521 * @rq: the requested feature to change
522 * @on: whether to enable or disable the feature
523 *
524 * enable (or disable) ancillary features of the phc subsystem.
525 * our driver only supports the PPS feature on the X540
526 */
527static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
528 struct ptp_clock_request *rq, int on)
529{
530 struct ixgbe_adapter *adapter =
531 container_of(ptp, struct ixgbe_adapter, ptp_caps);
532
533 /**
534 * When PPS is enabled, unmask the interrupt for the ClockOut
535 * feature, so that the interrupt handler can send the PPS
536 * event when the clock SDP triggers. Clear mask when PPS is
537 * disabled
538 */
539 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
540 return -ENOTSUPP;
541
542 if (on)
543 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
544 else
545 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
546
547 adapter->ptp_setup_sdp(adapter);
548 return 0;
549}
550
551/**
552 * ixgbe_ptp_check_pps_event
553 * @adapter: the private adapter structure
554 *
555 * This function is called by the interrupt routine when checking for
556 * interrupts. It will check and handle a pps event.
557 */
558void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
559{
560 struct ixgbe_hw *hw = &adapter->hw;
561 struct ptp_clock_event event;
562
563 event.type = PTP_CLOCK_PPS;
564
565 /* this check is necessary in case the interrupt was enabled via some
566 * alternative means (ex. debug_fs). Better to check here than
567 * everywhere that calls this function.
568 */
569 if (!adapter->ptp_clock)
570 return;
571
572 switch (hw->mac.type) {
573 case ixgbe_mac_X540:
574 ptp_clock_event(adapter->ptp_clock, &event);
575 break;
576 default:
577 break;
578 }
579}
580
581/**
582 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
583 * @adapter: private adapter struct
584 *
585 * this watchdog task periodically reads the timecounter
586 * in order to prevent missing when the system time registers wrap
587 * around. This needs to be run approximately twice a minute.
588 */
589void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
590{
591 bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
592 IXGBE_OVERFLOW_PERIOD);
593 struct timespec64 ts;
594
595 if (timeout) {
596 ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
597 adapter->last_overflow_check = jiffies;
598 }
599}
600
601/**
602 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
603 * @adapter: private network adapter structure
604 *
605 * this watchdog task is scheduled to detect error case where hardware has
606 * dropped an Rx packet that was timestamped when the ring is full. The
607 * particular error is rare but leaves the device in a state unable to timestamp
608 * any future packets.
609 */
610void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
611{
612 struct ixgbe_hw *hw = &adapter->hw;
613 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
614 struct ixgbe_ring *rx_ring;
615 unsigned long rx_event;
616 int n;
617
618 /* if we don't have a valid timestamp in the registers, just update the
619 * timeout counter and exit
620 */
621 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
622 adapter->last_rx_ptp_check = jiffies;
623 return;
624 }
625
626 /* determine the most recent watchdog or rx_timestamp event */
627 rx_event = adapter->last_rx_ptp_check;
628 for (n = 0; n < adapter->num_rx_queues; n++) {
629 rx_ring = adapter->rx_ring[n];
630 if (time_after(rx_ring->last_rx_timestamp, rx_event))
631 rx_event = rx_ring->last_rx_timestamp;
632 }
633
634 /* only need to read the high RXSTMP register to clear the lock */
635 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
636 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
637 adapter->last_rx_ptp_check = jiffies;
638
639 adapter->rx_hwtstamp_cleared++;
640 e_warn(drv, "clearing RX Timestamp hang\n");
641 }
642}
643
644/**
645 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
646 * @adapter: the private adapter structure
647 *
648 * This function should be called whenever the state related to a Tx timestamp
649 * needs to be cleared. This helps ensure that all related bits are reset for
650 * the next Tx timestamp event.
651 */
652static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
653{
654 struct ixgbe_hw *hw = &adapter->hw;
655
656 IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
657 if (adapter->ptp_tx_skb) {
658 dev_kfree_skb_any(adapter->ptp_tx_skb);
659 adapter->ptp_tx_skb = NULL;
660 }
661 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
662}
663
664/**
665 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
666 * @adapter: the private adapter struct
667 *
668 * if the timestamp is valid, we convert it into the timecounter ns
669 * value, then store that result into the shhwtstamps structure which
670 * is passed up the network stack
671 */
672static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
673{
674 struct ixgbe_hw *hw = &adapter->hw;
675 struct skb_shared_hwtstamps shhwtstamps;
676 u64 regval = 0;
677
678 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
679 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
680
681 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
682 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
683
684 ixgbe_ptp_clear_tx_timestamp(adapter);
685}
686
687/**
688 * ixgbe_ptp_tx_hwtstamp_work
689 * @work: pointer to the work struct
690 *
691 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
692 * timestamp has been taken for the current skb. It is necessary, because the
693 * descriptor's "done" bit does not correlate with the timestamp event.
694 */
695static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
696{
697 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
698 ptp_tx_work);
699 struct ixgbe_hw *hw = &adapter->hw;
700 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
701 IXGBE_PTP_TX_TIMEOUT);
702 u32 tsynctxctl;
703
704 /* we have to have a valid skb to poll for a timestamp */
705 if (!adapter->ptp_tx_skb) {
706 ixgbe_ptp_clear_tx_timestamp(adapter);
707 return;
708 }
709
710 /* stop polling once we have a valid timestamp */
711 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
712 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
713 ixgbe_ptp_tx_hwtstamp(adapter);
714 return;
715 }
716
717 if (timeout) {
718 ixgbe_ptp_clear_tx_timestamp(adapter);
719 adapter->tx_hwtstamp_timeouts++;
720 e_warn(drv, "clearing Tx Timestamp hang\n");
721 } else {
722 /* reschedule to keep checking if it's not available yet */
723 schedule_work(&adapter->ptp_tx_work);
724 }
725}
726
727/**
728 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
729 * @q_vector: structure containing interrupt and ring information
730 * @skb: the packet
731 *
732 * This function will be called by the Rx routine of the timestamp for this
733 * packet is stored in the buffer. The value is stored in little endian format
734 * starting at the end of the packet data.
735 */
736void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
737 struct sk_buff *skb)
738{
739 __le64 regval;
740
741 /* copy the bits out of the skb, and then trim the skb length */
742 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val,
743 IXGBE_TS_HDR_LEN);
744 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
745
746 /* The timestamp is recorded in little endian format, and is stored at
747 * the end of the packet.
748 *
749 * DWORD: N N + 1 N + 2
750 * Field: End of Packet SYSTIMH SYSTIML
751 */
752 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
753 le64_to_cpu(regval));
754}
755
756/**
757 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
758 * @q_vector: structure containing interrupt and ring information
759 * @skb: particular skb to send timestamp with
760 *
761 * if the timestamp is valid, we convert it into the timecounter ns
762 * value, then store that result into the shhwtstamps structure which
763 * is passed up the network stack
764 */
765void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
766 struct sk_buff *skb)
767{
768 struct ixgbe_adapter *adapter;
769 struct ixgbe_hw *hw;
770 u64 regval = 0;
771 u32 tsyncrxctl;
772
773 /* we cannot process timestamps on a ring without a q_vector */
774 if (!q_vector || !q_vector->adapter)
775 return;
776
777 adapter = q_vector->adapter;
778 hw = &adapter->hw;
779
780 /* Read the tsyncrxctl register afterwards in order to prevent taking an
781 * I/O hit on every packet.
782 */
783
784 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
785 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
786 return;
787
788 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
789 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
790
791 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
792}
793
794int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
795{
796 struct hwtstamp_config *config = &adapter->tstamp_config;
797
798 return copy_to_user(ifr->ifr_data, config,
799 sizeof(*config)) ? -EFAULT : 0;
800}
801
802/**
803 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
804 * @adapter: the private ixgbe adapter structure
805 * @config: the hwtstamp configuration requested
806 *
807 * Outgoing time stamping can be enabled and disabled. Play nice and
808 * disable it when requested, although it shouldn't cause any overhead
809 * when no packet needs it. At most one packet in the queue may be
810 * marked for time stamping, otherwise it would be impossible to tell
811 * for sure to which packet the hardware time stamp belongs.
812 *
813 * Incoming time stamping has to be configured via the hardware
814 * filters. Not all combinations are supported, in particular event
815 * type has to be specified. Matching the kind of event packet is
816 * not supported, with the exception of "all V2 events regardless of
817 * level 2 or 4".
818 *
819 * Since hardware always timestamps Path delay packets when timestamping V2
820 * packets, regardless of the type specified in the register, only use V2
821 * Event mode. This more accurately tells the user what the hardware is going
822 * to do anyways.
823 *
824 * Note: this may modify the hwtstamp configuration towards a more general
825 * mode, if required to support the specifically requested mode.
826 */
827static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
828 struct hwtstamp_config *config)
829{
830 struct ixgbe_hw *hw = &adapter->hw;
831 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
832 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
833 u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
834 bool is_l2 = false;
835 u32 regval;
836
837 /* reserved for future extensions */
838 if (config->flags)
839 return -EINVAL;
840
841 switch (config->tx_type) {
842 case HWTSTAMP_TX_OFF:
843 tsync_tx_ctl = 0;
844 case HWTSTAMP_TX_ON:
845 break;
846 default:
847 return -ERANGE;
848 }
849
850 switch (config->rx_filter) {
851 case HWTSTAMP_FILTER_NONE:
852 tsync_rx_ctl = 0;
853 tsync_rx_mtrl = 0;
854 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
855 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
856 break;
857 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
858 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
859 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
860 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
861 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
862 break;
863 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
864 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
865 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
866 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
867 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
868 break;
869 case HWTSTAMP_FILTER_PTP_V2_EVENT:
870 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
871 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
872 case HWTSTAMP_FILTER_PTP_V2_SYNC:
873 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
874 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
875 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
876 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
877 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
878 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
879 is_l2 = true;
880 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
881 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
882 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
883 break;
884 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
885 case HWTSTAMP_FILTER_ALL:
886 /* The X550 controller is capable of timestamping all packets,
887 * which allows it to accept any filter.
888 */
889 if (hw->mac.type >= ixgbe_mac_X550) {
890 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
891 config->rx_filter = HWTSTAMP_FILTER_ALL;
892 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
893 break;
894 }
895 /* fall through */
896 default:
897 /*
898 * register RXMTRL must be set in order to do V1 packets,
899 * therefore it is not possible to time stamp both V1 Sync and
900 * Delay_Req messages and hardware does not support
901 * timestamping all packets => return error
902 */
903 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
904 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
905 config->rx_filter = HWTSTAMP_FILTER_NONE;
906 return -ERANGE;
907 }
908
909 if (hw->mac.type == ixgbe_mac_82598EB) {
910 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
911 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
912 if (tsync_rx_ctl | tsync_tx_ctl)
913 return -ERANGE;
914 return 0;
915 }
916
917 /* Per-packet timestamping only works if the filter is set to all
918 * packets. Since this is desired, always timestamp all packets as long
919 * as any Rx filter was configured.
920 */
921 switch (hw->mac.type) {
922 case ixgbe_mac_X550:
923 case ixgbe_mac_X550EM_x:
924 /* enable timestamping all packets only if at least some
925 * packets were requested. Otherwise, play nice and disable
926 * timestamping
927 */
928 if (config->rx_filter == HWTSTAMP_FILTER_NONE)
929 break;
930
931 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
932 IXGBE_TSYNCRXCTL_TYPE_ALL |
933 IXGBE_TSYNCRXCTL_TSIP_UT_EN;
934 config->rx_filter = HWTSTAMP_FILTER_ALL;
935 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
936 adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
937 is_l2 = true;
938 break;
939 default:
940 break;
941 }
942
943 /* define ethertype filter for timestamping L2 packets */
944 if (is_l2)
945 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
946 (IXGBE_ETQF_FILTER_EN | /* enable filter */
947 IXGBE_ETQF_1588 | /* enable timestamping */
948 ETH_P_1588)); /* 1588 eth protocol type */
949 else
950 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
951
952 /* enable/disable TX */
953 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
954 regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
955 regval |= tsync_tx_ctl;
956 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
957
958 /* enable/disable RX */
959 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
960 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
961 regval |= tsync_rx_ctl;
962 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
963
964 /* define which PTP packets are time stamped */
965 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
966
967 IXGBE_WRITE_FLUSH(hw);
968
969 /* clear TX/RX time stamp registers, just to be sure */
970 ixgbe_ptp_clear_tx_timestamp(adapter);
971 IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
972
973 return 0;
974}
975
976/**
977 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
978 * @adapter: pointer to adapter struct
979 * @ifreq: ioctl data
980 *
981 * Set hardware to requested mode. If unsupported, return an error with no
982 * changes. Otherwise, store the mode for future reference.
983 */
984int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
985{
986 struct hwtstamp_config config;
987 int err;
988
989 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
990 return -EFAULT;
991
992 err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
993 if (err)
994 return err;
995
996 /* save these settings for future reference */
997 memcpy(&adapter->tstamp_config, &config,
998 sizeof(adapter->tstamp_config));
999
1000 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1001 -EFAULT : 0;
1002}
1003
1004static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1005 u32 *shift, u32 *incval)
1006{
1007 /**
1008 * Scale the NIC cycle counter by a large factor so that
1009 * relatively small corrections to the frequency can be added
1010 * or subtracted. The drawbacks of a large factor include
1011 * (a) the clock register overflows more quickly, (b) the cycle
1012 * counter structure must be able to convert the systime value
1013 * to nanoseconds using only a multiplier and a right-shift,
1014 * and (c) the value must fit within the timinca register space
1015 * => math based on internal DMA clock rate and available bits
1016 *
1017 * Note that when there is no link, internal DMA clock is same as when
1018 * link speed is 10Gb. Set the registers correctly even when link is
1019 * down to preserve the clock setting
1020 */
1021 switch (adapter->link_speed) {
1022 case IXGBE_LINK_SPEED_100_FULL:
1023 *shift = IXGBE_INCVAL_SHIFT_100;
1024 *incval = IXGBE_INCVAL_100;
1025 break;
1026 case IXGBE_LINK_SPEED_1GB_FULL:
1027 *shift = IXGBE_INCVAL_SHIFT_1GB;
1028 *incval = IXGBE_INCVAL_1GB;
1029 break;
1030 case IXGBE_LINK_SPEED_10GB_FULL:
1031 default:
1032 *shift = IXGBE_INCVAL_SHIFT_10GB;
1033 *incval = IXGBE_INCVAL_10GB;
1034 break;
1035 }
1036}
1037
1038/**
1039 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1040 * @adapter: pointer to the adapter structure
1041 *
1042 * This function should be called to set the proper values for the TIMINCA
1043 * register and tell the cyclecounter structure what the tick rate of SYSTIME
1044 * is. It does not directly modify SYSTIME registers or the timecounter
1045 * structure. It should be called whenever a new TIMINCA value is necessary,
1046 * such as during initialization or when the link speed changes.
1047 */
1048void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1049{
1050 struct ixgbe_hw *hw = &adapter->hw;
1051 struct cyclecounter cc;
1052 unsigned long flags;
1053 u32 incval = 0;
1054 u32 tsauxc = 0;
1055 u32 fuse0 = 0;
1056
1057 /* For some of the boards below this mask is technically incorrect.
1058 * The timestamp mask overflows at approximately 61bits. However the
1059 * particular hardware does not overflow on an even bitmask value.
1060 * Instead, it overflows due to conversion of upper 32bits billions of
1061 * cycles. Timecounters are not really intended for this purpose so
1062 * they do not properly function if the overflow point isn't 2^N-1.
1063 * However, the actual SYSTIME values in question take ~138 years to
1064 * overflow. In practice this means they won't actually overflow. A
1065 * proper fix to this problem would require modification of the
1066 * timecounter delta calculations.
1067 */
1068 cc.mask = CLOCKSOURCE_MASK(64);
1069 cc.mult = 1;
1070 cc.shift = 0;
1071
1072 switch (hw->mac.type) {
1073 case ixgbe_mac_X550EM_x:
1074 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1075 * designed to represent seconds and nanoseconds when this is
1076 * the case. However, some revisions of hardware have a 400Mhz
1077 * clock and we have to compensate for this frequency
1078 * variation using corrected mult and shift values.
1079 */
1080 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1081 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1082 cc.mult = 3;
1083 cc.shift = 2;
1084 }
1085 /* fallthrough */
1086 case ixgbe_mac_X550:
1087 cc.read = ixgbe_ptp_read_X550;
1088
1089 /* enable SYSTIME counter */
1090 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1091 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1092 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1093 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1094 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1095 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1096 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1097 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1098
1099 IXGBE_WRITE_FLUSH(hw);
1100 break;
1101 case ixgbe_mac_X540:
1102 cc.read = ixgbe_ptp_read_82599;
1103
1104 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1105 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1106 break;
1107 case ixgbe_mac_82599EB:
1108 cc.read = ixgbe_ptp_read_82599;
1109
1110 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1111 incval >>= IXGBE_INCVAL_SHIFT_82599;
1112 cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1113 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1114 (1 << IXGBE_INCPER_SHIFT_82599) | incval);
1115 break;
1116 default:
1117 /* other devices aren't supported */
1118 return;
1119 }
1120
1121 /* update the base incval used to calculate frequency adjustment */
1122 ACCESS_ONCE(adapter->base_incval) = incval;
1123 smp_mb();
1124
1125 /* need lock to prevent incorrect read while modifying cyclecounter */
1126 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1127 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1128 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1129}
1130
1131/**
1132 * ixgbe_ptp_reset
1133 * @adapter: the ixgbe private board structure
1134 *
1135 * When the MAC resets, all the hardware bits for timesync are reset. This
1136 * function is used to re-enable the device for PTP based on current settings.
1137 * We do lose the current clock time, so just reset the cyclecounter to the
1138 * system real clock time.
1139 *
1140 * This function will maintain hwtstamp_config settings, and resets the SDP
1141 * output if it was enabled.
1142 */
1143void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1144{
1145 struct ixgbe_hw *hw = &adapter->hw;
1146 unsigned long flags;
1147
1148 /* reset the hardware timestamping mode */
1149 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1150
1151 /* 82598 does not support PTP */
1152 if (hw->mac.type == ixgbe_mac_82598EB)
1153 return;
1154
1155 ixgbe_ptp_start_cyclecounter(adapter);
1156
1157 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1158 timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1159 ktime_to_ns(ktime_get_real()));
1160 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1161
1162 adapter->last_overflow_check = jiffies;
1163
1164 /* Now that the shift has been calculated and the systime
1165 * registers reset, (re-)enable the Clock out feature
1166 */
1167 if (adapter->ptp_setup_sdp)
1168 adapter->ptp_setup_sdp(adapter);
1169}
1170
1171/**
1172 * ixgbe_ptp_create_clock
1173 * @adapter: the ixgbe private adapter structure
1174 *
1175 * This function performs setup of the user entry point function table and
1176 * initializes the PTP clock device, which is used to access the clock-like
1177 * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1178 * reuse a previously initialized clock (such as during a suspend/resume
1179 * cycle).
1180 */
1181static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1182{
1183 struct net_device *netdev = adapter->netdev;
1184 long err;
1185
1186 /* do nothing if we already have a clock device */
1187 if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1188 return 0;
1189
1190 switch (adapter->hw.mac.type) {
1191 case ixgbe_mac_X540:
1192 snprintf(adapter->ptp_caps.name,
1193 sizeof(adapter->ptp_caps.name),
1194 "%s", netdev->name);
1195 adapter->ptp_caps.owner = THIS_MODULE;
1196 adapter->ptp_caps.max_adj = 250000000;
1197 adapter->ptp_caps.n_alarm = 0;
1198 adapter->ptp_caps.n_ext_ts = 0;
1199 adapter->ptp_caps.n_per_out = 0;
1200 adapter->ptp_caps.pps = 1;
1201 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1202 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1203 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1204 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1205 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1206 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_x540;
1207 break;
1208 case ixgbe_mac_82599EB:
1209 snprintf(adapter->ptp_caps.name,
1210 sizeof(adapter->ptp_caps.name),
1211 "%s", netdev->name);
1212 adapter->ptp_caps.owner = THIS_MODULE;
1213 adapter->ptp_caps.max_adj = 250000000;
1214 adapter->ptp_caps.n_alarm = 0;
1215 adapter->ptp_caps.n_ext_ts = 0;
1216 adapter->ptp_caps.n_per_out = 0;
1217 adapter->ptp_caps.pps = 0;
1218 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1219 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1220 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1221 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1222 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1223 break;
1224 case ixgbe_mac_X550:
1225 case ixgbe_mac_X550EM_x:
1226 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1227 adapter->ptp_caps.owner = THIS_MODULE;
1228 adapter->ptp_caps.max_adj = 30000000;
1229 adapter->ptp_caps.n_alarm = 0;
1230 adapter->ptp_caps.n_ext_ts = 0;
1231 adapter->ptp_caps.n_per_out = 0;
1232 adapter->ptp_caps.pps = 0;
1233 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
1234 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1235 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1236 adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1237 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1238 adapter->ptp_setup_sdp = NULL;
1239 break;
1240 default:
1241 adapter->ptp_clock = NULL;
1242 adapter->ptp_setup_sdp = NULL;
1243 return -EOPNOTSUPP;
1244 }
1245
1246 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1247 &adapter->pdev->dev);
1248 if (IS_ERR(adapter->ptp_clock)) {
1249 err = PTR_ERR(adapter->ptp_clock);
1250 adapter->ptp_clock = NULL;
1251 e_dev_err("ptp_clock_register failed\n");
1252 return err;
1253 } else
1254 e_dev_info("registered PHC device on %s\n", netdev->name);
1255
1256 /* set default timestamp mode to disabled here. We do this in
1257 * create_clock instead of init, because we don't want to override the
1258 * previous settings during a resume cycle.
1259 */
1260 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1261 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1262
1263 return 0;
1264}
1265
1266/**
1267 * ixgbe_ptp_init
1268 * @adapter: the ixgbe private adapter structure
1269 *
1270 * This function performs the required steps for enabling PTP
1271 * support. If PTP support has already been loaded it simply calls the
1272 * cyclecounter init routine and exits.
1273 */
1274void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1275{
1276 /* initialize the spin lock first since we can't control when a user
1277 * will call the entry functions once we have initialized the clock
1278 * device
1279 */
1280 spin_lock_init(&adapter->tmreg_lock);
1281
1282 /* obtain a PTP device, or re-use an existing device */
1283 if (ixgbe_ptp_create_clock(adapter))
1284 return;
1285
1286 /* we have a clock so we can initialize work now */
1287 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1288
1289 /* reset the PTP related hardware bits */
1290 ixgbe_ptp_reset(adapter);
1291
1292 /* enter the IXGBE_PTP_RUNNING state */
1293 set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1294
1295 return;
1296}
1297
1298/**
1299 * ixgbe_ptp_suspend - stop PTP work items
1300 * @ adapter: pointer to adapter struct
1301 *
1302 * this function suspends PTP activity, and prevents more PTP work from being
1303 * generated, but does not destroy the PTP clock device.
1304 */
1305void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1306{
1307 /* Leave the IXGBE_PTP_RUNNING state. */
1308 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1309 return;
1310
1311 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1312 if (adapter->ptp_setup_sdp)
1313 adapter->ptp_setup_sdp(adapter);
1314
1315 /* ensure that we cancel any pending PTP Tx work item in progress */
1316 cancel_work_sync(&adapter->ptp_tx_work);
1317 ixgbe_ptp_clear_tx_timestamp(adapter);
1318}
1319
1320/**
1321 * ixgbe_ptp_stop - close the PTP device
1322 * @adapter: pointer to adapter struct
1323 *
1324 * completely destroy the PTP device, should only be called when the device is
1325 * being fully closed.
1326 */
1327void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1328{
1329 /* first, suspend PTP activity */
1330 ixgbe_ptp_suspend(adapter);
1331
1332 /* disable the PTP clock device */
1333 if (adapter->ptp_clock) {
1334 ptp_clock_unregister(adapter->ptp_clock);
1335 adapter->ptp_clock = NULL;
1336 e_dev_info("removed PHC on %s\n",
1337 adapter->netdev->name);
1338 }
1339}